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ABSTRACT 

Soil organic carbon (SOC) is one of the most important constituents of soil due to its 

capacity to affect plant growth both as a source of energy and a trigger for nutrient 

availability through mineralization. Conventional laboratory methods of 

determination of SOC content are very laborious, time consuming and costly. For 

practical application, estimation of SOC from spaceborne VNIR/SWIR (Visible Near 

Infrared and Short wave infrared, 400-2500 nm) image using statistical regression is 

considered as an alternative technique. 

Spatial and spectral information from spaceborne hyperspectral VNIR/SWIR data can 

be used for quantification and better characterization of soil properties. The potential 

of this data has not been fully extracted till now because of noisy atmospheric 

components in spectral signature retrieved from spaceborne hyperspectral image. 

Though there are different atmospheric correction algorithms, retrieving biophysical 

characteristics from spaceborne hyperspectral data is a challenge. In this research, 

influence of atmospheric correction algorithms on the estimation of SOC is 

investigated. 

Research was initiated with ground VNIR/SWIR (400-2500 nm) spectroradiometer 

reflectance spectra obtained from bare agricultural sites in Narrabri, Australia, to find 

the effect of various pre-processing methods and estimation models on the estimation 

of SOC. Partial least square regression (PLSR) model performs better with Savitzky 

Golay as the best pre-processing method. The output from PLSR model was used to 

identify wavelengths that are significant in estimating SOC using a relative score 

defined as the product of the Variable Importance for Projection (VIP) values and the 

absolute value of PLS regression coefficient values. The most significant wavelengths 

in this PLSR model were located in the 600–680, 1860–1900, and 2180–2250 nm 

spectral regions. And, secondary significant wavelengths were located around 1000 

and 2070 nm. 
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Study was conducted to find the influence of atmospheric correction algorithms in the 

estimation of SOC from Hyperion data in sites located in two different geographical 

settings viz. Karnataka in India and Narrabri in Australia. Commonly used 

atmospheric correction algorithms, (1) ATmospheric CORection (ATCOR), (2) Fast 

Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH), (3) 6S, and 

(4) QUick Atmospheric Correction (QUAC), were employed for retrieving spectral 

reflectance from radiance image. The results showed that ATCOR corrected spectra 

coupled with PLSR model, produced the best SOC estimation, in terms of coefficient 

of determination (R
2
), Residual Prediction Deviation (RPD) and Ratio of Performance 

to Inter-Quartile (RPIQ), irrespective of the study area. Comparing the results across 

study areas, sites in Karnataka gave lower estimation accuracy than sites in Narrabri. 

This may be explained due to difference in spatial arrangement of field conditions. A 

spectral similarity comparison of atmospherically corrected Hyperion spectra of soil 

samples with field-measured VNIR/SWIR spectra was performed. Among the 

atmospheric correction algorithms, ATCOR corrected spectra is found to capture the 

pattern in soil reflectance curve near 2200 nm. ATCOR's finer spectral sampling 

distance in shortwave-infrared wavelength region compared to other models was 

identified as the main reason for its better performance.  

Two hybrid atmospheric correction (HAC) algorithms incorporating a modified 

empirical line (ELm) method were proposed. The first HAC model (named HAC_1) 

combines i) a radiative transfer (RT) model based on the concepts of radiative transfer 

equations, which uses real-time in situ atmospheric and climatic data and ii) an ELm 

technique. The second one (named HAC_2) combines i) the well-known ATCOR 

model and ii) an ELm technique. Both HAC algorithms and their component single 

atmospheric correction algorithms (ATCOR, RT and ELm) were applied to radiance 

data acquired by Hyperion satellite sensor over study sites in Australia. The 

performances of both HAC algorithms were analysed in two ways. Firstly, the 

Hyperion reflectances obtained by five atmospheric correction algorithms were 

analysed and compared using spectral metrics. Secondly, performance of each 

atmospheric correction algorithm was analysed for estimation of SOC using Hyperion 
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reflectances obtained from atmospheric correction algorithms. The estimation model 

of SOC was built using PLSR model. The results show that i) both the hybrid models 

produce a good spectrum with lower Spectral Angle Mapper (SAM) and Spectral 

Information Divergence (SID) values and ii) both hybrid algorithms provided better 

SOC estimations accuracy, in terms of R
2
, RPD and RPIQ statistics. Thus, HAC 

algorithms, developed using ELm technique, may be recommended for atmospheric 

correction of Hyperion radiance data, when archived Hyperion reflectance data have 

to be used for SOC estimation mapping. 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

Soil is a composite heterogeneous material with highly variable physical and chemical 

properties. It supports life and vegetation on earth and is a valuable gift of nature. For 

better management of soil, one has to have a thorough knowledge of soil properties in 

general, and top soil in particular. Topsoil is the upper, outermost layer of soil, usually 

the top 0 to 20 cm. 

Soil organic carbon (SOC) is one of the most important constituents of top soil due to its 

capacity to affect plant growth both as a source of energy and a trigger for nutrient 

availability through mineralization (USDA 2009). SOC also plays a vital role in the 

carbon cycling of terrestrial ecosystems (Li et al. 2012). Information on spatial and 

temporal variations in SOC content is needed in agronomic, soil studies (Stevens et al. 

2006) and climate change studies (Albaladejo et al. 2013, McBratney et al. 2014). 

Conventional laboratory methods of determination of SOC content are very laborious, 

time consuming and expensive. Determination of SOC content from Visible Near-

infrared and Shortwave infrared (VNIR/SWIR, 400-2500 nm) laboratory and field 

spectroscopy is considered to be an alternative technique (e.g. McCarty et al. 2002; 

Martin et al. 2002; Viscarra-Rossel et al. 2006). SOC has a substantial effect on soil 

reflectance in VNIR/SWIR region of electromagnetic spectrum. Thus it significantly 

affects the pattern of a soil reflectance spectrum. 

Statistical regression techniques (e.g. Ben-Dor and Banin 1995; Chang and Laird 2002) 

may be used to estimate SOC from the VNIR/SWIR laboratory and field soil reflectance 
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spectra. Though many researchers have successfully demonstrated the potential of 

laboratory or field spectroscopy for SOC estimation, such laboratory and field techniques 

cannot be extended to large area. A soil spectrum derived from hyperspectral remote 

sensing images can be available solution. But this technique has a number of limitations, 

and there is scope for improvements which needs to be addressed. 

1.2 REMOTE SENSING IN THE STUDY OF SOIL PROPERTIES 

Remote sensing is the science and art of acquiring information about an object from 

measurements made from a distance without coming into physical contact with the object 

(Lillesand et al. 2009). The advent of satellite remote sensing technology has 

revolutionized the world in acquiring information in a cost-effective and temporal basis. 

It makes possible to gather information from locations which otherwise would have been 

very hard to traverse. Remote sensing technique can observe the earth surface from outer 

space using satellites (spaceborne) or from the air using aircrafts (airborne). 

Remotely sensed images provide repetitive spatial and spectral data that can be used for 

quantification and better characterization of top soil properties. The spectral behaviour of 

soil is a cumulative property reliant on its composition. Variation in spectral signature 

about absorption features may indicate the presence or absence of chemical 

chromophores (Das et al. 2015). Spectral signature derived from remote sensing data 

when processed with standard/well-established procedures produce better results in its 

end applications. 

Airborne remote sensing, compared to spaceborne remote sensing, offers the advantage 

of increased control over the data collection process. The spatial resolution can be 

adjusted by flying the sensor at different altitudes or changing the focal length of the 

sensor (Moses et al. 2012). The intervening atmosphere is significantly less at typical 

aircraft altitudes (~4 km) than the altitudes of typical spaceborne platform (~700 km). 
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However, such data collection is an expensive effort with high cost per unit area of 

ground coverage. Airborne remote sensing missions are often carried out as one-time 

operations, whereas spaceborne remote sensing missions offer the possibility of 

continuous monitoring of the earth. Airborne imaging spectrometer (AIR) developed by 

JPL NASA, Digital Airborne Imaging Spectrometer (DAIS 7915) developed by the 

European Union and DLR, Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) 

and AVIRIS- Next Generation developed by JPL NASA, Compact Airborne 

Spectrographic Imager (CASI) by ITRES, etc. are a few examples.  

Spaceborne VNIR/SWIR sensors provide spectral data over large coverage and at regular 

intervals. Most of the spaceborne VNIR/SWIR sensors are multispectral sensors (< 10 

spectral bands), such as ASTER, LANDSAT or SPOT (Abrams and Hook 2003; Roy et 

al. 2014). Spaceborne hyperspectral remote sensing is the future of remote sensing, and 

provides digital imagery of earth surface in narrow continuous spectral bands, along the 

electromagnetic spectrum rather than few data points averaged over broad wavelengths. 

Hyperspectral data are thus spectrally continuous remotely sensed data that is used to get 

spectral signature of an object (Figure 1.1). EO-1 Hyperion Imaging Spectrometer is a 

spaceborne VNIR/SWIR hyperspectral sensor (> 100 spectral bands) with a spatial 

resolution of 30 m, a spectral resolution of 10 nm and a swath of 7.5 km (Folkman et al. 

2001). The potential of this spaceborne hyperspectral Hyperion sensor has not been fully 

explored yet because of its signal-to-noise ratio (SNR) around 50:1 (Folkman et al. 

2001), due to atmospheric and instrumental perturbations. SNR is dependent on the 

strength of the signal reflected by the target and it varies spectrally. SNR of a sensor is 

often specified as a single number that is the maximum value calculated based on a 

standard target (Moses et al. 2012). While instrumental perturbations may not be 

corrected on the spectra, atmospheric perturbations may be reduced using atmospheric 

correction algorithms.  
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Figure 1.1 Concept of hyperspectral imaging (source: Shaw and Burke 2003) 

Over the past decade hyperspectral image analysis has developed into a potent and 

rapidly growing technology in the field of remote sensing. With the increased amount of 

spectral data, researchers were able to derive precise information about Earth’s surface 

from an image pixel using characteristic absorption features in its spectral signature. 

Table 1.1 gives some of the spaceborne hyperspectral instruments in the world. 
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Table 1.1 Some of the Spaceborne hyperspectral instruments worldwide 

Satellite/ 

Sensor 
Country 

Launch

-End of 

life 

No. of 

bands 

Spectral 

range 

Band 

width 

Spatial 

resolution 
Purpose 

EO1– 

Hyperion  

NASA, 

USA 

2000- 

2017 
220 

400 to 

2500 nm 
10 nm 30 m 

Mineral 

exploration, 

resource mapping  

PROBA 

– CHRIS  
ESA, UK 

2001- 

≥2018 
82 

415 to 

1050 nm 
12 nm 18 or 36 m 

Agriculture, Land 

Natural Disasters 

IMS1 – 

HySI-T  
ISRO, India 

2008-

2018* 
64 

450 to 

950nm 
8 nm 500 m 

Land observation 

and detailed 

vegetation 

classification 

HJ 1A – 

HSI 

CAST, 

China 

2008- 

≥2018 
115 

450 to 

950 nm 
5 nm 100 m Earth observation 

HICO on 

ISS 

NASA/ 

ONR, USA 

2009-

2014 
102 

380 to 

960 nm 

5.7 

nm 
90 m 

Bathymetry, water 

optical properties 

Resurs-P 

– GSA 

Roscosmos,  

Russia 

2013- 

≥2021 
216 

400 to 

1100 nm 

5 -10 

nm 
25m 

Vegetation process 

study 

* present status is unclear 

Additionally, at least five hyperspectral VNIR/SWIR satellite sensors are planned to be 

launched in the years to come. The Italian PRISMA (PRecursore IperSpettrale della 

Missione Applicativa) (Lopinto and Ananasso 2013) and German EnMAP 

(Environmental Mapping and Analysis Program) (Stuffler et al. 2007) satellite sensors 

are expected to be launched in 2018. And the American HyspIRI (Hyperspectral Infrared 

Imager), Italy-Israel SHALOM (Spaceborne Hyperspectral Applicative Land and Ocean 



Introduction 

 
 

 

An evaluation of atmospheric correction algorithms in the estimation of SOC from Hyperion image.  

Ph.D. Thesis, 2018, NITK, Surathkal, India. 

 

 
6 

Mission) (Bussoletti 2012) and French HYPXIM (HYPerspectral X Imagery) (Carrere et 

al. 2013) are under study. These sensors would open up a significant way of digital SOC 

mapping. 

1.3 LIMITATIONS IN THE USE OF HYPERSPECTRAL REMOTE SENSING 

DATA FOR SOIL STUDIES  

The constraints in the use of hyperspectral remote sensing data for soil studies are 

atmospheric attenuation of spectral measure, low signal-to-noise ratio (Lagacherie et al. 

2008), spatial resolution (Gomez et al. 2015a) and non-homogeneity of field area (Ben-

Dor et al. 2002). There is a performance decrease of SOC estimation obtained by remote 

sensing compared to performance obtained by lab/field spectroscopy. There is also a 

performance decrease of SOC estimation obtained by spaceborne compared to 

performance obtained by airborne spectroscopy owing to poor signal-to-noise ratio of 

satellite data (e.g., 50:1 for Hyperion, e.g., Gomez et al. 2008) than airborne data (e.g., 

500:1 for HyMap, e.g., Selige et al. 2006), and the spatial resolution that is lower in 

satellite data (e.g., 30 m for Hyperion) than airborne data (e.g., 5 m for HyMap). The low 

estimation value is mainly due to the atmospheric media along the sun-surface-sensor 

path which cause significant attenuation of the signal recived at the sensor. 

Success level of estimation, to a large extent, also depends on soil property variation, 

field size and non-homogeneity of field area. Due to which a pixel may straddle more 

than one field and so may include several types of surface roughness and soil humidity 

due to different types of ploughing between fields. When it comes to fields of smaller 

size typically found in India, challenges are manifold. Another disadvantage is the 

shortage of hyperspectral data and the huge volume and complexity of these data when 

they are available. Fast computers with large data storage capacities and skilled human 
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resources are needed for analysing hyperspectral data. Effort is going on in India by the 

Indian Space Agency in training manpower in processing of hyperspectral data. 

1.4 ATMOSPHERIC INTERFERENCE ON SPACEBORNE HYPERSPECTRAL 

IMAGES 

The atmospheric interference on the spaceborne hyperspectral data received depends on 

absorption and scattering by atmospheric gases and aerosols. Magnitude of this 

interference depends on the nature, concentrations and particle sizes of various 

atmospheric constituents like aerosols, water vapour, oxygen, ozone, carbon dioxide etc. 

Atmospheric correction is required to remove atmospheric components of a spectral 

signature obtained from a spaceborne hyperspectral image. The quality of the remotely 

sensed hyperspectral data depends on the quality of the atmospheric correction 

algorithms applied, which in turn affects its end application (Borengasser et al. 2008). In 

the current study, the efficacy of spaceborne hyperspectral data in the retrieval of SOC 

with the best possible accuracy is explored. 

1.5 PROBLEM IDENTIFICATION 

Soil organic carbon is an important index in reflecting soil fertility. To date, only a few 

studies have attempted the exploitation of existing satellite’s hyperspectral capabilities 

for SOC retrieval. It may be due to the attenuated quality of remotely sensed reflectance 

data mainly caused by atmospheric interference. Thus, the role of atmospheric correction 

algorithms needs to be investigated. If it is possible to extract pure spectra from satellite 

data, when it is integrated with other statistical approaches, it would open the windows of 

new possibilities. 
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1.6 OBJECTIVES  

The specific objectives of the present study are: 

1. To evaluate the accuracy of estimation of SOC from ground-based VNIR/SWIR 

reflectance spectra using advanced statistical techniques viz. principal component 

regression (PCR), partial least square regression (PLSR) and artificial neural network 

(ANN) coupled with different spectra preprocessing methods; and to identify the 

appropriate statistical technique for further analysis. 

2. To compare four popularly used atmospheric correction algorithms (QUAC, ATCOR, 

FLAASH, 6S) in deriving soil spectra from Hyperion data and estimation of SOC in 

agricultural fields of India and Australia.  

3. To explore the use hybrid atmospheric correction algorithm that combines the 

concepts of radiative transfer equations and empirical line techniques and 

incorporates real-time in situ atmospheric and climatic data. 

4. To compare hybrid atmospheric correction algorithm with their component 

algorithms in deriving soil spectra from Hyperion data and estimation of SOC. 

1.7 ORGANIZATION OF THE THESIS 

The rest of this thesis is organized as follows: 

Chapter 2 contains a review of literature and is divided into four themes. Firstly, 

previous studies on estimation of soil organic carbon from spectroscopy are surveyed. 

Secondly, various preprocessing techniques and atmospheric correction algorithms for 

remotely sensed data developed during the past years are reviewed. Thirdly, the previous 

researches on the use of airborne and spaceborne hyperspectral remote sensing data in 

estimation of various soil properties are reviewed. Lastly, previous studies on comparison 

of atmospheric correction algorithms in various applications are reviewed.  
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Areas under investigation and data used are described in Chapter 3. The chapter also 

briefs an overall methodology adopted for the study. 

A study on estimation of SOC content through ground-based VNIR/SWIR reflectance 

spectroscopy is presented in Chapter 4. The results obtained from this study are 

discussed and used for further analysis. 

A study comparing influence of four popularly used atmospheric correction algorithms in 

the estimation of SOC from Hyperion data is presented in Chapter 5. The results 

obtained are discussed. 

Development of hybrid atmospheric correction algorithms, incorporating a modified 

empirical line technique is described in Chapter 6. A study evaluating their performance 

in estimating SOC content from spaceborne hyperspectral data is also presented. The 

spectral similarity indices and estimation accuracies of corrected reflectance spectrum is 

evaluated and compared with their component algorithms. The performances of hybrid 

algorithms were analysed in two ways. Firstly, the Hyperion reflectances obtained by 

hybrid algorithms and their component algorithms were analysed and compared using 

spectral metrics. Secondly, performance of each atmospheric correction algorithm was 

analysed for estimation of SOC using Hyperion reflectances obtained from atmospheric 

correction algorithms. 

Finally, Chapter 7 contains the summary and conclusions and provides scope for the 

future studies. 

In order to arrive at the objective of research, literatures were focused on selected themes 

and review of the same presented in the following chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

This chapter outlines a comprehensive review of relevant literature to bring out the 

background of the study undertaken and to achieve the objectives of the research. The 

literature review is organized under four themes namely: 

I. Estimation of soil organic carbon from reflectance spectroscopy. 

II. Preprocessing techniques and atmospheric correction algorithms developed during 

the past years for hyperspectral airborne/spaceborne data. 

III. Use of airborne/spaceborne imaging spectroscopy to study soil properties.  

IV. Past studies that focus on comparing atmospheric correction algorithms in various 

applications. 

The survey of literature carried out under these themes is presented in the sections to 

follow. 

2.2 THEME I: ESTIMATION OF SOIL ORGANIC CARBON FROM 

REFLECTANCE SPECTROSCOPY 

Soil reflectance is a cumulative property, derived from inherent spectral behaviour of the 

heterogeneous combination of mineral, organic matter and soil moisture (Van der Meer, 

2001). Carbon is a measurable component of soil organic matter. Since soil organic 

matter (SOM) is difficult to measure directly, laboratories tend to measure and report soil 
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organic carbon. A conversion factor is available to report soil organic matter when 

required. SOC has strong influence on soil reflectance, absorbing light through the 

VNIR/SWIR region. It affects the shape and nature of a soil reflectance spectrum.  

Henderson et al. (1992) found that for soils formed from same parent materials, 

reflectance in the visible region (425-695 nm) gave the best correlation with SOC 

content. However, those bands also respond significantly to iron and manganese oxide 

content. They also found that for soils formed from different parent materials, 1955–

1965, 2215, 2265, 2285–2295, and 2315–2495 nm gave the best correlation with SOC 

content. 

Ben-Dor et al. (1997) suggested that, reflectance slope between 450 and 638 nm of soil 

spectrum may be useful for identifying the degradation condition and the parent material 

status of organic matter and the reflectance slope between 680 and 800 nm may be used 

as a general parameter for monitoring organic matter and the region 900 to 1220 nm is 

good for mapping SOM. 

Bartholomeus et al. (2008) studied the spectral reflectance with a large range of SOC 

content. They observed that besides an overall decrease in reflectance with an increase in 

SOC, the shape of the spectral signature also varies. They found that in the spectral range 

from 400 to 800 nm there is a change from convex to concave when the SOC content 

decreases, and a flatter spectral profile at higher SOC contents.  In the spectral range 

from 1600 to 1800 nm overall level of reflectance varies, but hardly any variance in the 

pattern of the reflectance curve is noticed. In the spectral response from 2000 to 2300 nm, 

the reflectance pattern varies; the dip in the spectral profile flattens when the SOC 

content increases.  Peon et al. (2017) identified significant wavelengths for SOC 

prediction as 2000 to 2450 nm and visible regions of electromagnetic spectrum. 
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Using statistical regression methods several studies established relationships between soil 

reflectance and SOC. Multiple Linear Regression (MLR), Principal Components 

Regression (PCR), Partial Least Squares Regression (PLSR) or Artificial Neural 

Networks (ANN) etc. have been used as estimation models by several researchers. 

Dalal and Henry (1986) studied NIR (Near Infrared) diffuse reflectance 

spectrophotometry, within the wavelength range 1100 to 2500 nm in the prediction of 

SOC content of air-dried soils. Calibration equations for SOC prediction were formed by 

a combination of three wavelengths, i.e. 1744, 1870 and 2052 nm, in a multiple 

regression analysis. McCarty et al. (2002) compared the potential of NIR and MIR (Mid 

Infrared) spectral regions to quantify total, organic, and inorganic C in soil samples by 

PLSR analysis. They found that both spectral regions contained significant information 

on organic and inorganic C in soils studied and MIR analysis outperformed NIR. 

Cozzolino and Moron (2006) studied the potential of NIR reflectance spectroscopy to 

predict SOC in different particle-size fractions using PLSR model. They concluded that 

NIR spectra gave a global signature of chemical composition and could be useful in 

understanding interactions of SOC in different soil fractions and different agricultural 

systems. Morgan et al. (2009) studied the potential of in situ VNIR spectra to predict soil 

organic and inorganic C by PLSR analysis. It was found that in situ spectroscopy 

measure organic and inorganic C with some loss of accuracy compared to dried ground 

samples. To improve in situ inorganic C predictions, they performed soil reaction with 1 

N HCl. Bellon-Maurel and McBratney (2011) reviewed the studies that have been 

undertaken on near-infrared and mid-infrared spectroscopy applied for determining SOC 

content.  

The advent of satellite remote sensing technology has revolutionized the world in 

acquiring information in a cost-effective and temporal basis. For practical application, 

airborne/spaceborne VNIR/SWIR data can be used to extract reflectance spectra. But, the 
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potential of spaceborne hyperspectral sensors (e.g Hyperion) has not been fully explored 

yet, due to atmospheric and instrumental perturbations in the acquired spectral signature. 

While instrumental perturbations may not be corrected on the spectra, atmospheric 

perturbations may be reduced. The present study is focussed on evaluating different 

preprocessing techniques in the estimation of SOC from spaceborne hyperspectral data. 

Relevant literatures on the same is reviewed in the following sections.   

2.3 THEME II: PREPROCESSING TECHNIQUES FOR REMOTELY SENSED 

DATA 

Preprocessing techniques utilized may be broadly classified into two categories:  

(i) Atmospheric correction algorithms,  

(ii) Spectral smoothening methods.  

