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ABSTRACT

Recently Artificial Neural network (ANN) was extensively used as non-linear inter-extrapolator for
ocean wave forecasting as well as other application in ocean engineering. In this current study, the
Wavelet transform was hybridised with ANN naming Wavelet Neural Network (WLNN) for significant
wave height forecasting near Mangalore, west coast of India, upto 48 h lead time. The main time series
of significant wave height data were decomposed to multiresolution time series using discrete wavelet
transformations. Then, the multiresolution time series data were used as input of the ANN to forecast
the significant wave height at different multistep lead time. It was shown how the proposed model,
WLNN, that makes use of multiresolution time series as input, allows for more accurate and consistent
predictions with respect to classical ANN models. The proposed wavelet model (WLNN) results
revealed that it was better forecasted and consistent than single ANN model because of using
multiresolution time series data as inputs.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Real time forecast of ocean waves generated by wind over a
time step of a few hours or days at a specific location is required
for planning and maintenance of any marine activities. The time
series of significant wave height (Hs) can be modelled as a
random process. But Hs is not random, it has some correlation
that can be exploited to extrapolate the future from its past
values. In order to analyse such processes, recently soft comput-
ing approach such as artificial neural networks, fuzzy logic and
genetic algorithms has been gaining popularity since last decade
due to its versatility in handling non linearity and somewhat
extent to handle non stationarity. Classical time series models
such as ARMA (Auto regressive moving average), ARIMA (Auto
regressive integrated moving average) are basically linear models
assuming that data are stationary, and have a limited ability to
capture non-stationarities and non-linearity in data series. On the
other hand, soft computing normally utilises tolerance to uncer-
tainties, imprecision, and partial truth associated with input
information in order to come up with robust solution handling
non-linearities and non-stationarities effectively.

Forecasting of ocean wave parameters using Artificial Neural
Networks (ANN) was carried out by different authors since last
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decade. Deo and Naidu (1999), Rao et al. (2001) used ANN to
forecast significant wave height for lead time up to 24 h. Agarwal
and Deo (2002) compared ANN with ARMA and ARIMA using a
3hourly significant wave height series and found that ANN was
more accurate than latter for 3 and 6 h lead time. Makarynskyy
et al. (2005) used ANN to forecast significant wave height and
zero-up-crossing wave period for a leadtime up to 24 h.

ANN is suitable for handling large amounts of dynamic, noisy
and non-linear data, specially for partially understood underlying
physical processes. This makes them effective to time series
modelling problems of data-driven nature (Nourani et al., 2009).
In spite of suitable flexibility of ANN, it may not be able to cope
with non-stationary data if pre-processing of the input and
output data is not performed (Cannas et al., 2006). As non
stationary signals are frequently encountered in a variety of
engineering fields such as ocean and earthquake, hybridisation
of ANN with other techniques may provide effective modelling.

In the last decade, wavelet transform has become a useful
technique for analysing variations, periodicities, and trends in
time series (Lu, 2002; Xingang et al., 2003; Coulibaly and Burn,
2004; Partal and Kucuk, 2006).

Wavelet analysis is multiresolution analysis in time and
frequency domain and is the important derivative of the Fourier
transform. Here, the original signal is represented by different
resolution intervals using discrete wavelet transform (DWT). In
other words, the complex significant wave height time series may
be decomposed into several simple time series using a DWT. Thus,
some features of the subseries can be seen more clearly than the
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original signal series. These decomposed time series may be given
as inputs to ANN which can handle non-linearity efficiently;
higher forecasting accuracy may be obtained. Forecasts are more
accurate than that obtained by original signals due to the fact that
the features of the subseries are obvious. This is why the
hybridisation of wavelet transformation and neural network can
performs better than single ANN model.

In practice, analysing non-stationary and non linear time
series is difficult because this series is affected by complex
factors. Using only one resolution component to model the
significant wave height time series does not easily clarify the
internal mechanism of the phenomenon (Chou and Wang, 2004).
Therefore, the hybrid wavelet transform and neural network that
uses several resolution components could be applied to model
significant wave height time series. The proposed Hybrid model
which uses multiscale signals as input data may present more
probable forecasting rather than a single pattern input.

