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Abstract
Solid oxide cell (SOC) perovskite electrode materials (BSCF (Ba0.5Sr0.5Co0.8Fe0.2O3-δ), LSCF (La0.6Sr0.4Co0.2Fe0.8O3-δ) and
LSCM (La0.75Sr0.25Cr0.5Mn0.5O3-δ)) were synthesised using microwave-assisted reverse-strike co-precipitation method and tested
for soot oxidation activity. The calcined perovskite materials were characterized using FT-IR, XRD, SEM and BSE, BET and BJH
andXPS analysis. Themean activation energy for soot oxidation was calculated fromOzawa plots at various heating rates (5, 10, 15
and 20 K/min) at different levels of soot conversions (T10 to T90) for BSCF, LSCM and LSCF perovskite materials and was around
133 ± 11.5, 138 ± 9.9 and 152 ± 7.2 kJ/mol, respectively. Irrespective of the heating rates, BSCF material showed the lowest T50
temperature than compared to other samples, and it is correlated to the presence of Fe3O4 as a secondary phase.

Keywords SOC perovskitematerials . Soot oxidation activity . Secondary phase-Fe3O4
. Activation energy . Ozawa plots

1 Introduction

Solid oxide cells (SOCs) operate in electrolyser and fuel cell
modes and provide effective conversion of electricity into re-
newable fuels and vice versa, respectively [1–3]. The most
common perovskite material as oxygen electrode for SOCs
is a composite of strontium doped lanthanum magnetite
(LSM) [4, 5], lanthanum strontium ferrite (LSF) [6], lantha-
num strontium cobaltite (LSCo) [5], lanthanum strontium
copper ferrite (LSCuF) [7], lanthanum strontium cobalt ferrite
(LSCF) [7, 8], lanthanum strontium cobalt magnetite (LSCM)
[9] or barium strontium cobalt ferrite (BSCF) [10]. Oxygen

reduction reaction and oxygen evolution reaction, along with
mixed ionic and electronic conductivities, play a major role in
selecting promising oxygen electrode for the SOCs in fuel cell
and electrolyser modes [11]. Similarly, the soot oxidation ac-
tivity in a diesel particulate filter (DPF) works on the active
oxygen mechanism in the absence of NO2 indicating that, in
the oxygen-rich gas stream, the DPF catalyst exchanges its
oxygen with gas phase oxygen leading to the formation of
highly reactive oxygen species which participates in soot ox-
idation at catalyst-soot interface [12]. Accumulation of soot in
DPF results in backpressure and reduces the engine perfor-
mance in the long run, therefore needs continuous regenera-
tion [13]. Consequently, different measures have to be taken to
eliminate soot from the engine exhaust. Only modifying the
engine design will not accomplish this, efforts have to be
taken to come up with novel catalysts that will help in
oxidising soot at lower temperatures (423–673 K) than the
temperature at which soot actually oxidises in the air (773–
873 K) [14, 15]. Catalytic conversion of soot in a diesel par-
ticulate filter (DPF) is one of the promising ways to eliminate
soot from a diesel engine exhaust.

The catalysts that are used for oxidation of soot include
transition metal oxides [16], alkali and alkaline-earth contain-
ing catalysts [17], noble metals [18, 19], perovskites [20],
spinel oxides [14] and pure and doped cerium oxides [21].
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Noble metals like platinum, palladium and rhodium are most
widely used catalysts for the same, but they are costly, scarce
and cannot withstand high temperatures as they get
deactivated due to sintering [14, 22, 23].