2.3.1 Atmospheric correction algorithms 

Atmospheric correction algorithms were developed since mid-1980s which were applied 

on data obtained from airborne and spaceborne multispectral and hyperspectral sensors. 

Over the years atmospheric correction algorithms have evolved from empirical approach 

to rigorous radiative transfer modeling (Gao et al. 2009). Basically, an atmospheric 

correction algorithm converts at-sensor radiance spectrum to corresponding ground 

reflectance spectrum by removing all the external atmospheric components. Atmospheric 

correction algorithms can be classified into three types: empirical models, radiative 

transfer models and hybrid models and are explained in the following sections. 

2.3.1.1 Empirical models 

Initial algorithms were scene-based empirical models that depend on image statistics or 

availability of field reflectance measurements to predict the surface reflectance. The 

Internal Average Reflectance (IAR) approach (Kruse 1985) calculates the relative 
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reflectance spectrum for a pixel from the ratio of spectrum of the pixel to the average 

spectrum of a scene. This method suits for dry areas without vegetation. The Flat Field 

(FF) approach (Roberts et al. 1986) produces relative reflectance by dividing reflectance 

at each pixel by mean spectrum of a user-defined region of interest in the image. The 

region of interest should be spectrally flat material within the wavelength range of the 

sensor. The flat-field chosen should have a high albedo to avoid decreasing signal-to-

noise ratio. Conel et al. 1987 introduced empirical line (EL) method that used field 

measurements of reflectance spectra of two contrasting targets for correction. It forces the 

image spectra to match reflectance spectra collected from the field. It requires at least two 

targets (light and dark) whose field reflectance and at-sensor radiance are known and are 

linearly regressed to obtain gain and offset. The gain and offset are then applied to the 

whole image and surface reflectance for the entire image is derived. This method can 

produce accurate results, but it requires in situ reflectance.  

QUick atmospheric correction (QUAC) (Bernstein et al. 2005), is a semi-empirical 

algorithm for atmospheric correction and aerosol retrieval. It requires only approximate 

specification of sensor band locations (i.e., central wavelengths). QUAC is based on the 

assumption that the average reflectance of a collection of diverse material spectra, such as 

the end member spectra in a scene, is essentially scene independent. The gain parameter 

is obtained from endmember average and offset parameter is from baseline subtraction. 

Lowest reflectance value for each channel defines the baseline spectrum. 

2.3.1.2 Radiative Transfer Models 

The dependence of empirical approaches on image statistics or availability of field 

reflectance measurements in retrieving surface reflectance led to theoretical modelling 

techniques, which simulate absorption and scattering effects of atmospheric components 

using radiative transfer  (RT) equations.  
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Research on atmospheric modelling led to the development of the 5S atmospheric 

radiation model in 1990s. Since then numerous RT models have been developed. 

MODTRAN code developed by Spectral Science, Inc. and Air Force Research 

Laboratory is the most popular among them. Other generally used RT codes are 

LOWTRAN (Kneizys et al. 1988), MODTRAN (Berk et al. 1989), 5S (Tanre et al. 1990) 

and 6S (Vermote et al. 1997 a). 

RT codes can be used for the calculation of standard reference tables for varying 

atmospheric and geometrical conditions. Discrete values of atmospheric parameters from 

reference tables are often interpolated to obtain intermediate values when needed. RT 

codes assume a flat and Lambertian landscape and use different kinds of methods for the 

simulation of the radiative transfer in the atmosphere, such as Eddington approximation 

(Shettle and Weinman 1970), the discrete ordinates method (Liou 1973), Monte Carlo 

method (Collins et al. 1972), the spherical harmonics method (Benassi et al. 1984) etc.  

There are a range of software programs available to model the atmosphere including 

ATREM (ATmospheric REMoval algorithm), ATCOR (ATmospheric CORrection), 

FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes), ISDAS 

(Imaging Spectrometer Data Analysis System), HATCH (High-accuracy ATmosphere 

Correction for Hyperspectral data) and ACORN (Atmospheric CORrection Now). 

ATREM (Gao et al. 1993), uses channel band ratio technique (Gao and Goez 1990) to 

estimate water column; narrowband spectral model (Malkmus 1967), based on HITRAN 

92 (Rothman et al. 1992) database to derive transmittance spectra of atmospheric gases 

and the 5S code to model scattering effects due to atmospheric molecules and aerosols. In 

the later upgrades line-by-line atmospheric transmittance model (Gao and Davis 1997) 

and the HITRAN2000 line database (Rothman et al. 2003, 2005) were used, and 5S code 

was replaced with 6S code for modeling atmospheric scattering effects.  
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ATCOR (Richter 1996), uses lookup tables based on MODTRAN4/5. Several versions of 

ATCOR codes (Richter 1998; Richter and Schlaepfer 2002) were developed. ATCOR 2 

is used for flat terrain while ATCOR 3 handles rugged terrain by integrating a DEM. 

ATCOR4 performs the combined atmospheric and topographic correction for airborne 

scanner data, whereas ATCOR 2 and 3 perform correction of satellite remote sensing 

systems. 

ISDAS (Staenz et al. 1998) is an atmospheric correction software package developed at 

Canada Center for Remote Sensing. The ISDAS tools are coded in C.  

FLAASH (Adler-Golden et al. 1999), is MODTRAN4 based atmospheric correction 

software package. Atmospheric multiple scattering is computed using scaled DISORT 

(DIScrete Ordinate Radiative Transfer) algorithm and the correlated-k algorithm (Lacis 

and Oinas 1991) is used to model absorption for regions presenting considerable 

absorption effects. 

HATCH (Qu et al. 2001; Qu et al. 2003) uses correlated-k algorithm for gaseous 

absorption calculation. It is based on HITRAN 96 database, and provides an explicit way 

to account for the interaction between multiple scattering and absorption. It uses 

smoothness test to retrieve water vapour amount and absorbing gases, such as carbon 

dioxide and methane. HATCH also allows different aerosol types to be mixed externally. 

ACORN developed by Analytical Imaging and Geophysics, LLC (ACORN 2002), works 

on MOTRAN-4 code. It uses spectral fitting to estimate water vapour and suppress 

effects of liquid water on the surface. 

The SIERRA code (Spectral reflectance Image Extraction from Radiance with Relief and 

Atmospheric correction) (Lenot et al. 2009) extracts ground reflectance and water vapour 
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content over mountainous areas from hyperspectral imagery. A correction of the bi-

directional effects is considered for large incidence or emergence angles. 

Even though radiative transfer models were theoretically well portrayed, the surface 

reflectance values produced still show residual atmospheric absorptions and scattering 

effects. These residual errors may affect their end application. 

2.3.1.3 Hybrid Models 

Hybrid models include combinations of radiative modeling and empirical approaches for 

the derivation of surface reflectance from hyperspectral imaging data. Clark et al. (1995) 

first suggested the use of combination of ATREM radiative transfer correction method 

followed by ground calibration using EL method that produced better results than 

radiative or empirical models alone. It provides sound correction, while removing 

artifacts from errors in the radiative models and solar spectrum. Ben-Dor et al. (2004) 

showed that combined HATCH and EL produce good results when tested using synthetic 

imaging spectroscopy data. Tuominen and Lipping (2011) showed that combined 

ATCOR4 and EL method produces better results compared to model-based ATCOR 

alone. The disadvantage is that EL method requires in-situ field measurements. Even 

though hybrid models give promising results, seldom studies concentrate on development 

of hybrid methods in processing of spaceborne hyperspectral data. 

A review of atmospheric correction algorithms for hyperspectral imageries is published 

in Minu and Shetty 2015. 

2.3.2 Spectral smoothening methods 

Noise is unwanted signal generated by the instrument used to make measurement. By 

spectral smoothing, one tries to reduce the random noise in the instrumental signal.  
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Smoothing reduces the effect of noise by smoothing out local variations in the data. The 

data values are modified such that values which are higher than the immediately adjacent 

values are reduced, and values which are lower than adjacent values are increased. 

However, smoothing can also remove real variations in the data (i.e., variations not 

caused by noise) and can add uncertainties to the data as actual values get replaced by 

local averages.  

Moving average and Savitzky Golay method are the most commonly used smoothing 

techniques. Derivatives eliminate the effect of baseline drift and gentle background 

interference. The first derivative removes only the baseline; the second derivative 

removes both baseline and linear trend. The first and second derivatives of the spectrum 

can be computed by the finite difference method. 

The Savitzky Golay (SG) smooth is based on the least-squares fitting of polynomials to 

segments of the data. It retains the shape of the original signal.  It is capable of 

differentiation as well as smoothing. It has two degrees of freedom: the polynomial order 

and the window length.  

Rinnan et al. 2009 reviewed the most common pre-processing techniques for near-

infrared spectra in chemometry. Hively et al. 2011 compared 15 spectral math 

preprocessing treatments showed that a simple first derivative worked well for all cases. 

Miglani et al. 2011, Buddenbaum and Steffens 2012 and Peng et al. 2014 also 

systematically compared the effect of pre-treatment methods on chemometric 

spectroscopy. However, there are no guidelines on choosing of spectral smoothening 

techniques for the problem at hand. 
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2.4 THEME III: USE OF AIRBORNE/SPACEBORNE IMAGING 

SPECTROSCOPY TO STUDY SOIL PROPERTIES 

With the pre-processed spectral data from airborne/spaceborne imaging spectroscopy, 

estimation models (e.g MLR, PCR, PLSR ANN etc.) can be established. Spectral 

reflectance in the visible, NIR and SWIR regions has been widely used in many studies 

for the assessment of soil fertility. Some of the soil  properties studied were soil organic 

carbon (SOC), soil inorganic carbon (SIC), total nitrogen (TN), pH, moisture content 

(MC), electrical conductivity (EC), Phosphorous (P), Potassium (K), Calcium (Ca), 

Magnesium (Mg), Sodium (Na), Manganese (Mn), Zinc (Zn) and Iron (Fe) with various 

levels of prediction accuracy. 

MLR correlates response variable (i.e., soil property) with two or more independent 

variables (i.e., spectral wavelength) using linear equations. In PCR principal component 

analysis of spectra is followed by regression against soil properties. While, in PLSR a 

rotated PCA is applied to both spectra and soil properties and obtains the best relationship 

between them. Recently, new statistical tools such as artificial neural networks (ANN), 

boosted regression trees (BRT) etc. are adopted for the same. 

A number of studies use airborne hyperspectral imagery for prediction of soil properties. 

Even though spaceborne hyperspectral imageries have become available since 2000, only 

few attempts have been made to use them for mapping soil properties. This may be due to 

their low signal to noise ratio. A review of the works carried out by airborne and 

spaceborne hyperspectral imageries to predict soil properties is published in Minu et al. 

2016. 
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Several surface soil properties were modeled from airborne hyperspectral imagery. Table 

2.1 summarizes some of the earlier works in the field. Soil properties predicted, airborne 

hyperspectral sensor used, its spectral range and spatial resolution, nature of study area 

and its location, preprocessing method adopted during the prediction method, prediction 

model used, accuracy of prediction in terms of R
2
 values of different studies are 

tabulated. These studies point out the great potential of airborne hyperspectral data to 

map surface soil properties. However, it is noted that a research on the influence of 

preprocessing techniques were not carried out. Standard modules available as part of 

commercial software were used for atmospheric corrections in these studies. It is also 

noted that earlier studies are concentrated only in developed countries. In Indian context, 

studies using airborne data are limited. It may be due to (i) cost involved in the study, (ii) 

less importance given to advancement in agriculture in a developing country like India, 

and (iii) smaller and scattered agricultural fields. 
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Table 2.1 Summary of Soil properties Prediction, using airborne hyperspectral imagery 

Soil 

Property 

Platform/ 

spectral 

range/ spatial 

resolution 

Field 

nature 
Country 

Preprocessing 

method 

Prediction 

technique 
R

2
 Author 

Fe AVIRIS (400-

2500 nm) (20 

m) 

 

Pasture and 

seasonal 

crops 

Brazil 

MODTRAN-

based (Green, 

et al. 1993) 

Regression 

equations 

0.83 
Galvao 

et al. 

2001 

TiO2 0.74 

Al2O3 0.68 

OM 

DAIS-7915  

(400-2500 nm) 

(5 m) 

Agriculture 

fields 
Israel 

 Minimum 

Noise Fraction 

(MNF) (Green 

et al. 1988) for 

noise 

reduction;  

EL technique 

Visible and 

NIR analysis  

0.827 

Ben-Dor 

et al. 

2002 

MC 0.647 

EC 0.665 

EC 

RDACS/H3 

(471 - 828 nm) 

(1 m) 

Bare soil of  

corn-

soybean 

rotation 

field 

Missouri 

Calibrated 

with 

chemically 

treated 

reference traps 

with known 

reflectance  

SMLR 

0.66 

Hong et 

al. 2002 

pH 0.68 

Mg 0.67 

K 0.59 

OM 0.55 

OM 

CASI (408.73 

- 947.07 nm) 

(2m) 

Corn field 

with clay-

loam soil 

Canada 

CAM5S  

model 

(O’Neill et al. 

1997) 

SMLR  0.49 

Uno et 

al. 2005 ANN 0.592 
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Table 2.1 (Continued) 

Soil 

Property 

Platform/ 

spectral 

range/ 

spatial 

resolution 

Field 

nature 
Country 

Preprocessi

ng method 

Prediction 

technique 
R

2
 Author 

Iron 

oxide 

 CASI-A 

(400-1000 

nm) (3m) 

Sand dunes  Israel 
EL 

technique  

 Spectral 

indices 

based 

model 

0.59 

 Ben-

Dor et 

al. 2006 

gravel 

coverage 

% 

DAIS-

7915 (400-

2500 nm) 

(5 m) 

Alluvial fan 

Negev 

desert, 

Israel 

MNF 

technique  

for noise 

reduction 

and 

EL 

technique 

  

Ferric 

absorption 

feature 

depth(AFD) 

model 

0.83 

Crouvi 

et al. 

2006 
Al-OH 

AFD model 
0.67 

Carbonate 

AFD model 
0.57 

SOC 

HyMap 

(450-2500 

nm) (3.5 

m)  

  

Agriculture 

fields  

  

  

  

Germany 

  

ATCOR 

  

MLR 

0.9 

Selige et 

al. 2006 

TN 0.92 

Sand 0.95 

Clay  0.71 

SOC 

PLSR 

0.86 

TN 0.87 

Sand 0.87 

Clay 0.65 
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Table 2.1 (Continued) 

Soil 

Property 

Platform/ 

spectral 

range/ 

spatial 

resolution 

Field 

nature 
Country 

Preprocessing 

method 

Prediction 

technique 
R

2
 Author 

EC 

HyMap  

(420 - 

2480 nm) 

(6 m) 

  

Wetland 

Western 

Australia 

  

 Corrected for 

atmospheric 

effects and 

MSC 

techniques 

  

PLSR 

  

0.86 Farifteh 

et al. 

2007 
ANN 0.86 

  

AVNIR 

(429 to 

1010 nm) 

(1.2 m) 

Cotton 

field 
California 

  

Atmospheric 

calibrated with 

black and grey 

reference 

panels  

  

MLR 

  

0.6696 

De-Tar et 

al. 2008 

EC 

Ca 0.6188 

Mg 0.582 

Na 0.6224 

Cl 0.7376 

Clay 

HyMap 

(400 to  

2500 nm) 

(5m) 

Area is 

mainly  

devoted 

to 

vineyards 

France 

ATCOR4, 

Savitzky– 

Golay filter 

PLSR 

0.64 

Gomez et 

al. 2008b 

CaCO3 0.77 

Clay 
Continuum 

removal 

0.58 

CaCO3 0.47 

MC 

HyMap 

(440 to 

2470nm) 

(4 m) 

Sandy 

substrata 

and low 

vegetation 

cover area 

Germany 

MODTRAN4 

based ACUM 

algorithm 

Normalized 

Soil 

Moisture 

Index 

model 

0.819 

Haubrock 

et al. 

2008 
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Table 2.1 (Continued) 

Soil 

Property 

Platform/ 

spectral 

range/ spatial 

resolution 

Field 

nature 
Country 

Preprocessing 

method 

Prediction 

technique 
R

2
 Author 

Clay HyMap (400 

to 2500 nm) 

(5m) 

Vineyards France ATCOR4   

Continuum 

removal 

analysis 

0.58 
Lagacherie 

et al. 2008 
CaCO3 0.47 

SOC 

AHS-160  

(430–2540 

nm) (2.6 m) 

Agriculture 

Fields 
Belgium ATCOR4 PLSR 

RPD= 

1.47 

Stevens et 

al. 2008 

Clay HyMap (400 

to 2500 nm) 

(5m) 

Vineyards France ATCOR4  PLSR 

0.64 
Lagacherie 

et al. 2010 
CaCO3 0.77 

SOC 

AHS-160 

(430–2540 

nm) (2.6 m) 

Cropland Luxembourg 

MODTRAN4 

based 

algorithm 

PLSR 0.71 

Stevens et 

al. 2010 

PSR 0.75 

Support 

vector 

machine  

0.69 

C 

HyperSpecTIR 

(400–2450 

nm) (2.5m) 

Tilled 

agricultural 

fields 

MD, USA 

Image 

processing 

by ENVI 4.7; 

& different 

signal 

smoothening 

methods 

PLSR 

0.65 

Hively et 

al. 2011 

Al 0.76 

Fe 0.75 

Silt  0.79 
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Table 2.1 (Continued) 

Soil 

Property 

Platform/ 

spectral 

range/ 

spatial 

resolution 

Field 

nature 
Country 

Preprocessing 

method 

Prediction 

technique 
R

2
 Author 

Clay 
MIVIS 

(430–1270 

nm) (4.8m) 

Maize 

field, but 

the crop 

had not 

emerged 

Central 

Italy 

MODTRAN4 

based model  
PLSR 

0.78 

Casa et al. 

2013 Silt 0.56 

Sand 0.81 

SOC 

CASI 1500 

(380 - 

1050 nm) 

(0.2 m) 

Compost 

added soil 
Italy EL Calibration 

Correlation 

analysis 
0.85 

Matarrese et 

al. 2014 

Iron 

oxide 

HyMap 

(400-2450 

nm) (4.5 

m)  

Agricultur

al area 
Spain 

Fifth order 

Savitzky–

Golay 

smoothing 

PLSR 

0.66 

Steinberg et 

al. 2016 

Clay 0.64 

SOC 

AHS-160 

(450 –

2500 nm) 

(2.6 m) 

Agricultur

al area 

Luxembo

urg 
0.74 
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Concept of hyperspectral remote sensing emerged in recent years. Very few 

investigations were carried out using spaceborne hyperspectral data for prediction of soil 

properties. NASA’s EO1 Hyperion data is employed in most of the studies. Table 2.2 

presents a summary of previous studies on prediction of soil properties across the globe 

using spaceborne hyperspectral data. Soil properties predicted, spaceborne hyperspectral 

sensor used, its spectral range and spatial resolution, nature of the study area and its 

location, preprocessing method adopted during the prediction method, prediction model 

used, accuracy of prediction in terms of R
2
 values of different studies are tabulated.   

It is noted that studies on utilization of spaceborne data in the determination of soil 

properties are less explored globally, especially in the Indian context. It is expected that 

the technological advancements in this field will attract more studies and will increase the 

usage of these data. Das et al. 2015 reviewed the preparedness and opportunities for using 

remotely sensed hyperspectral data for soil assessment in India.  
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Table 2.2 Summary of soil properties prediction, using spaceborne hyperspectral imagery 

Soil 

Property 

Platform/ 

spectral 

range/ spatial 

resolution 

Field 

nature 
Country 

Preprocessi

ng method 

Prediction 

technique 
R

2
 Author 

SOC 

EO1 Hyperion 

(400–2500 

nm) (30m) 

Cotton 

crops and 

pasture. 

Australia ATREM PLSR 0.5 

Gomez 

et al. 

2008 

OM EO1 Hyperion 

(400–2500 

nm) (30m) 

Agriculture 

field. 

Central 

Indiana, 

USA 

FLAASH  PLSR 

0.74 
Zheng 

2008 TN 0.72 

TP 0.67 

TN 

EO1 Hyperion 

(400–2500 

nm) (30m) 

Arid 

regions. 

Shanxi, 

China 

EL 

atmospheric 

correction 

Linear 

regression 

model 

0.84 
Wu et 

al. 2009 

MC 

EO1 Hyperion 

(400–2500 

nm) (30m) 

Bare field 

Central 

Indiana, 

USA 

ACORN  PLSR 

0.79 

Zhang et 

al. 2009 

OM 0.89 

TN 0.70 

TP 0.69 

TC 0.86 

Clay  0.49 

OM 

EO1 Hyperion 

(400–2500 

nm) (30m) 

Agriculture

-pasture 

mixed area. 

Hengshan 

County, 

China 

Internal 

average 

relative 

reflectance  

Land 

degradation 

spectral 

response 

units model 

0.722 
Wang et 

al. 2010 
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Table 2.2 (Continued) 

Soil 

Property 

Platform/ 

spectral 

range/ 

spatial 

resolution 

Field 

nature 
Country 

Preprocessing 

method 

Prediction 

technique 
R

2
 Author 

 

Clay 
CHRIS-

PROBA 

(415–

1050 nm) 

(17 m) 

Maize 

field, but 

the crop 

had not 

emerged 

Central 

Italy 
FLAASH PLSR 

0.6 
Casa et 

al. 

2013 

 

Silt 0.3 
 

Sand 0.62 
 

OM  EO1 

Hyperion 

(400–

2500 nm) 

(30m) 

Wheat 

and 

potato 

fields   

China FLAASH PLSR 

0.63 
Lu et 

al. 

2013 

 

pH 0.68 
 

P 0.62 
 

N 

EO1 

Hyperion 

(400–

2500 nm) 

(30m) 

Scattered 

paddy 

fields 

Karnataka 

India 

FLAASH, 

 

Moving 

average 
PLSR 

  

0.63 
Gopal  

et al. 

2014 

  

 

Savitzky–

Golay 
0.63  

 

POM 
EO1 

Hyperion 

(400–

2500 nm) 

(30m) 

Coastal 

soils 

densely 

covered 

with 

vegetation 

Florida, 

USA 

FLAASH, 

MNF filter 
PLSR 

0.67 

Anne 

et al. 

2014 

 

MAOM 0.74 
 

labile C  0.93 
 

labile N 0.96  
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2.5 THEME IV: COMPARISON OF ATMOSPHERIC CORRECTION 

ALGORITHMS IN VARIOUS APPLICATIONS 

Previous studies assessed different atmospheric correction algorithms in various contexts 

like mineral mapping (e.g. San and Suzen 2010), forest biomass estimation (e.g. López et 

al. 2016), vegetation mapping (Marcello et al. 2016), canopy growth monitoring (Kim et 

al. 2016) etc. Performance of algorithms will differ depending on the final biophysical 

character under study.  

San and Suzen (2010) compared the impact of three atmospheric correction models 

(ATCOR, ACORN, and FLAASH) for mineral mapping using Hyperion data and found 

that ACORN performed the best. It was because ACORN could detect more number of 

absorption features in mineral spectra. ACORN was recommended as a better 

atmospheric correction algorithm for lithological and mineralogical mapping of natural 

earth materials from Hyperion data.  