A hybrid wavelet predictor-corrector model was developed by
Zhou et al. (2008) for prediction of monthly discharge time series
and showed that the model has higher prediction accuracy than
ARIMA and seasonal ARIMA. Recently hybridisation of wavelet
and fuzzy has been applied by Ozger (2010) to forecast significant
wave height and average wave period for a lead time up to 48 h
and the results obtained was satisfactory and better than auto-
regressive, ANN, and Fuzzy logic model.

In this study, it is aimed to illustrate a new approach to
significant wave height forecasting based on combination of
discrete wavelet transform and artificial neural network techni-
ques. This approach can improve the low level model accuracies
in long range (> 24 h) significant wave height forecasting. For
this purpose, wavelet neural network (WLNN) algorithm has been
introduced and employed to develop a significant wave height
forecasting model which has an ability to make forecasts up to
48 h using 3hourly wave height observed data. The results of
WLNN model are compared with the results obtained from single
ANN model. Also, the proposed WLNN model performance are
evaluated to assess the model efficiency in the higher lead times
alongwith different decomposition levels.

2. Wavelet theory

A Wavelet transformation is a signal processing tool like
Fourier transformation with the ability of analysing both station-
ary as well as non stationary data, and to produce both time and
frequency information with a higher (more than one) resolution,
which is not available from the traditional transformation (Four-
ier and Short Term Fourier Transform).

The wavelet transform breaks the signal into its wavelets
(small wave) which are scaled and shifted versions of the original
wavelet (mother wavelet).

The wavelet transformation is of two kinds:

e Continuous wavelet transformation (CWT) and
e Discrete wavelet transformation (DWT).

2.1. Continuous wavelet transformation (CWT)

The continuous wavelet transform (CWT) is defined in terms of
dilations and translations of a mother wavelet function ¥(t)

CWTY =Y (1.5) = Jig /_ . XOW* (%) dt 1)
Where s is the scale parameter, 7 is the translation parameter and the
* denotes the complex conjugate, ¥(t) is the transforming function,
and it is called the mother wavelet, and x(t) is the input signal.
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Fig. 1. Multiresolution decomposition tree.

As from above equation the analysis of a signal starts with
keeping a mother wavelet ¥(t) at the beginning of the signal x(t)
and it is shifted forward over entire length of the signal. After
covering the full length of signal, a set of wavelet coefficients are
generated at each step which are the measure of correlation
between wavelet and the signal.

2.2. Discrete wavelet transformation (DWT)

Like continuous wavelet transformation the discrete wavelet
transformation calculates the wavelet coefficients at discrete inter-
vals of time and scale. In the DWT, filters of different cut-off
frequencies are used to analyse the signal at different scales. The
signal x(t) is passed through a series of high pass filters and low pass
filters and down sampled (i.e. throwing away every second data
point) to analyse the high frequencies and low frequencies, respec-
tively, as shown in the Fig. 1. The output from the high pass and low
pass filters are the approximation coefficients (A, Az... A,) and
detail coefficients (D4, D5...Dy,), respectively. The process of decom-
posing a signal in to its sub bands or sub signals as represented in
the Fig. 1 is also termed as multiresolution signal decomposition.

The Discretized continuous wavelet transform produces N2
coefficients from a data set of length N; hence additional, or
redundant information is locked up within the coefficients (Katul
et al.,, 1994), which may or may not be a desired property. The
continuous wavelet transform and its discretization are redundant;
that is the signal, which for real applications will be specified as
discrete data set, is over specified by the transform coefficients.

The choice of wavelet transformation is in fact an important part
of wavelet analysis and depends very much upon both the proper-
ties of the signal under investigation and what the investigator is
looking for. The continuous and discrete transform each have their
own favourable properties. Due to its redundancy, or over specifica-
tion of the signal, the continuous wavelet transform is computa-
tionally expansive and does not lend itself well to statistical analysis,
whereas the zero redundancy of the discrete transformation lends
itself to the statistical analysis of the signal (Addison et al., 2001).

