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Abstract--The heart rate is a non-stationary signal, and its variation can contain 
indicators of current disease or warnings about impending cardiac diseases. The 
indicators can be present at all t imes or can occur at random, during certain intervals 
of the day. However, to study and pinpoint  abnormalit ies in large quantities of data 
collected over several hours is strenuous and time consuming. Hence, heart rate 
variation measurement (instantaneous heart rate against time) has become a 
popular, non-invasive tool for assessing the autonomic nervous system. Computer- 
based analytical tools for the in-depth study and classification of data over day-long 
intervals can be very useful in diagnostics. The paper deals with the classification of 
cardiac rhythms using an artif icial neural network and fuzzy relationships. The results 
indicate a high level of  efficacy of the tools used, with an accuracy level of  80-85% 
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1 Introduction 

COMPUTER TECHNOLOGY has an important role in structuring 
biological systems. The explosive growth of high-performance 
computing techniques in recent years with regard to the devel- 
opment of good and accurate models of biological systems has 
contributed significantly to new approaches to fundamental 
problems of modelling transient behaviour of biological systems. 

Electrocardiography deals with the electrical activity of the 
heart. The state of cardiac health is generally reflected in the 
shape of the ECG waveform and heart rate (SOKOLOW et al., 
1990). An electrocardiogram can contain important pointers to 
the nature of diseases afflicting the heart. However, biosignals 
being non-stationary, such pointers can occur at random on the 
time scale. Therefore, for effective diagnostics, the study of ECG 
patterns and heart rate variability (HRV) signals may have to be 
carried out over several hours. 

HRV is a non-invasive measurement of cardiovascular auto- 
nomic regulation. Specifically, it is a measurement of the interac- 
tion between sympathetic and parasympathetic activity in 
autonomic functioning. Spectral analysis is the most popular 
linear technique used in the analysis of HRV signals (WEISSMAN 
et  al., 1990; AKSELROD et al., 1981; POMERANZ et al., 1985). 
Frequency-domain analysis provides for the separation of para- 
sympathetic (high-frequency range) and sympathetic activity (low- 
frequency range) signals. Spectral analysis is the most popular 
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linear technique used in the analysis of HRV signals. Spectral 
power in the high-frequency (HF) (0.15-0.5 Hz) band reflects 
respiratory sinus arrhythmia (RSA) and thus cardiac vagal activity. 
Low-frequency (LF) (0.04-0.15Hz) power is related to baro- 
receptor control and is mediated by both vagal and sympathetic 
systems. Very low-frequency (VLF) (0.0033-0.04Hz) power 
appears to be related to thermoregulatory and vascular mechanisms 
and renin-angio tensin systems (TASK FORCE, 1996). 

The cardiovascular system is too complex to be linear, and 
treating it as a non-linear system can lead to better understanding 
of the system dynamics. Recently, SuN et al. (2000) proposed a 
non-linear technique for arrhythmia detection using the ECG 
signal. KHADRA et al. (1997) proposed a classification of life- 
threatening cardiac arrhythmias using wavelet transforms. Later, 
AL-FAHOUM and HOWlTT (1999) combined wavelet transforma- 
tion and radial basis neural networks for classifying cardiac 
arrhythmias. MOHAMED et al. (2002) used non-linear dynamic 
modelling in ECG arrhythmia detection and classification. 
DINGFIE et al. classified cardiac arrhythmia into six classes 
using autoregressive modelling (DINGFIE et al., 2002). 

In the present work, heart rate variability is used as the base 
signal for classification of cardiac abnormalities into eight 
classes. Three parameters extracted from the heart rate signals 
are used for the proposed classification. 

2 Materials and method 

ECG data for the analysis and classification were obtained 
from the MIT-BIH arrhythmia database*. Prior to recording, the 

*MIT-BIH arrhythmia database, 3rd edn, 1997, Harvard-MIT Division 
of Health Science Technology, Biomedical Health Centre, 
Cambridge, MA, USA. 
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ECG signals were processed to remove noise due to power-line 
interference, respiration, muscle tremors, spikes etc. The R 
peaks of  the ECG were detected using the Tompkins algorithm 
(PAN and TOMPKINS, 1985). 

