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a b s t r a c t

Geometrically nonlinear vibration control of fiber reinforced magneto-electro-elastic or
multiferroic fibrous composite plates using active constrained layer damping treatment
has been investigated. The piezoelectric (BaTiO3) fibers are embedded in the magnetostric-
tive (CoFe2O4) matrix forming magneto-electro-elastic or multiferroic smart composite. A
three-dimensional finite element model of such fiber reinforced magneto-electro-elastic
plates integrated with the active constrained layer damping patches is developed.
Influence of electro-elastic, magneto-elastic and electromagnetic coupled fields on the
vibration has been studied. The Golla–Hughes–McTavish method in time domain is
employed for modeling a constrained viscoelastic layer of the active constrained layer
damping treatment. The von Kármán type nonlinear strain-displacement relations are
incorporated for developing a three-dimensional finite element model. Effect of fiber vol-
ume fraction, fiber orientation and boundary conditions on the control of geometrically
nonlinear vibration of the fiber reinforced magneto-electro-elastic plates is investigated.
The performance of the active constrained layer damping treatment due to the variation
of piezoelectric fiber orientation angle in the 1–3 Piezoelectric constraining layer of the
active constrained layer damping treatment has also been emphasized.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

A novel class of multiphase composite made of ferroelectric material BaTiO3 (barium titanate) and ferromagnetic material
CoFe2O4 (cobalt ferrite) is generally called as multiferroic or Magneto-electro-elastic (MEE) composites. Because of the dis-
tinct prosperities, multiferroic composites have received significant attention in the field of micro-electro-mechanical sys-
tems (MEMS). The ability of MEE composites can be visualized as a process of transfer of energy among the magnetic
domain, mechanical domain and the electric domain exhibiting the coupling between electro-mechanical, magneto-
mechanical and electromagnetic fields. The superior properties of MEE composites may be utilized for various smart struc-
tural applications apart from aeronautical industries. Such as sensors, actuators, transducers, spintronics, micro-electro-
mechanical systems, ultrasonic image devices etc. Studies concerned with multiferroic effect and/or MEE structures have
been received more attention from the researchers. Pan [1] was the first to study the exact solutions MEE plates while
Pan and Heyliger [2] studied the free vibration analysis of MEE plates using modified Stroh formalism and propagator matrix
method. Buchanan [3] computed the natural frequencies of vibration for MEE layered infinite plate and compared with
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multiphase composite plates. Large deflection in thin flexible structures is an important factor which needs an extra care in
the design of thin flexible structure used in the aerospace, automotive, medical image devices and precision instruments.
Considerable research is being devoted to studying the large deflection of MEE plates recently. Xue et al. [4] proposed the
analytical solutions for the large-deflection model of rectangular MEE thin plate under the action of a transverse static
mechanical load. They observed that coupling effect on the deflection is negligible for the MEE plate made of different vol-
ume fractions of the piezoelectric and piezomagnetic phases. Sladek et al. [5] proposed the meshless local Petrov-Galerkin
method to analyze the large deformation of MEE thick plates under the static and time-harmonic mechanical load and sta-
tionary electromagnetic load. Alaimo et al. [6] proposed an equivalent single-layer model for the large deflection analysis of
multilayered MEE laminates by finite element (FE) method. Milazzo [7,8] analyzed the large deflection of MEE laminated
plates using von Kármán stress function approach. Kattimani and Ray [9,10] studied the active control of large amplitude
vibrations of MEE plates and doubly curved shells using 1–3 piezoelectric composites. Chen and Yu [11] developed the geo-
metrically nonlinear multiphysics plate model and analyzed the MEE laminated composites by applying the variational
asymptotic method. Shooshtari and Razavi [12] studied the nonlinear vibration of a transversely isotropic simply supported
MEE thin plate based on the thin plate theory. Zhou and Zhu [13] used the third-order shear deformation theory to analyze
the vibration and bending of multiferroic rectangular plates. Geometrically nonlinear vibration analysis of multiferroic com-
posite plates and shells has been studied by Kattimani [14]. Further, effect aspect ratio on the nonlinear amplitude ratio and
central deflection has been investigated. The backbone curves depicting the nonlinearity in the multiferroic composite plates
and shells for different stacking sequence has been studied.

The magneto-electro-elastic effect in the composite can be obtained by combining the piezoelectric and the piezomag-
netic components either in a single layer with functionally graded materials or multilayered with a combination of piezo-
electric and piezomagnetic materials. In addition, the MEE effect can also be achieved by the piezoelectric fiber reinforced
in the piezomagnetic matrix [15]. Among the few materials which possess the piezoelectric/piezomagnetic properties, the
composite made of barium titanate (BaTiO3) and cobalt ferrite (CoFe2O4) exhibit significantly high electromagnetic coupling
effect in comparison to individual constituents [16]. The MEE composite in which the substrate layer is composed of piezo-
electric/piezomagnetic fiber reinforced in the piezomagnetic/piezoelectric matrix is commonly referred as fiber-reinforced
magneto-electro-elastic (FRMEE) composites. If the fibers are made of a piezoelectric (BaTiO3) material, the matrix is piezo-
magnetic (CoFe2O4) and vice versa. The effective material properties of such composites (FRMEE) are expressed by different
volume fractions of the piezoelectric constituent (BaTiO3) in FRMEE composites [17]. The micromechanics methods of deter-
mining the effective material properties of such composites have gained the remarkable attention of the researchers/scien
tist/engineers in recent years [18-22]. In addition, the behavior of the crack in the magneto-electro-elastic medium has been
studied by Wang and Mai [23]. Fracture analysis of cracked 2D planar and axiymmetric problems of magneto-electro-elastic
material is studied by Li et al. [24] using meshless local Petrov–Galerkin (MLPG) coupled with finite element method (FEM).

A structure can be made to possess a self-sensing and self-controlling capabilities by incorporating a very thin layer of
smart materials within the structure or bonded on the surface of the structure. It is due to the fact that the inherent property
of piezoelectric/piezomagnetic smart materials which exhibit electro-elastic or magneto-elastic coupling. The structures
integrated with such smart materials and showing a self-sensing and self-controlling capabilities are conventionally called
as smart structures or intelligent structures. It may be noted that the properties of monolithic piezoelectric materials can be
improved significantly by forming composite made with the piezoelectric fibers reinforced in an epoxy matrix. Such com-
posites are generally called as active damping piezoelectric composites. However, in order to enhance the controlling capa-
bility further, the active constrained layer damping (ACLD) treatment has been developed [25]. In a typical ACLD treatment,
the low stiff constrained viscoelastic layer is sandwiched between the substrate (host structure) and the 1–3 PZC active con-
straining layer to produce high shear deformation, resulting in improved damping characteristics. To improve the perfor-
mance of the piezoelectric materials to control the vibrations of structures, they are employed as constraining layer of
the ACLD treatment rather than directly attached to the host structures. Further, the ACLD treatment works as a passive con-
strained layer damping (PCLD) treatment in the absence of applied voltages. Thus, the ACLD treatment provides both passive
and active damping simultaneously when under operation [26,27]. In recent decades, a great deal of work has been carried
out on demonstration of the effectiveness of ACLD treatment for attenuating the vibrations of light-weight flexible structures
[28–35]. Ray et al. [34] experimentally and theoretically analyzed the ACLD of the cylindrical shell. Datta and Ray [36] devel-
oped a three-dimensional fractional derivative model for active constrained layer damping of composite plates. Kundalwal
and Ray [37] investigated the smart damping of fuzzy fiber-reinforced composite plates using ACLD. Lim et al. [38] developed
the closed loop finite element modeling of ACLD for time domain analysis.

