Highly efficient catalytic reductive degradation of various organic dyes by Au/CeO₂-TiO₂ nano-hybrid

PRANJAL SAIKIAa,∗, ABU T MIAHa and PARTHA P DASb
aDepartment of Applied Sciences (Chemical Science Division), GUIST, Gauhati University, Guwahati 781 014, Assam, India
bDepartment of Physics, NIT Karnataka, Surathkal, Mangalore 575 025, Karnataka, India
Email: psjorhat@gmail.com; pranjalsaikia@gauhati.ac.in

MS received 27 August 2016; revised 1 November 2016; accepted 1 November 2016

Abstract. Highly improved catalytic reductive degradation of different organic dyes, in the presence of excess NaBH₄ over Au/CeO₂-TiO₂ nano-hybrid as the catalyst is reported in this study. CeO₂-TiO₂ nanocomposite was prepared by a facile co-precipitation method using ultra-high dilute aqueous solutions. Small amount of Au (only 1 wt%) was loaded onto the nanocomposite material by deposition-precipitation with urea (DPU) method to fabricate the ternary Au/CeO₂-TiO₂ nano-hybrid. The catalysts were characterized by the representative techniques like XRD, BET surface area, ICP-AES, UV-Vis diffuse reflectance spectroscopy, TEM and XPS. The Au/CeO₂-TiO₂ nano-hybrid along with NaBH₄ exhibited remarkable catalytic activities towards all the probed dyes, namely Methylene Blue, Methyl Orange, Congo Red, Rhodamine B and Malachite Green, with a degradation efficiency of ∼100% in a short reaction time. The degradation reaction followed pseudo-first-order kinetics with respect to the concentration of the dye. Different parameters that affect the rate of the reaction are discussed. A plausible mechanism for methylene blue degradation has also been proposed.

Keywords. Nanocomposite; gold nanoparticles; Au/CeO₂-TiO₂; organic dye; catalytic reduction; nano-hybrid.

1. Introduction

Synthetic organic dyes and pigments discharged from various industries are responsible for causing substantial environmental pollution as they cannot be degraded by conventional water treatment processes due to their complex aromatic structures, hydrophilic nature and high stability against light, temperature, water, chemicals, etc.1,2 In this view, degradation of organic dye molecules in waste water has gained paramount attention.1,3 Till date, several techniques such as physical methods (e.g., precipitation, adsorption, and reverse osmosis), chemical methods (e.g., oxidation using O₂, O₃, NaOCl, and H₂O₂ as oxidants and reduction using Na₂S₂O₄), and biological methods (aerobic and anaerobic treatments) have been developed and employed for the treatment of such dye-containing waste water.4 However, due to pricey set up, relentless energy input, low efficiency of dye removal and discharge of massive amount of sludge and toxic intermediates to environment, these techniques lack practical utility.1,5 Though photocatalytic oxidative degradation of organic dyes and pollutants is an effective way, these processes are also slow and inherently energy consuming. On the contrary, catalytic reduction is a relatively fast process. Catalytic reductive degradation of organic dye molecules by metal nano particles (MNP) in the presence of NaBH₄ occurs by an electron transfer process. MNP could make the process kinetically feasible by lowering the activation energy.6,7 In these processes, there may be a large redox potential difference between the electron donor (BH₄⁻ ion) and acceptor (dyes) species, which can hamper relaying of electrons.8–11 Interestingly, MNP are viable enough to reduce the potential difference because of their high Fermi potentials for which they can exhibit excellent dye degradation efficiency.2,6–8 Therefore, design and synthesis of catalytic material possessing suitable redox potential between the electron donor (BH₄⁻ ion) and acceptor (dyes) species, which can hamper relaying of electrons,6–8 is of utmost importance. Among the diverse MNP, the noble metal NPs (e.g., Au, Ag, Pt, and Pd) have been able to gain tremendous importance in catalytic dye degradation because of their good electron relaying capability arising from their appropriate redox potentials.6,8,10–13 Besides, these NPs are practically more effective in degrading most of the dyes in waste water than many of the conventionally used methods.

∗For correspondence
However, nano-sized metal particles are intrinsically unstable and prone to agglomerate to minimize their surface area due to van der Waals forces and high surface energy, which leads to lowering of their catalytic activity. In addition, they cannot be easily isolated from the reaction mixture by simple filtration or centrifugation technique which restricts their large scale applications due to high cost and limited resources. So, use of MNPs directly in waste water treatment faces prohibitive challenges. Various sorts of polymers, complexing agents and surfactants are frequently used to stabilize the metal NPs. However, the prime disadvantage of using such stabilizing agents for devising MNPs is their lower catalytic activity. In addition, the surfactant coated MNPs do not settle down under gravity and hence involve energy and time consuming processes such as centrifugation and filtration for their recovery. As a result, their separation becomes tedious and expensive, which is unfavorable for recycling of catalysts. In order to stabilize the MNPs, lately, they have been anchored onto various solid supports (such as polymer, carbon, metal oxides and so on) to form composite catalysts so that they are fixed in place which reduces the chances of rapid agglomeration and promote the ease of settling down permanently.

