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Abstract. The effect of non-credible porous lining on the flow between two con- 
centrie rotating cylinders is investigated using Beavers and Joseph slip boundary 
condition. It is shown that the shearing stress at the walls increases with the porous 
lining thickness parameter ~. 
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1. Introduction 

The control of shearing stress is important in the design of rotating machinery (like 
totally ertclosed --fart-cooled motors and lubrication industry) in which the centri- 
fugal force plays a major role. To achieve this, following the rectangular geo- 
metry model of Chartrtabasappa et a/[3], we consider the flow between two cortcert- 
tric rotatirtg cylinders with rtort-erodible porous lining on the irmer wall of the 
outer cylinder. The velocity field, using Beavers and Joseph [1] slip boundary 
cortditiort (hereafter called the BJ condition), is determined and ;t is shown that 
the velocity irtcreases with the porous lining thickness parameter e. Shearing 
stress at the walls is calculated for different values of  e and it is shown that it 
increases with e. 

2. Formulation of the woblem 

The physical model illustratittg the problem under consideratiort is shown in figure 1. 
We consider art axi-symmetric steady incompressible viscous flow in an annulus 

between two concerttric rotating cylirtders. The inrter impermeable cylinder of  
radius a rotates with art artgular velocity o9, while the outer cylinder of  radius b ( >  a) 
rotating with art artgular velocity 12 has a nort-erodible porous lining of  thickness 
h on its inner wall. The flow in the artnulus (called zone 1) is governed by the usual 

163 



164 M N Channabasappa, K G Umapathy and I V Nayak 

R dO dR 
1. Physical model. 

Navier-Stokes equations and that in the porous medium (called zone 2) by the 
Darcy law. The basic equations of the flow in zone 1, assuming that the flow is 
caused by the rotation of the cylinders, in cylindrical coordinates are [2] 

p ( u d U  R~ ) d P ,  Qd'-U , 1 dU 

a u ~ +  =/ ' t , a -~ : '  ~ R dzr ~ " 

The equation of continuity is 

( 2 )  

dU U + ~ = 0, (3) 

where U and V are the radial and azimuthal components of the velocity and R the 
radial distance. The boundary conditions are 

U = 0  at R = a  and R = b - - h  (4) 

V = a o )  at R = a  (5) 

V =  Va at R =  b -- h (6) 

whore Va is obtained by using the BJ condition 

~-~-~ ~-~-~  v B  - Q ~-~ , (71 

where Q is the Darcy velocity irt zone 2 given by 

Q = Rt? + E. (8) 

Here RO is the velocity in the porous medium due to the rotation of the porous 
medium itself with an angular velocity 12 and E is given by 

~rr b 

E = K_ ~ ~-hI pRO"- (R dO dR) 
2'11" b 

P .f I RdOdR 

= ~ -  5 p ~ ,  . . . .  . ( 9 )  
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The quantities K and a in (7) are respectively the permeability arid the slip parameter 
of  the porous material. For a given porous material K can be determined experi- 
mentally by using the usual permeameter apparatus, while a, since it is independent 
of  the geometry of flow, cart be determined by using the experimental set up of  
Beavers and Joseph [1]. 

We note that the equation of continuity (3) implies 

U = C /R ,  (10) 

where C is a constant. Since there is no suction or injection normal to the walls, 
this C has to be zero to satisfy the no slip boundary condition (4). 

Therefore U ~- 0 everywhere. (11) 

Irt view of (11), the solution of (2) satisfying the boundary conditions (5) and (6) is 

1 v ~--- f " r {).~ -- (1 -- eV} [22 fl t r  -- (1 -- g)o] .5 vB (1 -- e) ().~ -- r~-)] (12) 

where va = 

(1 - -  e ) { 2 2  - -  (1 - -  e )2}  {3aa"~ ( e2  _ 3 e + 2 )  + 2a Re(e  2 - -  3 e + 3 ) }  

+ 6a2 ~- f i (& -- 3e + 2) 
3aa='(e2--3e +2)  {2 z - ( l -  e)~} + 3a(2--  e) {2 2 + ( I - E )  ~} 

(13) 
artd [v ,  r, 2 , a ,  fl, e, Re ,  p,  -r] 

r V  R a b 
= ~ ' U 6  ' ~ ' -~ ' ,, / K ' 

Using (11) in (1), we get 

c ~  P u ~ ]  
' b ' v ' pb  2 g22 " " 

(14) 

v ~. dp ( 1 5 )  

which gives the radial pressure. 
The shearing stress cart be computed from (12), using 

-r = r (d/dr)  ( v / r )  (! 6) 

and is of the form 

2,~ 2 (1 - e)  [/~ (1 - ~) - vB} 
= - r : ' { ; . : -  (J - ~)")  

(17 )  

Titus the shearing stresses at the inner artd the outer walls are respectively given by 

2 ( 1 -  ~) (/~ ( 1 -  ~) - v . }  (18) 

2 2 2 { f l ( l  - -  e ) - - v s }  

T. .  = ( l  - -  e ) { Z '  - -  (1 - -  ~f-}  
(19} 

P. (A)--6 
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These in the limit e -* 0 and a --* oo reduce to the results of impermeable case [4] 

2( f l - -  1) 
"r,~-- 2 2 -  1 (20) 

222 (/~ - l) 
r,a = 22 - -  1 ( 2 1 )  

3 .  C o n c l u s i o n s  

The velocity field given by (12) and the shearing stresses given by (18) and (19) 
are numerically computed for certain combinations of  the parameters and the 
results are presented graphically in figures 2 and 3. 

From figure 2 it is clear that the velocity increases with the porous lining thick- 
ness e. Figure 3 represents the effect of ~ on shearing stress, and from this we 
conclude that (i) the shearing stresses (at the walls) with porous lining are always 
greater than the corresponding ones for the impermeable case, (ii) the shearing 
stresses increase with the thickness of the porous lining. 

Typical behaviours are observed for other parameters. 

1.5 

1.1 

0.9 

0.7 

0-5 

0.3 

0.5 

~=0.01~, 

0.3 

0.4 , . / /  

0 . 1 ~  I I I [ 
0.2 0.4 0.6 0.8 1.0 

r 

Figure 2. Variation of v with r for) ,  = 0 . 2 ;  f l = 0 " 5 ;  a =  100; Re = 1000. 
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Figure 3. Variation of z with ~ for ). =0"2;  /~=0"5; ~r= 100; Re : 1000. 
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