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Abstract Retinal vessel segmentation is a key step towards
the accurate visualization, diagnosis, early treatment and
surgery planning of ocular diseases. For the last two
decades, a tremendous amount of research has been ded-
icated in developing automated methods for segmentation
of blood vessels from retinal fundus images. Despite the
fact, segmentation of retinal vessels still remains a chal-
lenging task due to the presence of abnormalities, varying
size and shape of the vessels, non-uniform illumination and
anatomical variability between subjects. In this paper, we
carry out a systematic review of the most recent advance-
ments in retinal vessel segmentation methods published in
last five years. The objectives of this study are as follows:
first, we discuss the most crucial preprocessing steps that are
involved in accurate segmentation of vessels. Second, we
review most recent state-of-the-art retinal vessel segmenta-
tion techniques which are classified into different categories
based on their main principle. Third, we quantitatively anal-
yse these methods in terms of its sensitivity, specificity,
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accuracy, area under the curve and discuss newly introduced
performance metrics in current literature. Fourth, we discuss
the advantages and limitations of the existing segmenta-
tion techniques. Finally, we provide an insight into active
problems and possible future directions towards building
successful computer-aided diagnostic system.
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Introduction

Retinal diseases are of the most significant public health
concern in the working and aged population across world-
wide. For instance, Diabetic Retinopathy (DR), Glaucoma
and Age-related Macular Degeneration (AMD) are the lead-
ing causes of blindness in the ageing population [1–3]. In
a recent study [1], it is estimated that there are 93 mil-
lion people with DR followed by AMD which accounts for
7-8 % of total blindness worldwide [2]. Another major lead-
ing cause of blindness is the Glaucoma, characterized by
progressive damage to the optic nerve. It is estimated that
there are about 64.3 million people with Glaucoma [3]. All
these retinal diseases are likely to increase by three folds as
a consequence of exponential ageing population, diabetes,
lifestyle changes, and other risk factors. Such statistics nat-
urally drives a considerable amount of research dedicated
in developing computer-aided diagnostic (CAD) tool for the
automated diagnosis of retinal pathologies, mainly for low
and middle-income countries.

The segmentation of retinal vessels is particularly impor-
tant for diagnosis assistance, treatment and surg-ery plan-
ning of retinal diseases. Retinal vessel segmentation is
indeed a fundamental step in the accurate visualization and
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quantification of retinal pathologies. Changes in vessel mor-
phology such as shape, tortuosity, branching pattern and
width provide an accurate early detection of many retinal
diseases [4]. Clinically, retinal fundus images are often rou-
tinely acquired for mass screening of various abnormalities.
Manual segmentation of vessel structures from these fundus
images is often tedious, time-consuming and error-prone,
especially for large population screening. Therefore, there
is a need for the CAD tool which can reduce the number of
manual operators with an increase in speed, accuracy, and
reproducibility mainly for large population-based screening
programs.

Over the past two decades, a tremendous amount of
research has been devoted in segmenting the vessel struc-
tures from retinal fundus images. Numerous fully auto-
mated, semi-automated methods have been reported in the
literature which were quite successful in achieving seg-
mentation accuracy on par with trained human annota-
tors. Despite this, there is a considerable scope for further
improvements due to various challenges posed by the com-
plex nature of vascular structures. Some of the active prob-
lems include segmentation in the presence of abnormalities,
segmentation of thin vessel structures and segmentation
near the bifurcation and crossover regions.

In this article, we considered retinal vessel segmenta-
tion methods published in the last five years. The primary
objective of this study is to provide the readers with compre-
hensive insight on latest developments that has progressed
over the last five years and highlighting the key design chal-
lenges that researchers may encounter in the development
of new methods. The advancements in technological inno-
vations in imaging modalities (like Fluorescence Angiogra-
phy (FA), Scanning Laser Ophthalmoscope (SLO), Optical
Coherence Tomography (OCT)) along with the combina-
tion of adaptive optics to FA, SLO and OCT has provided
both spectacular spatial resolution as well as the depth infor-
mation for clear visualization of anatomical components.
In addition, standard acquisition protocol across different
imaging devices have helped the research community to
explore and validate their methods on more general and
diverse datasets. Comprehensive and detailed survey of reti-
nal vessel segmentation methods before this is published in
[5].

The rest of the paper is organized as follows. In “Retinal
image processing”, we provide a brief overview of differ-
ent retinal imaging modalities, followed by the significance
and existing challenges in retinal vessel segmentation. We
present an overview of the articles published in the last five
years along with their selection criteria in “Methodology
of the review”. The image pre-processing steps generally
employed before vessel segmentation methods is detailed
in “Image pre-preprocessing”. The different categories of
vessel segmentation methods are described in detail in

“Segmentation methods” along with their pros and cons.
Subsequently, the summary of the recent state-of-the-art
segmentation methods with the focus on existing seg-
mentation challenges is presented in “Summary of vessel
segmentation methods”. A brief overview of publicly avail-
able retinal image datasets, followed by the validation
measures employed and thorough assessment of segmen-
tation methods is presented in “Review of validation”. A
general discussion on recapitulating the main points and
future trends in retinal vessel segmentation are discussed
in “Discussion”. Finally, the conclusions are drawn in
“Conclusions”.

Retinal image processing

Imaging the retina is of prime importance for early diagno-
sis, monitoring disease progression, treatment and surgery
planning of various retinal diseases. The retina is the most
important part of the eye, which is formed by a thin layer
of photosensitive neural cells which lies at the back (i.e. the
fundus) of the eye. The image of the retina is acquired using
specialized microscope attached with a camera called fun-
dus camera. The fundus is the interior surface of the eye
including the retina, optic disc, macula, and fovea. A typical
human fundus photograph captured from the fundus camera
is shown in Fig. 1. The microstructures present in the retina
are the optic disc, macula and blood vessels such as arteries
and veins.

The fundus photography is obtained by a projection of 3-
D retinal tissue onto the 2-D imaging plane using reflected
light. Among the different imaging modalities as shown in
Fig. 2, the color fundus photography, FA and SLO images,
are the most widely used imaging techniques for segmenta-
tion of retinal vessels. Fluorescein angiography is a process
of imaging vascular flow within the retina and surround-
ing tissue by injecting a fluorescent dye into the blood

Fig. 1 A color fundus photograph of the retina from HRF dataset [91]
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Fig. 2 Retinal imaging
modalities. a The color fundus
photography from DRIVE. [88]
b Fluorescein Angiography
(FA). [100] c Scanning Laser
Ophthalmoscope (SLO) from
IOSTAR. [97]

stream. This dye fluoresces a different color when light from
a particular wavelength reaches it [4]. Recently, some of
the researchers have made an attempt to evaluate the seg-
mentation performance on FA [6] and SLO [101] images.
Compared to fundus imaging, SLO has the advantages of
lower levels of light exposure, direct digital imaging, pro-
vides very high contrast and finely detailed low resolution
images (1K-1.5K pixels).

Need for retinal vessel segmentation

Retina is the only part of the human body that allows
direct non-invasive visualization of its anatomical compo-
nents. Many large-scale population-based studies [7–12]
have been conducted to find statistical correlations between
a disease and structural changes in the vascular system of
the retina. Such studies have shown a strong relationship
between retinal vasculature with number of conditions like
hypertension [13, 14], stroke [8, 12], and cardiovascular dis-
eases [10]. The segmentation of retinal vessels is a crucial
task in automated early detection of these pathologies.

The key motivations which necessitate segmentation of
retinal vasculature are listed below:

– One of the major landmark study conducted in [1], has
shown a strong link between diabetic retinopathy and
structural changes in retinal vasculature. The earliest
sign of DR is the presence of tiny capillary dilations
called microaneurysms usually appearing near thin ves-
sels as shown in Fig. 3a. Although the segmentation of
vasculature has no direct role in the assessment of these
pathologies, it is necessary as pathological structures
(such as microaneurysm, exudates) have similar visual
features as high-curvature and junction points of thin
vessels [45]. The knowledge of shape and characteristic
of the retinal vasculature can also aid in accurate local-
ization of other degenerative anatomical structures like
the optic disc or macula [15].

