Int. J. Internet Protocol Technology, Vol. 12, No. 1, 2019 35

Modified QUIC protocol for improved network
performance and comparison with QUIC and TCP

Prashant Kharat* and Muralidhar Kulkarni

Department of Electronics and Communication,
National Institute of Technology Karnataka,
Surathkal, Mangalore, India

Email: prashant.kharat@walchandsangli.ac.in
Email: mkulkarni@nitk.ac.in

*Corresponding author

Abstract: Congestion control mechanism is solely responsible for maintaining the performance
of streaming data. However, when there is no congestion, a regular delivery window update is
followed as a step by step process. The process can be improved by individual window update
along with acknowledgement (ACK) as feedback to the server even in the absence of congestion. To
achieve maximum throughput and minimum delay, we have suggested modification in the existing
handshaking mechanism of quick UDP internet connections (QUIC) protocol. This paper presents
an investigation of QUIC protocol performance and proposes a modified QUIC (ModQUIC): a
modification in existing handshaking mechanism of QUIC to reduce control overhead. Chromium
server-client model testbed setup results, show that the proposed technique gives stable output and
improves performance in terms of overall throughput and delay over QUIC and transmission control
protocol (TCP). Performance has been tested for limited (2 Mbps) and sufficient (10 Mbps) link
bandwidth in presence of loss. The validation of results has been carried out with the help of linear
regression model. The result show a throughput improvement of 35.66% and 51.93% over QUIC
and TCP respectively and also the delay is reduced by 3% to 5% over QUIC and TCP.

Keywords: modified QUIC; ModQUIC; quick UDP internet connections; QUIC; network
performance; congestion control.

Reference to this paper should be made as follows: Kharat, P. and Kulkarni, M. (2019) ‘Modified
QUIC protocol for improved network performance and comparison with QUIC and TCP’,
Int. J. Internet Protocol Technology, Vol. 12, No. 1, pp.35-43.

Biographical notes: Prashant Kharat is pursuing his PhD in Electronics and Communication
Engineering in the Department of Electronics and Communication Engineering at National Institute
of Technology Karnataka, Surathkal. He received his BE and ME in Electronics Engineering with
specialisation in Computer Science from the Shivaji University, Maharashtra, India in 2001 and
2007. His current research interest include wireless networks, congestion control in data networks,
internet technology and cooperative communication. He has published and presented papers in the
subjects cooperative communication, wired-wireless networks and soft computing techniques and
related applications in journals and conferences.

Muralidhar Kulkarni is a Professor in the Department of Electronics and Communication
Engineering, National Institute of Technology Karnataka, Surathkal. He obtained his BE in
Electronics Engineering from the Bangalore University, Karnataka, India, MTech in Satellite
Communication and Remote Sensing from the IIT, Kharagpur, India and PhD from the JMI Central
University, New Delhi, India. He has published several research papers in national and international
journals/conferences of repute. He is also the author of popular text books in microwave and radar
engineering, communication systems, digital communications and information theory and coding.
His teaching and research interests are in the areas of digital communications, fuzzy digital image
processing, optical communication and networks and computer communication networks.

1 Introduction

is the most popularly used protocol to access internet
data using wired or wireless technology. To maximise the

Today’s fast paced world demands data transfer with almost
zero latency. Online business is an example wherein if
a vendor’s website page load time (PLT) is high; results
in poor customer satisfaction. Internet protocol (TCP/IP)

Copyright © 2019 Inderscience Enterprises Ltd.

customer satisfaction in traditional information gathering or
online services; it is necessary to monitor TCP/IP network
parameters to improve performance (Grigorik, 2017; Hassan
and Jain, 2003). TCP/IP has contributed extensively to the

36 P. Kharat and M. Kulkarni

networking industry by delivering remarkable results. Google
has a detailed analysis of TCP/IP performance as 30% to
35% of all internet traffic passes through its servers. In
addition to this, Google’s Chrome browser is the most popular
browser with approximately 40% of market share (Flach et al.,
2016). Based on the experience, in 2013, Google developed
a new protocol using user datagram protocol (UDP) called as
quick UDP internet connections protocol. QUIC protocol is a
simple and on top of UDP, suitable for supporting application
protocols for booting (Figure 1).