In recent years, the perovskite family has garnered a lot of
interest in the field of catalysis, due to their physical and chem-
ical properties. These perovskites having ABO3 structure,
where A-site is usually occupied by lanthanides or alkaline-
earth metals, B-site is occupied by transition metals and O is
oxygen, find applications in several oxidation reactions like CO
[24] and hydrocarbon oxidation [25], photocatalysis [26], ma-
terials for chemical sensors [27, 28], hydrogenation [29] and
hydrogenolysis reactions [30], pollution abatement and
electrocatalysis [31]. Partial substitution of cations in A-site
and B-site leads to substituted compounds with the formula
A1-x A xB1-y B yO3-δ. They are also stable at high temperatures
(above 1273 K) and are cheaper as compared to noble metals
[31–33]. Peron et al. [34] studied two lanthanum-based perov-
skites (LaCrO3 and LaMnO3) as possible substitutes for noble
metal catalysts in the automotive exhaust, along with the sub-
stitution of La with K doping in order to increase the catalytic
activity. It was found that doping with K led to improved cat-
alytic activity due to the increase in surface oxygen vacancies
created by the presence of adsorbed oxygen species. La1-
xKxCo1-yCuyO3-δ perovskites were tested by Li et al. [35] for
simultaneous oxidation of soot and NOx, which showed that
the redox properties improved on dual substitution of K and Cu
in the LaCoO3 lattice structure, mainly due to change in the
oxidation states (by substituting La3+ by K+ and Co3+ by Cu2+),
which leads to creation of oxygen vacancies, which further
increases the surface adsorbed oxygen species (O2

− and O−),
leading to increased catalytic activity.

The method of synthesis of perovskites is an important
factor which defines their physical property, and various syn-
thesis methods were used for preparation of perovskites which
includes sol-gel method [18], freeze-drying method, spray-
drying method [36], co-precipitation method [37], complexa-
tion method [38], hydrothermal method and microwave-
assisted methods [39]. Microwave-assisted processes con-
sume lesser energy, are fast and are shown to produce particles
having smaller grain size [40]. In this context, an attempt is
made to study and understand the suitability of SOC perov-
skite oxygen electrode materials (BSCF, LSCM and LSCF)
for soot oxidation activity, synthesised by microwave-assisted
reverse-strike co-precipitation method.

2 Experimental Details

2.1 Material Synthesis

The three perovskites, BSCF (Ba0.5Sr0.5Co0.8Fe0.2O3-δ),
L SCF (L a 0 . 6 S r 0 . 4 C o 0 . 2 F e 0 . 8O 3 - δ ) a n d LSCM

(La0.75Sr0.25Cr0.5Mn0.5O3-δ)), were synthesized by
microwave-assisted reverse-strike co-precipitation method,
using AR grade chemicals. The metal nitrates used for the
same include lanthanum (III) nitrate hexahydrate
[La(NO3)3.6H2O] (purity ≥ 99%) (Sigma–Aldrich), iron (III)
nitrate nonahydrate [Fe(NO3)3.9H2O] (purity ≥ 98%) (Sigma–
Aldrich), strontium nitrate anhydrous [Sr(NO3)2] (purity ≥
99%) (Molychem), cobalt (II) nitrate hexahydrate
[Co(NO3)2.6H2O] (purity ≥ 98%) (Sigma–Aldrich), barium
nitrate [Ba(NO3)2] (purity ≥ 98.5%) (Loba Chemie), chromi-
um (III) nitrate nonahydrate [Cr(NO3)3.9H2O] (purity ≥ 99%)
(Sigma–Aldrich), manganese (II) nitrate tetrahydrate
[Mn(NO3)2.4H2O] (purity ≥ 97%) (Sigma–Aldrich).

In this method, the metal nitrate solution was prepared by
dissolving stoichiometric amounts of nitrates in water (used as
a solvent). This metal nitrate solution and the ammonium hy-
droxide assay was added simultaneously and dropwise to wa-
ter at pH 11 (adjusted by the addition of ammonium hydrox-
ide), and overall pH is maintained at 9 under continuous stir-
ring [41]. The obtained precipitate is allowed to settle over-
night, followed by heating the solution in a microwave at
423 K for 30 min (540 W). This allows the particles to heat
quickly and leads to lesser clustering of particles [40]. This
solution is dried in a hot air oven at 453 K for 24 h. The solid
powder is crushed and calcined at 873 K for 5 h (to ensure
removal of impurities) in a muffle furnace, and the powder is
further re-calcined at 1373 K for 5 h (to ensure proper phase
formation) to obtain the desired material.

2.2 Material Characterization

The perovskite materials were analysed using Fourier-
transform infra-red spectroscopy (FT-IR) (Bruker Alpha), X-
ray diffraction (XRD) (Rigaku Miniflex 6000), scanning elec-
tron microscopy (SEM) and back-scattered electron (BSE)
(JSM 6380LA), BET surface area and BJH analysis (Quanta
Chrome Novae-2200) and X-ray photoelectron spectroscopy
(XPS) (Omicron ESCA+). CasaXPS software is used for
curve fitting from raw data, using C 1 s peak as a reference,
having binding energy 284.6 eV. The peak analysis is obtained
using a Shirley background and Gaussian-Lorentzian peak
fitting.

