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a b s t r a c t

An automatic method for the detection of Tuberculosis (TB) bacilli from microscopic sputum

smear images is presented in this paper. According to WHO, TB is the ninth leading cause of

death all over the world. There are various techniques to diagnose TB, of which conventional

microscopic sputum smear examination is considered to be the gold standard. However, the

aforementioned method of diagnosis is time intensive and error prone, even in experienced

hands. The proposed method performs detection of TB, by image binarization and subse-

quent classification of detected regions using a convolutional neural network. We have

evaluated our algorithm using a dataset of 22 sputum smear microscopic images with

different backgrounds (high density and low-density images). Experimental results show

that the proposed algorithm achieves 97.13% recall, 78.4% precision and 86.76% F-score for

the TB detection. The proposed method automatically detects whether the sputum smear

images is infected with TB or not. This method will aid clinicians to predict the disease

accurately in a short span of time, thereby helping in improving the clinical outcome.

© 2018 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish

Academy of Sciences. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Tuberculosis (TB) is a potentially serious contagious infection
and is caused by Mycobacterium tuberculosis. It is an airborne
disease that spreads from one person to another through
coughs, sneezes, speaks, spits etc. and it predominantly
attacks the lungs (pulmonary TB). But it can also infect or
damage other organs (extrapulmonary TB) such as the brain,
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spine, kidney etc. and may eventually lead to death, if not
handled properly. These bacteria are rod-shaped, slow
growing with varying curvature and have a length ranging
from 1 to 10 mm [9]. Depending upon the level of infection,
doctors classified TB into two forms: active TB and latent
(inactive) TB. Among them, active TB is more dangerous and is
contagious. Patients with latent TB do not spread infection, but
sometimes it can be converted to active TB at a later stage.
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Based on the report of World Health Organization (WHO) 2017
[1], in 2016 itself, 1.3 million people died and an estimated 10.4
million fell ill due to TB. Top TB burden countries include India,
Indonesia, China, Pakistan etc., and among these countries,
India (25%)is having the maximum population of TB patients
[1]. Every year millions of people worldwide are affected with
TB infection, leading to WHO announcing TB as a global
emergency [2].

There are many established TB detection methods avail-
able such as microscopy, tuberculin skin test (TST), chest X-
ray, interferon-g release assay (IGRA), culture test, and
GeneXpert etc. [3]. However, microscopic sputum smear
examination using conventional microscope is a widely used
technique all over the world especially in low and middle-
income countries due to its low cost, ease of use and
maintenance; and also provides sufficiently faster results
compared to other tests [3]. Sputum smear examination can be
done in two ways: one with the help of bright field or
conventional microscope and the other with the help of a
fluorescent microscope, and both of them vary in their power
of the lens and staining. Former one uses 100� lens and Ziehl-
Neelsen (ZN) acid-fast staining procedure and the latter one
uses 25� and auramine-O [4].

Accurate and on time treatments are required for
controlling the number of TB cases. Manual detection and
counting of TB bacilli through the microscopic eyepiece is a
tedious task, which requires highly skilled lab technicians,
and lots of mental and physical (eye) strain [3]. The accuracy
of TB detection always depends upon the technician's level
of expertise and knowledge. Technicians, in general, have to
analyze between 20 and 100 fields of each sputum smear
slide, which can take about 40 min to 3 h depending upon the
patient's infection level [6]. According to Veropoulos et al. [7],
the manual TB detection and counting methods may miss
33–50% of active cases and the automated methods may help
to increase the diagnostic sensitivity rate, as machines can
screen a large number of fields in a short duration and can
detect the TB bacillus more accurately in the early stage
itself. The other advantages of automated TB detection
methods are low mental and physical strain, faster and
accurate decision making, patient record use, multi-head
visualization and communication use (second opinion) [10].
The usage of these types of automated systems and methods
will help the clinicians to provide better treatments to the
needy and thereby the hospitals can meet the quality
standards.