In this work, comprehensive goal is to investigate and
understand the benefits and tradeoffs of QUIC protocol. QUIC
protocol development and deployment is a challenging project
by Google, basically developed to improve the network
throughput and reduce latency. QUIC protocol source code
is publicly available which can be improved further and test
the results as well. Hence, while understanding the QUIC
basic structure and working model, we realise an idea to
improve throughput and reduce latency by modification in
handshaking mechanism. Following are the key challenges:

e Within past few years, due to growth rate of Web
technology, there is a demand in higher speed of
operation and faster data rate requested by the users.
Higher speed leads to faster and better user satisfaction,
which results in user retention.

e QUIC protocol has been developed to compete with
TCP which is the most dominant and worldwide
deployed transport layer protocol.

e QUIC protocol source code is publicly available of
maybe possible that there is a gap between publicly
available and actually deployed on Google client.

e QUIC protocol is under rapid development since 2013;
43! stable versions are released. Limited literature and
experimental studies are available which become
obsolete before publication.

To improve overall throughput and reduce latency, this
modification proposes transport layer solution using QUIC
as a base protocol. There are different opinions about QUIC
location in protocol stack whether it should be at transport or
application layer. This work investigates QUIC performance
and proposes a modified handshaking mechanism to reduce
control overhead. A testbed has been set up with Chromium
server-client model and traffic shaping tool. Results show
that performance of QUIC is better than TCP and propose
modification in QUIC substantially improves throughput with
a marginal reduction in delay and stable with respect to loss
rate.

Rest part of the paper has four sections Section 2 gives
insight into background information and related experimental
work of QUIC protocol with features and congestion control
mechanism. In Section 3 detail discussion of the proposed
work is presented. Section 4 describe experimentation part
carried out to investigate proposed work and result analysis.
Finally, work is summarised and concluded in Section 5.

2 QUIC protocol background with congestion control
and related work

This section provide background of QUIC protocol and
survey on experimental work by various researchers related
to this work.

2.1 Background

QUIC is an experimental transport layer protocol proposed
by Roskind (2012). It is a secure and multiplexed protocol
with UDP as a base protocol. Using bandwidth estimation
technique it supports flow and congestion control with
reduced connection and transport latency (Hamilton et al.,
2016).

Figure 1 QUIC placement in protocol stack

HTTP/2 HTTP/2 API
TLS 1.2 Quic
TCP
ubP
P

2.1.1 QUIC features
QUIC has following highlighted features:

e Multiplexed steams over UDP connection allows out of
order delivery solving head of line (HoL) blocking.

e Less connection establishment latency using reduced
handshaking mechanism.

e Packets authentication and payload encryption for
secure data delivery.

e Connection and stream level flow control mechanism.
e Flexible and pluggable congestion control mechanism.

e 64 bit connection ID (randomly generated by client) for
connection migration.

e Packet pacing mechanism for handling bursty data.

2.1.2 QUIC's congestion control mechanism

Various congestion control mechanisms suggested by
researchers (Afanasyev et al., 2010; Luckie et al., 2014), out
of those QUIC uses CUBIC with packet-pacing mechanism.
At the beginning of the connection, end-hosts can negotiate
the technique to employ for congestion control. Ha et al.
(2008) proposed an enhanced version of binary increase
congestion-control (BIC) (Xu et al., 2004) as a CUBIC, in
which round trip time (RTT) independent congestion window
growth function is used. To achieve this CUBIC picked up
H-TCP (Leith and Shorten, 2004) approach to calculate cwnd

Modified QUIC protocol for improved network performance and comparison with QUIC and TCP 37

size [equation (1)], which is cubic function of elapsed time ¢
since last congestion event.

Wounie = Ot — (Comeyby Ly, M
where
WeuBre — is cwnd size
Wnaw is a cwnd just before last window reduction
C is predefined constant (scaling factor)
B is decrease factor.

Equation (1) shows that it preserves BIC properties, RTT
fairness, limited slow start and rapid convergence. As an
additional precaution, CUBIC uses mechanism to ensure
performance to be equal or better than standard Reno with
simultaneous checking and computation of W,..,,, parameter.
With experimental studies, it has been seen that performance
and fairness property of CUBIC are acceptable. TCP-CUBIC
is available in Linux TCP suite (Kernel Version 2.6.16)
and is currently the most widely used congestion control
mechanism. To handle bursty data, packet-pacing mechanism
is used in which inter-arrival and inter-departure time of two
consecutive packets are adjusted. In packet-pacing, sending
data rate is calculated based on the relative forward delay,
which is the difference between inter-arrival times at receiving
and sending end for same consecutive data packets (Aggarwal
et al., 2000).

2.2 QUIC related experimental work

Most of the literature available for QUIC is in the form
of internet drafts proposed by researchers from Google.
Loss recovery and congestion control (Swett and Iyengar,
2015; Swett, 2015), secure QUIC-crypto connection

Table 1 Comparative contribution analysis

(Langley and Chang, 2013), redefined QUIC (Iyengar, 2016),
QUIC used for test drive (Gizis, 2016), enhanced draft of
QUIC (Iyengar and Thomson, 2017), are different internet
drafts of QUIC protocol.

