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ABSTRACT 

In recent years, transition metal based catalysts have gained large importance 

due to the inherent flexibility of the metals to be complex with different organic 

ligands. Schiff base which falls in the category of imines is a unique class of ligands 

with different donor atoms exhibiting fascinating coordination style to approach the 

numerous metals. Compounds with C-C bond have shown worldwide applications in 

various fields such as agrochemicals, pharmaceuticals, natural products, advanced 

materials and so on. The Suzuki-Miyaura reaction is one of the most frequently used 

reactions for the synthesis of biaryls using transition metal catalyst especially 

palladium. 3d-metal complexes act as an alternative to the high-cost palladium 

catalyst with comparable conversions. 

In this study, Schiff bases were synthesized using 4-aminoacetophenone, 2-

amino-5-bromopyridine, 2-aminophenol, and 1,2-phenylenediamine with different 

substituted aldehydes (Salicylaldehyde, 2-hydroxy-3-methoxybenzaldehyde, 2-

hydroxy-1-napthaldehyde). Complexes of 3d-transition metal (Mn, Fe, Co, Ni, Cu) 

were synthesized using Schiff base ligands. Also, we have described the synthesis of 

nano-iron (II) and nickel (II) complex of a Schiff base ligand, namely 1-((pyridin-2-

ylimino)methyl)naphthalen-2-ol using sonochemical method. The immobilization of 

Schiff base copper complex onto graphene oxide was carried out to synthesize 

heterogeneous and eco-friendly catalysts. The synthesized complexes were analyzed 

using elemental analysis, FTIR, UV-Vis, NMR, Mass, TGA and magnetic 

susceptibility. The synthesized complexes were examined for their C-C coupling 

efficiency in Suzuki cross-coupling between phenylboronic acid and para substituted 

aryl halides. These complexes had a better advantage over phosphine complexes. The 

mild reaction condition, low cost of the reagent and non-toxic by-products of the 

reaction makes it versatile. 

Keywords: Schiff base, cross-coupling of aryl halides, transition metal complex, 

Suzuki-Miyaura coupling. 
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This chapter speaks about introduction of transition metal complexes and their 

application as a catalyst in the various coupling reactions. Also, the significance of 

transition metal complexes in catalysis is explained in brief. 

1.1 CATALYSIS 

1.1.1 Introduction to catalysis 

A substance that can create a change in the rate of a chemical reaction without 

itself being consumed is called ‘catalyst’. The word catalysis was first invented by 

Berzelius in 1836.  

1.1.2 Classification of the catalyst 

A Catalyst can be broadly classified as:  

(a) Positive catalyst: Positive catalyst enhances the rate of a chemical reaction. 

Example: Iron catalyst in the manufacturing ammonia (Haber’s process). 

(b) Negative catalyst: Negative catalyst decreases the rate of the chemical 

reaction. Example: In the presence of sunlight, the rate of oxidation of 

chloroform to phosgene gas decreases due to ethanol. 

(c) Homogenous catalyst: Catalyst and reactants present in a similar phase. 

Example: Oxidation of Sulfur dioxide (SO2) to Sulfur trioxide (SO3), 

catalyzed by Nitric oxide in Lead chamber process. Both catalyst and reactant 

are in gaseous phase. 

(d) Heterogeneous catalyst: Catalyst and reactants are present in different phases. 

Example: The reaction between N2 and H2 over Iron surface. Here N2 and H2 

are gases and Fe is solid. 

1.1.3 History of catalysis 

A substance which enhances the rate of a process is called as a "catalyst", and 

the term obtained from Greek word ‘Catal’, which means "to annul". The reactions 

which are speed up by the substances that remains unaffected after the completion of 
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the reaction. Eilhard Mitscherlich worked for contact processes and Johann Wolfgang 

Döbereiner for contact action. Later Johann Wolfgang Döbereiner worked on 

hydrogen lighter and a platinum sponge and in the 1820s it became a huge 

commercial success. The use of platinum in catalysis was discovered by Humphry 

Davy. Wilhelm Ostwald (in 1880s) at Leipzig University initiated a system in which a 

systematic research for reactions which is catalyzed by acids and bases and he bring 

out the idea that chemical reactions occur at definite rates and later he got to know 

that these rates can be used to decide the tenacity of acid and base catalyst. For this 

work, he was awarded the 1909 Nobel Prize in Chemistry. 

1.1.4 Technical perspective of catalysis 

A Catalyzed reaction requires less free energy to reach the transition state 

without altering the total free energy of the reaction. Behavior of the catalyst may be 

altered by the presence of inhibitors (reduces the catalytic) or promoters (enhances the 

catalytic activity). However, the mechanism of the catalyzed reaction is very 

complicated. Catalysts favorably alter the reaction environment and also cause the 

dissociation of reagents. 

The rate of a chemical reaction depends on the frequency at which the 

reactants come in contact during the rate-determining step. As per common 

occurrence, participation of the catalyst happens in the slowest step, and the rate of 

the reaction is defined by the amount of the catalyst and its "activity". In a 

heterogeneous catalysis, the rate determining step is dependent on the reagent’s 

diffusion onto the surface and product’s diffusion from the surface.  

