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Abstract

Let G be a graph and KG be the set of all cliques of G, then the clique graph of G denoted by K (G) is the graph with vertex set
KG and two elements Qi , Q j ∈ KG form an edge if and only if Qi ∩ Q j ≠ ∅. Iterated clique graphs are defined by K 0(G) = G,

and K n(G) = K (K n−1(G)) for n > 0. In this paper we prove a necessary and sufficient condition for a clique graph K (G) to be
complete when G = G1 + G2, give a partial characterization for clique divergence of the join of graphs and prove that if G1, G2
are Clique-Helly graphs different from K1 and G = G1�G2, then K 2(G) = G.
c⃝ 2016 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Given a simple graph G = (V, E), not necessarily finite, a clique in G is a maximal complete subgraph in G. Let
G be a graph and KG be the set of all cliques of G, then the clique graph operator is denoted by K and the clique
graph of G is denoted by K (G), where K (G) is the graph with vertex set KG and two elements Qi , Q j ∈ KG form
an edge if and only if Qi ∩ Q j ≠ ∅. Clique graph was introduced by Hamelink in 1968 [1]. Iterated clique graphs are
defined by K 0(G) = G, and K n(G) = K (K n−1(G)) for n > 0 (see [2–4]).

Definition 1.1. A graph G is said to be K -periodic if there exists a positive integer n such that G ∼= K n(G) and the
least such integer is called the K -periodicity of G, denoted K -per (G).

Definition 1.2. A graph G is said to be K -Convergent if {K n(G) : n ∈ N} is finite, otherwise it is K -Divergent (see
[5]).

Definition 1.3. A graph H is said to be K -root of a graph G if K (H) = G.

If G is a clique graph then one can observe that, the set of all K -roots of G is either empty or infinite.
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Definition 1.4 ([3]). A graph G is a Clique-Helly Graph if the set of cliques has the Helly-Property. That is, for every
family of pairwise intersecting cliques of the graph, the total intersection of all these cliques should be non-empty
also.

Definition 1.5. Let G1 = (V1, E1), G2 = (V2, E2) be the two graphs. Then their join G1 + G2 is obtained by adding
all possible edges between the vertices of G1 and G2.

Definition 1.6. The Cartesian product of two graphs G and H , denoted G�H , is a graph with vertex set V (G�H) =

V (G) × V (H), i.e., the set {(g, h)|g ∈ G, h ∈ H}. The edge set of G�H consists of all pairs [(g1, h1), (g2, h2)] of
vertices with [g1, g2] ∈ E(G) and h1 = h2, or g1 = g2 and [h1, h2] ∈ E(H) (see [6] page no 3).

2. Results

One can observe that the clique graph of a complete graph and star graph are always complete. Let G be a graph
with n vertices and having a vertex of degree n − 1, then the clique graph of G is also complete.

Theorem 2.1. Let G1, G2 be two graphs and G = G1 + G2, then X is a clique in G1 and Y is a clique in G2 if and
only if X + Y is a clique in G1 + G2.

Proof. Let G = G1 + G2 and X be a clique in G1 and Y be a clique in G2. Suppose that X + Y is not a maximal
complete subgraph in G1 + G2, then there is a maximal complete subgraph (clique) Q in G1 + G2 such that X + Y
is a proper subgraph of Q. Since X + Y is a proper subgraph of Q, there is a vertex v in Q which is not in X + Y and
v is adjacent to every vertex of X + Y , then by the definition of G1 + G2, v should be in either G1 or G2. Suppose
v is in G1, then the induced subgraph of V (X) + {v} is complete in G1, which is a contradiction as X is maximal.
Therefore X + Y is the maximal complete subgraph (clique) in G1 + G2.

