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Abstract A family of local atoms in a Banach space has been introduced and it has been
generalized to an atomic system for operators in Banach spaces, which has been further
led to introduce new frames for operators by Dastourian and Janfada, by making use of
semi-inner products. Unlike the traditional way of considering sequences in the dual space,
sequences in the original space are considered to study them. Appropriate changes have
been made in the definitions of atomic systems and frames for operators to fit them for
sequences in the dual space without using semi-inner products so that the new notion for
Banach spaces can be thought of as a generalization of Banach frames. With some crucial
assumptions, we show that frames for operators in Banach spaces share nice properties of
frames for operators in Hilbert spaces.

Keywords Xd -atomic system · Xd -K-frame

Mathematics Subject Classification (2010) 47B32 · 42C15

1 Introduction

Frames are a tool for the construction of series expansions in Hilbert spaces. Frames provide
stable expansions, quite in contrast to orthogonal expansions — they may be overcomplete
and the coefficients in the frame expansion therefore need not be unique. The redundancy
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and flexibility offered by frames has spurred their applications in a variety of areas through-
out mathematics and engineering, such as operator theory [11], harmonic analysis [9],
pseudo-differential operators [10], quantum computing [5], signal and image processing [4],
and wireless communication [13].

Theoretical research of frames for Banach spaces is quite different from that for Hilbert
spaces. Due to the lack of an inner product, the properties of Hilbert frames usually do
not transfer automatically to Banach spaces. Gröchenig [8] generalized Banach frames with
respect to certain sequence spaces. The main feature of frames that Gröchenig was trying to
capture in a general Banach space was the unique association of a vector in a Hilbert space
with the natural set of frame coefficients. After the work of Gröchenig, frames in Banach
spaces have become topic of investigation for many mathematicians.

A sequence space Xd is called a BK-space if it is a Banach space and the coordinate
functionals are continuous on Xd . If the canonical unit vectors form a Schauder basis for Xd ,
then Xd is called a CB-space and its canonical basis is denoted by {en}. If Xd is reflexive
and a CB-space, then Xd is called an RCB-space. Also, the dual of Xd is denoted by X∗

d .
When X∗

d is a CB-space, then its canonical basis is denoted by {e∗
n}.

We denote by B(X) the space of all bounded linear operators on a Banach space X.
For T ∈ B(X), we denote D(T ), R(T ), and N(T ) for domain, range and nullspace of
T , respectively. The set of all natural numbers is denoted by N . For simplicity, a sequence
{fn : n ∈ N} indexed by N will be abbreviated as {fn} throughout the paper.

The results in this paper are organized as follows. In Section 2, we recall basic defini-
tions, known results on K-frames in Hilbert spaces and Xd -frames in Banach spaces. Two
new notions, “atomic systems” and “frames for operators” are defined in Section 3, with-
out using semi-inner products. Operators preserving them and generating new such frames
using old ones have been discussed. In the end, it is shown that the frames for operators in
Banach spaces share few nice properties of frames for operators in Hilbert spaces, under
some crucial assumptions. Throughout the paper, all spaces are nontrivial; operators are
non-zero, and X is a reflexive separable Banach space.

2 Notations and Preliminaries

Găvruţa [7] introduced two notions, “atomic systems” and “K-frames” in a separable
Hilbert space H , as a generalization of families of local atoms [6], where K ∈ B(H).

Definition 1 [7] A sequence {fn} in H is called an atomic system for K , if the following
conditions are satisfied :

1. the series
∑

n

cnfn converges for all c = {cn} ∈ �2 ;

2. there exists C > 0 such that for every f ∈ H there exists af = {an} ∈ �2 such that
‖af ‖�2 ≤ C‖f ‖ and Kf = ∑

n anfn.

The condition 1 in Definition 1 says that {fn} is a Bessel sequence.