In the past few years, many automated methods have been
proposed to detect TB bacilli from conventional as well as
fluorescence microscopic images. Most of the existing meth-
ods use handcrafted feature vectors to discriminate bacilli
pixels from non-bacilli pixels. The performance of these
methods heavily depends on the bacilli features considered.
Also, manually designing feature vectors for complex tasks
requires a great deal of human time and effort [31]. In this
work, we used a customized convolutional neural network
(CNN) to identify the pixels in the image that belongs to bacilli.
The advantage of CNN over other machine learning techni-
ques is that instead of handcrafted feature vectors, the CNN
automatically learns the characteristics of bacilli, provided
enough samples to learn. We used a standard dataset provided
by Costa et al. [27] to train and test the proposed CNN
framework.

This paper is structured as follows. Section 2 describes the
review of existing papers. In Section 3, the proposed methods
are discussed. Experimental results, data sets, and discussions
are given in Section 4. Finally, conclusions are drawn
in Section 5.

2. Related work

Many researchers proposed fully and semi-automatic TB
bacilli detection methods for sputum smear images acquired
using a conventional or fluorescent microscope. The general
steps involved in developing automated systems for TB bacilli
detection are: (i) image acquisition and pre-processing, (ii)
segmentation, (iii) feature extraction, and (iv) classification of
TB bacilli. The first attempt to detect TB bacilli from
microscopic sputum smear images using image processing
techniques was done by Veropoulos et al. [8] in 1998. They
demonstrated the efficacy of their method on images acquired
with a fluorescent microscope. Costa et al. [5] were the first to
publish bacilli detection using image processing techniques on
bright field microscopic images. In the remaining part of this
section, we will be discussing automatic TB detection methods
using conventional microscopic images only.

Costa et al. [5] proposed an adaptive thresholding-based
segmentation method for the detection of TB in images of ZN-
stained sputum smear images. They used morphological
filters for handling the artifacts. But the sensitivity of their
method was relatively less (76.65%). In 2008 itself, Sadaphal
et al. [11] used Bayesian segmentation and shape features (axis
ratio and eccentricity) for the detection of TB bacilli. However,
their method failed in identifying the overlapping or conglom-
erated bacilli. An adaptive hue based segmentation method
was later proposed by Makkapati et al. [12] in 2009, for
detecting TB bacilli. In [13], a thresholding-based segmenta-
tion was used by considering Cr and a plane of YCbCr and Lab
color space for the identification of bacilli from sputum smear
images. They got an accuracy of 85.7%. Zhai et al. [14] proposed
a two-stage segmentation (coarse segmentation and fine
segmentation) and a decision tree based classification for TB
bacilli identification, and their experimental results showed an
accuracy greater than 80%. In the same year itself, Nayak et al.
[15] proposed HSI color space based segmentation and area-
based classification for detecting TB bacilli with 93.5% success
rate. A genetic algorithm based neural network (GA-NN)
approach has been used for the detection of TB objects and an
accuracy of 86.32% has been reported on ZN stained tissue
slide images [19].

A pixel classifier combination is used for detecting TB bacilli
in [9,16]. These methods failed to identify touching TB bacilli.
In 2012, Costa Filho et al. [17] performed a neural network-
based classification for detecting TB bacilli with a sensitivity of
91.53%. A Random Forest (RF) based learning method was
proposed by Ayas et al. [18] in 2014 for detecting TB bacilli.
Recently, in 2015 Costa Filho et al. [20] used segmentation and
post-processing method for the automatic identification of TB.
The authors achieved a sensitivity of 96.80%. Very recently, a
fuzzy-based decision-making approach was developed
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by Ghosh et al. [22]. In this method, they segmented the bacilli
using shape, color and granularity feature. They used gradient
based region growing technique for finding the contour
boundary. However, their method failed to identify over-
lapping bacillus. In 2017, Lopez et al. [28] proposed a CNN
model for identifying TB bacilli from sputum smear images.
They used RGB, grayscale and R-G patches versions for training
the 3 CNN models.

Generally, a TB dataset image consists of three types of
objects such as single bacilli, touching or overlapping bacilli, and
debris. Although the touching bacilli are composed of several
single bacillus objects that are touched together in different
ways, its inclusion is very important for determining the severity
of the TB disease. But most of the abovementioned papers
[9,16,20] concentrate on the segmentation of single bacilli objects
only. They either discard or consider the touching bacilli as non-
bacillus objects due to their irregular shapes. According to
Panicker et al. [3], most of the automated methods proposed in
the literature failed in detecting touching bacillus objects. In
[9,16] the authors suggested that the touching bacillus objects
formed a T shape and are labeled as non-bacillus objects.
According to Xu et al. [21], the touching bacilli is considered as
another class of objects or negative ones. The extraction of single
bacilli and touching TB bacilli is a very important problem in the
clinical context for deciding the infection level.

