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ABSTRACT

Bone age is a reliable measure of person's growth and maturation of skeleton. The difference
between chronological age and bone age indicates presence of endocrinological problems.
The automated bone age assessment system (ABAA) based on Tanner and Whitehouse
method (TW3) requires monitoring the growth of radius, ulna and short bones (phalanges) of
left hand. In this paper, a detailed analysis of two bones in the bone age assessment system
namely, radius and ulna is presented. We propose an automatic extraction method for the
region of interest (ROI) of radius and ulna bones from a left hand radiograph (RUROI). We also
propose an improved edge-based segmentation technique for those bones. Quantitative and
qualitative results of the proposed segmentation technique are evaluated and compared
with other state-of-the-art segmentation techniques. Medical experts have also validated
the qualitative results of proposed segmentation technique. Experimental results reveal that
these proposed techniques provide better segmentation accuracy as compared to the other

state-of-the-art segmentation techniques.
© 2017 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish
Academy of Sciences. Published by Elsevier B.V. All rights reserved.

1. Introduction

UNICEF [1] survey shows that around 27 million births take
place every year in India. But around 30 percent of that, which
is approximately 8 million children are not registered. This

is the root cause for problems like getting access to basic
services and protection. According to the census report of India
[2], the birth registration is less than 80 percent in 8 states (viz.
Andhra Pradesh, Bihar, Chhattisgarh, Jammu and Kashmir,
Jharkhand, Sikkim, Uttarakhand and Uttar Pradesh) and 2 union
territories (viz. Dadra and Nagar Haveli, Lakshadweep). Birth
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registration is around 50-60 percent in other developing
countries. One of the major problems and most primitive
practice in India is early marriage even before the legal age of
18 years. In court cases, children without an official identity
proof are susceptible to judgment as an adult rather than child
or juvenile. Endocrinological problems in youngsters are
evident and that is due to change in lifestyle and eating
habits. Submission of fake documents for team selection of
under-16 and under-19 age groups for various sports events is
also prevalent in countries. Hence in order to overcome all
these liabilities a fast, accurate and fully automatic age
assessment system is required.

The maturity of a bone is measured by investigating the
size, shape and amount of mineralization. Analyzing the
degree of bone growth forms the basis for bone age assessment
[3]. There are several methods available in the literature to
assess bone age. One of them is the TW3 method [4] which is
advantageous because it is not subjective as compared to
Greulich and Pyle method (GP) [5]. The GP method is more
popular due to its simplicity, as it compares a hand radiograph
with few samples from an atlas organized based on the age.
TW3 method is less extensively used due to its complexity, as
this method analyses 13 bones (radius, ulna and short bones)
of the hand to evaluate a score and eventually determine the
growth through a look-up table or chart. But the modular
structure of TW3 method makes it easier to automate. There
are 4 major stages in the automation of BAA procedure: region
of interest (ROI) extraction, segmentation of bones in the RO,
feature extraction and lastly classification based on features
extracted. There have been many efforts in the direction of
segmenting phalanges but very few attempts in segmenting
the radius and ulna bones from hand radiograph. To develop a
fairly accurate BAA system, we need to analyze all 13 bones. In
this paper, we focus on extraction of the region below the
carpal bones (wrist bones) called radius-ulna region of interest
(RUROI) and segmentation of radius and ulna bones from that
region.

Most of the work done in the field of ABAA is based on TW2
method [6] which was predecessor to TW3 method. The major
difference between the two methods was that TW2 used a 20
bone score; RUS bones (radius, ulna and short bones) as well as
carpal bones were used to assess the bone age. TW3 method is
updated and more suitable to be used for automated bone age
assessment. It uses a 13 bone score called as RUS score [4].
There have been few attempts made for extraction, pre-
processing and segmentation of radius and ulna bones.
Notable work was done by Pietka et al. [7,8] in extraction of
Epiphysis-Metaphysis region of interest (EMROI). Chai et al.
have worked on segmentation [9] and pre-processing [10] for
BAA. Authors performed segmentation of the bones with a
modified k-means algorithm. For pre-processing step they
proposed a histogram equalization technique which uses
multi-objective optimization technique for histogram equali-
zation.

The two most important bones in the RUS score that were
often neglected by the researchers are radius and ulna. Tristan
and Arribas [11] developed an end-to-end system focussing on
radius and ulna bones. It used modified k-means algorithm for
segmentation. As a further attempt, a detailed methodology
was described, but it also did not cover all the stages of TW3

[12], but in this paper accuracy and performance of the neural
network was analyzed. Han et al. [13] used a coarse-to-fine
strategy, where they had used two stages of segmentation.
Coarse segmentation was done by using watershed transform.
The finer stage involved active contour model (ACM) with
gradient vector flow (GVF) snakes method. Liu et al. [14] used
particle swarm optimization (PSO) in their paper for
matching templates of various edges from the edge set that
was created earlier. Drawback of this paper was that no
result comparison was made with other techniques or using
quality metrics.