The selected data set included around 1000 segments each of 
normal ECG, pre-ventricular contraction (PVC), complete heart 
block (CHB), sick sinus syndrome (SSS), left bundle branch 
block (LBBB), ischaemic/dilated cardiomyopathy, atrial fibril- 
lation, and ventricular fibrillation. The sampling frequency of the 
data was 360 Hz. 

3 Neural network classifier 

Artificial neural networks (ANNs) are biologically inspired 
networks that are useful in application areas such as pattern 
recognition, classification etc. (LIPPMAN, 1989; HAYKIN, 1995). 
The decision making process of  the ANN is holistic, based on the 
features of  input patterns, and is suitable for classification of 
biomedical data. Typically, multilayer feed forward neural 
networks can be trained as non-linear classifiers using the 
generalised back propagation algorithm (BPA) (HAYKIN, 1995). 

The BPA is a supervised learning algorithm, in which a mean 
square error function is defined, and the learning process aims to 
reduce the overall system error to a minimum. The connection 
weights are randomly assigned at the beginning and progres- 
sively modified to reduce the overall system error. The weight 
updating starts with the output layer and progresses backward. 
The weight update is in the direction of 'negative descent', to 
maximize the speed of error reduction (YEGNANARAYANA, 
1999). The step size is chosen heuristically; in the present 
case, a learning constant q = 0.9 was chosen. 

For effective training, it is desirable that the training data set 
be uniformly spread throughout the class domains. The available 
data can be used iteratively, until the error function is reduced to 
a minimum. 

The ANN used for classification is shown in Fig. 1. The input 
layer consisted of nodes, and, in the subsequent hidden layers, 
process neurons with the standard sigmoid activation function 
were used. The output layer had three neurons, to divide the 
output domain into eight classes (000 to 111). 

spectral ~ 01 entropy 
SD1/SD 2 ~ 02 

LLE 03 

input 2 hidden output 
layer layers layer 

Fig. 1 Four-layer feedJbrward neural network classifier 

4 Disease classification using ANN 

For the purpose of this study, the cardiac disorders were 
classified into eight categories, namely 

(i) left bundle branch block (LBBB) 
(ii) normal sinus rhythm (NSR) 

(iii) pre-ventricular contraction (PVC) 
(iv) atrial fibrillation (AF) 
(v) ventricular fibrillation(VF) 

(vi) complete heart block (CHB) 
(vii) ischaemic/dilated cardiomyopathy 

(viii) sick sinus syndrome (SSS). 

The ANN classifier was fed by three parameters derived from the 
heart rate signals. They were spectral entropy, Poincar6 plot 
geometry and largest Lyapunov exponent (LLE) (Table 1). 

4.1 Spectral entropy 

Spectral entropy quantifies the spectral complexity of  the time 
series (REZEK and ROBERTS, 1993). A variety of  spectral 
transformations exist. Of these, the Fourier transformation 
(FT) is the most commonly used technique from which the 
power spectral density (PSD) can be obtained. The PSD 
represents the distribution of power as a function of frequency. 
Normalisation of the PSD with respect to the total spectral power 
yields the probability density function (PDF). Application of 
Shannon's channel entropy gives an estimate of the spectral 
entropy of the process, where entropy is given by 

1 
where pf i s  the PDF value at frequencyf. 

Heuristically, the entropy is interpreted as a measure of  
uncertainty about the event atf.  Thus entropy can be used as a 
measure of  system complexity. The spectral entropy 
H ( 0 < H <  1) describes the complexity of the HRV signal. 
This spectral entropy H was computed for the various types of  
cardiac signal. 