Definition 2 [7] Let K ∈ B(H). A sequence {fn} in H is called a K-frame for H if there
exist two constants 0 < λ ≤ μ < ∞ such that

λ‖K∗f ‖2 ≤
∑

n

|〈f, fn〉|2 ≤ μ‖f ‖2 for all f ∈ H.
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The constants λ and μ are called the lower and upper bounds respectively, for the K-
frame {fn}. If the above inequalities hold only for f ∈ span{fn}, then {fn} is said to be a
K-frame sequence.

If K is equal to I , the identity operator on H , then K-frames and K-frame sequences
are just ordinary frames and frame sequences, respectively. It is proved that these two con-
cepts are equivalent [7]. Because of the higher generality of K-frames, many properties for
ordinary frames may not hold for K-frames, such as the corresponding synthesis operator
for K-frames is not surjective, the frame operator for K-frames is not isomorphic, the alter-
nate dual reconstruction pair for K-frames is not interchangeable in general. Also, the frame
operator S for a K-frame is semidefinite, so there is also S1/2, but not positive. In general,
it is not invertible. For more details on K-frames, see [7, 12, 14, 15, 17].

The concept of a family of local atoms in a Banach space X with respect to a BK-space
Xd was introduced by Dastourian and Janfada [3] using a semi-inner product. This concept
was generalized to an atomic system for an operator K ∈ B(X) called X∗

d -atomic system
and it has been led to the definition of a new frame with respect to the operator K , called
X∗

d -K-frame. Unlike the traditional way of considering sequences in the dual space X∗,
sequences in the original space X are considered in [3] to study a family of X∗

d -local atoms
and X∗

d -atomic systems by making use of semi-inner products.
Appropriate changes have been made in the definitions of X∗

d -atomic systems and X∗
d -

K-frames to fit them for sequences in the dual space without using semi-inner products,
called Xd -atomic systems and Xd -K-frames, respectively. Thus, the notion of Xd -K-frames
for Banach spaces can be thought of a generalization of Xd -frames. We start with the def-
inition of an Xd -frame defined by Casazza, Christensen, and Stoeva [2] which is a natural
generalization of Hilbert frames to Banach frames.

Definition 3 Let X be a Banach space and let Xd be a BK-space. A sequence {gn} of
elements in X∗, which satisfies

1. {gn(f )} ∈ Xd for all f ∈ X,
2. There are constants 0 < λ ≤ μ < ∞ such that for each f ∈ X

λ‖f ‖X ≤ ‖{gn(f )}‖Xd
≤ μ‖f ‖X (1)

is called an Xd -frame for X. The constants λ and μ are called lower and upper bounds
respectively for {gn}. When {gn} satisfies the condition 1 and the upper inequality in (1) for
all f ∈ X, {gn} is called an Xd -Bessel sequence for X.

Note that the definition of Xd -frame is a part of the definition of a Banach frame intro-
duced by Gröchenig [8]. If X is a Hilbert space and Xd = �2, the Xd -frame inequalities in
(1) mean that {gn} is a frame, and in this case it is well-known that there exists a sequence
{fn} in X such that for each f ∈ X,

f =
∑

n

〈f, fn〉 gn =
∑

n

〈f, gn〉 fn.

Similar reconstruction formulas are not always available in the Banach space setting.

Lemma 1 [2] Let Xd be a BK-space for which the canonical unit vectors {en} form a
Schauder basis. Then the space Yd = {F(en) : F ∈ X∗

d} with the norm ‖{F(en)}‖Yd
=

‖F‖X∗
d
is a BK-space isometrically isomorphic to X∗

d . Also, every continuous linear
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functional F on Xd has the form F(c) = ∑
n cndn, where {dn} = F(en), is uniquely

determined by dn = F(en), and ‖F‖X∗
d

= ‖{dn}‖Yd
.

Lemma 2 [2] Let Xd be a BK-space and let X∗
d be a CB-space. If {gn} ⊆ X∗ is an Xd -

Bessel sequence forX with boundμ, then the operator L : {dn} 
→ ∑
n dngn is well-defined

(hence bounded) from X∗
d into X∗ and ‖L‖ ≤ μ. If Xd is reflexive, the converse is also

true.