Recently Guraksin et al. [15] have worked on morphologi-
cal operators for pre-processing, segmentation and feature
extraction. In this paper, authors have used support vector
machines (SVM) for classification and their main work was
focused on carpal bones and radius bone only for an age
group of 0-6 years. Giordano et al. [16] designed a complete
automated BAA system. In this system, the pre-processing
stage involved removal of radiological markers, background
removal and rotation of hand if needed. In their further work
the classification was done using Hidden Markov Models
(HMM) [17]. Seok et al. [18] have extracted 17 ROIs altogether
from phalanges and radius, ulna bones and used multi-
layered fuzzy classifiers for classification. Scale Invariant
Feature Transform (SIFT) feature extraction was used for
BAA by Kashif et al. [19] and later the authors proved that
SIFT is better than other feature extraction techniques like
BRISK, FREAK, etc. [20]. But the authors use a semiautomatic
procedure involving Otsu's thresholding as the main
segmentation technique.

Some state-of-the-art segmentation techniques have not
been used for hand bone segmentation. One of the recent
algorithm is Adaptively Regularised Kernel-based Fuzzy C-
means clustering (ARKFCM) [21]. This algorithm is a modified
version of fuzzy C-means algorithm. An adaptive regulariza-
tion parameter is used to enhance segmentation robustness
which adopts the Gaussian radial basis function (GRBF) and
also makes use of weighted image for better accuracy. We have
done a detailed study on evolutionary and non-evolutionary
segmentation techniques on hand radiographs in our previous
paper [22]. This work involved applying segmentation tech-
nique to the whole hand radiograph and not targeted to any
particular region. There is still a need for improvisation in BAA
system, hence RUROI extraction method and edge-based
segmentation technique is proposed.

In this paper, we focus on radius and ulna bone region
extraction and segmentation. The main contributions of this
research paper are summarized as follows:

1. We have developed a fully automated RUROI extraction
method for hand radiographs. This method is quite simple
as we use simple morphological tools instead of complex
mathematical steps.

2. We have proposed a fully automated segmentation
technique for the segmentation of extracted ROI of radius
and ulna bones. Proposed technique is based on morpho-
logical tools, active contours, level set concept and post
processing.

3. Experiments have been undertaken to demonstrate the
robustness of the proposed segmentation technique



BIOCYBERNETICS AND BIOMEDICAL ENGINEERING 37 (2017) 718-732 720

in comparison to other state-of-the-art techniques from the
specialized literature on publicly available image database.

This paper is organized as follows: Section 2 describes the
steps followed for fully automatic ROI extraction and the edge-
based segmentation technique for radius and ulna bones. In
Section 3, the details of image database and the quality metrics
used are described. In Section 4 we discuss the segmentation
results rated by medical experts. Also in the same section a
comparison between proposed segmentation technique and
other state-of-the-art techniques is done with the help of
quality metrics. Section 5 concludes the work.

2. Proposed fully automatic RUROI extraction
and edge-based segmentation technique

This section presents detailed mathematical analysis of
proposed RUROI extraction and edge-based segmentation
technique. In the first phase we propose a fully automated ROI
extraction of radius and ulna bones from hand radiographs. In
the second phase we propose an improved edge-based
segmentation technique for extracted ROI of radius and ulna
bones. The block diagram of the whole procedure is given in
Fig. 1, with the individual blocks described.

2.1.  Automated radius-ulna ROI (RUROI) extraction

Morphological operators [23] are used for extraction of RUROI
along with some basic mathematical operations. The RUROI
extraction procedure and the steps are as follows:

1. The input hand radiograph R is subjected to Gaussian
filtering for noise removal [24].

2. Multi-level Otsu thresholding to get the boundary of hand
[25]. The output image of this step is referred as I.

3. Morphological erosion to smoothen the boundary of hand.
The morphological erosion operation on an input image I by
structuring element S is given by equation:

I6S=x:S:CI 1)

where C denotes subset. I © S is made up of all the points x
for which the translation of S by x fits in I [23]. The output
image of this step is J.

4. Unnecessary objects present in the binary image are
removed with the help of edge-off function and area
opening function. The edge-off function discards any object
connected to borders of the image. Area open filter removes
an object from the image if its size is less than some value ¢.

Jo(¢), = | JP, area(P) > ¢ 2

where ] is the input image and P is the area of n-connected
component [23].

RUROI

Edge-based

5. Find the mean of all columns of the binary image. Use the
column with maximum value as a reference line for finding
the vertical borders of the ROI.

6. With the help of reference column from previous step
which divides the hand into two parts, find the first non-
zero values from the left and right borders of hand
radiograph. These non-zero values form the left and right
borders of RUROL

7. To find the top horizontal border of RUROI, we find the mean
values along the rows and choose a border line of RUROI
based on the information extracted.

8. Use the above properties to crop a rectangular region
containing the bones radius and ulna. Let the output image
of this stage be X.

As mentioned above in pre-processing step, Gaussian low
pass filtering was used for noise removal where filter size is
kept 3 x 3 and the value of o was set to 5 [24]. The hand
radiographs were not resized before applying the proposed
technique. Matlab functions used are multithresh and SDC
toolbox function mmthreshad for this operation [23]. The binary
image obtained after thresholding is further smoothened
using erosion function mmero as given in Eq. (1) and structuring
element used here was cross with size 2. Unwanted objects
present in the image were removed with the help of mmedgeoff
and mmareaopen functions. The borders of RUROI have been
found using simple mathematical logic as explained using
MATLAB functions mean and find.

