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Abstract— Satellite image denoising is essential for enhancing
the visual quality of images and for facilitating further image
processing and analysis tasks. Designing of self-tunable 2-D
finite-impulse response (FIR) filters attracted researchers to
explore its usefulness in various domains. Furthermore, 2-D
FIR Wiener filters which estimate the desired signal using its
statistical parameters became a standard method employed for
signal restoration applications. In this paper, we propose a 2-D
FIR Wiener filter driven by the adaptive cuckoo search (ACS)
algorithm for denoising multispectral satellite images
contaminated with the Gaussian noise of different variance
levels. The ACS algorithm is proposed to optimize the Wiener
weights for obtaining the best possible estimate of the desired
uncorrupted image. Quantitative and qualitative comparisons are
conducted with 10 recent denoising algorithms prominently used
in the remote-sensing domain to substantiate the performance
and computational capability of the proposed ACSWF. The
tested data set included satellite images procured from
various sources, such as Satpalda Geospatial Services, Satellite
Imaging Corporation, and National Aeronautics and Space
Administration. The stability analysis and study of convergence
characteristics are also performed, which revealed the possibility
of extending the ACSWF for real-time applications as well.

Index Terms— 2-D finite-impulse response (FIR) Wiener filter,
adaptive cuckoo search (ACS) algorithm, metaheuristic optimiza-
tion algorithms, satellite image denoising.

I. INTRODUCTION

MULTISPECTRAL imagery (MSI) is steadily growing
in its popularity as a digital means for remote sens-

ing, terrain analysis, and detecting thermal signature. It is
often used as a viable alternative for mapping applications
when standard mapping and geodesy product become inad-
equate or outdated. The first and foremost attribute of the
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MSI is its capability to record spectral reflectance in different
portions of the electromagnetic spectrum, which makes it
useful in various applications [1], [2]. MS images embed the
amount of reflectance and illumination of the scene procured,
in a wide stretch of much narrower frequency bands than
RGB images. The MSI system records such MS signal with
the aid of multispectrum arrays of sensors. MS images thus
convey an authentic representation of real-world scenes, and
hence the performance measures of remote-sensing operations
get enhanced. Compared with hyperspectral images (with
100–200 bands which record the acquired signal in a wide
spectral range), MS images generally possess a less number
of distinct spectral bands (i.e., 4–7) and hence is less bulky to
process.

However, the MSI is often affected by noisy signals, thereby
corrupting the original image. Such noise sources range from
system calibration errors, recording equipment limitations,
varying sensitivity of sensors, photon effects, and interfer-
ing natural phenomena [3]. Moreover, narrow-bandwidth and
limited-radiance energy obtained via sensors increases the
probability of thermal noises getting affected on the image
pixels significantly. Such noises are inevitable in the satellite-
based remote-sensing environment.

The characteristics of such interfering noises depend on the
acquisition system as well as the type of the images to be
processed. Mostly, this type of noise can be represented as a
random process following the normal distribution (Gaussian)
with zero mean. MS imaging systems consist of a large spec-
tral redundancy, which implies that the obtained image with a
range of frequency bands is correlated with each other. Hence,
the noise removal task results in the elimination of minor
spectral components. Thus, denoising of MS images remains
as a challenging task because of lack of a robust approach.

The simplest way of denoising is to utilize the conventional
2-D denoising techniques to reduce noise in the MS image
pixel-by-pixel or band-by-band. Such filtering approaches
include the use of 2-D IIR and finite-impulse response (FIR)
filters and adaptive filtering algorithms, such as 2-D least mean
square (2-D-LMS) algorithm [4]–[6], 2-D normalized LMS
(2-D-NLMS) algorithm [7], [8], and 2-D affine projection
algorithm (2-D-APA) [6], [9]. Later, 2-D FIR adaptive Wiener
filters were also developed which guaranteed an optimal trade-
off between noise smoothing and inverse filtering [10]. The
optimization of 2-D adaptive filter coefficients for the above-
mentioned algorithms was performed using conventional opti-
mization algorithms [7], [8].
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Consequently, the advent of evolutionary and swarm
intelligence-based algorithms paved the way to use its potential
to solve similar iterative optimization problems [11]–[16]. For
instance, Tzeng [14] proposed a 2-D adaptive FIR digital
filter design using the genetic algorithm for filter coefficient
optimization. Boudjelaba et al. conducted a comprehensive
comparative study highlighting the merits and demerits of
using evolutionary algorithms for designing 2-D adaptive
FIR digital filters [15]. Such stochastic algorithms were then
widely found use in the medical domain [17] as well as
for denoising natural images [12], [13], [18], [19]. Recently,
Bhandari et al. [20] extended the use of evolutionary algo-
rithms for wavelet-domain-based MS satellite image denoising
application. The authors used the adaptive differential evolu-
tion (JADE) algorithm to find the optimal subband thresholds
to separate noise from image [20]. Although the authors
claimed the algorithm to be superior compared with others, but
it was less efficient in preserving the edges and other textural
features.