– The Proliferative Diabetic Retinopathy (PDR) [16] is
an advanced stage of DR which is primarily character-
ized by abnormal growth of new blood vessels which is
termed as neovascularization. The abnormal growth of

new vessels is triggered mainly to compensate for the
damaged blood vessels caused by DR. The new blood
vessels appear in loopy structures mainly near the optic
disc region or the veins as shown in Fig. 3b. Since
conventional vessel segmentation algorithms consider
a vessel as a thin elongated smooth linearly varying
structure, it often fails to detect complex structures like
neovascularization (see Fig. 3b).

– Recent study in [17], has shown a link between Retin-
opathy of Prematurity (ROP) and the temporal chan-ges
of retinal vessel width and tortuosity. One of the earliest
changes visible in vessel morphology is an increase in
vessel tortuosity [19, 20] as depicted in Fig. 3c. The
increase in vessel tortuosity has shown a link with the
progression of ROP, hypertensive retinopathy [18], and
some rarer hereditary retinopathies.

– The ratio of arteries to veins width (A/V ratio), arteri-
ovenous (AV) nicking as depicted in Fig. 3d have shown
to be associated with hypertension, cardiovascular and
other systemic diseases [10–12, 102]. The Blue Moun-
tains eye population-based study [9] proved the hypoth-
esis that small vessel structural changes may precede
the development of severe hypertension. The analysis
of such retinal microvasculature requires precise tools
to extract the vessel tree, quantify the morphological
changes and evaluate the condition of the patients.

Challenges in retinal vessel segmentation

Many automated retinal vessel segmentation methods have
been proposed in the literature. Although most of the exist-
ing methods have been successful in achieving performance
close to the trained human observers, there still exists many
significant challenges in clinical scenarios.

The following are some of the current challenges and
open problems related to retinal vessel segmentation:

– During acquisition of retinal fundus images, different
3D retinal structures with varying depth are projected
onto a 2D image with maximum intensity. This leads to
the overlapping of non-vascular structures and decrease
in the visibility of thin vessels in low-contrast imaging
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Fig. 3 a common signs of DR
[92]. b common sign of
Proliferative DR (PDR) [92]. c
common sign of ROP (from
Oloumi et al. [103], with kind
permission from Elsevier). d
arteriovenous nicking [102]

as illustrated in Fig. 4a. Due to the use of low quality
fundus camera, various imaging artefacts such as blur,
noise, uneven illumination and inter-camera variability
may also be introduced.

– The majority of the existing methods have mainly
focused on segmenting major (large) vessel structures.
Accurate extraction of minor (thin) vessel structures is
still very challenging and an open problem (see third

Fig. 4 Challenges in retinal vessel segmentation. Vessel segmenta-
tion in healthy image (first row) and DR image (second row). First
column: original image; second column: segmentation result of the
approach [73]; third column: segmentation result of MSLD method
[24]. In the segmentation maps (second, third column), blue pixels

represent the true positives, red pixels are the false negatives, yellow
pixels are the false positives, and black pixels are the true negatives.
(Illustrations based on material from Christodoulidis et al. [73], with
kind permission from Elsevier)
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column Fig. 4a, b). Since large and small vessels differ
in their size, shape, and contrast, they should be tackled
differently because applying the same technique might
tend to over segment the other.

– The presence of abnormalities such as exudates, haem-
orrhages, cotton wool spots and microaneurysms (see
Fig. 4b), structures with strong central vessel reflex,
bifurcations/crossover regions, close parallel and highly
curved vessels (see Fig.5) pose a significant challenge
for accurate segmentation of vessels.

Methodology of the review

In this review, we performed a comprehensive literature
search on the recent retinal vessel segmentation techniques
published in the last five years. A total of 56 peer-reviewed
articles are listed in Table 1. were selected from the Google
Scholar, PubMed and the Web of Science databases. The
selection criteria include articles from peer-reviewed jour-
nals and conferences related to retinal vessel segmentation
methods. The classification hierarchy is same as proposed
in [5] to maintain the consistency and clarity for the sake of
readers interested in carrying out research in this area.

Image pre-preprocessing

Image pre-processing is an essential prerequisite for accu-
rate segmentation of retinal vessels. Vessel segmentation
is quite difficult due to various imaging conditions such
as noise, intensity inhomogeneity, poor visibility of thin
vessel structures, anatomical variations, and other imag-
ing artefacts. These artefacts are often inherited mainly
from the image acquisition process (because of low-quality

image acquisition devices). Thus, before applying any ves-
sel segmentation techniques few preprocessing steps are
applied to improve the segmentation accuracy. In general,
there are three pre-processing steps involved before vessel
segmentation.

i) Removal of central vessel reflex
ii) Intensity inhomogeneity correction

iii) Vessel enhancement

These techniques don’t necessarily guarantee to achi-
eve higher segmentation accuracy. It totally depends on
the developed method and application at hand. Therefore,
the reader should be mindful about when and what pre-
processing method to be employed for a given problem.
All the preprocessing techniques have been experimented
on the green channel of the RGB retinal image. This is
because the green channel exhibits better contrast between
the vessels and the background [21–25]. In [26], differ-
ent color components were investigated and found that the
green channel exhibits the highest contrast between vessels
and background. Once the green channel is extracted from
RGB retinal image the following preprocessing steps are
performed.

Removal of central vessel reflex

Retinal vessels usually appear darker than the background
surface because of lower reflectance. It includes a light
streak running longitudinally along the vessel centre known
as Central Vessel Reflex (CVR). It is more prominent in
arteries than in veins because this phenomenon occurs at
longer wavelengths that are more responsive to the blood
oxygen content [27]. It is more visible in younger individu-
als than in adults [28]. This vessel reflex must be removed
because the pixels intensities in the middle of the vessel are

Fig. 5 Segmentation results on ROI showing the performance of
various existing methods in the presence of CVR, close parallel ves-
sels and bifurcation/crossover regions. First column: original image;
second column: segmentations of Staal et al. [104] method; third

column: Soares et al. [39] method; fourth column: Ricci et al. [29]
method; and fifth column: Nguyen et al. [24] method. (Illustrations
based on material from Nguyen et al. [24], with kind permission from
Elsevier)
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Table 1 Summary of the vessel segmentation approaches presented in 56 papers considered in this study

