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ARTICLE INFO ABSTRACT

Keywords:
Cenospheres

Environmentally pollutant fly ash cenospheres (hollow microballoons) are utilized with most widely consumed,
relatively expensive high density polyethylene (HDPE) for developing lightweight eco-friendly filament for 3D
HDPE printing of closed cell foams. Cenospheres (20, 40 and 60 by volume %) are blended with HDPE and subse-
Syntactic foam quently extruded in filament to be used for 3D printing. Cenosphere/HDPE blends are studied for melt flow index
ggalif;ltting (MFI) and rheological properties. MFI decreases with cenospheres addition. Complex viscosity, storage and loss

modulus increase with filler loading. DSC results on the filament and printed samples reveal increasing crys-
tallization temperature and decreasing crystallinity % with no appreciable change in peak melting temperature.
Cooling rate variations exhibit crystallinity differences between the filament and the prints. CTE decreases with
increasing cenosphere content resulting in lower thermal stresses and under diffusion of raster leading to non-
warped prints. Micrography on freeze fractured filament and prints show cenospheres uniform distribution in
HDPE. Intact cenospheres lower the foam density making it lightweight. Tensile tests are carried out on filaments
and printed samples while flexural properties are investigated for 3D prints. Cenospheres addition resulted in
improved tensile modulus and decreased filament strength. Tensile and flexural modulus of printed foams in-
creases with filler content. Results are also compared with injection molded samples. Printed foams registered
comparable tensile strength. Specific tensile modulus is noted to be increased with cenospheres loading implying
weight saving potential of 3D printed foams. Property map reveals printed foams advantage over other fillers
and HDPE composites synthesized through injection and compression molding.

1. Introduction

Fused filament fabrication (FFF) is one of the most widely used
additive based manufacturing technique to manufacture prototype and
complex functional parts with a very high degree of design freedom
compared to traditional manufacturing methods. The choice of the
commercially available thermoplastic filaments in FFF is limiting the
use of this technology for manufacturig end-use products. Most
common thermoplastic polymers like acrylonitrile butadiene styrene
[1,2], polyetherimide [3], polylactide [4], polycarbonate [5], poly-
methylmethacrylate [6] and their blends [7,8] have been used as a
feedstock material in commercial FFF printers. Limited studies have
been carried out on polymers such as polycaprolactone [9],
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polybutylene terephthalate [10], polyamide [11], polypropylene [12]
and high density polyethylene (HDPE) [13] because of shrinkage/
warpage and delamination issues. Recently there is enormous interest
seen towards the development, enhancement, and multiplication of
feedstock material properties by adding various fillers through different
compounding methods. Some of the fillers like carbon and glass fiber
[14], iron particles [15], glass [16] and Al,O3 powder [17] have been
successfully used. Hollow particles such as naturally available fly ash
cenospheres and engineered glass microballoon as filler materials in
matrix (syntactic foams [18]) are explored well using conventional
processing routes wherein tooling cost is higher and have limitations of
complex geometrical components [19-21]. These closed cell foams are
extensively used in underwater vehicles, thermoforming plugs, aircraft
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Nomenclature

I Density

o Composite density
o5 Filler density

Pm Matrix density

Vi Filler volume %
Vin Matrix volume %
®, Void content

O Theoretical density

Pesxp Experimental density

n’ Complex viscosity

G’ Storage modulus

G” Loss modulus

Thelt Peak melting temperature
Teryst Crystallization temperature
Acryst Degree of crystallinity

% Cenospheres volume %

parts and buoys [22] due to their specific properties. The ability to
tailor the various properties by selecting different matrix, hollow mi-
croballoon configuration and varying volume fraction makes it possible
to cater to various applications [23,24]. Particle survival in these foams
plays a vital role in determining properties and is dependant on the
processing route adopted [25,26]. Such closed cell foam filaments de-
velopment for weight sensitive structures needs to be addressed and is a
worth investigating task. Further, incorporating abundantly available,
environmentally pollutant hollow microballoons in relatively expensive
widely consumed thermoplastic resin might have an advantage of de-
veloping eco-friendly lightweight 3D printed parts.