2.2.  Edge-based segmentation

The RUROI image X can be written in terms of following
equation:

X=bY+n (3)

where b denotes the bias field, Y stands for true image and n

represents additive noise. The true image has been mixed with

bias field and additive noise, which makes it difficult to extract.

We modify the image in such a way that edges and other

features are enhanced. This is achieved by three steps:

1. Use alternating sequential filtering to diffuse the image
with less effect on the edges and curves [23]. We have used
close-open filter with m =3:

FI) = (((((XeS)0S)#25)02S). . .emS)omS (4)

where m is number of times structuring element S is applied
to the image X.

2. Take morphological gradient of negative image of resulting
filtered image.

K = (~F®S)—(~FeS) (5)

where ~F is compliment of image F, ¢ and © are dilation and
erosion operators respectively.

O(xy)

Post -

Hand Extraction Segmentation processing Segmented
Radiograph output
image

Fig. 1 - Block diagram of the proposed fully automatic RUROI extraction and segmentation of radius and ulna bones.
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3. Add this image K to the original image X to get edge-
enhanced image A.

The true image Y is the representation of physical features
of hand. Hence it is safe to assume that Y is approximately
piecewise constant. The image A is a function A:Q —R
defined on the continuous domain ). We assume that the bias
field is smoothly varying. The true image Y can be divided into
N different regions Q= uUN,Q with each region taking
a constant value vq,Vs,...,Un.

Assume c as the center point of a circular area which has
radius r. We can say that V. =x: |x — | < 1, where c belongs to
Q. We divide this region Q into N different regions QF, [26].
From modeled expression for hand radiograph, i.e. Eq. (3) and
the above said formulation we can write new equation as:
A(x) =Db(x)v; + n(x) where xe V. N Q (6)

The above equation is similar to k-means clustering [27]
and can be written in continuous energy equation as:

E= / | 1A )

where g; is the cluster center of the ith cluster and u; is the
membership function of region ;. We can safely assume that
a;~b(x)v; and defined in the region V.. The membership func-
tion will have a value 1 in this region and zero outside, hence
we can write it as:

E(b,v) — / 16 -bxu” dx ()

Using the Chan and Vese (CV) model [28], now level set func-
tion can be used to minimize the energy function. Level Set
Methods are one of the many numerical techniques designed
to track the evolution of interfaces. Level set function focuses
on moving boundaries by exploiting a strong link between
moving interfaces and equations from computational fluid
equations [29,30]. The CV model equation is given by following
equation.

QU1 v2) = [olAX)-bX)v1* H(p(x))dx

[l -bE)V > (1-H($(x))) dx ©)

""st)‘VH((P(X))‘ dx
where ¢ is the level set function and H is the Heaviside
function. The Heaviside function is a discontinuous function
which is zero for all negative arguments and one for all positive
arguments. The first two terms in Eq. (9) are data fitting terms,
whereas the last term regularizes the zero level contour [29].
The level set function performs division of the image into two
parts Q; =x:4(x) <0 and Q, =x: ¢(x) > 0. Hence the segmen-
tation of radius and ulna bones is fulfilled by finding param-
eters like level set function ¢ and the constants v, and v, that
minimize the energy function.

We define us(¢) =H(¢) and u,(¢) =1 — H(¢) to divide the
image into object and background, where u; represents
membership function for the regions ;. This revises the
energy function and now it can be defined as:

N
E0v.0) = [ D IAG)-beov Puo(x) dx (10)
i=1

Now this energy term is used as data term in Eq. (9) and the
equation is rewritten as:

Q(b,v,¢) = E(b,v,¢) + xW(¢) (11)

where x is the weight and W(¢) is the regularization term
which is equal to [q| V H(¢(x))|dx. We minimize Eq. (11) with
respect to variables b, v and ¢ to segment the bones from
RUROL The minimization is achieved by performing iterations,
where in each iteration we fix any two variables and minimize
Eq. (11) with respect to the third variable, the steps are:

1. Energy minimization with respect to ¢: For fixed values of v
and b the minimization of Q(b, v, ¢) can be achieved by using
gradient descent method.

a9 _ @

At a2
By using calculus of variations we have:

b (V)

= —a0)ar-a) + v 5 ) (13)

where g; = f\A(x)—b(x)ui\2 dxandi=1,2.

2. Energy minimization with respect to v: For fixed values of ¢
and b, the optimized value of v can be denoted as:

vl = w where i=1,2 (14)

JO ui(@(x)) dx

3. Energy minimization with respect to b: For fixed values of ¢

and v, the optimized value of b can be denoted as:
_ AX)[(1u($(x))) + (Vo ($(X)))]
Y= (2 000) + (B 6(0))] )

Implementation details of edge-based segmentation are
described here. Function mmasfrec was used for alternate
sequential filtering of image. Close-open-close filtering was
done as value of m chosen was 3. Structuring element used was
disk with size 1. Further mmgradm function was used to get the
gradient. Structuring element used for this function was disk
with size 2. Level set contour has been initialized randomly on
the image as contours initialized in a shape of box or circle get
trapped in some regions. Smoothed version of Heaviside
function [29] is used for implementation purposes which
is defined in Eq. (16):

H,(x) = % {1 + % arctan (%)} (16)

where v =1 as done in [28]. The value of x, weight of regulari-
zation term in Eq. (11) is set to any smaller value or it is made
equal to the standard deviation of the extracted ROI image.
The number of iterations is set to 100.