Authors Method Dataset

Supervised Fraz et al. [22] GOA + MT + LSM +
GFR + DT

DRIVE, STARE, CHASE DB1

Condurache et al. [46] HBC DRIVE, STARE

Fraz et al. [28] DG + SDG + GFR +
LSM + MT + DT

CHASE DB1

Welikala et al. [16] MLO + SVM MESSIDOR

Rahebi et al. [47] GLCM + NN DRIVE, STARE

Fathi et al. [48] LBP + NN DRIVE, STARE

Ganjee et al. [49] MSMF + SRF STARE

Orlando et al. [50] CRF + SOSVM DRIVE, STARE, CHASE DB1, HRF

Wang et al. [54] CNN + RF DRIVE, STARE

Vega et al. [41] LNNDP DRIVE, STARE

Dai et al. [52] GV+ GW + GMM DRIVE, STARE

Roychowdhury et al. [53] FSOF + GMM DRIVE, STARE, CHASE DB1

Zhang et al. [71] MTD + NN DRIVE

Li et al. [55] DAE DRIVE, STARE, CHASE DB1

Liskowski et al. [56] DCNN DRIVE, STARE, CHASE DB1

Maninis et al. [57] DCNN DRIVE, STARE

Wu et al. [58] DCNN + PF + NNS DRIVE

Fu et al. [59] CNN + CRF DRIVE, STARE

Strisciuglio et al. [60] B-COSFIRE + SVM DRIVE, STARE

Abbasi et al. [101] BIMSO DRIVE, IOSTAR

Unsupervised Matched filtering Wang et al. [44] MFMK + AT DRIVE, STARE

Krause et al. [61] LRT DRIVE

Azzopardi et al. [23] B-COSFIRE DRIVE, STARE, CHASE DB1

Kovacs et al. [62] GGF + CR DRIVE, STARE, HRF

Kar et al. [63] CT + MF + LoG DRIVE, STARE, DIARETDB1

Zhang et al. [64] LAD-OS DRIVE, STARE, CHASE DB1,
HRF, IOSTAR, RC-SLO

Multi-scale approach Yu et al. [65] HM + LET DRIVE, STARE, HRF

Moghimirad et al. [66] MEF + HM DRIVE, STARE

Budai et al. [68] HM + HT DRIVE, STARE

Nguyen et al. [24] MSLD DRIVE, STARE, REVIEW

Fathi et al. [38] CCWT + AT + LF DRIVE, STARE

Zheng et al. [67] HM + NMF DRIVE

Annunziata et al. [69] NEBF + HM + PT STARE, HRF

Abdallah et al. [70] ADF + HM DRIVE, STARE

Yin et al. [72] OAD + GW + POF DRIVE. STARE

Christodoulidis et al. [73] MSLD + TVF HRF

Vessel tracking Yin et al. [74] MAP REVIEW

Yin et al. [75] MAP DRIVE, STARE, REVIEW

Zhang et al. [76] MAP + MSLD REVIEW

De et al. [77] TI DRIVE

Bekkers et al. [78] OS HRF, REVIEW

Mathematical morphology Fraz et al. [43] FDOG + MTHT + BPS DRIVE, STARE, MESSIDOR

Fraz et al. [79] FDOG + MTHT + RG DRIVE, STARE

Sigurosson et al. [31] POF + FC DRIVE

Imani et al. [80] MCA DRIVE, STARE
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Table 1 (continued)

Authors Method Dataset

Thresholding based approach Roychowdhury et al. [42] AGT DRIVE, STARE, CHASE DB1

Mapayi et al. [81] AT + GLCM DRIVE, STARE

Mapayi et al. [82] AGT + CLAHE + PC DRIVE, STARE

Model based approach Xiao et al. [83] BMSC DRIVE, STARE

Gonzalez et al. [84] GC DRIVE, STARE, DIARETDB1

Zhao et al. [25] ADF + LS + RG DRIVE, STARE

Zhao et al. [6] RIC + LP + GC DRIVE, STARE, ARIA, VAMPIRE

Zhao et al. [40] LP + IPAC DRIVE, STARE, VAMPIRE

Other general approach Hassanien et al. [86] BSO + FCM + PSO DRIVE, STARE

Frucci et al. [87] DM DRIVE

Lazar et al. [85] MSMF + BHT + DRVM + RG DRIVE, STARE, HRF

The approaches are mainly classified into supervised and unsupervised methods. The acronyms for the algorithms stand for: gradient orientation
analysis (GOA), morphological transformation (MT), line strength measure (LSM), Gabor filter response (GFR), Decision trees (DT), Hysteresis
binary classifier (HBC), Modified line operator (MLO), support vector machines (SVM), gray level co-occurence matrix (GLCM), neural network
(NN), local binary pattern (LBP), dual Gaussian (DG), second derivative of Gaussian (SDG), multi-scale matched filtering (MSMF), shape and
region features (SRF), conditional random field (CRF), structured output support vector machine (SOSVM), gray voting (GV), Gabor wavelet
(GW), Gaussian mixture model (GMM), first and second order features (FSOF), multiscale texton dictionary (MTD), convolutional neural net-
works (CNN), random forest (RF), lattice neural network with dendritic processing (LNNDP), deep autoencoders (DAE), deep convolutional
neural network (DCNN), particle filtering (PF), nearest neighbor search (NNS), Bar - Combination of Shifted Filter Responses (B-COSFIRE),
matched filtering with multi-wavelet kernels (MFMK), adaptive thresholding (AT), local radon transform (LRT), generalized Gabor function
(GGF), contour reconstruction (CR), curvelet transform (CT), matched filtering (MF), Laplacian of Gaussian filter (LoG), locally adaptive
derivative on orientation score (LAD-OS), hessian matrix (HM), local entropy thresholding (LET), medialness function (MEF), non-local means
filtering (NMF), multiscale line detection (MSLD), complex continuous wavelet transform (CCWT), length filtering (LF), hysteresis threshold-
ing (HT), percentile thresholding (PT), neighbourhood estimator before filling (NEBF), anisotropic diffusion filtering (ADF), orientation aware
detector (OAD), path opening filter (POF), tensor voting framework (TVF), maximum a posteriori estimation (MAP), transductive inference (TI),
orientation scores (OS), first order derivative of Gaussian (FDOG), morphological top-hat transform (MTHO), bit plane slicing (BPS), region
growing (RG), fuzzy classification (FC), morphological component analysis (MCA), morlet wavelet transform (MWT), adaptive global threshold-
ing (AGT), phase congruency (PC), contrast limited adaptive histogram equalization (CLAHE), Bayesian model with spatial constraint (BMSC),
graph cut (GC), level sets (LS), retinex-based inhomogeneity correction (RIC), local phase-based enhancement (LP), infinite perimeter active
contour (IPAC), directional response vector map (DRVM), bottom-hat transform (BHT), bee colony swarm optimization (BSO), fuzzy c-means
(FCM), pattern search optimization (PSO), direction map (DM), brain inspired multi-scales and multi-orientations (BIMSO)

much lower than its surroundings leading to false detection
of two close vessels instead of a single vessel.

The classical technique for removal of CVR is morphologi-
cal opening. In this method, the morphological opening is per-
formed using three-pixel diameter disc, defined on a square
grid by using eight-connectivity as a structuring element.
Ricci et al. [29] initially proposed a basic line detector for
vessel segmentation which deals with vessel reflex in an
efficient way. This method is based on the average grey level
response of a fixed line length passing through the target pixel
at different orientations. The limitation of the basic line detector
is that it tends to merge close parallel vessels and produces
false detections near bifurcation/crossover regions (see Fig. 5).
To overcome this limitation, Nguyen et al. [24] proposed
a method based on the response of basic line detector on
various scales and varying the length of the line. This multi-
scale line detector can recognize vessel reflex as a part of a
vessel since the average line response is not affected much
because the central reflex constitutes only small number of
pixels compared to its surrounding vessel pixels (see Fig. 5).

Intensity inhomogeneity correction

During image acquisition, retinal fundus images often con-
tain background intensity variation caused by non-uniform
illumination. This influences the performance of the ves-
sel segmentation algorithms. Among the several methods
proposed in the literature, histogram equalization is com-
monly employed for intensity inhomogeneity correction.
The drawback of this approach is that it cannot handle color
images and pixels intensities spanning the whole range of
display devices. Another popular enhancement technique is
gamma correction, which enhances images that are either
too dark or too bright. But this method is image depen-
dent. A well known technique for luminosity and contrast
normalization in retinal images was proposed by Foracchia
et al. [105]. In this method, the Luminosity and contrast
variability in the background part of the image is esti-
mated and then used for the normalization of the whole
image. Normalization is performed on both intra and inter
images.
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One of the most promising method used in the litera-
ture is Contrast-Limited Adaptive Histogram Equalization
(CLAHE) technique proposed in [95]. In this approach,
the image is divided into contextual regions that are then
individually enhanced using histogram equalization. The
clipping level of the histogram is chosen by computing
the local histogram mapping function. This can reduce the
amplification of noise in similar regions. Azzopardi et al.
[30], Welikala et al. [16], Sigursson et al. [31], Zhao et
al. [25] have adopted this technique. But the problem with
this method is that if there is a bright or dark lesion next
to the vessel, the lesion location is further enhanced lead-
ing to difficulty in distinguishing between vessel and lesion
structure.

Fraz et al. [32] proposed a method, based on subtract-
ing an estimate of the image background (which is obtained
by applying an arithmetic mean kernel by using decima-
tion) from the original image. The most recent and effective
technique for intensity inhomogeneity correction was pro-
posed by Zhao et al. [6] and is based on Retinex theory
(see Fig. 6). In [6], an image is modelled as a multiplication
of two components, the reflectance and the illumination.
The reflectance component of the image reveals the object
of interest more clearly, and it can be considered as the
enhanced version of an image.