Conversely, let Q is a clique in G1 + G2. Suppose that Q ≠ X + Y where X is a clique in G1 and Y is a clique
in G2. If Q ∩ G1 = ∅, then Q is a subgraph of G2. This implies that Q is a clique in G2 as Q is a clique in G. Let
v be a vertex of G1. Then by the definition of G1 + G2, one can observe that the induced subgraph of V (Q) ∪ {v} is
complete in G, which is a contradiction as Q is a maximal complete subgraph. Therefore Q ∩ G1 ≠ ∅. Similarly we
can prove that Q ∩ G2 ≠ ∅. Let X be the induced subgraph of G with vertex set V (Q)∩ V (G1) and Y be the induced
subgraph of G with vertex set V (Q) ∩ V (G2), then Q = X + Y . Since Q is a maximal complete subgraph of G, X
and Y should be maximal complete subgraphs in G1 and G2 respectively. Otherwise, if X is not a maximal complete
subgraph in G1 then there is a maximal complete subgraph X ′ in G1 such that X is subgraph of X ′, and this implies
that X + Y is a subgraph of X ′

+ Y and X ′
+ Y is complete, which is a contradiction. Therefore X and Y are maximal

complete subgraphs (cliques) in G1 and G2 respectively. �

Corollary 2.2. Let G1, G2 be two graphs and G = G1 +G2. If n, m are the number of cliques in G1, G2 respectively,
then G has nm cliques.

Proof. Let G = G1 + G2, KG1 = {X1, X2, . . . , Xn} be the set of all cliques of G1 and KG2 = {Y1, Y2, . . . , Ym} be
the set of all cliques of G2. Then by Theorem 2.1 it follows that KG = {X i + Y j : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is the set
of all cliques of G. Since G1 has n, G2 has m number of cliques, G1 + G2 has nm number of cliques. �

In the following result we give a necessary and sufficient condition for a clique graph K (G) to be complete when
G = G1 + G2.

Theorem 2.3. Let G1, G2 be two graphs. If G = G1 + G2, then K (G) is complete if and only if either K (G1) is
complete or K (G2) is complete.

Proof. Let G = G1+G2 and K (G) be complete. Suppose that neither K (G1) nor K (G2) is complete, then there exist
two cliques X, X ′ in G1 and two cliques Y, Y ′ in G2 such that X ∩ X ′

= ∅ and Y ∩Y ′
= ∅. By Theorem 2.1 it follows

that X + Y, X ′
+ Y ′ are cliques in G. Since X ∩ X ′ and Y ∩ Y ′ are empty, it follows that {X + Y } ∩ {X ′

+ Y ′
} = ∅,

which is a contradiction as K (G) is complete.
Conversely, suppose that K (G1) is complete and KG1 = {X1, X2, . . . , Xn}, KG2 = {Y1, Y2, . . . , Ym}. By

Corollary 2.2, it follows that G has exactly nm number of cliques. Let KG = {Qi j : Qi j = X i + Y j for i =
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1, 2, . . . , n; j = 1, 2, . . . , m} be the set of all cliques of G. Then Q is the vertex set of K (G). Arranging the elements
of KG in the matrix form M = [mi j ] where mi j = Qi j , we have

M =

Q11 Q12 Q13 . . . Q1m
Q21 Q22 Q23 . . . Q2m

.

.

.

.

.

.

.

.

.
. . .

.

.

.

Qn1 Qn2 Qn3 . . . Qnm

.

Let Qi j , Qkl be any two elements in M . Since Qi j = X i + Y j , Qkl = Xk + Yl , it follows that X i , Xk are cliques
in G1. Since K (G1) is complete, X i ∩ Xk ≠ ∅ and then Qi j ∩ Qkl ≠ ∅. Therefore Qi j , Qkl are adjacent in K (G).
Hence K (G) is complete. �

Lemma 2.4. Let G1, G2 be two graphs and G = G1 + G2. If K (G1), K (G2) are not complete, then for every clique
in K (G1) there is a clique in K (G) and for every clique in K (G2) there is a clique in K (G).