Researchers so far have analysed the performance of
QUIC with web PLT. Megyesi et al. (2016) perform network
tests for high bandwidth, high packet loss and large and small
objects on a web page. Carlucci et al. (2015) tested QUIC
performance with respect to goodput, bandwidth utilisation
and PLT. They investigated that forward error correction
(FEC) mechanism reduces QUIC performance. Das (2014)
in his MS work analysed QUIC performance with more
than 500 web pages and compared with TCP over limited
bandwidth and high RTT. He noticed that QUIC outperforms
for small size web pages with fewer objects. Biswal and
Gnawali (2016) reported that QUIC outperforms hyper text
transfer protocol (TCP/HTTP) with respect to PLT in the
presence of loss for large object size. Cook et al. (2017) used
local and remote testbeds to identify where the QUIC protocol
is most efficient. They have investigated QUIC performance
with respect to the type of access network and with packet
loss and delay generation in the link. They concluded that
QUIC outperforms HTTP/2 over transport layer security
(TCP/TLS) in unstable networks such as wireless/mobile
but in case of stable and reliable networks there has been
no significant contribution. Srivastava (2017) in his MSc
thesis has been compared QUIC performance with TCP with
respect to throughput, delay and fairness. He has found
that for an added delay and loss QUIC outperform and
in case of competing flow QUIC acquire more bandwidth
share than TCP. Kakhki et al. (2017) carried out extensive
experimentation for a variety of network conditions. They
found that QUIC outperforms TCP/HTTP in nearly every
scenario, QUIC is very sensitive with out of order delivery
and shows very poor performance. They found that QUIC is
unfair when competing with TCP flows.

Performance analysis

. QUIC version Testing New research

Contributer used Throughput . Link environment contribution
(goodput) Loss Delay Fairness PLT bandwidih

Megyesi 20 N Y N Y Y N Wire N
et al. (2016)
Carlucci 21 Y Y N N Y Y Wire N
et al. (2015)
Das (2014) 23 N N N N Y N Wire N
Biswal and 23 Y N N N Y Y Wire N
Gnawali
(2016)
Cook 25 N Y Y N Y N Wire/ N
etal. (2017) wireless
Srivastava 251036 Y Y Y Y N Y Wire N
(2017)
Kakhki 25to 37 N Y N Y Y Y Wire/ N
etal. (2017) cellular
Our work 25 to 39 Y Y Y N N Y Wire Y

38 P. Kharat and M. Kulkarni

It may be seen that, earlier researchers only carried out
an experimental investigation of QUIC with released versions
of the protocol (summarised in Table 1). This work has
added contribution in terms of modifying existing working
mechanism of QUIC compared to previous contributors
(detail discussion is given in Section 3).

3 Proposed work

Existing handshaking mechanism is basically related to
rate control. Acknowledgement (ACK) frame and window
update frame are mainly used for rate control in QUIC. In
QUIC protocol working model, window update state comes
after reception of ACK frame, which depends on ACK
frame reception time analysis. In ACK frame reception time
analysis, if current ACK reception time is less than previous
ACK frame reception time then only window updated to next
value by a factor a.

This paper proposes a change in the above stage of the
working model of QUIC. In the proposed model, window
update frame is attached with ACK frame, instead of being
sent separately. This change, updates window size with every
ACK frame reception, which reduces one transition state of
the protocol. This results in a reduction of state transition
delay. The suggested modification window size, varies with
every ACK reception, that results in smooth variation in
congestion window size. This smooth congestion window
variation regulates network traffic, which helps congestion
control.

Following subsections provide an overview of ACK
frame and window update frame structure whereas in detail
description about the proposed frame structure.

3.1 ACK frame structure

The ACK frame structure as shown in Figure 2, is used by
the receiver to inform server about received and missing
packets (Hamilton et al., 2016). Structure of QUIC-ACK
frame is different from TCP-ACK frame. In QUIC, not an
ACK (NACK) indicates gaps in received packets. The server
periodically sends stop-waiting frame to inform the receiver to
stop waiting for packets below a particular sequence number.
This leads to higher number of least unacked packets at the
receiver.

3.2 Window update frame structure

The window update frame is used to inform the peer of
an increase in end point’s flow control receive window
(Hamilton et al., 2016). In the frame structure shown
in Figure 3, stream ID field is zero correspond to
connection-level flow control and greater than zero imply that
flow control is applicable for that specific stream. Violating
flow control by sending more bytes than prescribed will result
in receiving endpoint closing the connection.