Let Xd be a BK-space and let {gn} be a sequence in X∗. If {gn} satisfies only the upper
inequality in (1), the analysis operator U from X to Xd mapped by f 
→ {gn(f )}, is well-
defined and linear, having domain D(U) = {f ∈ X : {gn(f )} ∈ Xd}. The domain D(U)

is a subspace (not necessarily closed) of X. If {gn} is an Xd -Bessel sequence for X, then
D(U) = X and U is bounded with the norm ‖U‖ ≤ μ.

If only the lower inequality in (1) is satisfied by {gn}, then U is bounded below on D(U).
Thus if {gn} satisfies the Xd -frame inequalities in (1), we get that U is bounded and bounded
below on D(U). Hence R(U) is closed in Xd and the inverse U−1 : R(U) → D(U) is also
bounded with the norm ‖U−1‖ ≤ 1

λ
. We can conclude that given an Xd -frame {gn} ⊆ X∗

for X, the analysis operator U : X → Xd defined by Uf = {gn(f )} is an isomorphism of
X onto R(U).

Given a sequence {gn} in X∗, we now consider a function L : X∗
d → X∗, called the

synthesis operator, mapped as {dn} 
→ ∑
n dngn is well-defined and linear on the domain

D(L) = {{dn} ∈ X∗
d : ∑

n dngn converges in X∗} . If {gn} ⊆ X∗ is an Xd -Bessel sequence
in X with bound λ and if X∗

d is a CB-space, then L is bounded from X∗
d to X∗ and ‖L‖ ≤ μ,

by Lemma 2. If Xd is a CB-space, then U∗ = L. If Xd is reflexive and {gn} is an Xd -frame
for X, then U = L∗ because X is isomorphic to a closed subspace of Xd and every closed
subspace of a reflexive space is reflexive. Hence X is also reflexive. The section ends with
a result connecting majorization, factorization and range inclusion for operators on Banach
spaces.

Theorem 1 [1] Let X, Y,Z be Banach spaces and let A ∈ B(X, Y ), B ∈ B(Z, Y ). Then
the following statements hold:

1. If A = BT for some T ∈ B(X,Z), then B∗ majorizes A∗. The converse is true when
N(B) is complemented in Z, and Z is reflexive. Note that B∗ majorizes A∗ if there
exists C > 0 such that for each f ∈ Y , ‖A∗f ‖X ≤ C‖B∗f ‖Z.

2. If R(A) ⊆ R(B), then B∗ majorizes A∗. The converse is true when Z is reflexive.

3 Atomic System for Banach Spaces

Definition 4 Let X be a Banach space and let Xd be a BK-space. Let K ∈ B(X∗) and
{gn} ⊆ X∗. We say that {gn} is an Xd -atomic system for X with respect to K if the following
statements hold:

1.
∑

n

dngn converges in X∗ for all d = {dn} in X∗
d and there exists μ > 0 such that

∥∥∥
∑

n

dngn

∥∥∥
X∗ ≤ μ‖d‖X∗

d
;

2. there exists C > 0 such that for every g ∈ X∗ there exists ag = {an} ∈ Xd such that
‖ag‖Xd

≤ C‖g‖X∗ and Kg = ∑
n angn.
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When Xd is reflexive, the condition 1 in Definition 4 actually says that {gn} is an Xd -
Bessel sequence for X with bound μ, by Lemma 2. We find a necessary condition for a
sequence {gn} ⊆ X∗ to be an Xd -atomic system for X with respect to a given operator K if
the associated sequence space satisfies the following crucial property : For each {fn}, {hn} ∈
Xd , ∣∣∣

∑

n

fnhn

∣∣∣ ≤ ‖{fn}‖Xd
‖{hn}‖Xd

. (2)

For instance, let {fn}, {hn} ∈ �p and p ∈ (1, 2]. Then the conjugate of p, q lies in [2, ∞).
Hence by Hölder’s inequality, the sequence space �p for 1 < p ≤ 2 satisfies the inequality
(2).