Vessel enhancement

The retinal image constitutes varying anatomical struc-
tures in their size, complex shapes and orientation such
as blood vessels, optical disc, and background tissues.
The problem with vessel segmentation is, the complexity
of vascular structures near the thin vessels and bifurca-
tion/crossover regions. So, it is often necessary to enhance

vessel structures. Chaudhuri et al. [33] were the first to
investigate the vessel enhancement technique by applying
matched filters. It is based on Gaussian shape modelling of
vessel cross-sectional profile of the retina. But the major
drawback of this approach is, it cannot effectively enhance
vessels of varying width at a single scale. On the other
hand, even by adopting multiple filters with various scales,
some fine vessels cannot be detected due to the low-density
contrast and relatively heavy background noise.

Most of the retinal vessel enhancement filters found in
the literature are based on image intensity profile. Some
of the prominent intensity based filters are matched fil-
ters [33], amplitude-modified second order Gaussian filter
[34], Eigenvalue based filter [35], multi-scale linear opera-
tors [36], wavelet [37], [38], Gabor filter [39] and COSFIRE
filter [23, 30]. But the drawback with the aforementioned
intensity based filters is, they are more prone to non-uniform
illumination present in the image. In contrast, filters based
on local phase information [6, 40] of an image is an emerg-
ing technique which can avoid the problems faced by the
intensity based filters. Local Phase (LP) filters can be esti-
mated by quadrature filters under the concept of monogenic
signals for two or higher dimensions. These LP filters can
show consistent results at the bifurcation and crossover
regions when compared to the other parts of the vessels (see
Fig. 7). Thus, indeed it can be applied to solve the complex
segmentation problem at vessel crossings and bifurcations
regions.

Another well-known vessel enhancement technique
reported in the literature is the use of morphological fil-
ters such as top hat transform [22, 28, 31, 41–43]. These
morphological filters can enhance the image regions by
estimating local background by a morphological opening
operation, which is then subtracted from the original image.

Fig. 6 A comparative study on image-wise enhancement techniques.
First column: two example images from the DRIVE dataset; second
column: the green channel image; third and fourth column: results
after applying Histogram Equalization and Gamma correction image

enhancement methods; fifth column: results after applying Retinex.
(Illustrations based on material from Zhao et al [6], with kind permis-
sion from PloS one)
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Fig. 7 Vessel enhancement results using different methods. a A ran-
domly chosen image from the DRIVE dataset, b Eigenvalue-based
[35], c wavelet-based [37], and d Local Phase-based [6] enhancements

on (A). (Illustrations based on material from Zhao et al [6], with kind
permission from PloS one)

One of the recent technique reported in the literature is
matched filters with multi-wavelet kernels (MFMK) pro-
posed by Wang et al. [44]. These MFMK methods can
separate vessels from clutter edges and bright localized
areas such as lesions. Finally, the effects of each pre-
processing step might affect each segmentation technique
differently making any implicit generalization difficult. The
comparison of the above preprocessing steps and their inter-
action with segmentation performance is quite complex and
beyond the scope of this paper.

Segmentation methods

In this section, we review the most recent techniques pro-
posed for retinal vessel segmentation in the last five years.
Table 1. summarizes the vessel segmentation methods pre-
sented in 56 papers published between 2012 and 2016 along
with the datasets used for performance evaluation. In this
review, we mainly focus on methods applied to color fun-
dus images, FA and SLO images, since most of the earlier
methods have been evaluated on these three modalities.

Broadly, all the previously published segmentation meth-
ods can be divided into two main categories, supervised and
unsupervised. Supervised methods require a manually anno-
tated set of training images for classifying a pixel either as
a vessel or a non-vessel in previously unseen images. In
these methods, typically we extract features for each pixel
along with their true label to learn a model of a classifier.
Most of the techniques in this category are k-nearest neigh-
bors, Support Vector Machine (SVM), Neural Networks
(NN), Gaussian Mixture Models (GMM), AdaBoost, Con-
ditional Random Fields (CRF) and the recent Convolutional
Neural Networks (CNN) etc. On the contrary, unsupervised
methods can segment the vessels without requiring any
labelled annotations. In general, most of these techniques
are based on the response of matched filters, morphologi-
cal processing, vessel tracing, thresholding, region growing,
multi-scale approaches, etc. In the following section, we

briefly explain the essence of these techniques and discuss
how these methods perform segmentation of vessels in chal-
lenging conditions, followed by strength and weakness of
these methods.

Supervised methods

Supervised methods are based on pixel classification where
the primary objective is to segment retinal vessels by train-
ing a set of manually annotated gold standard images. Often
these gold standard images are annotated by experienced
ophthalmologists. The most discriminative set of feature
vectors must be selected from the set of training images for
better classification of the vessel and non-vessel structures.
In general, the performance of supervised methods is better
than that of unsupervised ones.

Fraz et al. [22], [28] proposed a novel method in this cat-
egory based on combination of multiple feature extraction
techniques such as orientation analysis of gradient vector
field, morphological transformation, line strength measure,
and Gabor filter response. Classification of pixels were per-
formed using an ensemble of weak learners such as decision
trees. Most of the earlier techniques were evaluated on
DRIVE and STARE dataset which consists of fewer num-
ber of images. In contrast, Fraz et al. [22] created a new
database known as CHASE DB1 which was primarily used
to study the cardiovascular risk factors in younger individ-
uals. The addition of CHASE DB1 provides an opportunity
for the researchers to evaluate their method on this chal-
lenging dataset due to the presence of CVR and illumination
artefacts.

Condurache et al. [46], adopted a binary classifica-
tion technique based on hysteresis classification paradi-gm.
Their method is well suited for binary classification prob-
lem afflicted by significant class skew and overlap between
classes such as vessels and background structures. Welikala
et al. [16], proposed a dual classification approach for the
segmentation of new blood vessels. The algorithm is more
reliable for automated detection of PDR where there is a
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high-risk progression of new blood vessels (see Fig. 3b). A
method based on gray level co-occurrence matrix (GLCM)
and neural network (NN) classifier was proposed in [47].
A novel segmentation technique based on non-linear invert-
ible orientation scores is presented in Abbasi et al. [101].
According to authors, the method [101] is robust against
noise, non-uniform illumination and contrast variability. In
addition to preserving the vessel connectivity, it has higher
sensitivity and detects the small vessels better than the
state-of-the-art methods for both RGB and SLO images.

An effective technique to deal with pathological images
was proposed in [49]. Their method adopted a combi-
nation of multi-scale matched filtering along with shape
and region-based features to distinguish between vessel
and lesion structures. A combination of first and second
order gradient features along with Gaussian Mixture Model
(GMM) classifier was used in [53]. Strisciuglio et al. [60]
proposed an efficient method for segmenting vessels in
pathological images using a selective set of B-COSFIRE fil-
ters by means of different feature selection methods. For the
first time in the literature, conditional random fields for reti-
nal vessel segmentation have been proposed by Orlando et
al. [50]. In their method, a fully connected CRF is trained
using structured output SVM in a supervised manner. Their
approach was able to solve the poor segmentation problem
due to weak priors assigned to an elongated structure as in
the case of standard pairwise potential.

Recently, Cheung et al. [51] observed that the micro-
vascular structures (thin vessels) in the retina play a vital
role in the early diagnosis of diseases such as stroke,
Alzheimer’s and other micro-vascular diseases. In con-
trast, segmentation of thin vessel structures in the retina
is extremely difficult compared to the large vessels. To
overcome this limitation, Dai et al. [52] proposed a gray
voting technique based on local gray level statistics. Their
method enhances small vessel structures and has shown
promising results. Further, a general extension of Local
Binary Pattern (LBP) operator was proposed in [48] with
NN classifier to segment the thin vessels. Zhang et al. [71]
adopted a multiscale texton dictionary and NN classifier
to classify vessel/non-vessel pixels. A Gabor filter bank is
used to extract features which are then used as initial key
points to initialize k -means clustering which builds a texton
dictionary ultimately.