Producing complex integrated functional parts with fly ash based 3D
printed syntactic foams reduce the burden on the environment and can
effectively replace relatively expensive HDPE [27-29]. Cenosphere
based syntactic foam has superior mechanical properties as compared
to neat polymer [30,31]. Alumino-silicate composition in cenospheres
compensates property setback caused by surface defects compared to
engineered glass microballoon. Despite the defects in fly ash micro-
structure, the stiffness of their wall material allows their properties
within the range of commonly used glass microballoon [32,75,76].
Further, HDPE is the most commonly used semi-crystalline thermo-
plastic with good flow properties. Owing to its excellent biocompat-
ibility and mechanical response, it is utilized in applications ranging
from household utilitarian, milk jugs, packaging industry to structural
applications [33,34]. Nonetheless, 3D printing of HDPE and foams
therein need shrinkage/warpage, bed adhesion and hollow particle
survival issues to be addressed.

Addition of environmentally pollutant hollow fly ash cenospheres
makes the feedstock filament to be eco-friendly and can be effectively
utilized in smart civil structures [35-37]. Such cenospheres in semi-
crystalline HDPE matrix might effectively address warpage issues in
realizing utilitarian lightweight 3D printed functional components
[13,38]. Retaining the functionality of component with enhanced load-
bearing capabilities depend on infill % in 3D prints [39,40]. In the
present work, cenosphere/HDPE blends are prepared and investigated
for MFI and rheological properties. Developed blends are extruded once
to realize eco-friendly lightweight filament and tested for crystallinity
and tensile loading condition. Cenospheres/HDPE syntactic foam
feedstock filament is subsequently fed to 3D printer and prints are
subjected to crystallinity measurement, CTE, tensile and flexural tests.
Influence of cenospheres content on the envisaged mechanical proper-
ties is presented. Finally, property map is presented and the results of
3D printed samples are compared with the extracted data from the
literature. Such property maps help in guiding industrial practitioners
to select an appropriate material system based on the applicability in
the end-use products.

2. Experimental
2.1. Materials
HDPE (HD50MA180) having an average granular size of 3 mm is

procured from Reliance Polymers, Mumbai (Table 1). Fly ash ceno-
spheres (CIL-150) obtained from Cenospheres India Pvt. Ltd., Kolkata

are used as fillers without any surface treatment. Sieve and physical
analysis details of filler chosen are available in Ref. [41]. As received fly
ash cenospheres are sieved to 75um to make them pass without any
breakage through 0.5 mm nozzle of the 3D printer.

2.2. Blend preparation, MFI, and rheological properties

Blending of HDPE with cenosphere (20, 40 and 60 vol %) is carried
out using Brabender (16CME SPL) at 210°C [22] to get the pellets
(Fig. la). Blend compositions of 20, 40 and 60 vol% cenospheres in
HDPE (H) are represented as H20, H40, and H60 respectively. MFI of as
received HDPE and developed cenosphere/HDPE blends are computed
using Dynisco LMI5000 laboratory melt flow indexer as per ASTM
D1238. Neat HDPE granules and foam pellets obtained from brabender
are used for testing. MFI values help in setting appropriate multiplier in
the 3D printer for printing foam samples. Rheological properties are
important to understand the filler influence on processing conditions.
Relative interaction between constituents and rheological behavior of
HDPE and foams is carried out using rotational rheometer (Anton Paar
rheometer, MCR 502). Frequency sweep test is carried out on a spe-
cimen having a dimension of ¢ 25 X 1 mm at a constant strain rate of
5%. The frequency sweep is conducted at 150°C in the range of
0.1-10Hz. Change in complex viscosity ('), storage (G’) and loss
modulus (G”) against frequency and cenospheres content is in-
vestigated. For all the tests average of five replicates is presented.

2.3. Filament development and 3D printing

Cenosphere/HDPE pellets (Fig. 1a) are fed into the extruder for
fabricating syntactic foam filament. Single screw extruder (25SS/MF/
26, L/D ratio of 25:1) from Aasabi Machinery Pvt. Ltd., Mumbai is used
to obtain neat HDPE and foam filaments. The temperature profile of
155-160-165-150 °C from the feed to die section is set in the extruder
with a constant screw speed of 25 rpm, take-up unit speed of 12.5 rpm
to obtain the filaments of diameter 2.85 = 0.05mm (Fig. 1b) and is
used to feed the 3D printer for printing neat HDPE and foam samples.
Neat HDPE and syntactic foam specimens are 3D printed using in-
dustrial-scale FFF printer (Star, AHA 3D Innovations, Jaipur) equipped
with dual brass nozzles of ¢ 0.5mm. Table 2 lists the optimized
printing parameters based on cenosphere particle survival, viscosity
changes due to filler loading and warpage related issues.

Table 1
Typical Characteristics of HDPE granules*.