The inhibition and deactivation of the catalyst can happen by secondary 

processes. In the case of heterogeneous catalysis, a typical example of the secondary 

process is coking where the catalyst is covered by polymeric side products which 

deactivates the catalyst. The dissolution of heterogeneous catalysts in solid-liquid 

system and the sublimation of the same in solid-gas system also inhibit the catalytic 

activity. 
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1.1.5 Importance of Catalysis 

The catalyst plays an important role in industrial processes. Such as, vanadium 

oxide used as a catalyst for the synthesis of sulfuric acid and the acid is used in lead 

acid batteries, for detergents synthesis and for dyes manufacturing. Also, they are 

very important in synthesis of explosive materials, plastics etc. Ammonia is a primary 

component of many fertilizers which is economically synthesized by use of iron oxide 

as a catalyst. 

The global environment also gets affected by use of different catalyst. 

Catalytic converters are used to treat exhaust in many automobiles. The chemical 

conversion of noxious gases to more inert forms with the help of platinum and 

palladium catalyst which causes the decrease in the impact of combustion engines on 

our environment. 

The effect of catalyst on life itself is very important impact. The enzymes are 

the important catalyst in biochemical reactions. They are mostly proteins which 

catalyze particular reactions inside the cells. Such as polymerases (for DNA and RNA 

synthesis), peptidases (to digest the protein) and ATP synthases for energy production 

which is used by different cell activities. 

1.1.6 Characteristics of Catalysis 

The following are the characteristics of catalytic reactions. 

• A catalyst remains unaffected in mass and chemical composition. 

• A small quantity of the catalyst is ample to catalyze the reactions. 

• The catalyst cannot initiate the reaction: The main job of the catalyst is to 

change the reaction rate. 

• The catalyst is typically specific in nature.  

• The catalyst cannot alter the position of equilibrium: The catalyst catalyze 

both forward and backward reactions to the equal amount in a reversible 

reaction and thus have no effect on the equilibrium constant. 
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• Catalytic promoters: Materials which themselves are not catalysts, but when it 

is mixed with the catalysts, increase the efficiency of catalysts are known as 

promoters. 

• Catalytic poison: Materials which destroys the activity of the catalyst is known 

as catalytic poison. The action of iron catalyst is destroyed due to presence of 

hydrogen sulfide or CO. 

• The rate of catalytic reaction can alter due to change of temperature. 

 

Figure 1.1 Generic potential energy diagram 

• A positive catalyst decreases the activation energy. From collision theory, 

reaction happens due to effective collisions between the reacting molecules. It 

is essential for collision that the molecules must have a minimum amount of 

energy known as activation energy (Ea). After the collision, a molecule forms 

an activated complex which gets dissociated and yields the product. The 

catalyst supplies a new pathway includes lower amount of activation energy. 

Larger number of effective collisions occurs in the presence of a catalyst in 

comparison to effective collisions in absence of a catalyst at the same 
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temperature. Hence, the reaction goes faster in the presence of a catalyst. 

Above figure shows that activation energy Ea, in absence of a catalyst is more 

than the activation energy Ea, in presence of a catalyst. The difference of the 

average energies of reactants and products gives the value of ΔG,  

ΔG = ER – EP 

1.1.7 Types of catalysis 

Catalysis can be divided into three main categories – homogeneous and 

heterogeneous and biocatalysis. 

 

Figure 1.2 Types of Catalysis 

1.1.7.1 Homogeneous catalysis 

The catalysts and the reactant molecules react in same phase. Classically, in 

this system, the substrates and the catalysts are homogeneously mixed in a solvent 

medium. For example, in the synthesis of methyl acetate from acetic acid and 

methanol, the H+ ion influences the esterification. Homogeneous catalysis is often 

regarded equally with organometallic catalysts. The types of homogeneous catalysis 

are as follows. 
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(a) Acid catalysis 

The hydrogen proton is the most common homogeneous catalyst because 

water is the most universal solvent. Water produces protons by the process of self-

ionization of water. Acids accelerate (catalyze) the esters hydrolysis: 

 

Aqueous solutions of most esters do not hydrolyze in the absence of acids. 

(b) Organometallic catalyst 

A soluble organometallic complex falls under the homogeneous catalysis 

category. Hydroformylation and transfer hydrogenation, Ziegler-Natta polymerization 

and hydrogenation are well-known examples of homogeneous catalysis involve. It has 

also been used in different types of industrial processes like Wacker process, 

acetaldehyde synthesis as well as the Monsanto process and the Cativa process for the 

synthesis of acetic acid from MeOH and CO. 

Other homogeneous catalysts are enzymes that are essential for life but are 

also exploited for industrial processes. A good example of enzyme catalyst is carbonic 

anhydrase, which catalyzes the release of CO2 from the blood stream to the lungs. 

(c) Theory of homogeneous catalysis 

The catalyst forms an intermediate with the reactant molecules. 

 

Where ‘A’ is substrate, X is catalyst and AX is the intermediate compound. 

AX then reacts with other reactant molecule (B) to give product and catalyst. 
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This reaction is slow and is the rate determining step. 

X is regenerated in last step. Thus, the rate of homogeneous catalytic reactions 

depends upon the concentration of X. 