Though atmospheric correction algorithms are inevitable for spaceborne hyperspectral 

data, few research papers compared atmospheric correction algorithms on multispectral 

data. López-Serrano et al. (2016) and Marcello et al. (2016) found that 6S works well in 

case of vegetation mapping using multispectral satellite images. López-Serrano et al. 

(2016) evaluated four atmospheric correction algorithms: ATCOR2, COST (Cosine of 

the Sun Zenith Angle), FLAASH and 6S, in estimating aboveground forest biomass using 

multivariate adaptive regression splines (MARS) analysis in temperate forests in the 

northeast of the state of Durango, Mexico. They used Landsat 5 TM imagery and best 

results were obtained after application of 6S algorithm. Marcello et al. (2016) assessed 

the performance of five atmospheric correction algorithms: DOS (Dark Object 

Subtraction), QUAC, FLAASH, ATCOR and 6S, using high resolution Worldview-2 

imagery in the vegetation estimation. Superior performance of 6S algorithm was 
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identified, achieving reflectance estimations very close to in situ measurements. Kim et 

al. (2016) evaluated performance of three atmospheric correction methods: QUAC, 

FLAASH and ATCOR to distinguish the canopy growth of paddy rice using RapidEye 

image data. The results of the atmospheric correction using ATCOR on the satellite 

images were found to be favourable among the tested ones.  

However, previous studies did not clearly say among the different algorithms available 

which one to use. In fact, it is understood that the choice of atmospheric correction 

algorithm depends on the biophysical characteristics under study and also the spectral 

resolution of the satellite data. When the interest is to retrieve SOC data, limited 

guidelines are available.  

2.6 CONCLUSIONS 

Following inferences were gathered from the literature review: 

 All the atmospheric correction algorithms discussed were built on their own 

assumptions and thus have limitations. An idealized universal atmospheric 

correction system has not been developed yet. The method used for atmospheric 

correction should be a function problem type, remote sensing data type, amount of 

available in situ atmospheric information and the accuracy of biophysical 

information extracted from the remote sensing data. 

 Empirical models are not always reliable, especially for hyperspectral data since 

they depend on image statistics only. These methods are used for quick correction 

of images for preliminary analysis. The EL method which involves field 

calibration produces more accurate results. Radiative transfer models produce 

precise results under optimal conditions. Hybrid methods despite the promising 

research results are not often used in the processing of hyperspectral data. Hybrid 
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methods can be tried with physical models and other scene dependent properties 

of the area. New approaches like atmospheric correction of hyperspectral 

imageries using neural networks (Achard and Lesage 2010), open possibilities for 

the improvement of the topic. 

 Only a few studies systematically compared the effect of preprocessing methods 

on chemometric spectroscopy. The best spectral preprocessing/smoothening 

method will be the one that finally produces a robust model with the best 

predictive ability. Unfortunately, there seem to be no hard rules to decide which 

spectral preprocessing method to use and often the only approach is trial and 

error. The development of a methodology that would allow a systematic approach 

would be beneficial. 

 Studies conducted using airborne hyperspectral images in the prediction of soil 

properties had a moderate accuracy. However, research on the influence of 

preprocessing techniques are not carried out. Also, earlier studies are concentrated 

only in developed countries. In Indian context, studies using airborne data are 

limited. It may be due to (i) cost involved in the study, (ii) less importance given 

to advancement in agriculture, and (iii) smaller field size.  

 Despite the vast coverage of spaceborne hyperspectral images, a few studies 

concentrate on top soil properties investigation. It is expected that the 

technological advancements in this field will attract more studies and will 

increase the usage of these data. An encouraging trend in this direction is the 

NASA-ISRO joint venture of AVIRIS-NG. 

 The limitation of spaceborne hyperspectral data is mainly due to its low signal to 

noise ratio and loss of information from atmospheric components. The importance 

of apt preprocessing/atmospheric correction technique is understood at this 
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juncture. If it is possible to extract uncontaminated information from satellite 

data, it would open the windows of new possibilities. 

 It is perceived that there is a performance decrease of SOC prediction obtained by 

remote sensing compared to performance obtained by lab/field spectroscopy 

(Stevens et al. 2008, Lu et al. 2013). There is also a performance decrease of SOC 

prediction obtained by satellite sensors (R
2
 between 0.5 and 0.63, from e.g., 

Gomez et al. 2008; Lu et al. 2013) compared to airborne spectroscopy (R
2 

between 0.74 and 0.85, for e.g. Uno et al. 2005; Stevens et al. 2010). The low 

prediction value is due to the attenuated quality of remotely sensed reflectance 

data. Thus, the role of atmospheric correction algorithms needs to be investigated.  

 Previous studies assessed different atmospheric correction algorithms in various 

contexts like mineral mapping (e.g. San and Suzen 2010), forest biomass 

estimation (e.g. López et al. 2016), vegetation mapping (Marcello et al. 2016), 

canopy growth monitoring (Kim et al. 2016) etc. Performance of algorithms will 

differ depending on the final biophysical character under study. When the interest 

is to retrieve SOC data, limited guidelines are available. 

Conclusions drawn from the literature survey guides the objectives of this 

research. Formulated objectives address few issues of importance specifically to 

estimate SOC from spaceborne data  and are presented in Chapter 1. 

Description of areas under investigation and data used for the present study are 

outlined in next chapter. 
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CHAPTER 3 

STUDY AREA AND MATERIALS 

3.1 INTRODUCTION 

This chapter includes the description of: 

 Geographical location and characteristics of the study areas, 

 Data products and software used in the study, 

 Overall methodology adopted for the study. 

3.2 STUDY AREAS 

This work utilised data from cultivated sites of India and Australia. Table 3.1 summarizes 

the details of study area.  

The Southern Karnataka sites covering a part of Dakshina Kannada and Udupi Districts 

in India, between latitude 13°00'N and 13°08'N and longitude 74°45'E and 74°52'E 

(Figure 3.1) and encompasses an area of 53 km². It is characterised by paddy fields 

scattered and small in size. Study area predominantly consists of loamy, sandy and 

gravelly clay soils. The paddy fields considered are homogeneous in terms of ploughing 

and phytosanitary treatments. The average sizes of the fields are approximately 30 m x 30 

m. The area follows tropical climate and consists of plane region with an average 

elevation of 20 m above mean sea level.  
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Table 3.1: Details of study area 

Study 

area 
Location 

Latitude & 

Longitude 

Field 

type 
Soil type 

No of 

samples 

Data 

source 

India 
Southern 

Karnataka 

74°45'E to 74°52'E 

& 13°00'N to 

13°08'N  

Paddy 

fields 

Clay 

soils 
111 

Gopal, 

2014 

Australia 
Narrabri, 

NSW 

Narrabri Site#1: 

149°35'E to 

149°40'E & 

−30°07'S to 

−30°13'S 

Cotton 

fields 

Vertisols 

46 

Gomez 

et al., 

2008 Narrabri Site#2: 

149°40'E to 

149°46'E & 

−30°15'S to 

−30°19'S 

Pastures 52 

 

The Narrabri sites is located in north western New South Wales (NSW), Australia. The 

study area consists of two sub sites: cotton fields of Namoi (referred as Narrabri Site#1 

hereadter) (149°37'E, −30°10'S), that extends in 70 km² area and Pastures in town of 

Narrabri (referred as Narrabri Site#2 hereafter) (149°43'E, −30°17'S), that extends in 69 

km² area. The Australian fields are continuous and large in size (approximately 500m x 

900 m) (Figure 3.2). This region is dominated by Vertisols. The area follows subtropical 

climate and consist of plane region with an average elevation of 210 m above mean sea 

level.  
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Figure 3.1: Location of the sample sites on false colour composite (spectral bands used: 

864 nm, 650 nm, 549 nm) of Hyperion images over Karnataka sites. Green circles 

represent GPS locations of collected soil samples. 
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Figure 3.2: Location of the sample sites on false colour composite (spectral bands used: 

864 nm, 650 nm, 549 nm) of Hyperion images over Narrabri sites. Green circles 

represent GPS locations of collected soil samples. 

3.3 EO-1 HYPERION REMOTE SENSING DATA 

Earth Observing 1 (EO-1) spacecraft was launched from Vandenberg Air Force Base on 

November 21, 2000 as part of NASA’s New Millennium Program. After 17 years in 

orbit, its operations ended in March 2017. The EO-1 has a sun-synchronous orbit with an 
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altitude of 705 km. The orbit inclination is 98.2 degree and the orbital period is 98.9 

minutes. The velocity of the EO-1 nadir point is 6.74 km/sec with 16 days repeat cycle 

(Folkman et al. 2001).  

Hyperion is a hyperspectral instrument on EO-1. It is a push-broom, imaging 

spectrometer. It provides radiometrically calibrated spectral data from 400 to 2500 nm, 

with 242 spectral bands with approximately 10 nm spectral resolution and 30 m spatial 

resolution. Each image contains data for a 7.65 km wide (cross-track) by 185 km long 

(along-track) region. Hyperion has a single telescope and two spectrometers, one visible 

near-infrared spectrometer and one short-wave infrared spectrometer. A detailed 

description of Hyperion characteristics, operations and applications can be found in 

Folkman et al. (2001). 

In this study one Hyperion image was acquired on 4
th

 March 2012 at 05:15 UT over 

Karnataka study area (Figure 3.1). And two Hyperion images were acquired over 

Narrabri study area: the first one was acquired on 13
th

 December 2006 at 23:51 UT over 

pasture soils of Narrabri Site#2 and the second one was acquired on 17
th

 January 2007 at 

23:47 UT over cropping soils and travelling stock routes of Narrabri Site#1 (Figure 3.2). 

Terrain-corrected and georeferenced Hyperion images in L1T format were downloaded 

from EarthExplorer website of the United States Geological Survey, which is a scientific 

agency of the United States government (http://earthexplorer.usgs.gov/). All Hyperion 

images were cloud-free over study sites. 

The metadata of Hyperion imageries over Karnataka, Narrabri Site#1 and Narrabri Site#2 

study sites are given in Tables 3.2, 3.3 and 3.4 respectively. 

  

http://earthexplorer.usgs.gov/


Study area and materials 

 
 

 

An evaluation of atmospheric correction algorithms in the estimation of SOC from Hyperion image.  

Ph.D. Thesis, 2018, NITK, Surathkal, India. 

 

 
38 

Table 3.1 Metadata of Hyperion image over Karnataka image 

Data Set Attribute Attribute Value 

Entity ID EO1H1460512012064110KZ_PF2_01 

Acquisition Date 04 March 2012 

Cloud Cover 0 to 9% Cloud Cover 

Target Path 146 

Target Row 51 

Station PF2 

Processing Level L1T Product 

Scene Start Time 2012:064:05:15:18.642 

Scene Stop Time 2012:064:05:15:33.642 

Sun Azimuth 121.828749 

Sun Elevation 55.066599 

Satellite Inclination 98.14 

Look Angle 23.758 

Center Latitude 12°35'46.85"N 

Center Longitude 74°43'39.75"E 
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Table 3.2 Metadata of Hyperion image over Narrabri Site#1 image 

Data Set Attribute Attribute Value 

Entity ID EO1H0910802007017110KT_AGS_01 

Acquisition Date 17 January 2007  

Cloud Cover 0 to 9% Cloud Cover 

Target Path 91 

Target Row 80 

Station AGS 

Processing Level L1T Product 

Scene Start Time 2007:017:23:49:23.360 

Scene Stop Time 2007:017:23:49:55.360 

Sun Azimuth 81.85906 

Sun Elevation 56.640028 

Satellite Inclination 98.19 

Look Angle 9.7812 

Center Latitude 31°08'36.80"S 

Center Longitude 149°25'29.92"E 
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Table 3.3 Metadata of Hyperion image over Narrabri Site#2 image 

Data Set Attribute Attribute Value 

Entity ID EO1H0910802006347110KV_WPS_01 

Acquisition Date 13 December 2006  

Cloud Cover 0 to 9% Cloud Cover 

Target Path 91 

Target Row 80 

Station WPS 

Processing Level L1T Product  

Scene Start Time 2006:347:23:53:10.298 

Scene Stop Time 2006:347:23:53:41.298 

Sun Azimuth 82.791116 

Sun Elevation 61.875154 

Satellite Inclination 98.18 

Look Angle 17.179 

Center Latitude 31°12'07.74"S 

Center Longitude 149°32'37.71"E 
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3.4 SOIL SAMPLES 

3.4.1 Soil samples collection over Karnataka sites 

A total of 111 soil samples were selected from Karnataka sites. Soil samples were 

collected by researchers from ‘National Institute of Technology, Karnataka’ during the 

first week of March 2012 (Gopal, 2014; Gopal et al., 2015). These soil samples were 

located over the Hyperion scene. Soil samples were collected in the same week as that of 

Hyperion data acquisition. Samples were collected over harvested paddy fields devoid of 

vegetation in and around the radius 90-100 m to ensure pure soil spectra. Since paddy 

fields were very random and dispersed as a small patch of land, adopting grid sampling 

technique was difficult. Random sampling method was adopted based on the availability 

of fields. Soil samples were collected from 0-20 cm depth. As the soil samples were 

collected over cultivated fields, this depth corresponds to the ploughed soil horizon and 

the Hyperion measurement may be considered as representative of this sampled depth. A 

mixture of soils taken at 5 spots of radius 10 m at a location represented one sample. Soil 

sampling sites were located using a GPS with 2 m accuracy. SOC content of the Indian 

soil samples was measured by Dichromate oxidation (Walkley-Black) technique (IS 

2720-Part22 1972). Over Karnataka sites, the soil samples collection and Hyperion data 

acquisition were realised in the same time; so, SOC content may be considered as stable 

between both data collections (samples and image). 

3.4.2 Soil samples collection over Narrabri sites 

A total of 98 soil samples were selected from Australia, Narrabri sites. Soil samples were 

collected by researchers from ‘The University of Sydney, Australia’ (Gomez et al. 2008) 

over the study sites. It includes 46 samples over cropping soils and travelling stock routes 

of Narrabri Site#1 collected in October 2006 (realized in the same semester as of 

Hyperion data) and 52 samples collected over pastures of Narrabri Site#2 in December 
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2006 (realized in the same month as of Hyperion data). Soil samples were collected over 

bare soil fields. SOC content may be considered as stable between sampling and image 

acquisition, as in the field the organic matter was neither added nor consumed because of 

the absence of vegetation during this period in the sampling locations. Changes of the 

climate, particularly the temperature and rainfall, affect SOC by accelerating SOC 

decomposition. However a short duration of 3 months from October 2006 to January 

2007 in Narrabri Site#1 was safely assumed that SOC was fairly stable between the 

measurements. Soil samples were collected from 0 to10 cm depth. As the soil samples 

were collected over cultivated fields, this depth corresponds to the ploughed soil horizon 

and the Hyperion measurement may be considered as representative of this sampled 

depth (same as over Karnataka context). And soil samples are the average of sub-samples 

collected at the centre and four corners of perimeter of a 20 m× 20 m area.  

SOC content of soil samples was measured by laboratory mid-infrared (MIR) 

spectroscopy. For the MIR analysis, samples were ground to 200 μm for analyses as neat 

powders. MIR spectral reflectance of each soil sample were measured using a Tensor 

37_Fourier Transform Infrared spectrometer from Bruker Optics, in the range 2500 to 

25000 nm with 8 cm
−1

 resolution and 64 scans per second. Predictions of SOC content of 

each soil sample were made using PLSR from MIR calibrations (more details in Gomez 

et al. 2008). The calibration used 13 factors and the test set validation root mean squared 

error of the model was 0.15 dag/kg and R
2
 of 0.91. Over Narrabri sites, the soil samples 

collection and Hyperion data acquisition were realised in the same semester so SOC 

content may be considered as stable between sampling and image acquisition. 
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3.4.3 SOC values  

The distribution of SOC in both study areas is represented in box plot (Figure 3.3). Unit 

of SOC content is expressed as weight of organic carbon as percentage of the total weight 

of the soil sample. In Karnataka sites SOC content varies between 0.07 % and 5.22 % 

with its mean, median and standard deviation which are 2.31, 1.98 and 1.21 respectively. 

In Narrabri sites it ranges from 0.002 % to 5.1 %. But it is noted that only one sample in 

the dataset has 5.1 % of SOC which is considered as an outlier and removed. So SOC 

ranges from 0.002 % to 3.6 % with its mean, median and standard deviation are 1.56, 

1.47 and 0.97 respectively. It is noted that the SOC distribution over the Karnataka fields 

are spread out and normally distributed whereas that of Narrabri fields are skewed 

towards lower SOC content.  

 

Figure 3.3: SOC distribution (in %) in both field sample sets 
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3.5 ANCILLARY DATA  

Climate data such as mean temperature, mean pressure and daily rainfall for the date of 

acquisition of Hyperion images were obtained from ‘global surface summary of day’ 

product produced by the National Climatic Data Center (NCDC) (www.ncdc.noaa.gov) 

are shown in Table 3.5. Climatic data from the nearest climatological station of the study 

area were downloaded from the website. The nearest station of Karnataka site is 

Mangalore (located at 12.9169°N, 74.8828°E and elevation of 102 m) and that of 

Narrabri site is Narrabri airport (located at 30.3154°S, 149.8302°E and elevation of 229 

m). Atmosphere was clear and precipitation was zero in all cases on the date of 

acquisition of images.   

Concentration of atmospheric components was obtained on the date of acquisition of 

satellite image from NASA’s Earth Observations (NEO) website 

(http://neo.sci.gsfc.nasa.gov/) are given in Table 3.6. Owing to the small size of the study 

area in relation to spatial resolution of MODIS (Moderate Resolution Imaging 

Spectroradiometer) and OMI (Ozone Mapping Instrument) data (which is 0.25 degree), 

spatial variations were not considered.  

Table 3.5: Climate data for the acquisition dates 

Place Year-month-date 
Mean temperature 

(°C) 

Mean pressure 

(mbar) 

Daily rainfall 

(mm) 

Karnataka 4 March 2012 25.8 996.6 0 

Narrabri 

Site#1 17 January 2007 27.1 989.9 0 

Narrabri 

Site#2 13 December 2006 27.1 988.8 0 

 

http://www.ncdc.noaa.gov/
http://neo.sci.gsfc.nasa.gov/
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  Table 3.6: Atmospheric data for the acquisition dates 

Sl 

no. 
Parameter 

Sensor/ 

Satellite 
Unit 

Karnataka: 

4 March 

2012 

Narrabri 

Site#1 

17 January 

2007 

Narrabri 

Site#2 

13 December 

2006 

1 
Aerosol optical 

thickness_550 

MODIS/ 

Terra 
- 0.23 0.25 0.26 

2 
Carbon 

monoxide 

MOPITT

/ Terra 
ppb (v) 145 72 83 

3 
Ozone optical 

thickness 

OMI/ 

Aura 
DU

 
255 258 263 

4 Water  vapour 
MODIS/ 

Terra 
cm  2.5 3.1 2.8 

3.6 SPECTRORADIOMETRIC DATA 

A gist of spectroradiometric data collected on Indian sites as adopted by Gopal 2014 and 

on Australian sites as adopted by Gomez et al. 2008 is presented here. 

Field reflectance measurement of Karnataka soil samples was obtained with an ASD 

handheld Spectroradiometer Field Spec
®
 in the range 375-1075 nm with spectral 

resolution of 1 nm. The instrument was mounted on a tripod with 30 cm vertical distance 

from soil sample and an external halogen light source was used. It was optimized to the 

halogen light source and calibrated with white reference panel. Soils were placed on 

black chart paper to avoid reflection. Reflectance spectra of air dried and sieved soil 

samples were obtained.  
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The reflectance of the Narrabri soil samples was measured on the field during sample 

collection with the AgriSpec portable spectroradiometer in the range 350–2500 nm with 

spectral resolution of 1 nm. The AgriSpec spectrometer has a light source and 

measurements are made using the contact probe. A white spectralon panel (5 cm × 5 cm) 

provided the absolute reflectance factor for field measurements. The surface scanned was 

a core of 10 cm and 10 scans were made per sample. 

3.7 SOFTWARE USED 

The following software were used for processing the hyperspectral data and modelling 

the soil properties: 

3.7.1 ArcGIS 10.1
®
 

ArcGIS
®
 is professional GIS software developed by Environmental Systems Research 

Institute (ESRI). ArcGIS can be used for creating maps, conducting spatial analysis and 

sharing intelligent visualizations for better decision making. It provides a set of 

comprehensive data visualization and analysis tools which greatly simplifies the 

processing of geo-spatial data. The study employs ArcGIS version 10.1 for visualizing 

the soil sampling locations from GPS data and to prepare location maps. 

3.7.2 ENVI 4.7
®
 

ENVI
®

 is an acronym for "ENvironment for Visualizing Images" and is a geospatial 

imagery analysis and processing application marketed by Exelis Visual Information 

Solutions. ENVI
®

 bundles together a number of scientific algorithms for image 

processing and analyses all types of imagery such as multispectral, hyperspectral, 

LiDAR, and SAR. Version 4.7 has been used in this study to perform preprocessing of 

FLAASH and QUAC atmospheric corrections on Hyperion imagery. 
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3.7.3 ReSe Software 

ReSe Applications Schläpfer provides atmospheric correction software ATCOR for 

remote sensing images. Trial version of ATCOR2
®
 processed in Interactive Data 

Language (IDL) is used here (https://www.rese-apps.com/software/atcor/index.html). 

Interpretation of data and powerful application solving are its key functions.  

3.7.4 MATLAB R2015a 
®
 

MATLAB
®
 (MATrix LABoratory) is a proprietary fourth-generation programming 

language developed by MathWorks. It provides an interactive environment for algorithm 

development, data visualization, data analysis, and numerical computations. MATLAB
®

 

enables matrix manipulations, graphics for visualizing data, implementation of 

algorithms and interfaces to C/C++, Java, .NET, Python, SQL, and Microsoft Excel, etc. 

It also has add-on toolboxes for a wide range of engineering and scientific applications. 

The study employs MATLAB R2015a
®
 for coding and analysis. PCR, PLSR and ANN 

models were coded in MATLAB
®
. Also, hybrid atmospheric correction algorithms were 

also coded in MATLAB
®
. The codes are presented in Appendix I. 

3.7.5 VisualSixS 

6S was processed in alpha version of VisualSixS 1.1.2. Since the software is under 

development, its trial copy was used for this study. Emanuele Mandanici, from DICAM, 

University of Bologna has provided this software upon request. 