Property Typical Value

MFI (190 °C/2.16 kg)
Density (23 °C) 0.950 g m/cm®
Tensile Strength at Yield 22 MPa
Elongation at Yield 12%

20.0 g m/10 min.

Flexural Modulus 750 MPa
Notched Izod Impact Strength 30J/m
Vicat Softening Point 124°C

*As specified by the supplier.
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Table 2

Printing parameters used in the present work.
Printing parameters Typical Value
Nozzle temperature (°C) 250
Printing bed temperature (°C) 70
Layer thickness (mm) 0.35
Multiplier 1for H, H20, H40 and 1.2 for H60
Printing speed (mm/sec) 27
Printing pattern Rectilinear
Part orientation Y-axis
Infill (%) 100

2.4. Differential scanning calorimeter (DSC) of filament and 3D prints

Melting and the crystallization behavior of the filaments, 3D printed
HDPE and foam are analyzed using DSC (PerkinElmer DSC-6000, USA).
Sample weighing about 10 mg in 30 ul Al standard crucible is heated
from O to 200 °C with isothermal curing for 3 minat 200 °C and sub-
sequent cooling to 0°C at a rate of 10 °C/min. Second heating is per-
formed from 0 to 200 °C after cooling the sample at 0 °C for 3 min. First
heating is carried out to nullify the thermal history creeped in because
of earlier processing steps. DSC curve typically represents endothermic
and exothermic peaks (Tg) and cold crystallization melting enthalpy
peak. Crystallinity % (ctcyys) is estimated as,

o = 2Hm ¢ 100

AH;, ™
where, AH,, is fusion heat J/g and AH,, is fusion heat per gram for
crystalline HDPE, 293 J/g [42].

2.5. Coefficient of thermal expansion of 3D prints

CTE is the most crucial parameter as far as dimensional stability and
part warpage in the FFF process is concerned [43]. CTE of 3D printed
specimens is estimated as per ASTM D696-13 using Dilatometer (CIPET,
Chennai) and are utilized to correlate the filler loading effect on di-
mensional stability and microstructure analysis. HDPE and foams are
3D printed to 75 X 12.7 x 3 mm dimension and CTE is performed in
20-90 °C temperature range. Average of five samples are reported for
analysis.

2.6. Density and void content

Experimental densities of filaments and printed specimens are
measured as per ASTM D792-13. Theoretical density (p.) of foams (rule
of mixture) is given by,

P =prf +Pme 2)
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(b)

Fig. 1. (a) Cenospheres/HDPE blend obtained from brabender and (b) representative H60 filament.

where, p, V, c, f and m represents density, volume fraction, composite,
filler and matrix respectively. Voids fraction is given by Ref. [44],

Void content(py,) = P 7 Pexp
Prn 3)

These voids, if present in 3D printed samples indicate air gaps be-
tween rasters though infill is 100%. Such air gaps make these prints
three-phase foam structure which might be potentially exploited in
submarine buoyancy modules.

2.7. Tensile and flexural testing

Tensile tests are performed on filament and 3D prints using Z020
Zwick Roell (USA) UTM (20kN load cell). Zwick Roell gauge length
extensometer (2 inch) is used to record the elongation with 0.1 MPa
initial load. The tests are carried out at 5 mm/min as outlined in ASTM
D638-14. Flexural testing (pre-load of 0.1 MPa, 1.54 mm/min dis-
placement rate) is carried out on 3D printed samples in three-point
bend configuration (ASTM D790-17). Flexural modulus (Ey) is estimated
by,

I’'m

E=—-"
T 4pgs &)

where L, m, b and d are the span length, slope, sample width and
thickness respectively.
Flexural stress (dj,,) is computed using,
3PL

Ofin = YT (p — load)

()

Micrography on freeze fractured filaments, 3D printed and tested
specimens is performed using JSM 6380LA JEOL, Japan by gold sputter
coating (JFC-1600) before imaging.