1.1.7.2 Heterogeneous catalysis 

Reactants and catalysts react in different phase. Usually, heterogeneous 

catalysts are solids and it acts on substrates in a gaseous or liquid reaction mixture. 

Different mechanisms for heterogeneous reactions are known, it depends on how the 

adsorption happens on the surface (Eley-Rideal, Mars-van Krevelen and Langmuir-

Hinshelwood). The reaction rate majorly depends on the surface area of total solid. 

A heterogeneous catalyst has active sites for the reaction to occurs. The 

mechanism of the heterogeneous catalyst depends on, the active site may be an 

exposed planar metal surface, a crystal edge with flawed metal valence or a difficult 

combination of the two. To find out the quality of the active site needs a very tough 

research. Thus, great research for catalysis to find out new metal combinations 

continues. 

Heterogeneous catalysts are typically deposited on the supported material. 

They are usually dispersed on other material which increases the affectivity and also 

minimizes the cost of the catalyst. Supporting materials such as alumina, zeolites or 

various kinds of activated carbon having different pore size, provide large surface 

area for reaction. Some specialized supports which include barium sulfate, calcium 

carbonate, titanium dioxide and silicon dioxide. 

Between homogeneous and the heterogeneous catalysis, biocatalysis is a quite 

special case. Generally, the biocatalyst is an enzyme and they are greatly efficient 

catalysts. Conventionally used homogeneous and heterogeneous catalysts are 
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ineffective and slow. Mild conditions of the reaction and shorter synthesis routes are 

few advantages of biocatalysis over “chemical catalysis”. 

1.1.7.3 Comparison of Homogeneous and Heterogeneous Catalysis 

 In a heterogeneous catalytic system, the species are active only on the surface; 

the reactions often require relatively high temperature and low specificities. In 

addition, the study of mechanistic aspect of heterogeneous catalyst is difficult. 

However, the catalyst recovery is comparatively easy in heterogeneous catalysis. 

Whereas, by varying ligands, different types of homogeneous catalyst can be 

obtained. Homogeneous catalysis involves low temperatures and high specificities 

depending upon the catalyst being used. The mechanism of homogeneous catalysis 

can be accomplished more easily than the heterogeneous catalysis process. 

1.1.8 Catalyst Deactivation 

Loss in catalytic activity is called as catalyst deactivation. A catalyst made of 

organometallic complexes reduces its catalytic activity either by dimerization or 

oligomerization. Often, depending on the ligating groups attached the activity can be 

varied. The catalyst gets deactivated via side reactions, formation of additional 

phases, change of pH, oxidative degradation and temperature variation. 

1.1.9 Transition metal as catalysts 

Transition metal complexes have tremendous importance in catalysis, dye 

industry, analytical chemistry, agrochemical, food industry and biological activities. 

Transition metals and their compounds are often good catalysts. Transition metals and 

their metal oxides tend to be used as heterogeneous catalysts, their ions and 

complexes are usually employed as catalysts in homogeneous contexts. 

A presence of incompletely filled d-orbitals is the typical general features in 

transition metals. Hence, they form compounds of variable oxidation states and as a 

result, transition metals find application in both homogeneous and heterogeneous 

catalysis process. 
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1.2 TRANSITION METAL COMPLEXES 

1.2.1 Introduction to transition metal complexes  

The bonding between transition metal and ligand in a transition metal complex 

can be understood by two approaches: “Crystal Field Theory” and “Molecular Orbital 

Theory”. Crystal Field Theory mainly focuses on the electrostatic attraction between 

the ligands and d-electrons of the metal ions, therefore is suitable to explain the 

spectral properties of the complex. On the other hand, molecular orbital theory 

explains the molecular structure of the complex and thereby giving a better insight to 

the physical properties of the system. 

Since the electron pairs of the ligands can form saturated (18-electron) or 

unsaturated (16 or fewer electron) complexes with transition metal, they tend to form 

complexes with varying electronic properties which roots their importance in 

catalysis. 

1.2.2 Basic properties of transition metal complexes 

A transition metal atom or ion has degenerate d-orbitals in its free state. The d-

orbitals of the metal atom interact with electron cloud of the ligands while forming 

complex which results in the loss of degeneracy of d-orbitals. Crystal field theory 

explains the distribution of energies among different d-orbitals and spatial distribution 

of d-electrons in a transition metal. When the transition metal absorbs electromagnetic 

radiation of sufficient energy, an electron excites from lower energy to higher energy 

due to the presence of incompletely filled d-orbitals. The geometry of the complex is 

dependent on splitting of the orbitals into different energy levels. 

Transition metal complexes in general exhibit good thermal stability which is 

further improved by the use of chelating ligand. Additionally, transition metal 

complexes are stable in air and moisture, which mean that they are easy to handle and 

store. This important aspect provides a wide reaction scope of transition metal 

complexes. 
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1.3 COUPLING REACTIONS 

A coupling reaction is in essence linking two hydrocarbon fragments together. 

This reaction is usually a metal catalyzed reaction as the energy requirement for 

reaching the transition state is very high for such reactions. 

 

Figure 1.3 Common cross coupling reactions (© 2017 Roman A. Valiulin) 

A coupling reaction can be primarily divided into two types: 

• Homocoupling: A coupling of two identical partners, for example, the 

formation of biphenyl (Ph-Ph) from iodobenzene (PhI). 