Logarithmic uniform spacing (Mallat, 1998) can be used for the s
scale discretization with correspondingly coarser resolution of the
locations, which allows a complete orthogonal wavelet basis to be
constructed. It allows for N transform coefficients to completely
describe a signal of length N, i.e. with zero redundancy. These discrete
wavelets are not specified continuously, but rather at discrete
locations on the time axis. The resulting discrete wavelet transform
(DWT) can only be translated and dilated in discrete jumps.

For the signal x(t), the discrete wavelets have the form:

o) fgo ()

where m and n are integers that control the wavelet dilation and
translation, respectively, so is a fixed dilation step greater than 1;
s is the scale and t is the location parameter and must be greater
than zero. From the Eq. (2), it can be seen that the translation
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steps nt,sT' depend upon the dilation, sJ'. Hence, discrete wavelet
transform using Mallat algorithm was selected for decomposition
and reconstruction of time series.

3. Methodology

Here, considering the dominance of persistence in the wave
height time series future significant wave heights to be forecasted
from the past/previous wave heights. Significant wave height
upto previous four time steps (3hourly datax4=12h) were
taken as predictor variables. The input scenarios formed by
various predictor configurations are;

[1] Hs(t)

[2] Hs(t), Hs(t—1)

[3] Hs(t), Hs(t—1), Hs(t—2)

[4] Hs(t), Hs(t—1), Hs(t—2), Hs(t—3).

Where Hs(t) is the current significant wave height.

Also Hs(t—1), Hs(t—2), Hs(t—3) are onetime step, two time
step and three time step past wave height, respectively. The
predictand is Hs(t+n) where n is the lead time. These input and
output scenarios are same for both ANN and WLNN model. For
both the models, testing data were selected from the same
portion of entire data which is the last 25% of the year.

Here, wavelet and ANN techniques are used together as a
combined method. While wavelet transform is employed to
decompose significant wave height time series into their spectral
bands, ANN is used as a predictive tool that relates predictand
(output) and predictors (inputs).

The real world observed time series are discrete, such as stream-
flow, waveheight, etc. So discrete wavelet transform were selected
for decomposition and reconstruction of significant waveheight time
series. The original non-stationary time series were decomposed
into a certain number of stationary time series through discrete
wavelet transform such as, periodic properties, non-linearity and
dependence relationship of the original time series were separated,
so each wavelet transform series has obvious regularities. Then the
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Fig. 2. Basic ANN model structure.
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ANN model was used to simulate the wavelet transform series in the
form of approximations and details coefficients and gives recon-
structed predicted significant wave heights in the output. Therefore,
the prediction accuracy was expected to improve.

4. Artificial neural network

ANN is a flexible mathematical structure having an interconnected
assembly of simple processing elements or nodes, which emulates
the function of neurons in the human brain. It possesses the
capability of representing the arbitrary complex non-linear relation-
ship between the input and output of any system. Mathematically, an
ANN can be treated as universal approximators having an ability to
learn from examples without the need of explicit physics.

In this study, a single layer feed forward network with a back
propagation learning algorithm was been selected for the ANN
model as shown in Fig. 2. Here, TRAIN LM (Levenberg-Marquardt)
learning function, Tangent Sigmoid as transfer function was
chosen and the analysis was carried out for different input
scenarios of previous time steps significant wave height data.
The optimal structure of the ANN was selected based on mean
square error during training. The ANN model implementation was
carried out using MATLAB routines.

Here, the ANN was trained using Levenberg-Marquardt (LM)
technique because it is more powerful and faster than the
conventional gradient descent technique (Hagen and Menhaj,
1994; Kisi, 2007). The application of LM to neural network
training is described in Hagen and Menhaj (1994).

5. Wavelet neural network (WLNN)

Combination of wavelet transformation with other models was
reported since few years in different fields. Wang et al. (2003) used
Wavelet-ANN combination in hydrology to predict hydrological
time series. Chen et al. (2007) used the same combination to
forecast tides around Taiwan and South China Sea, and concluded
that the proposed model can prominently improve the prediction
quality. Nourani et al. (2009) applied wavelet-ANN to rain fall
runoff modelling to forecast both long term and short term runoff
discharges for one day ahead. Deka et al. (2010) used hybrid
Wavelet-ANN model to forecast significant wave height of station
near marmugao port, Arabian Sea, and the results obtained for two
time steps ahead prediction was found satisfactory.