Proof. Let G = G1 + G2 be a graph such that K (G1) and K (G2) are not complete. Let V (K (G1)) = {X i :

X i is a clique in G1, 1 ≤ i ≤ n} and V (K (G2)) = {Y j : Y j is a clique in G2, 1 ≤ j ≤ m}, then by Theorem 2.1 it
follows that V (K (G)) = {X i + Y j : 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Let Q be a clique of size l in K (G1) and V (Q) =

{X Q1 , X Q2 , . . . , X Ql } where X Qi is a clique in G1 for 1 ≤ i ≤ l. Let AQ = {X Qi + Y j : 1 ≤ i ≤ l, 1 ≤ j ≤ m}.
Then clearly AQ is subset of V (K (G)).

Let X Q1 + Y1, X Q2 + Y2 be two elements in AQ . Since X Q1 , X Q2 are the vertices of the clique Q of K (G1), we
have X Q1 ∩ X Q2 ≠ ∅. Therefore {X Q1 + Y1} ∩ {X Q2 + Y2} ≠ ∅. Hence the intersection of any two elements in AQ
is nonempty. Then, it follows that the elements of AQ form a complete subgraph in K (G). Suppose that it is not a
maximal complete subgraph in K (G). Then there is a vertex, say X1 + Y1 in K (G) which is not in AQ and X1 + Y1
is adjacent with every vertex of AQ . Since K (G2) is not complete there exists a vertex say Y2 in K (G2) such that Y2
is not adjacent to Y1 in K (G2). Since Q is a clique in K (G1) and K (G1) is not complete, there is a vertex say X Q1

in V (Q) which is not adjacent to X1 in K (G1). By the definition of AQ one can see that X Q1 + Y2 is an element of
AQ . Therefore {X Q1 + Y2} ∩ {X1 + Y1} = ∅, which is a contradiction. Thus AQ is a maximal complete subgraph in
K (G). Hence for every clique in K (G1) there is a clique in K (G).

On similar lines we can also prove that for every clique in K (G2), there is a clique in K (G). �

Corollary 2.5. Let G1, G2 be two graphs and G = G1 + G2. If K (G1), K (G2) are not complete, then the number
of cliques in K (G) is at least the sum of the number of cliques in K (G1) and K (G2).

Theorem 2.6. Let G1, G2 be two graphs and G = G1 + G2. If K (G1), K (G2) are not complete, then K 2(G1) +

K 2(G2) is an induced subgraph of K 2(G).

Proof. Let G = G1 +G2 be a graph such that K (G1) and K (G2) are not complete. Let X1, X2, . . . , Xn be the cliques
of K (G1), and Y1, Y2, . . . , Ym be the cliques of K (G2). By Lemma 2.4 it follows that for every clique X i of K (G1)

there is a clique X ′

i in K (G), 1 ≤ i ≤ n and for every clique Y j of K (G2) there is a clique Y ′

j in K (G), 1 ≤ j ≤ m.
Claim 1: X i ∩ X j ≠ ∅ in K (G1) if and only if X ′

i ∩ X ′

j ≠ ∅ in K (G) for i ≠ j .
Let X i , X j be two cliques in K (G1) and X i ∩ X j ≠ ∅. Let v be a vertex in X i ∩ X j . By Lemma 2.4 it follows that

if v is a vertex in the clique X i in K (G1), then for any vertex u in K (G2), v + u is a vertex in the clique X ′

i in K (G)

corresponding to the clique X i in K (G1). Therefore v + u is a vertex in X ′

i ∩ X ′

j .
Conversely, suppose that X ′

i , X ′

j be two cliques in K (G) and X ′

i ∩ X ′

j ≠ ∅. Let w be a vertex in X ′

i ∩ X ′

j . By
Theorem 2.1 it follows that w = v + u, where v is a vertex of K (G1) and u is a vertex of K (G2). Since w = v + u
is a vertex of the clique X ′

i in K (G), it follows that v is a vertex of the clique X i in K (G1). Similarly v is a vertex of
the clique X j in K (G1). Therefore v is in X i ∩ X j .