3. Methods

The proposed method is implemented in two stages. In the
first stage, we used a simple segmentation approach to classify
the foreground and background of the images. The foreground
Fig. 1 – Results of stage-1. (a) Original image, (b) denoised image
component analysis. The images in the second row, (d), (e), and
image (a).
consists of single bacilli, touching bacillus and other artifacts.
The segmented foreground objects are then given to a trained
convolutional neural network (CNN) and the CNN will classify
the objects into bacilli and non-bacilli. Both sections are
explained in detail in the following subsections.

3.1. Stage – 1: Image binarization

In the first stage, the input image is first denoised to improve
the quality. In this work, we used the fast nonlocal means
(FNLM) method [29] to denoise the images. The parameters
used for FNLM are: smoothing parameter = 3, search window
size = 25 � 25, similarity window size = 5 � 5. The denoised
image is then binarized using Otsu's method [30] after
converting the image to grayscale. The binarization threshold
value estimated using the Otsu's method will classify the
pixels in the given grayscale image to background and
foreground. The background pixels will be represented with
zero and foreground with one. The foreground region will
contain bacilli as well as some other foreign objects.
Morphological opening and closing are applied to the resultant
binary image to fine tune it. A connected component analysis
is applied to the binary image to extract all the connected
components and the extracted connected components (after
multiplying with the original image) will be fed into the second
stage to check whether the connected component is a bacillus
or not. A sample input and output of the first stage is given in
Fig. 1. Fig. 1a–c shows the original input image, denoised image
and the output of stage 1 respectively. The selected patches in
Fig. 1c are the regions selected as bacillus by the stage 1
process. These regions may also contain debris, stains or
noise. These patches will be fed to stage 2 for further
, (c) selected objects after binarization and connected
 (f) are the zoomed view of the region with red arrow in
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processing. The images in the second row of Fig. 1 are the
zoomed view of the region with a red arrow in Fig. 1a.

3.2. Stage – 2: Pixel classification

A convolutional neural network (CNN) is used in stage 2 to
verify whether the extracted patch in stage 1 is a bacillus or
Fig. 2 – Proposed CN
not. The CNN architecture proposed for the second stage
is described in Fig. 2.

3.2.1. Network architecture
The proposed CNN model accepts an image patch (from stage
1) as input and generates a probability value that is used to
predict whether the given input patch contains bacilli or not.
N architecture.
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As shown in Fig. 2, the final architecture consists of 2
convolution layers with 32 (3 � 3) filter maps followed by 3
convolution layers with 64 (3 � 3) filters and finally 1
convolution layer with 128 (3 � 3) filters. The output from
this series of convolution layers is fed to a fully connected layer
with 128 neurons with Rectified Linear Unit (ReLU) activation
and finally a sigmoid neuron for binary classification. The
ReLU and sigmoid activation functions are defined as:

f ðaÞ ¼ maxða; 0Þ (1)

and

sðaÞ ¼ 1
1 þ e�a (2)

respectively, where a is the weighted sum of the inputs.

Each convolution layer is followed by a Batch Normal-
isation Layer [23]. Batch Normalization is a technique used to
reduce the internal covariate shift and has been observed to
increase the speed of training of neural networks. As a result,
the output from the convolution layer is whitened to have zero
mean and unit variance before being fed as input to the next
layer. Every Batch Normalisation Layer is followed by a ReLU
Activation function which suppresses the value if it is
negative. CNN's with ReLU activation units are observed to
train faster than their equivalent networks with the standard
tanh activations [24]. Max pooling usually follows the ReLU
Activation layer. In our experiments, we use max pooling tiles
of 2 � 2 pixels. During max pooling, the feature map obtained
after the application of the ReLU activation function on the
output of the convolution block is divided into 2 � 2 tiles and
the maximum value from each tile is used in the next layer of
the network. Additionally, the fully connected layer is followed
by a dropout layer having probability 0.5 to further reduce
overfitting.