2.3.  Post-processing

The importance of this stage lies in the fact that extracting
accurate information from the segmented bones will help in
further stages of BAA system. The level set contours initialized
to track the bone edges may not behave in the required way.
This may be due to couple of reasons. Cancellous bone may get
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tracked by the contour besides cortical bone. Cortical bone or
compact bone comprises of the exterior part of bone where as
cancellous bone is the internal bone region. Also intensity
inhomogeneity and overlapping pixels between the soft tissue
region and bone results in it getting identified as an object of
interest. In some cases irregularities may be developed in the
level set function during its evolution [26]. These errors are
mitigated by using morphological operators. The post proces-
sing steps which give the final segmented output image O(x, y)
are as follows:

1. Image filling function along with erosion and dilation
operations. The dilation of binary image Q by structuring
element S is given by [23]:

Qs = (Qes’) (17)

The dilation of Q by S is done by rotating S around origin to
getS and then Q' which is a complement of Q is eroded by S .

2. Area opening function as given in Eq. (2) along with erosion
operation given in Eq. (1) and dilation operations mentioned
in Eq. (17).

3. Edge off function to remove any unnecessary objects and
carpal bones present at the edge of image.

The functions such as image filling function imfill and
dialtion operation mmdil are used for post processing. Area-
opening function mmareaopen and edge-off function mmedgeoff
are used to remove carpal bones and other vestigial parts
present in the ROL

The step by step workflow of the proposed automatic RUROI
extraction and segmentation technique is shown in Fig. 2.

2.4.  Illustration of the proposed technique

The proposed technique is divided into 2 major stages as
discussed earlier which are RUROI extraction and edge-based
segmentation. The latter stage can be further sub-divided into
edge-enhancement, segmentation and post-processing
stages. Quantitative results of each stage have been evaluated
using the quality metrics (QM) like peak signal-to-noise ratio
(PSNR), mean square error (MSE), structure similarity index
(SSIM) [22] which are given in Table 1. Please note that the
edge-enhanced image is compared with RUROI image and the
output image of other two stages are compared with ground
truth image for calculating PSNR, MSE and SSIM. Output
images of each stage is given in Figs. 3-5 respectively. After

Hand
Radiograph

Noise Removal

[Extractlng Boundary of hand]

Vestigial object removal

RUROI Extraction ]
Edge - Enhancement ]

Energy minimization ]

[
[
[
[ Lol set contour
[
[

Post-processing ]

Segmented
Image

Fig. 2 - Workflow of the proposed fully automatic RUROI
extraction and segmentation of radius and ulna bones.

edge-enhancement stage, we have achieved clear demarka-
tion of edges which is apparent in Figs. 3-5. Fig. 3 shows the
implementation of proposed technique on hand radiograph of
1 year old child. The smaller bone is ulna and the larger is
radius. The small bone above radius is called epiphysis which
will fuse with metaphysis of radius as the child grows.
Metaphysis is the head portion of any bone. These bones are a
part of analysis for BAA [3,4]. Similarly for hand radiograph of
7 year old, the output images are presented in Fig. 4. A part of
carpal bone is present in RUROI, which has been removed after
post-processing. We can see in Fig. 4 the epiphsis has grown in
size and will later fuse with radius bone. In Fig. 5, we have

Table 1 - Performance results after each stage of the proposed technique

Image QM Edge-enhancement Segmentation Post-processing
1 year [5173.jpg] PSNR 33.109 46.471 65.891
MSE 31.781 1.466 0.017
SSIM 0.967 0.847 0.999
7 years [5154.jpg] PSNR 32.150 47.430 65.172
MSE 39.635 1.175 0.020
SSIM 0.960 0.881 0.999
18 years [6145.jpg] PSNR 30.751 45.941 68.753
MSE 54.702 1.656 0.009
SSIM 0.956 0.830 0.999
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(a)Original Image

(b)RUROI Image

(¢c)Edge-Enhancement

(d)Segmentation

(e)Post-processing

(f)Ground Truth

Fig. 3 — Output images from each stage of the proposed technique on hand radiograph of 1 year old [5173.jpg].

(a)Original Image

(d)Segmentation

(b)RUROI Image

4114

e)Post-processing

(c)Edge-Enhancement

f)Ground Truth

Fig. 4 — Output images from each stage of the proposed technique on hand radiograph of 7 year old [5154.jpg].

presented the output images of hand radiograph of 18 year old
person at each stage of proposed technique.

3. Materials and methods

We have compared the proposed segmentation technique
with popular and widely used segmentation techniques such
as k-means clustering technique (M1) [31], adaptive clustering
technique based on k-means and Gibb's random fields (KGRF)
(M2) [32], PSO based segmentation technique (M3) [33], DPSO
based segmentation technique (M4) [34], and Adaptively
Regularised Kernel-based Fuzzy C-means clustering (ARKFCM)
technique (M5) [21]. These techniques have been implemented
on digital hand radiographs within an age group of 0-18 years.
Table 2 shows the parameters used for these segmentation
techniques and their values. The first three techniques namely

M1, M2 and M3 have been used in the field of hand bone
segmentation earlier [8,11,14]. DPSO is a popular optimization
technique which has been explored in this paper. ARKFCM is a
recent algorithm which has also been included for compari-
son. More details about the techniques used for comparison
can be obtained from the respective papers mentioned above.
Specifications of the system from which results were
obtained are: Intel i7 processor with clock speed of 3.6 GHz and
8 GB RAM. MATLAB 2015a was used for implementing the
RUROI extraction and all the segmentation techniques.