3.8 OVERALL METHODOLOGY 

The present study can be divided into three sub-studies which are inter-related and 

answers the four objectives of the study. Figure 3.4 presents overall methodology used in 

this study.  As part of first objective, the accuracy of estimation of SOC from ground 

https://www.rese-apps.com/software/atcor/index.html
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based VNIR/SWIR reflectance spectra using advanced statistical techniques viz. principal 

component regression (PCR), partial least square regression (PLSR) and artificial neural 

network (ANN) coupled with different spectra preprocessing methods were analysed. It 

was to identify the best estimation model and spectra smoothing method to be used for 

further analysis. The study is explained in detail in chapter 4. As part of the second 

objective, the influence of four popularly used atmospheric correction algorithms in the 

estimation of SOC from hyperspectral spaceborne Hyperion VNIR/SWIR data was 

analysed in fields located in two different geographical settings viz. Karnataka in India 

and Narrabri in Australia. This study is explained in detail in chapter 5. Results from this 

study were used for the development of hybrid atmospheric correction algorithms 

especially for retrieving soil reflectance. Later, two hybrid atmospheric correction 

algorithms are developed and evaluated for finding their potential in deriving soil spectra 

from Hyperion data and estimation of SOC. One of them uses radiative transfer equations 

with in situ atmospheric data followed by calibration using field reflectance values taken 

from optimum number of locations. Whereas, the second one combines an existing 

algorithm and calibration using field reflectance values. The study is explained in 

Chapter 6 and it answers third and fourth objectives of this research. 
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Figure 3.4 Overall methodology 

The next chapter explains detailed methodology, results and discussions of the first sub-

study which answers objective 1 of this research. 
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CHAPTER 4 

     ESTIMATION OF SOC CONTENT THROUGH GROUND-BASED 

VNIR/SWIR SPECTROSCOPY 

4.1 INTRODUCTION 

Reflectance data from VNIR/SWIR regions were explored in estimating SOC (e.g. Gao et 

al. 2014, Peng et al. 2014, Jiang et al. 2016) and the studies were further extended to mid-

infrared regions (Minasny et al. 2008). Henderson et al. 1992, Ben-Dor et al. 1997, 

Bartholomeus et al. 2008, Peon et al. 2017 etc. studied  the relationship of soil spectrum 

and SOC content.  

In the current study, as SOC is not measured under controlled environment, direct 

dependence of reflectance and SOC content cannot be established. Additionally SOC-

specific spectral features in the reflectance signal are not strong enough or there are 

overlapping features due to some other quantity in the soil (e.g soil moisture). Thus first 

principle approaches is not applied here. The response of soil properties specifically SOC 

from spectral features is established using well-developed statistical techniques.  

Viscarra-Rossel et al. (2006) reviewed various statistical methods of obtaining soil 

properties from different regions of electromagnetic spectrum. Stevens et al (2010) and 

Stevens et al (2012) compared several multivariate calibration models to estimate SOC 

using soil spectrum obtained from airborne hyperspectral sensor.  Estimation accuracy of 

SOC from reflectance spectroscopy depends on many of the factors which include the 

smoothening effect of reflectance data, the soil type and statistical model used for 

estimation. 
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Preprocessing methods are required to remove noise and other irrelevant information 

from the spectral data and thereby to improve the calibration of model. There is a need to 

define global applicability of role of preprocessing technique in SOC estimation from 

reflectance spectroscopy. As of now, there are no guidelines in choosing of spectral 

smoothening techniques for the problem at hand. 

The present study investigates the accuracy of estimation of SOC from ground based 

VNIR/SWIR reflectance spectra using advanced techniques viz. principal component 

regression (PCR), partial least square regression (PLSR) and artificial neural network 

(ANN) coupled with different spectra preprocessing methods. 

The study is published in Minu and Shetty, 2018. The methodology adopted in the study 

is explained in the section below. 

4.2 METHODOLOGY 

Methodology adopted in the study is shown in Figure 4.1. Ground measured reflectance 

signatures and laboratory measured SOC contents of Narrabri sites were used in this 

study since full range spectroradiometer reflectance were available. These ground 

reflectance spectra were preprocessed using different smoothing methods such as: 

moving average, median filtering, gaussian smoothing and Savitzky Golay smoothing. 

PCR, PLSR and ANN models were applied to estimate SOC content from preprocessed 

signal. The three statistical techniques were also applied to unsmoothed raw data. The 

implementation of models were carried out in MATLAB environment and the codes used 

are presented in Appendix I.  



Estimation of SOC content through ground-based VNIR/SWIR spectroscopy 

 
 

 

An evaluation of atmospheric correction algorithms in the estimation of SOC from Hyperion image.  

Ph.D. Thesis, 2018, NITK, Surathkal, India. 

 

 
52 

 

Figure 4.1 Methodology adopted 

The performance of estimation models in the calibration and validation sets was 

evaluated using performance matrices given in Equations 4.1–4.4.  

(1) coefficient of determination (R
2
) over calibration database (     

2 ) and 

validation database ( v  
2 ), 

(2) root mean square error (RMSE) calibration database (RMSEcal) and validation 

database (RMSEval), 

(3) residual prediction deviation (RPD) over calibration database (RPDcal) and 

validation database (RPDval), (Chang et al. 2001) and 

(4) ratio of performance to inter-quartile range (RPIQ) over calibration database 

(RPIQcal) and validation database (RPIQval) (Bellon-Maurel et al. 2010). 
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where,  

iŷ  is predicted value of the i
th 

observation,  

iy  is measured value of the i
th 

observation, 

y is the mean measured value,  

n is the number of samples in each set,  

sd is the standard deviation,  

Q3 and Q1 are 3
rd

 and 1
st 

quartiles of the sample set, respectively. 

The RPD scales model error by population dispersion and facilitates comparison of 

results from datasets with different degrees of variability. In contrast, the RPIQ accounts 

for the spread of a population in datasets with a skewed distribution by using the 

interquartile range instead of the standard deviation.  

Performance categories used in this study are defined according to Veum et al.  2015 

where PLSR model was used in estimating soil organic carbon along with other soil 

parameters. 

 ‘C tegory A’ mode s are most reliable with R
2
 ≥ 0.75, RPD ≥ 2.0,  nd RPIQ ≥ 3.0, 

 ‘C tegory B’ mode s with R
2
 ≥ 0.63, RPD ≥ 1.6,  nd RPIQ ≥ 1.9  nd  
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 ‘C tegory C’ mode s with R
2
 ≥ 0.50, RPD ≥ 1.4,  nd RPIQ ≥ 1.5.  

 All other models were considered as not recommendable. 

A brief description of preprocessing methods used and estimation models tested are given 

in following sections. 

4.2.1 Spectra preprocessing methods 

Spectroradiometer signatures were preprocessed using four different smoothening filters 

viz. moving average (MA) filter, median filter (MF), Savitzky Golay (SG) smoothing and 

Gaussian smoothing (GS). These pre-processing methods resolve overlapping spikes, 

remove linear baselines and eliminate spectral noises.  

Moving average filter smoothens data by replacing each data point with an average of 

neighbouring data points defined within the span. Median filter is run through the signal, 

replacing each entry with the median of neighbouring entries. Savitzky Golay filter 

(Savitzky and Golay 1964), also called as digital smoothing polynomial filter or least-

squares smoothing filter, is a generalized moving average filter. The filter coefficients are 

derived by performing unweighted linear least-squares fit using a polynomial of a given 

degree. It fits a local polynomial regression on the signal and requires equidistant 

bandwidth. A higher degree polynomial makes it possible to achieve a high level of 

smoothing without attenuation of data features. Mathematically, it operates merely as a 

weighted sum of neighbouring values. A third order Savitzky Golay filter was the choice 

in this study. Gaussian filter modifies the input signal by convolution with a Gaussian 

function (Rojas-Lertxundi et al. 2015). All filters were applied in a span size of 51 nm. 

Figure 4.2 shows the plot of a spectra smoothed through each of these filters and 

comparing them to raw spectrum. An inspection of the raw spectrum shows that, the 

spectrum is affected by instrumental noises espectially in the visible and SWIR region of 
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the spectrum. It takes us to the conclusion that smoothing is required as an initial 

preprocessing step of the spectrum. 

 

Figure 4.2 Smoothed and raw spectrum 

4.2.2 Division of dataset for calibration/training and validation/testing 

Of the total dataset (i.e. SOC content and corresponding soil reflectance) 3/4 is grouped 

as calibration set and remaining as validation set. To begin with, SOC values were sorted 

in ascending order. Initially, sample with lowest SOC content was placed in the 

validation set. The next three samples were placed in calibration set. The procedure is 

continued by alternately placing the following sample in validation set and the next three 

samples in calibration set. This ensures that datasets including entire range of SOC are 

evenly distributed across calibration range (Mark and Workman 2003).  

In this study, PLSR, PCR and ANN uses the same calibration/training and 

validation/testing sets.  
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4.2.3 Estimation Models 

To estimate SOC from reflectance spectra various linear and non-linear estimation 

models have been used. Principal component regression (PCR) and partial least squares 

regression (PLSR) are linear models coupled with dimension reduction methodologies. 

While PCR is applied without consideration of correlation between spectra and SOC 

content during the process, PLSR takes into account the correlation. PLSR selects 

orthogonal factors that maximize covariance between spectra and SOC content. It handles 

multicollinearity and is strong in considering data noise and missing values. Unlike PCR, 

PLSR balances the two objectives of explaining response and predictor variation and 

performs the decomposition and regression in a single step (Viscarra-Rossel et al. 2006). 

ANN model possesses characteristics such as non-linearity, parallelism, noise tolerance, 

and learning and generalization capability (Chiang et al. 2004).  

The models used in the study are explained in following sections. 

4.2.3.1 Principal component regression 

PCR consists of two stages (Maesschalck et al. 1999). In the first stage the number of 

input bands are reduced to few principal components (PC). These PCs describe the 

spectral variance across all samples.  In the second stage these PCs are regressed against 

SOC content and calibration models are constructed. The model is validated using 

separate data (validation set). Selection of calibration and validation sets are defined as 

explained in section 4.2.2. 

In the present sample sets, three principal components were used in the regression 

calculations which explained about 90% of variance (Figure 4.3). Regression modelling 

using principal components was carried out in MATLAB
®
 softw re. The fun tion ‘p  ’ is 

used to get principal components which are then regressed and y (i.e., SOC) is estimated. 
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Figure 4.3 Percentage of variance explained by each principal component 

4.2.3.2 Partial least square regression 

PLSR is a multivariate analysis technique used in cases where there are a large number of 

independent variables or predictors and these independent variables are highly collinear. 

It was developed by Wold et al. (1983). PLSR is used by several researchers in soil 

property studies at different scales such as laboratory, in situ spectral analysis and 

airborne and spaceborne hyperspectral image analysis (Viscarra-Rossel et al. 2006, 

Stevens et al. 2008, Lu et al. 2013, Anne et al. 2014). The PLSR method reduces the 

entire reflectance spectra to a small number of relevant factors and regresses them to the 

dependent variable. It decomposes both the predictor (Spectral reflectance) and response 

(soil properties) variables and identifies a few underlying latent vectors that maximize the 

co-variability between them (Wold et al. 2001). The general idea of PLSR is to extract 

these latent factors, accounting for as much of the manifest factor variation as possible 

while modelling the responses well. 

Selection of calibration and validation sets are defined as in section 4.2.2. An optimum 

number of PLS components, which minimizes the mean square prediction error in cross-
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validation was identified for each dataset. This ensures dimensionality reduction in 

subsequent regression  n  ysis. MATLAB fun tion ‘p sregress’ is used for the regression. 

It calculates regression coefficients (β coefficients) from the calibration set and use them 

for estimating y values.  

4.2.3.3 Artificial neural network  

ANN is a non-linear estimation mode    rried out using gr phi    user interf  e ‘nntoo ’ 

in MATLAB
®
 software for SOC estimation from reflectance spectrum. Data were 

divided into training and test sets. Selection of samples in the training sets and test sets 

were defined as in section 4.2.2. The neural network used is feed-forward back-

propagation network and consists of input, hidden and output layers as shown in Figure 

4.4. Input layer consists of reflectance values and the number of wavelengths in this layer 

was reduced by averaging three successive wavelengths in order to reduce the size of the 

matrix formed. Output layer consists of SOC values. The number of neurons in the 

hidden layer was found out by a trial-and-error approach which resulted in lower training 

error (Chiang et al. 2004). Tan-sigmoid (non-linear) and purelin (linear) functions were 

selected for the hidden and output layers, respectively. Levenberg-Marquardt was used as 

the training algorithm.  

 

Figure 4.4 Artificial neural network structure used in this study 
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4.3 RESULTS AND DISCUSSION 

4.3.1 Model performance 

Model performance was evaluated in terms of R
2
, RMSE, RPD and RPIQ for each SOC 

estimation model. The analysis was performed on raw and smoothed reflectance spectra. 

The calibration and validation results of SOC estimation are summarized in Table 4.1.  

Table 4.1 Performance matrices of PCR, PLSR and ANN models  

Model 
Pre-

processing 
NF* 

Calibration set Validation set 

    
2  RMSEcal RPDcal RPIQcal  v  

2  RMSEval RPDval RPIQval 

PCR 

Nil 

3 

0.54 0.61 1.52 2.49 0.50 0.64 1.43 2.11 

MA 0.71 0.51 1.87 2.99 0.70 0.52 1.93 2.99 

MF 0.66 0.56 1.71 2.75 0.65 0.58 1.76 2.72 

SG 0.71 0.51 1.87 2.99 0.70 0.53 1.93 2.99 

GS 0.65 0.55 1.71 2.74 0.65 0.58 1.76 2.72 

PLSR Nil 5 0.77 0.46 2.11 3.34 0.66 0.52 1.77 2.86 

MA 6 0.83 0.39 2.46 3.87 0.77 0.48 2.13 3.08 

MF 5 

5 

0.83 0.39 2.47 3.90 0.76 0.49 2.09 3.03 

SG 0.84 0.38 2.55  4.02 0.77 0.48 2.17 3.19 

GS 7 0.81 0.41 2.32 3.66 0.75 0.50 2.07 3.00 

ANN Nil 

10 

0.61 0.61 1.58 2.58 0.60 0.65 1.69 2.60 

MA 0.63 0.57 1.67 2.68 0.66 0.58 1.76 2.72 

MF 0.78 0.44 2.17 3.48 0.74 0.50 2.05 3.15 

SG 0.78 0.44 2.18 3.49 0.77 0.47 2.17 3.16 

GS 0.71 0.50 1.90 3.05 0.64 0.59 1.72 2.66 

* NF is no. of PC in PCR model, no. of PLS components in PLSR model and no. of neurons in ANN 

In bold are represented the best performances 
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A good model has higher values of R
2
, RPD and RPIQ and a lower RMSE. Analysis on 

raw spectra did not give good results irrespective of the estimation model used. 

Smoothening is essential in order to remove any abnormal peaks or noise from the 

spectrum. Results of this study also reveal that the choice of signal smoothening 

technique affects model output and the best one among the four is Savitzky Golay filter 

for all the estimation models considered. Even though all the three models used in the 

study have the potential to estimate SOC content from reflectance spectrum (fall into 

category A or B as Veum et al. 2015, refer section 4.2), PLSR model outperforms the 

other two. The superiority of PLSR is because it considers correlation between dependent 

and independent variables, whereas it is not considered in PCR.  

Previous studies by Wijewardane et al. (2016) showed that nonlinear techniques like 

ANN outperformed PLSR in soil carbon modeling. But ANN gives good results only 

when it has sufficient number of training samples. It may produce better results if the 

spread and number of training samples are increased. In the present study, estimation 

models are built with limited data, mostly this kind of scenarios prevail in field 

measurement of environmental parameters especially at the local scale. The results 

obtained recommend that, PLSR model performs better with Savitzky Golay method 

(SG-PLSR model) as the best pre-processing method yielding     
2  = 0.84, RPDcal = 2.55 

and RPIQcal = 4.02 in the calibration set and  v  
2  = 0.77, RPDval = 2.17 and RPIQval = 

3.19  in the validation set and the same is highlighted in Table 4.1. The scatterplot 

obtained for SG-PLSR model is shown in Figure 4.5. 
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Fig. 4.5 Estimated vs. Measured plot of SOC content ( %) from SG-PLSR model 

4.3.2 Significant wavelengths for SOC estimation 

The output from SG-PLSR model was analysed for identifying significant wavelengths 

for SOC estimation. The spectral responses of functional groups are dispersed over 

several adjacent wavelengths, leading to strong collinearity in some regions of the 

spectra, while other regions may be corrupted by noise or contain irrelevant information 

(Gosselin et al. 2010). It is necessary that the wavelengths that are relevant for modelling 

a particular property be identified. In this study, this is achieved by computing the 

‘V ri b e Import n e in PLS proje tions’ (VIP) and the absolute value of PLS regression 

coefficients (β) from SG-PLSR model. Higher |β| × VIP scores were identified as a subset 

of wavelengths significant in estimating the SOC content as opposed to entire range of 

spectrum. 
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VIP is a weighted sum of squares of the PLS weights, with weights calculated from the 

amount of Y-Variance of each PLS component (Wold et al. 2001, Mehmood et al. 2012). 

It accumulates the importance of each variable j being reflected by loading weights w 

from each component (Mehmood et al., 2012). The VIP score vj for the variable j is 

defined as in equation 4.5. 

   
√
  ∑ [   (

   

||  ||
)
 

]   
    

∑    
 
   

                                                                   (4.5) 

where, 

p is the number of predictor variables or wavelengths,  

SSa is the sum of squares explained by the a
th

 component 

   

||  ||
  represents the importance of the j

th
 variable 

The product of absolute regression coefficient and VIP score (|β| × VIP) from the SG-

PLSR model is plotted in Figure 4.6. The significant wavelengths were identified by 

setting thresholds for |β| × VIP scores. The most significant wavelengths identified in 

PLSR model are located in the 600-680nm, 1860- 1900nm and 2180–2250nm spectral 

regions. And secondary significant wavelengths are located around 1000 nm and 2070 

nm (Figure 4.6). Ben-Dor et al. (1997), Bartholomeus et al. (2008), Viscarra-Rossel and 

Behrens (2010), Vohland and Emmerling (2011), and Sarkhot et al. (2011), Bellon-

Maurel and McBratney (2011) etc.  have also reported association of important 

wavelengths for estimating SOC, which are in accordance with these results. 
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Figure 4.6: |β| × VIP scores for wavelengths from field spectra over Narrabri. 

Earlier studies on interaction of SOC and reflectance spectra point out that, different 

wavelengths can contribute to SOC estimation. There is an overall decrease in reflectance 

with an increase in SOC. Henderson et al. (1992) found that for soils formed from 

different parent materials, 1955–1965, 2215, 2265, 2285–2295, and 2315–2495 nm gave 

the best correlation with SOC content. Ben-Dor et al. (1997) reported that based on the 

degree of decomposition or the type of organic matter, several changes occur in the soil 

spectrum. They showed that 400–600 nm slope of soil spectrum is influenced based on 

decomposition stage of organic material. Ben-Dor et al. (2002) assigned certain spectral 

features in soil spectrum to organic matter such as around 700 nm due to chlorophyll, 

around 1000 nm due to oil and cellulose, around 1600 nm due to pectin, starch, and 

cellulose, and around 2300 nm due to humic acid. 
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Bartholomeus et al. (2008) studied on spectral regions suitable for soil SOC quantity. 

They reported that SOC determination from soil spectroscopy depends on reflectance 

variation due to cellulose, starch, and lignin content at different regions in the 

VNIR/SWIR region of the electromagnetic spectrum. They found the highest correlation 

between the inverse of reflectance and SOC at wavelengths between 640 and 690 nm. 

They also found that the area of the absorption feature between 2050 and 2200 nm shows 

a negative relation with SOC. 

4.4 LIMITATION OF THE STUDY 

Soil reflectance is a cumulative property, derived from inherent spectral behaviour of 

heterogeneous combination of mineral and organic matter/SOC, soil moisture, and soil 

texture. However, in the present study, the soil was not understood completely and SOC 

was only measured. The limitation of the present study is that, other components 

influencing spectral behavior were not separated, which is infact the most practical 

condition. Direct dependence of reflectance and SOC content cannot be established. 

Additionally, SOC-specific spectral features in the reflectance signal are not strong 

enough or there are overlapping features due to some other quantity in the soil (e.g soil 

moisture).  

4.5 CONCLUSIONS 

This study highlights that a properly pre-processed reflectance spectra show tremendous 

potential in soil organic carbon estimation. Among the smoothening techniques compared 

Savitzky Golay method outperforms others. PLSR models performed better than PCR 

and ANN models in cross-validation. Thus PLSR model using Savitzky Golay 

smoothened soil reflectance signals is recommended for SOC estimation from reflectance 

data in the study area when the spread and number of calibration samples are limited. 
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Significant wavelengths for SOC estimation were identified as 600-680 nm, 950-1050 

nm, 1860-1900 nm, 2050-2090 nm and 2180-2250 nm regions from the output of SG-

PLSR model.  

SG-PLSR model is adopted in further analysis for estimation of SOC from spaceborne 

Hyperion data and finding out the role of atmospheric correction algorithm on estimation 

accuracy as explained in Chapter 5. 
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CHAPTER 5 

   INFLUENCE OF ATMOSPHERIC CORRECTION ALGORITHMS 

IN THE ESTIMATION OF SOC FROM HYPERION DATA 

5.1 INTRODUCTION 

Chapter 4 demonstrates the potential of field spectroscopy for estimation of SOC. SG-

PLSR model was recommended for the same. In this part of the study, the potential of 

spaceborne hyperspectral VNIR/SWIR data is explored for quantification and better 

characterization of SOC. Remotely sensed target reflectance is affected by the presence 

of atmosphere in between. This study tries to evaluate popularly used atmospheric 

correction algorithms for the estimation of SOC from hyperspectral spaceborne sensor, 

specifically Hyperion (VNIR/SWIR, 400-2500 nm) data in fields located in two different 

geographical settings viz. Karnataka in India and Narrabri in Australia. The study is 

published in Minu et al. 2017. The methodology adopted in the study is discussed in the 

section follows. 

5.2 METHODOLOGY 

A broad outline of process flow adopted in this study is illustrated in Figure 5.1. 

        ,          ,      and         are the reflectances obtained after applying 

ATCOR, FLAASH, 6S and QUAC algorithms respectively and are described in the 

following sections. 
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Figure 5.1 An outline of process flow adopted in the study 

5.2.1 Radiance Hyperion data preprocessing 

In order to reduce the processing time, spatial and spectral sub-setting was performed. 

Initially regions of interest were subset from the Hyperion images. Following which, out 

of 242 Hyperion bands, uncalibrated bands 1-7 (355-416 nm), 58-78 (overlapping bands 

between VNIR and SWIR focal planes), 121-126 (1356-1406 nm), 165-181 (1800-1961 

nm), 185-186 (2002-2012 nm), and 221-242 (2365-2577 nm) were removed from the 

image. The remaining 167 bands were available for further analysis. 

5.2.2 Atmospheric correction algorithms 

An ideal atmospheric correction algorithm removes intrinsic atmospheric components 

from a satellite-derived top-of-atmosphere radiance data and converts to surface 
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reflectance. Four commonly used atmospheric correction algorithms tested in this study 

are: QUAC, 6S, FLAASH and ATCOR. A brief note on the four atmospheric correction 

algorithms tested in this study is explained below.  

5.2.2.1 QUAC 

Quick atmospheric correction (QUAC) is a semi-empirical, solar reflective spectral 

region (400-2500 nm), atmospheric correction method (Bernstein et al. 2005). It is based 

on the empirical  finding that, the average reflectance of diverse material spectra is not 

dependent on the specific scene, provided that there are atleast ten diverse materials in a 

scene, spectral standard deviation of reflectance for a collection of diverse materials is 

nearly wavelength-independent constant and there are sufficiently dark pixels in a scene 

to allow for a good estimation of the baseline spectrum. QUAC also allows for any view 

or solar elevation angle. 

It does not use any radiative transfer (RT) equations and determines atmospheric 

compensation parameters directly from the image, without any ancillary information. It 

does not consider spectral sampling distance. It is faster than physics-based methods and 

produces a uniform correction; however, it is an approximate method. In the present 

study, QUAC model was applied using ENVI
®

 software. 