Of the various solid oxide materials explored, CeO₂ based oxides have been specially recognized as one of the most effective supporting oxides for stabilizing Au NPs because of the strong metal support interaction (SMSI) effect between them. As a result, these materials promote elevated dispersion and stabilization of the Au NPs delivering more Au atoms to the reactants, thereby enhancing catalytic activity. Nowadays, hybrid nanomaterials are devised which combine the advantages of two or more components to afford desirable properties. Because of this, they are becoming one of the extensively studied materials in chemistry, environmental pollution treatment, biomedical applications and so on. Therefore, in this work, we have paid attention to improve the catalytic activity and stability of Au NPs by combining various components. Accordingly, we have chosen CeO₂-TiO₂ nanocomposite as the supporting material for attaching Au NPs because of its representative features: (a) the particles of CeO₂-TiO₂ nanocomposite possess good structural and thermal stability and hence obstruct sintering tendency of their particles; (b) the Ce³⁺/Ce⁴⁺ redox couple of CeO₂, with its ability to fluctuate between CeO₂ and Ce₂O₃ favors its catalytic activity under oxidizing and reducing environments, respectively; (c) the increased BET surface area upon incorporation of two different oxides assists diffusion of the reactant into the bulk of the catalyst and hence provides fast intra-particle molecular transfer, and (d) incorporation of CeO₂ with TiO₂ increases the amount of surface chemisorbed oxygen species, which can easily capture electrons and yield surface oxygen radicals with excellent reduction capability.

Based on the above cited features, several studies have been performed using CeO₂-TiO₂ nanocomposite as an efficient photocatalyst in the degradation of various organic dyes or in heterogeneous catalysis as noble metal catalyst support. In the previous study, we observed excellent catalytic activity of nanosized, Au-supported CeO₂-based composite in the conversion of 4-nitrophenol to 4-aminophenol. Recently, Sudarsanam et al., studied the CO oxidation reaction catalyzed by Au/Ce-TiO₂. Zhang et al., performed visible light driven selective photoelectrocatalytic aerobic benzyl alcohol oxidation over Au-deposited CeO₂-TiO₂ nanotubes. At this point, it is imperative to mention that the degradation of Methylene Blue (MB) via NaBH₄ with Au-supported ceria-based solid catalysts have not been reported. Especially, much less attention has been devoted on the catalytic degradation of any kind of dye pollutants utilizing Au/CeO₂-TiO₂ composite catalyst materials. Herein, we embedded Au NPs onto the binary CeO₂-TiO₂ with the intention to utilize the beneficial features of both CeO₂-TiO₂ and Au NPs as the latter can promote reduction of dye molecules by relaying electrons in presence of NaBH₄. We avoided the use of any sort of protective agents for embedding Au NPs onto the CeO₂-TiO₂ nanocomposite and adopted deposition-precipitation with urea method because urea is an environmentally friendly precipitant having the capability of producing smaller Au particles. Apart from MB, reduction of other four organic dye pollutants of different characteristics such as methyl orange (MO), congo red (CR), rhodamine B (RhB), and malachite green (MG) were tested for demonstrating the exceptional catalytic efficacy of the nano-hybrid. Kinetic studies were performed to obtain apparent rate constants of the different degradation reactions. Activity parameters (K, min⁻¹ g⁻¹) for all the reactions were also calculated. As far as we are aware, this might be the first study wherein Au NP-decorated CeO₂-TiO₂ nanocomposite is being employed in the catalytic reductive degradation of different organic dyes using NaBH₄ as a reducing agent.

2. Experimental

2.1 Materials

All the chemicals used in this study were of analytical grade and we used them as received. (NH₄)₂Ce(NO₃)₆,
HAuCl₄·3H₂O, MB, MO, CR, RhB, and MG were acquired from Himedia (India). NH₃, NH₂CONH₂, BaSO₄ and NaBH₄ were obtained from Merck. TiCl₄ was purchased from Sigma-Aldrich.

2.2 Methods

2.2a Synthesis of Au/CeO₂-TiO₂ nano-hybrid: The synthesis details were reported previously. In brief, we prepared CeO₂-TiO₂ composite oxide by co-precipitation method using ultra-high dilute aqueous solutions of (NH₄)₂Ce(NO₃)₆ and TiCl₄ with their appropriate amounts (1:1 mole ratio based on their oxides). Dilute NH₃ solution was used as the precipitant (pH = 8.5) in this step. The CeO₂-TiO₂ composite oxide thus formed was further used as the supporting material for deposition of nano-sized Au (1 wt%) particles onto it by conventional deposition-precipitation with urea (DPU) technique. In this case, urea was used as the precipitating material maintaining the ratio of [urea]:[Au] at 100. The final catalyst Au/CeO₂-TiO₂ obtained by this technique was calcined at 400°C for 12 h under air atmosphere.

2.2b Catalyst characterization: The BET surface areas were determined by N₂ physisorption at liquid N₂ temperature on a Micromeritics Gemini 2360 instrument using a thermal conductivity detector (TCD). The powder X-ray diffraction (XRD) patterns were recorded on a Rigaku Multiflex instrument using nickel-filtered CuKα (0.15418 nm) radiation source and a scintillation counter detector. The intensity data were collected over a 2θ range of 10–80°. UV–Vis diffuse reflectance spectra were recorded on a UV–Vis spectrophotometer, Model U-4100 spectrophotometer. The UV-Vis DR spectra were recorded for the solid samples with BaSO₄ as the reference material in the range of 200–800 nm. Transmission electron microscopic (TEM) investigations were made on a JEM-2100 (JEOL) instrument equipped with a slow scan CCD camera. XPS studies were carried out on a V-G Microtech unit ESCA 3000 instrument using nickel-filtered AlKα radiation source and a slow scan CCD camera. The calculated val-

2.2c Evaluation of catalytic activity: We employed the Au/CeO₂-TiO₂ nano-hybrid for investigating reductive degradation of five organic dyes (apart from MB, two anionic and two cationic dyes) by using NaBH₄ as the reducing agent. The reaction was performed at 30 ± 1°C in aqueous medium. The temperature was maintained by circulating cold water around the reaction vessel. The degradation process was monitored with the help of UV-Vis spectrophotometry by recording the decrease of respective absorbance maxima. In a specific reaction procedure, 30 mL of aqueous dye solution was mixed with 2 mL of 0.2 M NaBH₄. Then, certain amount of the nano-hybrid catalyst was added into the above solution and the whole mixture was left for continuous mild stirring. After definite intervals of time, an aliquot of the solution was transferred to a quartz cuvette and its UV-Vis absorbance spectrum was recorded. The extent of dye degradation was calculated using the relation:

\[
\text{Degradation\%} = \left[\frac{(A_0 - A_t)}{A_0} \right] \times 100\%
\]

where, \(A_0\) is the initial absorbance of dye solution and \(A_t\) is the absorbance at different time intervals.