• Cross coupling: Involves a coupling of two different partners, for example 

formation of styrene (PhCH=CH2) by the reaction between bromobenzene 

(PhBr) and vinyl chloride. 
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1.4 SUZUKI-MIYAURA COUPLING 

A palladium-catalyzed coupling of aryl halide or vinyl (R2X) with an 

organoborane (R1-BY2) to form product (R1-R2) with a new C-C bond is called the 

Suzuki reaction. This reaction is named after its inventor Akira Suzuki, who published 

his findings in 1979 and shared the Nobel Prize (2010) in Chemistry with Richard F. 

Heck and Ei-ichi Negishi for cross couplings in organic synthesis using palladium 

catalyst. The cross coupling is simply called as "Suzuki Coupling" or Suzuki-Miyaura 

reaction, and it is extensively used for the synthesis of styrenes, poly-olefins, and 

substituted biphenyls. The general Suzuki reaction is shown below. 

 

1.5 GENERAL MECHANISM FOR SUZUKI COUPLING REACTION 

 

Figure 1.4 General mechanism of Suzuki-Miyaura cross coupling reaction 

The mechanism of the Suzuki reaction can be studied using palladium catalyst. 

Figure 1.4 represents a pictorial flow of various steps involved in the Suzuki coupling 
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reaction. The oxidative addition of palladium (1) to the aryl or alkyl halide (2) is the 

first step to form the organopalladium species (3). The intermediate (4) obtained with 

the reaction of base, which via transmetalation with the boronate compound (6) gives 

the organopalladium species (8). The final coupled product (9) obtained by reductive 

elimination and the original palladium catalyst (1) restored, which ends the catalytic 

cycle. The Suzuki reaction generally carried out in the presence of a base, though the 

role of the base was incompletely known. A trialkyl borate (R3B-OR) was believed to 

form by presence of the base (reaction of alkoxide (RO-) and trialkylborane (BR3)). 

The trialkyl borate (R3B-OR) considered as more nucleophilic and more reactive 

towards the palladium complex in the transmetalation step. Also, Duc and co-workers 

studied the importance of the base in the coupling mechanism and they understood 

that the base plays three important roles: Development of the palladium complex 

[ArPd(OR)L2], formation of the trialkyl borate and it also accelerate the reductive 

elimination by reaction of the alkoxide with the palladium complex. 

In this study, 3d-transition metal Schiff base complexes have been chosen for 

the Suzuki-Miyaura coupling reactions
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This chapter presents a brief examination on the literature with respect to the various 

synthesized transition metal shchiff base complexes and their application as catalysts 

for coupling reactions. The outline and main objectives of the present work conclude 

this chapter. 

2.1 TRANSITION METAL COMPLEXES AND C-C COUPLING 

Transition metal catalyzed formation of the carbon-carbon bond developed in 

the 1970s is of great importance in synthetic organic chemistry. The C-C coupling 

reactions are essential for the synthesis of new organic compounds having 

applications in diverse areas including pharmaceuticals, natural products, optical 

materials, liquid crystals, conductive polymers etc. The transition metal catalyzed 

coupling reactions are commonly used for the synthesis of biaryls, which are 

advantageous owing to their high selectivity, broad substrate scope, and mild reaction 

condition. 

Gene et al. (1995) reported the coupling of esters or boronic acids using 

palladium (0) as a catalyst. The water-soluble catalyst in mild condition gave 60- 90% 

yield. Later, Reetz et al. (1996) reported the palladium and palladium/nickel 

bimetallic clusters as an effective catalyst for the Suzuki and Heck reactions. These 

clusters were stabilized by tetraalkylammonium salts or poly(vinylpyrrolidone) to 

retain their size and prevent further agglomeration. 

A new palladium complex with salicylaldehyde N(4)-ethylthiosemicarbazone 

has been synthesized to catalyze the Heck coupling reaction of aryl bromides and 

styrene (Kovala-Demertzi et al. 2004). Korolev and Bumagin (2005) reported the 

PdCl2-EDTA complex to be used to catalyze the Suzuki-Miyaura cross coupling 

reactions of aryl and heteroaryl halides with aryl (heteroaryl)boronic acids in aqueous 

media. In another report, palladium supported on hydrotalcite catalyst was used in 

Suzuki cross coupling reaction (Ruiz et al. 2006). Potassium carbonate was used as a 

base for the reaction. This report included a detailed study of the catalytic efficiency 

of different palladium salts, the influence of the base, and effect of temperature on the 

yield for Suzuki cross-coupling reaction. Another catalyst was reported where 
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palladium synthesized from different palladium precursors were supported on 

Polyaniline (Kantam et al. 2007). They were characterized using different analysis. 

The catalytic activity was tested for the Suzuki-Miyaura coupling of bromo-and 

chloroarenes in water. The recovery of the catalyst was achieved by simple filtration 

and they were reused for several cycles without any significant reduction in the 

catalytic activity. 

Iwasawa et al. (2008) synthesized palladium catalyst with pentaaryl benzene 

moiety for palladium-catalyzed Suzuki-Miyaura coupling of aryl chlorides and the 

synthesized catalyst achieved up to 5000 turnover numbers. Zhou et al. (2009) 

developed palladium catalyst with diimine ligands and applied for Suzuki coupling of 

arylbromide in different media.  