The parameters for QUAC include selecting an input file, specifying a sensor type, and 

setting output file defaults. The „sensor type‟ was specified as „Hyperion‟ so that 

algorithm identifies specification of sensor band locations and their radiometric 

calibration (Bernstein et al. 2012).  The reflectance values in the output image from 

QUAC were scaled by 10000.  

5.2.2.2 6S 

6S, which stands for Second Simulation of a Satellite Signal in the Solar Spectrum code, 

is one of the most widely used RT codes, based on successive orders of scattering 
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approximations (Vermote et al. 1997a). It uses a wavenumber grid of 20 cm
-1

 with 

spectral sampling distance varying from 0.32 nm to 12.4 nm depending on wavelength in 

400-2500 nm region.  

6S considers a plane parallel to atmosphere. So it cannot handle spherical atmosphere and 

as a result, it cannot be used for limb observations. Also, the decoupling used for 

absorption and scattering effects does not allow using the code in the presence of strong 

absorption bands (Vermote et al. 1997a). Mandanici (2010) compared 6S with 

MODTRAN based „FLAASH‟ algorithm over arid and vegetated land cover types and 

found a weaker water vapour absorption band modelling. 6S cannot handle clouds. Its 

employment in hyperspectral image pre-processing chain has been limited. 

In the current study, 6S was processed in alpha version of VisualSixS software. 6S 

assumes Lambertian surface and considers adjacency effects caused by contributions 

from pixels surrounding the pixel of interest. Sensor and viewing geometry such as 

sensor type, scene centre location, sensor altitude, target elevation, month and day of the 

flight, satellite zenith and azimuth angles, solar zenith and azimuth angles were provided 

for each image. Tropical atmospheric model was assumed for Indian sites, whereas 

midlatitude summer model was assumed for Australian sites. Continental aerosol model 

with 30 km visibility was assumed for both sites.  

5.2.2.3 FLAASH 

Fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) is a physics- 

based atmospheric correction method (Adler-Golden et al. 1999).  It uses MODTRAN4 

code to calculate the parameters required for RT equations which in turn gives surface 

reflectance (FLAASH 2006). Atmospheric multiple scattering is computed using scaled 

DISORT (DIScrete Ordinate Radiative Transfer) algorithm, and the correlated k 

algorithm is used to model the absorption for regions presenting considerable absorption 

effects. FLAASH with 5 cm
-1

 resolution (FLAASH 2006) translates to varying spectral 



Influence of Atmospheric Correction Algorithms on Estimation of SOC from Hyperion Data 

 
 

 

An evaluation of atmospheric correction algorithms in the estimation of SOC from Hyperion image.  

Ph.D. Thesis, 2018, NITK, Surathkal, India. 

 

 
70 

sampling distance from 0.08 nm to 3.12 nm depending on wavelength in 400-2500 nm 

region. FLAASH assumes Lambertian surface and considers adjacency effect.  

In the current study, input images were corrected with FLAASH algorithm using the 

„FLAASH atmospheric correction‟ module in ENVI
®
. The input image for FLAASH is 

radiometrically calibrated radiance image in band-interleaved-by-line (BIL) or band-

interleaved-by-pixel (BIP) format. Hyperion radiance data in units of W/(m
2
.μm.sr) can 

be obtained by multiplying VNIR bands (i.e bands 1-70, 400 to 1000nm) with a scaling 

factor of 40 and SWIR bands (i.e bands 71-242, 900 to 2500 nm) with a scaling factor of 

80 (Beck 2003). However, FLAASH algorithm requires input data to have units of 

μW/(cm
2
.nm.sr). Thus, to obtain proper units appropriate scaling factors (40 and 80 for 

the VNIR and SWIR, respectively) as well as a factor of 10 to convert the units are to be 

applied. Thus, a scaling factor of 400 is applied to the bands of VNIR region and 800 for 

bands of SWIR region in FLAASH algorithm. 

Information such as scene centre location, sensor type, sensor altitude, ground elevation, 

flight date, flight time, satellite zenith and azimuth angles were provided for each image. 

Tropical atmosphere and rural aerosol models were used for Indian sites, whereas mid-

latitude summer atmosphere and rural aerosol model were used for the Australian sites. 

Initial visibility, aerosol scale height and CO2 mixing ratio were kept as default as 30 km, 

1.5 km and 390 ppm respectively in all cases. The surface reflectance values, after 

FLAASH correction, is scaled up by 10000.  

5.2.2.4 ATCOR 

ATmospheric CORrection (ATCOR) uses MODTRAN5 code for atmospheric correction 

(Richter and Schlaepfer 2012) with latest HIgh-resolution TRANsmission molecular 

absorption (HITRAN) database. It is a large atmospheric database at a high spectral 

resolution (Richter and Schlaepfer 2012). MODTRAN5 is an upgraded version which 

includes finer spectral resolution and treatment of auxiliary atmospheric gases (Berk et al. 
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2004, Berk et al. 2008). ATCOR uses a variable wavenumber grid to obtain a constant 

spectral sampling distance of 0.4 nm in the 400-2500 nm region (Richter and Schlaepfer 

2012). 

In this study, trial version of ATCOR2 was processed in IDL. It supports calibrated 

image file in band-sequential (BSQ) format. ATCOR assumes Lambertian surface and 

requires information such as sensor type, flight date, solar zenith angle, sensor view 

geometry, average ground elevation and adjacency range for each image. Initial visibility 

was assumed as 30 km. For the sensor Hyperion, the spectral definitions are stored in a 

calibration file called „hyperion_167.cal‟ as provided by ATCOR. Atmospheric database 

i.e., look-up-tables of radiative transfer calculations, covering a wide range of weather 

conditions and sun angles are available. The user is provided the choice of selecting the 

standard MODTRAN model for atmosphere and aerosol types to represent the scene, and 

a unique MODTRAN solution is computed for each image. In ATCOR model CO2 level 

is set at default 380 ppm. In situ ozone column in Dobson Units (DU) was also entered. 

The atmospheric file used is “h99000_wv10_rural.atm” which represents a file with the 

symbolic altitude of 99,000 m, water vapour column 1.0 cm, and rural aerosol. 

QUAC being a semi empirical method does not require atmospheric parameters. 6S, 

FLAASH and ATCOR are physics-based methods. A summary of atmospheric 

parameters used by the algorithms is reported in Table 5.1. The difference in treating the 

input parameters by these atmospheric correction algorithms has a direct bearing on the 

reflectance simulation. 
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Table 5.1 Atmospheric input parameters applied on 6S, FLAASH and ATCOR 

algorithms 

Parameters 

 

6S FLAASH ATCOR2 

Karnataka Narrabri Karnataka Narrabri Karnataka Narrabri 

Atmospheric 

Model 
Tropical 

Midlatitude 

Summer 
Tropical 

Midlatitude 

Summer 

h99000_ 

wv10_rura 

h99000_ 

wv10_rura 

Adjacency 

correction 
1 km No Yes No 1 km 0 km 

Aerosol 

model 
Continental Continental Rural Rural Zone 1 Zone 1 

Visibility 30 km 30 km 30 km 30 km 30 km 30 km 

Region for 

water vapour 

retrieval 

- - 820 nm 820 nm 
940 to1130 

nm 

940 to1130 

nm 

Spectral 

Polishing 
- - No No - - 

CO2 

 
- - 

390 ppm 

(user 

defined) 

390 ppm 

(user 

defined) 

380 ppm 

(uneditable) 

380 ppm 

(uneditable) 

Ozone 

concentration 
- - - - 

In situ 

value in 

DU 

In situ 

value in 

DU 
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5.2.3 Reflectance Hyperion data treatment 

Visual inspection of individual reflectance bands alluded to different degrees of vertical 

stripping. Discarding these bands from the analysis was found to be beneficial (Jaber et 

al. 2011). Additionally, calibrated bands near major atmospheric absorption regions (e.g. 

around 950, 1400, 1900 and 2500 nm water absorption bands) that appear as over/under-

corrected reflectance values were also discarded from reflectance spectrum.  Few bands 

with negative or zero reflectance values near 450 nm spectral region after applying 

FLAASH, 6S and ATCOR algorithms that are not realistic reflectance values were also 

discarded. This effect is maximum in FLAASH output and not seen in QUAC output. 

Wavelengths used for further analysis after each atmospheric correction are given in 

Table 5.2.  

 

Table 5.2: Hyperion wavelength domains used in the analysis 

Atmospheric correction 

algorithm applied 
Wavelengths used (nm) 

ATCOR 
477-925, 962-1114, 1164-1346, 1416-1790, 

2022-2345 

FLAASH 
508-925, 972-1114, 1154-1336, 1487-1790, 

2032-2345 

6S 
457-925, 972-1094, 1164-1336, 1487-1780, 

2032-2324  

QUAC 
437-925, 972-1114, 1154-1336, 1487-1790, 

2032-2345 
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5.2.4 Spectral similarity comparison 

To compare and validate atmospherically corrected Hyperion images obtained by four 

atmospheric correction methods, with field spectral measurements Spectral Angle 

Mapper (SAM) index was used. Spectral resolution of Hyperion images are 10 nm 

wheras that of field spectroradiometer is 1 nm. Through resampling it was brought to a 

common resolution of 10 nm. SAM calculates the spectral similarity between a test 

reflectance spectrum and a reference reflectance spectrum. It calculates the angle between 

the two spectra and treats them as vectors in space with dimensionality equal to the 

number of bands (Kruse et al. 1993). The spectral angle is calculated in radians and its 

value ranges from 0 to 1. The greater the spectral angle, the lower the spectral similarity. 

Spectral angle, α, between test spectrum t and a reference spectrum r is calculated using 

equation (5.1). Figure 5.2 shows the schematic representation to measure the angle 

between two spectra using SAM when two bands of reflectance are considered. 
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where m is the total number of bands used and i referring to each band number.   

 

Figure 5.2 Schematic representation of SAM angle (Kruse et al. 1993) 
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This analysis was performed on raw and smoothened reflectance spectra. Both Hyperion 

reflectance spectra and field reflectance spectra were smoothened by passing through 

Savitzky Golay smoothing with a third order polynomial and a window size of 50 nm. 

To get a deeper understanding of the performance of atmospheric correction algorithm in 

different regions of electromagnetic spectrum and to compare spectroradiometer working 

in different wavelength regions, SAM was applied separately in three domains. First 

domain ranges from 400 to 1050 nm, second from 1500 to 1790 nm and third from 2000 

to 2350 nm.  

5.2.5 PLSR analysis 

To estimate SOC from corrected soil spectra, each dataset (Karnataka and Narrabri) was 

divided into two groups, one group for calibration of PLSR model (3/4 of the dataset), 

and a second group for validation/prediction (1/4 of the database). Grouping of data into 

calibration and validation sets are explained in section 4.2.2 of Chapter 4. An analysis 

was performed to detect the outliers in the calibration dataset. Outliers are commonly 

defined as observations that are inconsistent with the majority of the data, such as 

observations that deviate significantly from normal values. To identify the concentration 

outliers, the samples with difference between actual and estimated SOC contents lying 

outside an interval spanning over the mean plus/minus two times standard deviation were 

considered (Hodge and Austin 2004) as outliers.  

For executing PLS regression, an optimum number of PLS components (latent variables) 

was identified for each model to avoid the problem of overfitting. Cross-validation is a 

statistically sound method for choosing the number of components in PLSR (Wold et al. 

2001). An optimum number of PLS components (NF) minimizes the mean square 

prediction error in cross validation and ensures dimensionality reduction in subsequent 

regression analysis.  
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The performance of PLSR models were evaluated using R
2
, RMSE, RPD, and RPIQ in 

both calibration and validation sets. Equations for evaluating these performance statistics 

are given in equations 4.1 to 4.4. 

A higher value for the product of absolute regression coefficient and variable importance 

for projection (|β| × VIP) of each PLSR model were analyzed to identify a subset of 

wavelengths that are significant in estimating the SOC content from spectral reflectance 

data as opposed to entire range of spectrum (see section 4.4 of Chapter 4). 

5.3 RESULTS 

5.3.1 Spectral similarity comparison 

Mean and standard deviation of SAM values were calculated for raw reflectance spectra 

and Savitzky Golay smoothened spectra separately (Table 5.3). It is seen that SAM 

indices of smoothened spectra are better (with lower values) than corresponding SAM 

indices of raw data.  This observation is in accordance with the earlier studies (e.g. Selige 

et al. 2006, Anne et al. 2014), which points out that smoothening is essential in order to 

remove any abnormal peaks or noise. Thus, only smoothened spectra were used for 

further analysis.  

The average SAM values vary from 0.020 to 0.312 radians as seen from Table 5.3. High 

and low SAM index is defined based on clustering noticed in the dataset. Three clusters 

were identified between 0.02 and 0.081, 0.112 and 0.131, and 0.259 and 0.312 

corresponding to low, medium and high SAM values. The first spectral domain (400 - 

1050 nm) seems to be strongly affected by the atmospheric correction model, with high 

to medium SAM values. Whereas second (1500 - 1790 nm) and third (2000 - 2350 nm) 

spectral domains seem to be slightly affected by the atmospheric correction model, with 

low SAM values (Table 5.3).  
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Table 5.3: Summary statistics of SAM index: Mean SAM value (μ) and Standard 

deviation of SAM value (σ) (K= Karnataka set, N= Narrabri set, SG-smooth = 

Savitzky Golay smoothened).  

Spectral 

domain 

Pre-

treatment 

ATCOR FLAASH 6S QUAC 

μ  σ  μ  σ  μ  σ  μ σ 

Domain 1 

400 to 

1050 nm 

(K) 

Raw  0.301 0.057 0.309 0.061 0.311 0.050 0.291 0.069 

SG-

smooth 
0.296 0.064 0.308 0.071 0.312 0.058 0.259 0.076 

Domain 1 

400 to 

1050 nm 

(N) 

Raw  0.149 0.079 0.128 0.090 0.133 0.087 0.112 0.073 

SG-

smooth 
0.130 0.081 0.129 0.091 0.131 0.092 0.112 0.072 

Domain 2 

1500 to 

1790 nm 

(N) 

Raw  0.043 0.022 0.071 0.026 0.092 0.048 0.027 0.024 

SG-

smooth 
0.037 0.020 0.041 0.019 0.047 0.020 0.020 0.019 

Domain 3 

2000 to 

2350 nm  

(N) 

Raw  0.069 0.029 0.091 0.027 0.09 0.032 0.086 0.030 

SG-

smooth 
0.057 0.028 0.069 0.022 0.068 0.024 0.081 0.027 

In bold is represented the best SAM index (minimal value), per tested domain. 

 

In terms of spectral similarity, no atmospheric correction model seems to be superior to 

other one. Indeed, the best SAM index (so the minimal value) is obtained for a different 

atmospheric correction model depending on the spectral domain (in bold in Table 5.3). 

ATCOR seems to be a good compromise with best SAM values for third spectral domain. 
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Even though in first and second domains QUAC model seems to give good compromise 

with lower values of SAM, in the third spectral domain it gives least compromise with 

higher SAM values. FLAASH and ATCOR seem to give similar SAM values in first and 

second spectral domains. 6S model does not provide a good SAM value in any spectral 

domain. Signals from large homogeneous fields of Narrabri seem to have small SAM 

values than Karnataka samples. 

 

Figure 5.3 Average reflectance spectra of Narrabri pixels (over bare soils) and average 

field spectra, in the following spectral regions: (a) 400 to 1050 nm-Domain 1, (b) 1500 to 

1790 nm-Domain 2 and (c) 2000 to 2350 nm-Domain 3. 

Figure 5.3 shows average spectral reflectance pattern of Narrabri sites in three spectral 
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domains. Each corrected Hyperion average reflectance spectrum is compared with field 

average reflectance spectrum. It is noted that the semi-empirical QUAC model produces 

a smooth spectrum, contrasting other physical models (ATCOR, FLAASH and 6S), 

whatever may be the spectral domain (Figure 5.3). Average albedo seems to be 

underestimated in all the models with 6S having maximum variation. It is identified that 

only ATCOR corrected spectra is able to capture the pattern of field reflectance curve 

near 2200 nm (Figure 5.3(c)).  

5.3.2 Estimation of SOC from Hyperion reflectance data 

Over each sites (Karnataka and Narrabri), PLSR models were built for SOC estimation 

from Hyperion reflectance spectra. So in total, four PLSR models per site were built.  

As the first step, optimum number of PLS components (NF) required in each case was 

identified and the results are tabulated in Table 5.4 and Table 5.5. To arrive at these 

results, regression was run with ten components as a trial. The graphs of percentage 

variance in the model explained by each component and MSEP corresponding to ten PLS 

components were plotted. From the plotted graph, optimum number of factors were 

identified which minimizes the mean square prediction error in cross-validation. This 

ensures dimensionality reduction in subsequent regression analysis.  

Each PLSR model, run with an optimum number of PLS components, was used to 

estimate SOC from atmospherically corrected Hyperion spectra. Figures 5.4 to 5.11 show 

scatter plots of SOC estimation results in calibration and validation datasets for each of 

the study sites. Qualitatively the spread of estimation with respect to 1:1 line and also the 

general trend of the estimation is depicted. It is noted that, at lower SOC the trend line 

shows that the estimation is overestimated whereas at higher SOC it is underestimated 

across all models. For comparison purpose, the quantitative values are represented by 

various performance statistics and are tabulated in Table 5.6. 
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Table 5.4 Results of optimum number of PLS component (NF) selection in Karnataka 

samples 

Spectrum 

used 

Variance in Y explained by 10 

components 

Estimated MSEP in Y for 10 

components 
NF 

ATCOR 

corrected 

  

6 

FLAASH 

corrected 

  

7 

6S 

corrected 

  

5 
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QUAC 

corrected 

  

5 

 

Table 5.5 Results of optimum number of PLS component (NF) selection in Narrabri 

samples 

Spectrum 

used 

Variance in Y explained by 10 

components 

Estimated MSEP in Y for 10 

components 
NF 

ATCOR 

corrected 

  

6 
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FLAASH 

corrected 

  

4 

6S 

corrected 

  

4 

QUAC 

corrected 

  

4 
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Figure 5.4 Measured vs. estimated SOC content obtained from (a) calibration set and (b) 

validation set of PLSR model using ATCOR corrected signals over Karnataka sites. 

 

 

 Figure 5.5 Measured vs. estimated SOC content obtained from (a) calibration set and (b) 

validation set of PLSR model using FLAASH corrected signals over Karnataka sites. 
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Figure 5.6 Measured vs. estimated SOC content obtained from (a) calibration set and (b) 

validation set of PLSR model using 6S corrected signals over Karnataka sites. 

 

 

Figure 5.7 Measured vs. estimated SOC content obtained from (a) calibration set and (b) 

validation set of PLSR model using QUAC corrected signals over Karnataka sites. 
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Figure 5.8 Measured vs. estimated SOC content obtained from (a) calibration set and (b) 

validation set of PLSR model using ATCOR corrected signals over Narrabri sites. 

 

 

Figure 5.9 Measured vs. estimated SOC content obtained from (a) calibration set and (b) 

validation set of PLSR model using FLAASH corrected signals over Narrabri sites. 
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Figure 5.10 Measured vs. estimated SOC content obtained from (a) calibration set and (b) 

validation set of PLSR model using 6S corrected signals over Narrabri sites. 

 

 

Figure 5.11 Measured vs. estimated SOC content obtained from (a) calibration set and (b) 

validation set of PLSR model using QUAC corrected signals over Narrabri sites. 
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Table 5.6: Performance matrices of SOC estimation using atmospherically corrected 

Hyperion spectra over Karnataka sites.  

Atmospheric 

correction 

algorithm used 

Calibration set Validation set 

 cal
2  RMSEcal RPDcal RPIQcal  val

2  RMSEval RPDval RPIQval 

ATCOR 0.74 0.63 1.97 2.65 0.61 0.76 1.64 2.17 

FLAASH 0.73 0.63 1.95 2.66 0.57 0.81 1.55 2.05 

6S 0.69 0.66 1.69 2.47 0.55 0.82 1.52 2.02 

QUAC 0.68 0.68 1.77 2.42 0.54 0.82 1.51 2.01 

In bold are represented the best performances 

 

 

Table 5.7: Performance matrices of SOC estimation using atmospherically corrected 

Hyperion spectra over Narrabri sites.  

Atmospheric 

correction 

algorithm used 

Calibration set Validation set 

 cal
2  RMSEcal RPDcal RPIQcal  val

2  RMSEval RPDval RPIQval 

ATCOR 0.76 0.43 2.07 2.83 0.71 0.47 1.90 2.60 

FLAASH 0.71 0.48 1.87 2.56 0.67 0.50 1.78 2.43 

6S 0.67 0.52 1.83 2.40 0.58 0.57 1.57 2.14 

QUAC 0.68 0.50 1.81 2.47 0.55 0.58 1.53 2.08 

In bold are represented the best performances 

 

The results of SOC estimation from spaceborne Hyperion data are influenced by choice 

of the atmospheric correction algorithm employed. Though differences among the results 

from the four atmospheric correction algorithms are rather marginal, when the aim is to 

rank the model, it matters. The physics-based ATCOR atmospheric correction algorithm 
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allowed to produce the best SOC estimation performances, irrespective of the study area 

[ val
2  = 0.71, RPDval = 1.90 and RPIQval = 2.60 for Narrabri sites and  val

2  = 0.61, RPDval 

= 1.64 and RPIQval = 2.17 for Karnataka sites] (Figures 5.4 and 5.8, Tables 5.6 and 5.7). 

Conversely, the semi-empirical atmospheric correction algorithm QUAC allowed to 

produce the lowest SOC estimation performances, irrespective of the study area [ val
2  = 

0.55, RPDval = 1.53 and RPIQval = 2.08 for Narrabri sites and  val
2  = 0.54, RPDval = 1.51 

and RPIQval = 2.01 for Karnataka sites] (Figures 5.7 and 5.11, Tables 5.6 and 5.7). 

FLAASH and 6S corrected algorithm produced moderate estimation performance 

(Figures 5.5, 5.6, 5.9 and 5.10, Tables 5.6 and 5.7).The results are also dependant on 

study areas. Samples of Narrabri sites were estimated more accurately compared to that 

of Karnataka sites (Tables 5.6 and 5.7). 

Significant wavelengths from PLSR estimation models using various atmospherically 

corrected Hyperion signals over the Narrabri site are presented in Table 5.8 and Figure 

5.12. Though the attempt was to compare the significant wavelengths computed from the 

field model (section 4.4 of Chapter 4) and the Hyperion data, a proper match was not 

seen (Figure 5.12). It is probably because the atmospherically corrected spectra from any 

of the algorithms have not completely followed the field pattern. Few wavelengths in 

2180-2250 nm of ATCOR and 600-680 nm of QUAC coincide with significant 

wavelengths identified from field spectra and also, in that region they are parallel to the 

field reflectance. All in all, one can say that there needs to be further research required to 

improve on atmospheric correction algorithms. 