Inspired by the success of deep learning techniques in
computer vision applications, Convolutional Neural Net-
work (CNN) has emerged as a promising approach to solve
segmentation problems in medical imaging applications.
In this context, Wang et al. [54], proposed a segmenta-
tion method by employing CNN and ensemble of random
forests. Later, Vega et al. [41] adopted a new generation of
neural network known as Lattice Neural Network (LNN).
Some of the interesting properties of LNN are, there are

no convergence problems with a single layer feed forward
neural network and does not involve any hidden layers. Li
et al. [55], proposed a cross-modality approach using deep
autoencoders. A deep neural network is used to model the
relationship between the retinal image and the vessel map.
The proposed approach works well in the presence of CVR,
pathological images, and thin vessel structures.

The most recent approach by Liskowski et al. [56] pro-
posed a deep neural network model. Their method was able
to achieve an area under the curve (AUC) of 0.99, which
is significantly better than all previously published meth-
ods in the literature. The method is also robust to CVR and
performs reasonably well on pathological images. A novel
CNN architecture was proposed in [57] to solve both the
retinal vessel and optic disc segmentation problem. Wu et
al. [58] proposed a DCNN architecture under a probabilis-
tic tracking framework, designed with generalized particle
filtering technique to extract retinal vessel tree. Later, Fu
et al. [59] formulated the vessel segmentation as a bound-
ary detection problem using fully connected CNN model. A
fully connected CRF’s is utilized further to take into account
the long-range interaction between the pixels.

Unsupervised methods

The unsupervised segmentation methods work without prior
knowledge and labelled groundtruths. In general, most of
these methods are rule-based techniques which include
conventional matched filtering, morphological processing,
vessel tracing, thresholding, region growing, multi-scale
approaches, etc. The unsupervised methods generally have
a higher speed and lesser computational complexity com-
pared to supervised ones.

Matched filtering

Matched filtering (MF) involves convolving an image with a
2-D Gaussian template. These methods exploit the fact that
the vessel cross-sectional intensity profile can be modelled
as a Gaussian shaped curve. But these assumptions often fail
in the presence of CVR. Hence several variants of the MF
have been proposed in the literature to overcome this limita-
tion. The earliest approach of using 2-D matched filters for
vessel segmentation was proposed in Chaudhuri et al. [33].
Later, Wang et al. [44], extended the idea of matched filter-
ing in combination with multi-wavelet kernels to separate
the blood vessels from lesion structures. To enable the faster
and parallel implementation, Krause et al. [61] employed
local Radon transform for retinal vessel segmentation. They
have segmented 20,000 images of size 2,048 × 1,536 in
about 3 hours on a NVIDIA Geforce GTX680. This is one
of the most recent methods in implementing the segmenta-
tion algorithm on the GPU-based platform with a very low
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time complexity. Another well known method in this cate-
gory is based on B-COSFIRE (Bar - Combination of Shifted
Filter Responses) filter proposed by Azzopardi et al. [23].
The idea behind their approach is that COSFIRE filter can
selectively respond to bar-shaped (linear) structures such as
vessels.

Kovacs et al. [62] proposed a self-calibration technique
which can be used to transform a trained model to retinal
images of different resolution, field-of-view (FOV), noise
level, etc. The segmentation method was based on template
matching using Gabor filters and contour reconstruction
strategies. Kar et al. [63] proposed a combined approach
using curvelet transform, matched filtering and Laplacian
of Gaussian filter. Their experimental results in [63] shows
that the method performed well on both pathological as well
as noisy retinal images. Zhang et al. [64] proposed a seg-
mentation technique based on maximizing the multi-scale
second-order Gaussian derivatives filter response in the ori-
entation score domain. The method has been evaluated on
six publicly available databases including the SLO images
such as IOSTAR and RC-SLO datasets. Their approach has
shown better segmentation performance at vessel crossings,
CVR, closely parallel and tiny vessels.

Multi-scale approach

Retinal vessel structures appear at multiple scales and ori-
entation in an image. This property has been exploited in
the literature to capture vessel structures of varying width
and direction. The advantage of these methods is both major
and minor vessels can be segmented effectively. Among the
techniques proposed in this category, the earliest approach
by Yu et al. [65] is based on Eigen analysis of the Hessian
matrix followed by second-order local entropy thresholding.
Their method had a few drawbacks: first, it tends to over
segment the major vessels including pathological lesions;
second, it under-segments the thin vessels. To overcome
these limitations, Moghimirad et al. [66] proposed a method
based on multi-scale medialness function initially intended
for tubular structure extraction. Most of the tubular structure
extraction schemes are based on Eigen analysis of the Hes-
sian matrix. But the problem with these methods is that the
response of the Eigenvalues of the Hessian matrix is weaker
in the area of bifurcation/crossover points. To address these
issues, authors in [66] proposed a combined approach of
Hessian matrix and 2-D medialness function. The advan-
tage of their method is that it provides better segmentation
at bifurcation and crossover regions. Zheng et al. [67] pro-
posed multi-scale Hessian matrix based non-local filtering
approach to enhance the vessel structures and suppress the
background noise.

Nguyen et al. [24] introduced the concept of multiscale
line detection (MSLD) for vessel segmentation. This idea

was the initial extension of basic line detection method pro-
posed by Ricci et al. [29]. In comparison to [29], their
method overcomes the limitation of poor segmentation near
two closely parallel vessels and at crossover points. Later,
Yin et al. [72] modified the idea proposed in [24] to design
a novel orientation aware detector to segment both major
and minor vessels. Their method works well in the presence
of CVR, close vessels, and crossover points. The main lim-
itation of the line detector methods is that it is unable to
segment smallest vessels. This drawback has been addressed
by Christodoulidis et al. [73] by adopting a hybrid approach
based by combining MSLD and multi-scale tensor voting
procedure. This approach has shown a better segmentation
performance on thin vessel structures compared to other
previous methods.

Fathi et al. [38] proposed a complex continuous wave-
let transform (CCWT) with an adaptive histogram based
thresholding method for segmentation of vessels. Vessel
diameter estimation has also been addressed by employing
circular structure descriptor on the centerline of the vessels.
Budai et al. [68] proposed an improvement over the ves-
sel enhancement method initially proposed in [35]. A novel
approach based on inpainting technique was suggested by
Annunziata et al. [69] to inpaint the false vessel structures
(such as exudates) in pathological images. Their method
significantly reduces the number of false positives in patho-
logical images. A multiscale line tracking procedure was
proposed in [70] based on the fact that the vessel structures
appear at multiple scales and orientation in an image.

Vessel tracing

In vessel tracing methods, initial seed points are chosen
either manually or automatically both on the edges and cen-
terline of the vessels. Given these initial seed points, the
entire vessel tree is traced by following vessel centerline
based on local information. Since the vessels are connected
in the retina, tracing methods can follow a whole tree struc-
ture without explicitly monitoring the background. These
methods provide a precise vessel connectivity information
at branching and crossovers points for early detection of
many systemic diseases.

The method in this category was proposed in Yin et al.
[74, 75] based on maximum a posteriori (MAP) formula-
tion. The initial vessel edge points are detected iteratively
using local grey level statistics and vessel continuity prop-
erties. A Gaussian-shaped curve is fitted to the intensity
profile of local vessel cross-section to estimate the ves-
sel appearance. Similar to the previous work, Zhang et al.
[76] proposed a combined approach using MAP criterion
and multiscale line detection method. In their work, the
authors succeed in differentiating between normal, branch-
ing and crossover vessels. A principled way of addressing
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the crossover issue has been solved in De et al [77] based
on transductive learning approach. Their method performs
better in resolving many complex bifurcation/crossover
points. Inspired by the modelling of cortical columns in
the primary visual cortex, Bekkers et al. [78] proposed a
multi-orientation vessel connectivity analysis near bifurca-
tion and crossing regions. Among all the tracing methods,
their approach was able to successfully track and measure
width even at complex locations.

Mathematical morphology

Mathematical morphology is a powerful tool based on set
theory concept, mainly used for extracting complex image
structures that provide useful representation and descrip-
tion of region shapes such as features, boundaries, skeletons
and convex hulls. These methods exploit the fact that the
vessels are linear and connected in the retina. These meth-
ods are also known for its speed and noise resistance. The
main drawback of these methods is, they fail to model the
highly curved vessels which are more prominent in younger
individuals.