3.3. Training methodology

We incrementally added convolution layers to check for
improvement in validation accuracy until the final configura-
tion is reached. The loss function that we used in the proposed
model is the binary cross entropy function:

L ¼ �
Xn

i¼1

ðti logðyiÞ þ ð1�tiÞlogð1�yiÞÞ (3)

where L is the loss function, n is the input size ti is the actual
binary output and yi is the estimated binary output. The
objective is to find the parameters (weight and bias vectors)
that minimize the loss function. We train the network using
the Gradient Descent method with a learning rate of 0.01. The
weights are initialized using the Glorot uniform initializer as
per the default parameters in the Keras API. It randomly draws
Fig. 3 – Samples patches used for training and testing. Patches 

in the figure.
samples from a uniform distribution as per configurations
describes in [25]. All images are scaled to a fixed size of
224 � 224 before being fed as input to the model. We used
the resize function (with nearest-neighbor interpolation) in
the Python Imaging Library to resize the input images. The
inputs are whitened – i.e., linearly transformed to have zero
means and unit variances in each of the RGB channels, as this
has proven to enable faster convergence in network training
[26]. We further curb over fitting and improve the robustness of
the model using data augmentation techniques (by adding
vertical and horizontal reflections, rotation of 180 degrees of
images in the training set and extend the number of training
samples). This provided a significant improvement in model
performance, increasing the test accuracy by 5%. The network
is trained for 75 epochs with a batch size of 32. Fig. 4 shows the
training and validation loss (and accuracy) for the 3 different
models that were trained.

4. Experimental results and discussion

4.1. Dataset

We conducted experiments on the public dataset provided by
Costa et al. [27]. The dataset of TB images was prepared at the
INPA (Instituto Nacional de Pesquisas da Amazonia) lab,
Manaus, Brazil. The images were captured using Canon Power
Shot A640-10 megapixel digital camera and a 100� Zeiss
Axioskope-4 microscope with 1.25 numerical aperture. The
image database consists of 120 images and their ground truths,
each of them are in 2816 � 2112 pixel resolution [27,32]. All
ground truth images are marked by different shapes such as
circle represents single bacilli, rectangle represents agglomer-
ated bacilli or touching bacilli and polygon represents doubtful
bacilli [27]. The dataset contains both high density (TB-HDB)
and low-density background (TB-LDB) images. i.e., the strong
and weak presence of methylene blue counter stain shows
prevalent blue color for TB-HDB images and prevalent white
color for TB-LDB images [27,32]. In this study, we used both
types of images for experimental analysis and considered only
single bacilli and agglomerated bacilli for measuring the
performance due to the reason that clinicians always deter-
mine the infection level based on these two bacillus objects.

4.2. Results

4.2.1. Training result
For training and testing the proposed CNN, we cropped 900
positive patches and 900 negative patches from images with
different backgrounds from the aforementioned database.
Sample positive and negative patches are shown in Fig. 3. Out
of 1800 patches, 80% were used for training and 20% were used
with bacilli as well as debris and background can be seen



Fig. 4 – Row-1: Training and validation loss for model 1, model 2 and model 3 for 75 epochs. Row-2: Training and validation
accuracy for model 1, model 2 and model 3.
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as test set. For validation, 20% of images from training set were
used. We begin with CNN architecture consists of 2 convolu-
tion layers with 32 (3 � 3) kernels and 1 convolution layer with
64 (3 � 3) kernels followed by a fully connected layer of 128
neurons and a sigmoid output layer. We then incrementally
add convolution layers and retrain the network until conver-
gence in validation accuracy is achieved, resulting in the final
architecture as described in the earlier sections. The training
and validation loss (for 75 epochs) and training and validation
accuracies for all the three models are plotted in Fig. 4. The
testing accuracies for each of the incremental models are
described in Table 1. All of the experiments were run on
NVIDIA Quadro M2000 GPU with 4GB memory running
Anaconda with Python 3.