It is noted that significant wavelengths identified from field spectra in 1860-1900 nm 

cannot be retrieved in Hyperion image (Figure 5.12). This is because Hyperion images 

fail to sense reflectance from certain regions of electromagnetic spectrum due to very 

strong atmospheric absorption, in this case it is in strong water absorption region. These 

regions cannot be retrieved by any atmospheric correction algorithms. 
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Figure 5.12 Relative scores (|β| × VIP) for wavelengths from PLSR estimation models 

using (a) ATCOR , (b) FLAASH, (c) 6S and (d) QUAC corrected signals over Narrabri 

sites. Red lines in the graph represent the significant wavelength sites identified from 

field PLSR model. 
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Table 5.8: Significant wavelengths identified from Hyperion-PLSR models over Narrabri 

Atmospheric 

correction algorithm 

used 

Significant wavelengths identified (nm) 

ATCOR 
905,1033,1205,1276,1306, 1518,1639,1730,1780,2042, 

2093,2184,2204,2234, 2264,2335 

FLAASH 640,691,1336,1488,1780, 1790,1982,2083,2093 

6S 1084,1104,1114,1195,1205, 1296,1306 

QUAC 590-722,1114,1155,1326, 1992,2042,2093,2174,2335 

 

5.4 DISCUSSION 

5.4.1 Performances of atmospheric models for SOC estimations using Hyperion data 

When Hyperion reflectance spectra were tested in atmospheric correction models, all of 

them allowed acceptable SOC estimations (fall in category A, B or C as Veum et al. 

2015, refer section 4.2) irrespective of the study area. Earlier study by Gomez et al. 2008, 

used „Atmospheric Removal Program‟ (ATREM) algorithm developed by Gao and Goetz 

(1990) and Gao et al. (1993) that used 5S code for atmospheric correction and estimated 

SOC with  val
2  of 0.493 and RMSE of 0.8 %. The current study uses advanced 

atmospheric correction algorithms for Hyperion processing which gives better estimation 

of SOC. Among the tested atmospheric correction models, ATCOR provides more 

accurate SOC estimations in both study areas (Tables 5.6 and 5.7). FLAASH and 6S 

produced moderate estimation accuracy, whereas QUAC produced least estimation 

accuracy. This may be because ATCOR uses the latest HITRAN databases with the 

MODTRAN 5 whereas FLAASH relies on MODTRAN 4. 



Influence of Atmospheric Correction Algorithms on Estimation of SOC from Hyperion Data 

 
 

 

An evaluation of atmospheric correction algorithms in the estimation of SOC from Hyperion image.  

Ph.D. Thesis, 2018, NITK, Surathkal, India. 

 

 
91 

In 2200 nm, an absorption band occurs in the soil signature. It is due to a combination of 

metal–OH bonding and O–H stretching (Das et al. 2015). This absorption band is 

retrieved in an ATCOR corrected signal. As the key SOC spectral feature between 2050 

and 2200 nm (Bartholomeus et al. 2008) is retained by ATCOR corrected signal only, 

may be one of the reasons for its good estimation accuracy. In another key spectral region 

between 640 and 690 nm (Bartholomeus et al. 2008), QUAC corrected signal is parallel 

to the field reflectance, whereas the same signal in 400-640 nm region (whose slope 

influences SOC, Ben-Dor et al. 1997) behaves counter to field reflectance. In the 640-690 

nm region, FLAASH and ATCOR behave alike and 6S varies more from field 

reflectance.  

5.4.2 Spectral sampling distance used in atmospheric models as a driver of 

atmospheric correction quality 

The better performance of ATCOR compared to the three other atmospheric models may 

be due to its spectral sampling distance (SSD). The default spectral resolution in 

MODTRAN uses a constant wavenumber w (1/cm) grid for the specified wavelength 

interval.  

FLAASH uses MODTRAN with a 5cm
-1 

grid, and wavelength and wavenumber are 

related by the equation , λ (µm) = 10,000/w 

Example, with 𝛥w (grid)=5 cm
-1

 

 at λ =1 µm we have w=10000 and 

𝛥λ= (10000/10000 - 10000/10005) 

     = 0.0005 µm = 0.5 nm 

At λ=2.2 µm we have w=4545.45 cm
-1

 and 

𝛥λ= (10000/4545.45-10000/4550.45 )  
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    = 0.0024 µm = 2.4 nm 

Therefore the wavenumber spacing is decreased to obtain a better wavelength resolution. 

6S and FLAASH models use a constant wavenumber grid and obtain a variable SSD in 

the 400-2500 nm region (section 5.2.2.2 and 5.2.2.3), whereas ATCOR has a narrow and 

constant SSD of 0.4 nm for the entire spectrum (section 5.2.2.4). 6S model uses an 

average SSD of 0.72 nm, 1.9 nm and 9.6 nm around central wavelengths of 600 nm, 1000 

nm and 2100 nm respectively. FLASSH model uses an average SSD of 0.18 nm 0.5 nm 

and 2.4 nm around central wavelengths of 600 nm, 1000 nm and 2100 nm respectively. 

What is to be noted is, owing to narrow SSD in 2000-2500nm wavelength region, 

ATCOR corrected soil spectra is able to capture an analogous pattern in that region 

compared to FLAASH or 6S. On the contrary in 400-2000 nm wavelength region, 

ATCOR corrected spectra is not the best since the SSDs of other algorithms are 

comparable or even better at some parts in this wavelength region.  

According to Bellon-Maurel and McBratney 2011, the spectral range between 1650 and 

2500 nm is crucial for SOC estimation. As ATCOR outperforms others in this spectral 

region and its narrow SSD, may be the reason for its better estimation capacity. 

5.4.3 Impact of field conditions of the study area on SOC estimations 

Whatever be the atmospheric correction algorithms, the obtained SOC estimation 

performances are better over Narrabri study area than over Karnataka study area (Tables 

5.6 and 5.7). In India, agricultural fields are scattered and small in size (around 30 m x 30 

m, as the Hyperion pixel size) while in Australia the fields are large and continuous 

(around 500 x 900 m, so highly superior to the Hyperion pixel size). This is probably due 

to the inability to extract pure soil signals from small Karnataka fields due to mixture 

effects (a Hyperion pixel may straddle more than one field and so may include several 

types of surface roughness and soil humidity due to the different types of ploughing 
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between fields). This observation is in accordance with the one of Gomez et al. (2015a), 

where they observed that soil properties estimation performances depend to the spatial 

resolution of the sensor and the field sizes. 

5.5 CONCLUSIONS 

 The results showed that ATCOR spectra, among ATCOR, FLAASH, 6S and 

QUAC corrected spectra, produced the best SOC estimation performances, using 

PLSR estimation model, irrespective of the study area.  

 Comparing the results across study areas, Karnataka sites gave lower estimation 

accuracy than Narrabri sites. This may be explained due to the difference in 

spatial arrangement of field conditions. In smaller fields of Karnataka, mixture 

effects and adjacency effects tamper the quality of spectral signature derived, 

which in turn affects the SOC estimation. 

 A spectral similarity comparison of atmospherically corrected Hyperion spectra of 

the soil samples with field-measured VNIR/SWIR spectra shows that regarding 

spectral similarity, no atmospheric correction model seems to be superior to 

another one. However, the pattern in soil reflectance curve near 2200 nm is 

captured by ATCOR corrected spectra only. ATCOR's high spectral resolution in 

the atmospheric database may be the main reason for the better performance.  

 Significant wavelengths for SOC estimation identified from each model were 

found to be different from those identified from ground-based study. This may be 

because the atmospheric correction algorithms applied have not reached 

perfection. Also narrow spectral resolution of the ground-based spectroscopy used 

in the study may estimate it better. 

In the next chapter, development and evaluation of hybrid atmospheric correction 

algorithms in the estimation of SOC from Hyperion data is explained. 
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CHAPTER 6 

 DEVELOPMENT OF HYBRID ATMOSPHERIC CORRECTION 

ALGORITHMS AND EVALUATION IN THE ESTIMATION OF 

SOC FROM HYPERION DATA 

6.1 INTRODUCTION 

In chapter 5, a comparison of four popular atmospheric correction algorithms was carried 

out for retrieval of soil spectra for SOC estimation from Hyperion data. It was seen that 

ATCOR performs well among the tested physics-based (i.e. ATCOR, FLAASH and 6S) 

and empirical based (QUAC) algorithms. In this chapter, hybrid atmospheric correction 

algorithms, which are combinations of physics-based approaches and empirical 

approaches are developed. Hybrid algorithms and their component single atmospheric 

correction algorithms are tested for retrieval of soil spectra from Hyperion images. The 

methodology adopted is explained in the following section. 

6.2 METHODOLOGY 

In this study, two hybrid atmospheric correction (HAC) algorithms incorporating a 

modified empirical line (ELm) method were proposed.  

(1) The first HAC model (named HAC_1) combines i) a radiative transfer model 

based on the concepts of radiative transfer equations which is referred as ‘RT 

model’ hereafter, and ii) an ELm technique. The ‘RT model’ applies real-time in 

situ atmospheric and climatic information in the equations of radiative transfer.  

(2) The second one (named HAC_2) combines i) the well-known ATmospheric 

CORrection (ATCOR) model and ii) an ELm technique. 
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Both HAC algorithms and their component single atmospheric correction algorithms 

(ATCOR, RT and ELm) were applied to radiance data acquired by Hyperion satellite 

sensor over study sites in Australia (owing to the availability of full range ground truth 

reflectance values collected in near real-time to be used in ELm method). The 

performances of both HAC algorithms were analysed in two ways. First, the Hyperion 

reflectances obtained by five atmospheric correction algorithms were analysed and 

compared using spectral metrics. Second, the performance of each atmospheric correction 

algorithm was analysed for prediction of SOC using Hyperion reflectances obtained from 

atmospheric correction algorithms over bare soil pixels. ATCOR model is used in 

HAC_2 since Chapter 5 found it as the best atmospheric correction algorithm among 

ATCOR, FLAASH, 6S and QUAC.  

A general outline of process flow adopted in this study is illustrated in Figure 6.1.  

        ,      ,       ,          and          are the reflectances obtained after applying 

ATCOR, RT, ELm, HAC_1 and HAC_2 algorithms respectively and are described in the 

following sections. 
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Figure 6.1 An outline of process flow adopted in the study 

 

6.2.1 Atmospheric correction algorithms 

6.2.1.1 ATCOR model 

From Chapter 5 it was seen that ATCOR corrected signal performs well among the tested 

ATCOR, FLAASH, 6S and QUAC corrected signals in the estimation of SOC from 

Hyperion data. Thus, outputs from ATCOR algorithms are compared with hybrid 

algorithms. ATCOR model is explained in section 5.2.2.4 of Chapter 5.  
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6.2.1.2 Radiative transfer (RT) model 

‘RT model’ was developed based on concepts of RT equations, coupled with real-time in 

situ atmospheric and climatic data. Ancillary data which includes climatic data such as 

mean temperature, mean pressure and daily rainfall and atmospheric data such as aerosol 

optical thickness, ozone optical thickness and water vapour over the area for the date of 

acquisition of Hyperion image as given in Table 3.5 and Table 3.6 of Chapter 3 were 

used in this model.  

Before applying RT algorithm, an initial treatment of Hyperion image is carried out by 

removing uncalibrated and strong water vapour-affected bands. Reflectance in these 

regions cannot be quantified by any atmospheric correction algorithms due to poor 

spectral response. After eliminating these bands, the spectral bands used are 427-925, 

933-1336, 1457-1790, 1972-1992, and 2022-2355 nm. 

The digital values of the Hyperion Level 1T product are 16-bit radiances and are stored 

as a 16-bit signed integer. To derive top-of-atmosphere (TOA) radiance image from 

digital values of Level 1T image, VNIR bands (bands 1-70, 400 to 1000 nm) having a 

scaling factor of 40 and the SWIR bands (bands 71-242, 900 to 2500 nm) having a 

scaling factor of 80 (as given in metadata of Hyperion image and documented in Beck 

2003) were used. Radiance is the amount of radiation coming from a unit area in a 

specific direction. The units are W m
-2

 sr
-1

 μm
-1

. Accordingly, TOA radiance values (  ) 

are derived from equations 6.1 and 6.2.  

        = DN / 40      (6.1) 

          = DN / 80      (6.2) 

where DN is the digital values of the Level 1T Hyperion image and λ is the wavelength in 

μm.  
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Top-of-atmosphere reflectance is the reflectance obtained from satellite sensor above 

earth's atmosphere. TOA reflectance is computed by normalizing TOA radiances to the 

band-averaged solar irradiance by classic formulae (equation 6.3, Tanre et al. 1983), 

which is a function of earth-sun geometry. 

 T   
       

           
      (6.3) 

where,  

 T   is unitless TOA reflectance 

   is spectral radiance at the sensor’s aperture 

  is earth-sun distance in astronomical unit from nautical handbook which is a 

function of Julian day for day of satellite pass. 

      is Hyperion mean solar exoatmospheric irradiances downloaded from 

https://eo1.usgs.gov/documents/hyp_irradiance.txt 

   is Solar zenith angle in degrees 

The next and the most important stage is to derive surface reflectance from TOA 

reflectance. T   reflectance includes information of earth’s surface reflectance 

attenuated by atmospheric processes like scattering by gas mixture (Rayleigh scattering), 

absorption by gas mixture, absorption by ozone, scattering and absorption by aerosols 

and absorption by water vapour. To simulate surface reflectance image, the present RT 

model requires information such as: 

i. sun-sensor geometry at the time of imaging,  

ii. surface pressure, 

iii. precipitable water vapour in vertical path,  

https://eo1.usgs.gov/documents/hyp_irradiance.txt
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iv. aerosol type and atmosphere model,  

v. aerosol optical thickness at 550 nm and  

vi. ozone concentration  

Purpose of this atmospheric correction model is to retrieve the target soil reflectance from 

the satellite image and use it for extracting SOC, so a varying spectral sampling distance 

is used, giving more importance to significant regions for SOC estimation. Section 4.4 of 

chapter 4 identifies 600-680 nm, 950-1050 nm, 2060-2080 nm and 2180–2250 nm as 

critical in estimating SOC. Thus an SSD of 0.4 nm is applied in these regions. For the rest 

of the wavelength regions, SSD of 1 nm is applied to reduce the computational efforts. 

RT model used in the present study applies the concepts of Bird and Riordan (1986) 

designed for rural terrestrial applications that calculate direct and diffuse spectral 

irradiance at the earth’s surface for cloudless sky conditions. When the surface is 

assumed as Lambertian and atmosphere is assumed to be horizontally stratified, the TOA 

spectral reflectance can also be estimated using equation 6.4 (Tanre et al. 1983; Vermote 

et al. 1997b). Here, the multiple scattering between molecules and aerosols is neglected 

which makes it unreliable at large zenith angle and at high latitudes (Grey and North, 

2009). All calculations are functions of wavelength λ. 

                 
    

      

            
               (6.4) 

where,  

   and    are the reflectances resulting from Rayleigh and aerosol scattering and detailed 

expression for the same are given under appropriate heading later in this section 

       ground reflectance obtained after solving RT equations 

s is the spherical albedo of the atmosphere 
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is the total transmission of the atmosphere from the sun to the surface  

    
 is the total transmission of the atmosphere from the surface to the sensor. 

Figure 6.2 shows a conceptual sketch of the expressions. 

 

Figure 6.2 Conceptual sketch 

The model uses the following expressions (equations 6.5 to 6.11) that use concepts 

given by Bird and Riordan (1986). 

   
                              (6.5) 

   
                              (6.6) 
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            (6.7) 

         
          (6.8) 

   
          

                                  (6.9) 

                        (6.10) 

   
 

  

       

                               (6.11) 

where, 

   is rayleigh optical thickness (Equation 6.7 is numerical approximation for rayleigh 

optical thickness used in Bird and Riordan (1986) which was adopted from Kneizys et al. 

1980.) 

   is aerosol optical thickness 

   is water vapour optical thickness 

   is ozone optical thickness 

   is uniform air optical thickness 

   is Solar zenith angle  

   is viewing zenith angle 

   = 1013 mb is the standard pressure at sea level  

α and    are obtained for rural aerosol model (Shettle and Fenn 1975). Two α values were 

used for this aerosol model: α1 = 1.0274 for wavelengths < 550 nm and α2 = 1.2060 for 
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wavelengths > 550 nm. The value of    was chosen appropriately for each wavelength 

interval to produce aerosol optical depth in a vertical path at 550 nm wavelength. 

Equation  6.8 is known as Angstrom formula. 

   is water vapour absorption coefficient (Bird and Riordan 1986) 

     is ozone absorption coefficient (Bird and Riordan 1986) 

    is absorption coefficient of uniformly mixed gaseous amount (Bird and Riordan 

1986) 

  is in situ surface pressure in mb 

  is in situ precipitable water vapour (cm) in a vertical path 

   is in situ ozone amount (atm-cm) 

Rayleigh reflection: 

The Rayleigh reflectance,   , is estimated (Gordon et al. 1988) according to equation 

6.12: 

                                    
     (6.12) 

where  

   is the relative azimuth angle between sun and sensor. 

The function              is given by equation 6.13. 

                                             (6.13) 

where  
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   is the scattering angle that is calculated from sun sensor geometry (equation 6.14). 

The term involving    in equation 6.13 provides the contribution due to photons which 

are backscattered from the atmosphere without interacting with the ground surface. The 

terms involving    account for those photons which are scattered in the atmosphere 

toward the ground surface and then specularly reflected from the surface into the field of 

view of the sensor as well as photons which are first specularly reflected from the ground 

surface and then scattered by the atmosphere into the field of view of the sensor. 

                                           (6.14) 

where     and     are the sun and sensor azimuth angles. 

      is the Rayleigh scattering phase function for scattering angle   given by equation 

6.15 and      is the Fresnel reflectance for air-incident rays at an incidence angle   given 

by equations 6.16 and 6.17. 

                          (6.15) 

          {
          

          
 

          

          
}      (6.16) 

                      (6.17) 

where    is the angle of transmittance and    is the refractive index of soil with respect to 

air, taken as 1.50. 

Aerosol reflection: 

Aerosol reflection,   , is assumed for rural atmosphere as the region under investigation 

falls in it.    is given by  equation 6.18 (Bilal et al. 2013).  

                                          
         (6.18) 
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where, 

   is aerosol single scattering albedo (SSA), a function of wavelength, which is given by 

equation 6.19 (Bird and Riordan 1986): 

         
   (  

 

   
)
 

     (6.19) 

For rural aerosol model,      = 0.945 and    = 0.095. 

             is aerosol scattering phase function. A modified Henyey–Greenstein phase 

function (Cornette and Shanks 1992) which is close to the Mie phase function is used and 

is given by equation 6.20. 

               
 

 

      

      

             

                                 (6.20) 

where   is scattering phase angle calculated from sun sensor geometry (equation 6.14). 

  is asymmetry parameter that indicates the relative dominance of forward / back 

scattering and it remains constant for most of the aerosol models. For rural model it is 

taken as 0.652. 

After calculating all parameters, equation 6.4 is solved for surface reflectance      . The 

MATLAB codes used are given in Appendix I at the end of the report. 

6.2.1.3 Modified Empirical Line (ELm) model 

ELm model uses empirical relationships between TOA reflectance and field reflectance 

measured in the field using spectroradiometer at different ground targets. Gain and offset 

were obtained from the slope and intercept parameters estimated using simple linear 

regression between TOA reflectance and known field reflectance from ground targets 

(GTs) for each spectral band. The model employed this gain and offset to generate new 

image with surface reflectance (      ) using equation 6.21 for each band. 
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         (6.21) 

where, 

   is the gain for the spectra at wavelength λ, 

   is the offset for the spectra at wavelength λ, and 

     
 is TOA reflectance at wavelength λ.  

Determination of    and    parameters was based on the use of field reflectance spectra 

acquired over GTs composed of bare soil. In order to fix an optimum number of GTs 

required to calibrate the    and    parameters in the emiprical line equation (6.21), an 

experimental approach was adopted.  

The number of GTs (N) used was varied till the variation in the index becomes negligible 

and the optimum number of soil GTs is found out to calibrate empirical line equation (i.e 

equation 6.21 for ELm method) for calculating gain and offset parameters. An 

independent equation was calibrated per Hyperion image. Over Narrabri Site#1 image, 

GTs were chosen among 46 field VNIR/SWIR spectra, and over Narrabri Site #2 image, 

the GTs were chosen among 52 field VNIR/SWIR spectra. For each N number of GTs, 

100 random combinations of GTs were analysed and so 100 equations (i.e. equation 6.21 

for ELm method) were calibrated. Thus, robustness of model was tested by selecting 100 

different combinations of samples for each N. This ensures selection of optimum number 

of GTs without any dependency of selected field spectra on the model efficiency. 

In each case, the performance of ELm model was evaluated by comparing the corrected 

image reflectance and the corresponding field reflectance of GTs excluding that used in 

ELm method. Comparison is facilitated by calculating two spectral similarity indices:  

(1) Spectral Angle Mapper (SAM) and 
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(2) Spectral Information Divergence (SID).  

SAM index is explained in section 5.2.4 of Chapter 5. SAM index discriminates two 

spectra by calculating the angle between them using equation 5.1 

SID index is used to find the spectral similarity between two spectra t and r by measuring 

the discrepancy of probabilistic behaviours between their spectra (Chang 1999). It is 

calculated using equation 6.22: 
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loglogSID     (6.22) 

where m is the total number of bands used.  

The lower the SAM and SID index, the better is the similarity of both spectral vectors. 

The N spectra that have been used to find gain and offset were removed from the soil 

dataset, and the similarity of remaining spectra with corresponding field spectra (in terms 

of SAM and SID index) was evaluated. Gain and offset were calculated separately for 

both images of Narrabri (over Site #1 and Site #2) and equation 6.21 was solved for each 

image. The MATLAB codes used are given in Appendix I at the end of the report. 

6.2.1.4 HAC_1 model 

The first hybrid atmospheric model tested was a combination of ELm corrections carried 

out on the output of RT model (explained in section 6.2.1.2), which removes artefacts 

from errors in the radiative models, and was named as HAC_1. The surface reflectance 

obtained using radiative transfer equations (     ) was then matched with known field 

reflectance from GTs for each spectral band, which were obtained from remote-sensing 

overflight, to get gain and offset for each wavelength.  
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To fix an optimum number of GTs, the approach described in section 6.2.1.3 was used. 

With the optimum number of GTs, gain and offset were calibrated for each spectral band. 

The HAC_1 model employed this gain and offset to generate new image with surface 

reflectance (        ) using equation 6.23. 

         
           

        (6.23) 

Corrected reflectance image (        ) was obtained separately for both Hyperion images. 

6.2.1.5 HAC_2 model 

The second hybrid atmospheric correction model tested was a combination of ELm 

corrections carried out on ATCOR-retrieved reflectance data and was named HAC_2. 

This hybrid model removes artefacts from ATCOR model. Gain and offset were obtained 

from slope and intercept parameters estimated using simple linear regression between 

ATCOR reflectance (        ) and known field reflectance from GTs for each spectral 

band. To fix an optimum number of GTs, the approach described in section 6.2.1.3 was 

used. With the optimum number of GTs, gain and offset were calibrated for each spectral 

band. The HAC_2 model employed this gain and offset to generate new image with 

surface reflectance (        ) using equation 6.24. 

         
              

       (6.24) 

Corrected reflectance image (        ) was obtained separately for both Hyperion images. 

6.2.2 Reflectance spectra analysis 

Comparison and validation of the atmospherically corrected Hyperion images obtained 

by the atmospheric correction methods, with field spectral measurements (resampled to 

Hyperion resolution) from region under investigation, were carried out using the SAM 
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indices. To get a deeper understanding of performance of atmospheric correction 

algorithm in different regions of electromagnetic spectrum, SAM was applied separately 

in three wavelength domains (as done in section 5.2.4 of Chapter 5). First spectral 

domain ranges from 400 to 1050 nm, second from 1500 to 1790 nm and third from 2000 

to 2350 nm. 