2.3 Soot Oxidation Activity

Soot oxidation activity studies were carried out using thermo-
gravimetric analysis (TGA, TG-DTA 6300). Before the soot
oxidation experiments, the TGA setup is optimized to elimi-
nate the possible heat and mass transfer effects [42]. Soot
(Printex-U, Orion Engineered Chemicals) is used, and the soot
to catalyst weight ratio is 1: 10 under tight contact mode. TGA
instrument is operated in the temperature range of 473 to
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873 K at various heating rates (5, 10, 15 and 20 K/min) in an
air atmosphere at a flow rate of 100 ml/min.

The apparent activation energy for soot oxidation is obtain-
ed using the following expression determined by Ozawa
method, given as [13, 43–45]:

d log ϕð Þð Þ½ �= d 1=Tαð Þ½ � ¼ −0:4567Ea=R ð1:1Þ
where ϕ is the heating rate (K/min) (ϕ = 5, 10, 15 and 20 K/
min), Tα is the temperature corresponding to α% (α% = 10,
20, 30, 40, 50, 60, 70, 80 and 90%) carbon conversion, Ea is
the apparent activation energy (kJ/mol) and R is the ideal gas
constant (= 8.314 J/ (mol K)). Using the least squares straight-
line fit, Ea can be estimated from the slope of log (ϕ) versus
(1/Tα) plot.

3 Results and Discussion

3.1 Material Characterization

Figure S1 (Supplementary Information) depicts the FT-IR
spectra of the perovskite materials calcined at 1373 K/5 h in
air and shows the formation of the metal oxygen bonds in all

the materials. Figure 1 shows the XRD patterns of BSCF,
LSCM and LSCF materials. For BSCF, LSCF and LSCM
materials, major diffraction peaks (100), (110), (111), (200),
(210), (211) and (220) correspond to the cubic perovskite
phase of BSCF [46, 47], the rhombohedral phase of LSCF
[48, 49] and the rhombohedral phase of LSCM [50–52], re-
spectively. For BSCF material, in addition to the major peaks,
low-intensity peaks were observed at 2θ = 36.52°, 42.09°, and
61.08°, which were identified as Fe3O4 [53, 54]. It indicates
that a secondary phase (Fe3O4) is formed, along with the
BSCF phase. No visible secondary phase formation or peak
shift can be identified in the LSCF and LSCM perovskites
materials, indicating pure phase formation [55, 56].

Table 1 shows the physiochemical properties obtained from
XRD, BETand BJH analysis. The crystallite size and lattice strain
for the BSCF, LSCF and LSCM perovskite materials from XRD
data are around 41, 19 and 19 nm and 0.0023, 0.0052 and 0.0054,
respectively. The BET surface area and pore volume of BSCF,
LSCF and LSCM perovskite materials obtained from BET and
BJH analysis are around 20, 39 and 4 m2/g and 0.036, 0.059 and
0.004 cc/g, respectively. Fig. S2 (Supplementary Information)
shows the N2 adsorption-desorption isotherms and pore size dis-
tribution of the perovskite materials. Type IVadsorption isotherm
withH3 type hysteresis loop is obtained indicating the dependency
of isotherm on the quality/surface of the porous solid perovskite
materials having slit-shaped pores of non-uniform size and shape.
From the BJH pore size distribution, all the perovskite materials
displayed a mesoporous structure having a pore size ranging from
2 to 50 nm.

Figure 2 depicts the SEM and BSE images of the perovskite
materials. The SEM images show that the obtained materials are
agglomerated. The agglomerate size of the BSCF and LSCF
perovskite materials is around 20 to 25 μm, and for the LSCM
material, it is less than 5 μm. Compared with the crystallite size
obtained from the XRD data, BSCF and LSCF materials
displayed a higher degree of agglomeration than LSCM materi-
al. BSE analysis is carried out to find out the presence of any
secondary phase in the perovskite materials. From a close obser-
vation, BSCF material showed a variation in colour, but this
variation cannot be attributed to the secondary phase since such
variation is also possible due to topography changes. LSCM and
LSCF have not shown major colour variations.