Among the methods in this category, Fraz et al. [43,
79] proposed a novel approach for identifying both ves-
sel centerline and segmentation of vascular tree. The vessel
centerlines are identified using the first order derivative of
a Gaussian filter followed by a multi directional morpho-
logical top-hat transform to segment the vessels. The main
limitations in [43, 79] is difficulty in modelling the highly
curved and tortuous vessels. Later Sigurosson et al. [31]
addressed this challenge by proposing a novel approach
based on path opening filter followed by a fuzzy set theory
based data fusion technique. Their method demonstrated an
ability to distinguish between major and minor vessels with
a better accuracy than the other methods. The traditional
problem of vessel segmentation in the presence of abnor-
malities was tackled in Imani et al. [80]. In their method,
morphological component analysis (MCA) combined with
Morlet Wavelet Transform (MWT) was used to separate
vessels from other lesion structures which are crucial in
clinical settings for the assessment of abnormal cases.

Thresholding based approach

Among the most recent thresholding based approaches,
Roychowdhury et al. [42] proposed a method which can
efficiently handle vessel segmentation in the presence of abnor-
malities as well as thin vessel structures. Their method adopted
an iterative vessel segmentation approach by employing
global adaptive thresholding followed by a novel stopping
criteria. Further, Mapayi et al. [81] proposed a local adaptive
thresholding technique based on GLCM energy informa-
tion for segmenting retinal vessels. Their method provides

robust segmentation for both grayscale and green chan-
nel intensity of RGB retinal images. Later, Mapayi et al.
[82] proposed a approach based on global thresholding with
phase congruency and CLAHE for segmentation of vessels.

Model based approach

Model based approaches consist of vessel profile models
and deformable models. In vessel profile models, the vessel
cross-sectional intensity profile is modelled as a Gaussian-
shaped curve or mixture of Gaussians in the case of CVR.
In deformable models, both active contour and level set
based approaches are employed. Among the methods in this
category, Xiao et al. [83] presented a Bayesian based seg-
mentation approach which takes into account the spatial
information. Their method results in better performance in
the detection of both narrow and low contrast vessels. Fur-
ther, Gonzalez et al. [84] presented a combined framework
for both vessel and optic disc segmentation problem. Their
method adopted a graph cut technique to segment the vessel
tree followed by MRF image reconstruction and compen-
sation factor method to segment the optic disk. Zhao et al.
[25], adopted two separate techniques for extracting both
major and minor vessels from retinal images. For major
vessels, a level set method based on region-scalable fitting
energy function is applied, and for minor vessels, a region
growing approach is adopted.

Recently, a novel inhomogeneity correction method
based on Retinex theory and LP analysis was proposed in
Zhao et al. [6] for vessel enhancement. In their work, the
authors have shown the comparative analysis of various
existing preprocessing methods in the literature along with
their proposed one (see Figs. 6 and 7). Adopting the sim-
ilar preprocessing technique proposed in [6], Zhao et al.
[40] proposed a segmentation approach based on infinite
perimeter active contour model utilizing hybrid region infor-
mation of the image. For the first time in the literature, the
authors in [40] have evaluated their segmentation technique
on FA images which could open further research directions
in retinal image analysis.

Other general approach

The methods published in this category include those that
belong to general image processing based techniques that
are adapted for segmenting retinal vessels. Hassanien et al.
[86] proposed the idea of two-level optimization for seg-
menting thin vessel structures. The first level includes find-
ing the vessel clusters with artificial bee colony swarm opti-
mization using fuzzy c-means fitness function. In the second
level, pattern search algorithm is enhanced by adding shape
descriptors as an additional feature in the fitness function.
Later, Frucci et al. [87] used the concept of directional map
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for segmenting vessel structures. The advantage of their
method is, it is computationally less intensive and requires
no preprocessing steps. Finally, Lazar et al. [85] proposed
a hybrid region growing approach based on directional
response vector similarity of pixels along with a nearest
neighbor classifier.

Summary of vessel segmentation methods

Among the recent methods published in the literature, super-
vised methods based on deep learning architecture [55, 56]
has surpassed all other techniques in obtaining the perfor-
mance very close to (or even outperforming) trained human
observers. These methods are able to successfully address
most of the challenges posed by the complex nature of ves-
sel structures as discussed in “Challenges in retinal vessel
segmentation”. The success of these methods is mainly due
to larger computational power and the addition of large
datasets. The main advantage of CNN based methods is that
they don’t require any carefully hand-crafted features and
complex domain expertise. In contrast, these methods are
able to successfully learn the complex nature of vessel struc-
tures even in the most challenging cases (like the presence
of thin vessel structures and abnormalities). A new wave of
CNN methods have been recently proposed in the literature
such as [58, 59] manifesting a special interest in the commu-
nity towards the development of newer deep learning based
architectures for retinal vessel segmentation.

Table 2 depicts the segmentation challenges addressed by
recent state-of-the-art methods. The newer methods like [25,
31, 42, 48, 52, 62, 73, 83] has explicitly proposed techniques
for segmentation of thin vessel structures. Christodoulidis
et al. [73] proposed a combined approach of MSLD along
with multiscale tensor voting for detection of major and
minor vessel structures. This is one of the first kind in
segmentation methods that has specifically considered the
segmentation of thin vessels and has shown remarkable per-
formance. The problem of CVR, poor segmentation near
bifurcation/crossover points and close parallel vessels have
been addressed in Nguyen et al. [24]. Other methods like
Zhao et al. [6, 40] has considered the problem of intensity
inhomogeneity and vessel enhancement techniques on low
contrast images. Although the most recent methods have
shown interest in addressing the segmentation challenges,
there is a still room for future improvements towards the
building of successful retinal CAD systems.

Review of validation

In this section, we analyze the quantitative assessment of
segmentation methods proposed in the current state-of-the-

Table 2 Segmentation challenges addressed by recent state-of-the-art
methods

Authors PL TV CVR BC IN

Fraz et al. [22] Yes — Yes — —

Fathi et al. [48] — Yes — — —

Fraz et al. [28] — — Yes — —

Ganjee et al. [49] Yes — — — —

Orlando et al. [50] — — — — Yes

Dai et al. [52] — Yes — — —

Roychowdhury et al. [53] Yes — — — —

Li et al. [55] Yes Yes Yes Yes Yes

Liskowski et al. [56] Yes Yes Yes Yes Yes

Fu et al. [59] Yes — — — —

Zhang et al. [64] Yes Yes Yes Yes Yes

Strisciuglio et al. [60] Yes — — — —

Wang et al. [44] Yes — — — —

Azzopardi et al. [23] — — — Yes —

Kovacs et al. [62] — Yes — — —

Kar et al. [63] Yes — — — Yes

Moghimirad et al. [66] — — — Yes —

Zheng et al. [67] — — — — Yes

Nguyen et al. [24] — — Yes Yes —

Annunziata et al. [69] Yes — — — —

Yin et al. [72] Yes — Yes Yes —

Christodoulidis et al. [73] Yes Yes — — —

Yin et al. [74] — — — Yes —

Zhang et al. [76] — — Yes Yes —

De et al. [77] — — — Yes —

Bekkers et al. [78] — — — Yes —

Sigurosson et al .[31] — Yes — — —

Imani et al. [80] Yes — — — —

Roychowdhury et al. [42] Yes Yes — — —

Xiao et al. [83] — Yes — — —

Zhao et al. [25] — Yes — — —

Zhao et al. [6] — — — Yes Yes

Zhao et al. [40] — — — — Yes

The acronyms stand for: robust to pathological lesions (PL), able to
segment thin vessel structures (TV), robust to central vessel reflex
(CVR), better segmentation near bifurcation/crossover regions (BC),
robust to intensity inhomogeneity, blur and noise present in the image
(IN)

art, including the datasets employed and measures per-
formed. Some significant findings of the existing techniques
and few open problems are also been discussed.