Figure 2 ACK frame structure

0 1 N

’ Type (8) I Received Entropy

Largest Observed (8, 16, 32 or 48 bits variable length) ‘

N+1 N+2 N+3 N+4 N+8

Largest Observed Delta Time Delta Largest

Num Timestamp (8) Observed

Time since Largest Observed ‘

N+9 N+11-X

Time Since Previous Timestamp

Delta Largest
(Repeat)

Observed

X X+1-Y Y+1

Missing Packet Sequence Number Delta Range Length

Number Ranges (op) (Repeat Number Ranges Times With Range Length) (Repeat) ‘

Y+2 Y+2-Z

’ Number Revived (opt) I Revived Packets (8, 16, 32 or 48 bits) ‘

Sequence Number (Variable Length)

Source: Hamilton et al. (2016)

Figure 3 Window update frame structure

0 1t04 5to 12
Type (8 bits) Stream ID (32 bits) |

Byte offset (64 bits)

Source: Hamilton et al. (2016)

The default window size is 16 KB both at stream
and connection level and continuously increases during
handshaking by exchanging window control parameters.

The fields in the window update frame are as follows:

e Frame type: this must be set to 0 x 004 to indicate this
as a window update frame.

e Stream ID: integer value greater than zero indicates the
stream ID whose flow control window is being updated,
otherwise connection-level flow control.

e Byte offset: unsigned integer used to send maximum
data on the open stream and for connection-level flow
control, cumulative data bytes from all open streams
will be considered.

QUIC has the window update functionality managed
with window update frame. Relevance to window update
mechanism uses a queuing model, based on pure birth-death
process (Ross, 1996). For congestion state estimation, packet
emission probability based on previous state is considered. To
control packet transmission rate, three state window update
strategy given in equations (2) to (4) are used at the source
end.
Let the window update information be W, :

W,=0, if P, =P, 2)
W, =1, ifP, > P,_; (3)
W, =-1,if P, < P, 4
where
n number of packets in the network

P, steady state probability of n packets

Modified QUIC protocol for improved network performance and comparison with QUIC and TCP 39

P,_1 steady state probability of n — 1 packets.

Under steady state condition n > 0, whereas, P, is a function
of \,, (arrival rate) and p,, (departure rate). Following are the
steps to control congestion and time out events.

e Ifsize of the packet decreases, number of packets in the
network get increased, to send the same size of data.
This will result into increment in probability of
collision and hence decrement in window size leading
to control in congestion.

e The packet size is dependent on the available
bandwidth (allowed rate to send the data) which
ultimately depends on the window size.

e The window update information will contain state to
decrease the window size and to control the rate if
congestion is detected.

e As flow control is achieved, simultaneously packet size
can get decreased which will lead to an increment in a
number of packets as per state 1. To keep less
probability of packets emitted the rate has to be
controlled.

e The outcome of this approach is to control the
congestion which results an improvement in system
performance.

Figure 4 Proposed ACK frame structure

[1 N
Received AT Y
Type (8) ccelved | | argest Observed (8, 16, 32, or 48 bits variable length)
Entropy
N+1 N+2 N+3 N+4 N+8
Largest Observed Num Delta largest Time since largest observed
Delta Time (16) Timestamp (8) Observed 9
Original
N+9 N+11-X ACK
Frame
Delta Largest | Time since previous
Observed Timestamp (Repeat)
Modified
ACK
X X+1-Y Y+1 Frame
Number Missing packet sequence number (repeats Number Range Length
Ranges (opt) Ranges times with Range Length) (repeat)
Y+2 Y+3-Z
Number Revived Revived packets (8, 16, _32 or 48 bits)
(opt) sequence number (var_lable_\englh)
(repeats number revived times)
0 32
Added
WindowUpdate Frame

3.3 Proposed ACK frame structure

A proposed frame structure is marked as a modified ACK
frame in Figure 4. With respect to working structure of QUIC,
window update state is followed by packet ACK state. In
the proposed modification, window update frame is attached
with ACK frame to reduce control overhead and window
update delay. This results into smooth variation in cwnd and
improvement in throughput. The window update size varies
according to network condition and application demand.

3.4 Proposed handshaking mechanism flow diagram

In line with the proposed frame structure, a modified
handshaking mechanism for first and repeated connection
shown in Figure 5.