Similarly we can prove that, Yi ∩ Y j ≠ ∅ in K (G2) if and only if Y ′

i ∩ Y ′

j ≠ ∅ in K (G) for i ≠ j .
Claim 2: X ′

i ∩ Y ′

j ≠ ∅ in K (G) for 1 ≤ i ≤ n, 1 ≤ j ≤ m.
Let X ′

i , Y ′

j be two cliques in K (G), 1 ≤ i ≤ n, 1 ≤ j ≤ m and X i , Y j are the cliques in K (G1), K (G2)

corresponding to the maximal cliques X ′

i , Y ′

j in K (G) respectively. Let v be a vertex in X i and u be a vertex in Y j ,
then by Lemma 2.4 v + u be the vertex in X ′

i as well as in Y ′

j . Therefore X ′

i ∩ Y ′

j ≠ ∅.

By claims 1 and 2 it follows that K 2(G1) + K 2(G2) is an induced subgraph of K 2(G). �
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Note: Let G1, G2 be two graphs and G = G1 +G2. If G is K -divergent, then G1, G2 don’t need to be K -divergent.

Example 2.7. If H is a graph consisting of just two nonadjacent vertices and we define for every n > 1 the graph
Jn = (((H + H) + H) + · · ·) + H  

n times

, it turns out that K (Jn) = J2n−1 . Suppose G1 = J2 = C4, G2 = H then

G1 + G2 = J3 and K (G1 + G2) = J4. Therefore K 2(G1 + G2) = J8. Which implies that G1 + G2 is K -divergent.
But G1 and G2 are not K -divergent.

2.1. Observations

Let G = G1 + G2 be a graph and KG1 = {X1, X2, . . . , Xn} be the set of all cliques of G1 and KG2 =

{Y1, Y2, . . . , Ym} be the set of all cliques of G2. By Theorem 2.1, it follows that KG = {Qi j = X i + Y j : 1 ≤

i ≤ n; 1 ≤ j ≤ m} is the set of all cliques of G. Let vi j be the vertex of K (G) corresponding to the clique Qi j of G.
Arrange the vertices of K (G) as a matrix M = [mi j ], where mi j = vi j , i.e.,

M =

v11 v12 v13 . . . v1m
v21 v22 v23 . . . v2m
.
.
.

.

.

.

.

.

.
. . .

.

.

.

vn1 vn2 vn3 . . . vnm

.

From the above matrix one can observe that the i th row corresponds to the clique X i of G1 and j th column
corresponds to the clique Y j of G2, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Claim 1: Any two elements in the same row or same column in M are adjacent in K (G).
Let Qi j , Qik be any two elements in the i th row. Since Qi j = X i + Y j , Qik = X i + Yk , Qi j ∩ Qik = X i ≠ ∅.

Therefore Qi j , Qik are adjacent in K (G). Similarly any two elements in the same column are adjacent.
Claim 2: If X i ∩ X j ≠ ∅, then every vertex of i th row is adjacent to every vertex of j th row, 1 ≤ i ≠ j ≤ n.
Let X i ∩ X j ≠ ∅ and vik , v jl be any two elements of i th and j th rows respectively in M . Since Qik = X i + Yk ,

Q jl = X j + Yl are the cliques of G corresponding to the vertices vik , v jl of K (G) and X i ∩ X j ≠ ∅, we have
Qik ∩ Q jl ≠ ∅. Therefore vik , v jl are adjacent in K (G).

Similarly if Yi ∩Y j ≠ ∅, then every vertex of i th column is adjacent to every vertex of j th column, 1 ≤ i ≠ j ≤ m.
One can see that the following observations will follow from Claim 1 and Claim 2.

1. If G = G1 + G2, then K (G) is Hamiltonian.

2. If G = G1 + G2, then K (G) is planar if it satisfies one of the following:
(i) The number of cliques in G1 and G2 is less than 3.
(ii) If the number of cliques in G1 is 3, then either G2 is a complete graph or G2 has exactly two cliques and

K (G1) = K3, K (G2) = K2.
(iii) If the number of cliques in G1 is 4, then G2 is a complete graph.