Retinal image databases

Retinal image segmentation methods in the literature are
evaluated using different quantitative measures and different
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publicly available datasets. Most of the existing state-of-
the-art methods have been evaluated on publicly available:
DRIVE [88], STARE [89], CHASE -DB1 [22] and HRF
[91] databases. Few methods have also made an attempt
to validate their technique on other databases like ARIA
[90], DIARETDB1 [92], MESSIDOR [93], REVIEW [94],
VAMPIRE [96], IOSTAR [97] and RC-SLO [98]. An
overview of the aforementioned publicly available datasets
is provided in Table 3.

The earliest datasets like DRIVE and STARE includes
fewer number of images ranging from 20 to 40. All of these
images mainly consists of healthy images and fewer patho-
logical cases. With the recent advancements in newer high-
resolution fundus camera, it is now possible to obtain much
higher resolution 3504 × 2336 images as in HRF dataset
when compared to lower resolution 768 × 584 images in
case of DRIVE. As discussed in “Challenges in retinal
vessel segmentation”, there is a requisite for thorough eval-
uation of segmentation methods particularly on abnormal

cases which is required for clinical scenarios. Such images
can be found in STARE, ARIA and HRF datasets which
contain cases of DR, AMD, and Glaucoma. Recently, Fraz
et al. [22], introduced a new database CHAS-E DB1 which
includes images of multi-ethnic school children which was
primarily used for quantification of changes in retinal ves-
sel width in relation to cardiovascular disease in later life.
Recently, Zhang et al. [64] published two newer datasets:
IOSTAR [97] and RC-SLO [98] based on the SLO tech-
nique. These two datasets cover a wide range of challenging
cases, such as high curvature changes, CVR, micro-vessels,
crossings/bifurcations.

Validation measures

Four primary validation measures have been commonly
employed to evaluate the performance of vessel segmenta-
tion methods. They are Se (Sensitivity), Sp (Specificity),
Acc (Accuracy) and AUC (Area under the curve). Several

Table 3 Overview of publicly available retinal image datasets

Dataset Year Description Image size and FOV Vessel groundtruth (Reference standard)

STARE [89] 2000 Total 20 color fundus images.
out of which 10 are healthy
and 10 are pathological.

700×605
35◦

Groundtruths are annotated
by two human observers.

DRIVE [88] 2004 Contains 40 color fundus images.
It is divided into 20 for training
and 20 for testing.

584×565
45◦

Groundtruths are annotated
by two human observers.

MESSIDOR [93] 2004 Contains 1200 color fundus images.
Contains pathological signs such as
microaneurysms, hemorrhages, neo-
vascularization and hard exudates.

1440 × 960,
2240 × 1488,
2304 × 1536
45◦

No vessels groundtruth are available.
Reference standard is available for
grading of diabetic retinopathy and
the risk of macular edema.

ARIA [90] 2006 Total of 212 color fundus images:
first group: 92 AMD images second
group: 59 DR images third group: 61
normal images

768 × 576
50◦

The reference standard for optic disc,
blood vessel tracking and fovea loca-
tion is marked by two clinical experts.

DIARETDB1 [92] 2007 Consists of 89 retinal images.
Out of which 84 contain
signs of DR and 5 are normal.

1500×1152
50◦

Manually segmented retinal vasculature
is not available for this database.

REVIEW [94] 2008 Contains 16 images with 193
annotated vessel segments con-
sisting of 5066 profile points

− Vessel widths are manually marked by
three independent experts.

CHASE DB1 [22] 2011 Contains 28 color fundus images.
Out of which 20 corresponds to
testing and 8 for training.

1280 × 960
30◦

Vessel segments and width are annotated
by two clinical experts.

HRF [91] 2011 Contains 45 color fundus images:
first set: 15 healthy images sec-
ond set: 15 DR images third set:
15 glaucoma images

3304×2336
60◦

Reference standard was provided by
three clinical experts.

VAMPIRE [96] 2011 8 retinal FA images.
Out of which 4 con-
tains AMD.

3900×3072
200◦

Groundtruth was provided by
three clinical experts.

IOSTAR [97] 2015 Includes 30 SLO images 1024×1024
45◦

Vessels are annotated by a group of experts

RC-SLO [98] 2015 Contains 40 SLO image patches 360 × 320
−

Vessels are annotated by a group of experts



J Med Syst  (2017) 41:70 Page 15 of 22 70 

newer validation measures for vessel segmentation have
also been reported in the literature which is provided in
Table 4.

Since retinal vessel segmentation is a binary classifica-
tion problem, the commonly accepted measures include:
True positive (T P ) - Number of correctly classified vessel
pixels, False negative (FN) - number of incorrectly classi-
fied vessel pixels, True negative (T N) - Number of correctly
classified background pixels and False positive (FP ) -
Number of incorrectly classified background pixels. Based
on these key measures, different performance parameters
can be estimated such as Se, Sp, Acc and AUC. Sensitivity
indicates the capability of the algorithm to correctly detect
retinal vessels while specificity indicates the ability to dis-
tinguish all other non-vessel structures. Accuracy measures
the ratio of correctly classified pixels (both vessel and non-
vessel) to the total number of pixels in the image field of
view. All these measures are obtained through the pixel to
pixel comparison between automated segmentation and ref-
erence groundtruth. Most of these measures are suitable if
the class data is balanced (equal number of positive and neg-
ative classes). But in the case of retinal images, the negative
class samples (background pixels) outnumber the positive
class samples (vessel pixels). By contrast, the presence of
class imbalance in the data has a profound impact on these
performance measures.

The aforementioned validation measures provide glo-bal
information on segmentation quality without taking into
account that the detected pixels are part of a vessel structure
with specific features. Hence, more suitable validation mea-
sures for class imbalance data are included in Orlando et al.
[50] and Azzopardi et al. [23] such as Matthews Correla-
tion Coefficient (MCC), F1 − score and G − mean. The
MCC is a correlation coefficient between the groundtruth
and the predicted binary segmentation which returns a
value between −1 and +1. With +1 indicating a perfect

prediction, 0 no better than random, and -1 a total disagree-
ment between prediction and groundtruth. The F1 − score

is the harmonic mean of precision and recall which achieves
maximum value of 1 when the segmentation of the positive
class is perfect, and lowest value of 0 when the segmentation
is completely wrong. Similarly, the G − mean is a metric
that measures the balance between Se and Sp by taking their
geometric mean, returning a value between 0 and 1. The
most common overlap metric, the Dice coefficient (DC) is
also used for comparing the agreement between the manual
annotations and the result of segmentation method. The DC
ranges from 0 (no agreement) to 1 (perfect agreement).

Recently, Arias et al. [99], proposed a new measure
called Quality Evaluation Function (QEF ) based on the
characterization of vascular structures as connected seg-
ments with the measurable area and length. This measure
is sensitive to anatomical vascularity features. Hence, it
is highly desirable in evaluating segmentation methods on
pathological images. The QEF function has also shown
a high degree of matching with human quality perception
when compared to other measures reported in the literature.

Assessment of retinal vessel segmentation methods

The performance evaluation of segmentation methods sig-
nificantly varies across the datasets. The main reasons for
this are:

– Input images of different resolution across the data-sets
as shown in Table 3.

– Different morphological attributes of the images like
pathological lesions, varying tissue structures, inten-
sity homogeneity and noise inherited due to various
scanning protocols.

– Intra and inter-observer variability among the ground-
truth annotations across and within the datasets.

Table 4 Overview of validation measures used for quantitative assessment of retinal vessel segmentation methods

Validation measure Description

Sensitivity (Se)/Recall (Re) T P
T P+FN

Specificity (Sp) T N
T N+FP

Accuracy (Acc) T P+T N
T P+T N+FP+FN

Area under curve (AUC) Se+Sp
2

Precision (Pr) T P
T P+FP

Matthews Correlation Coefficient (MCC)
T P
N

−S×P√
P×S×1−S×1−P

N = T P + T N+FP +FN , S = T P + FN × N , P = T P + FP × N

F1 score (F ) 2×Pr×Re
P r+Re

G - mean (G)
√

Se × Sp

Dice Coefficient (DC) 2(A∩B)
A+B

Quality Evaluation Function (QEF ) f (C, A, L) = C × A × L = CAL
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In this regard, we have considered the assessment of
segmentation methods on an individual dataset for fair eval-
uation of previously published methods. We have consid-
ered four performance metrics for evaluation: Se, Sp, Acc

and AUC. We have compared the segmentation techniques
on four main datasets: DRIVE, STARE, CHASE DB1 and
HRF as depicted in Table 5. The values presented in the
table are taken as it is reported in the corresponding articles.