The statistical estimation of the desired signal from the
noisy signal using 2-D FIR adaptive Wiener filters is found
to perform well, provided the filter coefficients are fine-tuned.
The recent advancements in the field of artificial intelligence
and the proven potential of metaheuristic algorithms motivated
us to use the same for finding the optimal adaptive Wiener
weights. A prior analytical study comparing the performance
of different metaheuristic algorithms for solving nonlinear
optimization problems was conducted before choosing cuckoo
search (CS) algorithm in modeling the proposed denoising
method [1], [21]. The CS algorithm was adopted account-
ing for its implementation simplicity and efficient solution
exploitation and exploration strategies along its run. So as
to further enhance the solution exploration strategy, with a
commendable improvement in the algorithm’s convergence
capability, a computationally efficient adaptive CS (ACS)
algorithm is proposed. Therefore, in this paper, an efficient
2-D FIR adaptive Wiener filtering method using the ACS
algorithm (ACSWF) is proposed for denoising satellite images
contaminated with additive white Gaussian noise (AWGN).
The noise is assumed to be uniform in every band and the
low-spectral correlations between bands are treated as self-
evident. The major contributions of this paper are as follows.

1) A computationally efficient ACS algorithm is proposed
by remodeling self-ACS (SACS) algorithm that was put
forward by Li et al. for optimizing the weight vectors
of an adaptive Wiener filter [22].

2) A robust ACS-based adaptive Wiener filtering (ACSWF)
for denoising MS satellite images corrupted with the
Gaussian noise is proposed.

Visual and numerical results highlight the superiority of the
proposed method in restoring images corrupted with the
Gaussian noise of different variance levels consistently. Per-
formance stability and improved convergence capability of the
proposed filter make it adaptable for other signal processing
applications.

The rest of this paper is organized as follows. Section II
presents a detailed study of various denoising techniques found
in the literature for MS image denoising. Section III gives

the details of the theory and implementation steps of the
proposed ACSWF. Section IV presents the simulation results
and discussions. Finally, Section V draws the conclusion.

II. RELATED WORK

Unfortunately, the presence of noise in MS images not
only affects the human interpretation but also limits the
accuracy of the computational methods. The poor image
quality also makes various quantitative measurements and
computer-aided analysis challenging and unreliable. Hence,
quality enhancement of such images by employing proper
denoising methods becomes a prerequisite for all practical
applications. In the last few decades, a large number of meth-
ods have been proposed for denoising MS and hyperspectral
images. Focusing on the works done over the past decade
for MS image denoising, we come across techniques using
transform-domain-based schemes [23]–[26], nonlocal sparse
models [27]–[30], anisotropic diffusion scheme [31], partial
differential equations (PDEs) [28], nonlocal tensor based
models [32], [33], and bilateral filtering [34], [35].

Scheunders and De Backer [23] proposed a Bayesian
wavelet-based method for denoising MS satellite images
using a prior noise-free image. The authors claimed that the
proposed method is performing better compared with other
MS image denoising algorithms. Chaux et al. put forward
a nonlinear Stein-based estimator for wavelet denoising of
multichannel data [24]. Experiments performed for denoising
MS remote-sensing images significantly outperformed other
wavelet-based methods. A wavelet-based MS image restora-
tion technique was proposed by Duijster et al. based on an
iterative expectation maximization algorithm, applying decon-
volution and denoising steps alternately [36]. Experiments
on Landsat and AVIRIS images highlighted the denoising
efficiency of the proposed method over bandwise method [36].
Despite the aforementioned merits, wavelet-based methods are
computationally complex because of domain transformation,
and an inappropriate selection of basis functions or subband
thresholds for denoising can cause blurring and ringing arti-
facts around edges.

Mairal et al. [27] introduced a new image restoration model
combining the nonlocal means and sparse coding approaches.
Quantitative and qualitative experiments on images corrupted
with synthetic or real noise showed the effectiveness of the
proposed model compared with other state-of-the-art denois-
ing methods, in the expense of computational complexity.
Prasath and Singh [31] proposed an MS image denoising
scheme using coupled PDEs with anisotropic diffusion. The
well posedness of the scheme guaranteed its stability with
efficient prefiltering capacity, whereas the increased compu-
tational complexity made the scheme practically difficult to
process images of bigger size and more than three chan-
nels [31]. A similar remote-sensing image denoising method
using PDEs and auxiliary image priors (PDE-AIP) was pro-
posed by Liu et al. [28] in 2012. Visual results and quantitative
indicators proved the proposed method to be particularly
suited for denoising images corrupted with high-variance
noise. In 2014, Peng et al. [32] proposed a decomposable
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Fig. 1. Block schematic of the proposed ACSWF.