4.2.2. Segmentation results and discussions
Segmentation results of the proposed method are compared
with manually detected ground-truth provided with Costa
et al. [27]. For the analysis, we used 22 images with different
backgrounds from the database. We calculated True Positives,
False Positives and False Negatives. True Positives (TP) are
defined as number of true TB bacilli detected by the algorithm,
False Positives (FP) are defined as total number of non-bacilli
Table 1 – Testing accuracies of the proposed model.

Model architecture 

Model 1:
2 � (32 3 � 3 conv) + 1 � (64 3 � 3 conv) + fc (128 neurons) + output(sigmo
Model 2:
2 � (32 3 � 3 conv) + 3 � (64 3 � 3 conv) + fc (128 neurons) + output(sigmo
Model 3:
2 � (32 3 � 3 conv) + 3 � (64 3 � 3 conv) + 1 � (128 3 � 3 conv) + fc (128 neu
identified as bacilli by the algorithm, and False Negatives (FN)
are defined as the number of true TB bacilli that are not
detected by the algorithm. We then calculate widely used
performance metrics such as Recall/Precision and F-score for
validating our experimental results. These metrics are widely
used in the field of computer vision and medicine for
determining performance.

Precision ¼ TP
TP þ FP

(4)

Recall ¼ TP
TP þ FN

(5)

F-score ¼ 2� Precision�Recall
Precision þ Recall

(6)

To reduce false positives and computational time, we
ignored patches (from stage-1) with very small sizes. i.e., these
patches where both the height and the width are less than 10
pixels (threshold = 10). These small patches will not be fed to
the CNN for further analysis. Table 2 shows the results
Test accuracy

id)
97.21%

id)
98.32%

rons) + output(sigmoid)
98.88%



Table 2 – Precision and recall with and without threshold.

Results No threshold Threshold = 10

Precision 78.02% 78.4%
Recall (sensitivity) 97.13% 97.13%
F-score 86.53% 86.76%
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(Precision, Recall and F-Score) with and without threshold.
Precision and Recall are computed region wise (object wise).
For visual analysis, the final results on selected images are
shown in Fig. 5. The boxes in the resultant image show the
Fig. 5 – Segmentation and classification of TB bacilli. The first row
the second row (d), (e) and (f) are final output. The objects in gre
bacillus objects. The last row (g), (h) and (i) are zoomed regions 

Table 3 – Comparative analysis with the method in [20].

Key terms Costafilh

No. of training samples 1200 pixels bel
and 1200 back

Classifier SVM 

Recall (sensitivity) 96.8% 

Bacilli detection Single bacilli o
Total no of bacilli considered for testing 2456 

Dataset Costa et al. [27
objects detected in stage-1 and in stage-2 these objects will be
classified as bacilli and non-bacilli objects. The objects in green
boxes are classified as bacilli by the proposed CNN and the
objects in red boxes are classified as non-bacilli objects.

We also compared our results with Costa Filho et al. [20]
due to the reason that they used the same database for
experimental analysis. They used Support Vector Machine
(SVM) for classification and trained the classifier with 1200
bacilli and 1200 non-bacilli pixels which were taken from the
dataset images. They considered 30 features and used scalar
feature selection method for determining the best one. They
 (a), (b) and (c) shows the original input image. The images in
en boxes are bacillus and the objects in red box are non-
of (d), (e) and (f).

o et al. [20] Our proposed method

onging to bacilli
ground pixels.

1800 (900 bacilli images and
900 non-bacilli images)
CNN
97.13%

nly Single bacilli and touching bacilli
1817

] Costa et al. [27]
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removed noise and artifacts by using three filters such as
size filter, geometric filter, and rule-based filter. They looked
only for single bacilli and since in our approach we
considered both single and touching bacilli, our method
has an edge over the method proposed in [20]. The details
are given in Table 3.

5. Conclusions

In this study, we present an automatic TB detection method
based on CNN using microscopic sputum smear images. These
methods can be incorporated into an automated microscope
for detecting TB disease more accurately within a short
duration than the manual detection. The proposed method
was experimentally evaluated and got a sensitivity of 97.13%.
In this paper, we also present a comparative study between the
proposed method and existing method, where both of them
use the same dataset. This automatic TB detection method can
act as a companion to clinicians in the rural and urban areas of
high TB burden countries where there is lack of properly
trained technicians.
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