In the proposed (WLNN) model, the Discrete Wavelet Trans-
formation discretized the input data (Hs) in to number of sub
signals in the form of approximations and details and henceforth,
these sub signals were used as input to ANN. The schematic
diagram of proposed WLNN model is shown in Fig. 3.

The objectives of WLNN model is to forecast t-hours ahead
significant wave height from previous wave heights. Here, future
wave heights were taken as predictand and past wave heights as
predictor. After decomposing the time series into several

Ay A By ———

zZZP

Fig. 3. Schematic diagram of the proposed WLNN model.



P.C. Deka, R. Prahlada / Ocean Engineering 43 (2012) 32-42 35

resolution levels, each level subseries predictand data were
estimated from its corresponding separated predictor level.
Here, ANN part was constructed with appropriate sub-series
belongs to different scales as generated by DWT. These new series
consists of details and approximations were used as input to ANN.
The sensitivity analysis for subseries variables with corresponding
output variables was not performed for determining effective input
variables as it was focussed only on decomposed subseries inputs.
In the proposed WLNN model, only input signals were decom-
posed into wavelet coefficients so that ANN was exposed to large
number of weights attached with higher input nodes during
training. Hence, the higher adaptability was achieved for input-
output mapping. The output signals were kept as original series
without decomposition where reconstruction was not required.

6. Performance indices

The conventional performance evaluation such as correlation
coefficient is seems to be unsuitable for model evaluation
(Legates and McCabe, 1999). Correlation coefficient has been used
in several data analysis. But as discussed by Kim and Park (Ocean
Eng., 2005), it is not the best error statistics and may be
misleading compared to other error statistics such as Root Mean
Squared Error (RMSE). Also, Keren and Kisi (J. Hydrology, 2006)
also had a good discussion showing that a correlation coefficient
value of close to one does not necessarily means a good predic-
tion. The correlation coefficient shows the degree to which two
variables are linearly related. Here, coefficient of efficiency is used
to test the performance of model better than average or not.
However, mean relative error, mean absolute error and Root
mean square error can be used for better evaluation of model
performance. In this study, following performance indices based
on goodness of fit are used.

1. Coefficient of efficiency,

XYy
CE= 1—7

2. Mean absolute error,

_ X XY
MAE = =

3. Root mean square error,

N 2
RMSE = \/72":13(4)

4. Mean relative error, (%)
1 XL XY
MRE = N;T x 100

where, X=observed values, Y=predicted values, N=total
number of values, and X=X —Xean-

7. Study area

The data used in the current study are processed significant
wave height (Hs) of the station SW4 (Latitude 12°56'31” and
longitude 74°43'58") located near west coast of India as shown in
Fig. 4, which was collected from New Mangalore Port Trust
(NMPT) for the year 2004-2005.

',»—w
x
?Mumbai
\

Chennai ®
INDIAN OCEAN

Fig. 4. Location of the study area.

Table 1
Statistical properties of the data.

Min Max Mean Skewness Kurtosis Std. deviation

0.25 3.09 1.025 0.78 0.4867 0.6289

From the statistical properties of the wave data presented in
Table 1, it revealed that the data used in this study is not having
much significant variation. The value of standard deviation and
kurtosis is also small means the most of the data are closely
spaced. Out of one year total data points of 2920 with three
hourly (3 hr) time resolution, initial 75% of the data was used for
training and remaining 25% of the data was used for testing the
model as shown in the Fig. 5.

8. Analysis and results

The data sets from one station located in Indian Ocean (west
coast) were used for model applications. The proposed WLNN
model results were compared with classical ANN model results.
Models were tested for various lead-times of 3, 6, 12, 24 and 48 h.
Different input combinations as mentioned earlier were tried for
significant wave height variables.

At the first stage, a multilayer perceptron (MLP) feed forward
ANN model without data pre-processing was used to forecast
significant waveheight. Each MLP was trained with 1-10 hidden
neurons in the hidden layer with Levenberg-Marquardt back
propagation as the training algorithm with sigmoidal activation
function to optimise the parameters which were sufficient to
produce results for all lead-times.