nonlocal tensor-based dictionary learning technique for MS
image denoising. The proposed method ameliorated the image
quality considerably but failed to preserve the structural details
compared with others. Recently, Xie et al. [33] proposed a
new MSI denoising model using a newly designed tensor-
based sparsity measure. Experimental results substantiated the
superiority of the proposed denoising scheme beyond the state
of the arts in recovering the fine and course grained structures.
At the same time, all tensor-based image processing techniques
account for an increased computation time and memory.
Peng et al. [34] used optimized vector bilateral filtering for MS
image denoising which provided fair tradeoff between noise
filtering and edge degradation. The authors selected the image-
dependent filter parameters by optimization procedure based
on Steins principle. In 2017, Papari et al. [35] introduced a
bilateral filtering scheme for 3-D images. The filtering scheme
was computationally efficient, but it resulted in reasonable
image artifacts particularly near edges. Similarly, a plethora
of literature is available on hyperspectral image denois-
ing which can be roughly categorized as transform-based
methods [37], filter-based methods [38], regularization-based
methods [39]–[41], and kernel based methods [42].

III. ADAPTIVE CUCKOO SEARCH-BASED

WIENER FILTER (ACSWF)

A. Theory Behind the Proposed ACSWF

This section presents the theory and fundamental concepts
of the proposed ACS algorithm-based Wiener filtering for the
denoising of satellite images corrupted with the AWGN. The
key idea of the proposed method is to find the best possible
estimate of the original image using 2-D FIR Wiener filtering.
The 2-D FIR Wiener filter is modeled to adaptively modify its
window weights, to minimize the mean square error (MSE)
between the desired image and the filter output. The proposed
denoising method uses the ACS algorithm for optimizing those
filter weights ensuring the least possible mean squared error
as compared with other similar metaheuristic algorithms. The
block schematic of the proposed ACSWF for satellite image
denoising is shown in Fig. 1.

The Wiener filtering theory assumes the signals to be
stationary. The 2-D FIR Wiener filters are block-adaptive,
wherein it calculates the filter coefficients periodically for a
predefined block size of n × n samples [43].

Let xi, j be the original uncorrupted image pixel located at
spatial location i, j and yi, j be its noisy counterpart conta-
minated with signal independent AWGN, ηi, j . Modeling a
2-D FIR Wiener filter for denoising this image, to obtain

a linear estimate x̂i, j , requires minimizing the MSE value
between x̂i, j and xi, j . It can be mathematically formulated
as in

MSE =
M∑

i=1

N∑
j=1

[x̂i, j − xi, j ]2 (1)

where MandN denote the dimension of the input image
to be processed. The linear estimate x̂i, j of the desired
signal obtained using Wiener filtering can be evaluated
using [44], [45]

x̂i, j = σ 2
xi, j

σ 2
xi, j

+ σ 2
ηi, j

[yi, j − μxi, j ] + μxi, j (2)

where

yi, j = xi, j + ηi, j .

Parameters μ and σ 2 indicate the mean and variance of the
signal, assuming xi, j to be a white Gaussian process and the
noise mean to be zero. For estimating the linear estimate x̂i, j ,
we assume that the mean and variance values of the AWG
noise (μηi, j , σ 2

ηi, j
) are known [46], [47]. Hence, the prime

focus is on estimating the mean and variance of the desired
input signal, μxi, j and σ 2

xi, j
, respectively. In our proposed

method, the mean and variance measures of xi, j are usually
estimated using the method devised by Kuan et al. [45]. The
local signal statistics estimation using adaptive weight factors
formulated by Kuan et al. [45] overcame the severe blurring
around the edges of the images introduced using the local
linear minimum MSE [44].

The authors proposed using monotonically decreasing func-
tions such as the Gaussian function for calculating the filtering
window weights, by asserting more confidence on variance
estimate at the center of the window used. The use of
adaptive window weights, rather than deterministic weights by
Kuan et al. [45], seemed to be more appropriate and reliable
for image filtering. Hence, we propound the use of adaptive
Wiener weights in our proposed denoising method driven
by the ACS algorithm (ACSWF). The optimal weights thus
obtained are used for estimating the local statistics of the
linear estimate of the desired signal. The estimated mean
and variance measures using adaptive Wiener weights are
formulated as given in

μ̂xi, j =
i+n∑

a=i−n

j+n∑
b= j−n

wi, j,a,b ya,b

σ̂ 2
xi, j

=
i+n∑

a=i−n

j+n∑
b= j−n

(wi, j,a,b(ya,b − μ̂xi, j ))
2 (3)

where wi, j,a,b is the adaptive Wiener weight vector.