6.2.3 Soil Organic Carbon Estimation 

The soil spectra from corrected Hyperion reflectance images were analysed for 

estimating SOC using PLSR method. The soil dataset (SOC content and corresponding 

Hyperion reflectance) were divided into two groups: one group for calibration of PLSR 

model (3/4 of the dataset) and a second group used for validation/prediction (1/4 of the 

database) (see section 4.2.2 of Chapter 4). However, to estimate SOC after ELm method, 

the spectra that have been used to find the gain and offset were removed from the soil 

dataset. Grouping of data into calibration and validation sets is explained in section 4.2.2 

of Chapter 4 and section 5.2.5 of Chapter 5. An optimum number of PLS components 

(NF) minimizes the mean square prediction error in cross-validation and ensures 

dimensionality reduction in subsequent regression analysis. 

The performance of PLSR models was evaluated using R
2
, RPD, and RPIQ in both 

calibration and validation sets. Equations for evaluating these performance matrices are 

given in equations 4.1 to 4.4.   

Finally, significant wavelengths for SOC estimation were identified from PLSR output by 

analysing the product of absolute regression coefficient and variable importance for 

projection (|β| × VIP) (as explained in section 4.4 of Chapter 4). 
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6.3 RESULTS 

6.3.1 Selection of optimum number of ground targets (GTs) in ELm and hybrid 

models 

Number of GTs (N) were varied to calibrate EL equations (equations 6.21, 6.23 and 6.24) 

of ELm, HAC_1 and HAC_2 models for calculating the gain and offset parameters. For 

each N number of GTs, 100 random combinations of GTs were analysed and so 100 

equations (for equations 6.21, 6.23 and 6.24) were calibrated. SAM and SID indices were 

calculated between the field VNIR/SWIR spectra and the corresponding Hyperion 

reflectance spectra (except the N GTs used to calibrate the model) estimated by i) ELm 

technique (red lines in Figures 6.3 and 6.4), ii) HAC_1 model (green lines in Figures 6.3 

and 6.4) and iii) HAC_2 model (blue lines in Figures 6.3 and 6.4). 

The variances obtained are given in Table 6.1 and 6.2. An optimum number of GTs is 

arrived considering the following criteria in totality: 

1) Mean of SAM and SID values should be minimum, 

2) Variance in SAM and SID values should be minimum, and 

3) Minimum number of GTs reduce the field work and thereby make it more cost 

effective. 

An increase of number N allows to decrease the mean SAM and SID indices and 

improves the quality of estimated surface reflectance spectra (Figures 6.3 and 6.4). 

Moreover, from N=8, the means of SAM and SID indices are stable, so the quality of 

estimated surface reflectance spectra is almost stable. Also, when N increases, the 

variance of SAM and SID indices decreases, and from N=8, the variation is negligible. 

(Tables 6.1 and 6.2). Same behaviour is obtained for ELm, HAC_1 and HAC_2 models.  
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Also, same behaviour is obtained whatever the tested Hyperion image (Narrabri site #1 

and Narrabri site #2) (Figures 6.3, 6.4 and Tables 6.1 and 6.2). In addition considering a 

minimum number of GTs satisfying the purpose, the optimum number of GTs is chosen 

as eight in all the cases namely ELm, HAC_1 and HAC_2 from both the images. Thus, 

the three atmospheric correction algorithms using modified empirical line technique 

(ELm, HAC_1 and HAC_2) were run using an optimum number of eight GTs selected 

randomly. 
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Figure 6.3 (a) SAM and (b) SID indices calculated between the field reflectance spectra 

and the corresponding Hyperion reflectance spectra corrected by ELm, HAC_1 and 

HAC_2 models using N ground targets (GTs) (from 4 to 14), over Narrabri site#1 image 
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Figure 6.4 (a) SAM and (b) SID indices calculated between the field reflectance spectra 

and the corresponding Hyperion reflectance corrected by ELm, HAC_1 and HAC_2 

models using N ground targets (GTs) (from 4 to 14), over Narrabri site#2 image 



Development of hybrid atmospheric correction algorithms and evaluation in the estimation of 

SOC from Hyperion data 

 
 

 

An evaluation of atmospheric correction algorithms in the estimation of SOC from Hyperion image.  

Ph.D. Thesis, 2018, NITK, Surathkal, India. 

 

 
113 

Table 6.1 Variances of SAM and SID indices of Narrabri site#1 image 

No. of GTs 

(N) 

ELm HAC_1 HAC_2 

SAM SID SAM SID SAM SID 

4 5.87E-03 2.19E-03 9.55E-03 2.04E-03 9.99E-03 4.99E-03 

5 3.59E-03 1.79E-03 1.26E-03 2.47E-04 3.56E-03 9.73E-04 

6 1.32E-03 3.77E-04 7.33E-04 1.08E-04 1.51E-03 6.75E-04 

7 4.20E-04 7.15E-05 9.33E-04 3.43E-04 1.10E-03 3.87E-04 

8 7.00E-05 8.57E-06 1.70E-04 8.82E-05 1.78E-04 1.76E-05 

9 6.81E-05 3.93E-06 1.71E-04 1.99E-05 2.03E-04 3.53E-05 

10 7.81E-05 4.24E-06 8.66E-05 4.88E-06 5.11E-05 3.05E-06 

11 3.59E-05 1.92E-06 6.73E-05 4.20E-06 5.43E-05 3.30E-06 

12 2.93E-05 2.03E-06 6.43E-05 4.34E-06 2.28E-05 1.18E-06 

13 2.34E-05 1.47E-06 2.98E-05 1.72E-06 1.62E-05 9.48E-07 

14 2.50E-05 1.45E-06 1.89E-05 8.27E-07 2.44E-05 1.37E-06 
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Table 6.2 Variances of SAM and SID indices of Narrabri site#2 image 

No. of GTs 

(N) 

ELm HAC_1 HAC_2 

SAM SID SAM SID SAM SID 

4 1.37E-02 6.96E-03 6.32E-03 1.99E-03 8.21E-03 3.52E-03 

5 7.26E-03 3.34E-03 5.41E-03 1.27E-03 9.35E-03 3.64E-03 

6 1.94E-03 4.90E-04 1.82E-03 5.26E-04 2.33E-03 9.61E-04 

7 1.33E-03 6.20E-04 1.08E-03 2.83E-04 1.49E-03 3.67E-04 

8 3.54E-04 6.66E-05 2.47E-04 3.76E-05 4.10E-04 6.75E-05 

9 4.09E-04 4.16E-05 1.35E-04 1.56E-05 4.37E-04 5.35E-05 

10 2.59E-04 1.84E-05 1.76E-04 2.44E-05 4.09E-04 1.51E-05 

11 1.83E-04 1.13E-05 1.15E-04 1.33E-05 1.55E-04 9.62E-06 

12 1.86E-04 1.14E-05 1.21E-04 1.86E-05 2.46E-04 2.02E-05 

13 1.56E-04 8.02E-06 7.61E-05 1.71E-05 1.42E-04 1.06E-05 

14 1.26E-04 5.98E-06 7.98E-05 7.93E-06 9.83E-05 4.27E-06 
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6.3.2 Spectral similarity comparison 

Soil reflectance spectra over bare soil pixels were extracted from both Hyperion images 

(Narrabri site#1 and site#2) and were subjected after each atmospheric correction 

algorithms. Corresponding soil sample reflectances on the ground were considered 

together for further analysis.  

SAM indices were used to compare soil reflectance retrieved from corrected Hyperion 

images with corresponding field reflectances. Summary of mean and standard deviation 

of SAM indices applied in three spectral domains: 400 to 1050 nm, 1500 to 1790 nm and 

2000 to 2350 nm is given in Table 6.3.  

Table 6.3 Mean (μ) and Standard deviation (σ) of SAM indices.  

Atmospheric 

correction 

algorithm used 

Domain 1  

400 to 1050 nm 

Domain 2  

1500 to 1790 nm 

Domain 3  

2000 to 2350 nm 

μ  σ  μ  σ  μ  σ  

ATCOR  0.130 0.081 0.037 0.020 0.057 0.028 

RT  0.113 0.031 0.032 0.011 0.090 0.013 

ELm  0.069 0.036 0.029 0.011 0.049 0.019 

HAC_1 model 0.067 0.040 0.012 0.008 0.022 0.008 

HAC_2 model 0.069 0.035 0.027 0.016 0.037 0.018 

In bold are represented the best values per tested domain. 
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Lower SAM values (near to 0 which is considered as perfect match) indicate a better 

similarity with field reflectance spectrum in all domains. Among the physics-based 

ATCOR and RT models, RT seems to be better with lower SAM values in 400 to 1050 

nm and 1500 to 1790 nm domains, while ATCOR seems to be better in 2000 to 2350 nm 

domain. The ELm model provides spectra with lower SAM values than ATCOR and RT, 

whatever maybe the spectral domain (Table 6.3). It may be explained because of the use 

of field reflectance in ELm model. The spectral similarity of Hybrid models seems to be 

superior to others with lower SAM values in all domains (Table 6.3). Among the hybrid 

models, HAC_1 model seems to be better with lower SAM values, especially in 1500 to 

1790 nm and 2000 to 2350 nm domains. 

Figure 6.5 shows average spectral reflectance pattern of bare soil pixels over the study 

sites in three spectral domains. Each corrected Hyperion average reflectance spectrum is 

compared with field average reflectance spectrum. It is noted that both the hybrid models 

produce a good spectrum, contrasting other single models (ATCOR, RT or ELm), 

irrespective of the spectral domain. HAC_1 model matches with field reflectance in 

magnitude and shape throughout the spectral domain considered. Average magnitude 

seems to be underestimated by the ATCOR model having maximum variation. All 

reflectance spectra, except RT corrected spectra, were able to capture the dip in spectral 

signature of soil near 2200 nm. 
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Figure 6.5 Average reflectance spectra over bare soils from corrected pixels and average 

field spectra, in the following spectral regions: (a) 400 to 1050 nm-Domain 1, (b) 1500 to 

1790 nm-Domain 2 and (c) 2000 to2350 nm-Domain 3. 
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6.3.3 PLSR analysis 

PLSR models were built for SOC estimation from ATCOR, RT, ELm, HAC_1 and 

HAC_2 corrected Hyperion reflectance spectra. Output of PLSR model using ATCOR 

corrected signal over the Narrabri sites was already presented in section 5.3.2 of Chapter 

5.  

As the first step, optimum number of PLS components (NF) required was identified for 

each model and the results are tabulated in Table 6.4. Graphs of percentage variance in 

the model explained by each component and estimated MSEP corresponding to ten PLS 

components were plotted (Table 6.4). NF was identified in each case, which minimizes 

MSEP in cross-validation.  

Table 6.4 Results of optimum number of PLS component (NF) selection 

Spectrum 

used 

Variance in Y explained by 10 

components 

Estimated MSEP in Y for 10 

components 
NF 

RT 

corrected 

  

3 
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ELm 

corrected 

  

4 

HAC_1 

corrected 

  

4 

HAC_2 

corrected 

  

6 

 

Each PLSR model, run with an optimum number of PLS components, was used to 

estimate SOC from atmospherically corrected Hyperion spectra. Figures 6.6 to 6.9 show 
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scatterplots of SOC estimation results in calibration and validation sets of RT, ELm, 

HAC_1 and HAC_2. It shows qualitatively the spread of estimation with respect to 1:1 

line and also the general trend of estimation. At lower SOC, the trend line shows that the 

estimation is overestimated whereas at higher SOC, it is underestimated. The distribution 

of SOC collected from Narrabri sites is skewed with more samples having SOC content 

from 0.5% to 1.5%, the estimation is reliable in those regions as observed from 

scatterplots and trend lines (Figures 6.6 to 6.9). The performance during calibration and 

validation are quantitatively represented using performance matrices in Table 6.5. 

 

Figure 6.6 Measured vs. estimated SOC content obtained from (a) calibration set and (b) 

validation set of PLSR model using RT corrected signals over Narrabri sites. 
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Figure 6.7 Measured vs. estimated SOC content obtained from (a) calibration set and (b) 

validation set of PLSR model using ELm corrected signals over Narrabri sites. 

 

Figure 6.8 Measured vs. estimated SOC content obtained from (a) calibration set and (b) 

validation set of PLSR model using HAC_1 corrected signals over Narrabri sites. 
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Figure 6.9 Measured vs. estimated SOC content obtained from (a) calibration set and (b) 

validation set of PLSR model using HAC_2 corrected signals over Narrabri sites. 

 

Table 6.5 Performance matrices of SOC estimation using atmospherically corrected 

Hyperion spectra.  

Atmospheric 

correction 

algorithm used 

Calibration set Validation set 

 cal
2  RMSEcal RPDcal RPIQcal  val

2  RMSEval RPDval RPIQval 

ATCOR  0.76 0.44 2.07 2.83 0.71 0.47 1.90 2.60 

RT  0.74 0.46 1.97 2.70 0.70 0.48 1.87 2.63 

ELm  0.81 0.40 2.30 3.29 0.74 0.45 2.02 2.60 

HAC_1  0.85 0.35 2.60 3.01 0.76 0.42 2.08 2.81 

HAC_2  0.86 0.34 2.75 3.70 0.75 0.44 2.08 2.58 

In bold are represented the best performances per set. 
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It is found that the choice of the atmospheric correction algorithm employed influences 

the results of SOC estimation from spaceborne Hyperion data. PLSR models of SOC, 

built using Hyperion spectra corrected by ATCOR and RT algorithms, gave similar SOC 

estimation performances (  val
2 =0.71, RPDval=1.90, RPIQval=2.60 for ATCOR and 

 val
2 =0.70, RPDval =1.87, RPIQval=2.63 for RT, Table 6.5). Hyperion spectra corrected by 

ELm model seem to give a better SOC estimation matrices ( val
2 =0.74, RPDval=2.02, 

RPIQval=2.60, Table 6.5) compared to the earlier. Based on the performance matrices 

SOC estimation from Hyperion spectra corrected by HAC models, which combine 

radiative transfer approaches and empirical approach, was better (R
2
 ≥ 0.75, RPD ≥ 2.08, 

and RPIQ ≥ 2.58, Table 6.5) than single models. Both H C models perform on par with 

each other during both calibration and validation and it is difficult to declare one method 

better than another one as the differences between these indicators are too small. 

According to the thresholds given by Veum et al. 2015 (refer section 4.2),‘Category  ’ 

models (R
2
 ≥ 0.75, RPD ≥ 2.0, and RPIQ ≥ 3.0) were achieved using ELm, HAC_1 and 

HAC_2 corrected signals in calibration sets, whereas ‘category B’ models (R
2
 ≥ 0.63, 

RPD ≥ 1.6, and RPIQ ≥ 1.9) were achieved using others.  

Significant wavelengths from PLSR estimation models, with higher value of |β| × VIP 

score, using RT, ELm, HAC_1 and HAC_2 corrected Hyperion signals over the Narrabri 

site are presented in Table 6.6 and Figure 6.10. Results are compared with significant 

wavelengths identified from field reflectance estimation model (section 4.4 of Chapter 4) 

represented by red lines in Figure 6.10. One to one correspondence with field-PLSR 

model is not seen as PLSR model is an empirical model which uses statistical techniques. 
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Figure 6.10 Relative scores (|β| × VIP) for wavelengths from PLSR estimation models 

using (a) RT, (b) ELm, (c) HAC_1 and (d) HAC_2 corrected signals over Narrabri sites. 

Red lines in the graph represent the significant wavelength regions identified from field 

PLSR model. 
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Table 6.6 Significant wavelengths identified from Hyperion-PLSR models over Narrabri 

Atmospheric correction 

algorithm used 
Significant wavelengths identified (nm) 

RT 915, 973, 1205, 1215, 2083, 2163, 2274 

ELm 932, 983, 1124, 1467, 1649, 1790, 1972, 2074, 2204 

HAC_1 
2083, 2093, 2113, 2163, 2173, 2204-2224, 2264, 2274, 

2325, 2335 

HAC_2 963, 1518, 1528, 1639, 2022- 2052, 2093, 2204- 2224, 2274 

 

6.4 DISCUSSION 

6.4.1 Atmospheric correction algorithms 

Atmospheric correction algorithms were evaluated by comparing the spectral metrics of 

Hyperion reflectances obtained by five atmospheric correction algorithms and field 

spectral measurements. One of the assumptions in the article is that the surface 

reflectance does not change over time between field data measurements and Hyperion 

data acquisition. As the field spectral measurements were done using a white spectralon, 

the field measured reflectance may be supposed to be independent to the acquisition time. 

As well, as the Hyperion data were corrected for atmospheric effects, the Hyperion 

reflectance may be supposed to be independent to the acquisition time. Also, at the 

sampling sites, it is assumed that there is no alteration of soil constituents. Moisture 

conditions might have changed but that was difficult to separate out. The differences 

between field spectra and Hyperion reflectance spectra, observed in the spectral similarity 

analysis, may thus be due to four factors: i) difference of dates between field 

measurements and satellite data acquisitions, ii) quality of the white spectralon for 
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reflectance calibration on the field, iii) quality of the used atmospheric correction models 

to convert radiance into reflectance Hyperion data, and (iv) addition and consumption of 

soil constituents during the period between acquisition of satellite image and field 

measurement. So a limitation of the present study is the lack of possibility to discriminate 

the part of impact of each factor. 

Though ATCOR and RT are physics-based algorithms tested in this study, the results 

indicate that both yield different results. This may be because of the difference in the 

equations involved or assumptions made in the radiative transfer codes. As ATCOR is a 

commercial software, the codes are not shared publically. While RT tried to find how the 

current atmospheric conditions influence the final result, ATCOR uses average 

atmospheric conditions. RT uses narrow SSD of 0.4 nm for wavelengths significant in 

SOC estimation, whereas ATCOR uses an SSD of 0.4 nm throughout the spectral domain 

which reduce the computational efforts. Even though RT performs well, when compared 

to ATCOR in 400 to 1050 nm and 1500 to 1790 nm spectral domains in terms of spectral 

similarity (Table 6.3), it does not do so in 2000 to 2350 nm domain. This may be because 

RT does not consider the influence of minor gases separately.  

The better performances obtained by RT from 400 to 1790 nm may be due to the 

consideration of in situ values of surface pressure, precipitable water vapour in vertical 

path, aerosol optical thickness at 550 nm, and ozone concentration which influences the 

VNIR region of electromagnetic spectrum. The better performances obtained by ATCOR 

from 2000 to 2350 nm may be due to the consideration of in situ CO2 which affects the 

SWIR region of electromagnetic spectrum. RT model may be improved by considering 

influence of real-time concentration of CO2. 

In ELm and hybrid methods, an experimental approach to estimate an optimum number of 

GTs is performed and it was obtained as 8, and further increase in number of samples 
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does not affect the accuracy greatly. It was thus achieved that the sample size chosen 

does not affect the end results. It brings out the robustness of the model. 

Previous studies applied a different concept in selecting the number and type of GTs in 

EL models. Kruse et al. 1990 and Ben-Dor et al. 1994 used two targets of contrasting 

albedo. Hadjimitsis et al. 2009 and Hamm et al. 2012 used three contrasting targets, 

whereas Smith and Milton, 1999 used four diverse targets. The focus of all these studies 

was only on atmospheric correction algorithm, and they are considered as average 

techniques. Whereas in the present study the objective is not to study atmospheric 

components over individual targets, but it is for the retrieval of biophysical parameter (in 

this case the SOC) in the best possible accuracy using spaceborne data. Thus, the study 

used only soil targets while computing gains and offsets in EL method. Additionally, this 

concept can be used even if the scene under consideration does not have classical 

contrasting features. 

In earlier studies, EL correction has mainly been applied to airborne data (Farrand et al. 

1994, Clark et al. 1995, Goetz  et al. 1998, Smith and Milton 1999, Ben-Dor et al. 2004, 

Tuominen and Lipping 2011, Hamm et al. 2012) or to multispectral spaceborne data 

(Karpouzli and Malthus 2003, Vaudour et al. 2008, Baugh and Groeneveld 2008, 

Hadjimitsis et al. 2009, Clark et al. 2011, Vaudour et al. 2014) where SNR is 

comparatively better. In this study, spaceborne hyperspectral data having poor SNR 

because of the weak signal received at the sensor are used. The modified EL method 

introduced in this study is rigorous and unique for low SNR data typical of spaceborne 

hyperspectral missions. 

HAC models combined benefits of physics-based models and ELm model. Thus these 

gave better results than their single model applications. The soil reflectance spectra 
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obtained from HAC models are comparable to lab reflectance spectra (as seen from 

Figure 6.5) and have best SAM values (so the minimal value, see Table 6.3). 

6.4.2 Evaluation on SOC estimation 

The PLSR models, built using Hyperion spectra corrected by five atmospheric correction 

algorithms were used for SOC estimation. The classical ways of prediction with 

VNIR/SWIR Hyperspectral reflectance data associated to field-measured soil properties 

(Gomez et al. 2008; Stevens et al. 2010; Lu et al. 2013; Gopal et al. 2015 etc.) were used 

to build the regression model. Building a prediction regression model from field 

measured SOC and field-measured surface reflectance data could be a future work, which 

would follow the study of Nouri et al. (2017). 

All of the estimation models allowed acceptable SOC estimations (fall in categories A 

and B, as of Veum et al. 2015 see section 4.2, with R
2
 ≥ 0.63, RPD ≥ 1.6, and RPIQ ≥ 

1.9, Table 6.5) on Hyperion reflectance spectra. The main purpose was to evaluate the 

HAC algorithms with respect to their component atmospheric algorithms. The most 

robust PLSR estimation models were achieved using hybrid atmospheric corrected 

signals (R
2
 ≥ 0.75, RPD ≥ 2.08, and RPIQ ≥ 2.58) than  TC R or RT or ELm corrected 

signals (see Table 6.5). However, the ELm method described in this study, with an 

optimum number of GTs, is also a good choice as it gives better results than ATCOR or 

RT.  

HAC_1 algorithm uses information such as real-time in situ climate and atmospheric data 

retrieved from ancillary sources and a minimum of eight field measurements over soils. 

Even though HAC_2 uses average atmospheric conditions and a minimum of eight field 

measurements over soils, they behave on par with each other. Future studies may 
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concentrate on evaluating their performance under different atmospheric conditions to 

bring out the differences in performances if there are any. 

6.5 CONCLUSIONS 

In this study, HAC algorithms (HAC_1 and HAC_2) were developed for atmospheric 

correction of VNIR/SWIR Hyperion satellite data and were evaluated for SOC estimation 

in bare agricultural fields of Narrabri, Australia. HAC algorithms employ ELm method 

which uses field reflectance from optimum number of GTs. HAC corrected spectra when 

compared with spectra corrected by their component algorithms in terms of spectral 

similarities and estimation accuracy, it was found that HAC performed better than 

component algorithms. However, the ELm alone is also a good choice for the present 

study as it gives better results than ATCOR or RT. HAC_1 uses real-time in situ 

atmospheric data, a narrow SSD in significant wavelengths for SOC estimation and an 

optimum number of field reflectance data. However, there are still scopes for 

improvement of HAC_1. RT equations in the SWIR region need to be improved. The 

concept employed in the development of HAC_1 algorithm can be rearranged, modified 

and extended to extract other spectra where area of interest is in analysing different 

biophysical characters from spaceborne hyperspectral data. HAC_2 which combines 

ATCOR and ELm methods was also found to produce similar results.  