Figure 5 Proposed handshaking mechanism

Quic Quic QuiCc Quic
Server Client Server Client
"""""" Da,
\) b
ot
-
\ \

Repeated connection

""" Waiting
timer ON

In case of repeated
connection no need

to re-establish connection,
data send directly

on that connection

\ 4
First connection with NACKs

The following steps are the flow for proposed handshaking
mechanism.

e After creating QUIC-based server-client model, first
connection establishment process is carried out. It takes
zero or 1-RTT based on initial or repeated connection
request.

e Onreceiving a data packet, the receiver sends ACK to
the sender. In case the receiver is disconnected, the
sender stops receiving the ACK and assumes that the
receiver has been temporarily disconnected. Then
sender controls rate of transmission and freezes timers
by sending back-off persist packet to the receiver till it
receives ACK. As soon as the congestion is under
control, it restarts frozen timers. This results in
transmission with full rate by the sender.

e If data sent is lost, the sender re-sends data and updates
window size by sending ACK + window update.

e Ifthe same situation is repeated, the receiver sends
ACK (with NACK) to the sender continuously with
zero window update until congestion is under control.
Once congestion is under control, receiver updates the
window size to sender and resends the lost data to
receiver.

40 P. Kharat and M. Kulkarni

4 Experimentation

4.1 Evalution metrics used

Performance evaluation of ModQUIC, QUIC and TCP is
carried out with respect to overall throughput and delay for
different bandwidth and loss rate.

4.1.1 Throughput

The amount of data that can be transferred by the network
from a sender to a receiver during a period of time expressed
in Kilo or Mega bits per second (Kbps or Mbps). In case of
multiple flows, throughput is the sum of throughput of all
flows.

4.1.2 Delay

A period of time required for a packet to reach receiving end.
Normally in networks total delay is the sum of transmission
delay, propagation delay, processing delay and queuing delay,
expressed in mili-seconds (ms).

4.2 Experimental setup

4.2.1 Server-client configuration

Performance testing has been done through a dummy
QUIC server-client model present in the Chromium browser
code-base available at https://code.google.com/p/chromium/.
Figure 6 shows testbed environment with QUIC version 33
(actually tested for QUIC versions 25 to 39, but as there
were not significant change in result, presented results for
version 33). The data generation is performed by using
Google certified www.example.org. For this investigation
TCP server application with TCP-CUBIC functionality is
used. QUIC source code is modified to add ModQUIC
functionality and logged relevant variables. On client side
three different configurations ModQUIC enabled, QUIC
enabled and TCP enabled (QUIC disabled) of Chromium are
deployed. Experimentation is carried out multiple times by
using loopback technique to increase the traffic and create
logs of almost ten thousand packets with payload size of
270 bytes.

Figure 6 Testbed environment

Measurement
Point TCP

TCP -
Server \ j—> Client
[L
H Quic Wonder 5| QuIC
> Server Shaper Client
l ModQUIC 1_, ModQuiC
Server Client
Server Host Client Host

4.2.2 System configuration

Intel® Core”™ i5-2400 CPU @ 3.10 GHz x 4, 8 GB RAM,
Ubuntu 14.04 LTS, 64-bit operating system. Chrome version
63.0.3239.132. Linux Kernel Version 4.4.0-93-generic.

4.2.3 Internet connectivity

1.9 Gbps across four lease lines with (2:1:1) load balancing
with core switch 2xVDX8770-8, 1xVDX6740-T and router
configuration of 2x2 MIMO, 433 Mbps/client on 5 GHz,
72 Mbps/client on 2.4 GHz.

4.2.4 Analysis and traffic shaping tools

iPerf: a network performance measurement tool is run on the
client machine to measure an amount of data transferred and
bandwidth available for server-client. Whereas wondershaper
tool deployed on the client is used for managing traffic,
to manipulate bandwidth, to fix packet loss and allow
propagation delay to be set.

4.3 Experimental results

Experimental results shows comparative analysis of
ModQUIC, QUIC and TCP performance. In this experiment
base RTT value of 20 ms and queue size is equal to bandwidth
delay product (BDP) with drop-tail approach are considered.

Table 2 Throughput performance comparison

No. of Throughput (Mbps) % improvement of
packets ModQUIC QUIC TCP ModQUIC over QUIC
1,000 2.999 2430 2.120 23.41

2,000 3.896 2.781 2.480 40.09

5,000 4.128 3.201 3.100 29.51

8,000 6.581 4322 3.890 52.26

10,000 8.544 5.867 5.382 50.24

Figure 7 Throughput performance comparison (see online
version for colours)

—8— ModQUIC —e— QUIC —¥— TCP

Throughput (Mbps)

.)
0 2000 4000 6000 8000 10000 12000
Load in Number of Packets

In QUIC window update is sent from the client only, when
there is congestion based on analysis of ACK reception
time. Whereas in ModQUIC, every ACK is associated with

Modified QUIC protocol for improved network performance and comparison with QUIC and TCP 41

window update instead of based on ACK reception time;
which provides sufficient ground to increase window size
to specified level. This results in throughput improvement
observed in Table 2/Figure 7.

