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1 Introduction

A square matrix A over the complex field is said to be an EP matrix if the column spaces of A and A* are equal.
The notion of EP matrix was introduced in 1950 by Schwerdtfeger [13]. A few years later, in 1966, Pear] [11]
gave a characterization of EP matrix through the Moore-Penrose inverse: A square matrix A is an EP matrix
if and only if A commutes with its Moore-Penrose inverse A'. Using the Pearl’s characterization, Campbell
and Meyer [3] extended the notion of EP matrix to bounded operator with a closed range defined on a Hilbert
space. A bounded operator A having a closed range is said to be an EP operator if the ranges of A and A*
are equal [3]. Itoh [7] introduced hypo-EP operator by weakening the Pearl’s characterization: ATA - AA" isa
positive operator. Hypo-EP operator is our focus of attention in this paper and it has been studied in [7, 9, 14].

Throughout this paper, given Hilbert spaces H and X, B(FH, X) denotes the set of all operators, i.e.,
bounded and linear maps, from H to X, and we write B(H, ) = B(H). The class B.(H) denotes the set of
all operators in B(H) having closed ranges. For any operator A € B(H, X), R(A) and N(A) denote the range
and kernel of A respectively. Given A € B(H, X), B € B(X, H) is the adjoint operator of A if (Ax, y) = (x, By)
for all x € H and y € X; in this case the operator B is denoted by A*. An operator A in B(H) is said to be
positive if (Ax, x) = 0 for all x € . For any nonempty set M in H, M~ denotes the orthogonal complement
of M. Note that if A € Bc(3), then A* € Bc(H), N(4)* = R(A*), N(A*)+ = R(A) and R(A) = R(AA*).

In section 2, we give some known characterizations of hypo-EP operators and few results which will be
used in the sequel. Section 3 deals with a problem of finding conditions, necessary or sufficient or both, such
that the product of hypo-EP operators is again a hypo-EP operator. Finally we conclude the section 4 with
few characterizations of hypo-EP operators through factorizations.

2 Preliminaries

We start with some known characterizations of hypo-EP operators.
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Theorem 1. [7, 14] Let A € B(H). Then the following statements are equivalent.
1. Aishypo-EP;

R(A) € R(A");

N(4) S N(A");

A =A*C, for some C € B(H);

for each x € H, there exists k > 0 such that |(Ax, y)| < k||Ay||, forally € K.

V1A WN

Example2. Let A : ¢, — (, be defined by A(xy, x2,x3,...) = (0,x1,X2,...). Then A*(x1,x2,X3,...) =
(x2, x3, X4, ...). Here R(A) C R(A*) and R(A) is closed. Hence A is a hypo-EP operator. Whereas the operator
B on ¢, defined by B(x1, x>, ...) = (x2,0, x4, 0, ...) is not a hypo-EP operator but it has a closed range.

Remark 3. The class of all hypo-EP operators contains the class of all EP operators. Hence it contains all
normal, self-adjoint and invertible operators having closed ranges. In the case of finite dimensional settings, EP
and hypo-EP are the same.

3 Product of Hypo-EP Operators

Every hypo-EP operator is necessarily an operator with a closed range. There is an example in [1] for a
bounded operator A in Bc(H) such that A ¢ B(H). But it has been observed that if A is hypo-EP, then
A? has a closed range always. Moreover, any natural power of A has a closed range [9, 14]. We first derive
few results on product of operators with closed ranges to analyze closed rangeness of “product of hypo-EP
operators.” We use the notion of angle between a pair of subspaces in a Hilbert space and give some of the
basic results.

Definition 4. [4] Let M and N be closed subspaces of a Hilbert space H. The angle between M and N is the
angle a(M, N) in [0, 71/ 2] whose cosine is defined by

cOM,N) = sup{|(x,y)| XxeMnMNN)L, X<, yeNnOINN)L, |yl < 1}.

We list some consequences of the definition of angle and a result pertaining to the product of operators with
a closed range.

Theorem 5. [4] Let M and N be closed subspaces of a Hilbert space H. Then

1. O0<c(M,N)<1.

2. c¢(M,N) =c(N, M) (“Symmetry”).