Table 5 depicts the performance evaluation of differ-
ent methods on DRIVE dataset. Among these methods, the
highest reported Se of 0.9094 (Condurache et al. [46]), Sp

of 0.9870 (Budai et al. [68]), Acc of 0.9767 (Wang et al.
[54]) and AUC of 0.9790 (Liskowski et al. [56]). No sin-
gle method was able to achieve the best results concerning
all the metrics. When compared to all other datasets, ves-
sel segmentation on DRIVE is relatively easy as most of the
images are healthy with no pathological signs, vessels are
clearly visible, and images are not much affected by illu-
mination. One of the key observation is that most of the
methods that reported the highest performance measures on
DRIVE belong to the class of supervised methods.

Among the methods on STARE dataset, the highest
reported Se of 0.9289 (Liskowski et al. [56]), Sp of 0.9844
(Li et al. [55]), Acc of 0.9813 (Wang et al. [54]) and
AUC of 0.9930 (Liskowski et al. [56]). If we observe
carefully, mostly supervised and multiscale methods have
outperformed other methods in both DRIVE and STARE
datasets. As discussed earlier in “Supervised methods” and
“Multi-scale approach”, learning based methods (super-
vised) and multiscale methods (based on Hessian matrix),
have shown remarkable performance. The success of these
methods is because: (a) Due to inheriting multiscale nature
of vessels which appears both thin and thick structures at
various scales and orientation. (b) Learning the complex
structures directly from the data as opposed to handcraft-
ing those features based on domain expertise. The main
drawback of the supervised methods is that, it requires
pixel-level annotations for learning the correspondence dur-
ing the training phase and much more computationally
expensive than the other category of methods.

Among the published methods on CHASE DB1 data-
sets, the highest reported Se of 0.8793 (Liskowski et al.
[56]), Sp of 0.9793 (Li et al. [55]), Acc of 0.9581 (Li
et al. [55]) and AUC of 0.9845 (Liskowski et al. [56]).
This dataset is newly released compared to earlier DRIVE
and STARE databases. The resolution of the images in
CHASE DB1 is of 1280 × 960 as opposed to 584 × 565 in
DRIVE and 700 × 605 in STARE datasets. Another dataset
which contains high-resolution images (3304 × 2336) is
the HRF, having both healthy and diseased ones. The
highest reported metrics in this dataset are Se of 0.8506
(Christodoulidis et al. [73]), Sp of 0.9868 (Kovacs et al.
[62]), Acc of 0.9674 (Kovacs et al. [62]) and AUC of

0.9608 (Zhang et al. [64]). Most of the segmentation meth-
ods on HRF dataset have evaluated their performance by
resizing the image to a much lower resolution thus reducing
the computational overhead. But the drawback with resiz-
ing the images is, the thin vessel structures are masked out
leaving behind only the larger vessels which are compar-
atively easier to segment. In contrast, Kovacs et al. [62]
proposed a blind calibration technique than can be used to
transform a trained model to different resolution datasets
without compromising on accuracy. Their method is well
suited for clinical scenarios where the images are acquired
from various scanners and protocols.

Discussion

The need for computer-aided detection of retinal vessels has
motivated the medical imaging community to develop bet-
ter segmentation methods in the last two decades. Almost
all the techniques from conventional image processing to
sophisticated machine learning (including deep learning
techniques) have been extensively explored. Most existing
methods in the literature are quite successful in addressing
issues like intensity inhomogeneity, CVR, segmentation of
complex vessel structures (near bifurcation and crossover
regions) and extraction of thin vessels. But still, there are
some open and unsolved challenges which need to be
addressed. Some of the open questions which needs to be
addressed are:

– How does vessel segmentation method perform in the
presence of abnormalities?

– How to design a method which can efficiently handle
both major and minor vessel structures in retinal image?

– How to adopt the same approach on different images
with various resolutions acquired across multiple imag-
ing devices without downsampling to much lower reso-
lutions?

These significant challenges have recently driven the reti-
nal imaging community to tackle these issues. Most of
the methods are designed to handle healthy images with-
out accounting for abnormalities. The techniques in [31,
36, 78, 79] addressed, in particular, the problem of ves-
sel segmentation in the presence of abnormalities. Most
of the researchers evaluated their methods on DRIVE and
STARE datasets although, a recent trend has moved towards
CHASE DB1 and HRF databases. A large number of
images from these datasets is normal excluding ARIA and
MESSIDOR. The number of images in these datasets is very
limited ranging from 20 to 45 and are relatively easier to
segment. From Table 1, it can be observed that only fewer
methods evaluated their performance on ARIA and MES-
SIDOR although these datasets publicly released a long
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time ago. Further, a large number of existing methods are
evaluated on the retinal images of adults. The morpholog-
ical attributes of retinal images of premature infants and
children’s are entirely different than that of adults. The
choroidal vessels, CVR, and other illumination artefacts
are more prominently visible in young individuals than the
older population [28]. Hence, there is a further scope for
developing newer segmentation methods that performs well
for both adult as well as paediatric retinal images.

The existing methods in the literature are mainly focused
on segmenting large vessel structures leaving behind the
thin and low contrast vessels. To the best of our knowledge,
only a fewer number of existing studies have addressed
the segmentation of thin vessels in fundus images. In this
regard, methods in [25, 42, 52, 55, 64, 73] have made an
attempt to specifically addressed the problem of thin ves-
sel segmentation. Among these methods, the method in [73]
has achieved a significant state-of-the-art results compared
to previous methods for segmentation of thin vessels. But
still there exists difficulty in segmenting vessels which lies
at extremely low contrast and junction locations. In addi-
tion, “the performance assessment of the existing methods is
solely based on global classification metric which does not
take into account the fact that the smallest vessels represent
approximately 10 % of the total surface area of the vascular
network” [73].

Current segmentation methods are mainly evaluated on
color fundus images. Most of these images are often cor-
rupted by noise, blur, and non-uniform illumination. Hence,
it is often difficult for accurate segmentation of thin and
low contrast vessel structures. The advancements in newer
retinal imaging modalities (like FA, SLO, OCT) and with
the integration of adaptive optics [106] to these modal-
ities has provided a better spatial as well as transverse
resolution. These newer imaging modalities provide better
visualization of vessels and other micro-structures. Further,
this opens new research direction in better understanding
the structural and physiological changes that affect the reti-
nal vasculature. Some of the newer methods like [64, 96,
101] have made an attempt to evaluate the segmentation per-
formance on FA and SLO images. Further, this provides an
opportunity for the researchers to validate their technique on
high resolution, high contrast, and finely detailed images.

Conclusions

In this paper, we presented a comprehensive review of
recent state-of-the-art retinal vessel segmentation methods
published in the last five years. The various complexities
and challenges involved in developing robust segmentation
techniques have been discussed including the most crucial
image preprocessing steps that have not been addressed

earlier in the literature. In addition, the strengths and weak-
ness of each category of segmentation methods with focus
to current challenges are discussed in detail. Further, an in-
depth quantitative evaluation of state-of-the-art approaches
on the individual dataset is assessed. Although many arti-
cles have been published on the automated segmentation of
retinal vessels, still there exists room for further improve-
ments. Most of the previous methods have dealt with the
fewer images mostly healthier ones, typically segmenting
the larger vessel structures and much lower resolution input
images. Thus, some of the challenges that remain open
to the research community are segmentation in the pres-
ence of abnormalities, accurate segmentation of thin vessel
structures and segmentation in the presence of non-uniform
illumination and various other imaging artefacts.
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