B. Proposed Adaptive Cuckoo Search Algorithm

The CS is a stochastic metaheuristic algorithm evolved
mimicking the obligate brood parasitic behavior shown by
some cuckoo species [48]. The use of Lévy flight strategy
rather than Brownian random walks for solution space explo-
ration and its implementation simplicity because of the use of a
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single control parameter pa (switching parameter) are the key
factors which make it superior compared with others. The flow
of the CS algorithm is based on three idealized rules, wherein
the single control parameter (pa) denotes the probability of
discovering alien eggs by the host species. Practical implemen-
tation of this scenario includes replacing pa proportion of the
current solution set with new ones [48]. Similarly, Lévy flight
strategy for random walks follows variable step sizes ensuring
least chances for oversampling, which eventually improved
the convergence rate of the algorithm. Thus, the CS algorithm
uses a balanced combination of local and global random walks
controlled by a “switching parameter” pa [48].

In order to further improve the solution searching capability
of the CS algorithm, many CS variants were proposed for
different optimization problems. A prior extensive study was
undertaken comparing the potential of various ACS variants
in the literature, for implementing the above-defined satellite
image denoising problem [22], [49]–[52]. The SACS devel-
oped by Li et al. was found to perform better in the evaluated
set, for our defined problem of satellite image denoising [22].
The SACS algorithm was developed by modifying and com-
bining the mutation strategies used by two common variants
of differential evolution (DE) algorithm [53]. The structure of
any DE variants is generalized by denoting them as DE/x/y/z,
where x is the mutation vector, y is the number of vectors
used for mutation, and z indicates the crossover scheme
[binomial (bin) or exponential (exp)] employed [2], [54]. The
authors used a scale factor “φ” to control the pace of the
algorithm to reach optimality. The scale factor “φ” was drawn
in each iteration from a Gaussian distribution of mean 0.5 and
standard deviation 0.1 [22].

Further investigations proved that the random initialization
of “φ” values repeatedly in each iteration did not help in
improving the convergence rate or enhancing the performance.
At the same time, it resulted in an unwanted increase in the
computational complexity of the algorithm. Hence, we remod-
eled the above-mentioned approach by replacing the scale
factor “φ” with the switching parameter “pa.”

The mutation strategies used by two DE variants given in (4)
are modified and adopted in the proposed ACS algorithm [22]

DE/rand/1/bin :wk,G+1 = wr1,G +F · (wr2,G − wr3,G)

DE/best/1/bin :wk,G+1 = wbest,G +F · (wr1,G − wr2,G

+ wr3,G − wr4,G) (4)

where k ∈ {1, . . . , Np}, r1, r2, r3, and r4 are random integer
indices selected from k = {1, . . . , Np}, xbest is the mutation
vector, Np is the population size, and F is the scaling factor
used in the DE algorithm. F ∈ [0, 1] helps in avoiding search
stagnation of the algorithm by controlling the effect of the
difference vector in mutation operation [54]. Equation (5)
gives the modified form of (4) included in the proposed ACS
algorithm

CS/rand/1/bin : wk,G+1 =wr1,G + pa · (wr2,G − wr3,G)

CS/best/1/bin : wk,G+1 =wbest,G + pa · (wr1,G − wr2,G

+ wr3,G − wr4,G) (5)

where pa is the “switching parameter” in the CS algorithm.
The pseudocode of this phase is as given in the following.

if randk ≥ 1- G
Gmax

then
CS/best/1/bin ;

else
CS/rand/1/bin ;

end

In this pseudocode, randk, k = {1, . . . Np} is a random
number drawn from a uniform probability distribution, whose
value lies within the range [0, 1]. The parameter G indicates
the current iteration (generation) count and Gmax denotes
the total number of iterations included. Thus, in the ACS
algorithm, the discovery and randomization stages of the CS
algorithm are modified by adopting the two mutation strategies
following the pseudocode given above. The randomization
stage selects any of the two strategies by comparing the value
of (1 − (G/Gmax)) with the randk ∈ [0, 1] value, generated
in each iteration for the entire population. It indicates that
the probability of selecting any of the two search strategies
is a function of the iteration count G. Hence, if randk is
less than (1 − (G/Gmax)), CS/rand/1/bin is chosen, or else
CS/best/1/bin is selected as the randomization strategy for the
ACS algorithm. The selection between these two mutation
strategies ensures an increased probability of exploration dur-
ing the initial iterations and increased exploitation toward the
final iterations. It can be easily analyzed, since it is evident
that the value of (1 − (G/Gmax)) decreases from 1 to 0 as
it proceeds through the iterations. Thus, the probability of
selecting CS/rand/1/bin is more in the initial set of iterations,
whereas the probability of choosing CS/best/1/bin increases
toward the end. Hence, based on two new search strategies
controlled by a linear decreasing probability rule, the ACS
algorithm does a better balancing of its exploration and
exploitation phases [22].