In this study, a number of ANN models has been developed
and the best model (optimised structure) out of various input
combinations were selected. The best ANN model testing results
obtained for input three (3rd scenarios) with seven (7) neurons in
the hidden layer based on various performances indices were
presented in Table 2.

It can be seen from the Table 2 that C.E (Coefficient of
efficiency) values changes with respect to lead-time forecast.
For significant wave height, the C. E values were found ranges
from 0.888 for 3 h lead-time to —0.071for 48 h lead-time. For
short time forecasting, it seems to be quite satisfactory. But for
longtime forecasting, it is beyond acceptable accuracy.

The model efficiency is decreasing drastically as lead-time
progresses beyond 6 h lead-time. The Root mean squared error
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Fig. 5. Time series data of significant wave height (Hs).
Table2 Table 3
Test results of ANN for different lead times. Test Results of wavelet-ANN (WLNN) model.
Lead time (h) MAE MRE % RMSE CE Decomposition Levels Optimum
level
3 0.043 8.253 0.058 0.888 L-2 L-3 L-4 L-5 L-6 L-7
6 0.067 13.599 0.084 0.766
12 0.082 16.509 0.104 0.639 3rd hour
24 0.099 20.219 0.120 0.511 MAE 0.035 0.034 0.033 0.040 - -
48 0.152 32.111 0.177 —0.071 MRE% 6.994 6.474 6.368 8.388 - - L-4
RMSE 0.046 0.045 0.045 0.051 - -
CE 0.930 0.931 0.932 0914 - -
6th hour
MAE 0.052 0.046 0.049 0.045 0.044 -
1 MRE% 10.478 8.900 9.883 8.902 8.454 - L-5
w RMSE 0.065 0.060 0.062 0.058 0.059 -
E 05 CE 0.859 0.881 0.869 0.886 0.885 -
L : 12th hour
Eje MAE 0.073 0.060 0.055 0.057 - -
o 0 MRE% 14.574 11.991 10448 11.180 - - L-4
< RMSE 0.093 0.075 0.071 0.072 - -
O 05 CE 0.707 0.810 0.831 0.824 - -
: 24th hour
MAE 0.101 0.090 0.087 0.077 0.072 0.075
p MRE% 20.958 18.415 17.733 15.848 13.813 14407 L-6
0 2 4 6 RMSE 0.122 0.111 0.106 0.096 0.093 0.100
t —> CE 0.500 0.582 0.617 0.686 0.711 0.662
. . 48th hour
Fig. 6. ‘db4’ wavelet function. MAE 0136 0141 0.132 0098 0087  0.089
MRE 28.173 29.510 27.475 19.393 16.542 17366 L-6
RMSE 0.164 0.169 0.161 0.122 0.113 0.116
CE 0.086 0.027 0.115 0.495 0.564 0.545

(RMSE) also increases from 0.058 m to 0.177 m for 3 h and 48 h
lead-time, respectively, which followed similar trend to C.E. Both
Mean absolute error (MAE) and Mean relative error (MRE) are
also showing high error as lead-time progresses. This may be due
to significant fluctuations of the data around mean value such as
skewness and standard deviation are high (Table 1), where short
term regression between data is minimised.

In the second stage, for hybrid wavelet neural network (WLNN)
model, decomposed subseries significant wave height data were
given to ANN model to improve the model accuracy. For wavelet
analysis, Discrete Wavelet Transformation (DWT) was used and
Daubechies wavelet order-4 (db4) (Daubechies, 1992) was selected
as a mother wavelet considering the shape similarity with time
series signal. The selected mother wavelet ‘db4’ is a simplest
wavelet having only four wavelet filter coefficients with exact
reconstruction possibilities. Also the db4 wavelet is a compactly
supported and asymmetric in shape as shown in Fig. 6.

Here, discrete wavelet transform (DWT) was used for proces-
sing of significant wave height time series data in the form of
approximations and details at different levels so that gross and
small features of a signal (significant wave height data) can be
separated. These coefficients of details and approximations were
used as input to ANN component of the hybrid model to obtain
predicted output.