Figure 3 represents the XPS spectra of BSCF (Fig. 3a),
LSCF (Fig. 3b) and LSCM (Fig. 3c) perovskites. The

Fig. 1 XRD patterns of the BSCF, LSCM and LSCF perovskite materials
synthesised by microwave-assisted reverse-strike co-precipitation meth-
od, calcined at 1373 K/5 h

Table 1 Crystallite size, lattice strain, BET surface area and pore volume of BSCF, LSCF and LSCM perovskite materials, calcined at 1373 K/5 h,
obtained from XRD, BET and BJH analysis

Perovskites Crystallite sizea (nm) Lattice strainb BET surface area (m2/g) Pore volume (cc/g)

BSCF 41 0.0023 20 0.036

LSCF 19 0.0052 39 0.059

LSCM 19 0.0054 04 0.004
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deconvoluted peaks from obtained XPS data of Ba3d, Sr3d,
Co2p, Fe2p, La3d, Cr2p and Mn2p level of the perovskites were
analysed, and the oxidation states were assigned accordingly
which also matched well with the literature [51, 57–65]. From
the Fig. 3a, it is difficult to identify the oxidation state of
cobalt due to overlapping of Ba 3d and Co 2p. Figure 4 dis-
plays the O1s spectra of all the three perovskites. The spec-
trum was well fitted into two peaks, and the peak obtained at
lower binding energy (528–530 eV) is ascribed to surface
lattice oxygen species (O2−), and that of higher binding energy
(530.5–532.5 eV) belongs to surface adsorbed oxygen species

(O2−
2 , O−

2& O−) which is due to the presence of carbonate/
hydroxyl groups or adsorbed water molecule [66, 67].

The amount of lattice and adsorbed oxygen species are
obtained by calculating the ratio of individual oxygen species
to the total oxygen species and are tabulated in Table 2. The
surface adsorbed oxygen species were found to be high for
LSCF and LSCM perovskites than compared to BSCF. From
Table 2, it can also be seen that the amount of lattice oxygen
(Olattice/ Ototal) is high for BSCF perovskites. From the work
carried out by Urasaki et al. [68], Ming et al. [69], Chen et al.
[70] and Grimaudet al. [71], it was reported that the surface
lattice oxygen also favours the catalytic activity. However, the
catalytic stability and activity are associated closely with the
transfer of bulk lattice oxygen to fill the surface lattice oxygen
also [70]. Apart from that, the involvement of lattice oxygen
species in the oxidation reactions is more versatile than gas-
eous oxygen as it decreases the vacancy formation energy and
eases diffusion in the material [72].

3.2 Soot Oxidation Activity Studies

Figure 5 shows the soot oxidation conversion obtained for
BSCF, LSCF and LSCMperovskite materials with an increase
in the temperature at a heating rate of 10 K/min. Sigmoidal-
shaped curves were obtained and BSCF material showed a
better T50 temperature (734 K) than compared to LSCM
(747 K) and LSCF (773 K) materials. When compared to
ceria-based catalysts [73–75], the soot oxidation activity
of the SOC perovskites is less and it can be due to high calci-
nation temperature of perovskites. Nevertheless, efforts have
to bemade to decrease the heat treatment temperature at which
these SOC perovskite structures are formed. When compared
to single redox oxides (CeO2, SnO2, Pr6O11 and Mn3O4) and
non-redox oxides (Gd2O3, La2O3, ZrO2, and HfO2), the BSCF
perovskite showed better T50 (734 K) [76]. Figure 6 demon-
strates the soot oxidation conversion obtained for BSCF
(Fig. 6a), LSCF (Fig. 6b) and LSCM (Fig. 6c) materials with
the increase in the temperature at various heating rates (5, 10,
15 and 20 K/min) and sigmoidal-shaped curves were obtain-
ed. Irrespective of the tested perovskite, material dependence
of the soot conversion on the heating rate is noticed and soot
conversion is shifted to higher temperatures with the increase
of heating rates from 5 to 20 K/min. To further understand the
phenomena and to obtained the activation energy for the pe-
rovskite materials, Ozawa plots at various soot conversions (α
= 10 to 90%)) were obtained from Fig. 6 and depicted in
Fig. 7. From Fig. 7, a family of straight and parallel lines is
obtained for all the materials at the same degree of soot

