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In this paper the direct stability evaluation o f  power 
systems, with voltage-dependent loads, using topological 
energy function is given with applications This is based on 
the philosophy of  a structure-preserving model for power 
systems. The loads are modelled as arbitrary functions of  
respectively bus voltages. A classical model is assumed for 
generators and system equations are formed using centre o f  
angle (COA ) reference. A topological energy function is 
developed and applied for the stability evaluation using the 
potential-energy boundary surface (PEBS) method. 
Examples o f a 4-machine and a 7-machine system are con- 
sidered for illustration. The critical clearing time (Ter) is 
obtained both by digital simulation and by the direct 
method for various load characteristics and for different 
fault locations. 

Keywords: short-term system dynamics, transient stability, 
L yapunov method 

I. Introduction 
Direct methods for trans~ent-stabllity analysis are potenti- 
ally useful both as off-line tools for planning purposes and 
for on-line security assessment 1'2. Although much research 
work has been reported m this area, the application of th:s 
method has been limited by the conservativeness of results, 
the computational burden in computing stability regmns, 
and the use of simple models for generators and loads. 
Recent developments such as the use of COA varmbles, the 
concept of controlhng unstable equihbrlum point (UEP) 3 
and the use of potential-energy boundary surfaces (PEBS) 
method 3'4 in evaluating the region of stability, have been 
directed at removing some of these limitations. 

Recmved 5 December 1985 

Hitherto, loads, m general, have been modelled as constant 
impedances. This results m a linear network which can be 
reduced to a network retaining only the generator internal 
buses. This approach has been used for no better reason 
than to avoid the nonhnear algebraic equations that result 
from the nonhnear voltage-dependent loads. Unfortunately, 
this simplification introduces the problem of transfer con- 
ductances. In the early investigations, transfer conductances 
were entirely neglected or taken into account using 
approximation 3, 4. 

A structure-preserving model for power systems proposed 
recently by Bergen and Hill s not only eliminates the prob- 
lem of transfer conductances but is also advantageous from 
the viewpoint of  real-time dynamic security assessment and 
for Incorporating the load charactenmcs accurately. They 
have considered PV-type load buses; however, their assump- 
tion of constant bus voltages is not vahd, particularly 
during the transient caused by a fault. An Improvement In 
the load models is presented in References 6 and 7. Whale 
m Reference 6 PQ-type load buses (with constant active 
and reactive power) are considered, in Reference 7 
voltage-dependent reactwe power loads are considered 
along with constant active power loads 

In this paper, a topological energy function Is developed 
and the stability evaluation is extended to accommodate 
the system with arbitrarily specified voltage-dependent 
loads. The system equations are formulated using COA 
reference and the critical energy is determined using PEBS 
method 4. The computation of faulted trajectory requires 
xterative solution of network equations in the presence of 
nonlinear loads An algorithm gwen in Reference 8 as used 
for this purpose. 

The method is illustrated using 4-mactune and a 7-machine 
system examples. The critical clearing times obtained by 
direct method are compared with those obtained from 
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digital simulation, for various load characteristics and for 
different fault locations. 

II. Notation 
M i inertia constant of  machine i 
w t angular velocity in COA reference 
Oi, ~i mactune and bus angles with respect to COA 
E i internal voltage of  machine i 
V~ voltage at bus t 

Pmi mechanical power input to machine i 
Pet electrical power generated by machine i 
Pit, Qh load active and reactive power at bus i 
W energy function 
MT ~ i m 1 Mi 

Subscript '0 '  Indicates the quantities evaluated at the stable 
equilibrium point. 

III. System equations 

II 1.1 Dynamic equations o f  machines 
Consider an n-bus multimachine system having m machines 
supplying nonlinear voltage-dependent loads. In the direct 
transient-stability evaluation using energy-type Lyapunov 
functions, the following assumptions are usually made. 

Each synchronous machine is represented by a classical 
model, namely, a constant voltage source behind transient 
reactance. 

2 Governor action is not taken into account and thus the 
mechanical torque is assumed to be constant. 

3 Damping coefficients are neglected. 

Transmission lines are assumed to be lossless. This is 
generally true as the extra high voltage lines in a power 
system have high X/R ratio. 