4.2 PoincarO plot geometry 

Poincar6 plot geometry, a technique taken from non-linear 
dynamics, portrays the nature of  R-R interval fluctuations, it is a 
graph of each R-R interval plotted against the next interval. 
Poincar6 plot analysis is an emerging quantitative-visual tech- 
nique whereby the shape of the plot is categorised into functional 
classes that indicate the degree of heart failure in a subject (Woo 
et al., 1992). The plot provides summary information as well as 
detailed beat-to-beat information on the behaviour of  the heart 
(KAMEN et al., 1996). The Poincar6 plot can be analysed 
quantitatively by calculating the standard deviations of the 
distances of  the R-R(i) to the lines y = x and y = - x  ÷ 2*R-R,,, 
where R-Rm is the mean of all R-R(i) (TULPPO et al., 1996). 
The standard deviations are referred to as SD1 and SD2, 
respectively. SD1 related to the fast beat-to-beat variability in 

Table 1 Range of input parameters" to ANN classification model 

Class Spectral entropy SD1/SD 2 LLE 

LBBB 1.24 ± 0.047 0.70 ± 0.20 0.47 ± 0.044 
Normal 1.63 ± 0.025 0.80 ± 0.16 0.50 ± 0.058 
PVC 1.14 ± 0.057 1.42 ± 0.54 0.62 ± 0.003 
AF 1.20 ± 0.037 2.98 ± 1.56 0.56 ± 0.112 
VF 1.06 ± 0.003 1.13 ± 0.47 0.42 ± 0.036 
Complete heart block 0.86 ± 0.054 0.64 ± 0.024 0.078 ± 0.114 
Ischaemic/dilated 1.12 ± 0.11 0.59 ± 0.37 0.193 ± 0.066 
caxdiomyopathy 
SSS 1.27 ± 0.135 0.96 ± 0.32 0.82 ± 0.102 
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Fig. 2 

0.20-  

0 .18-  

0 .16-  

0 .14-  

"; 0 .12-  
cC 
cC 

0.10-  

0 .08-  

0 .06-  

0 .04-  

.•SD 2 

0;6 0~0 
RRI n, s 

Poincard plot of a normal subject 

o q6 o~o 

the data, and SD2 described the longer-term variability of  R-R(i) 
(TULPPO et al., 1996). The ratio SD1/SD 2 can also be computed 
to describe the relationship between these components. Fig. 2 
shows the Poincar6 plot of  a normal subject. 

4.3 Largest Lyapunov exponent 

The Lyapunov exponent 2 is a measure of  the rate at which the 
trajectories separate one from another (WOLF et al., 1985; 
METIN, 2001; WEST, 2000). A negative exponent implies that 
the orbits approach a common fixed point. A zero exponent 
means the orbits maintain their relative positions; they are on a 
stable attractor. Finally, a positive exponent implies that the 
orbits are on a chaotic attractor. 

For two points in a space Xo andXo 4- Ax0, that are function of 
time and each of which will generate an orbit in that space using 
some equations or system of equations, then the separation 
between the two orbits Ax will also be a function of time. This 
separation is also a function of the location of the initial value 
and has the form Ax (Xo,t). For a chaotic data set, the function Ax 
(Xo,t) will behave erratically. The mean exponential rate of  
divergence of two initially close orbits is characterised by 

2 = lim -1 In IAx(X°'t)l (2) 
t I 01 

t >-C( 

The Lyapunov exponent 2 is useful for distinguishing various 
orbits. 

The largest Lyapunov exponent (LLE) quantifies sensitivity 
of  the system to initial conditions and gives a measure of  
predictability. The presence of a positive Lyapunov exponent 
indicates chaos. Even though an m dimensional system has m 
Lyapunov exponents, in most applications it is sufficient to 
compute only the LLE. We made use of  the method proposed by 
ROSENSTIEN et al. (1993), which is robust with data length. This 
method looks for the nearest neighbour of  each point in phase- 

Table 2 Training and testing data sets" 

space and tracks their separation over a certain time evolution. 
The LLE is estimated using a least squares fit to an average line 
defined by 

y(n) = ~ t  (In (di(n))) (3) 

where di(n) is the distance between the i th phase-space point and 
its nearest neighbour at the n th time step, and (-) denotes the 
average overall phase-space points. This last averaging step is 
the main feature that allows an accurate evaluation of the LLE, 
even when we have short and noisy data. The results of  the 
classification are shown in Table 2. 