In ModQUIC, window update has been done with every
ACK, whereas in QUIC, window update is based on ACK
reception time analysis. In ACK reception time analysis,
if new ACK reception time is greater than previous ACK
reception time then there is no window update. This is the
threat in updating congestion window size in QUIC. Further
in QUIC, extra time is required to do the ACK received time
analysis and to send window update frame separately. We
removed this threat and window update delay by attaching
window update frame to ACK frame. This improves the
overall performance of ModQUIC compared to QUIC and
TCP resulting in optimum of the bandwidth.

Table 3 Performance comparison w.r.t. delay

No. of Throughput (Mbps) % improvement of
packets ModQUIC QUIC TCP ModQUIC over QUIC
1,000 2.11 2,15 2.14 1.86

2,000 3.21 327 338 1.83

5,000 2.55 264 289 3.40

8,000 2.60 271 292 4.06

10,000 242 245 278 1.22

Figure 8 Performance comparison w.r.t. delay (see online version
for colours)

—— ModQUIC —¥— QUIC —a— TCP

Avg. Delay (ms)

P
o
I

[N

2000 4000 6000 8000 10000 12000
Load in Number of Packets

o

Updating window size dynamically for each ACK ensures the
delivery of data within optimum time. This reduces number
of retransmissions as minimal loss of data is observed. The
data loss check reduce on redundancy in packet delivery.
Which results into more number of packets delivered within
time compared to existing system. By this way average
end to end packet transmission delay is reduced shown in
Table 3/Figure 8.

In ModQUIC/QUIC, loss-based congestion control
mechanism has been employed. The response to loss is a
cubic function, which is slow at the beginning and growth
is exponential later. This shows performance of ModQUIC,
QUIC has been improved with respect to loss. However as
greater bandwidth has been occupied by ModQUIC/QUIC
compared to TCP, which is unfair. Higher the percentage

of ACKs generated, more are the number of packets
received. Validation of said analysis has been presented in
Table 4/Figure 9. When the loss is 0%, TCP outperforms due
to it’s initial aggressiveness whereas ModQUIC and QUIC
performance is almost similar. TCP performance gradually
decreases with respect to loss rate, whereas in ModQUIC
and QUIC, due to multiplexed streams and out of order
delivery, even in lossy links the performance is superior.
Performance of ModQUIC is better than QUIC due to
bandwidth occupancy limitation which in turn depends upon
the window size used. Even though slow start is avoided in
QUIC, its default window size is updated only with reference
to an analysis of previously sent packet’s success and their
rate of transmission. This improves reception of ACKs, and
the graph shows that ModQUIC outperforms over QUIC
and TCP. In ModQUIC, maximum bandwidth utilisation has
been observed due to successful reception of ACK which
responsible for window update.

Table 4 Performance comparison w.r.t. loss

Loss rate (%) ACKs generated (%)
ModQUIC QuIC CcP
0 91.40 89.30 98.23
1 90.32 88.67 93.57
2 85.12 82.34 85.36
5 97.76 93.82 85.47
8 99.56 98.26 81.88
10 97.98 96.71 80.19

Figure 9 Performance comparison w.r.t. loss (see online version
for colours)

1957 —— ModQUIC —¥— QUIC —&— TCP
100 |
954
90
854
80 |
75+

704

ACKs Generated (%)

65 |

60 T T
0 2 4

6 8
Loss Rate (%)

Table 5/Figure 10 shows that for lossless bottleneck link
of 2 Mbps all three flows are closely competing with
each other. As loss rate increases link becomes congestive
and as a reaction TCP reduces data rate gradually but for
ModQUIC and QUIC base protocol is UDP, performance
is better. Whereas for ideal condition [sufficient bandwidth
(10 Mbps) and lossless link] TCP is dominating as packet
pacing becomes overhead for ModQUIC and QUIC. Once
loss rate increases TCP performance suddenly drops down
below ModQUIC and QUIC observed in Table 6/Figure 11.