Theorem 2 Let Xd be a BK-space. Let {gn} be a sequence in X∗ and K ∈ B(X∗). If {gn}
is an Xd -atomic system for X with respect to K and the sequence space Xd satisfies the
inequality (2), then there exists a constant λ > 0 such that

‖K∗f ‖X ≤ λ‖{gn(f )}‖Xd
for each f ∈ X.

Proof Suppose {gn} is an Xd -atomic system for X with respect to K . Then there is some
C > 0 such that for every g ∈ X∗ there exists ag = {an} ∈ Xd such that ‖ag‖Xd

≤ C ‖g‖X∗
and Kg = ∑

n angn. Hence for each f ∈ X,

‖K∗f ‖X = sup
g∈X∗, ‖g‖=1

|g(K∗f )|
= sup

g∈X∗, ‖g‖=1
|(Kg)(f )|

= sup
g∈X∗, ‖g‖=1

∣∣∣
∑

n

angn(f )

∣∣∣

≤ sup
g∈X∗, ‖g‖=1

‖{an}‖Xd
‖{gn(f )}‖Xd

= sup
g∈X∗, ‖g‖=1

‖ag‖Xd
‖{gn(f )}‖Xd

≤ C sup
g∈X∗, ‖g‖=1

‖g‖X∗ ‖{gn(f )}‖Xd
[using ‖ag‖Xd

≤ C ‖g‖X∗ ].

Thus for some C > 0, ‖K∗f ‖X ≤ C ‖{gn(f )}‖Xd
for each f ∈ X.

Definition 5 Let X be a Banach space and let Xd be a BK-space. Let K ∈ B(X∗) and
{gn} ⊆ X∗. We say that {gn} is an Xd -K-frame for X if the following statements hold:

1. {gn(f )} ∈ Xd for each f ∈ X;
2. there exist two constants 0 < λ ≤ μ < ∞ such that

λ‖K∗f ‖X ≤ ‖{gn(f )}‖Xd
≤ μ‖f ‖X for each f ∈ X.

The elements λ and μ are called the lower and upper Xd -K-frame bounds.

We say that an Xd -frame for X is an Xd -I -frame for X, where I is the identity operator
on X∗. The set of all Xd -frames for X can be considered as a subset of Xd -K-frames for
X. Thus Xd -K-frame is a generalization of Xd -frame for a Banach space X. We present an
example for an Xd -K-frame which is not an Xd -frame for X.

Example 1 Let X be the space of all triplets (α1, α2, α3) with complex scalars and hav-
ing 3/2-norm, denoted by �3/2(3). Let {gn} ⊆ X∗ = �3(3) be such that for n = 1, 2, 3,
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gn(em) = δnm, where em’s are vectors in X, having 1 in mth place and 0 elsewhere, and
gn = 0 for all n ≥ 4. Define K : X∗ → X∗ as follows:

Kg1 = 0, Kg2 = g3, and Kg3 = g2.

For any f ∈ X, we have f = ∑3
n=1 αnen and

‖K∗f ‖X = ‖α2e3 + α3e2‖3/2 = (|α2|3/2 + |α3|3/2)2/3 = ‖{gn(f )}∞n=2‖�3/2 .

Then {gn}∞n=2 is an Xd -K frame for X. But it is not an Xd -frame because there is no constant
λ such that for any scalar α1,

λ‖f ‖X = (|α1|3/2 + |α2|3/2 + |α3|3/2)2/3 ≤ (|α2|3/2 + |α3|3/2)2/3 = ‖{gn(f )}∞n=2‖�3/2 .

We can generate new Xd -K-frames for X from each Xd -frame for X and each operator
K ∈ B(X∗), by the following proposition.

Proposition 1 If {gn} is an Xd -frame for X and K ∈ B(X∗), then {Kgn} is an Xd -K-frame
for X.

Proof Suppose {gn} is an Xd -frame for X. Then {gn(f )} ∈ Xd , for all f ∈ X and there are
constants 0 < λ ≤ μ < ∞ such that for each f ∈ X

λ‖f ‖X ≤ ‖{gn(f )}‖Xd
≤ μ‖f ‖X.