In this paper, geometrically nonlinear vibration control of multiferroic fibrous composite plate i.e., piezoelectric (BaTiO3)
fiber reinforced magneto-electro-elastic (FRMEE) plate using the constrained layer damping has been investigated. The con-
strained viscoelastic layer of the ACLD treatment is modeled by using Golla–Hughes–McTavish (GHM) method in time
domain. Incorporating the von Kármán type nonlinear strain-displacement relations and layer-wise shear deformation the-
ory, a three-dimensional finite element (FE) model of the overall FRMEE plate integrated with the ACLD patches has been
developed. The influence of electro-elastic, magneto-elastic and electromagnetic coupled fields on the vibration has been
studied. Furthermore, effects of various parameters such as the effect of piezoelectric fiber volume fraction (Vf), fiber orien-
tation angle in the substrate, variation of the piezoelectric fiber orientation in the 1–3 PZC constraining layer and the bound-
ary conditions on the control of geometrically nonlinear vibrations of the multiferroic fibrous plate or FRMEE plates has been
investigated.
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2. Problem description

A schematic diagram of multilayred FRMEE composite plate integrated with a patch of the ACLD treatment on its top sur-
face is illustrated in Fig. 1(a) while Fig. 1(b) illustrates a layer of the FRMEE plate. Although one patch is shown in Fig. 1(a),
the FE model is derived for a multiple number of patches. The length, the width and the total thickness of the FRMEE plate
are a, b and H, respectively. The thickness of the constraining PZC layer and the constrained viscoelastic layer of the ACLD
treatment are hp and hv, respectively. Each layer of the FRMEE plate composed of the piezoelectric fibers embedded within
the piezomagnetic matrix. The effective material properties of the FRMEE composites with different fiber volume fractions
have been considered from the open literature [17]. Since both the piezoelectric and the piezomagnetic constituents are pre-
sent in each layer of the FRMEE plate, hence all layers of the FRMEE plate exhibit the piezoelectric and piezomagnetic effects
unlike the MEE plates studied by Kattimani and Ray [10] wherein the individual layers exhibit either piezoelectric or mag-
netostrictive effect.
2.1. Kinematics of deformations

The kinematics of deformations of the undeformed transverse normal in the xz- and the yz-planes are illustrated in Fig. 2
(a) and (b), respectively. The thicknesses of the substrate plate, substrate layer, piezoelectric layer and viscoelastic layer are
represented by H, h, hp and hv, respectively. The rotations of the portions of the normal lying in the substrate plate, the vis-
coelastic layer, and the piezoelectric layer are represented by hx, /x and cx, respectively in the xz-plane, while hy, /y and cy
Fig. 1. (a) Schematic representation of a FRMEE plate (b) layer of FRMEE plate.



Fig. 2. Kinematics of deformations of the FRMEE plate integrated with the ACLD patch (a) Transverse cross section parallel to xz-plane, (b) transverse cross
section parallel to yz-plane.
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represent the same in the yz-plane. Consequently, the axial displacements u and v of any point in the overall plate along the
x- and y-directions, respectively, can be written as:
uðx; y; tÞ ¼ u0ðx; y; tÞ þ b1ðzÞhxðx; y; tÞ þ b2ðzÞ/xðx; y; tÞ þ b3ðzÞcxðx; y; tÞ ð1aÞ

vðx; y; tÞ ¼ v0ðx; y; tÞ þ b1ðzÞhyðx; y; tÞ þ b2ðzÞ/yðx; y; tÞ þ b3ðzÞcyðx; y; tÞ ð1bÞ

where b1ðzÞ ¼ z� hz� h=2i, b2ðzÞ ¼ hz� h=2i � hz� hNþ1i and b3ðzÞ ¼ hz� h=2i � hz� hNþ2i.

It may be noted that the overall composite plate consists of different continua consisting of the substrate piezoelectric
and magnetostrictive material, viscoelastic material and the constraining PZC material. Consequently, to ensure the continu-
ity of the displacement field at the interface between the viscoelastic layer and the PZC layer or between the substrate plate
and the viscoelastic layer, the appropriate singularity functions b1(z), b2(z) and b3(z) are defined in Eq. (1). In order to utilize
the vertical actuation by the active constraining layer of the ACLD treatment and to achieve the accurate results, a higher
order transverse deformation theory has been assumed for the overall plate. Accordingly, the transverse displacement at
any point in the overall plate can be expressed as
wðx; y; z; tÞ ¼ w0ðx; y; tÞ þ zhzðx; y; tÞ þ z2/zðx; y; tÞ ð2Þ

In Eqs. (1) and (2), variables u0, v0 and w0 are the translational displacements at any point on the mid-plane (z = 0) of the

substrate along x-, y- and z-directions, respectively, with hz and /z are the generalized rotational displacements. To facilitate
the computation, the rotational variables {dr} are separated from the translational displacement variables {dt} as follows:
fdtg ¼ u0 v0 w0½ �T and fdrg ¼ hx hy hz /x /y /z cx cy
� �T ð3Þ
2.2. Strain-displacement relations

Since the FRMEE plate integrated with ACLD patches is a thin structure, the shear locking problems should be alleviated
by employing the selective integration rule in a straightforward manner. To facilitate this task, the state of strain at any point
in the overall FRMEE plate is expressed by the strain vector {eb} containing in-plane strains and transverse normal strain and
the vector {es} of transverse shear strains as follows:
febg ¼ ex ey ez exyf g and fesg ¼ exz eyzf g ð4Þ

in which, ex, ey, and ez are the normal strains along x-, y- and z- directions, respectively; exy is the in-plane shear strain, exz
and eyz are the transverse shear strains. Employing the von Kármán type geometrically nonlinear strain-displacement rela-
tions the strain vectors fekbg representing the state of in-plane and transverse normal strains at any point in the FRMEE plate,
the viscoelastic layer and the piezoelectric actuator layer, respectively, can be stated as:
fekbg ¼ febtg þ ½Z1�ferbg þ fetbng; k ¼ 1;2;3; . . . ;N

fekbg ¼ febtg þ ½Z2�ferbg þ fetbng; k ¼ Nþ 2 ð5Þ
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Here, k designates the layer number starting from the bottom layer of the overall plate. Analogously, the strain vectors rep-
resenting the state of transverse shear strains at any point in the substrate, the viscoelastic layer, and the piezoelectric actu-
ator layer, respectively, can be stated as follows:
feksg ¼ fetsg þ ½Z3�fersg; k ¼ 1;2;3:; . . . ;N feksg ¼ fetsg þ ½Z4�fersg; k ¼ Nþ 1 and

feksg ¼ fetsg þ ½Z5�fersg; k ¼ Nþ 2 ð6Þ

The transformation matrices [Z1] - [Z5], the generalized strain vectors ({ebt}, {ets}, {erb}, {ers}) and the generalized nonlinear

strain vector ({etbn}) appearing in Eqs. (5) and (6) are presented in the Appendix A. Analogous to the representation of the
state of strains given in Eq. (5), the state of stress at any point in the overall FRMEE plate can be written as follows:
frbg ¼ rx ry rz rxy½ �T and frsg ¼ rxz ryz½ �T ð7Þ

in which rx, ry and rz are the normal stresses along x-, y- and z-directions, respectively; rxy is the in-plane shear stress; rxz

and ryz are the transverse shear stresses.

2.3. Constitutive relations

The applied electric and magnetic fields are considered to act along the z-direction only. Thus the coupled constitutive
relations for FRMEE layers with respect to the principal material coordinate axes are given by
frk
bg ¼ ½�Ck

b�fekbg � fekbgEz � fqk
bgHz and frk

sg ¼ ½�Ck
s �feksg

Dz ¼ fekbg
Tfekbg þ 2k

33Ez þ d33Hz

Bz ¼ fqk
bg

Tfekbg þ d33Ez þ l33Hz k ¼ 1;2;3 ð8Þ

where k = 1, 2, 3,. . ., N, Dz and Bz are the electric displacement and the magnetic induction (i.e., magnetic flux), respectively,
along the z-direction; Ez and Hz are the electrical field and the magnetic field, respectively, along the z-direction; [�Ck

b] and
[�Ck

s ] are the transformed elastic coefficient matrix; 2k
33 and l33 are the dielectric constant and the magnetic permeability con-

stant, respectively; {ekb}, {q
k
b} and d33 are the piezoelectric coefficient matrix, the magnetostrictive coefficient matrix, and the

electromagnetic coefficient, respectively. The various matrices of material properties appearing in Eq. (8) are given by
½�Ck
b� ¼

Ck
11 Ck

12 Ck
13 0

Ck
12 Ck

22 Ck
23 0

Ck
13 Ck

32 Ck
33 0

0 0 0 Ck
66

2
66664

3
77775; ½�Ck

s � ¼
Ck
55 0

0 Ck
66

" #
; fekbg ¼

e31
e32
e33
e36

8>>><
>>>:

9>>>=
>>>;
; fqk

bg ¼

q31

q32

q33

q36

8>>><
>>>:

9>>>=
>>>;

ð9Þ
while with respect to the laminate coordinate system, the elastic coefficient matrices ½�Ck
b� and ½�Ck

s �, the piezoelectric coeffi-
cient vector {ek}, the dielectric coefficient vector {ek} and the magnetic coefficient vector {qk} of the off-axis FRMEE lamina
are to be augmented as follows:
½�Ck
b� ¼

�Ck
11

�Ck
12

�Ck
13

�Ck
16

�Ck
12

�Ck
22

�Ck
23

�Ck
26

�Ck
13

�Ck
32

�Ck
33

�Ck
36

�Ck
16

�Ck
26

�Ck
36

�Ck
66

2
6664

3
7775; ½�Ck

s � ¼
�Ck
55

�Ck
45

�Ck
45

�Ck
66

" #
;

f�ekbg ¼ �e31 �e32 �e33 �e36f g; f�ekbg ¼ fe33g and

f�qk
bg ¼ �q31 �q32 �q33 �q36f g ð10Þ
The constitutive relations for the 1–3 PZC constraining layer of the ACLD treatment adaptable with the present method of
finite element formulation are given by
frk
bg ¼ ½�Ck

b�fekbg � ½�Cbs�feksg � f�ebgEz;

frk
sg ¼ ½�Cbs�Tfekbg þ ½�Ck

s �feksg � f�ebgEz and

Dz ¼ f�ebgTfekbg þ f�esgTfeksg þ �233Ez ðk ¼ 5Þ ð11Þ
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In Eq. (11), the forms of the transformed elastic coefficient matrices [�Ck
b] and [�Ck

s ] are similar to those of [�Ck
b] and [�Ck

s ],
respectively. However, the constitutive relations reveal that the inclination of the piezoelectric fibers in the vertical xz- or
yz-plane is responsible for the coupling between the transverse shear strains and the in-plane stresses. The corresponding
coupling elastic constant matrix [�C5

bs] is given by
½�C5
bs� ¼

�C15
�C25

�C35 0
0 0 0 �C46

" #T
or ½�C5

bs� ¼
0 0 �C56 0
�C14

�C24 0 �C34

" #T
ð12Þ
according to as the fibers are coplanar with the xz- or the yz-plane, respectively. If the piezoelectric fibers are coplanar with
both the xz- and the yz-planes (k = 0), the coupling matrix of Eq. (12) transforms into a null matrix. Also, the piezoelectric
constant matrices {ekb} and {eks } appearing in Eq. (12) involve the following transformed effective piezoelectric coefficients
of the 1–3 PZC:
f�ebg ¼ �e31 �e32 �e33 �e36f gT and f�esg ¼ �e35 �e34f gT ð13Þ

The present analysis of the overall MEE plates will be carried out in the time domain. Consequently, the Golla–Hughes–

McTavish (GHM) method has been implemented to model the viscoelastic material. For time domain analysis, the constitu-
tive equation for the linear, isotropic and homogeneous viscoelastic material is expressed in stieltjes integral form and is
given by
ðrsÞv ¼
Z t

0
Gðt � sÞ @ðe

k
s Þ

@s
ds; k ¼ 4 ð14Þ
where G(t) is the relaxation function of the viscoelastic material.

2.4. Electric field-potential relations

Using Maxwell’s electromagnetic equations, the transverse electric and magnetic fields are considered for deriving the FE
model. It is also to be noted that the transverse magnetoelastic and piezoelectric constants for all the FRMEE layers are equal.
Hence, same functions for the distribution of the transverse electric field and the magnetic field are considered for deriving
the model. Thus the transverse electric field and the transverse magnetic field in any FRMEE lamina can be related to the
electric potential and the magnetic potential, respectively as follows:
Ez ¼ � @/
@z

and Hz ¼ � @w
@z

ð15Þ
in which Ez, Hz, / and w are the transverse electric field, the transverse magnetic field, the electrical potential function, and
the magnetic potential function, respectively. The electric and the magnetic potential functions can be written as
/ ¼ z� h1

H
�/ and w ¼ z� h1

H
�w ð16Þ
in which, H is the total thickness of the substrate, h1 is the z-coordinate of the bottom surface of the bottom layer of the
substrate.

3. Finite element model of FRMEE plate integrated with ACLD patches

Considering that the FRMEE plate is composed of N number of FRMEE layers of different fiber orientation angles, the prin-
ciple of virtual work employed to derive the governing equations of the overall FRMEE plate is given by
XNþ2

k¼1

Z
Xk

dfekbg
Tfrk

bgdXk þ
Xnþ2

k¼1

Z
Xk

dfeksg
Tfrk

sgdXk þ
Z
X5

dfe5bg
Tfr5

bg þ dfe5s g
Tfr5

s g
� �

dX5

�
Z
XNþ2

dENþ2
z DNþ2

Z dXNþ2 �
Z
Xk

dEzDzdX�
Z
Xk

dHzBzdX�
Z
A
dfdtgTffgdA

þ
XNþ2

k¼1

Z
Xk

dfdtgTqkf€dtgdXt ¼ 0

ð17Þ
where qk is the mass density of the kth layer, Xk (k = 1, 2, 3, . . ., 5) indicates the volume of the relevant layer, {f} = [0 0 p]T is
the externally applied surface traction vector acting over a surface area A with p being the transverse step load and d is the
symbol of the first variation. The overall FRMEE plate integrated with the ACLD patch is discretized by eight noded isopara-
metric quadrilateral elements. The generalized displacement vectors {dti} and {dri} associated with the ith (i = 1, 2, 3, . . ., 8)
node of the element can be written as
fdtig ¼ u0i v0i w0i½ �T and fdrig ¼ hxi hyi hzi /xi /yi /zi cxi cyi
� �T ð18Þ
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while the electric potential vector {/} and the magnetic potential �w at any point within the element can be expressed in
terms of the nodal electric potential vector {/e} and the nodal magnetic potential vector {�we}, respectively, as follows:
f/g ¼ ½N/�f/eg and �w ¼ ½Nw�f�weg ð19Þ

in which,
f/eg ¼ /1 /2 : : : /8½ �T ; f�weg ¼ �w1
�w2 : : : �w8

� �T
½N/� ¼ n1 n2 : : : n8½ �T and ½Nw� ¼ ½N/� ð20Þ
where ni is the shape function of natural coordinates associated with the ith node, /i (i = 1, 2, 3,. . ., 8) are the nodal electric
potential degrees of freedom and �wi (i = 1, 2, 3,. . ., 8) are the nodal magnetic potential degrees of freedom. [N/] and [Nw] are
the (3 � 24) shape function matrices. Using Eqs. (15), (16) and (19), the transverse electric field Ez and the transverse mag-
netic field Hz can be expressed as
Ez ¼ � 1
H
½N/�f/eg and Hz ¼ � 1

H
½Nw�f�weg ð21Þ
Now, using Eqs. (5), (6) and (21), the strain vectors at any point within the element can be expressed in terms of the nodal
generalized displacement vectors as follows:
febtg ¼ ½Btb�fde
tg; febrg ¼ ½Brb�fde

rg; fetbng ¼ 1
2
½B1�½B2�fde

tg;

festg ¼ ½Bts�fde
tg and fersg ¼ ½Brs�fde

rg ð22Þ

in which the nodal strain-displacement matrices [Btb], [Brb], [Bts], [Brs], [B1] and [B2] are explicitly presented in the Appendix
A. Now, by substituting Eqs. (5), (6), (10), (21) and (22) into Eq. (17), the elemental equations of motion for the FRMEE plate
integrated with the ACLD treatment obtained are presented explicitly in Appendix B. The elemental equations of motion are
assembled in a straightforward manner into the global space to obtain the open-loop coupled global equations of motion of
the overall smart FRMEE plate integrated with the patches of the ACLD treatment as follows:
½M�f€Xg þ ½Ktt�fXg þ ½Ktr�fXrg þ ½Kt/�fUg þ ½Ktw�fwg þ ½Ktsv �
Z t