3. Results and discussion
3.1. Melt flow index and rheological behavior of cenosphere/HDPE blends

Flowability of polymer in the molten state is measured using MFI
and is inversely proportional to the viscosity. MFI decreases with in-
creasing filler content because of the particles resistance to the polymer
flow [45]. Neat HDPE has registered highest MFI (23.06 g m/10 min) as
compared to H20 (14), H40 (9.1) and H60 (6.80). MFI decreases by
39.29, 60.54 and 70.51% with increasing cenospheres content of 20, 40
and 60 vol% respectively. A similar trend is reported in Refs. [45,46].
For 3D printing of cenosphere/HDPE foams, reduction in MFI values
needs to be compensated either by increasing printing temperature or
setting appropriate multiplier factor. The later option is viable to isolate
temperature effects and hence printing temperature is kept constant
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and the multiplier factor is changed. Fig. 2a present complex viscosity
(") versus frequency for all the samples. Polymer melt viscosity in-
creases with filler infusion [47] and is observed in the complete fre-
quency range. HDPE shows Newtonian-Plateau at a lower angular fre-
quency and the shear thinning region at a higher frequency. H20
exhibit similar behavior with a moderate increase in n’. Whereas for
H40 and H60, Newtonian-plateau region is disappeared and only shear
thinning is seen for the entire frequency range and is due to more
number of polymeric chain entanglements are divided than getting
reformed [47]. H60 composition has registered highest n’ implying
increased viscosity. Cenospheres hinders polymer chain segments mo-
bility making the flow more viscous. Compared to neat HDPE
(1080.52 Pas), viscosity at 0.1 rad/s for H20, H40 and H60 is 1412.42,
2082.10 and 3739.50 Pas respectively. However, the decrease in n’
with frequency is observed for all the coupons. At 50rad/s the n’ of
HDPE is about 636.75 Pa s while it's 794.92, 1029.31 and 1558.81 Pas
respectively for H20, H40 and H60. Foams exhibit shear thinning
(pseudo plasticity) behavior and are similar to polypropylene-fly ash
blend as reported in Ref. [48]. G’ of foams is higher compared to HDPE
(Fig. 2b) indicating cenospheres constrain matrix deformation. Storage
modulus increases with increasing filler loading leading to foam stiff-
ness enhancement. At lower frequency, neat HDPE and H20 show ty-
pical homopolymer-like terminal behavior as HDPE chains are fully
relaxed [49]. H20 shows slightly higher modulus compared to neat
HDPE. In the case of H40 and H60 composition, a plateau at lower
frequency is observed indicating viscoelastic behavior (liquid to solid-
like). Also, as frequency increases, the G'the difference between the
foams reduces. Loss modulus (G”) is noted to increases with frequency
for all samples (Fig. 2¢). Also, the addition of cenospheres increased G”.
The G” at 0.1 rad/s is 107.56, 140.37, 205.66 and 370.02 Pa for neat
HDPE, H20, H40 and H60 composition respectively. This behavior is

5000
4000E~ _ —Ho
. = H20
E. R i S5 H40
3000 -
20005 o

—_
(=3
[=3
(=]

Complex viscosity (Pa-s)

Conl v vl

100

1 10
Frequency (rad/s)

(a)

100000
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due to deformation restrictions caused by the addition of cenospheres.

MFI and rheological behavior results indicate differential parameter
choices to be made pertaining to processing conditions and fabrication
routes. In this work, the blend is processed through extrusion to get
filament (3 mm diameter) and subsequently extruded again to get
printed through a nozzle of 0.5 mm diameter. Hence, processing para-
meters need to be looked into carefully based on MFI and rheological
investigations.

3.2. Filament density and microstructure

Quality and behavior of eco-friendly foam feedstock filament are
governed by filler-matrix interaction, intact filler and void formations.
Sufficient stiffness for spooling and strength (avoid buckling and
shearing between the feeding wheels and printer nozzle) are required
for the filament to be useable on a 3D printer. Thereby, before using
these filaments for 3D printing, their density, morphology and tensile
tests are carried out. Table 3 presents densities, void % and weight
saving potential data of filament and 3D printed specimens. Voids
formed during blending and extrusion (0.34-4.90%) results in three-
phase foam structure making them better energy absorbing materials.
There is a negligible difference in theoretical and experimental density
of HDPE filament indicating the absence of voids. Presence of voids in
filament can affect the mechanical properties as they act as a stress
concentrator. Void content increases with cenospheres content as seen
in Table 3. Due to hydrophobic nature, HDPE did not show any voids
post extrusion. Nonetheless, porosity is only observed in foam filament
as cenospheres are hydrophilic in nature. Cenospheres primarily com-
prise of oxides (Al,O3 and SiO») which links with hydroxyl group re-
sulting in void formation during processing though blends are pre-
heated (90 °C) for 24 h. Fig. 3a shows a circular cross-section of freeze-
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Fig. 2. (a) Complex viscosity (b) storage modulus and (c) loss modulus as a function of frequency for HDPE and their blends.
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Table 3
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Density, void content and weight saving potential of filament and 3D printed samples.