An efficient immobilized MCM-41 palladium (0) catalyst was reported for C-

C cross-coupling of different aryl halides with aryl borane and organotin (Jana et al. 

2009). Zhou et al. (2010) cyclopalladated complexes with five- or six-member rings 

have been prepared using Schiff base ligands. Suzuki cross coupling reactions was 

carried out in aqueous solvents under mild conditions using prepared cyclopalladated 

complexes. Palladium catalyst from the reaction of PdCl2(cod) with poly[(3-N-

imidazolopropyl)methylsiloxane-co-dimethylsiloxane] was synthesized (Borkowski et 

al. 2011) and used as a catalyst for the coupling of aryl bromides with phenylboronic 

acid. The high yields of 2-methylbiphenyl with TOF up to 25,000 h-1 and eight 

number of run were passed with excellent results. Also, important role of the catalyst 

in the catalytic reaction was indicated by mercury poisoning test.  

Palladium(II) complexes with square planar geometry was synthesized and 

characterized (Tamizh et al. 2013). The synthesized palladium (II) complexes shown 

good catalytic conversion in coupling of phenylboronic acid and 4-bromotoluene in 

N,N-dimethylacetamide (Suzuki coupling). Heterocyclic biaryls can also be 

synthesized using heterocyclic boronic acid and heterocyclic aryl bromides. 

PdCl2(CH3CN)2 used as the catalyst for the synthesis of aryl-heteroaryl and 

heteroaryl-heteroaryl compounds through the Suzuki reactions of diazonium salts 
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with potassium trifluoroborates in water and in the absence of ligand or base, additive 

(El Bakouri et al.2013). Also, it can be used for the Matsuda-Heck reaction between 

mono olefins with aryl diazonium salts. Suzuki-Miyaura cross-coupling of aryl 

bromides with phenylboronic acid was carried out with two palladium catalysts of 

Pd(OAc)2 salt with differently substituted triazolylpolysiloxanes (Borkowskiet al. 

2013). Recycling experiments were obtained with eight subsequent runs with very 

good results. 

Leadbeater and Resouly (1999) reportedly used NiCl2 to synthesize 

phosphine-free nickel complexes (NiC12(NEt3)2 and NiCl2(bipy)). Catalytic property 

of these complexes was carried out in Suzuki-Miyaura reaction and the results show 

that the synthesized complexes were active catalyst for the above reaction. Inada and 

Miyaura (2000) studied NiCl2.triphenylphosphine complexes for coupling of 

arylboronic acid with chloroarenes. NiCl2·6H2O was also reported to have good yield 

for the coupling of aryl bromides and iodides with phenylboronic acid when used as a 

catalyst precursor (Zim and Monteiro 2002). Additionally, the influence of high 

pressure on the Suzuki-Miyaura cross-coupling reaction was demonstrated by Guo et 

al. (2008). Better yields were observed and palladium catalyst can be replaced with 

cheaper nickel, cobalt, and iron salts. 

Hatakeyama et al. (2010) reported an iron catalyst for Suzuki-Miyaura 

coupling of nonactivated alkyl halides and arylboron compounds. Also, a nickel-

catalyzed cross-coupling of aryl fluorides and aryl boronic esters was reported by 

Tobisu et al. (2011). Additionally, Suzuki-Miyaura cross coupling reaction of aryl 

halides and phenol-derivative with aryl boronic acids using nickel-catalyst in green 

solvents (2-Me-THF and tert-amyl alcohol) was reported (Ramgren et al. 2013). The 

high yield of biaryl obtained with this methodology and it can be used as a 

commercially available precatalyst, NiCl2(PCy3)2. Later, Mieczyńska et al. (2014) 

developed a heterodinuclear macrocyclic Schiff base Pd(II)-Ni(II) complex for Suzuki 

and Heck cross-coupling reactions. 
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The complexes of Schiff base ligand with Ni(II), Cu(II), Co(II) and Pd(II) 

metal were synthesized (Kalita et al. 2015). All complexes were characterized by 

various analysis techniques. The synthesized palladium complex was used as catalyst 

for Suzuki reaction in open atmospheric conditions. Magano and Monfette (2015) 

reported the synthesis of NiCl(o-tolyl)(TMEDA) (TMEDA = 

tetramethylethylenediamine) and used it for coupling reactions. It was combined with 

an appropriate ligand, and applied to a wide range of transformations and reductive 

coupling reactions. The products obtained with these catalysts were superior in 

comparison with those obtained with common Ni sources. Moreover, the complex 

was stable for long time in air as a solid. 

An efficient and recycled bifunctional Salen-Cu(II) catalyst was studied for  

N-arylation of imidazoles and Suzuki-Miyaura cross-coupling (Wang et al. 2015). 

The synthesis and characterization of new octahedral nickel(II) complex with 

monoanionic tridentate N,N,O-donor benzoylhydrazone ligand was reported by 

Suganthy et al (2016). The synthesized complex observed as an effective catalyst in 

the coupling of various aryl bromides with different arylboronic acids at optimized 

conditions. The yields of coupling obtained varied from moderate to excellent. A 

series of new pincer cobalt complexes were synthesized and their catalytic activity 

was carried out for Suzuki-Miyaura cross coupling reactions (Kumar and Bhat 2017). 