3. Results and Discussion

3.1 Characterization of catalysts

The X-ray diffraction patterns of the synthesized samples are presented in Figure 1. As can be seen, the 2θ positions of the diffraction peaks for the both samples clearly demonstrate the presence of pure CeO₂ crystal phase with cubic fluorite structure (ICDD No. 43-1002). The diffraction peaks seem to be quite broad, suggesting the presence of nano-crystalline CeO₂ particles. Besides, any diffraction peaks pertaining to TiO₂ phases were not detected. This result reveals that TiO₂ is present as the same phase with CeO₂. This again confirms the penetration of Ti atoms into the CeO₂ crystal lattice.

Using the most intense CeO₂ (111) diffraction peak, the average particle size of CeO₂ nano-crystals was calculated with the help of Debye-Scherrer’s equation (see Supplementary Information). The calculated values are 4.7 and 4.9 nm, respectively, for CeO₂-TiO₂ and Au/CeO₂-TiO₂ samples. In the XRD pattern of the Au/CeO₂-TiO₂ sample (Figure 1b) two small peaks could be observed at 2θ = 38.5° and 44.6°, respectively,
Crystallite size of the Au NPs could not be calculated by using the Scherrer’s formula because of low intensity of the Au diffraction peaks and hence TEM measurements were performed for the same. Interestingly, the positions of the diffraction peaks for the Au embedded sample, Au/CeO$_2$-TiO$_2$, were unaltered with respect to those for the standard data of CeO$_2$. However, intensity of the diffraction peaks were reduced a little, which is probably due to the low Au loading or high dispersion of Au species on the CeO$_2$-TiO$_2$ composite oxide surface. The actual Au content in the Au/CeO$_2$-TiO$_2$ sample was found to be 0.923 (in terms of wt% as determined by ICP–AES). Furthermore, specific surface areas of 80 and 75.15 m2/g were obtained for the CeO$_2$-TiO$_2$ and Au/CeO$_2$-TiO$_2$ samples, respectively. The fall in the surface area after gold deposition was attributed to penetration of Au NPs into the pores of the support, thereby narrowing its pore diameter and blocking some of the micropores.19,20

The synthesized samples were analyzed by TEM in order to know their structural morphology. Figure 2 shows the TEM-HRTEM images of the samples. As can be seen in Figure 2a, the interplanar spacing of 0.30 nm corresponds to the (111) plane of cubic fluorite CeO$_2$ particles, which possess an average crystallite size of 5 nm with hemispherical shape. The measured crystallite sizes are satisfactorily in line with those obtained from XRD measurements. Figures 2b and c display the TEM images of Au/CeO$_2$-TiO$_2$ nano-hybrid. It is imperative to mention here that the detection of Au particles is hardly discernible from TEM images of CeO$_2$-based nano Au catalysts due to the poor contrast between CeO$_2$ and Au particles.33,37 In this case, a closer inspection could make the Au particles noticeable as nearly spherical shaped dark contrasted zones (Figure 2c). Apart from this, the HRTEM image could make the Au particles more clearly distinct because the lattice spacing of 0.19 nm for (200) plane of Au particles differ from that of CeO$_2$ (Inset of Figure 2c). The Au particles possess good dispersion onto the surface of CeO$_2$-TiO$_2$ with almost regular size of ~4 nm.

Figure 2. HRTEM image of CeO$_2$-TiO$_2$ nanocomposite (a), and TEM images of Au/CeO$_2$-TiO$_2$ nano-hybrid (b) and (c). SAED patterns of CeO$_2$-TiO$_2$, and Au/CeO$_2$-TiO$_2$ nano-hybrid are, respectively, shown as inset in Figure (a) and (b). Inset shown on the right hand bottom corner of (c) indicates HRTEM image of single Au NP.
Reductive degradation of organic dyes

(Figures 2b and c). Eventually, the selected area electron diffraction (SAED) patterns, shown as inset of Figures 2a and b, demonstrate the nano-crystalline nature of the prepared materials. Further observation is preservation of crystallinity of the CeO₂–TiO₂ nanocomposite after Au deposition which is in line with the XRD result.

The light absorption behavior of the samples was investigated by UV-Vis DRS analysis. The diffuse reflectance spectra are presented in Figure 3. The DR pattern (Figures 3a and b) exhibits three common absorption peaks centered at around 230, 290, and 335 nm for both samples. The first two bands can be assigned to $\text{O}^2- \rightarrow \text{Ce}^{3+}$ and $\text{O}^2- \rightarrow \text{Ce}^{4+}$ charge transfer transitions, respectively, while the latter one is due to inter-band transition. These results demonstrate the co-existence of Ce³⁺ and Ce⁴⁺ ions in the synthesized samples, which is in line with our recently reported results. Interestingly, the Au/CeO₂–TiO₂ sample exhibits an additional broad absorption peak in the visible region, that is, at \sim535 nm (Figure 3b). This characteristic absorption peak is attributed to surface plasmon resonance (SPR) band of single metallic Au NPs. This further substantiates that the Au NPs had been deposited successfully onto the CeO₂–TiO₂ nanocomposite surface. It is reported that positively charged Au³⁺ species shows an absorption band at 275 nm for Auₙ clusters ($1 < n < 10$). Interestingly, we did not get any absorption band relating to cationic Au species in the DR spectrum of Au/CeO₂–TiO₂ nano-hybrid. To authenticate the DRS assumptions, XPS analysis of the samples was performed.