0
Gðt � sÞ @

@s
fXgdsþ ½Ktrsv �

Z t

0
Gðt � sÞ @

@s
fXrgds

¼ fFg �
Xq
j¼1

ðfF j
tpg þ fF j

tpngÞV j ð23Þ

½Ktr �TfXg þ ½Krr�fXrg þ ½Ktrsv �T
Z t

0
Gðt � sÞ @

@s
fXgdsþ ½Krrsv �

Z t

0
Gðt � sÞ @

@s
fXrgdsþ ½Kr/�fUg þ ½Krw�fwg

¼ �
Xq
j¼1

fF j
rpgV j ð24Þ

½Kt/�TfXg þ ½Kr/�TfXrg � ½K//�fUg ¼ 0 ð25Þ

½Ktw�TfXg þ ½Krw�TfXrg � ½Kww�fwg ¼ 0 ð26Þ

where [M] is the global mass matrix; [Ktt], [Ktr], [Krr] [Ktsv ], [Ktrsv] and [Ktrsv ] are the global elastic stiffness matrices, [Kt/] and
[Kr/] are the global electro-elastic coupling stiffness matrices, [Ktw] and [Krw] are the global magneto-elastic coupling stiff-
ness matrices, [K//] is the global electrical stiffness matrix, [Kww] is the global magnetic stiffness matrix, {Ftp} and {Frp} are the
global electro-elastic coupling vectors; {F} is the global nodal mechanical load vector, respectively, {X} and {Xr} are the global
generalized nodal displacement vectors, {U} and {w} are the global nodal generalized electrical potential and magnetic
potential vectors, Vj is the applied control voltage to the jth ACLD patch. In the absence of the applied control voltage,
the coupled global equations derived above also govern the passive (uncontrolled) constrained layer damping of the MEE
plate. After standard condensation of {U} and {w}, invoking the boundary conditions and taking the Laplace transform of
Eqs. (23) and (24), the following global equations in the Laplace domain are obtained:
s2½M�f~Xtg þ Lð½K1�fXtg þ ½K2�fXrgÞ þ ½Ktsv �s~GðsÞf~Xtg þ ½Ktrsv �s~GðsÞf~Xrg ¼ f~Fg �
Xq
j¼1

fF j
tpg~V j � L

Xq
j¼1

fF j
tpngV j

 !
ð27Þ

Lð½K3�fXtgÞ þ ½K4�f~Xrg þ ½Ktrsv �Ts~GðsÞf~Xtg þ ½Krrsv �s~GðsÞf~Xrg ¼ �
Xq
j¼1

fF j
rpg~V j ð28Þ
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in which, the augmented matrices are given by
½K1� ¼ ½Ktt� þ ½Kt/�½K//��1½Kt/�T þ ½Ktw�½Kww��1½Ktw�T ;

½K2� ¼ ½Ktr� þ ½Kt/�½K//��1½Kr/�T þ ½Krw�½Kww��1½Krw�T ;

½K3� ¼ ½Krt� þ ½Kr/�½K//��1½K/t�T þ ½Krw�½Kww��1½Kwt�T ;

½K4� ¼ ½Krr� þ ½Kr/�½K//��1½Kr/�T þ ½Krw�½Kww��1½Krw�T ð29Þ

where L is the Laplace operator while f~Xtg, f~Xrg, f~Fg and ~V j are Laplace transforms of {Xt}, {Xr}, {F} and V j, respectively.

3.1. Implementation of the GHM method

Although, the implementation of the GHM method in time domain is analogous to one studied by Kattimani and Ray [10]
for the MEE plate, for the sake of clarity the method is presented here again. Using the GHMmodel for the viscoelastic mate-
rial in time domain, the material modulus function can be expressed by a series of mini-oscillator terms [40] as follows:
s~GðsÞ ¼ G1 1þ
XN
k¼1

ak
s2 þ 2n̂kx̂ks

s2 þ 2n̂kx̂ksþ x̂2
k

" #
ð30Þ
in which, the term s~GðsÞ is referred to as a material modulus function of the viscoelastic material in the Laplace domain. G1 is
the equilibrium value of the modulus i.e. the final value of the relaxation G(t). Every mini-oscillator term is a second-order
rational function consisting of three positive constants ak, x̂k and n̂k. These constants influence the shape of the modulus
function in the complex s-domain. Taking into consideration of a GHM material modulus function with a single mini-
oscillator term [40] i.e.,
s~GðsÞ ¼ G1 1þ a
s2 þ 2n̂x̂s

s2 þ 2n̂x̂sþ x̂2

" #
ð31Þ
the auxiliary dissipation coordinates Z and Zr are introduced as follows [46]:
s~GðsÞf~Xtg ¼ G1½ð1þ aÞf~Xtg � a~ZðsÞ� and s~GðsÞf~Xrg ¼ G1½ð1þ aÞf~Xrg � a~ZrðsÞ� ð32Þ

~ZðsÞ ¼ x̂2

s2 þ 2n̂x̂sþ x̂2
fXtg and ~ZrðsÞ ¼ x̂2

s2 þ 2n̂x̂sþ x̂2
fXrg ð33Þ
where ~ZðsÞ and ~ZrðsÞ are the Laplace transforms of Z and Zr, respectively. Using Eqs. (31) and (32) in Eqs. (27) and (28), it can
be written that
s2½M�f~Xtg þ Lð½K1�fXtg þ ½K2�fXrgÞ þ G1½Ktsv �½ð1þ aÞf~Xtg � a~zðsÞ� þ G1½Ktrsv �½ð1þ aÞf~Xrg � a~zrðsÞ�

¼ f~Fg �
Xq
j¼1

fF j
tpg~V j � L

Xq
j¼1

fF j
tpngV j

 !
ð34Þ

Lð½K3�fXtgÞ þ ½K4�f~Xrg þ ½Ktrsv �Ts~GðsÞf~Xtg þ ½Krrsv �s~GðsÞf~Xrg ¼ �
Xq
j¼1

fF j
rpg~V j ð35Þ
Taking inverse Laplace transforms of Eqs. (33)–(35) and condensing the global degrees of freedom {Xr} from the resulting
equations in time domain, the following equations are obtained:
½M�f€Xtg þ ½Kx�fXtg þ ½Kz�fZðtÞg þ ½Kzr�fZrg ¼ fFg �
Xq
j¼1

fF j
pgV j ð36Þ

f€Zg þ 2nx̂f _Zg þ x̂2fZg � x̂2fZg ¼ 0 ð37Þ

f€Zrg þ 2nx̂f _Zrg þ x̂2½K5�fXtg � x̂2½K6�fZg � x̂2½K7�fZrg ¼ �
Xq
j¼1

fF j
pzgV j ð38Þ
The various global stiffness matrices and force vectors appearing in Eqs. (36)–(38) given in Appendix. C. Now, Eqs. (36)–
(38) are combined to obtain the global open-loop equations of motion in the time domain as follows:
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½M��f€Xg þ ½C��f _Xg þ ½K��fXg ¼ fF�g þ
Xq
j¼1

f�F j
pgV j ð39Þ
where
½M�� ¼
½M� 0 0
0 IZ 0
0 0 IZr

2
64

3
75; ½C�� ¼

0 0 0
0 2nx̂ 0
0 0 2nx̂

2
64

3
75; ½K�� ¼

½Kx� ½Kz� ½Kzr �
�x̂2 x̂2 0
x̂2½K5� �x̂2½K6� x̂2½K7�

2
64

3
75

fF�g ¼
fFg
0
0

8><
>:

9>=
>;; f�F j

pg ¼
fF j

pg
0

fF j
pzg

8><
>:

9>=
>;; fXg ¼

fXtg
Z

Zr

8><
>:

9>=
>; ð40Þ
4. Closed loop model

The control voltage Vj for activating the constraining layer of each ACLD patch is supplied according to a simple velocity
feedback control law. Thus, the control voltage for each patch can be represented in terms of the derivatives of the global
nodal degrees of freedom as follows:
V j ¼ �Kd _w0ðxj; yjÞ ¼ �Kd½U j
t �f _Xg ð41Þ
where Kd is the control gain for the jth ACLD patch and [U j
t ] is the unit vector for expressing the transverse velocity of a point

(xj, yj) in terms of the time derivative of the global nodal generalized translational displacements. Eventually, substituting Eq.
(41) into Eq. (39), the final global equations of motion governing the closed-loop dynamics of the MEE plate integrated with
the ACLD system can be obtained as follows:
½M��f€Xg þ ½C�
d�f _Xg þ ½K��fXg ¼ fF�g ð42Þ
in which, [C�
d] is the active damping matrix and is given by
½C�
d� ¼ ½C�� þ