The HAC algorithms, developed using ELm technique, may be recommended for 

atmospheric correction of Hyperion radiance data, when archived Hyperion reflectance 

data have to be used for SOC prediction mapping. To confirm our results, future works 

should be conducted over other study areas and for other soil property prediction. Even 

though, Hyperion operations ended in March 2017 after 17 years in orbit, at least five 

hyperspectral VNIR/SWIR satellite sensors are planned to be launched in the years to 
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come: PRISMA (PRecursore IperSpettrale della Missione Applicativa), EnMAP 

(Environmental Mapping and Analysis Program), HyspIRI (Hyperspectral Infrared 

Imager), SHALOM (Spaceborne Hyperspectral Applicative Land and Ocean Mission) 

and HYPXIM (HYPerspectral X Imagery). The launch of these forthcoming sensors will 

produce an increasing amount of VNIR/SWIR data over the world, so this study hopes to 

produce favourably new inputs in term of VNIR/SWIR spectral data treatments.   

The next chapter presents summary, research conclusions, limitations and scope for 

future studies.  
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

7.1 SUMMARY 

In the present research work, initially a study to evaluate the accuracy of estimation of 

SOC from field VNIR/SWIR reflectance spectra using advanced statistical techniques 

viz. principal component regression, partial least square regression and artificial neural 

network coupled with different spectra preprocessing methods was carried out. Though 

the techniques used are well established in the literature,choice of a particular technique 

needed exploration. It was to identify the best estimation model and spectra smoothing 

method to be used for satellite data analysis. Also, significant wavelengths for SOC 

estimation were identified from supposedly error free field spectrum using PLSR model. 

The primary objective of the research work was to evaluate the role of atmospheric 

correction algorithms in the estimation of SOC content from spaceborne hyperspectral 

data. Commonly used atmospheric correction algorithms ATCOR, FLAASH, 6S and 

QUAC algorithms were tested on EO-1 Hyperion images, and soil reflectance spectra 

extracted from the corrected images were used to estimate SOC content. To improve the 

estimation further, hybrid atmospheric correction algorithms were developed by 

combining physics-based methods and a modified empirical method (ELm). These HAC 

algorithms were compared with their component algorithms in deriving soil spectra from 

Hyperion data and estimation of SOC.  
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Finally, this research would open up a great scope for accurate SOC mapping when 

future hyperspectral missions are realised. 

7.2 CONCLUSIONS 

Conclusions drawn from the research with respect to the four objectives are discussed in 

this section.  

Objective 1: To evaluate the accuracy of estimation of SOC from ground-based 

VNIR/SWIR reflectance spectra using advanced statistical techniques viz. principal 

component regression, partial least square regression and artificial neural network 

coupled with different spectra preprocessing methods and to identify the appropriate 

statistical technique for further analysis. 

 The potential of field spectroscopy for soil organic carbon estimation is explored. 

Savitzky Golay smoothening technique is recommended as the best smoothening 

of reflectance spectra among moving average filter, median filter, Savitzky Golay 

smoothing and Gaussian smoothing. Among PCR, PLSR and ANN estimation 

models, PLSR model is recommended for SOC estimation in a study area when 

the spread and number of calibration samples are limited. 

 Product of VIP scores and absolute value of PLS regression coefficients are taken 

for identifying significant wavelengths for SOC estimation from SG-PLSR model. 

Significant wavelengths identified from PLSR output of field reflectance signal 

are located in the 600-680 nm, 950-1050 nm, 1860-1900 nm, 2050-2090 nm and 

2180-2250 nm regions. 

Objective 2: To compare four popularly used atmospheric correction algorithms (QUAC, 

ATCOR, FLAASH, 6S) in deriving soil spectra from Hyperion data and estimation of 

SOC in agricultural fields of India and Australia. 
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 ATCOR corrected signals estimate SOC better than FLAASH, 6S and QUAC 

corrected signals. The SOC spectral feature between 2050-2200 nm is retained by 

ATCOR corrected signal. This may be because of ATCOR’s narrow spectral 

sampling distance in that spectral region. 

 Comparing the results across study areas, Karnataka sites gives lower estimation 

accuracy than Narrabri sites. This is probably due to the inability to extract pure 

soil signals from small Karnataka fields due to mixture effects (a Hyperion pixel 

may straddle more than one field, and so may include several types of surface 

roughness and soil humidity due to the different types of ploughing between 

fields) than large and continuous Narrabri fields. 

 Estimation of SOC from spaceborne hyperspectral imagery is influenced by: 

(i) the type of atmospheric correction algorithm chosen, and 

(ii) spatial arrangement of fields. 

Objective 3: To explore hybrid atmospheric correction algorithm that combines the 

concepts of radiative transfer equations and empirical line techniques and incorporates 

real-time in situ atmospheric and climatic data. 

 A hybrid atmospheric correction algorithm is developed (named as HAC_1), 

focusing specifically to extract soil spectra and to estimate SOC from it. It uses 

narrow SSD of 0.4 nm in key SOC estimating wavelength regions. It uses 

radiative transfer equations with real-time in situ atmospheric data followed by 

ground calibration using modified empirical line method. 

 The ELm method proposed in the study fixes an optimum number of ground 

targets and confirms robustness of the selected GTs on the model efficiency. In 

this study, the optimum number of GTs required is found as eight. 
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Objective 4: To compare hybrid atmospheric correction algorithm with their component 

algorithms in deriving soil spectra from Hyperion data and estimation of SOC. 

 Spectral similarities and thereby the SOC estimation accuracies of soil reflectance 

spectrum obtained from the hybrid atmospheric correction algorithms (HAC_1 

and HAC_2) produced better results among its component algorithms and all 

tested commercial algorithms. 

7.3 LIMITATIONS OF THE STUDY 

In the present study, analysis was confined only to SOC contents. There was no 

quantitative information about other physicochemical components. It was hypothesised 

that there was no interaction with other soil components. However, a better knowledge of 

soil types and characteristics over both study areas may help to examine interaction 

between i) spectral features related to SOC and ii) spectral features related to others 

minerals (such as clay or carbonates). 

7.4 SCOPE FOR FUTURE STUDIES 

 The concept developed in coding the HAC_1 algorithm focuses specifically to 

extract soil spectra and to estimate SOC. However, it can be rearranged, modified 

and extended to extract other spectra where area of interest can be in analyzing 

different biophysical characters from spaceborne hyperspectral data. 

 In this research, the performance of estimation model was evaluated in terms of 

R
2
, RMSE, RPD and RPIQ statistics. In addition to these global indicators, an 

evaluation of uncertainty affecting each estimation parameter could be studied. It 

could guide the user for reliable estimations and calibration transferability. 
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Uncertainties associated with SOC estimation obtained by Hyperion data may be 

due to (Gomez et al. 2015b): 

1) Uncertainty in model building caused by choice made to build the calibration 

set. 

2) Uncertainty in model building caused by choice of model dimension i.e 

number of varibales included in the model. 

3) Uncertainty due to spatial positioning which takes into account the 

georeferencing errors. 

4) Uncertainty of the reference lab values. 

 Future research may also concentrate on testing of the atmospheric correction 

models over new region (different pedological context) and estimating new soil 

properties (e.g., textural clay). 
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APPENDIX- I 

MATLAB CODES 

MATLAB R2015a
®
 version was used for the analysis. The codes used for various 

analysis are given below. 

SIGNAL SMOOTHING METHODS  

%------------ Savitzky Golay smoothing -----------------------------%% 

sgolayfilt(X,K,F)  

% smooth the signal X using a Savitzky-Golay polynomial smoothing 

filter.  The polynomial order, K, must be less than the frame size, F, 

and F must be odd.  The length of the input X must be >= F.  If X is a 

matrix, the filtering is done on the columns of X. %% 

 

%------------ Moving Average filter -------------------------------%% 

smooth(X,F, 'moving') 

% smooth the signal X using a moving average filter with span F, and F 

must be odd. %% 

 

%------------ Median filter ----------------------------------------%% 

medfilt1(X,N) 

% smooth the signal X using a median filter of the order N. For N odd, 

output is the median of X( k-(N-1)/2 : k+(N-1)/2 ). For N even, output 

is the median of X( k-N/2 : k+N/2-1 ). 

 

%------------ Gaussian filter ----------------------------------------%% 

g = gausswin(F); % F is the width of the smoothing window 

g = g/sum(g); 

Y = conv(X, g, 'same'); 
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PCR MODEL  

% X and y are soil spectra and SOC content in calibration set; Xv and 

Yv are soil spectra and SOC content in validation set %% 

[n,p] = size(X); 

[v,w] = size(Xv); 

% Perform PCA analysis %% 

[PCALoadings,PCAScores,PCAVar] = pca(X,'Economy',false); 

% Perform PC regression %% 

betaPCR = regress(y-mean(y), PCAScores(:,1:3)); 

betaPCR = PCALoadings(:,1:3)*betaPCR; 

betaPCR = [mean(y) - mean(X)*betaPCR; betaPCR]; 

% get the beta coefficients from calibration set and predict y value%% 

YPv = [ones(v,1) Xv]*betaPCR; 

% Computing prediction statistics %% 

TSSv= sum((Yv-mean(Yv)).^2); 

RSS_PCRv= sum((Yv-YPv).^2); 

rsquarev= 1- RSS_PCRv/TSSv 

rmsev= sqrt(sum((Yv(:)-YPv(:)).^2)/numel(Yv)) 

rpd=std(Yv)/rmsev 

rpiq=iqr(Yv)/rmsev 

 

PLSR MODEL  

% finding optimum no. of components to be used in the model, X = soil 

reflectance; Y = SOC content %% 

[Xloadings, Yloadings, Xscores, Yscores, betaPLS10, PLSPctVar]= 

plsregress(X,Y,10); 

figure, plot(1:10, cumsum(100*PLSPctVar(2,:)),'-bo'); 

xlabel('No: of PLS components'); 

ylabel('Percentage variance explained in Y'); 

% Cross validation method to find optimum no. of components to be used 

in model %% 
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[Xl,Yl,Xs,Ys,beta1,pctVar,PLSmsep] = plsregress(X,Y,10,'CV',10); 

figure,plot(0:10,PLSmsep(2,:),'b-o'); 

xlabel('Number of PLS components','FontSize', 14); 

ylabel('Estimated Mean Squared Prediction Error','FontSize', 14);   

 

% getting beta coefficients from calibration set and predicting y value 

[Xloadings, Yloadings, Xscores, Yscores, betaPLS]= plsregress(X,Y,5); 

yfitPLS= [ones(v,1) XV]* betaPLS; 

% calculating prediction statistics 

TSS= sum((YV-mean(YV)).^2); 

RSS_PLS= sum((YV-yfitPLS).^2); 

rsquare= 1- RSS_PLS/TSS 

rmse= sqrt(sum((YV(:)-yfitPLS(:)).^2)/numel(YV)) 

rpd=std(YV)/rmse 

rpiq=iqr(YV)/rmse 

 

VIP ALGORITHM 

% X and Y are soil spectra and SOC content in calibration set, A is the 

PLSR dimension %% 

varX=sum(sum(X.^2)); 

varY=sum(sum(Y.^2)); 

for i=1:A 

error=1; 

u=Y(:,1); 

niter=0; 

while (error>1e-8 &&niter<1000)  % for convergence test 

        w=X'*u/(u'*u); 

        w=w/norm(w); 

        t=X*w; 

        q=Y'*t/(t'*t);  % regress Y against t; 

        u1=Y*q/(q'*q); 
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  error=norm(u1-u)/norm(u); 

        u=u1; 

  niter=niter+1; 

end 

p=X'*t/(t'*t); 

X=X-t*p'; 

Y=Y-t*q'; 

W(:,i)=w; 

T(:,i)=t; 

P(:,i)=p; 

Q(:,i)=q; 

end 

 

% calculation of explained variance 

R2X=diag(T'*T*P'*P)/varX; 

R2Y=diag(T'*T*Q'*Q)/varY; 

Wstar=W*(P'*W)^(-1);  

B=Wstar*Q'; 

Q=Q'; 

s=diag(T'*T*Q*Q'); 

%initializing 

[m,p]=size(X); 

[m,h]=size(T); 

% calculation of VIP 

VIP=[]; 

for i=1:p 

weight=[]; 

for j=1:h 

        weight(j,1)= (W(i,j)/norm(W(:,j)))^2; 

end 

q=s'*weight;  % explained variance by variable i 

VIP(i)=sqrt(p*q/sum(s)); 

end 
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RADIATIVE TRANSFER ALGORITHM 

%------------ Estimation of TOA radiance --------------------------%% 

[X, R] = geotiffread(filename) 

% load Hyperion image in geotiff format %% 

[rows, cols, bands] = size(X); 

X=double(X); 

for B = 1 : bands 

for R = 1 : rows 

for C = 1 : cols 

pixel = squeeze(X(R, C, B)); 

TOA_radiance(R,C,B)=double(pixel/SF); 

% TOA_radiance is top-of-atmosphere radiance image and SF 

is scale factor matrix%% 

end 

end 

end 

[rows, cols, bands] = size(TOA_radiance); 

 

%------------ Estimation of TOA reflectance ------------------------%% 

% TOA reflectance is computed by normalizing top-of-atmosphere 

radiances to the band averaged solar irradiance %% 

for B = 1 : bands 

for R = 1 : rows 

for C = 1 : cols 

pixel = squeeze(TOA_radiance(R, C, B)); 

TOA_reflectance(R,C,B)=double((pi*pixel*d*d)/(E_sun* 

cosd(sza))); 

% TOA_reflectance is top-of-atmosphere reflectance image, d 

is earth-sun distance in astronomical unit, E_sun is 

Hyperion mean solar exoatmospheric irradiances, sza is Sun 

zenith angle%% 

end 
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end 

end 

 

%------------ Estimation of Optical thicknesses----------------------%% 

 

% Rayleigh optical thickness%% 

ROT= (p/p0)*(wl_micr ^(4)*(115.6406-1.335* wl_micr^(-2)))^(-1); 

% ROT is Rayleigh optical thickness, wl_micr is wavelength in 

micrometer, p is in situ surface pressure in mb, p0 is standard 

pressure at sea level%% 

 

% Aerosol optical thickness%% 

a1=1.0274; 

a2=1.2060; 

if wl_micr >= 0.55 

AOT= t_55*( wl_micr /.55)^(-a1); 

else 

AOT= t_55*( wl_micr /.55)^(-a2);    

end 

% t_55 is aerosol optical depth in a vertical path at 550 nm 

wavelength, AOT is aerosol optical depth%% 

 

% Water vapor optical thickness %%  

WOT= (0.2385*aw*W)/(1+20.07*aw*W)^(0.45); 

% WOT is water vapor optical thickness, aw is water vapour absorption 

coefficients (Bird and Riordan 1986)at spectral sampling distance, W is 

in situ precipitable water vapour (cm) in a vertical path%% 

% Ozone optical thickness %% 

OOT= ao*o3; 

% OOT is Ozone vapor optical thickness, ao is ozone absorption 

coefficient (Bird and Riordan 1986)at spectral sampling distance, o3 is 

in situ ozone amount (atm-cm) %% 
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% Uniform air optical thickness %% 

UOT = (p/p0)*(1.41*au)/(1+118.93*au)^(0.45); 

% UOT is uniform air optical thickness, au absorption coefficient of 

uniformly mixed gaseous amount (Bird and Riordan 1986)at spectral 

sampling distance%% 

 

 

%------------Estimation of sensor azimuth angle---------------------%% 

% sza is sun zenith angle, vza is Sensor zenith angle, sun_az is sun 

azimuth angle, sen_az is sensor azimuth angle %% 

beeta= vza+sza;  

% estimation of beeta which is the sum of sensor zenith angle and sun 

zenith angle%% 

cos_beeta=cosd(beeta); 

cos_diff_sza_vza=(cos_beeta-(cosd(sza)*cosd(vza)))/(sind(sza)* 

sind(vza)); 

%cos of (sun azimuth angle- sensor azimuth angle)%% 

diff_sza_vza=acosd(cos_diff_sza_vza); 

%( sun azimuth angle - sensor azimuth angle)%% 

sen_az = diff_sza_vza - sun_az; 

% sensor azimuth angle in degrees%% 

 

%------------Estimation of Rayleigh reflectance---------------------%% 

cos_theeta_minus= (-1*(cosd(sza)*cosd(vza)))-(sind(sza)*sind(vza)* 

(cos_diff_sza_vza)); 

cos_theeta_plus= ((cosd(sza)*cosd(vza)))-(sind(sza)*sind(vza)* 

(cos_diff_sza_vza)); 

pr_theeta_minus= 0.75*(1+cos_theeta_minus*cos_theeta_minus); 

pr_theeta_plus= 0.75*(1+cos_theeta_plus*cos_theeta_plus); 

  

theeta_trans_vza=asind(1.5*sind(vza)); 
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term1_vza=sind(vza-theeta_trans_vza)*sind(vza-theeta_trans_vza)/ 

(sind(vza+theeta_trans_vza)* sind(vza+theeta_trans_vza)); 

term2_vza=tand(vza-theeta_trans_vza)*tand(vza-theeta_trans_vza)/ 

(tand(vza+theeta_trans_vza)*tand(vza+theeta_trans_vza)); 

r_theeta_vza=0.5*(term1_vza+term2_vza); 

  

theeta_trans_sza=asind(1.5*sind(sza)); 

term1_sza=sind(sza-theeta_trans_sza)*sind(sza-

theeta_trans_sza)/(sind(sza+theeta_trans_sza)* 

sind(sza+theeta_trans_sza)); 

term2_sza=tand(sza-theeta_trans_sza)*tand(sza-theeta_trans_sza)/ 

(tand(sza+theeta_trans_sza)*tand(sza+theeta_trans_sza)); 

r_theeta_sza=0.5*(term1_sza+term2_sza); 

  

pr= pr_theeta_minus+((r_theeta_sza+r_theeta_vza)*pr_theeta_plus); 

  

rayleigh_reflectance=(ROT*pr)/(4*cosd(sza)*cosd(vza)); 

 

%------------Estimation of Aerosol reflectance---------------------%% 

 

beeta= vza+sza;  

cos_beeta=cosd(beeta); 

cos_diff_sza_vza=(cos_beeta-

(cosd(sza)*cosd(vza)))/(sind(sza)*sind(vza)); 

diff_sza_vza=acosd(cos_diff_sza_vza); 

cos_scatter= (+(cosd(sza)*cosd(vza)))-(sind(sza)*sind(vza)* 

(cos_diff_sza_vza)); 

scatter=acos(cos_scatter); 

% estimation of scatter angle %% 

 

g= 0.652; 

% g= 0.652 rural aerosols %% 
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pa=(1-g^2)/(1+g^2-2*g*cos(pi-scatter))^(3/2); 

% aerosol scattering phase function %% 

  

wf=0.945; 

wt=0.095; 

w = wf* exp(-wt*(log(wl_micr/0.4))^2); 

% w is aerosol single scattering albedo %% 

 

aerosol_reflectance=(AOT*pa*w)/(4*cosd(sza)*cosd(vza)); 

  

%------------Total transmission of the atmosphere -------------%% 

  

T_down=exp(-(ROT+AOT+WOT+OOT+UOT)/cosd(sza)); 

T_up=exp(-(ROT+AOT+WOT+OOT+UOT)/cosd(vza)); 

 

% T_down is the total transmission of the atmosphere from the sun to 

the surface, T_up is the total transmission of the atmosphere from the 

surface to the sensor %% 

 

%------------ Estimation of Surface reflectance -------------------%% 

 

RT_surface_reflectance=(TOA_reflectance-rayleigh_reflectance-

aerosol_reflectance)./((T_down.*T_up) + (s_al.*( TOA_reflectance-

rayleigh_reflectance-aerosol_reflectance))); 

% RT_surface_reflectance is surface reflectance obtained after solving 

RT equations 

 

Modified empirical line method 

for z=1:100 

no=52; % total number of ground samples 

ground_index=randperm(no,N); 



Appendix-I 

 
 

 

An evaluation of atmospheric correction algorithms in the estimation of SOC from Hyperion image.  

Ph.D. Thesis, 2018, NITK, Surathkal, India. 

 

 
146 

pixellocation_N=pixellocation(ground_index,:); 

% pixellocation is the location information of ground samples and 

pixellocation_N is the location information of randomly taken N number 

of samples %% 

 

soil_row=pixellocation_N(:,1); 

soil_column=pixellocation_N(:,2); 

row=size(soil_row); 

 

for i=1:row(1) 

spectrum=Hyperion_image(soil_row(i),soil_column(i),:); 

% Hyperion_image is TOA radiance image in the case of single 

modified empirical line model, or surface reflectance image 

obtained using radiative transfer equations in the case of HAC_1 

model, or surface reflectance image obtained using ATCOR in the 

case of HAC_2 model %% 

 

Hyperion_spectrum(i,:)=spectrum(:,1:end); 

Field_spectrum(i,:)= ground_spectrum(ground_index(i),:); 

% Field_spectrum is known field reflectance from ground targets%% 

end 

  

for i=1:bands 

    x= Hyperion_spectrum(:,i); 

    y= Field_spectrum (:,i); 

    myfit=polyfit(x,y,1); 

    gain(i)=myfit(1,1); 

    offset(i)=myfit(1,2);  

end 

for i=1:b 

    elm_refl(:,:,i)= Hyperion_image(:,:,i)*gain(i)+offset(i); 

end 
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ground_index2=[1:1:no]; 

new_index=setdiff(ground_index2,ground_index); 

pixellocation_new=pixellocation(new_index,:); 

soil_row_new=pixellocation_new(:,1); 

soil_column_new=pixellocation_new(:,2); 

  

for i=1:size(soil_row_new,1) 

      spectrum=el_refl(soil_row_new(i),soil_column_new(i),:); 

      Hyperion_spectrum_new(i,:)=spectrum(:,1:end); 

      soc_new(i,:)=soc(new_index(i),:); 

Field_spectrum_new(i,:)= ground_spectrum(new_index(i),:); 

Hyperion_spectrum_new, Field_spectrum_new and soc_new are 

matrices of corrected Hyperion, field spectra and soc content 

after removing N spectra that have been used to find the gain and 

offset from the soil dataset. 

end 

  

% Calculation of SAM and SID between corrected Hyperion spectra and 

field spectra %% 

for S = 1 : row 

a= Hyperion_spectrum_new; 

c= Field_spectrum_new; 

    k= sum(a.*a); sizea=size(a);sizec=size(c); 

    j=sum(c.*c); 

    sam = real(acos((dot(a,c))/(sqrt(k)*sqrt(j)))); 

    samangle(S,:)=sam; 

     

    suma= sum(a); 

    sumc =sum(c); 

    proba=a/suma; 

    probc=c/sumc; 
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    sumx=sum(proba.*(log(proba./probc))); 

    sumy=sum(probc.*(log(probc./proba))); 

    SID=real(sumx+sumy); 

    SIDvalue(S,:)=SID; 

end 

asam(z,1)=mean(samangle) 

asid(z,1)=mean(SIDvalue) 

end 

 

%%*******************************************************%% 
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