Figure 4a depicts XPS survey scan spectrum of Au/CeO₂–TiO₂ nano-hybrid viewing that the material is mainly composed of Au, Ce, Ti, O, as well as C, and no other impurity element was detected in appreciable amount. High resolution X-ray photoelectron spectra of the detected elements were also recorded to get a clear insight into their valence states. As shown in Figure 4b, the binding energy (BE) peaks at 83.55 and 87.31 eV correspond to Au 4f⁷/² and Au 4f⁵/² states, respectively, suggesting the presence of zero valent (metallic) Au⁰ species on the surface of the CeO₂–TiO₂ nanocomposite. However, as per previous reports, BE values for Au⁰ species were observed at 84.0 and 87.7 eV, respectively, for the Au 4f⁷/² and Au 4f⁵/² states. The lower BE values we obtained for the Au nano-hybrid may be due to high electron concentration around the Au particles attributable to transfer of electrons from oxygen vacancies of the CeO₂–TiO₂ to Au species. Interestingly, BE peaks relating to cationic Au species such as Au³⁺ or Au⁴⁺ were not identified in the Au 4f photoelectron spectrum. Ce 3d spectrum (Figure S1a in Supplementary Information) showed multiple BE peaks. The set of peaks at \sim883.37, 889.53, 898.94, 901.65, 907.80, and 917.04 eV, demonstrates the existence of Ce⁴⁺, while the peaks at \sim884.91 and 903.56 eV, confirm the presence of Ce³⁺. The BE peaks at 458.12 and 463.85 eV, observed in Ti 2p photoelectron spectrum (Figure S1b) indicate the presence of Ti⁴⁺. The O 1s spectrum showed a broad peak at 530.00 eV, as presented in Figure S1c. This BE peak is attributed to lattice oxygen incorporating to CeO₂–TiO₂ nanocomposite.

![Figure 3](image-url) Diffuse reflectance UV-Vis spectrum of (a) CeO₂–TiO₂, and (b) Au/CeO₂–TiO₂ nano-hybrid.

![Figure 4](image-url) XPS survey spectrum of Au/CeO₂–TiO₂ nano-hybrid (a), and high resolution XP spectrum of Au 4f (b).
3.2 Catalytic Reduction of Methylene Blue

MB dye was selected as a model pollutant to investigate the catalytic performance of the Au/CeO$_2$-TiO$_2$ hybrid nano-catalyst with NaBH$_4$ as the reducing agent under ambient conditions. NaBH$_4$ was used as the reducing agent because of high electron injection capability of the BH$_4^-$ ions. It was seen that addition of Au/CeO$_2$-TiO$_2$ nano-hybrid and NaBH$_4$ rapidly diminished the blue color of MB solution to a colorless one, indicating its reduction to leucomethylene blue (LMB). The MB absorption peak intensity at 664 nm decreased with the passage of time. The time-dependent UV-Vis spectra showing the reduction pattern of MB by NaBH$_4$ over the nano-hybrid is presented in Figure 5a. As can be seen from the figure, the absorption intensity became zero after 10.5 min, demonstrating the completion of the reaction. Figure 5b displays the decolorization of MB by NaBH$_4$ over the nano-hybrid with time.

Figure 5. UV-Vis absorption spectra of aqueous MB (30 mL, 4.814×10^{-6} M) with, (a) 2 mL of 0.2 M NaBH$_4$ and 0.433 g/L of Au/CeO$_2$-TiO$_2$ nano-hybrid, (b) 2 mL of 0.2 M NaBH$_4$, (c) 0.433 g/L of Au/CeO$_2$-TiO$_2$ nano-hybrid, (d) 2 mL of 0.2 M NaBH$_4$ and 0.433 g/L of CeO$_2$-TiO$_2$ nanocomposite, and (e) 0.433 g/L of CeO$_2$-TiO$_2$ nanocomposite.
the dye only in the presence of NaBH₄. It was seen that NaBH₄ alone could not degrade the dye even after 90 min. Similarly, in the absence of NaBH₄, the nano-hybrid itself showed rather slower degradation efficiency (Figure 5c). This suggests that neither NaBH₄ nor the nano-hybrid alone is viable to catalyze the swift degradation of MB and the reaction could only be finished quickly when both the nano-hybrid and NaBH₄ were used together. Hence, it could be concluded that the nano-hybrid efficiently catalyzed the reduction of MB by relaying of electrons from BH₄⁻ species to MB via the Au NPs.²,⁸,¹⁰,¹⁵,¹⁸,²⁴,⁴⁵ This assumption was further corroborated by conducting control experiments over bare CeO₂-TiO₂ nanocomposite with and without NaBH₄, which revealed insignificant catalytic activity (Figures 5d and 5e). However, other CeO₂-based Au catalysts such as Au/CeO₂ and Au/CeO₂-ZrO₂ showed comparatively poor MB reduction efficiencies under the same reaction conditions (Figures S2a and 2b, respectively, in Supplementary Information). Therefore, Au/CeO₂-TiO₂ was chosen as the working catalyst for carrying out the reduction of dyes other than MB in the present study.