Also, Kumar et al. (2017) reported Fe (II) and Cu (II) PNP pincer complexes for 

Suzuki-Miyaura C-C cross coupling reactions. 

2.2 SCHIFF BASE METAL COMPLEX 

Schiff bases are the condensation products of amines with carbonyl 

compounds. Organic compounds containing azomethine group (>C=N) and have the 

general structure R-N=C-R' where R and R' are aryl, alkyl, cycloalkyl or heterocyclic 

groups. Since the mid nineteenth century the complexes of Schiff base ligands known 

(Schiff 1869) for their general preparation. Jorgensen and Werner in 1957 studied on 

Schiff base metal complexes and later theses complexes got important position in the 

coordination chemistry. 
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Transition metals that can form Schiff base complexes and bases have 

reported to be employed as chelating ligands for coordination chemistry. Their metal 

complexes are of significant research interest since many years. Also, N, O and S 

atoms play a vital role as active sites of many  metallobiomolecules in the 

coordination of metals (Brown and Smith 1990). 

These complexes have been extensively studied due to their importance in 

industrial, anticancer, antifungal, antibacterial, herbicidal and antiviral applications 

(Singh et al. 2007; Cozzi 2004; Chandra and Sangeetika 2004).  Biologically 

importance and various catalytic applications of these complexes make them ideal. 

The complexes of Schiff base having oxygen and nitrogen donor atom shows 

unusual configurations and structural labiality which is also sensitive to the molecular 

environment. The complexes of 2-hydroxy Schiff base ligands have been synthesized 

and their crystallographic, structural and magnetic properties were studied in detail 

(Yildiz et al. 1998; Sunatsuki et al. 2002; Sibous et al. 2010). 

A large number of transition metal complexes with Schiff base ligands have 

been studied for their contemporary research (Di Bella et al. 1997). These ligands can 

be bind with metal in bidentate N,O-, tridentate N,O,O-, N,O,N-, N,O,S-, tetradentate 

N,N,O,O-, hexadentate N,N,O,O,S,S- fashion (Scheurer et al. 2005) etc.  

Transition metal complexes (besides Pd) with Schiff base are applied for 

applications that includes polymer industry, dye industry, medicinal chemistry, 

agrochemical, and biological activities (Prakash and Adhikari 2011). 

Schiff bases and their complexes have been reported to be widely employed 

for carrying out ample reactions in synthetic chemistry (Che and Huang 2003). Schiff 

bases have the potential to bind with different metals for formation of stable 

complexes (Jin et al. 2016;  Shi et al. 2007) and also as intermediates in various 

organic reactions. Schiff base complexes pose to be superior as a catalyst for many 

reactions (Pouralimardan et al. 2007).  
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In addition, various Schiff bases have also been examined for their biological 

activities by researchers (Parashar et al. 1988; Akbar Ali et al. 2002; Neelakantan et 

al. 2008). Nickel and Copper complexes with ONNO asymmetric tetradentate Schiff 

base ligand were used in antimicrobial studies for DNA interaction (Abdel-Rahman et 

al. 2017). 

Complexes mostly with palladium and a little with nickel, have been 

extensively used as an active catalysts in the cross coupling reactions. A greener 

approach in the domain of catalysis needs the application of catalysts using cheaper 

and environmentally affectionate metals. With this aim, use of non expensive metals 

like manganese, iron, cobalt, nickel, copper in the synthesis of metal complex and 

further its catalytic activity in cross coupling reactions needs an investigation. 

2.3 SCOPE OF THE WORK 

The synthesis of biaryls is of particular interest to the industry due to their 

wide-ranging application in multidisciplinary fields. The synthesis of these 

compounds demands more efficient and energy conserving methods. Transition metal 

complexes with Schiff base ligand possess distinctive metal bound structures which 

make them the most active catalyst in carbon-carbon coupling reactions. As 

discussed, the palladium and nickel Schiff base complexes are the extensively 

explored catalyst for the cross-coupling reactions. A greener approach in the area of 

catalysis needs the cheap and environmentally affectionate metals for catalytic 

applications. 

The research work addresses the synthesis of Schiff base ligand (ON, ONN, 

OON, ONO and ONNO donor), its complexation with few 3d-transition metals, and 

their characterization followed by the investigation of their catalytic efficiency in 

cross coupling of aryl halides and organoborons. Thesis also describes the synthesis 

of nano-iron (II) and nickel complex of a Schiff base ligand, namely 1-((pyridin-2-

ylimino)methyl)naphthalen-2-ol (NNO donor) using ultrasonic irradiation. These 

complexes were characterized and used for catalyzing the Suzuki-Miyaura cross 

coupling reactions. Lastly, this work presents a study of heterogeneous catalyst of 
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copper Schiff base composite grafted onto graphene oxide (Cu-NH2-GO). The 

catalytic performance of Cu-NH2-GO was studied in the C-C cross coupling of aryl 

halides and phenylboronic acid. 

2.4 OBJECTIVES  

The main objectives of the proposed research work are as follows. 

• To synthesize ligands and its complexes with 3d-transition elements. 