42 P. Kharat and M. Kulkarni

Table 5 Data rate achieved for 2 Mbps link w.r.t loss

Avg. hi ‘M
Loss rate (%) vg. data rate achieved (Mbps)

ModQUIC QuIC TCP
0 1.891 1.842 1.920
1 1.853 1.815 1.913
2 1.836 1.794 1.851
3 1.815 1.776 1.785
4 1.772 1.732 1.708
5 1.725 1.681 1.643

Figure 10 Data rate variation w.r.t. loss for 2 Mbps link
(see online version for colours)

—— ModQUIC —¢— QUIC —¥—TCP
s 19

. Data Rate Achieved (
oo oe o
e T ¢

g
=
o
a

I

Av
=
(6]

3
Loss Rate (%)

o
P

Table 6 Data rate achieved for 10 Mbps link w.r.t loss

Avg. data rate achieved (Mbps)

Loss rate (%)

ModQUIC QuIC TCP
0 7.920 7.640 9.870
1 7.817 7.623 9.654
2 7.644 7.452 9.588
3 7.324 7218 8.822
4 7.111 7.088 6.876
5 7.100 6.977 6.720

Figure 11 Data rate variation w.r.t. loss for 10 Mbps link
(see online version for colours)

—&— ModQUIC ——QUIC —¥—TCP

©
o
I

e

Avg. Data Rate Achieved (Mbps)

o
o o~
I I

(=}
-
N
w
&
(5}
(=2}

Loss Rate (%)

4.4 Validation of results

To validate and check consistency of the obtained results,
linear regression model, R? (R-squared) has been employed,

which is a statistical analysis indicating percentage of
variance given in equation (5). Regression analysis is a set
of statistical processes for estimating the relationships among
variables. More specifically, regression analysis helps us to
understand how the typical value of the dependent variable
changes when any one of the independent variables is varied,
while the other independent variables are held fixed.

R2 _ Variance explaine(? by the model < 100 5)
Total Variance

where, R? value ranges between 0% to 100%.

A 0% represents suggested model is not consistent with
respect to performance parameters, whereas 100% indicates
model is perfect with respect to performance parameters.
Larger is the R? value, better is the regression model
that fits to observations. Table 7 shows R? values for
performance comparison of ModQUIC with QUIC and TCP.
Overall observations are seen to fit to the regression model.
However the values of 70% and 33% are lesser with respect
to the desired output. It may be noted that, the lower
R? value indicate ModQUIC performance to be improving
significantly compared to TCP. In delay and loss result
analysis, ModQUIC and QUIC are almost following similar
pattern whereas ModQUIC and TCP are seen to drift from
each other. In ModQUIC there is a higher reduction in delay
compared to TCP with respect to number of packets in flight.
TCP performance seen to be very poor with respect to loss
compare to ModQUIC.

Table 7 R? values for ModQUIC performance validation

R? value (%)

Parameters
ModQUIC V/s QUIC ModQUIC V/s TCP

Throughput 97 92

Delay 96 70

Loss rate 96 33

Data rate for 2 Mbps 99 96

link w.r.t. loss

Data rate for 10 Mbps 98 89

link w.r.t. loss

5 Conclusions

To improve overall network throughput, Google developed
QUIC protocol to compete TCP’s dominance. In order
to enhance the throughput and reduce transmit delay
(latency) further ModQUIC has been proposed. In this work,
Chromium server-client model testbed environment has been
used and performance tested. The presented results in the form
of comparative analysis of ModQUIC, QUIC and TCP using
parameters throughput, delay and behaviour with respect to
loss rate, for limited and sufficient bandwidth condition.
The observed improvement for ModQUIC in throughput
over QUIC and TCP are 35.66% and 51.93% respectively.
Whereas marginal reduction in delay compared to QUIC and
significant over TCP has been observed. It has been also

Modified QUIC protocol for improved network performance and comparison with QUIC and TCP 43

observed that for lossy link TCP shows poor performance.
However the performance of ModQUIC and QUIC found to
be stable. For high-speed link (sufficient bandwidth) QUIC
and ModQUIC act as a performance bottleneck. Results
were validated with the help of R? regression model. As an
extension of this work, performance testing of ModQUIC for
multiple clients with fairness property can be done.

References

Afanasyev, A., Tilley, N., Reiher, P. and Kleinrock, L.
(2010) ‘Host-to-host congestion control for TCP’, [EEE
Communications Surveys and Tutorials, Vol. 12, No. 3,
pp-304-342.

Aggarwal, A., Savage, S. and Anderson, T. (2000) ‘Understanding
the performance of TCP pacing’, in Proceedings IEEE
Nineteenth Annual Joint Conference of the IEEE Computer
and Communications Societies, INFOCOM 2000, 1IEEE, Vol. 3,
pp.1157-1165.