Xq
j¼1

Kdf�F j
pg½U j

t � ð43Þ
5. Results and discussions

In this section, numerical results are presented to demonstrate the control of the geometrically nonlinear transient vibra-
tions of the FRMEE plates using the ACLD treatment. The FE model derived in the preceding section is employed to derive the
numerical results. The FRMEE plate considered for computing the numerical results is integrated either with a single ACLD
patch at the center of the plate as shown in Fig. 1(a) or two identical patches placed at the opposite edges of the plate as
shown by the shaded area in Fig. 1(a). The total volume of the two patches equals the volume of the single patch. Fig. 1
(b) illustrates the schematic diagram of a layer of FRMEE plate. A layer of the obliquely reinforced 1–3 PZC material in which
Schematic representation of the ACLD patches with vertically/obliquely reinforced 1–3 PZCs in which (a) piezoelectric fibers are coplanar with the
xz-plane, (b) piezoelectric fibers are coplanar with the vertical yz-plane.
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the piezoelectric fibers are coplanar with the xz-plane with their orientation angle k with the z-axis is illustrated in Fig. 3(a).
The piezoelectric fibers can be coplanar with the yz-plane while the orientation angle with the z-axis is k as shown in Fig. 3
(b). In the case of the obliquely reinforced 1–3 PZC, the orientation angle (k) is nonzero while it is zero for the vertically rein-
forced 1–3 PZC. The length and the width of the single ACLD patch are a/2 and b/2 while that of the patches placed on the
edges are a/2 and b/4, respectively. The material of the constraining layer of the ACLD treatment is PZT-5H/spur epoxy com-
posite with 60% piezoelectric fiber volume fraction. The elastic and the piezoelectric properties of this constraining 1–3 PZC
layer are as follows [28]:
Table 1
Materia

Mate

C11 =
C12

C13 =
C33

C44

C66

e31 =
e33
e24 =
q31 =
q33
q24 =
m11 =
m33
e11 =
e33
d11

d33

q

CP
11 ¼ 9:29 GPa; CP

12 ¼ 6:18 GPa; CP
13 ¼ 6:05 GPa; CP

33 ¼ 35:44 GPa; CP
23 ¼ CP

13
CP
44 ¼ 1:58 GPa; CP

55 ¼ 1:54 GPa; e31 ¼ �0:1902C=m2; e33 ¼ 18:4107C=m2
The thicknesses of the constraining 1–3 PZC layer and the viscoelastic layer are considered to be 250 mm and 250 mm,
respectively. Unless otherwise stated, the aspect ratio (a/H) of the FRMEE plate is considered to be 200 and the controlled
responses are computed using the vertically reinforced 1–3 PZC (i.e. k = 0�). The substrate plate is modeled by N layers of
equal thickness (h = 0.001 m). The material properties of the substrate FRMEE plate for different volume fractions (BaTiO3/
CoFe2O4) are given in Table 1 [3,17]. In order to consider single term GHM expression, the values of a, n̂ and x̂ are used as
11.42, 20 and 1.0261 � 105, respectively [40]. The shear modulus ðG1Þ and the density of the viscoelastic material ðqv Þ are
used as 1.822 � 106 Pa and 1140 kg/m3, respectively [40]. The boundary conditions employed for computing the numerical
results are given in Table 2. In all cases, the electric and magnetic potentials at the boundaries are assumed to be zero. The
open-loop and the closed-loop responses of the plates have been examined by the frequency response functions for the
transverse displacement at the mid-point (a/2, b/2, H/2) of the substrate. A uniformly distributed transverse pulse load
(p) is applied to set the overall plate into motion.
5.1. Validation of the GHM implementation

The implementation of the GHM method for modeling the ACLD treatment is validated with the methodology proposed
by Lim et al. [38]. The viscoelastic material has been modeled by employing the conventional complex modulus approach
and the GHM method separately to determine the linear frequency responses for the transverse displacement of the FRMEE
plates. The first few modes of the FRMEE plate have been excited by applying a time-harmonic load of amplitude 1 N at the
point (a/2, b/2, H/2). The frequency response functions obtained by the standard complex modulus approach as well as by
the GHM method for the simply supported cross-ply (0�/90�/0�) FRMEE plate with 50% fiber volume fraction (Vf = 0.50) have
been illustrated in Fig. 4. It may be observed from this figure that the frequency response curves obtained by both the
approaches are almost indistinguishable. Consequently, it may be concluded that the present approach of modeling the vis-
coelastic material by the GHM method accurately evaluates the damping characteristics of the overall FRMEE plates in time
domain.
l constants for FRMEE multiphase composites as percentage of piezoelectric [3,17].

rial properties with Units 25% BaTiO3 (Vf = 0.25) 50% BaTiO3 (Vf = 0.50) 75% BaTiO3 (Vf = 0.75)

C22 (109 N/m2) 245 215 186
(109 N/m2) 144 112 90

C23 (109 N/m2) 144 112 90
(109 N/m2) 235 210 181
(109 N/m2) 46 50 51
(109 N/m2) 51 52 48

e32 (C/m2) �1.5 �2.8 �3.8
(C/m2) 4.2 8.7 13.2

e15 (C/m2) 0.0 0.2 0.3
q3 (N/Am) 380 220 90

(N/Am) 475 290 135
q15 (N/Am) 335 180 75
m22 (10�6 Ns2/C2) �3.55 �2.00 �0.90

(10�6 Ns2/C2) 1.20 0.80 0.45
e22 (10�9 C2/Nm2) 0.1 0.25 0.5

(10�9 C2/Nm2) 3.2 6.3 9.4
(10�12 Ns/VC) 3.1 5.3 6.8
(10�12 Ns/VC) 2350 2750 1800
(kg/m3) 5425 5550 5675



Table 2
Boundary conditions employed for the analysis of MEE plate.

Type At x = 0 and a At y = 0 and b

Simply Supported (SS1) v0 ¼ w0 ¼ hy ¼ /y
¼ cy ¼ hz ¼ /z ¼ 0

u0 ¼ w0 ¼ hx ¼ /x
¼ cx ¼ hz ¼ /z ¼ 0

Clamped-Clamped (CC) u0 ¼ v0 ¼ w0 ¼ hx ¼ hy
¼ /x ¼ /y ¼ cy ¼ hz ¼ /z ¼ 0

u0 ¼ v0 ¼ w0 ¼ hx ¼ hy
¼ /x ¼ /y ¼ cy ¼ hz ¼ /z ¼ 0

Fig. 4. Linear frequency responses for the center deflection of a simply supported symmetric cross-ply (0�/90�/0�) FRMEE plate obtained by the GHM
method and the complex modulus approach.
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5.2. Validation of the FE model

It is noteworthy to mention that to the authors’ best knowledge, the research relevant to the geometrically nonlinear
vibrations of the FRMEE plates is not yet reported in the open literature. However, the FRMEE layers can be replaced by
the layers of the conventional composite. Hence, the load-deflection curve of the laminated composite plates presented
by Sarangi and Ray [39] has been considered for the validation of the present FE model. Consequently, the variation of
the non-dimensional vertical displacement w/H with respect to the load at the center of the cross-ply (0�/90�/0�) laminated
plate integrated with the inactivated ACLD patches of negligible thickness has been computed by the present FE model and
subsequently compared with the results reported by Sarangi and Ray [39] for the identical plate as shown in Fig. 5. It may be
observed from this figure that the results are in excellent agreement.
5.3. Backbone curves and nonlinear dynamics

The open-loop and the closed-loop responses of the plates are examined by the frequency response functions for the
transverse displacement at the mid-point (a/2, b/2, H/2) of the substrate. A uniformly distributed transverse step load (p)
is applied to set the overall plate into motion. The magnitude of the exciting step load which causes the geometrically non-
linear deflections is determined by the backbone curves demonstrating the variations of the frequency ratio (xnl/xl) with the
non-dimensional transverse deflection (wmax/H). Fig. 6 illustrates such backbone curves for a simply supported antisymmet-
Fig. 5. Load deflection curves for a simply supported symmetric cross-ply (0�/90�/0�) square substrate plates.