Material ¢r (vol. %) pen (kg/m?) Pexp (kg/m>) é, (%) Weight saving potential (%)
Filament 3DP Filament 3DP Filament 3DP
H - 950 949.32 = 15 948.93 + 23 0.07 0.11 - -
H20 20 944 940.73 = 21 938.32 = 30 0.34 0.60 0.90 1.12
HA40 40 938 897.41 = 29 892.14 + 37 4.32 4.89 5.47 5.98
H60 60 932 886.28 = 38 872.11 = 42 4.90 6.43 6.64 8.10

fractured H20 filament. Fig. 3b shows higher magnification H20
wherein circular pores are formed in the matrix whereas in H40
(Fig. 3c) and H60 (Fig. 3d) larger sized irregular shaped pores are ob-
served. These pores might enhance the damping capabilities of the
prints if gets transferred during 3D printing.

3.3. DSC of filament and prints

Degree of crystallinity, melting peak temperature (Tye) and crys-
tallization temperature (Tcys) are investigated for both filament and
prints for warpage (Table 4). Fig. 4 presents the DSC thermograms of
the samples. Compared to HDPE (108 °C) all the foam filaments ex-
hibited gradual increment in Tcrys. Amid HDPE matrix cooling, at
comparatively higher temperature melt nucleates on the cenosphere
surface forming crystal lamellas of larger thickness resulting in higher
Teryse [50]. 3D prints follow a similar trend. It signifies that additional
processing has no significant effect on the crystallization temperature.
There is no appreciable change observed in Ty of the filament and
prints indicating the addition of filler and processing step do not in-
fluence Tyer; (Table 4). Degree of crystallinity (atcrys) in foam filaments
decreases as cenosphere content increases as compared to H (33.15%).
Printed specimen follows a similar trend. ac,ys; dropped from 57.1 (H)

to 39.9% (H60) in prints. Degree of crystallinity is higher in prints
compared to their respective filaments which is a welcome sign as far as
warpage and dimensional stability of the printed foams. Printed sam-
ples are allowed to cool through natural convection mode in the build
chamber of the 3D printer while filaments are rapidly cooled in the
water bath post extrusion leading to such an observation [51]. Further,
as filament gets quenched in a water bath there is not enough time and
energy for the melt to crystallize [52]. Drop in acys: of foams is due to
the hindrance caused by filler particles to the polymer chain movement
in addition to the reduction of crystal domain in HDPE [19,53,54] re-
sulting in dimensionally stable foam prints with no warpage. Further,
HDPE filament and prints have high crystallinity % and rate due to its
linear chain conformation exhibiting prominent warpage while
printing. Results presented in Table 4 clearly indicate printing feasi-
bility of cenosphere based lightweight eco-friendly foams for weight
sensitive structures.

3.4. Tensile test of filaments

Filament needs to meet a certain requirement to be utilized as
feedstock material in the 3D printer without changing functional
hardware and software. It must retain its shape without buckling while

©

Fig. 3. Freeze fractured micrographs of (a) filament cross section for H20 at lower magnification [74] (b) H20 (c) H40 and (d) H60.

(d)
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Table 4
Teryst: Acrysts Tmele and CTE of samples.
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Material Teryse ((C) acryst (%) Tamere CC) CTE x 107° (/') % reduction of CTE w.r.t ‘H’
Filament 3DP Filament 3DP Filament 3DP
H 108.2 109.5 55.5 57.1 131.7 131.2 127 + 4.29 -
H20 111.4 110.5 43.4 45.6 131.5 130.9 93.2 + 391 26.61
H40 112.5 110.6 41.5 44.8 130.6 129.5 82.4 + 2.78 35.11
H60 112.6 111.3 37.1 39.9 130.2 129.8 20.3 = 1.08 84.01
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Fig. 4. DSC thermograms for crystallization peak from cooling cycle in (a) filament (c) 3D prints and melting peak from second heating cycle in (b) filament (d) 3D

prints.

passing through drive rollers to absorb frictional forces [55]. Buckling
can be prevented making the filament stiff enough to resist drive roller
push without getting deformed and fractured in the printer head.
Higher filler loading increases filament modulus by 7.72-12.79% as
compared to HDPE (Table 5). Filament stiffness increases due to stiffer
intact cenospheres (Fig. 3) presence in compliant HDPE matrix. Fig. 5
presents representative stress-strain plots (for clarity only up to 30%
strain is included) of HDPE and their foam filaments. It is observed that
pure HDPE filament undergoes elongation more than 200% strain and