• To synthesize the graphene oxide grafted copper catalyst. 

• To characterize the synthesized ligands and complexes using UV-Vis, FTIR, 

1H-NMR, CHN, SCXRD, and mass spectral analysis. 

• To study the catalytic activity of transition metal complexes in cross coupling 

reactions. 

• To optimize the reaction condition with respect to solvent, time, base, and 

catalyst concentration. 

• To study the scope of the catalytic system to different aromatic substrates and 

the effect of substituents in the activities of catalysts. 





 

 

 

 

 

 

 

 

 

CHAPTER 3 

SYNTHESIS AND CHARACTERIZATION OF METAL 

SCHIFF BASE COMPLEXES (C-1 to C-27) 
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The chapter details the information on the synthesis of ligands and metal complexes 

of Manganese, Iron, Cobalt, Nickel and Copper. This chapter also includes the 

experimental procedures for the catalytic studies performed using the synthesized 

complexes. 

3.1 INTRODUCTION 

Schiff base is a class of organic ligands containing imine skeleton with 

different donor atoms exhibiting fascinating coordination bonds towards the 

numerous metals (Gupta and Sutar 2008; Dhanraj et al., 2013). The chelation 

compatibility of the Schiff bases towards the transition metal ions is also applied in 

the preparation of respective metal complexes. Schiff base metal complexes are well 

known for their easy synthesis, stability and wide applications (Abu-Dief and 

Mohammad 2015; Alias et al. 2014). In addition to these, the metal complexes of 

Schiff base ligands also exhibit various properties, namely, their ability to bind with 

oxygen, photochromism, antibacterial & antifungal properties, catalytic activity in 

olefins hydrogenation, and complexing proficiency towards a few toxic metals (Malik 

et al. 2011; Raman et al. 2007). 

In this chapter, we report the synthesis of O,N-; O,N,N-; O,O,N-; O,N,O-; and 

O,N,N,O-Schiff base ligands and their complexes using manganese, iron, cobalt, 

nickel, and copper as the active metals. Synthesized ligands and complexes have been 

characterized using relevant analytical techniques. 

3.2 MATERIALS AND CHARACTERIZATION TECHNIQUES 

3.2.1 Materials 

All chemicals of Analytical Reagent (AR) grade were used without further 

purification. 4-aminoacetophenone, 3-methoxysalicylaldehyde, 2-amino-5-

bromopyridine, 2-aminopyridine, salicylaldehyde, nickel acetate tetrahydrate, nickel 

chloride hexahydrate, 2-hydroxy-1-naphthaldehyde, 2-aminophenol, copper acetate 

monohydrate, cobalt acetate tetrahydrate, cobalt chloride hexahydrate, ferrous 

chloride hexahydrate, ferric chloride hexahydrate, manganese chloride tetrahydrate, 
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potassium carbonate, and sodium carbonate were procured from Merck India. 

Acetonitrile (ACN), 1,4-dioxane, dimethylformamide (DMF), toluene, ethyl alcohol, 

diethyl ether, dichloromethane (DCM), tetrahydrofuran (THF), potassium tertiary 

butoxide, cesium carbonate, triethylamine, phenylboronic acid and aryl halides were 

purchased from Sigma-Aldrich. 

3.2.2 Characterization techniques 

(a) Magnetic Measurements 

The magnetic susceptibilities of the complexes were done at room temperature on a 

Sherwood UK magnetic balance using (HgCo(NCS)4) as solid calibrant. The solid 

compound was tightly packed into a weighed sample tube to appropriate length (l) 

and the sample weight (m) was noted. Then the packed sample tube was located into 

tube guide of the balance and the reading was noted (R). The mass susceptibility, χg, 

is calculated using the formula: 

 

χg =
Cbal × l × (R-R0)

109 × m
 

Where, l = sample length in the tube (cm) 

m = mass of the sample (g) 

R = instrument measurement for the sample in tube 

R0 = instrument measurement for the empty tube 

Cbal = calibration constant of the balance 

The molar susceptibility was calculated as: 

χ𝑚 = χg × Molecular weight of complex 
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The molar susceptibility was then corrected with diamagnetic contribution. 

The effective magnetic moment, μeff, was calculated using the formula: 

μ
eff

= 2.83√𝑇 × χm  

Where, χm is the molar susceptibility and T is temperature. 

The theoretical magnetic moments were calculated using the formula 

μeff = √n(n +  2)  

with n being the number of unpaired electrons. 

(b) Spectroscopic characterization 

 1H-NMR spectra were recorded at 400 MHz using tetramethyl silane (TMS) as 

an internal standard on Bruker AV 400 instrument. FTIR spectra were recorded on a 

Bruker-Alpha ECO-ATR FTIR spectrophotometer within 400-4000 cm-1 after making 

KBr pellets of the samples. UV-Vis spectra of ligands and complexes were measured 

on Analytik Jena SPECORD S600 UV-Vis spectrophotometer. 

(c) Thermo gravimetric analysis 

Thermogravimetric measurements were performed on (EXSTAR-6000) using 

nitrogen as the carrier gas (flow rate: 50 mL/min). The heating rate was 10 °C/min. 

(d) Mass spectra 

Electron Spray Mass spectra of the ligands and complexes were recorded on 

Waters Q-ToF micro-mass spectrometer with an ESI source. 