Similar to ANN models, here also a number of WLNN models
were developed using different input combinations (mentioned
earlier) with different ANN architecture. The best results in terms
of performance indices were obtained for third input scenarios
(three inputs) for various decomposition levels and results are
presented in Table 3.

In this work, the effects of various decomposition levels on
model efficiency have also investigated to optimise the result. The
output result from the discrete wavelet transformation in the
form of ‘approximations’ and ‘details’ sub signals at different
levels are presented in Fig. 7. The mechanism inside the network
was somewhat transparent in WLNN. When coefficients are used
as inputs, as the number of input layers increases accordingly
number of weights also increases. The analysis has been done for
different decomposition levels from level 2 to 7 to obtain optimal
results. In each case, as the decomposition level increases, the
number of input layers also increases and the network was
trained and tested accordingly.

The results from the above model (WLNN) for different
decomposition levels clearly revealed the better performance
of the proposed model (WLNN) both in low as well as higher
lead time compared to ANN (Table 2), considering various



P.C. Deka, R. Prahlada / Ocean Engineering 43 (2012) 32-42

) 'Wavelet 1-D

File View Insert Tools Window Help

Decomposition at level 7 : 5 = a7 +d7 +d6 +d5 +d4 +d3 +d2 +d1 .
3 T T 1 T T T
2L

0.4 1 1 I 1 1
0.5 F T T
d4 o NAANMMW—" WM%MWMWMM«M

d, :E MWMMMMMW

-

; .n.gl 1 1 1 I
500 1000 1500 2000 2500
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Fig. 8. Observed and predicted time series for 3rd hour prediction.
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Fig. 9. Observed and predicted time series for 6th hour prediction.
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performance indices. The basic WLNN model of decomposition For shorter lead times, performances of WLNN models were
level 2 (L-2) was performing better than best ANN model almost same and observed no significant variations. But in the
considering coefficient of efficiency and least error criteria. Also, higher lead time forecast, significant variations were observed

other WLNN improved models based on different decomposition among the performance of WLNN models. For low lead time with
levels (L-3, L-4, L-5, L-6, and L-7) performed better than low decomposition levels, the model is performing in a better

ANN model. way than in higher lead times. All the performance indices are
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Fig. 10. Scatter plot of observed vs ANN and WLNN predicted for 3rd hour.

14 4 1.4 -
12 o 2 1.2 1
ot P o .’0
11 T 4 1- A7 WL S
v 22 * e . .
0.8 - *o P X * Z 08 - $ i
ra B . * =z < * '
Z 06 - o 3 J
=< ! :" > 0:' 0.6 - ...0’ /2
'+
04 - = 04
0.2 0.2 -
0 T T T T T T 1 0 T T T T T T 1
0 0.2 04 06 08 1 1.2 14 0 0.2 04 06 08 1 1.2 14
Observed Observed

Fig. 11. Scatter plot of observed vs ANN and WLNN predicted for 6th hour.
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Fig. 12. Observed and predicted time series for 12th hour prediction.
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showing similar trend to rank a model based on low variation of
maximum and minimum data value.

Again from the time series plot in Fig. 8 for three hours
prediction, it was observed that the ANN and WLNN model
results were closely following the observed data. But in lower
values, ANN was deviating far from WLNN and observed points

in sixth hour prediction (Fig. 9). The scatter plot ANN vs
observed and WLNN vs observed also reveals the same conclu-
sion mentioned already as shown in Fig. 10 and Fig. 11. It was
clearly observed that the correlation was stronger between
WLNN and observed points compared to ANN and observed
points.

14
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Fig. 13. Observed and predicted time series for 24th hour prediction.
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Fig. 15. Scatter plot of observed vs ANN and WLNN predicted for 24th hour.
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As lead time increases, the performances of ANN decreases
drastically but, WLNN performance decreases gradually as shown
in Figs. 12 and 13 in the time series plot and also in the scatter
plots shown in Figs. 14 and 15. For lead time 48 h, the perfor-
mance of both the models was highlighted in Figs. 16 and 17. It
was observed from the Figs. 16 and 17 that the proposed WLNN
model was almost following the trend of observed plot as
compared to ANN. Also, the variation of RMSE for different lead
time forecasting was presented for ANN and WLNN in Fig. 18. A
gradual decline change was observed for WLNN where as sudden
decline change was appeared for ANN after 24 h prediction.