The last two assumptions can be relaxed without unduly 
complicating the analysis. However, these assumptions will 
lead to the system being conservatwe, as shown later. 

Under the above assumptions, the motion of  the lth machine 
is described by the following differential equations s (in 
COA reference). 

m i  
Mi(oi = Pmi -- Pei -- -~T PCOA 

Oi = O)t 

where 

(1) 

(2) 

Ei Vi sin ( Oi - -  ( ~ i )  
Pei -- I 

Xd i 
(3) 

m m 

M T =  ~ Mi, PCOA= ~ (Pmi- -ee i )  
z = l  t = l  

(4) 

In view of  the definitions of  COA variables a, we have 

m m 

MiO i = O and ~ M i w  i = O 
t = 1  i = 1  

(5) 

111.2 Load mode/ 
In the toad model considered here. both acnve and reactwe 
powers are assumed to be arbitrary functions of  respect~vc 
bus voltages. Thus the equations for system loads can be 
written as 

eli  = Jpi (v,') 

and 

(~) 

Qli=Jqi(Vi),  i =  1,2 . . . . .  n (7) 

111.3 Power flow equations 
For a lossless transmission system, the followmg equatxons 
are applicable 

Let 

E t V/sin(¢i -- 0i) n 
gu = , , g2i = ~ VtV]Bil sm ¢0 

Xd/  j = l  

V~-EiVi cos(Oi-~i) '~ 
g3i  = , , g4 t  = E ViVj  Bi] c o s q ) / ]  

Xdl i=1 

The active power injected into the network from bus i is 

P l = g u + g 2 t ,  for i = 1 , 2  . . . . .  m (8) 

=g2t ,  for i = m + l , m + 2  . . . . .  n (9) 

The reactive power injection at bus i is 

Qi=g3i-t-g4i, for i =  1,2 . . . . .  m (10) 

=get ,  for i = m + l , m + 2  . . . . .  n (11) 

In the above expressions, Bi! = I m  [Ybus(i,])], where Ybus 
is the admittance matrix of  the network (without including 
the machine reactances). 

The power flow equations at bus i can be written as 

ei  + e l i  = e i  -t- fpi(Vi) = 0 (12) 

and 

a t + a u = a i + f q i ( V l ) = O ,  for i = 1 , 2  . . . . .  n (13) 

IV. Topological energy functions (TEP) 
Energy function is one o f  the possible Lyapunov functions. 
The advantage o f  using energy function in stability analysis 
is that various terms in it can be given physical interpreta- 
tion. Particularly with a structure-preserving model for 
power systems, energy function is the sum of  the energy 
of  each individual component o f  the system. Thxs makes it 
possible to allocate the aggregate energy to the components 
of  the network. As a result, energy changes during a transi- 
ent can be decomposed into energy changes in individual 
power-system elements. 

The use of  energy function can be related to the equal-areas 
criterion for one- or two-machine systems. Athay et al. 3 
derived an energy function for the reduced system (after 
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eliminating the load buses) using COA variables. The 
presence of transfer conductances introduces a path- 
dependent term. This can be avoided by using the structure- 
preserving model 6'7. However,the energy function developed 
in References 6 and 7 takes account only of constant 
active power loads and uses absolute rotor velocitms in 
defining the kinetic energy. The latter would be accurate 
only if an infinite bus were considered in the system. 

The development of  the energy function given here avoids 
both thedrawbacks mentioned above. Any arbitrary 
voltage-dependent load characteristics are considered and 
the COA variables are used. 

Consider the energy function defined for the post-fault 
system 

W(O, co, V, 4, t) = W~(co) + W2(O, V, 4, t) (14) 

where 

1 m 
w,(co)=-: Z gtco~ 

2 l=1 

I412(0, V, 4, t) = W2,(O) + W22(t) + W2a(V) 

+ W~(K o, 4) + W2s(K 4) 

m 

W21(O) = Z Pmt(Ot -OiO) 
/=1 

t 

W:2:z(t)=~=lyPll(gi)~ttdt  
to 

? W2a(V) = ~ fqi(X'-----~) dxt 
t=1 Xi 

r i o  

m 

w,,(v,  o, 4) = Z [(E~ + V~ - 2e, V~ cos(01 - 4~)) 
i=1 

1 

--(E~o + Vt2O- 2Eio VtO cos(0io--4i0))] _ , 
2Xdi 

1 n n 
w:~(v, 4) = -~ ,~=1 Z 8,~(v,v~ cos4,~- V,o~o cos4,jo) 

"= ]=1 

W1 is the kinetic energy and I#2 is the potential energy. 