Table 5
Tensile properties of filament and 3D printed material.

the test is discontinued due to time and machine span length constraint.
Such higher elongation values without filament failure are due to the
ductile nature of HDPE. On the contrary, foam filaments failed within
30% stain. Among the foam filaments, H20 composition registered the
highest ultimate strength (10.30 MPa) and strain at break (26.20%).
Filament micrography (Fig. 3a) reveal voids across the cross-section of
the filament which gets elongated leading to coalesce when pulled
under tensile load to get fractured finally. The decreasing trend in
strength and break strain is likely due to the incorporation of stiffer

Material Modulus (MPa) UTS (MPa) Elongation at UTS (%) Fracture strength (MPa) Fracture strain (%)

Filament 3DP Filament 3DP Filament 3DP Filament 3DP Filament 3DP
H 813.26 + 22 946.20 + 35 1490 = 0.22 18.84 + 0.28 13.9 * 0.23 1299 = 0.26 - 6.78 + 0.29 - 1429 + 5.89
H20 876.05 + 31 1125.10 = 39 10.30 = 0.34 1231 + 0.39 6.70 = 0.29 5.99 + 0.33 7.73 + 0.29 11.45 * 0.33 26.20 = 0.15 8.23 = 0.33
H40 895.19 + 34 1351.60 + 44 7.56 * 0.32 11.25 = 0.41 390 = 0.31 1.46 + 0.35 5.34 + 0.19 10.89 * 0.25 15.00 = 0.22 1.51 * 0.06
H60 971.25 * 38 1622.37 + 57 5.62 *= 0.23 12,50 = 0.53 230 += 0.11 1.44 + 0.21 4.33 + 0.14 12.09 * 0.19 3.30 = 0.31 1.51 + 0.07
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Fig. 5. Representative stress-strain plot of neat HDPE and syntactic foam
feedstock filament.

cenospheres and the subsequent reduction in the ductile phase (HDPE).

3.5. Investigations on 3D printed samples

Parameters chosen for 3D printing (Table 2) exhibited seamless
interface bonding between the layers (Fig. 6a) and minimum warpage.
Post printing, samples are allowed to cool within the enclosed chamber
of the 3D printer until the room temperature is reached. Micrographs of
freeze-fractured as 3D printed samples for neat HDPE and H60 is pre-
sented in Fig. 6b—d. Voids are not seen in neat HDPE (Fig. 6b) while
H60 micrograph depicts the uniform distribution of intact cenospheres
post printing and elongated voids (Fig. 6¢) as mentioned earlier. Den-
sity drop in prints compared to HDPE signifies the void content and
particle survival post 3D printing process. Void content (Table 3) in
printed samples are higher as against the filament owing to the air gaps

Composites Science and Technology 183 (2019) 107816

between bonded adjacent raster (Fig. 6d). These gaps are more pro-
minent at higher filler loadings owing to higher melt viscosity and
lower matrix phase. Such additional air gaps in these 3D printed closed
cell foams as compared to their filament counterparts results in better
weight saving potential (Table 3).

3.6. Coefficient of thermal expansion

Filler addition reduces CTE (Table 4) [56,57]. Incorporation of
cenospheres into neat HDPE provides dimensional stability at higher
printing temperatures [58]. CTE reduction signifies dimensional stabi-
lity and lowers thermal stresses resulting in minimized warpage [56].
CTE of cenospheres (3.3 x 10~%/°C) [56] and HDPE (127 x 10~%/°C)
are quite apart and hence cenospheres loading decreases CTE sub-
stantially. CTE values give an insight into raster diffusion mechanism
while printing. Part lifting and warpage are observed while printing
pure HDPE due to higher CTE. Warpage issues are not encountered
while printing foam. It resembles that, the gas of lower thermal con-
ductivity inside hollow cenospheres is restricting the heat flow [58,59].
H60 composition registered lowest CTE indicating minimum molten
raster expansion in prints leading to under diffusion of adjacent rasters.
As a consequence, the air gap in prints is seen (Fig. 6d). CTE reduction
leads to rise in air gaps making 3D printed components to be three-
phase foam structures making them lighter than the closed cell foams.