The reduction of MB by Au/CeO₂-TiO₂ catalyst in the presence of NaBH₄ could be explained by Langmuir-Hinshelwood model, according to which, the initially adsorbed BH₄⁻ ions donate electrons to the Au NPs. As a result, a negatively charged layer is developed around the Au NPs.¹⁶ Subsequently, the Au NPs transfer these electrons to MB molecules for setting off the reduction reaction at the surface of Au NPs.⁴⁶ Recently, Azad et al., showed that in aqueous environment, the BH₄⁻ ions create a negatively charged layer around the Au NPs which facilitates the cationic dye MB to be adsorbed on the surface of Au NPs through electrostatic interaction.¹⁸ Soon after that, Khan et al. also claimed the similar tendency of Au NPs in the presence of BH₄⁻ ions.⁸ On these bases, we anticipated an analogous reaction between Au NPs and BH₄⁻ ions, developing a layer of negative charge around the Au/CeO₂-TiO₂ nano-hybrid as shown in equation (1).

\[
\text{BH}_4^- + \text{Au/CeO}_2-\text{TiO}_2 + 3\text{H}_2\text{O} \rightarrow \text{BO}_3^{3-} + (\text{Au/CeO}_2-\text{TiO}_2)^{8-} + 10\text{H}^+
\]

This negative layer thus formed enables the Au particles to attract the MB dye strongly towards it and thus transfer of electrons to the dye molecules becomes very swift. In this reaction, NaBH₄ acts as a hydrogen supplier too. The hydrogen species generated from BH₄⁻ ions attack the MB molecules after electron transfer to Au NPs. This reaction leads to the reduced form of MB which is generally colorless.²,⁶

As per earlier literature reports, catalytic activity of noble metal nanoparticles (NMNPs) is incredibly improved when they are small sized and highly dispersed. This is because, the highly dispersed smaller NMNPs enable easy access of the target molecules to reach surface of NMNPs that serve as an electron relay in the reaction system.⁴⁵⁻⁴⁸ However, this trend is not fully applicable in the case of Au NPs acting as electron relaying system. It is reported that Au NPs, when too large or small, cannot effectively relay electrons from BH₄⁻ ions to an electrophile and the particles ranging from 2⁻5 nm were thought to be appropriate for the same.⁵,⁴³ In our case, the TEM images showed good dispersion of small sized Au NPs (~4 nm in average) over CeO₂-TiO₂ nanocomposite surface that may be the reason for high catalytic activity of the nano-hybrid. The smaller Au NPs could have a high surface-to-volume ratio and thus rendered more Au atoms on the nanocomposite surface, which served as the active catalytic sites for MB reduction.⁴⁸ As MNP catalyzed reduction of dyes proceeds through an electron transfer process, the rate of such a reaction greatly depends on the swiftness of the process. The standard redox potential of Ce⁴⁺/Ce³⁺ couple is 1.44 V, while that of Ti⁴⁺/Ti³⁺ is 1.38 V. Hence, the transfer of electrons from Ti³⁺ to Ce⁴⁺ is thermodynamically favored. In presence BH₄⁻ ions, Ce⁴⁺ can undergo redox cycling to generate Ti³⁺. This thermodynamically favored competitive redox reaction between CeO₂ and TiO₂ (i.e., Ce⁴⁺ + Ti³⁺ ↔ Ce³⁺ + Ti⁴⁺) in BH₄⁻ systems speeds up the electron transfer between the adsorbed molecules on the metallic Au surface resulting in an enhanced degradation of MB by the Au nano-hybrid.²⁴,³² Meanwhile, the local electron density built up around the Au NPs owing to electron transfer from oxygen vacancies of CeO₂-TiO₂ nanocomposite to Au facilitates the uptake of electrons by MB molecules from the nano-hybrid catalyst (evidenced from XPS).³²,³⁴ Generally, nano-sized Au particles grown onto the different oxides possess either zero or positive (+1/+3) valence state. The cationic Au particles are electron scavengers and hence it is rational to expect that the electrons furnished by BH₄⁻ ions have the tendency to be retained with the Au particles rather than relaying them to the dye molecules for bringing about reduction. Therefore, lower catalytic activity might be experienced with cationic Au species in such kind of reduction reactions. In contrast, metallic Au (Au⁰) particles have quite high ability to relay electrons to the dye molecules. Herein, the nano-hybrid contains Au⁰ particles which assists in the relaying of electrons and thereby efficiently catalyzing the reduction of MB. A schematic diagram for MB degradation
mechanism has been proposed on these bases as depicted in Figure S3 (Supplementary Information).

3.3 Effect of operational parameters

3.3a Effect of catalyst loading: In order to investigate the effect of catalyst loading on degradation of MB, we carried out four reactions by varying the amount of Au/CeO$_2$-TiO$_2$ nanohybrid from 0.183 to 0.433 g/L and keeping other two reaction parameters constant. The degradation profiles of aqueous MB (4.14×10^{-6} M) solution over the different nanohybrid amounts along with NaBH$_4$ (0.2 M, 2 mL) solution is shown in Figure S4a–d (Supplementary Information). It was seen that the degradation efficiency increases as the nano-hybrid loading increases from 0.183 to 0.433 g/L. This is attributed to the higher availability of surface active sites for the adsorption of BH$_4^-$ ions and the dye molecules with the increase in nano-hybrid loading. Therefore, the catalyst loading of 0.433 g/L was taken for investigating the other reaction parameters. As the concentration of NaBH$_4$ was in large excess compared to that of MB, hence the degradation process followed a pseudo-first-order kinetics. This can be expressed by the equation: $\ln(A_t/A_0) = k_{app}t$. Thus, the plot of $\ln(A_t/A_0)$ vs. time for degradation of MB over different amounts of Au/CeO$_2$-TiO$_2$ nano-hybrid is a straight line as shown in Figure 6.

The apparent rate constants (k_{app}) were calculated from the slope of the linear plots. The overall results obtained for different nano-hybrid amounts are summarized in Table 1, which showed increase in the rate constants (k_{app}) and activity parameter (K min$^{-1}$ g$^{-1}$) with catalyst loading.