Fig. 6. Backbone curves for the simply supported antisymmetric cross-ply (0�/90�/0�/90�) and angle-ply (�45�/45�/�45�/45�) FRMEE plates for different
volume fractions (Vf).
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ric cross-ply (0�/90�/0�/90�) and antisymmetric angle-ply (�45�/45�/�45�/45�) FRMEE plates for different volume fractions
(Vf). It may be noticed from these figures that for causing substantial geometrical nonlinearity (xnl/xl > 1) in the uncon-
trolled responses, the arbitrary applied step load should be such that the value of (wmax/H) is greater than 0.2.
5.4. Active damping analysis

The control voltage supplied to the ACLD patch is negatively proportional to the velocity of the point (a/2, b/2, H/2) on the
top of the substrate. The values of the control gain (Kd) are chosen arbitrarily while maintaining the acceptable control volt-
age (V < 300 V). The nonlinear transient responses of a simply supported antisymmetric cross-ply (0�/90�/0�/90�) FRMEE
plate with 50% volume fraction (BaTiO3/CoFe2O4) is illustrated in Fig. 7 while Fig. 8 illustrates the same for the clamped-
clamped antisymmetric cross-ply (0�/90�/0�/90�) FRMEE plate. The uncontrolled and controlled transient responses pre-
sented in these figures (Figs. 7 and 8) are corresponding to the cases when the patch is passive (Kd = 0) and active (Kd –
0), respectively. In both the cases, the plates are set into undergoing nonlinear vibrations with a same maximum amplitude
of uncontrolled response (Kd = 0). It may be observed from these figures that the damping characteristics of the FRMEE plates
have been substantially improved due to the active ACLD treatment and it has a significant effect on the control of geomet-
rically nonlinear vibrations of the overall plates over the passive damping. Fig. 9 illustrates the corresponding control volt-
ages required for the active control of responses presented in Figs. 7 and 8. It may be observed from this figure that the
control voltages are within the nominal range (max (V) = 275 V).

Since the control voltage is proportional to the velocity of the center of the plate; the transient decay of the control volt-
age presented in Fig. 9 represents that the velocity at any point of the overall plate also diminishes with time. The phase plots
illustrated in Fig. 10(a) and (b) for the simply supported and clamped-clamped boundary conditions, respectively, confirm
the same demonstrating the stability of the plates. Figs. 11 and 12 illustrate the comparison of geometrically nonlinear tran-
sient vibration responses of simply supported symmetric cross-ply (0�/90�/0�) and antisymmetric angle-ply (�45�/45�/
�45�/45�) FRMEE plates, respectively, with the piezoelectric (BaTiO3) fiber volume fractions of 25%, 50% and 75% in the sub-
Fig. 7. Nonlinear transient responses of a simply supported antisymmetric cross-ply (0�/90�/0�/90�) FRMEE plate undergoing ACLD (a/H = 200, a = b, p = 1.8
kN/m2).



Fig. 8. Nonlinear transient responses of a clamped-clamped antisymmetric cross-ply (0�/90�/0�/90�) FRMEE plate undergoing ACLD (a/H = 200, a = b, p =
1.8 kN/m2).
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strate plate. It may be observed from these figures that the damping characteristic of the FRMEE plates increases with the
decrease in the piezoelectric fiber volume fraction. Fig. 13 demonstrates the influence of lamination schemes on the nonlin-
ear transient responses of simply supported FRMEE plates with 50% fiber volume fraction. It may be noticed from this figure
that the antisymmetric angle-ply (�45�/45�/�45�/45�) FRMEE plate exhibits significantly higher stiffening effect than the
antisymmetric cross-ply (0�/90�/0�/90�) FRMEE plates and the performance of the ACLD patch is significantly improved
for attenuating the geometrically nonlinear vibrations. The transverse actuation by the 1–3 PZC layer of the ACLD patch
mainly contributes significantly to enhancing the damping characteristics of the FRMEE plates as illustrated in Fig. 14.
5.4.1. Effect of piezoelectric fiber orientation angle
The FE model developed here is also capable of investigating the influence of variation of the piezoelectric fiber orienta-

tion angle (k) in the obliquely reinforced 1–3 PZC constraining layer of the ACLD patches on their potential of attenuating the
geometrically nonlinear vibrations of the FRMEE plates. To quantify the performance of the ACLD patch for controlling the
large deflections of the FRMEE plate, a performance index (Id) for computing the control authority of the obliquely reinforced
1–3 PZC constraining layer is defined as follows:
Fig. 9.
90�/0�/
Id ¼ w1ða=2; b=2; H=2Þ �w10ða=2; b=2; H=2Þ
w1ða=2; b=2; H=2Þ � 100 ð44Þ
in which, w1 and w10 are the magnitudes of the maximum amplitude at the first peak and the 10th peak, respectively. Id
measures the percentage suppression of the amplitude at the point (a/2, b/2, H/2) of the overall FRMEE plate undergoing
nonlinear transient vibrations. For a particular value of the mechanical load and the maximum control voltage, Figs. 15
and 16 illustrate that the control authority (i.e. the performance index Id) of the ACLD patch varies with the variation of
the piezoelectric fiber orientation angle (k) in the xz-plane while becoming maximum at k = 0� for simply supported as well
as clamped-clamped with antisymmetric cross-ply and antisymmetric angle-ply FRMEE plates, respectively. It may be
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Control voltages required for the ACLD of nonlinear transient vibrations of the simply supported and clamped-clamped antisymmetric cross-ply (0�/
90�) FRMEE plates (a/H = 200, a = b, p = 1.8 kN/m2).



Fig. 10. Phase plots for a (a) simply supported and (b) clamped-clamped FRMEE plates when the ACLD patch controls the nonlinear vibrations of the plates
(‘‘S” is the starting point).

Fig. 11. Effect of fiber volume fraction (Vf) on the nonlinear transient responses of a simply supported symmetric cross-ply (0�/90�/0�) FRMEE plate
undergoing ACLD (a/H = 200, a = b, p = 1.8 kN/m2, max(V) = 275 V).

Fig. 12. Effect of fiber volume fraction (Vf) on the nonlinear transient responses of a simply supported antisymmetric angle-ply FRMEE plate undergoing
ACLD (a/H = 200, a = b, p = 1.8 kN/m2, max(V) = 235 V).
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Fig. 13. Nonlinear transient responses for a simply supported cross-ply and angle-ply FRMEE plates (a/H = 200, a = b, p = 1.8 kN/m2).

Fig. 14. Contributions of in-plane and transverse actuations by the PZC layer in the controlled response of the FRMEE plate undergoing geometrically
nonlinear vibrations (a/H = 200, a = b, Kd = 500, p = 1.8 kN/m2).

Fig. 15. Effect of variations of the piezoelectric fiber orientation angle (k) in 1–3 PZC constraining layer of the ACLD patch on the control of active damping
of geometrically nonlinear vibrations of the antisymmetric cross-ply FRMEE plates when the piezoelectric fibers are coplanar with the xz-plane (Vf = 0.50, p
= 1.8 kN/m2, max (V) = 285 V).
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observed from these figures that the performance of the ACLD patch is independent of the sign of the piezoelectric fiber ori-
entation angle (k) in the 1–3 PZC constraining layer.
5.4.2. Effect of coupled fields
The effect of the electro-elastic and magneto-elastic coupled fields on the control of geometrically nonlinear transient

vibrations has been studied by setting the corresponding matrices i.e., [Kt/], [K//] and/or [Ktw], [Kww] to null matrices.



Fig. 16. Effect of variations of the piezoelectric fiber orientation angle (k) in 1–3 PZC constraining layer of the ACLD patch on the control of active damping
of geometrically nonlinear vibrations of the antisymmetric angle-ply FRMEE plates when the piezoelectric fibers are coplanar with the xz-plane (Vf = 0.50, p
= 1.8 kN/m2, max (V) = 285 V).