It can be proved, by direct verification, that the system 
defined by the equations (1)-(13)is conservative. 

Proof: Taking partial derivatives of W with respect to V/, 
4i, t, 4t and coi respectively, one can easily get (using 
system equations) 

OW 1 
~Vi -~i(Qu+Ql ) o, fromequat lon(13)  (15) 

aW EiVI sin(Oi--4i ) n 
-It- Z BijViVI s l n 4 i / '  ? 

~4i X di J = 1 

t =  1 ,2 , . .  ,m 

/1 

= Z BijViVj sinOq, 
]=1 

i = m + l ,  . . , n  
(16) 

= Pi from equations (8) and (9) 

~W n ~4i 
- - = ~  P u - -  
Ot i= 1 dt 

(17) 

aW 

OOi 
- -  -- -- Pmi + Pei ( 1 8 )  

and 

~ W  
= Mico  i 

acoi 
(19) 

We have, from equation (12), 

n 3 W d4i ~ W ~ d4t 
Z - - - -  + - - =  (ei+Pu)-~ =0 
i=1 O4i d t  3 t  i=1 

(20) 

and 

m 
3W dco t + aW dO i _ ~ (Micoi--Prni + Pei) coi 

i=13coi dt 3Oi dt i=1 

= PCOACOi = 0, from equation (5) 
i=1 T 

(21) 

Hence, 

dt = 1 ~coi dt 
- -  

~W d4i + 0 (22) 
+ - ~4t dt 

on substituting from equations (15), (20) and (21). 

This shows that the total energy of the system is conserved. 

Comments 
1 It is assumed that the system models are well defined 

in the sense that the voltages at the load buses can be 
solved in a continuous manner at any given time during 
the transient. This means that the system trajectories 
are smooth and that there are no jumps in the energy 
function. 

2 Consider the term 

t 

to 
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m the energy function that corresponds to active power 
component of the load at bus t. Integrating by parts, 
we get 

t 

f d0l Pli - -  dt 
dt 

to 

t 

= f / p i ( V l )  dO, =fpi(V/)  O, t 
to to 

i ?Jp,(V,) dV, 
- (?V,  d-T qS, dt 

to 

= ;pi(v,) Oi -foi(V,o) % 
t 

V i dt (°i dt 
to 

(23) 

The second term on the right-hand side of  equation (23) 
is path-dependent. Approximation can be introduced by 
ignoring this term and evaluating the energy using only 
the first component,  which is path-independent. With 
this approximation, the energy function (14) can be 
modified by replacing 

fp  de 1, d t  by [/pi(V/) Oi -- /pi(Vm) (~i0] 

The time derivative of  the modified energy function 
(Wmoa) will not be zero and given by 

dWmo d n ~ dV l 
-- 2 ~- . .  fpi(V/) ~ (~i (24) 

dt i=1 0 i 

With constant voltage or constant active power loads, 
the right-hand side of  equatlon (24) is zero and the 
system will be conservative. For other types of  load, it 
is non-zero. However, ff the derivative is sufficiently 
small in magnitude, the use of  modified energy function 
can give an accurate estimation of  the stability region. 

The terms of  the energy function can be physically 
interpreted in the following way 3. 

WI total change in the rotor kinetic energy relative to 
COA, 

W21 change in the potential energy due to mechanical 
Input relative to COA, 

W22 change in the potential energy due to voltage- 
dependent active power loads relative to COA, 

W23 change in the potential energy due to the voltage- 
dependent reactive power loads, 

W24 change in the magnetic energy stored in the 
machine reactances, 

W2s change in the magnetic energy stored in the 
transmission lines. 

The last two terms in the energy function (14) represent 
the energy in the machine reactances and transmission 

hne reactances It is shown by Padlyar et a/9 that this 
energy can be expressed as half the sum of reactwe 
power loss In each element of  the network (including 
machine reactances). This energy is thus given by 

, 1  ] 
= t 1 1 = 1  

(25l 

where 

Qz reactive power generation (at the internal bus) ot" 
generator i 

QII reactive power load at bus t 
nl total number of  elements in the network includ- 

Ing machine reactances. 