![Figure 6.](image)

3.3b Effect of initial MB concentration: In this study, four aqueous MB solutions of different concentrations ranging from 4.14×10^{-6} to 7.48×10^{-6} M were used with fixed concentration of the Au/CeO$_2$-TiO$_2$ nano-hybrid (0.433 g/L) and NaBH$_4$ (0.2 M, 2 mL). The corresponding UV-Vis absorption spectra for the degradation of MB with the stipulated concentrations are presented in Figure S5a–d (Supplementary Information). As can be seen, the time required for complete degradation increased with increasing concentration of MB. That is, the rate of the degradation decreased with increasing concentration of MB, which supports first-order-kinetics of the degradation process. This decrease in rate is due to the slowing down of the electron transfer process on the nano-hybrid surface.

Table 1. Summary of different reaction parameters such as initial MB concentration, catalyst loading, and NaBH$_4$ concentration on the degradation of MB and, the obtained apparent rate constant (k_{app}) and activity parameter (K).

<table>
<thead>
<tr>
<th>MB conc. (10^{-6} M)/30 mL</th>
<th>Catalyst loading (g/L)</th>
<th>NaBH$_4$ conc. (M)</th>
<th>Au conc. (10^{-6} M)</th>
<th>App. rate const. (k_{app}, 10$^{-3}$ min$^{-1}$)</th>
<th>Activity parameter (K, min$^{-1}$ g$^{-1}$)</th>
<th>Correlation co-efficient (R^2)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.14</td>
<td>0.183</td>
<td>0.2×2 mL</td>
<td>6.77</td>
<td>122.2</td>
<td>22.22</td>
<td>0.98</td>
</tr>
<tr>
<td>48.14</td>
<td>0.233</td>
<td>"</td>
<td>11.81</td>
<td>157.7</td>
<td>22.52</td>
<td>0.97</td>
</tr>
<tr>
<td>48.14</td>
<td>0.333</td>
<td>"</td>
<td>16.92</td>
<td>226.9</td>
<td>22.7</td>
<td>0.99</td>
</tr>
<tr>
<td>48.14</td>
<td>0.433</td>
<td>"</td>
<td>22</td>
<td>333.6</td>
<td>25.66</td>
<td>0.95</td>
</tr>
<tr>
<td>58.84</td>
<td>0.433</td>
<td>"</td>
<td>"</td>
<td>295.6</td>
<td>22.73</td>
<td>0.98</td>
</tr>
<tr>
<td>66.86</td>
<td>0.433</td>
<td>"</td>
<td>"</td>
<td>194.7</td>
<td>14.98</td>
<td>0.99</td>
</tr>
<tr>
<td>74.89</td>
<td>0.433</td>
<td>"</td>
<td>"</td>
<td>171.4</td>
<td>13.19</td>
<td>0.99</td>
</tr>
<tr>
<td>48.14</td>
<td>0.433</td>
<td>0.125 \times 2 mL</td>
<td>"</td>
<td>168.3</td>
<td>12.94</td>
<td>0.98</td>
</tr>
<tr>
<td>48.14</td>
<td>0.433</td>
<td>0.150 \times 2 mL</td>
<td>"</td>
<td>192.8</td>
<td>14.85</td>
<td>0.98</td>
</tr>
<tr>
<td>48.14</td>
<td>0.433</td>
<td>0.175 \times 2 mL</td>
<td>"</td>
<td>252.3</td>
<td>19.41</td>
<td>0.98</td>
</tr>
<tr>
<td>48.14</td>
<td>nil</td>
<td>0.2×2 mL</td>
<td>nil</td>
<td>3.71</td>
<td>–</td>
<td>0.98</td>
</tr>
<tr>
<td>48.14</td>
<td>0.433</td>
<td>nil</td>
<td>"</td>
<td>3.69</td>
<td>0.2838</td>
<td>0.99</td>
</tr>
</tbody>
</table>

aCorrelation coefficients of the pseudo-first-order kinetic plots for MB degradation.
between NaBH₄ and MB dye. The pseudo-first-order kinetic plots for various MB concentrations are presented in Figure 7, and the apparent rate constant \(k_{\text{app}} \) as well as activity parameter \(K \) (min⁻¹ g⁻¹) values are listed in Table 1.

3.3c Effect of NaBH₄ concentration: The amount of NaBH₄ influences the reduction of dye substances and in this view, the concentration of NaBH₄ was varied in order to determine the precise concentration for optimum degradation of MB dye. The related UV-Vis absorption spectra are presented in Figure S6a–d (Supplementary Information). In this case, the nano-hybrid dosage and MB concentration were fixed at 0.433 g/L and 4814 \(\times 10^{-6} \) M, respectively, and the NaBH₄ concentration was varied from 0.125 to 0.2 M. It was found that the extent of degradation increases upon increasing NaBH₄ concentration. A complete degradation was observed in the presence of 0.2 M NaBH₄ at the prescribed reaction time. Therefore, 0.2 M was chosen as the critical NaBH₄ concentration. This observation suggests that an appropriate concentration of BH₄⁻ ions is imperative for achieving the best degradation efficiency of the Au/CeO₂-TiO₂ nano-hybrid. In fact, higher concentration of the NaBH₄ augmented local electron density on the surface of Au NPs that could lead to an increasing reaction rate.⁵⁰ The plot of ln\((A_t/A_0)\) vs. time for MB degradation with a range of NaBH₄ concentrations are presented in Figure S6e (Supplementary Information), and the apparent rate constant \(k_{\text{app}} \) as well as activity parameter \(K \) (min⁻¹ g⁻¹) values are summarized in Table 1. The ln\((A_t/A_0)\) vs. time plot for MB degradation only with NaBH₄ or the nano-hybrid is also shown in Figure S7a and 7b (Supplementary Information). The rate constants were 0.00371 and 0.00369 min⁻¹ only with NaBH₄ or the nano-hybrid, respectively. Thus, the rate of MB degradation enhances by more than ninety times when both the components are used together. Based on the above discussion, it could be concluded that all the three parameters are individually very important for obtaining a fast reduction of MB over the Au/CeO₂-TiO₂ nano-hybrid.