C. Implementation of Proposed ACSWF

The pseudocode and stepwise implementation details of the
proposed ACSWF are given in the following.

Step 1: Initialize the solution space randomly using

wk,l = wmin
k,l + rand

(
wmax

k,l − wmin
k,l

)
(6)

where w(k,l) denotes weights allotted for 2-D FIR Wiener filter.
The subscripts k = 1, . . . , Np , where Np is the population
size, and l = 1, . . . , d , where d = n2 is the total number
of coefficients required to form the filter weight matrix. The
boundary constraints [wmin, wmax] are set to [−1, 1].

Step 2: The n×n weight matrix for 2-D FIR Wiener filtering
is formed by the 2-D lexicographic conversion of each of the
candidate solution vector from the entire population using

[wk,1, wk,2,. . . , wk,n, wk,n+1,. . . , wk,2n, wk,n(n−1)+1. . . wk,d ]

⇒
⎡
⎣

wk,1 . . . wk,n

. . . . . . . . .
wk,n(n−1)+1 . . . wk,d

⎤
⎦ . (7)
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Algorithm 1: Proposed ACSWF

// Initialization
Population initialization: wk,l where k = 1, 2,....Np; l =
1, 2,.....d; Np = population size; d = dimensionality;

1 Parameter initialization: Switching parameter (pa),
Maximum number of iterations (Gmax);
// 2D FIR Wiener filtering and MSE

calculation
2 2D lexicographic ordering of weight vectors wk using

equation (8);
3 Estimate x̂i, j using equations (2) and (3) with

wi, j,a,b = wk ;
4 Calculate fitness (MSE) values (Fk) using equation (1) ;
5 Record the best fitness (MSE) value and the

corresponding solution set (wbest);
// Adaptive Cuckoo Search algorithm

6 for (G ≤ Gmax) do
7 Lévy flight modeling of random walks to generate

new solution sets following equation (9);
8 Estimate x̂i, j using updated solution set and compute

their respective fitness values.;
9 for all k do

10 if Fnew
k > Fk then

11 Fk = Fnewk ;
12 wbest = wnew;
13 end
14 end
15 for all k do
16 if randk ≥ 1- G

Gmax
then

17 CS/best/1/bin :
wk,G+1 = wr1,G + pa · (

wr2,G − wr3,G
)
;

18 else
19 CS/rand/1/bin : wk,G+1 =

wbest,G + pa · (wr1,G −wr2,G +wr3,G −wr4,G
)
;

20 end
21 end
22 Output estimation and fitness value computation

following equations (2), (3) and (1);
23 Comparison of newly generated fitness values with

the earlier set and recording the best (wbest) so far.;
24 end
25 Estimate x̂i, j using the optimal adaptive Wiener weight

vector as wbest following equations (2) and (3);

Step 3: Estimate the linear estimate of the desired signal x̂i, j

following (2) and (3) using the adaptive Wiener weight vector
as wk .

Step 4: Compute the fitness (MSE) values of the esti-
mated filter outputs obtained using each possible weight
matrix formed in Step 2 using (1). Repeat if number of
iterations G < Gmax.

Step 5: Retain the best possible weight matrix (solution) in
the previous iteration and generate new random solutions by
Lévy flights around the previous solution set [48]. The new

TABLE I

QUANTITATIVE RESULT COMPARISON BETWEEN 2-D AWF (WITHOUT
ACS), CSAWF, AND THE PROPOSED ACSWF FOR IMAGES 1 AND 2

WITH THREE DIFFERENT NOISE VARIANCE LEVELS

population set thus formed follows:

wk,G+1 = wk,G + αL(s, β) (0 < β ≤ 2, α = 0.01)

L(s, β) = β�(β)sin(πβ
2 )

π
· 1

s1+β
; (| s |≥| s0 |) (8)

where s represents the step size, s0 is the smallest step
(typically 0.1–1) and α represents the scaling factor for step
size. G represents the iteration/generation count, i.e., wk,G

and wk,G+1 are the weight vectors formulated for the
Gth and G + 1th generation of the ACS algorithm, respectively.

Step 6: Estimate x̂i, j using the new set of weight matrices
formed, and compute the fitness value of the newly generated
solutions using (1). Memorize the best solution.

Step 7: Apply mutative randomization to the existing solu-
tion set as explained in Section II-B and update the new
solution set using (5).

Step 8: Compute the estimated output using the updated
solution set and evaluate their respective fitness values.

Step 9: Increment the iteration count by 1, i.e., G = G + 1.
Until G = Gmax (maximum iterations).

Step 10: Obtain the optimal filter weights wbest,Gmax and
denoise yi, j using them to get the best possible estimate of
the desired signal.