Biswal, P. and Gnawali, O. (2016) ‘Does quic make the web
faster?’, in 2016 IEEE Global Communications Conference
(GLOBECOM), IEEE, pp.1-6.

Carlucci, G., De Cicco, L. and Mascolo, S. (2015) ‘Http over udp:
an experimental investigation of quic’, in Proceedings of the
30th Annual ACM Symposium on Applied Computing, ACM,
pp-609-614.

Cook, S., Mathieu, B., Truong, P. and Hamchaoui, 1. (2017) ‘Quic:
better for what and for whom?’, in 2017 IEEE International
Conference on Communications (ICC), IEEE, pp.1-6.

Das, S.R. (2014) Evaluation of QUIC on Web Page Performance,
PhD thesis, Massachusetts Institute of Technology.

Flach, T., Papageorge, P., Terzis, A., Pedrosa, L., Cheng, Y.,
Karim, T., Katz-Bassett, E. and Govindan, R. (2016) ‘An
internet-wide analysis of traffic policing’, in Proceedings of the
2016 Conference on ACM SIGCOMM 2016 Conference, ACM,
pp-468—482.

Grigorik, 1. (2017) High Performance Browser Networking: What
every Web Developer should know about Networking and Web
Performance, O’Reilly Media, Inc., Sebastopol, California.

Gizis, A. (2016) Taking Googles Quic for a Test
Drive [online] http://www.connectify.me/blog/
taking-google-quic-for-a-test-drive/.

Ha, S., Rhee, 1. and Xu, L. (2008) ‘Cubic: a new TCP-friendly
high-speed TCP variant’, ACM SIGOPS Operating Systems
Review, Vol. 42, No. 5, pp.64-74.

Hamilton, R., Iyengar, J., Swett, I. and Wilk, A. (2016) ‘Quic:
a udp-based secure and reliable transport for http/2’, IETE
Draft-tsvwg-quic-protocol-02.

Hassan, M. and Jain, R. (2003) High Performance TCP/IP
Networking, Vol. 29, Prentice Hall, , Upper Saddle River, New
Jersey, USA.

Iyengar, J. (2016) Quic: Redefining ilnternet Transport,
Google Inc [online] https://docs.google.com/presentation/d/
15e1bLKYeN56GL10TISFOOZiUsl-rexisLo9dEyDkWQs.

Iyengar, J. and Thomson, M. (2017) ‘Quic: a udp-based multiplexed
and secure transport’, Draft-ietf-quic-transport-01 (work in
progress).

Kakhki, A.M., Jero, S., Choffnes, D., Nita-Rotaru, C. and
Mislove, A. (2017) ‘Taking a long look at QUIC’, in
Proceedings of the 2017 Internet Measurement Conference.

Langley, A. and Chang, W-T. (2013) Quic Crypto [online] http:/
tinyurl.com/Irtjyjs.

Leith, D. and Shorten, R. (2004) ‘H-tcp: TCP for high-speed and
long-distance networks’, in Proceedings of PFLDnet.

Luckie, M., Dhamdhere, A., Clark, D., Huffaker, B. et al. (2014)
‘Challenges in inferring internet interdomain congestion’, in
Proceedings of the 2014 Conference on Internet Measurement
Conference, ACM, pp.15-22.

Megyesi, P., Kramer, Z. and Molnar, S. (2016) ‘How quick is quic?’,
in 2016 IEEE International Conference on Communications
(ICC), TIEEE, pp.1-6.

Ross, S.M. (1996) Stochastic Processes, 2nd ed., Wiley Series in
Probability and Mathematical Statistics, Wiley, India.

Roskind, J. (2012) QUIC: Design Document and Specification
Rationale, Internet-Draft, Intended status: Informational,
Internet Engineering Task Force.

Swett, 1. (2015) Quic Loss Recovery and Congestion Control,
Internet-Draft, Intended status: Informational, Internet
Engineering Task Force.

Swett, I. and Iyengar, J. (2015) ‘Quic loss recovery and congestion
control’, [Internet-Draft, Intended status: Informational,
Internet Engineering Task Force.

Srivastava, A. (2017) Performance Analysis of QUIC Protocol under
Network Congestion, PhD thesis, Master thesis, Worcester
Polytechnic Institute.

Xu, L., Harfoush, K. and Rhee, 1. (2004) ‘Binary increase
congestion control (bic) for fast long-distance networks’, in
INFOCOM 2004. Twenty-third AnnualJoint Conference of the
IEEE Computer and Communications Societies, IEEE, Vol. 4,
pp.2514-2524.