Some recent results dealing with the supported and/or unsupported MNP catalyzed reduction of MB in the presence of NaBH₄ have been summarized in Table S1²,⁸,⁴⁶,⁵¹–⁵⁸ (Supplementary Information) for giving an insightful comparison to our work in order to show the superior catalytic efficiency and advantages of the Au/CeO₂-TiO₂ catalyst. It is obvious from the table that our catalytic system is advanced in comparison to most of the previously reported results in view of some striking parameters, such as low percentage of Au loading, simple reaction conditions for preparation of catalysts, use of benign precipitant urea, low catalyst loading, avoidance of surfactant and/or polymer molecules, etc. Above all, the high activity which is the most enviable aspect of any catalyst was met with Au/CeO₂-TiO₂ making it an appropriate choice for MB degradation.

3.4 Catalytic reduction of other dyes

Apart from MB, we investigated the reductive degradation of other four organic water contaminants having different chemical structures, two anionic (MO and CR) and two cationic (RhB and MG) dyes, in order to demonstrate the extended reduction capability of our synthesized Au/CeO₂-TiO₂ nano-hybrid. The degradation reactions were monitored spectrophotometrically by following the decrease of absorbance of the dyes at their highest wavelength, \(\lambda_{\text{max}} \).\(\lambda_{\text{max}} \) (MO) = 464 nm, \(\lambda_{\text{max}} \) (CR) = 498 nm, \(\lambda_{\text{max}} \) (RhB) = 553 nm, \(\lambda_{\text{max}} \) (MG) = 616 nm with respect to time. The specific reaction conditions adopted here for performing the reductions are outlined in Table 2. Each of the reactions was separately performed only by adding NaBH₄ into the dye solutions. It was seen that NaBH₄ alone could not finish the reduction up to a long period of time (Figure S8a–d, Supplementary Information). However, all the reduction reactions were completed within few minutes when the nano-hybrid along with NaBH₄ was added to the dye solutions. This ensures that the catalyst is providing a surface for the adsorption of both dye molecules and BH₄⁻ ions, which boosts the rate of reduction by increasing relaying of electrons from BH₄⁻ ions to the dyes via the Au NPs. Thus, the nano-hybrid acts as an effective catalyst towards the reduction of all these dyes. The corresponding time-dependent

![Figure 7](image-url)
Table 2. Summary of reaction time (min), apparent rate constant (k_{app}), and activity parameter (K) for Au/CeO$_2$-TiO$_2$ nano-hybrid catalyzed reduction of MO, CR, RhB, and MG dye in the presence of NaBH$_4$.

<table>
<thead>
<tr>
<th>Catalyst Activity</th>
<th>MO (61.10 × 10$^{-6}$)</th>
<th>CR (28.71 × 10$^{-6}$)</th>
<th>RhB (10.44 × 10$^{-6}$)</th>
<th>MG (54.81 × 10$^{-6}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dye conc. (M)/30 mL</td>
<td>0.566</td>
<td>0.633</td>
<td>0.633</td>
<td>0.633</td>
</tr>
<tr>
<td>Loading (g/L)</td>
<td>0.2 M × 2 mL</td>
<td>nil</td>
<td>nil</td>
<td>0.01 M × 0.3 mL</td>
</tr>
<tr>
<td>Amount of NaBH$_4$</td>
<td>7.5</td>
<td>90</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>Reaction time (min)</td>
<td>433.7</td>
<td>361.5</td>
<td>223.9</td>
<td>233.2</td>
</tr>
<tr>
<td>App. rate const. (k_{app}, 10$^{-3}$ min$^{-1}$)</td>
<td>25.51</td>
<td>19.03</td>
<td>11.79</td>
<td>12.27</td>
</tr>
<tr>
<td>Activity parameter (K, min$^{-1}$ g$^{-1}$)</td>
<td>0.99</td>
<td>0.92</td>
<td>0.98</td>
<td>0.93</td>
</tr>
<tr>
<td>Correlation co-efficient (R^2)</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Figure 8. Pseudo-first-order kinetic plot of ln(A_t/A_o) vs. time for the reduction of (a) MO, (b) CR, (c) RhB, and (d) MG, catalyzed by Au/CeO$_2$-TiO$_2$ nano-hybrid in the presence of NaBH$_4$.

UV-Vis absorption spectra showing the reduction profiles of the dyes are presented in Figure S9a–d (Supplementary Information). It was seen that, within 7.5–15 min, complete reduction took place, depending on the type of dye molecules. The reduction process followed pseudo-first-order kinetic pathway as in the case of MB reduction (section 3.2). The apparent rate constants (k_{app}) for the reductions were calculated from the slope of the linear plots of ln(A_t/A_o) vs. time (Figure 8) and the values are presented in Table 2.

Among the different dyes, reduction of MO was the fastest, probably due to its better adsorption onto the nano-hybrid surface compared to other dyes. The appropriate reasons for the different reaction rates observed for the different dyes is still not clear and hence, further study is needed to explore such catalytic dye reduction phenomena. However, the difference in the reaction rate may be due to different chemical structures, charge, hydrophobicity, presence of donor atom, reduction potential, etc., which vary the activation energy for catalytic reduction reaction. Interestingly, reduction efficiency of the nano-hybrid towards all the five dyes was found comparable to or even better than earlier work. Such high activity of the material projects it as one of the viable platforms for not only reduction of dye substances but also for other promising applications.