5 Fuzzy classifier 

A more efficient classifier is developed using a fuzzy equiva- 
lence relationship. The process of  classification involves 
obtaining a fuzzy equivalence relationship matrix for each 
class of  datum and then comparing a fresh input with each 
group for classification (KLIR and YUAN, 1995). 

The fuzzy equivalence relationship requires the properties of  
reflexivity, symmetry and transitivity to be satisfied, i f  it satisfies 
only the first two the reflexivity and symmetry properties, it is 
termed a fuzzy compatible relationship. Although it is usually 
difficult to identify an equivalence relationship directly, it is 
possible to identify a compatible relationship in terms of an 
appropriate 'distance function' of  the Minkowski class. The 
general expression used for the distance function (Minkowski 
class) is 

R ( x i , x j )  = 1 - 6 Ixiz - -  Xj l l  q (4) 

where n-+to ta l  dimensionality of  the input data point; 
l-+dimensionality index of the input data (1,2,. . . ,n);  
p -+ size of  the input data set; i , j -+  input index i, j E [1 . . .  p]; 
q -+ distance function parameter; and 6 -+ normalising factor to 
ensure the resultant R(xi,xj) E [0,1]. 

Variable n represents the total dimensions of the data, and 
each dimension refers to the components of the input data. For 
example, from Table 1, the input data (HRV signal) are 
represented by three components (HR (average), Lyapunov, 
correlation function), and hence, n = 3 here. 

The Minkowski relationship can be evaluated for integer 
values of q for q = 1, the 'distance function' happens to be the 
Hamming distance; for q = 2, it is the Euclidean distance etc. 
The normalising factor 6 is taken as the inverse of  the largest 
distance between the data pairs. 

As indicated above, for our purposes, the input data (HRV 
signal) was represented using the three parameters used for ANN 
classification earlier (Table 1). Thus the data had three compo- 
nents (n = 3). The size of  the training data set (defined by 
Pkk E [1 . . .  4]) was different for each class i. The size of  the 
entire data set was given by p. 

Number of data set Number of data set 
Class used for training used for testing 

Percentage of 
correct classification 

(10 000 iterations) 

LBBB 28 14 85.7 
Normal 60 30 90.0 
PVC 45 25 88.0 
AF 30 20 85.0 
VF 28 21 81.0 
Complete heart block 28 21 81.0 
Ischaemic/dilated cardiomyopathy 30 18 83.3 
SSS 30 18 88.9 
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in the present case, the Euclidean distance function of  the 
Minkowski class (q = 2) was used as the basis to define a mutual 
relationship among the input data belonging to a particular class. 
Thus (4) reduces to 

R(x i ,  x j )  = 1 - 6 ]xiz _ XJ l 2 (5)  

The value of  6 was taken to be equal to 1/n 1/2, where n was the 
number dimensionality of  the input data points, which was three 
in our case. 

The result of  the above evaluation could be listed in the form 
o f a  symmetricalp ×p  matrix, which satisfied both the reflexivity 
and symmetry conditions. The compatibility relationship thus 
formed was converted to an equivalence relationship by perfor- 
mance of  the transitive closure operation. The processing 
algorithm is described in the following discussion. First, a few 
definitions are necessary. 

For a relationship R, we write R(u,v) i f  the pair (u,v) is a 
member  of  the set. 

Given a relationship R, its transitive closure R* can be 
determined as follows. 

R is transitive if(a,  b) E R/x  (b, c) E R/x  (a, c) E R. We can 
add elements to a relationship R and create a new relationship 
that is the transitive closure of  R. However, the procedure 
requires an iterative process. We find the transitive closure by 
examining every pair o f  elements of  R where the second element 
of  the first pair matches the first element of  the second pair. 

That is, (a, b) E R and (b, c) E R. 
Transitivity requires that (a, c) must also be an element ofR. i f  

it is not, then we must add it to the new relationship that we are 
building into the transitive closure. Let us call the new relation- 
ship R'. (initially, R '  = R, and, when the process of  adding edges 
is over, R'  =R*) .  After we have examined all such pairs o f  
members of  R and added the required edges to R'  where needed, 
we must then begin the same process again. 