The right-hand side of  equation (25) is easily calculated 
at the end of power flow solution at each step during 
the transient. Thus the computation of  the overall 
energy function is simplified. 

V. Computation of stability region 
Whenever a fault occurs in a power system, the total energy 
of  the post-fault system, whose stability is being examined, 
increases. After the fault is cleared the total energy is non- 
increasing. The key idea of the direct method is that the 
transient stability of  the system, for a given contingency, 
can be determined directly by comparing the gain in the 
total system energy during the fault-on period with the 
'critical' energy. In the past, the critical energy was chosen 
to be the potential energy at the UEP closest (in terms of  
energy) to the post-fault equilibrmm point. This critical 
energy usually yields results that are conservative. Recently, 
the concept of  controlling UEP in determining the critical 
energy has removed much of the conservativeness In the 
results 3. Computational simplifications are possible with 
the use of  PEBS method 3'4 

The PEBS method is particularly attractive as It avoids the 
need for evaluating UEPs. In this method,  it is assumed 
that the critically-cleared trajectory goes near the UEP 
corresponding to the fault location. PEBS is defined as the 
surface formed in the angle space by the points correspond- 
mg to the first maxima of  the potential energy (with 
respect to UEP). Inside this region, the potential energy 
increases and in the immediate vicinity outside this region, 
it decreases. Thus, the instant at which the time derivative 
of  the potential energy function changes its sign from 
positive to negative can be interpreted to be the instant 
when the trajectory crosses the PEBS 4. The value of  the 
potential energy at this time is the critical energy. 

The algorithm for the computation of  the critical clearing 
time, Tcr, lS as follows" 

1 Load flow calculation lS performed for the pre-fault 
system to obtain the pre-fault operating point 

2 Bus admittance matrix Ybus is formed for the faulted 
and post-fault networks. 

Execution of forward numerical integration is lmtlated 
for the equations corresponding to the faulted system 
At the end of  each integration interval power flow of the 
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faulted system is carried out with injected current at 
the generator buses as inputs. The method of  power 
flow used is taken from Reference 8. Load bus voltages 
and angles obtained as the output of  this load flow are 
used to evaluate Pei in equation (3) for the next integra- 
tion step. 

At the end of  each integration interval, using the same 
input (generator currents) as in Step 3, power flow of  
the post-fault system is carried out to obtain the bus 
voltages and angles to be used in the calculation of  the 
energy functmn. 

Integration process IS continued for the faulted system 
equations. The values of  W, I¢ 2 and W2 are monitored for 
each interval of  integration and Wc,, critical energy, is 
obtained as the value of  W2 corresponding to the instant 
when I4) 2 changes its sign from positive to negative. I4)2 
]s numerically evaluated as 

~]2 = ~]2(t) - -  W 2 ( t - 1 )  (26) 
t 

where W2(t) = potential energy at time t, W2(t-1) = 
potential energy In the previous interval. 

The critical clearing time (Tcr) is obtained as the time 
when the value of  W is equal to Wet. 

VI. Numerical examples 

Vl.1 Description 
Two examples are considered: 

1 4 machine, 6 bus system l° 

2 7 machine, 10 bus system I 

The single line diagrams with operating data for the above 
systems are given m Figures 1 and 2. It is assumed that a 
three-phase fault occurs which is cleared and the line IS 
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Figure 1. Single line diagram of 4-machine system 
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3 

Figure 2. Single line diagram of 7-machine system 

instantaneously reclosed. Thus, the pre-fault and post-fault 
system configurations are assumed to be same. Different 
load characteristics are considered. For simphclty, all the 
loads are assumed to have similar characteristics. The 
different cases considered for examples 1 and 2 are listed 
in Tables 1 and 2 respectively. For case (x) m Table 1 and 
case (v) m Table 2, it is assumed that 

azV]=biVi=Ci = ~p]/,l and diV]=eiVi=f i=~Qu 

f o r / =  1,2 . . . .  ,n  

In all cases, Tc~ is obtained both by prediction by using 
TEF and digital simulation. 