3106 < NIyl for allx e M and y € N, and at least one of x or y is in (M N N)L.

4. ¢(M,N) = 0if and only if the orthogonal projection onto M commutes with the orthogonal projection onto
N.

5 c(M,N) = c(M+, N1).

Theorem 6. [4] Let A and B be bounded operators on H with closed ranges. Then the following statements are
equivalent.

1. AB has a closed range ;

2. c(R(B),NA) <1;

3. R(B)+XN(A) is closed.

The following example illustrates the fact that there are operators A and B in B.(H) such that AB € B.(H)
but BA ¢ B.(H). We shall prove that when A and B are EP operators, the closed rangeness of AB implies the
closed rangeness of BA and vice-versa.
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Example 7. [12] Let A be an operator on ¢, defined by A(x4, x>, x3,...) = (x1,0, x>, 0, ...) and B be another
operator on (, defined by B(x1, X2, X3,...) = (3 + X2, 3 + X4, 2 + X¢, ...). One can verify that both A and B

are bounded operators and are having closed ranges. Also, R(AB) is closed but R(BA) is not closed.
Theorem 8. Let A and B be EP operators on H. Then R(AB) is closed if and only if R(BA) is closed.

Proof. Suppose that R(AB) is closed. Then by Theorem 6, c(R(B), N(A)) < 1. Now using Theorem 5, we
get c(R(B)*, N(4A)1) = c(R(A*),N(B*)) < 1. Since R(A) = R(A*) and N(B) = N(B*), c(R(4), N(B)) =
c(R(A*), N(B*)). Therefore c(R(A), N(B)) < 1. Hence R(BA) is closed. Converse part of this theorem can be
proved similarly. O

Corollary 9. Let A and B be hypo-EP operators on H such that R(A) N N(B) = {0} and R(B) N N(A) = {0}.
Then R(AB) is closed if and only if R(BA) is closed.

Proof. The proof is similar to Theorem 8. O
We now discuss results for the product to be hypo-EP if either A or B is hypo-EP. We first give an example to
show that product AB is not necessarily a hypo-EP operator even though A and B are hypo-EP.

Example10. Let A and B be operators on ¢, defined by A(xqi,x2,x3,...) = (0,x1,x2,...) and
B(x1,x2,x3,...) =(0,x2,0, X4, ...). Both A and B are hypo-EP operators. Since R(AB) = {(0, 0, x4, 0, x2,
0,...): > xi|? < oo} and R((AB)*) = {(0, x1,0,x2,0,...) : 352, |x;|* < oo}, AB is not a hypo-EP operator.

Theorem 11. Let A be a hypo-EP operator and P be the orthogonal projection onto R(A). Then AP is a hypo-EP
operator.

Proof. Since A has a closed range, there is a k > 0 such that ||Ax]|| = k||x|| for all x € N(A)*. Now let us take
x € N(AP)*, then x € N(P)* = R(P) = R(4) C R(A*) = N(A)* and Px = x. Hence for x € N(AP)*, we have
|APx|| = ||Ax]| = k||x||. Thus R(AP) is closed. Now R(AP) C R(A) = P(R(A)) C P(R(A*)) = R(PA*) which
implies that AP is hypo-EP. O

Corollary 12. Let A be an EP operator and P be the orthogonal projection onto R(A). Then AP is an EP operator.

Proof. From the proof of the Theorem 11, we can say R(AP) is closed. Since P is the orthogonal projection
onto R(A), R(AP) = R(A) = P(R(A)) = P(R(A*)) = R(PA*). Hence AP is EP. O

Theorem 13. Let A be a hypo-EP operator and B € B(H). If R(B) C R(A) and N(B) C N(A), then AB is
hypo-EP.

Proof. Since R(B) and N(A) are closed subspaces of H, the angle between R(B) and N(A) is the angle a €
[0, 71/2] whose cosine is defined by

c(R(B),N(4)) = sup {|<x, Y| : x € R(B) N (R(B) N N, |Ix]| < 1,
y € N(A) N (RB) NN, [y < 1} o

Since A is hypo-EP, R(B) C R(A) C R(A*) = N(A)* and hence R(B) N N(4) = {0}, so (1) becomes

c(R(B), N(A)) sup{|(x, )| : x € R(B), |Ix| < 1,y € N(A), |y| < 1}
sup{|(x, )| : x e N(A)™, x| < 1,y € N(A), |ly|| < 1}

= 0.