Let f ∈ X be fixed. Since (Kgn)(f ) = gn(K
∗f ) and K∗f ∈ X, we have {(Kgn)(f )} ∈

Xd . Also, ‖K∗f ‖X ≤ ‖K‖ ‖f ‖X gives that for each f ∈ X,

λ‖K∗f ‖X ≤ ‖{(Kgn)(f )}‖Xd
≤ μ‖K‖ ‖f ‖X.

Thus {Kgn} is an Xd -K-frame for X.

The following example illustrates that an Xd -Bessel sequence is an Xd -K-frame but it is
not the same for the other operator T .

Example 2 Let X = �3/2(3). Let {gn} ⊆ X∗ = �3(3) be such that for n = 1, 2, 3, gn(em) =
δnm, and gn = 0 for all n ≥ 4. Define K and T from X∗ to X∗ as follows: Kg1 = 0, Kg2 =
g3, and Kg3 = g2, and T g1 = g1, T g2 = g3, and T g3 = g2. Then {gn}∞n=2 is an Xd -K
frame but it is not an Xd -T -frame for X.

Theorem 3 Let {gn} be an Xd -K-frame for X. Let T ∈ B(X∗) be such that R(T ) ⊆ R(K).
Then {gn} is an Xd -T -frame for X.

Proof Suppose {gn} is an Xd -K-frame for X. Then there are constants 0 < λ ≤ μ < ∞
such that for each f ∈ X

λ‖K∗f ‖X ≤ ‖{gn(f )}‖Xd
≤ μ‖f ‖X. (3)

Since R(T ) ⊆ R(K), by Theorem 1, there exists C > 0 such that for each f ∈ X,
‖T ∗f ‖X ≤ C‖K∗f ‖X. From the second inequality in (3), we have for each f ∈ X

λ

C
‖T ∗f ‖X ≤ ‖{gn(f )}‖Xd

≤ μ‖f ‖X.

Hence {gn} is an Xd -T -frame for X.
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Theorem 4 Let Xd be a reflexive space and let {gn} ⊆ X∗. Let {en} be the canonical unit
vectors for Xd and X∗

d . Then {gn} is an Xd -K-frame for X if and only if there exists a
bounded linear operator L : X∗

d → X∗ such that Len = gn and R(K) ⊆ R(L).

Proof Since {gn} is an Xd -K-frame for X, there exist constants 0 < λ ≤ μ < ∞ such that
for each f ∈ X,

λ‖K∗f ‖X ≤ ‖{gn(f )}‖Xd
≤ μ‖f ‖X.

Hence the operator U : X → Xd defined by Uf = {gn(f )} is bounded and ‖U‖ ≤ μ.
The adjoint of U , U∗ : X∗

d → X∗ satisfies (U∗en)(f ) = en(Uf ) = gn(f ). Since Xd is an
RCB-space, U∗ = L, hence we get Len = gn. Also we have

λ‖K∗f ‖X ≤ ‖{gn(f )}‖Xd
= ‖L∗f ‖Xd

for each f ∈ X.

Thus by Theorem 1, R(K) ⊆ R(L).
On the other hand, suppose there exists a bounded linear operator L : X∗

d → X∗ such
that Len = gn and R(K) ⊆ R(L). Then by Theorem 1, there exists λ > 0 such that for
each f ∈ X, λ‖K∗f ‖X ≤ ‖L∗f ‖Xd

. Thus for each f ∈ X,

λ‖K∗f ‖X ≤ ‖{gn(f )}‖Xd
= ‖L∗f ‖Xd

≤ ‖L‖ ‖f ‖X. (4)

Corollary 1 Let Xd be a reflexive space and let {gn} ⊆ X∗. Let {en} be the canonical unit
vectors for Xd and X∗

d . Let N(L) be complemented in X∗
d . Then {gn} is an Xd -K-frame for

X if and only if L = KV for some V ∈ B(X∗
d ,K∗).