D. Illustration of Proposed ACSWF for Image Denoising

Experiments were conducted for denoising test images cor-
rupted with the Gaussian noise of three different noise variance
levels using 2-D adaptive Wiener filter (2-D AWF), CS-based
AWF (CSAWF), SACS-based AWF (SACSAWF), and the
proposed ACSWF. The results obtained were compared to
substantiate the effect of ACS algorithm in optimizing Wiener
weights compared with the other. The qualitative and quanti-
tative results obtained for denoising images contaminated with
the Gaussian noise is presented in Fig. 2 and Table I, respec-
tively. The quantitative metrics compared include MSE [55],
peak signal-to-noise ratio (PSNR) [56], feature similarity
index (FSIM) [57], universal quality index (UQI) [58], nor-
malized absolute error (NAE) [59], and CPU running time.
Lower MSE and NAE values along with higher PSNR, FSIM,
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Fig. 2. Simulation results of denoising test images corrupted with
Gaussian noise of 30% variance level using 2-D AWF, CSAWF, SACSAWF,
and ACSWF. (a)–(f) Image 1. (g)–(l) Image 2. Best zoomed on screen.

and UQI values are the preferable conditions for evaluating
the performance of the denoising algorithms. The quantitative
analysis given in Table I provides two major inferences:
1) with weight search algorithms, such CS and SACS [22],
the image denoising performance can be improved and 2)
as compared with the other search algorithms, such as CS
and SACS [22], our proposed ACS can achieve superior per-
formance, demonstrating its effectiveness. The visual results
also indicate that the use of ACS algorithm in optimizing

Wiener weights has a great impact in estimating the desired
image. The ACSWF proved to be very efficient in removing
the AWGN from the corrupted image, preserving the relevant
edges and other features of the image.

The 2-D AWF selects the weight vectors for a pixel (i, j)
adaptively by biasing the estimated statistical measures in
favor of pixels with values similar to yi, j

w(i, j, a, b) = A(i, j)

1 + ξ(max
[
ε2, (yi, j − ya,b)2

]

A(i, j) =
⎧⎨
⎩

∑
a,b

1

1 + ξ(max
[
ε2, (yi, j − ya,b)2

]
⎫⎬
⎭

−1

(9)

where ξ > 0, ε = 2.5ση,w(i, j, a, b) = 0, and A(i, j) is
the normalization constant. Parameter ξ was chosen such that
ξε2 � 1 so as to limit outliers [60]. Since our test images are
complex scenes with profound edge and textual information,
this adaptive weight selection constraint will tend to fuse the
closely laid edges. It reflects as blurring along the edges and
minor textural features for such images, whereas this approach
works effectively for preserving edges of less complex scenes.

The use of the metaheuristic algorithm effectively enhances
this adaptive weight vector selection problem. The use of the
CS algorithm for optimizing the weights (CSAWF) works well
in preserving the edges, since the selection of weight factors
are solely based on the fitness function, which is to reduce
the MSE value between the estimated pixels and the original
image. The use of uncorrupted image prior helps in optimizing
the wiener weights to estimate a close enough approxima-
tion of the original image. The proposed ACSWF approach
includes a better balance between solution exploration and
exploitation strategies, which efficiently explores every single
possibility for the optimal weight vectors which reduces the
calculated MSE value. It eventually reduces the chances of
getting clogged in a near optimal solution set as seen using
the CS algorithm [2]. Hence, the selection of the best possible
Wiener weight vector using the proposed ACSWF approach
results in a better denoising result with less image artifacts.

IV. RESULTS AND DISCUSSION

A. Data Set Description and System Specifications

The tested data set includes satellite images
procured from various sources, such as Satpalda
Geospatial Services, Satellite Imaging Corporation,
and NASA. All the test images included in the study
are MS images with four bands (blue: 430–550 nm;
green: 500–620 nm; red: 590–710 nm; near IR: 740–940 nm).
The three images included in this paper are referred as
Image 1: landslide in Zhouqu, China, 1263 × 1261,
WorldView-2, MS-4 50 m Res. (http://earthobservatory.nasa.
gov), Image 2: Madrid, Spain, 1000 × 1000, WorldView-3,
MS-4 40 cm Res. (http://www.satimagingcorp.com), Image 3:
real noisy image, Sentinel-2, 1034 × 1030, (computed noise
variance 19.88%), (https://eros.usgs.gov/sentinel-2). Two
more images with their simulation results are included in the
Supplementary Material. Simulations were carried out using
MATLAB R2015a software running on an Intel Core i7-3770
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Fig. 3. Simulation results of denoising Images 1 and 2 corrupted with Gaussian noise of variance 30% using state-of-the-art denoising algorithms.
(a) Original. (b) Noisy. (c) 2-D-NLMS. (d) 2-D-APA. (e) BM3-D-PCA. (f) PDE-AIP. (g) CII-NLM. (h) DST. (i) SSTV. (j) 2-D ABC adaptive filtering.
(k) JADE. (l) Proposed ACSWF.

system with 3.40-GHz CPU, 8-GB RAM, and 64-bit
operating system. The optimal value for the “switching
parameter” (pa) used in the proposed algorithm is fixed
as 0.5, by conducting a prior empirical study [2]. This value
ensures a proper balancing between the exploitation and
exploration stages of the optimization algorithm.