IN

Hence AB has a closed range. Since A is hypo-EP, N(B) C N(4) C N(4*) and hence R(A) C R(B*). Now
R(AB) = A(R(B)) € A(R(4)) € A(R(A™)) = R(AA™) = R(A) € R(B*) = R(B*B) = B*(R(B)) € B*(R(A)) C
B*(R(A*)) = R(B*A*). Hence AB is hypo-EP. O
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Corollary 14. Let A be a hypo-EP operator on H. Then A" is hypo-EP for any integer n = 1.

Proof. The conditions in Theorem 13 are trivial when A = B. Hence A? is hypo-EP. Continuing this process,
we get A" is hypo-EP for any integer n > 1. O

Remark 15. When A and B are EP matrices, the conditions R(B) C R(A) and N(B) C N(A) imply that A and
B have the same range and null spaces, that is, R(A) = R(B) and N(A) = N(B). The following examples illus-
trate that there are hypo-EP operators A and B on an infinite dimensional Hilbert space such that the inclusion
relation either in R(B) C R(A) or in N(B) C N(A) is proper.

Example 16. Let A and B be operators on ¢, defined by A(x1, x5, ...) = (0, x1, x>, ...) and B(x1, X3, ...)
= (0, x1, 0, X2, ...). Here both A and B are hypo-EP operators. Also R(B) C R(A) and N(A) = N(B) = {0}.

Example 17. Let A and B be operators on ¢, defined by A(x1, x>, ...) = (x1, 0, x3,0,...) and B(x1, x>, ...) =
(x1,0,x3,0,...). Even though both A and B are hypo-EP operators with R(A) = R(B) but N(B) € N(A).

Remark 18. If one of the sufficient conditions in Theorem 13 is not true, then the product of hypo-EP operator
and an operator with a closed range need not be a hypo-EP operator. The operators A and B given in Example
10 are hypo-EP operators and R(B) C R(A) but AB is not hypo-EP. Note that N(B) Z N(A).

Theorem 19. Let A and B be EP operators on H such that AB € B(H). Then AB is EP if and only if R(AB*) =
R(B*A).

Proof. Suppose that A and B are EP operators. Then the following equality relations are true.

R(AB) = A(R(B)) = A(R(B*)) = R(AB*) and
R(B*A) = B*(R(A)) = B*(R(A™)) = R(B*A™).

Hence AB is EP if and only if R(AB*) = R(B*A). O

Corollary 20. Let A and B be EP operators on H such that AB € B:(H). Then AB is hypo-EP if and only if
A(R(B*)) € B*(R(A)).

Corollary 21. Let A and B be hypo-EP operators on H such that AB € B(H). If
A(R(B)) C B*(R(A)), @
then AB is hypo-EP.
Proposition 22. Let A € B(H) be hypo-EP and B € B(H) such that AB € B(H). If there is a k > O such that
|Ax|| < k||ABx|| for all x € K 3

then AB is hypo-EP.

Proof. Let x € H. Since A is hypo-EP, for ABx € R(A) there exists z € H such that ABx = A*z. Hence for
eachy e X,
| (ABx,y)| = [(A"z,y)| = |(z, Ay) | < |l2|[||Ay| = k||z|[|ABy||. (4)

Take ¢ = k||z||. Therefore for each x € K, there exists ¢ > O such that | (ABx, y) | < ¢||ABy|| forall y € 3. Hence
by Theorem 1, AB is hypo-EP. O

Remark 23. The condition (3) is equivalent to N(AB) C N(A). Also this condition is not necessary for AB to be

hypo-EP. For example A =
yp xamp 0 1 1

Lo } B = [ L 1 }.Here N(AB) ¢ N(A). But A, B and AB are all hypo-EP.
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Proposition 24. Let A € B:(H) and B be hypo-EP operator. If R(A) C R(B) and A is injective, then AB is
hypo-EP.