Zhang and Zhang [16] defined frames in Banach spaces via a compatiable semi-inner
product, which is a natural substitute for inner products on Hilbert spaces. As assumed
in the paper [16], we assume that Xd is reflexive, the canonical unit vectors {en} form a
Schauder basis for Xd and X∗

d ; the following crucial requirement is also imposed as in [16]:
If d = {dn} is a sequence of scalars satisfying

∑
n cndn converges for every c = {cn} ∈ Xd ,

then d ∈ X∗
d , and if the above series converges for all d ∈ X∗

d , then c ∈ Xd .

For instance, if Xp = �p, 1 < p < ∞, then X∗
d = �q , where

1

p
+ 1

q
= 1, it satisfies all

of our requirements on Xd and X∗
d . The above requirements about the spaces X and Xd are

assumed in the rest of the paper. We now prove the converse of Theorem 2 with the above
assumptions.

Theorem 5 Let X be a Banach space and let Xd be a BK-space. Let {gn} ⊆ X∗ be an
Xd -Bessel sequence for X, and K ∈ B(X∗). If N(L) is complemented, and if there exists a
constant λ > 0 such that for each f ∈ X

‖K∗f ‖X ≤ λ‖{gn(f )}‖Xd
,

then {gn} is an Xd -atomic system for X with respect to K .

Proof Using the synthesis operator L, the given inequality in hypothesis can be written as

‖K∗f ‖X ≤ λ‖L∗f ‖Xd
for all f ∈ X.

By Theorem 1, K = LT for some T ∈ B(X∗, X∗
d). Let g ∈ X∗ be fixed. Then T g ∈ X∗

d .
Since Xd has the canonical unit vectors {en} as a Schauder basis, the continuous linear func-
tional T g on Xd has the form T g(c) = ∑

n cndn, where {dn} ∈ Xd is uniquely determined
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dn = F(en), and ‖T g‖X∗
d

= ‖{dn}‖Xd
. Since T is bounded, the sequence {dn} associated

for g ∈ X∗ satisfies

‖{dn}‖Xd
= ‖T g‖X∗

d
≤ ‖T ‖ ‖g‖X∗ .

Also, we have

Kg = LTg = L({dn}) =
∑

n

dngn.

Thus {gn} is an Xd -atomic system for X with respect to K .

Theorem 6 Let K1,K2 ∈ B(X∗). Let {gn} be an Xd -atomic system for X with respect to
K1, K2, and let α, β be scalars. If N(L) is complemented, then {gn} is an Xd -atomic system
for αK1 + βK2.

Proof Suppose {gn} is an Xd -atomic system for X with respect to K1,K2 and α, β are any
scalars. Then there are constants 0 < λi ≤ μi < ∞ (i = 1, 2) such that for each f ∈ X

λi‖K∗
i f ‖X ≤ ‖{gn(f )}‖Xd

≤ μi‖f ‖X.

By simple calculations, we get
( |α|

λ1
+ |β|

λ2

)−1‖(αK1 + βK2)
∗f ‖X ≤ ‖{gn(f )}‖Xd

≤
(μ1 + μ2

2

)
‖f ‖X.

Therefore by Theorem 5, {gn} is an atomic system for αK1 + βK2.

We now prove that the notions “atomic systems” and “frames for operators” are equiv-
alent under the crucial assumptions. The proof of the result given below follows from
Theorem 2 and Theorem 5.

Theorem 7 Let Xd be a sequence space satisfying the inequality (2) and let {gn} ⊆ X∗
be an Xd -Bessel sequence for X. Let N(L) be complemented and K ∈ B(X∗). Then the
following statements are equivalent:

1. {gn} is an Xd -atomic system for X with respect to K .
2. {gn} is an Xd -K-frame for X.

Corollary 2 [7] Let {fn} be a sequence in a Hilbert space H and let K ∈ B(H). Then the
following statements are equivalent:

1. {fn} is an atomic system for K .
2. {fn} is a K-frame for H .

Proof The proof follows from Theorem 7 because the assumptions are “redundant” if X is
considered to be a Hilbert space with the sequence space Xd = �2 in Theorem 7.
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