3.1. Image database

The database of digital hand radiographs [35] is freely available
for research purposes on an online website, http://www.ipilab.
org/BAAweb/. We have downloaded the database from this
website in which the images were collected from Children's
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(a)Original Image

(b)RUROI Image

i |

(c)Edge-Enhancement

(d)Segmentation

(e)Post-processing

(f)Ground Truth

Fig. 5 — Output images from each stage of the proposed technique on hand radiograph of 18 year old [6145.jpg].

Table 2 - Parameters used for compared segmentation techniques and their values.

Parameters M1 M2 M3 M4 M5 PT
Number of clusters 3 3 3 3 3

Number of iterations 30 150 150 100
Clique potential 0.5

Local filtering Median Gaussian
Local window size 3 3
Population 150 30

Inertial weight 1.2 1.2

Weight 1 0.8 0.8

Weight 2 0.8 0.8

Min velocity =5 -15

Max velocity 5 1.5

Lower bound of position 1 1

Upper bound of position 256 256

Stagnancy 10

Time step 0.1
Heaviside weight 1

Hospital Los Angeles, USA. This database contains 1371 hand
radiograph images which can be further divided into 696
images of males and 675 images of females. This database is
also categorized based on races, Asian, Black, Caucasian and
Hispanic. It contains hand radiographs of infants to that of 18
years old person. We also prepared a database of ground truth
images with the help of medical experts from Goa Medical
College (GMC), Bambolim, Goa, India and used it for result
comparison.

3.2.  Quality metrics

We have presented implementation results acquired from 50
images in Section 4. Performance evaluation of segmentation
resultis done using standard quality metrics like SSIM, Jaccard
Similarity Index (JSI), Dice, Accuracy, Geometric Mean (GM)
and Matthews Correlation Coefficient (MCC). [22,36]

4, Results and discussion

This section presents experimental results of RUROI extraction
and different segmentation techniques including proposed

technique on digital hand radiographs. In the simulation, 50
hand radiographs have been considered for experimentation
[35]. The results of 19 images, one for each age, have been
presented in the following subsection.

4.1. RUROI extraction results

RUROI is extracted according to the recommendations given in
literature [4]. To calculate the RUS score we need radius and
ulna bones along with its epiphyseal plate. RUROI images
extracted from the digital hand radiographs are shown in
Fig. 6. Some of the carpal bones (wrist bones) will be present in
the RUROI owing to the close proximity of these bones toward
radius and ulna bones. The sizes of RUROI's will be different for
each image owing to fact that the extraction technique fits
around radius and ulna bones region.

4.2. Performance evaluation

The performance comparison using different quality metrics
are presented in Tables 3 and 4 and they provide valuable
information about the quality of segmentation performed.
The quantitative results comparison between various
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under 1 1 year 2 years 3 years 4 years
|
J
5 years 6 years 7 years 8 years 9 years
10 years 11 years 12 years 13 years 14 years
15 years 16 years 17 years 18 years

Fig. 6 - RUROI images extracted from digital hand radiographs.

Table 3 - Performance comparison between different segmentation techniques on RUROI based of various quality metrics.

Image QM M1 M2 M3 M4 M5 PT

Under 1 year [5605jpg] SSIM 0.965 0.984 0.985 0.985 0.984 0.996
Jst 0.596 0.716 0.706 0.706 0.703 0.941

DICE 0.747 0.834 0.828 0.828 0.826 0.970

ACC 0.798 0.858 0.853 0.853 0.852 0.971

GM 0.837 0.855 0.853 0.853 0.846 0.971

MCC 0.638 0.710 0.701 0.701 0.697 0.942

1 year [5173.jpg] SSIM 0.980 0.981 0.981 0.983 0.965 0.999
Jst 0.688 0.695 0.685 0.695 0.570 0.956

DICE 0.815 0.820 0.813 0.820 0.726 0.977

ACC 0.844 0.847 0.843 0.848 0.785 0.978

GM 0.827 0.865 0.862 0.864 0.782 0.978

MCC 0.610 0.711 0.704 0.710 0.472 0.956

2 years [5234.jpg] SSIM 0.967 0.980 0.980 0.981 0.985 0.998
JSI 0.629 0.702 0.702 0.704 0.717 0.948

DICE 0.772 0.825 0.825 0.826 0.835 0.973

ACC 0.814 0.851 0.851 0.852 0.858 0.974

GM 0.848 0.858 0.861 0.860 0.850 0.974

MCC 0.667 0.704 0.707 0.706 0.717 0.948

3 years [6102.jpg] SSIM 0.986 0.986 0.986 0.987 0.960 0.999
Jst 0.728 0.745 0.742 0.744 0.570 0.960