V I.2 Effect of load model 
Tables 1 and 2 give the Tcr obtained by using modified TEF 
and that obtained by digital simulation for the examples 1 
and 2 respectively. It can be observed that the use o f  TEF 
results in accurate prediction o f  Tcr In, practically, all the 
cases considered. It can also be observed that the voltage 
dependence o f  active power characteristics has a significant 
effect on the critical clearing time. It is maximum with 
constant Impedance type o f  loads, and minimum with the 
constant power loads and is intermediate with constant 
current loads. Thus, it may be optimistic to consider the 
loads to be of  constant impedance type. The variation in 
the reactive power characteristics of  loads has no significant 
effect on Tcr. These conclusions may not be valid in all 
cases but the results bring out the need for accurate load 
models. 

Non-linear characteristics o f  loads (particularly constant 
power type) can introduce convergence problems in the 
network solution during simulation. The non-convergence 
of  the solution implies either the non-existence of  the 
power flow solution or the failure o f  the solution algorithm. 

vI  3 Constant-impedance type loads 
It is possible to reduce the system network by ehminating 
load buses for the case of constant-impedance type loads. 
It is interesting to compare the results obtained on a 
reduced network with those obtained using a structure- 
preserving model. The drawback in reducing the network 
is the creation of  transfer conductances (even with lossless 
lines). Energy function with reduced network I¥ r and an 
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Table 1. Critical clearing time for the 4-machine system 

Fault at bus 2 

Digital 
S1. no. Type of load characteristics simulation 

Fault at bus 3 

Energy func- Digital Energy func- 
tion method simulation tlon method 

1 (i) KI V 2 +jK2 V 2 0.430-0.435 
1 (11) K1V 2 +jK2 V 0.430-0.435 
1 (iii) K1V 2 +jK2 0.430-0.435 
1 (iv) K1 +jK2 V 2 0.415-0.420 
1 (v) K1 +jK2 V 0.420-0.425 
1 (vi) K1 +jK~ 0.415-0.420 
1(vii) K~ V+jK2 V 2 0.425-0.430 
I(~ii)- K ~ V + jK2 V 0.425-0.430 
1 (ix) Ka V+jK2 0.425-0.430 
l(x) ( a V 2 + b V + c ) + j ( d V 2 + e V + f )  0.425-0.430 

0.430-0.435 0.485-0.490 0.485-0.490 
0.425-0.430 0.480-0.485 0.480--0.485 
0.425-0.430 0.475-0.480 0.475-0.480 
0.415--0.420 0.455-0.460 0.455-0.460 
0.415-0.420 0.455-0.460 0.455-0.460 
0.415-0.420 0.455-0.460 0.450-0 455 
0.420-0.425 0.470-0.475 0.470-0.475 
0.425-0.430 0.475-0.480 0.475-0.480 
0 425-0.430 0.470-0.475 0.470-0.475 
0.425-0.430 0.470-0.475 0.470-0.475 

Table 2. Critical clearing time for the 7-machine (CIGRE) system 

Fault at bus 1 Fault at bus 2 Fault at bus 3 

Energy Energy Energy 
Type of load Digital function Digital function Digital function 

SI. no. characteristics simulation method simulation method simulation method 

2(i) Kx V 2 +1K2 V 2 0.35-0.36 0.35-0.36 0.35-0.36 0.35-0.36 0.39-0.40 0.39-0.40 
2(ii) Kx +JK2 V 2 0.25-0.26 0.25-0.26 0.24-0.25 0.24-0.25 Fails Fails 
2(iii) K1V+jK~ 0.33-0.34 0.33-0.34 0.33-0.34 0.33-0.34 Fails Fails 
2(iv) K 1 V + j K  ~ V 0.31-0.32 0.31-0.32 0.3 I-0.32 0.31-0.32 0.34-0.35 0.34-0.35 
2(v) (a V 2 + b V + c) 0.31-0.32 0.31-0.32 0.304). 31 0.30-0.31 Falls Fails 

+ (dV 2 + e V + f )  

Table 3. Effect of transfer conductances on predicted Tcr 

Reduced system 

With transfer Without transfer Digital 
Faulted bus no. conductances conductances Structure-preserving model simulation 

2 0.430-0.435 0.44-0.45 0.430-0.435 0.430-0.435 
3 0.480-0.485 0.49-0.50 0.485-0.490 0.485-0.490 

approxamate method for handling transfer conductances 
given in Reference 3 are used here, for comparison. 