B. Simulation Results

This section includes experimental results obtained using
three high-spatial resolution MS satellite images of which one
is a real noisy image obtained. Two more such MS images
with their qualitative and quantitative results are provided
in Fig. 3 and Tables II–IV of the Supplementary Material.

The performance analysis of the proposed ACSWF is
carried out by comparing it with basic 2-D adaptive filtering
methods, such as 2-D-NLMS algorithm [19], [61] and
2-D-APA [19], [62]. We have also included most recent
state-of-the-art denoising methods used with MS satellite
images which employs the principal component analysis
combined with block-matching 3-D (BM3-D-PCA) [63], [64],
PDE-AIP [28], nonlocal cosine integral images
(CII-NLM) [25], discrete shearlet transform (DST) [26],
and spatiospectral total variation (SSTV) [30]. For ensuring
a fair comparison, we have included comparison with recent
denoising algorithms using metaheuristics, such as the JADE
algorithm [20] and the 2-D artificial bee colony (ABC)
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TABLE II

QUANTITATIVE COMPARISON BETWEEN DIFFERENT ALGORITHMS FOR DENOISING
IMAGES 1 AND 2 CORRUPTED WITH GAUSSIAN NOISE OF VARIANCE 10%

TABLE III

QUANTITATIVE COMPARISON BETWEEN DIFFERENT ALGORITHMS FOR DENOISING

IMAGES 1 AND 2 CORRUPTED WITH GAUSSIAN NOISE OF VARIANCE 20%

TABLE IV

QUANTITATIVE COMPARISON BETWEEN DIFFERENT ALGORITHMS FOR DENOISING

IMAGES 1 AND 2 CORRUPTED WITH GAUSSIAN NOISE OF VARIANCE 30%

adaptive filtering algorithm [19]. The aforementioned
metaheuristic-based denoising algorithms and the proposed
ACSWF were executed for 31 independent trials, and the best
results among them are furnished.

Experiments were conducted for denoising images cor-
rupted with three different Gaussian noise variance levels,
i.e., 10%, 20%, and 30%, to substantiate the efficiency of
the proposed algorithm. Since satellite images are most prone
to the Gaussian noise of small variance levels, we have
fixed the window size to be 3 × 3 for the entire set of

experiments. Parameter initialization phase of the proposed
algorithm includes manual assignment of parameter values
for Np, wmin, wmax, and Gmax. We have fixed their values
to be 50, −1, 1, and 100, respectively. The dimensionality
d of the optimization problem denotes the total number of
elements included as filter coefficients for the defined filter.
Since we have chosen the filter window size n ×n to be 3×3,
the value of d = n2 is set as 9. All other parameters used
in the algorithms compared are chosen from their respective
references.
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TABLE V

QUANTITATIVE COMPARISON BETWEEN DIFFERENT ALGORITHMS FOR DENOISING SENTINEL 2 (REAL NOISY)
IMAGE CORRUPTED WITH COMPUTED NOISE VARIANCE 19.88%

Fig. 4. Simulation results of denoising Image 3. Sentinel 2 (real noisy image, computed noise variance 19.88%) using state-of-the-art denoising algorithms.
(a) Noisy. (b) 2-D-NLMS. (c) 2-D-APA. (d) BM3-D-PCA. (e) PDE-AIP. (f) CII-NLM. (g) DST. (h) SSTV. (i) 2-D ABC adaptive filtering. (j) JADE.
(k) Proposed ACSWF.

Tables II–VI present the quantitative results obtained by
comparing the 10 algorithms for denoising test images cor-
rupted with the Gaussian noise of three different variance
levels. The test images are processed band-by-band, assuming
the noise to be uniform in every band and finally combined
to form the denoised image. The quantitative metrics are
computed by averaging the bandwise metric values and are
reported in Tables II–VI. The proposed ACSWF yielded the
least possible MSE value with a minimum NAE factor. These
measures indicate the closeness of denoised images to the
original uncorrupted image. A high value of PSNR, FSIM,
and UQI for the proposed algorithm among the compared set
highlights the visual quality of the estimated output image.

Subjective evaluation of denoised images obtained for 30%
Gaussian noise variance level case using different algorithms
compared is presented in Figs. 3 and 4. The proposed ACSWF
proved to be very effective in preserving the information
bearing structures like terrain edges and other significant
textural features, especially for high noise variance levels.