DIGE 0.843 0.854 0.852 0.853 0.726 0.980

ACC 0.864 0.872 0.871 0.872 0.785 0.980

GM 0.832 0.867 0.871 0.871 0.862 0.984

MCC 0.623 0.743 0.738 0.738 0.740 0.969

4 years [5095.jpg] SSIM 00.986 0.984 0.986 0.986 0.965 0.998
Jst 0.753 0.709 0.732 0.732 0.628 0.948

DICE 0.859 0.829 0.845 0.845 0.772 0.973

ACC 0.877 0.854 0.866 0.866 0.814 0.974

GM 0.868 0.842 0.856 0.856 0.851 0.975

MCC 0.766 0.731 0.746 0.746 0.671 0.949
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Table 3 (Continued)

Image QM M1 M2 M3 M4 M5 PT
5 years [7143.jpg] SSIM 0.988 0.987 0.988 0.987 0.983 0.998
Jst 0.754 0.747 0.755 0.739 0.677 0.950
DICE 0.860 0.855 0.861 0.850 0.808 0.974
ACC 0.877 0.873 0.878 0.870 0.839 0.975
GM 0.879 0.864 0.870 0.860 0.823 0.981
MCC 0.766 0.760 0.764 0.753 0.708 0.963
6 years [5134.jpg] SSIM 0.981 0.989 0.989 0.990 0.989 0.989
JsI 0.717 0.773 0.770 0.771 0.765 0.765
DICE 0.835 0.872 0.870 0.870 0.867 0.867
ACC 0.859 0.887 0.885 0.885 0.883 0.883
GM 0.872 0.883 0.883 0.882 0.876 0.876
MCC 0.728 0.771 0.767 0.768 0.768 0.768
7 years [5154.jpg] SSIM 0.982 0.980 0.982 0.982 0.978 0.999
JsI 0.735 0.715 0723 0.715 0.677 0.964
DICE 0.847 0.834 0.839 0.834 0.808 0.982
ACC 0.868 0.858 0.861 0.857 0.839 0.982
GM 0.854 0.847 0.853 0.853 0.835 0.979
MCC 0.681 0.721 0.724 0.724 0.707 0.959
8 years [5054.jpg] SSIM 0.984 0.982 0.985 0.985 0.981 0.998
JsI 0.726 0.688 0.720 0.721 0.663 0.943
DICE 0.841 0.815 0.837 0.838 0.798 0.971
ACC 0.863 0.844 0.860 0.861 0.832 0.972
GM 0.854 0.830 0.854 0.853 0.815 0.972
MCC 0.731 0.708 0.716 0.720 0.691 0.943
9 years [7161.jpg] SSIM 0.983 0.982 0.983 0.983 0.983 0.998
JSI 0.707 0.710 0.714 0.714 0.687 0.945
DICE 0.828 0.830 0.833 0.833 0.815 0.972
ACC 0.853 0.855 0.857 0.857 0.844 0.972
GM 0.845 0.850 0.855 0.853 0.831 0.972
MCC 0.704 0.704 0.708 0.709 0.697 0.945

The bold values indicate the best result obtained among all.

Table 4 - Performance comparison between different segmentation techniques on RUROI based of various quality metrics.

Image QM M1 M2 M3 M4 M5 PT
10 years [7076.jpg] SSIM 0.976 0.983 0.983 0.983 0.971 0.999
JsI 0.673 0.723 0.718 0.718 0.644 0.963
DICE 0.805 0.839 0.836 0.836 0.784 0.981
ACC 0.837 0.861 0.859 0.859 0.822 0.981
GM 0.850 0.862 0.863 0.862 0.834 0.980
MCC 0.675 0.719 0.717 0.717 0.684 0.962
11 years [5506.jpg] SSIM 0.976 0.971 0.974 0.973 0.970 0.998
JsI 0.712 0.614 0.641 0.629 0.592 0.960
DICE 0.832 0.760 0.781 0.772 0.744 0.979
ACC 0.856 0.807 0.820 0.814 0.79 0.980
GM 0.855 0.785 0.803 0.795 0.771 0.980
MCC 0.706 0.624 0.645 0.637 0.615 0.960
12 years [5322.jpg] SSIM 0.974 0.969 0.973 0.972 0.970 0.998
Jst 0.648 0.580 0.620 0.607 0.589 0.942
DICE 0.786 0.734 0.765 0.756 0.741 0.970
ACC 0.824 0.790 0.810 0.804 0.795 0.971
GM 0.780 0.775 0.802 0.794 0.791 0.969
MCC 0.571 0.562 0.606 0.592 0.587 0.941
13 years [5213.jpg] SSIM 0.976 0.973 0.974 0.974 0.973 0.997
Jst 0.707 0.669 0.686 0.686 0.668 0.950
DICE 0.828 0.802 0.814 0.814 0.801 0.974
ACC 0.853 0.834 0.843 0.843 0.834 0.975
GM 0.851 0.827 0.837 0.837 0.826 0.975

MCC 0.700 0.660 0.678 0.678 0.659 0.950
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Table 4 (Continued)