3.5 Stability and reusability of the Au/CeO$_2$-TiO$_2$ nano-hybrid

The stability and reusability of Au/CeO$_2$-TiO$_2$ nano-hybrid was investigated for MB reduction up to five cycles. After every cycle, the nano-hybrid was recovered from the reaction mixture by centrifugation and washed thrice with ethanol and water. The as-obtained sample was thereafter dried and reused for the next cycle of catalysis. It was seen that degradation (%) of MB by the regenerated nano-hybrid was nearly equal to that of the fresh catalyst even after its repetitive use (Figure S10a, Supplementary Information). The slight reduction in the degradation (%) might be due to the loss of catalyst during separation as the number of reactive surface sites for adsorption of MB and BH$_4^-$ decreases with decreasing nano-hybrid amount. The nano-hybrid recovered after 5th cycle was analyzed by XRD and TEM technique to observe if there is any structural change occurred after the catalytic reaction. The XRD pattern of the reused catalyst was similar to that of the fresh catalyst even after its repetitive use (Figure S10b, Supplementary Information). TEM analysis revealed the formation of relatively larger particles giving the impression of agglomeration of smaller particles after repeated use (Figure S10c). However, ICP-AES analysis of the recycled nano-hybrid did not reveal any significant loss of Au. The overall observations validate that the anchored Au NPs are well-attached to the CeO$_2$-TiO$_2$ surface. Therefore, Au/CeO$_2$-TiO$_2$ nano-hybrid is an excellent catalyst with good reusability as well.
as stability for the reduction of organic dyes, which imparts the prospect for its practical applications.

4. Conclusions

In summary, we could devise a highly efficient ternary nano-hybrid catalyst, Au/ CeO2-TiO2, by utilizing facile and economic synthesis protocol which showed excellent dye reduction ability in the presence of NaBH4 via an electron relaying process. The reduction followed pseudo-first-order kinetics and the rate of the reaction greatly depends on concentration of the dye, NaBH4 and that of the nano-hybrid. The CeO2-TiO2 composite oxide used in this study worked as the stabilizing platform for the nano-sized Au particles. In addition, the thermodynamically favored redox reaction between the cationic Ce and Ti species accelerated the rate of reduction by speeding up electron relaying process. The metallic character of the Au particles residing onto CeO2-TiO2 composite assisted in the relaying of electrons and efficiently reduced the dyes. The excellent catalytic activity, stability and good reusability suggest that the Au/ CeO2-TiO2 nano-hybrid could be used as potential candidate for the treatment of industrially discharged waste water. However, it is noted that mere color change may sometimes be deceptive to judge the effectiveness of dye removal. Therefore, systematic studies are necessary to draw any reasonable consensus.

Supplementary Information (SI)

Additional information such as XP spectrum of Ce 3d, Ti 2p, and O1s (Figure S1), mechanism of MB reduction (Figure S2), catalyst loading effect (Figure S3), MB concentration effect (Figure S4), NaBH4 concentration effect and analogous ln(Ao/At) vs. time plot (Figure S5), ln(Ao/At) vs. time plot for MB reduction with only NaBH4 and only Au/CeO2-TiO2 (Figure S6), reduction of MO, CR, RhB, and MG with only NaBH4 (Figure S7) and with Au/CeO2-TiO2 and NaBH4 (Figure S8), reusability, XRD, and TEM of Au/CeO2-TiO2 (Figure S9) and comparison of MNP catalyzed reduction of MB with the present work (Table S1) are provided in the supplementary information which is available at www.ias.ac.in/chemsci.

Acknowledgements

The authors are highly grateful to Department of Science and Technology, Govt. of India for research grant (SR/FT/CS-69/2011). Thanks are also due to NEHU (Shillong, Meghalaya, India), USIC-Gauhati University (Assam, India), and NCL Pune (Maharashtra, India) for giving us the opportunity to perform TEM, XRD, and XPS analyses, respectively. Help from Dr. L. Borah and Dr. K. K. Senapati is gratefully acknowledged.

References

3. El-Sharkawy E A, Soliman A Y and Al-Amer K M 2007 Comparative study for the removal of methylene blue via adsorption and photocatalytic degradation J. Colloid Interface Sci. 310 498
10. He S, Fei Z, Li L, Sun B, Feng X and Ji W 2013 Synthesis and catalytic activity of M@SiO2 (M = Ag, Au, and Pt) nanostructures via “core to shell” and “shell then core” approaches Chin. J. Catal. 34 2098
13. Amir M, Kurtan U and Baykal A 2015 Synthesis and application of magnetrically recyclable nanocatalyst Fe3O4@Nico@Cu in the reduction of azo dyes Chin. J. Catal. 36 1280

17. Daniel M C and Austric D 2004 Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology Chem. Rev. 104 293

19. Miah A T, Malakar B and Saikia P 2015 Superior Activity of Au/Fe3O4@SiO2 Catalyst for CO Oxidation Reaction J. Catal. Soc. Ind. 13 1

34. Zhang Y, Zhao G, Zhang Y and Huang X 2014 Highly efficient visible-light-driven photoelectrocatalytic selective aerobic oxidation of biomass alcohols to aldehydes Green Chem. 16 3860

45. Gan Z, Zhao A, Zhang M, Tao W, Guo Q, Mao R and Liu E 2013 Controlled synthesis of Au-loaded Fe3O4@C composite microspheres with superior SERS
Reductive degradation of organic dyes

47. Zheng Y and Wang A 2012 Ag nanoparticle-entrapped hydrogel as promising material for catalytic reduction of organic dyes J. Mater. Chem. 22 16552

56. Yao T, Cui T, Wang H, Xu L, Cui F and Wu J 2014 A simple way to prepare Au@polypyrrole/Fe3O4 hollow capsules with high stability and their application in catalytic reduction of methylene blue dye Nanoscale 6 7666

60. Chen M, Liu P, Wang C, Renab W and Diao G W 2014 Fast catalytic reduction of an azo dye by recoverable and reusable Fe3O4@PANI@Au magnetic composites New J. Chem. 38 4566