In the WLNN, the results obtained for different lead times had
undergone different decomposition levels starting from 2 to 7. In
each lead time analysis, there was an increasing trend in the

proportionately with the resolution number. Usually, multilevel/
multiresolution decomposition was performed to explore the
finer details of the signal. Higher level approximation showed
smoother version of the signal, while the lower level decomposi-
tion was less smooth and had similar smoothness to the original
signal (Fig. 7). Multilevel decomposition in the details indicates
different natures of the signal.

Again for higher lead time forecast, higher model efficiency
was obtained at higher or optimum decomposition levels. These
may be due to the effect of correlation of more smoothened
signals with flattened variability between the inputs and output.
The generalisation capability of ANN seems to be very high with

performance from low decomposition levels towards higher ooigi AN e ==WLNN
decomposition levels. At the stage where the optimum value 0:15_
(higher C.E or lower Errors) is reached, the performance started to 0.14 -
decline, and the analysis for the further decomposition levels was " 012 -
stopped. The result corresponding to an optimum value was § 01 -
considered to be the optimum decomposition level as illustrated % 0.08 -
in Fig. 19 and it was considered as the best model among the 0.06 -
WLNN models. 0.04
Based on the results, it was noticed that the number of 0.02 4
decomposition levels had some impact on the results. Since the 0 . : " - 3 i .
random parts of original time series were mainly in the first Lead Time (hours)
resolution level, obviously the prediction errors were also mainly
in the first resolution level. Thus, the errors were not increased Fig. 18. Variation of RMSE over a lead time.
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Fig. 16. Observed and predicted time series for 48th hour prediction.
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Fig. 17. Scatter plot of observed vs ANN and WLNN predicted for 48th hour.
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Fig. 19. Depiction of optimum decomposition level for 3rd and 48th hour.

more wavelet transformed sub signals as inputs with optimal
hidden neurons upto certain lead-time or optimal lead-time.

However, in wavelet transformation, higher decomposition
levels provide details and coefficients similar to persistence upto
certain level which can be assumed as optimum level. Although
increasing of decomposition level can progress the model ability,
an optimum level was selected by trial and error in the study.

The main reason for WLNN performance improvement is that
WLNN model can extract the characteristics of wave height
variation processes through decomposing the non-stationary time
series of significant wave height into several stationary time
series. In significant height time series, approximation coefficients
denotes the deterministic components, such as tendency/trend,
period and approximate period, etc. whereas details coefficients
denotes the stochastic components and the noise. These station-
ary time series can exhibit the fine structures of the wave height
time series, reduce the interference between the deterministic
components and the stochastic components, and increase the
stability of the data variation. Therefore, the prediction accuracy
is improved.

9. Conclusions

In this study, a hybrid model of wavelet and ANN (WLNN) has
been developed to forecast significant wave height for higher lead
times up to 48 h at west coast of India. The accuracy of WLNN
model has been investigated for forecasting significant wave
height in the present study. The WLNN models were developed
by combining two techniques such as ANN and DWT. The WLNN
model results were also compared with single ANN model in the
study. The WLNN and ANN model performance were tested by
applying to different input scenarios of past significant wave
height data near west coast station of India. The accuracy of
WLNN models was found to be much better than ANN model in
modelling significant wave height.

For the present study, the decomposition levels 4 and 5 were
the optimum levels for lower lead times (3 h-12 h). For the higher
lead times (24 h-48 h), the decomposition level 6 was appeared
to be the optimal level as per analysis. From the results, it is
confirmed that for lower lead times, lesser decomposition levels
are enough to achieve optimal performance. In higher lead time,
the uncertainty demands more decomposition levels.

In this study, only one buoy station data of 3hourly time
resolution for one year was used and further studies using more
data from various stations may require reinforcing the conclu-
sions. Also, Mallat algorithm with db4 type wavelet was used for

DWT for the time series data. Other type of wavelet with different
algorithm could be used for construction of WLNN models.

The proposed wavelet model (WLNN) results shows that it is
better forecasted and consistent than single ANN model due to
the use of multiresolution time series sub signals as inputs.
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