Fig. 17. Comparison of coupled and uncoupled controlled nonlinear transient responses of a simply supported cross-ply FRMEE plate undergoing ACLD (a/
H = 200, a = b, Kd = 500, Vf = 0.50, p = 1.8 kN/m2).
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Fig. 17 demonstrates the effects on the controlled responses of a simply supported FRMEE plate. It is evident from this figure
that the coupled fields cause a marginal stiffening effect on the FRMEE plate. It may also be noticed from this figure that the
contribution of magneto-elastic coupled fields is higher than the electro-elastic coupled fields in contrary to the B/F/B and
the F/B/F (B stands for BaTiO3 and F stands for CoFe2O4) MEE plates studied by Kattimani and Ray [10] wherein the domi-
nance of electro-elastic coupled fields has been observed. It may be due to the presence of both piezoelectric and piezomag-
netic effect in each the layer of the FRMEE plate.

6. Conclusions

Control of geometrically nonlinear vibrations of the FRMEE plates integrated with the ACLD patch/patches has been inves-
tigated by deriving a three-dimensional FE model. The vertically/obliquely reinforced 1–3 PZC materials are considered as
the candidate materials for the constraining layer of the ACLD treatment while the constrained viscoelastic layer is modeled
by adapting the GHM approach in time domain. The FRMEE plates exhibit hardening type nonlinearity. The numerical results
reveal that remarkable enhancement in the active damping characteristics of the FRMEE plates by the ACLD treatment over
the passive damping for controlling the geometrically nonlinear vibrations has been achieved. The performance of the single
ACLD patch placed at the center of the top surface of the FRMEE plates is significantly larger than that of the two patches
placed at the opposite edges of the plates. The in-plane actuation by the 1–3 PZC layer for controlling the geometrically non-
linear vibrations is negligible while the vertical actuation of the vertically reinforced 1–3 PZC layer is mainly responsible for
the active damping. The damping characteristic of the FRMEE plates increases with the decrease in the piezoelectric fiber
volume fraction. The antisymmetric angle-ply FRMEE plates exhibit greater nonlinearity than the symmetric/antisymmetric
cross-ply FRMEE plates.

The boundary conditions and the variation of the piezoelectric fiber orientation angle (k) in the constraining layer signif-
icantly influence the performance of the ACLD patch for controlling the geometrically nonlinear vibrations of the FRMEE
plates. The control authority of the patch becomes maximum for the vertically reinforced 1–3 PZC (i.e. k = 0�) in the con-
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straining layer of the ACLD patch. The electro-elastic and the magneto-elastic coupling exhibit marginal increase in the stiff-
ening effect of the FRMEE plates while their contributions on controlling the nonlinear transient vibrations are negligible.
The influence of the magneto-elastic coupled field is greater than that of the electro-elastic coupled field on the stiffening
effect of the FRMEE plates.

Appendix A.

A.1. Transformation matrices

The transformation matrices ½Z1� � ½Z5� appearing in Eqs. (5) and (6) are given by
½Z1� ¼ �Z1
€O �O

� �
; ½Z2� ¼ �Z2 hv Î2 z� h

2 � hv
� �̂

I2
h i

; ½Z3� ¼ �I ~O ~O �Z3

� �
;

½Z4� ¼ ~O �I ~O �Z4

� �
; ½Z5� ¼ ~O ~O �I �Z5

� �
: ðA1Þ
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@cx
@y þ @cy

@x

2
4

3
5;

fetbng ¼ 1
2

dw0
dx

� �2
dw0
dy

� �2
0 2 dw0

dx

� �2
dw0
dy

� �� 	T
and

fersg ¼ hx hy /x /y cx cy
@hz
@x

@hz
@y

@/z
@x

@/z
@y

h i
: ðA2Þ
A.2. Submatrices

The nodal strain-displacement matrices [Btb], [Brb], [Bts], [Brs], [B1] and [B2] appearing in Eq. (22) are given by
½Btb� ¼ Btb1 Btb2 : : : Btb8½ �; ½Brb� ¼ Brb1 Brb2 : : : Brb8½ �;

½Bts� ¼ Bts1 Bts2 : : : Btb8½ �; ½Brs� ¼ Brs1 Brs2 : : : Brs8½ �;

½B1� ¼
dw0
dx 0 dw0

dy 0

0 dw0
dy

dw0
dx 0

2
4

3
5

T

; ½B2� ¼ B21 B22 : : : B28½ � ðA3Þ
The various submatrices [Btbi], [Brbi], [Btsi] and [Brsi] (i = 1, 2, 3,. . ., 8) are as follows
I ¼
1 0 0
0 1 0
0 0 1

2
64

3
75; �I ¼ 1 0

0 1

� 	
; ~I ¼

1 0 0
0 1 0
0 0 0

2
64

3
75; €I ¼

0 0
0 0
0 1

2
64

3
75; Î ¼

1 0 0
0 1 0
0 0 0
0 0 1

2
6664

3
7775

½Btbi� ¼

@ni
@x 0 0

0 @ni
@y 0

0 d 0
@ni
@y

@ni
@x 0

2
66664

3
77775; ½Btsi� ¼

0 0 @ni
@x

0 0 @ni
@y

" #
; ½Brbi� ¼

B̂rbi
�0 �0 �0

~O I ~O ~O
�0 �0 B̂rbi

�0
�0 �0 �0 B̂rbi

2
66664

3
77775 and
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½Brsi� ¼

~I €I ~0
~0 �0 I
~O B̂rsi

�0T

�0T B̂rsi
~O

2
66664

3
77775 in which; ½B̂rbi� ¼

@ni
@x 0

0 @ni
@y

@ni
@y

@ni
@x

2
664

3
775; ½B̂rsi� ¼

@ni
@x 0 0
@ni
@y 0 0

" #
ðA4Þ
where ~0, �0, ~O, �O and €O are the (3 � 3), (3 � 2), (2 � 2), (4 � 2) and (3 � 4) null matrices, respectively.

Appendix B
½Me�f€de
tg þ ½Ke

tt�fde
tg þ ½Ke

tr�fde
rg þ ½Ke

tsv �
Z t

0
Gðt � sÞ @

@s
fde

tgdsþ ½Ke
trsv �

Z t

0
Gðt � sÞ @

@s
fde

rgdsþ ½Ke
t/�f/eg þ ½Ke

tw�

� fweg
¼ fFe

tg � fFe
tpgV � fFe

tpngV ðB1Þ

½Ke
tr�Tfde

tg þ ½Ke
rr �fde

rg þ ½Ke
trsv �

Z t

0
Gðt � sÞ @

@s
fde

tgdsþ ½Ke
rrsv �

Z t

0
Gðt � sÞ @

@s
fde

rgdsþ ½Ke
r/�f/eg þ ½Ke

rw�fweg

¼ �fFe
rpgV ðB2Þ

½Ke
/t �fde

tg þ ½Ke
r/�Tfde

rg � ½Ke
//�f/eg ¼ 0 ðB3Þ

½Ke
wt �fde

tg þ ½Ke
rw�Tfde

rg � ½Ke
ww�fweg ¼ 0 ðB4Þ
The various stiffness matrices appearing in Eqs. (B1)–(B4) are
½Ke
tt� ¼ ½Ke

tb� þ ½Ke
ts� þ ½Ke

tbp� þ ½Ke
tsp� þ ½Ke

tbn� þ ½Ke
tbpn�;

½Ke
tr� ¼ ½Ke

trb� þ ½Ke
trbn� þ ½Ke

trs� þ ½Ke
trbp� þ ½Ke

trbpn� þ ½Ke
trsp�;

½Ke
rt� ¼ ½Ke

trb�T þ
1
2
½Ke

trbn�T þ ½Ke
trs�T þ ½Ke

rtbp� þ ½Ke
rtbpn� þ ½Ke

trsp�T ;

½Ke
rr� ¼ ½Ke

rrb� þ ½Ke
rrs� þ ½Ke

rrbp� þ ½Ke
rrsp�; ½Ke

t/� ¼ ½Ke
t/l� þ ½Ke

t/n�;

½Ke
tw� ¼ ½Ke

twl� þ ½Ke
twn�; ½Ke

/t � ¼ ½Ke
t/l�T þ

1
2
½Ke

t/n�T ; ½Ke
wt � ¼ ½Ke

twl�T þ
1
2
½Ke

twn�T

fFe
tpg ¼ fFe

tpbg þ fFe
tpsg; fFe

rpg ¼ fFe
rpbg þ fFe

rpsg; fFe
tpng ¼

Z be

0

Z ae

0
½B2�T ½B1�T ½Ftbp�dxdy;

fFeg ¼
Z be

0

Z ae

0
½Nt�Tffgdxdy; ðB5Þ
The elemental stiffness matrices appearing in Eq. (B5) corresponding to the bending stretching deformations are
½Ke
t/l� ¼