3.7. Tensile behavior

Tensile tested printed samples response is plotted in Fig. 7 and the
results are summarized in Table 5. HDPE filament exhibits different
response (Fig. 5) as compared to a printed counterpart (Fig. 7a). HDPE
filament did not break even after 1000% strain while printed sample
failed below 150% strain (Fig. 7a) indicating brittle behavior post
printing. A similar observation is noted in foams as well. Neat HDPE
shows failure strain over 130% whereas syntactic foam specimens ex-
hibited failure at ~1.5-8%. Neat HDPE underwent plastic deformation

(©)

Fig. 6. SEM of representative (a) 3D printed sample in thickness direction (b) freeze fractured HDPE (c) H60 and (d) air gap (marked area) between raster.

(d)
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Fig. 7. Representative stress-strain plot for 3D printed (a) HDPE and (b) their foams.

from ~60 to 130% strain. Long necking region is clearly evident in
HDPE (Fig. 8a) due to fibrillation of individual raster resulting in
broom-like fibrous ends. Printed foam exhibit brittle failure without
remarkable plastic deformation (Fig. 8b). Failure of syntactic foam
specimens is initiated with plastic deformation of matrix phase at raster
planes in the presence of stiff intact cenospheres (Fig. 8c). Infusion of
stiffer cenospheres into matrix leads to such behavior. Compared to
injection molded HDPE, printed HDPE registered higher elastic mod-
ulus (78.86%) with comparable UTS, elongation at ultimate strength
and fracture strain while fracture strength gets doubled [60]. Foam
modulus increases as filler percentage increases (Table 5). H60 regis-
tered the highest modulus among other foam compositions and is
71.46% higher compared to its HDPE counterpart. 3D printed HDPE
and foams modulus is 1.16, 1.28, 1.51 and 1.67 times better than the
respective feedstock due to the realignment of the polymer chain and
additional crosslinking during 3D printing. Modulus of printed ceno-
sphere/HDPE foams is higher in the range of 96.01-144.45% as com-
pared to injection molded ones [60] indicating 3D printing potential in
replacing injection molded components with zero lead time and tooling
cost. UTS of foams is lower as compared to printed HDPE as con-
stituents are blended without any surface treatment and thereby does
not promote interfacial adhesion. UTS and fracture strength of printed
material is almost equal to injection molded material [60]. Printed
foam registered lower elongation at UTS as compared to injection
molded foams. Presence of stiffer cenospheres results in absence of
necking and plastic deformation in printed foams (Fig. 8b) and is also
reflected in the stress-strain plot (Fig. 7b). Fracture strength of printed
foam is 1.78 times higher as compared to neat HDPE. Specific proper-
ties of the foams are vital in weight sensitive structures as printing
renders the flexibility of integrated components with complex geo-
metry. The specific strength of neat HDPE (0.01985 MPa/(kg/m3)) is
higher as compared to foams (Table 6). H60 registered the highest
specific strength among foams. Printed foams have the potential to be
used in weight saving the application as depicted by E/p, E/p® and E/p>
values in Table 6.

3.8. Flexural response

Neat HDPE specimen did not show any failure sign up to 10% strain
(Fig. 9a) while foams fractured in a brittle manner. Flexural modulus
increases with cenosphere content (Table 7) due to intact filler in the
HDPE matrix (Fig. 9b). Highest modulus is exhibited by H60 and is 1.56
times better than neat HDPE sample. Strength drop might be due to
poor interfacial bonding between constituents and air gaps between the
raster. Specific flexural modulus follows the increasing trend with
cenospheres percentage. Specific flexural modulus is 1.71 times higher
as compared to neat HDPE. 3D printed HDPE showed around 3% higher

modulus compared to injection molded foams. H20, H40 and H60 foam
registered 25.37, 13.67 and 9.08% lower modulus compared to re-
spective injection molded foams while printed H, H20, H40, and H60
registered 1.62, 1.0, 11.78 and 14.38% lower strength as compared to
injection molded ones [22] due to air gaps between adjacent raster in
3D printing as compared to fully dense molded sample.

Tensile and flexural strength decreases with filler loading as surface
modification routes are not utilized. Further, amorphous fraction in
foams increases as crystallinity decreases with increasing cenosphere
content. In turn, cenospheres pose molecular chain mobility and matrix
deformation constraints resulting in a weaker interface. Strength might
increase in the presence of the coupling agent, despite crystallinity drop
(better phase interaction). However, coupling agents might sub-
stantially decrease the ductility making filament extrusion and 3D
printing quite a challenging task.