3. If G = G1 + G2 and n, m are the number of cliques in G1, G2, then the degree of any vertex in K (G) is
(n + m − 2) + k(n − 1) + l(m − 1) − kl, 0 ≤ k < m and 0 ≤ l < n.

4. Let G1, G2 be two graphs and G = G1 + G2,
(i) If both G1 and G2 have odd number of cliques, then K (G) is Eulerian if one of K (G1) or K (G2) is Eulerian.
(ii) If both G1 and G2 have even number of cliques, then K (G) is Eulerian if K (G1), K (G2) are Eulerian.
(iii) If G1 has even number of cliques and G2 has odd number of cliques, then K (G) is Eulerian if degree of each

vertex in K (G2) is odd and K (G1) is Eulerian.

3. Cartesian product of graphs

In this section we are considering G1, G2 be connected graphs only.

Theorem 3.1. If G1, G2 are Clique-Helly graphs different from K1 and G = G1�G2, then K 2(G) = G.

Proof. Let G1, G2 be Clique-Helly graphs different from K1 and G = G1�G2. Let V (G1) = {v1, v2, . . . , vn1} and
V (G2) = {u1, u2, . . . , un2}, then by the definition of G1�G2, it follows that V (G) = {Vi j : Vi j = (vi , u j ) where 1 ≤

i ≤ n1, 1 ≤ j ≤ n2}, |V (G)| = n1n2. Also, G has n2 copies of G1 (say, G1
1, G2

1, . . . , Gn2
1 ) which are vertex
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disjoint induced subgraphs and n1 copies of G2 (say, G1
2, G2

2, . . . , Gn1
2 ) which are vertex disjoint induced subgraphs.

Clearly one can observe that V (Gi
2) ∩ V (G j

1) = Vi j , Vi j is not in V (Gn
2) and V (Gm

1 ) for n ≠ i , m ≠ j for all
1 ≤ i ≤ n1, 1 ≤ j ≤ n2. As G = G1�G2, we can see that every clique in G1 and G2 are cliques in G. Let
KG1 = {Q1, Q2, . . . , Ql1} and KG2 = {P1, P2, . . . , Pl2}, then

KG = {Q1
1, Q1

2, . . . , Q1
l1
, Q2

1, Q2
2, . . . , Q2

l1
, . . . , Qn2

1 , Qn2
2 , . . . , Qn2

l1
, P1

1 , P1
2 , . . . , P1

l2
, P2

1 , P2
2 , . . . , P2

l2
, . . . , Pn1

1 ,

Pn1
2 , . . . , Pn1

l2
}.

Claim 1: For every vertex Vi j in G there is a clique in K (G).
Let Vi j be a vertex in G for some i, j , 1 ≤ i ≤ n1, 1 ≤ j ≤ n2. Define Ai j = {Q : Vi j ∈ Q} ⊆ KG . Clearly

intersection of any two cliques in Ai j is non empty. Therefore the vertices corresponding to these cliques in K (G)

form a complete subgraph in K (G). Suppose it is not a maximal complete subgraph in K (G), then there exists a vertex
V in K (G) such that V is adjacent to all the vertices of Ai j . Let QV be the clique in G corresponding to the vertex V
in K (G). Clearly Vi j is not in QV . Since every clique in G is either a clique in G1 or a clique in G2, assume that QV

is a clique in G j
1 . Let Q be a clique in Gi

2 having the vertex Vi j , then Q is in Ai j . Since V (Gi
2) ∩ V (G j

1) = Vi j , Q is

a clique in Gi
2 and Vi j ∈ V (Q) and V (Q) ∩ V (G j

1) = Vi j . Which implies that V (Q) ∩ (V (G j
1) \ {Vi j }) = ∅. Since

Vi j is not in QV and QV is a clique in G j
1 , V (QV ) ⊆ (V (G j

1) \ Vi j ). Therefore V (Q) ∩ V (QV ) = ∅, a contradiction
to the fact that QV is adjacent to all the vertices of Ai j in K (G). Hence the elements of Ai j form a clique in K (G).