Z ae

0

Z be

0
½Btb�T ½Dt/�½N/�dxdy; ½Ke

r/� ¼
Z ae

0

Z be

0
½Brb�T ½Dr/�½N/�dxdy;

½Ke
t/n� ¼

Z ae

0

Z be

0
½B2�T ½B1�T ½Dt/�½N/�dxdy; ½Ke

twl� ¼
Z ae

0

Z be

0
½Btb�TfDtwg½Nw�dxdy;

½Ke
rw� ¼

Z ae

0

Z be

0
½Brb�TfDtwg½Nw�dxdy; ½Ke

twn� ¼
Z ae

0

Z be

0
½B2�T ½B1�TfDtwg½Nw�dxdy;

½Ke
//� ¼

Z ae

0

Z be

0
½N/�T ½D//�½N/�dxdy; ½Ke

ww� ¼
Z ae

0

Z be

0
½Nw�TfDwwg½Nw�dxdy;
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½Ke
tb� ¼

Z ae

0

Z be

0
½Btb�T ½Dtb�½Btb�dxdy; ½Ke

trb� ¼
Z ae

0

Z be

0
½Btb�T ½Dtrb�½Brb�dxdy;

½Ke
rrb� ¼

Z ae

0

Z be

0
½Brb�T ½Drrb�½Brb�dxdy; ½Ke

trbn� ¼
Z be

0

Z ae

0
½B2�T ½B1�T ½Dtrb�½Brb�dxdy;

½Me� ¼
Z be

0

Z ae

0
�m½Nt �T ½Nt�dxdy and �m ¼

XNþ5

k¼1

Z hkþ1

hk

qkdz

½Ke
tbn� ¼

Z be

0

Z ae

0

1
2
½Btb�T ½Dtb�½B1�½B2� þ ½B2�T ½B1�T ½Dtb�½Btb� þ 1

2
½B2�T ½B1�T ½Dtb�½B1�½B2�


 �
dxdy;

½Ke
tbp� ¼

Z ae

0

Z be

0
ð½Btb�T ½Dp

tb�½Btb� þ 2½Btb�T ½Dp
tbs�½Bts�Þdxdy;

½Ke
trbp� ¼

Z ae

0

Z be

0
ð½Btb�T ½Dp

trb�½Brb� þ ½Btb�T ½Dp
trbs�½Brs� þ ½Bts�T ½Dp

rtbs�
T ½Brb�Þdxdy;

½Ke
rrbp� ¼

Z ae

0

Z be

0
ð½Brb�T ½Dp

rrb�½Brb� þ 2½Brb�T ½Dp
rrbs�½Brs�Þdxdy;

fFe
tpbg ¼

Z ae

0

Z be

0
½Btb�TfDb

tpgdxdy; fFe
rpbg ¼

Z ae

0

Z be

0
½Brb�TfDb

rpgdxdy: ðB6Þ
and those associated with the transverse shear deformations are
½Ke
ts� ¼

Z ae

0

Z be

0
½Bts�T ½Dts�½Bts�dxdy; ½Ke

trs� ¼
Z be

0

Z ae

0
½Bts�T ½Dtrs�½Brs�dxdy;

½Ke
rrs� ¼

Z be

0

Z ae

0
½Brs�T ½Drrs�½Brs�dxdy; ½Ke

tsp� ¼
Z ae

0

Z be

0
½Bts�T ½Dp

ts�½Bts�dxdy;

½Ke
trsp� ¼

Z ae

0

Z be

0
½Bts�T ½Dp

trs�½Brs�dxdy; ½Ke
rrsp� ¼

Z ae

0

Z be

0
½Brs�T ½Dp

rrs�½Brs�dxdy;

½Ke
tsv � ¼ hv

Z be

0

Z ae

0
½Bts�T ½Bts�dxdy; ½Ke

trsv � ¼
Z be

0

Z ae

0
½Bts�T ½Dtrsv �½Brs�dxdy;

½Ke
rrsv � ¼

Z be

0

Z ae

0
½Brs�T ½Drrsv �½Brs�dxdy: ðB7Þ
The various rigidity matrices and rigidity vectors appearing in Eqs. (B6) and (B7) are given by
½Dtb� ¼
X3
k¼1

Z hkþ1

hk

½�Cs
b�

k
dz; ½Dtrb� ¼

X3
k¼1

Z hkþ1

hk

½�Cs
b�

k½Z1�dz; ½Drrb� ¼
X3
k¼1

Z hkþ1

hk

½Z1�T ½�Cs
b�

k½Z1�dz;

½Dts� ¼
X3
k¼1

Z hkþ1

hk

½�Cs
s�
k
dz; ½Dtrs� ¼

X3
k¼1

Z hkþ1

hk

½�Cs
s�
k½Z3�dz; ½Drrs� ¼

X3
k¼1

Z hkþ1

hk

½Z3�T ½�Cs
s�
k½Z3�dz;

½Dp
tb� ¼

Z h6

h5

½�Cp
b�dz; ½Dp

trb� ¼
Z h6

h5

½�Cp
b�½Z2�dz; ½Dp

rrb� ¼
Z h6

h5

½Z2�T ½�Cp
b�½Z2�dz;

½Dp
ts� ¼

Z h6

h5

½�Cp
s �dz; ½Dp

trs� ¼
Z h6

h5

½�Cp
s �½Z5�dz; ½Dp

rrs� ¼
Z h6

h5

½Z2�T ½�Cp
s �½Z5�dz;

½Dtsv � ¼
Z h5

h4

½�Cvs �dz; ½Dtrsv � ¼
Z h5

h4

½�Cvs �½Z4�dz; ½Drrsv � ¼
Z h5

h4

½Z4�T ½�Cvs �½Z4�dz;
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½Dp
tbs� ¼

Z h6

h5

½�Cbs�dz; ½Dp
trbs� ¼

Z h6

h5

½�Cbs�½Z5�dz; ½Dp
rtbs� ¼

Z h6

h5

½Z2�T ½�Cbs�dz;

½Dp
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Z h6

h5
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Z h6

h5

1
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fepbgdz; fDb
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Z h6

h5

1
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h5

1
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feps gdz; fDs
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Z h6

h5

1
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½Z5�Tfeps gdz; fDtwg ¼
Z h3

h2

fqs
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1
h
dz;

fDt/g ¼
Z h4

h3

fesbg
1
h

1 0½ �dzþ
Z h2

h1
fesbg

1
h

0 1½ �dz;

fDrwg ¼
Z h3

h2

½Z1�Tfqs
bg

1
h
dz; fDr/g ¼

Z h4

h3

½z1�Tfesbg
1
h

1 0½ �dzþ
Z h2

h1
½z1�Tfesbg

1
h

0 1½ �dz;

½D//� ¼ 2s
33

h
1 0
0 1

� 	
; ½Dww� ¼ 1

h
l33: ðB8Þ
Appendix C

The various global stiffness matrices and force vectors appearing in Eqs. (36)–(38) are given by
½Kx� ¼ ½�Ktt� � ½�Ktr �½�Krr ��1½Ktr�T ; ½Kz� ¼ aG1½�Ktr �½�Krr ��1½Ktrsv �T � aG1½Ktsv �;

½Kzr� ¼ aG1½�Ktr �½�Krr ��1½Krrsv � � aG1½Ktrsv �; ½�Ktt � ¼ ½K1� þ G1ð1þ aÞ½Ktsv �;

½�Ktr� ¼ ½K2� þ G1ð1þ aÞ½Ktrsv �T ; ½�Krt� ¼ ½K3� þ G1ð1þ aÞ½Krrsv �T ;

½�Krr� ¼ ½K4� þ G1ð1þ aÞ½Krrsv �; ½K5� ¼ ½�Krr ��1½�Ktr�T ;

½K6� ¼ aG1½�Krr��1½Ktrsv �T ; ½K7� ¼ Izr � aG1½�Krr��1½Krrsv �;

fF j
pg ¼ �½�Ktr �½�Krr ��1fF j

rpg þ fF j
tpg þ fF j

tpng; fF j
pzg ¼ x̂2½�Krr��1fF j

rpg:
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