Image QM M1 M2 M3 M4 M5 PT
14 years [5237.jpg] SSIM 0.968 0.968 0.970 0.970 0.963 0.997
JsI 0.568 0.563 0.594 0.585 0.616 0.930
DICE 0.724 0.721 0.745 0.738 0.762 0.964
ACC 0.784 0.782 0.797 0.793 0.808 0.965
GM 0.802 0.761 0.784 0.784 0.759 0.954
MCC 0.603 0.547 0.577 0.577 0.546 0.914
15 years [4340.jpg] SSIM 0.973 0.971 0.975 0.974 0.971 0.998
JsI 0.682 0.655 0.693 0.689 0.645 0.957
DICE 0.811 0.791 0.819 0.816 0.784 0.978
ACC 0.841 0.827 0.847 0.844 0.822 0.978
GM 0.845 0.827 0.854 0.850 0.820 0.978
MCC 0.679 0.646 0.694 0.688 0.634 0.957
16 years [5257.jpg] SSIM 0.964 0.963 0.964 0.964 0.963 0.998
JSI 0.570 0.550 0.557 0.551 0.535 0.958
DICE 0.726 0.710 0.716 0.710 0.697 0.978
ACC 0.785 0.775 0.779 0.775 0.767 0.979
GM 0.781 0.756 0.762 0.762 0.758 0.959
MCC 0.562 0.528 0.535 0.535 0.530 0.922
17 years [5920.jpg] SSIM 0.970 0.970 0.973 0.972 0.970 0.998
JSI 0.669 0.635 0.657 0.646 0.622 0.964
DIGE 0.801 0.776 0.793 0.785 0.767 0.982
ACC 0.834 0.817 0.828 0.823 0.811 0.982
GM 0.852 0.812 0.828 0.820 0.803 0.982
MCC 0.683 0.622 0.648 0.635 0.608 0.964
18 years [6145.jpg] SSIM 0.963 0.965 0.963 0.963 0.964 0.999
JSI 0.544 0.546 0.543 0.543 0.546 0.976
DICE 0.704 0.707 0.704 0.704 0.706 0.988
ACC 0.772 0.773 0.771 0.772 0.773 0.988
GM 0.815 0.811 0.817 0.817 0.815 0.983
MCC 0.587 0.581 0.591 0.590 0.587 0.966

The bold values indicate the best result obtained among all.

segmentation techniques is given in Tables 3 and 4. Box-plot The box in box-plot denotes interquartile range (IQR) and
has been used to compare all the segmentation techniques whiskers which are denoted by line with breaks define the
with respect to various quality metrics and has been shown in range. Median is denoted by a line in the IQR and the crosshair
Fig. 7 wherein the sample size is 50 (number of images). mark indicates outliers. Table 5 shows the statistical values

Table 5 - Statistical values of various quality metrics against segmentation techniques.

QM Statistic M1 M2 M3 M4 M5 PT
SSIM MIN 0.956 0.953 0.959 0.959 0.954 0.996
MAX 0.989 0.992 0.992 0.993 0.995 0.999
MEAN 0.976 0.977 0.979 0.979 0.975 0.998
MEDIAN 0.976 0.979 0.980 0.981 0.974 0.998
SDEV 0.008 0.008 0.008 0.008 0.009 0.001
JSI MIN 0.537 0.477 0.537 0.537 0.473 0.903
MAX 0.806 0.804 0.795 0.797 0.849 0.976
MEAN 0.672 0.669 0.680 0.677 0.642 0.945
MEDIAN 0.679 0.678 0.693 0.688 0.640 0.947
SDEV 0.065 0.069 0.061 0.062 0.073 0.013
DICE MIN 0.699 0.646 0.699 0.699 0.642 0.949
MAX 0.892 0.891 0.886 0.887 0.918 0.988
MEAN 0.802 0.800 0.808 0.806 0.780 0.972
MEDIAN 0.809 0.808 0.819 0.815 0.781 0.973
SDEV 0.047 0.051 0.044 0.045 0.054 0.007
ACC MIN 0.769 0.739 0.769 0.769 0.736 0.951
MAX 0.903 0.902 0.897 0.899 0.925 0.988
MEAN 0.836 0.834 0.840 0.838 0.821 0.973
MEDIAN 0.839 0.839 0.847 0.844 0.820 0.973

SDEV 0.032 0.034 0.031 0.031 0.037 0.006
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Table 5 (Continued)

QM Statistic M1 M2 M3 M4 M5 PT

GM MIN 0.766 0.704 0.750 0.750 0.700 0.954
MAX 0.899 0.904 0.898 0.899 0.922 0.984
MEAN 0.837 0.829 0.838 0.836 0.816 0.972
MEDIAN 0.839 0.837 0.847 0.844 0.822 0.973
SDEV 0.030 0.039 0.033 0.033 0.041 0.007

McC MIN 0.552 0.447 0.511 0.511 0.442 0.906
MAX 0.806 0.804 0.793 0.795 0.850 0.969
MEAN 0.672 0.668 0.677 0.675 0.649 0.945
MEDIAN 0.680 0.683 0.691 0.684 0.659 0.945
SDEV 0.062 0.075 0.065 0.066 0.081 0.013

such as minimum (MIN), maximum (MAX), mean, median and 4.3. Segmentation accuracy

standard deviation (SDEV) of various quality metrics against
segmentation techniques.