Claim 2: For any clique Q in K (G), intersection of all the cliques of G corresponding to the vertices of Q is non
empty and a singleton.

Let Q be a clique in K (G) and V (Q) = {x1, x2, . . . , xn}. Suppose all xk’s are cliques in G j
1 for some j ,

1 ≤ j ≤ n2, then the intersection of all xk’s is non empty in G, where xk ∈ V (Q), as G j
1 satisfies Clique-Helly

property. Let V ∈ ∩xk∈Q xk , then V is in Gi
2 for some i , 1 ≤ i ≤ n1. Let P be any clique in Gi

2 having a vertex V ,
then P intersects with every element of V (Q). Therefore V (Q)∪{P} forms a complete graph in K (G), a contradiction
to the assumption that Q is maximal complete subgraph. Thus the elements of Q are the cliques of G1 and cliques of
G2. Since G j

1’s are vertex disjoint and Gi
2’s are vertex disjoint, any element of Q is either a clique of G j

1 or a clique

of Gi
2 for fixed i, j , 1 ≤ i ≤ n1, 1 ≤ j ≤ n2. Let x1, x2, . . . , xl be the cliques of G j

1 and xl+1, xl+2, . . . , xn be the

cliques of Gi
2. Since V (G j

1) ∩ V (Gi
2) = Vi j , xl1 is a clique of G j

1 , xl2 is a clique of Gi
2 and V (xl1) ∩ V (xl2) ≠ ∅,

1 ≤ l1 ≤ l, l + 1 ≤ l2 ≤ n, V (xl1) ∩ V (xl2) = Vi j . Which implies that Vi j belongs to every xk in Q. Therefore
∩xk∈Q xk = Vi j .

As the cliques of K (G) are the vertices of K 2(G), by Claims 1 and 2 one can see that there is a one to one
correspondence between the vertices of G and K 2(G).

Claim 3: Let U, V be any two adjacent vertices in G. Then the intersection of the cliques in K (G) corresponding
to these vertices is non empty.

Let U, V be any two adjacent vertices in G and QU , QV be the cliques in K (G) corresponding to the vertices U ,
V in G respectively. Since there is an edge between U , V in G, there exists a clique Q in G such that the vertices
U , V are in Q. By Claims 1 and 2 it follows that the vertices of QU in K (G) are the cliques of G having the vertex
U in G, it is in common. Therefore Q is in V (QU ). Similarly Q is in V (QV ). Which implies that QU ∩ QV ≠ ∅.
Since cliques of K (G) are the vertices of K 2(G), the vertices corresponding to the cliques QU and QV of K (G) are
adjacent in K 2(G).

Claim 4: Let P , Q be any two cliques in K (G). If the intersection of P and Q is non empty, then the vertices in G
corresponding to these two cliques are adjacent.

Let P , Q be any two cliques in K (G), P ∩ Q ≠ ∅ and U , V be the vertices in G corresponding to the cliques P ,
Q of K (G) respectively. Since P ∩ Q ≠ ∅, there exists a vertex Q1 belonging to V (P) ∩ V (Q). By Claims 1 and 2,
one can observe that Q1 is a clique in G and ∩Pi ∈V (P) Pi = U , ∩Qi ∈V (Q) Qi = V . Thus U , V belongs to V (Q1) in
G. Therefore U , V are adjacent in G.

By Claims 3 and 4 it follows that, two vertices are adjacent in G if and only if the corresponding vertices are
adjacent K 2(G).

Therefore K 2(G) is the same as G, if G = G1�G2 and G1, G2 are Clique-Helly graphs such that G1, G2 are
different from K1. �

Corollary 3.2. Let G1, G2 be two graphs and G = G1�G2. If G1, G2 are Clique-Helly graphs different from K1,
then
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i G is a Clique-Helly graph.
ii G is K -periodic.

iii G is K -convergent.
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