Proof. Since B is hypo-EP, by Theorem 1, for each x € K, there is k; > 0 such that | (Bx, y) | < k1 ||By|| for all
y € H. Let x € H. Since R(A) C R(B) and ABx € R(A), there exists x' € H such that ABx = Bx'. Hence for
eachy € H,

| (ABx,y)| =|(Bx',y)| < ki||By]|. 5)

Since A is injective and R(A) is closed, there exists k, > O such that ||ABy|| = k;||By|| for all y € K. Therefore
[{(ABx,y)| < kq k—lz ||ABy|| for all y € H. Hence AB is hypo-EP. O

4 Factorizations of Hypo-EP Operators

In this section we give some characterizations of hypo-EP operators through factorizations. Pearl [10] showed
that a matrix A is EP if and only if A can be expressed as U(B@0)U* with U unitary and B an invertible matrix.
Drivalliaris [5] extended the results to EP operators on Hilbert spaces. Here we extend the results to hypo-EP
operators on Hilbert spaces. We extend Pearl’s characterizations of matrices to hypo-EP operators through
factorizations. The direct sum of linear operators A and B is denoted by A @ B. One may refer section 1.8 in
[8] for more details about direct sum of linear operators.

Lemma 25. Let H, X be Hilbert spaces and let A € B:(H) and B € B:(X). Then A @ B is hypo-EP if and only
if A and B are hypo-EP.

Proof. Suppose that A @ B is hypo-EP and x € N(A). Then (x,0) € N(A ® B) C N(A* @ B*) and x € N(4™).
Hence A is hypo-EP. Similarly B is also hypo-EP. Conversely, suppose that A, B are hypo-EP and (x, y) €
N(A @ B), then Ax = 0 and By = 0. This implies A*x = 0, B*y = 0. Hence (x, y) € N(A* @ B*). Therefore A® B
is hypo-EP. O

Lemma 26. Let A € B:(H), B € B:(K) and U € B(X, H) injective such that A = UBU*. Then A is hypo-EP if
and only if B is hypo-EP.

Proof. Suppose that B is hypo-EP and x € N(A). Then UBU*x = 0. Since U is injective, BU*x = 0 implies
that B*U*x = 0 (B is hypo-EP), which in turn implies that UB*U*x = 0, equivalently x € N(A*). Hence A
is hypo-EP. Conversely, suppose that A is hypo-EP and x € N(B). Therefore Bx = 0. Since U is injective,
U* is surjective. Hence for x € X there exists y € H such that U*y = x. Therefore BU*y = 0 implies that
UBU*y = Ay = 0. Since A is hypo-EP, A*y = UB*U*y = 0. Using injectivity of U and U*y = x, we get
x € N(B*). Hence B is hypo-EP. O

Theorem 27. Let A € B.(F). Then the following are equivalent.

1. Aishypo-EP;

2. There exist Hilbert spaces X, and £, Uy € B(X, @ L1, H) unitary and B; € B(X,) injective such that
A =Uy(B1 ®0)U7T ;

3. There exist Hilbert spaces X, and £, U, € B(X, ® L,, H) isomorphism and B, € B(X>) injective such
that A = U,(By & 0)U3 ;

4. There exist Hilbert spaces X3 and L3, U3z € B(X3 @ L3, H) injective and B3 € B(X3) injective such that
A= U3(B3 D O)U;<

Proof. It is enough to prove (1 = 2) and (4 = 1). All other implications follow trivially. Let X; = R(A*) and
L1 =N(A). Define Uy : K1 ® Ly — HbyUy(y,z) =y +zfory € R(A*), z € N(A). Direct calculation shows
that Uyx = (Pga«)X, Px(a)X), forallx € H and U; is unitary. Take By = A|ga+) : R(A*) — R(A™) which
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is injective. Since APy 4+ = A, A = U1(B1 @ 0)U7. Hence the implication (1 = 2) is proved. Lemma 25 and
Lemma 26 give (4 = 1). O

Theorem 28. Let A € B(H). Then the following are equivalent.