The qualitative results of proposed segmentation tech-
nique (PT) and other state-of-the-art techniques are given in
Figs. 8 and 9 for ages 0-18 years old respectively. The ground
truth images have also been shown in the figures.
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The ratings given by different medical experts for the results of
proposed segmentation technique are mentioned in Table 6.
Medical experts who analyzed the results are physicians,
orthopedicians and pediatricians. These ratings used for
denoting segmentation accuracy of proposed technique are
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Fig. 7 - Boxplots of segmentation techniques against various quality metrics.
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Fig. 9 - Segmentation results of different techniques on RUROI of different ages.

given after assessment by same medical experts who created
the ground truth images for hand radiographs. The ratings are
given between values 1-5 with value 1 being very poor, it
means that segmentation technique has completely failed to
delineate bones. If the value awarded is 2, it means that the
bones are delineated but not completely. The value 3 is for an
average result wherein bones are delineated but some
blemishes still persist. If the result is good value 4 gets
awarded and 5 is given when excellent result achieved, where

there is seemingly no difference between the ground truth and
result obtained. In Table 6, average value of ratings is
calculated for each year given by a particular expert and then
overall average of 4 experts is mentioned in final column.

4.4. Discussion

From Section 4.2, it is clear that SSIM, JSI, Dice, Accuracy,
GM and MCC provide indispensable information regarding
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Table 6 - Ratings given by medical experts to the segmentation results of RUROI for our proposed technique.

Age (years) Expert-1 Expert-2 Expert-3 Expert-4 Overall average
0 4 4 4 4 4

1 4 5 5 5 4.75
2 5 5 5 5 5

3 5 5 5 5 5

4 4 4.5 4.5 4 4.25
5 4 4 4 4 4

6 4 5 5 5 4.75
7 5 5 5 5 5

8 8 85 85 4 B
9 5 5 5 5 5

10 4 4.5 4.5 4 4.25
12 4 4 4.5 4.5 4.25
13 4.5 4.5 5 5 4.75
14 4 4 4.5 45 4.25
15 5 5 5 5 5

16 45 5 5 45 Vs
17 5 5 5 5 5

18 5 5 5 5 5

the precision of segmented output from the various seg-
mentation techniques used for comparison. From the box-
plot in Fig. 7 we can clearly see that proposed segmentation
technique (PT) has very less variation as compared to other
techniques. It also achieves a higher segmentation accuracy
among all the techniques compared, with respect to all quality
metric values. SSIM values of all techniques are above 0.95 but
proposed technique has value of almost 1 as shown in Fig. 7(a).
The box-plot of JSI shows that k-means, KGRF, PSO and DPSO
have similar ranges shown in Fig. 7(b), also the proposed
technique takes the value around 0.9. The box-plot of Dice is
similar to that one of JSI shown in Fig. 7(c), the value obtained
by PT is more than 0.95 and super-seeds other state-of-the-art
techniques. Similarly in other box-plots i.e. Fig. 7(d), (e) and (f)
PT has higher quality metric values ACC, GM and MCC
respectively approximately around 0.95. From the segmented
image results of proposed segmentation technique we can see
that bones are clearly delineated and it has outperformed
other state-of-the-art segmentation techniques. Figs. 8 and 9
along with the segmentation results in Tables 3 and 4 clearly
show that the proposed technique gives best results among all
other state-of-the-art techniques. The mean and standard
deviation statistics of various quality metrics tabulated in
Table 5 using the results obtained from 50 images, indicate
that performance of proposed technique is best among
compared segmentation techniques. The ratings given by
medical experts presented in Table 6 are high, except for
results of 8 year old hand radiographs, which is slightly less as
the radiographs had high intensity inhomogeneity. But the
ratings further strengthen the claim that proposed technique
has given very good segmentation results.

5. Conclusion

The proposed technique and other existing segmentation
techniques have been implemented and tested successfully on
the publicly available database of an age group between 0-18
years. The techniques were implemented on a wide range
of radiographs which included under-exposed as well as

over-exposed images. An approximate segmentation accuracy
of 98 percent is achieved by the proposed technique. The
average values of various quality metrics used like SSIM, JSI,
Dice, ACC, GM and MCC are 0.998, 0.945, 0.972, 0.973,0.972 and
0.945 respectively. It is also worth mentioning that the
automated RUROI extraction stage is completely independent
of hand placement.

The segmentation results of proposed technique have been
validated by various medical experts of the field. Mean of
ratings given by all the medical experts for segmentation
results are above the average value i.e. 3.5. Experimental
results indicated that the proposed segmentation technique
provides better results as compared to other existing state-of-
the-art techniques. Prime advantage of proposed technique is
effectiveness and robust nature as it can be applied to over as
well as under-exposed images. We can still further improve
the accuracy and also study its application to carpal bones.
Nevertheless the proposed techniques can be successfully
applied to hand radiographs and along with results from
phalangeal segmentation we can successfully determine the
age of a person. The work presented in this paper is among one
of the very few papers in the domain of radius and ulna bones
segmentation.

The impact of this work will be visible in birth registration,
judgment of juvenile court cases and under-16, under-19
sports events. The future work in the procedure of automated
bone age assessment is extraction of features and classifica-
tion of the same. The number of features extracted and its
importance in estimating the age plays a major role in the
ABAA procedure. After completion of the whole work it will
give an accurate estimation of age.
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