TABLE VI

STATISTICAL ANALYSIS COMPARING MSE VALUES OBTAINED USING

JADE, 2-D ABC, AND ACSWF ALGORITHMS FOR DENOISING

IMAGES 1 AND 2 CORRUPTED WITH GAUSSIAN NOISE VARIANCE
30% AND IMAGE 3 WITH COMPUTED NOISE VARIANCE 19.88%

It also resulted in very less blurring effect to the estimated
image compared with others for all the three noise variance
levels investigated.

The stability and converging capability of the three
metaheuristic-based denoising algorithms were analyzed by
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Fig. 5. Stability comparison between JADE, 2-D ABC, and the proposed
ACSWF using box-and-whisker plots. (a) Image 1 and (b) Image 2 for
30% noise variance level.

Fig. 6. Convergence rate analysis between JADE, 2-D ABC, and ACSWF
algorithms. (a), (c), and (e) Convergence plots for Image 1 for noise variance
level of 10%, 20%, and 30%, respectively. (b), (d), and (f) Convergence plots
for Image 2 for noise variance level of 10%, 20%, and 30%, respectively.

investigating their box-and-whisker plots, statistical parame-
ters, and convergence characteristics plots. Stability analysis
was carried out by comparing the box-and-whisker plots of the
three metaheuristic-based denoising algorithms. The random
initialization phase followed by metaheuristic algorithms, such
as JADE, 2-D ABC, and the proposed ACSWF used for image
denoising, lead to slight discrepancies in the final optimal
solutions.

Box-and-whisker plots give a graphical representation of
the fitness value obtained in each repetition of the same
experiment. Hence, it helps in assessing the repeatability of
an algorithm over time, subject to the same experimental
conditions. A highly stable algorithm gives more or less the
same experimental results on each repetition and hence can be
used for real-time applications as well. Figs. 5 and 7(a) present
the box-and-whisker plots comparing the three metaheuristic
algorithms included in our study, by repeating each experiment
for 31 independent trials. The red line across each box
indicates their respective median value and is showed on the
top of each box. Comparison of the statistical parameters, such
as standard deviation, mean, best value, and worst value of

Fig. 7. (a) Stability and (b) convergence plot comparison between JADE,
2-D ABC, and the proposed ACSWF using box-and-whisker plots for Image 3.

the fitness function (MSE) obtained, after 31 trials of each
experiment is presented in Table VI. The comparison also
proves the stability and efficiency of the proposed ACSWF
for denoising satellite images.

The test images were denoised using all the three algorithms
by fixing the maximum number of iterations to be 100. The
fitness values obtained in each run were plotted against the
iteration count to analyze the convergence characteristics of
each. The random population initialization phase and the
solution exploration and exploitation strategies followed by
different metaheuristic algorithms have a high impact on
governing its convergence characteristics. Figs. 6 and 7(b)
show the convergence plots, wherein the proposed ACSWF
emerged to be converging fast to the least possible fitness
(MSE) value. The reasonably fast convergence rate makes
ACSWF adaptable for real-time applications too.

V. CONCLUSION

In this paper, a 2-D FIR Wiener filter based on the ACS
algorithm (ACSWF) was proposed for denoising satellite
images corrupted with AWGN. The ACS algorithm was
proposed to optimize the adaptive Wiener filter weights to
obtain the best possible estimate of the desired input image.
Performance assessment included quantitative and qualitative
comparisons with most studied and state-of-the-art denoising
algorithms, such as 2-D NLMS, 2-D-APA, BM3-D-PCA,
PDE-AIP, CII-NLM, DST, SSTV, JADE, and 2-D-ABC. Sim-
ulation experiments were conducted for denoising satellite
images corrupted with three different Gaussian noise variance
levels to substantiate the performance of the proposed filter.
Robustness of the proposed filter was evaluated by testing it
across a wide range of MS satellite image data set.

Comparisons between the evaluated performance metrics
quantify the efficiency of the proposed filter in preserving
significant image features with the LMS error. Subjective
comparisons between the resultant images also highlight
the filtering capability of the proposed ACSWF in denois-
ing satellite images with reasonably fewer image artifacts.
Stability and convergence capability analysis performed
between JADE, 2-D-ABC, and ACSWF using box-and-
whisker plots, statistical parameters, and convergence charac-
teristics plots also highlights the performance of the proposed
denoising filter. The ACSWF emerged with the least MSE
value in a less number of iterations among the three.
Substantial improvement in the quantitative and qualitative
results along its stable nature makes it highly adaptable for
other real-time image processing applications.
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As a part of the future study, the performance of the
proposed filter can be assessed for other 2-D signal process-
ing applications, such as channel estimation and system
identification.
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