The resultant R* is the transitive closure of  R. 
After computing the transitive closure and having satisfied the 

properties of  reflexivity, symmetry and transitivity, the fuzzy 
equivalence relationship matrix so obtained can now be used for 
classification of  fresh data. The data to be classified are appended 
to the already classified data, and the fuzzy equivalence relation- 
ship is found. At the end, the class to which the unknown data 
belong is the one with whom they have the maximum degree of  
closeness. The formal algorithm is as follows, and the results o f  
the classification are listed in Table 3: 

Step 1: initialisation phase: 
1.1 Read classified data from an input file 

[ inpu t  da ta] i , j  [ c las ses ]k  +-  Buffer 
i: 1 to m (number of  data) 

j:  1 to n (number of  attributes) 
k: 1 to i; where there are 'o '  classes 

1.2 Read unclassified data from test file 

Table 3 Results" of Juzzy classifier 

[unclassified]i,j +-- Buffer 
i: 1 to p (number of  data) 

j: 1 to n (number of  attributes) 

Step 2: Pre-processing phase: 
2.1 Append unclassified_data onto input data 

[input data]l,j +-- [input data]i,j~L 
[unclassified_data] k,j 
l: 1 to (m ÷ p )  
i : m + l t o m + p  
k: 1 to p 
j: l t o n  

2.2 Normalise the data matrix attribute wise 
selecting the maximum in each attribute 

[ input-data]i,j 
[ input-data]l,J +-- m a x  {[input_data]}lj 

1:1 to (m + p )  
j: l t o n  

Step 3: Compute the fuzzy equivalence relationship: 
3.1 Find the compatibility relationship between the 

data using distance function of  Minkowski class 

R c ( x i , x j )  = 1 - 6( ~ (xit - Xjl)2)) 1/2 
/=1 

i,j: 1 to (m ÷Pl)2 
where 6 = 1/n / 

3.2 Find the transitive closure of  Re using algorithm 
given below 

3.2.1 R'  = Rc(R c • Rc) 
U = Max operator 
• = Max-Min composition 

where R • R = rij = max min (rik,rkj) 
i,j, k: 1 to (m + p )  k 

3.2.2 i f R  ~ = R e  then stop. Else make R~ = R  ~ go to 
step 3.2.1. 

3.2.3 Rt = R';  Rt is the transitive closure matrix 
(m +p) × (m +p) 

Step 4: Prediction phase: 
Beginning from row m ÷ 1 search for the 
maximum membership degree until column m 
and store the corresponding index in matrix 
Max_membership 

[Max_membership]i = max[Rt]i2; 
i: m ÷  1 to ( m ÷ p )  

j: l t o m  
corresponding to each unclassified datum, the 

class to which it belongs is given by [classes] 
[Max membershipli; i: 1 to p 

6 Conclusion 

The HRV signal can be used as a reliable indicator of  heart 
diseases, in this paper, both the neural network classifier and the 
fuzzy classifier are presented as diagnostic tools to aid the 
physician in the analysis o f  heart diseases. However, these tools 

Number of data set 
Class used for training 

Number of data set 
used for testing 

Percentage of correct 
classification 

(10 000 iterations) 

LBBB 28 18 88.9 
Normal 60 40 92.5 
PVC 45 30 90.0 
AF 30 25 88.0 
VF 28 25 84.0 
Complete heart block 28 25 88.0 
Ischaemic/dilated caxdiomyopathy 30 22 86.4 
SSS 30 22 90.9 
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generally do not yield results with 100% accuracy. The accuracy 
o f  the tools depends on several factors, such as the size and quality 
o f  the training set, the rigour of  the training imparted and also the 
parameters chosen to represent the input. However, from the 
analysis o f  the results listed in Tables 2 and 3, it is evident that the 
classifiers presented are effective with about 80-85% accuracy. 
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