Fig. 8. Representative failed 3D printed sample of (a) HDPE (b) H60 and (c)
SEM of H60 post tensile test.
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Table 6
Specific properties of syntactic foams fabricated using a 3D printer.
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Materials Specific UTS (MPa/kg/m?) E/p (MPa/kg/m?) E/p® (MPa/(kg/m%)?) x 1073 E/p® (MPa/(kg/m%)®) x 107°®
x 1073

H 19.85 1.00 1.05 1.11

H20 13.12 1.20 1.28 1.36

H40 12.61 1.52 1.70 1.90

H60 14.33 1.86 2.13 2.45

3.9. Property plots

Tensile and flexural properties data (extracted from literature) are
graphed against the HDPE composites density in Fig. 10 [60-68] and
Fig. 11 [22,61,62,66,69-73] respectively. It is clear that composites
with solid particle reinforcement have higher modulus with a higher
density as a common trend. However, hollow particle filled composite
provide lower density advantage over solid particles. Present study
results show that the density of printed foam falls between compression
molded engineered glass microballoon and injection molded ceno-
sphere based closed cell foams. Modulus of printed syntactic foam is
higher compared to carbon black, lignocellulose, calcium carbonate,
wood, cenospheres, and glass microballoon based systems. Whereas
strength is almost comparable with injection and compression molded
composites. Flexural modulus of printed foam is lower as compared to
injection molded and comparable with compression molded foams.
Flexural strength of printed foam is higher as compared to natural fiber
and wood powder filled composite, lower compared to injection
molded samples and is comparable with compression molded compo-
sites. Choice of appropriate extrusion and printing parameters with
minimum filler breakage leads to density reduction. By controlling,
filler percentage and printing parameters tensile and flexural properties
can be exploited well over a wider range.

4. Conclusions

Eco-friendly lightweight cenosphere/HDPE closed cell foam fila-
ment is successfully used in FFF based 3D printer. Developed foam fi-
lament and prints are analyzed using mechanical tests to address their
suitability and feasibility to be utilized for 3D printing applications.
Results are summarized as below:

e Cenosphere/HDPE three-phase foam prints without warpage having
weight saving potential can be used in marine applications.

o MFI of neat HDPE has decreased with increase in cenospheres
content. Rheological results indicate a considerable increase in
complex viscosity, loss and storage modulus with increasing ceno-
spheres content.

24 -
=
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318 .
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e Complex viscosities values are maximum at a lower frequency but
decrease with an increasing frequency indicating cenospheres/
HDPE foams shear thinning behavior. Both storage and loss modulus
showed an increasing trend with filler loading and frequency.

e Neat HDPE and foam filaments exhibit lower crystallinity as com-
pared to respective printed material. Filler addition in HDPE matrix
reduces CTE remarkably.

e Compared to injection molded HDPE, printed HDPE registered

78.86% higher tensile modulus and two-fold fracture strength. 3D

printed HDPE and foams modulus is 1.16, 1.28, 1.51 and 1.67 times

better than respective feedstock material. Tensile modulus of prints
is higher in the range of 96.01-144.45% as compared to the same
composition injection molded ones.

Flexural modulus increases with cenosphere content. Highest mod-

ulus is exhibited by H60 which is 1.56 times better than neat HDPE

sample. Air gaps presence lowers flexural modulus and strength as
compared to fully dense injection molded samples.

e Property map reveals 3D printing potential over other composites
synthesized through different processing routes.

The focus of the present work is to develop eco-friendly lightweight
filament for 3D printing of closed cell foams and thereby cater to wide
material choices to be offered for the 3D printing industry.
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Table 7
Flexural properties of printed HDPE and their syntactic foams.

Material ~ Modulus (MPa) Strength (MPa)  Fracture strength (MPa)  Fracture strain (%)  Specific modulus (MPa/kg/m®)  Specific strength (MPa/kg/m>) x 103

H 734.76 *=
H20 883.86 *=
H40 1049.17
H60 1149.28

1.28 22.24
9.56 20.92
41.87 17.48
51.23 16.76

1.12 -

1.58 20.80
0.47 17.25
0.72 16.74

0.77 23.44
0.19 0.94 22.30
0.11 1.18 19.59
0.07 1.32 19.22

3 -
3 1.48 7.83
0.41 3.71

0.79 2,97
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Fig. 10. (a) Tensile modulus and (b) strength of HDPE composites plotted against density [60-68].
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Fig. 11. (a) Flexural modulus and (b) strength of HDPE composite plotted against density [17,22,61,62,66,69-72].

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
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