Fig. 2 SEM and BSE images of the BSCF (a, d), LSCM (b, e) and LSCF (c, f) perovskite materials
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Fig. 3 XPS analysis of the BSCF (a), LSCF (b) and LSCM (c) perovskites with the corresponding metal oxidation states
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conversion and the activation energy for each conversion line
can be obtained from its slope. Activation energy hardly var-
ied with the extent of conversion for the perovskite materials
indicating a single-step reaction. A mean value of 133 ±
11.5 kJ/mol, 138 ± 9.9 kJ/mol and 152 ± 7.2 kJ/mol is calcu-
lated and reported as apparent activation energy of the soot
oxidation process for the BSCF, LSCM and LSCF perovskite
materials respectively and is lower than the activation energy
(168 kJ/mol) of uncatalyzed soot oxidation [77]. The presence
of secondary phase (Fe3O4) in BSCF material could be one of
the reasons for the better soot oxidation performance than
compared to other perovskite materials. From XRD data
(Fig. 1), it is evidenced that the BSCF material has Fe3O4 as
a secondary phase. From the literature [78, 79], the tempera-
ture programmed reduction (TPR) profiles of bulk Fe2O3, the
reduction of Fe3O4 to Fe is noticed in the range of ~ 903 to
943 K. This indicates that the secondary phase (Fe3O4)

benefits the soot oxidation owing to presence of iron in mixed
oxidation states (Fe2+/Fe3+) and promotes soot oxidation at
lower temperatures in BSCF material than compared to other
perovskite materials. The present study indicates the possibil-
ity of the application of SOC perovskite oxygen electrode
materials as catalysts for soot oxidation in diesel particulate
filters.

Wagloehner et al. [80, 81] have studied the transport of
oxygen from iron oxide catalysts to the soot surface during
soot oxidation. The contact points between soot and catalyst
lead to generation of surface oxygen vacancies due to transfer
of oxygen from the bulk of the catalyst to its surface, which
was understood using isotopic TPO studies. This transfer of
oxygen to soot leads to reduction of iron oxide to active iron
species. The surface oxygen vacancies were replenished by
either diffusion of bulk oxygen (movement through lattice
vacancies) or gas phase oxygen and the bulk oxygen

Fig. 4 O 1s spectra of the BSCF,
LSCF and LSCM perovskites

Table 2 O 1s data of BSCF,
LSCF and LSCM perovskite
materials, calcined at 1373 K/5 h,
obtained from XPS analysis

Sample Secondary
phasea (XRD)

B.E eV
(Olattice)

B.E eV
(Oadsorbed)

Olattice/
Ototal

Oadsorbed/
Ototal

T10
(K) b

T50

(K) b
T90

(K) b

BSCF Fe3O4 529.7 532.4 0.83 0.16 652 734 780

LSCF – 528.6 531.1 0.28 0.71 692 773 815

LSCM – 529.2 530.5 0.36 0.63 682 747 774

a From XRD data
b From Fig. 5 data
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replenished vacancies by relocation of surface oxygen to bulk.
This might be a possible reaction mechanism, which clarifies
the reason for lower soot oxidation temperature of BSCF,
mainly due to the presence of Fe3O4, which has higher amount
of bulk/lattice oxygen as compared to LSCF and LSCM.

4 Conclusion

Microwave-assisted reverse-strike co-precipitation method is
used for the synthesis of SOC perovskite oxygen electrode
(BSCF, LSCF and LSCM)materials, and the calcined samples
were characterized by XRD, SEM and XPS analysis and test-
ed for soot oxidation activity. From XRD analysis, BSCF
perovskite materials displayed a cubic structure along with a
secondary phase formation of Fe3O4, LSCM and LSCF pe-
rovskite materials showed a rhombohedral structure. The soot
oxidation activity studies showed that BSCF sample showed
better activity as compared to LSCM and LSCF samples. The
mean activation energies for the soot oxidation process, cal-
culated using Ozawa plots, are 133 ± 11.5 kJ/mol, 138 ±
9.9 kJ/mol and 152 ± 7.2 kJ/mol for BSCF, LSCM and
LSCF samples respectively. Formation of secondary phase
(Fe3O4) in BSCF sample promoted a positive effect on soot
oxidation activity, due to lattice/bulk oxygen vacancy.
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