1. Aishypo-EP;

2. Thereexist Hilbert spaces X1 and £1, V1 € B(X1 L1, H) injective, W; € B(K10L1,H),S1 € B(H,K1®
£1), B1 € B(X,) injective and C, € B(X) such that A = V1(B1 © 0)S; and A* = W1(C, & 0)S1.

Proof. Suppose that A is hypo-EP. Then (2) follows from Theorem 27. Now assume (2), then from A = V{(B; ®
0)S; and injectivity of V; and By, we get N(4) = S73({0} @ £1). From A* = W1(C; @ 0)S1, we get S71 ({0} @
£1) C N(A*). Therefore N(A) C N(A*). Hence A is hypo-EP. O

Theorem 29. Let A € B.(3H). Then the following are equivalent.

1. Aishypo-EP;

2. There exist Hilbert spaces X1 and £, Uy € B(X, @ £1, H) isomorphism, B; € B(X,) injective and C; €
B(K1) such that A = U;(B; ® 0)U;* and A* = U1(Cy @ 0)UL.

Proof. Suppose that A is hypo-EP. Then (2) follows from Theorem 27. The proof of (2 = 1) follows from the
proof (2 = 1) of Theorem 28. O

Definition 30. [6] If A € Bc(H, K), then A' is the unique linear operator in B.(X, H) satisfying
1. AATA=A

2. ATAAT=AT

3. AAT=(AA"*

4. ATA=(ATA)".

The operator A" is called the Moore-Penrose inverse of A.

Next we are going to prove another characterization through the factorization of the form A = BC which
involves the Moore-Penrose inverse of an operator. Let A € B¢(H). Then A = A|g(4+)Pya+), where Algs«)
is the restriction of the operator A to R(A*) and Py, is the projection onto R(A™). Here B = A|p(4+) and
C = Py~ in the factorization A = BC. Also, B is an injective operator with a closed range and C is a surjective
operator. The factorization of the form A = BC is not unique because of the following reason.

Suppose that U € B(X, R(A*)) is an isomorphism, BU € B(X, H) is injective with a closed range and
U™lC e B(%, K) is surjective. Thus A = (BU)(U™1C) is also a factorization of the same type. Thus if A
Bc(H), then there exists a Hilbert space X such that B € B(X, H) injective and C € B(H, K) surjective with
A = BC. Therefore the factorization A = BC is not unique. Moreover, R(4) = R(B), R(4*) = R(C*), B'B = I,
CC'=Iy and A" = C'B'.

Theorem 31. [2] Let A, B € B¢(H) such that AB € B¢(H). Then (AB)" = B'A" if and only if R(A*AB) C R(B)
and R(BB*A*) C R(A™).

Theorem 32. Let A € B:(H) and A = BC be a factorization. Then the following are equivalent.

AA* = BCC*B*C*(CH)';
A*A = C*B*C'CBC.

1. Aishypo-EP;
2. C'c=BB;

3. R(B) CR(C);
4. B=C'CB;

5. B'=B'C'c;
6.

7.
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Proof. Since A" = C'BY, CC" = I and B'B = I, A is hypo-EP if and only if A'A > AA" if and only if
C'C = BB'. Hence (1) and (2) are equivalent. The equivalence of (1) and (3) are trivial from the relation
R(A) = R(B), R(A*) = R(C*). Now assume R(B) C R(C*), then B = PyB = PycyB = C'CB. Assume
B = C'CB. Since the conditions for Theorem 31 are satisfied for C'C and B, taking the Moore-Penrose inverse
on both sides gives (5). Suppose that B' = B'C'C, then N(C) € N(B'C'C) = N(B"). Since N(B") = N(B*),
we have N(C) C N(B*). Hence R(B) C R(C*). Suppose that A is hypo-EP, then (6) and (7) follow from (4).
Suppose that AA* = BCC*B*C*(C*)", then N(A) = N(C) = N(C*)" C N(AA*). Since N(4A*) = N(A*), we
have N(A) C N(A*). Hence A is hypo-EP. Finally if A*A = C*B*C'CBC, then A*A = A*Pg(yA. This implies
|AX||* = ||Pg(a-)Ax]||*. Therefore Ax = Py4.)Ax and hence R(A) C R(A*). Thus A is hypo-EP.

O
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