Table 3 shows the critical clearing time (Tc~) obtained both 
by digital simulation and prediction for the Example 1 
for the following cases: 

(a) reduced network, neglecting transfer conductances; 

(b) reduced network, considering transfer conductances; 

(c) structure-preserving model using TEF. 

Table 4 gwes similar results for Example 2 except that 
case (b) is not considered. 

It can be observed from Tables 3 and 4 that neglecting the 
transfer conductances in the function Wr a gives a higher 

Table 4. Comparison of predicted Tot using reduced 
system and TEF 

Structure- 
Faulted Reduced preserving Digital 
bus no. system model simulation 

1 0.37--0.38 0,35--0.36 0.35-0.36 
2 0.37-0.38 0.35-0.36 0.35-0.36 
3 0.41-0.42 0,39-0.40 0.39-0.40 

value of Tcr than the actual. There is an improvement m 
consldenng transfer conductances (see Table 1), but the 
results are not consistently accurate. The use of  structure- 
preserving model gives consistently accurate results, as the 
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problem of  transfer conductances is avoided. The results 
show that even for constant-impedance types of  load, it is 
useful to preserve the system structure. 

Vl .4  Effect of approximation in TEF 
The TEF given m equation (14) is modified by ignoring the 
path-dependent term introduced by voltage-dependent 
active power loads. In the present analysis modified TEF is 
used. The time derivative o f  the modified TEF is given in 
equation (24) and is non-zero except for the case o f  con- 
stant active power loads. Figure 3 shows the variation of  
the derivative of  modified TEF for the Example 1, case 
(i)(b) for stable, unstable and sustained fault (at bus 3). It is 
interesting to observe from this figure that the derivative is 
zero for most of  the transient period considered, in the 
stable case. Similar variation was also observed for other 
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Figure 4. Var ia t ion  of  TEF and Its components.  Key: 
stable case, - - -  - unstable case. A - to ta l  energy, 

B - k inet ic  energy, C - energy due to mechanical inputs, 
D - energy due to active power  o f  loads, E - energy due 
to  reactive power  o f  loads, F - energy due to  transmission 
elements 

load characteristics. Due to this, the predicted values of 
T¢~ are accurate, as seen from Tables 3 and 4. 

V1.5 Variation o f  energy function and its components 
Figure 4 shows the variation of  the various components of  
modified TEF for the stable and unstable conditzons for 
Example 1, case (ix), and fault at bus 2. The total energy 
of  the system remains almost constant after the fault is 
cleared, in both the stable and unstable cases. 

It can be observed that when the system is stable, the 
kinetic energy increases until the fault is cleared, and then 
reduces to zero after some time. This is expected for the 
first-swing stabdity and is possible only if the potential 
energy can increase by an amount equal to the kinetic 
energy component at the time of  clearing 9. However, it is 
to be noted that, in general, the kinetic energy contributing 
to system separation is less than the total kinetzc energy H. 

The potential energy terms due to loads contribute very 
little to the total transient energy. The main contribution is 
that due to the energy in the transmission lines. The com- 
ponent due to mechanical input decreases and reaches a 
negative maximum and then increases in the stable case, 
while it continues to decrease in the unstable case. 

VI I .  Conclusions 
In this paper, a topological energy function, based on COA 
formulation, has been presented with applicattons. The 
main feature is the inclusion of  voltage-dependent active 
power loads along with reactive power loads. 

The study on two sample systems indicates the following 

The predicted value of  Tc~ using TEF agrees closely with 
that obtained by digital simulation in all the cases 
considered. 

2 For constant-impedance types o f  load, TEF gives better 
results than those obtained with reduced network. Thus, 
it is desirable to use a structure-preserving model even 
for constant4mpedance types o f  load. 

3 The effect o f  voltage-dependent active power loads on 
the region of  stability is quite significant. 

4 The modified energy function, ignoring the path-depend- 
ent term introduced by non-constant actwe power loads, 
appears to give sufficiently accurate results. 
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