(e) Thermogravimetric analysis 

Thermogravimetric measurements were performed on (EXSTAR-6000) using 

nitrogen as the carrier gas (flow rate: 50 mL/min) with heating rate 10 ˚C/min. The C, 
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H and N contents of the compounds were determined using microanalysis 

Thermoflash EA1112 series analyzer. 

(f) Electron microscopy 

Scanning electron microscopy (SEM) analysis was carried out by JEOL-JSM-

6360LV to investigate the morphology of the specimen. Transmission electron 

microscopy (TEM) analysis was carried out by JEM-2100Plus to investigate the 

morphology and size of the specimen.  

(g) X-ray Diffraction analysis 

Powder X-ray diffraction (PXRD) was performed using Joel diffractometer 

with Cu-Kα (λ=1.542 Å) radiation. The Single crystal X-ray diffraction (SCXRD) 

analysis for crystals were completed on a Bruker APEX-II CCD diffractometer with 

Mo Kα radiation (λo = 0.71073 Å) at 296K. The structure was solved using SHELXL-

2007/2014 software and refined by full matrix least square methods. 

(h) Particle size measurement 

Particle size measurement was carried out on Horiba particle size analyzer to 

investigate the size of the compound. 

3.2.3 Synthesis of Schiff base ligand (L-1) 

The solutions of 4-aminoacetophenone (0.135 g, 1.0 mmol) and 

salicylaldehyde (0.122 g, 1.0 mmol) in ethanol were taken in a 50 mL round bottom 

flask and heated to 60 ˚C. This mixture was further refluxed for 3 hours and filtered. 

The obtained compound was washed with diethyl ether and re-crystallized using small 

amount of ethanol followed by drying. A small portion of the synthesized compound 

was used for further characterization. 
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Scheme 3.1 Synthesis of ligand (L-1) 

3.2.4 Synthesis of complexes (C-1 to C-5) 

The complexes of transition metals ions, namely, Mn(II), Fe(III), Co(II), 

Ni(II) and Cu(II)  (C-1 to C-5) with Schiff base ligand were synthesized using simple 

reflux method. In a typical procedure, the solution of metal salt (1.0 mmol) and Schiff 

base ligand (L-1) (2.0 mmol) in 5 mL methanol was refluxed at 50 ˚C for 3 hours. The 

product was filtered and washed with cold methanol and dried. 

 

Scheme 3.2 Synthesis of complexes (C-1 to C-5) 

3.2.5 Synthesis of Schiff base ligand (L-2) 

2-amino 5-bromo pyridine (0.277 g, 1.0 mmol) and salicylaldehyde (0.122 g, 

1.0 mmol) dissolved in ethanol were taken in a 50 mL round bottom flask and heated 
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to 60 ˚C. The reaction mixture was then refluxed for 3 hours and filtered. The 

obtained product then washed with diethyl ether, re-crystallized and dried. 

 

Scheme 3.3 Synthesis of ligand (L-2) 

3.2.6 Synthesis of complexes (C-6 to C-10) 

Schiff base complexes from C-6 to C-10 were synthesized using simple reflux 

method. A solution of metal salt (1.0 mmol) in 5 mL methanol was mixed with the 

ligand (L-2) (2.0 mmol). The resulting solution was then refluxed for 3 hours. The 

product was filtered and washed with cold methanol and dried.  

 

Scheme 3.4 Synthesis of complexes (C-6 to C-10) 
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3.2.7 Synthesis of Schiff base ligand (L-3) 

2-amino 5-bromo pyridine (0.173 g, 1.0 mmol) and 3-methoxysalicylaldehyde 

(0.152 g, 1.0 mmol) were dissolved in ethanol and heated to 60 ˚C in a 50 mL round 

bottom flask. The reaction mixture was then refluxed for 3 hours and filtered. The 

obtained product then washed with diethyl ether and re-crystallized from ethanol and 

dried. 

 

Scheme 3.5 Synthesis of ligand (L-3) 

3.2.8 Synthesis of complexes (C-11 & C-12) 

Schiff base complexes of cobalt and copper (C-11 & C-12) were synthesized 

using cobalt acetate and copper acetate. A solution of metal salt (1.0 mmol) in 5 mL 

ethanol was stirred with the ligand (L-3) (2.0 mmol) in 5 mL ethanol. The resulting 

solution was then refluxed for 3 hours. The product was filtered, washed with 

methanol and dried. 
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Scheme 3.6 Synthesis of complexes (C-11 & C-12) 

3.2.9 Synthesis of Schiff base ligand (L-4) 

4-aminoacetophenone (0.135 g, 1.0 mmol) and 3-methoxysalicylaldehyde 

(0.152 g, 1.0 mmol) were dissolved in ethanol and heated to 60 ˚C in a 50 mL round 

bottom flask. The reaction mixture was refluxed for 3 hours and then filtered. The 

obtained product was then washed with diethyl ether and re-crystallized from ethanol 

and dried. 

 

Scheme 3.7 Synthesis of ligand (L-4) 

3.2.10 Synthesis of complexes (C-13 to C-17) 

Schiff base complexes of Mn(II), Fe(II), Co(II), Ni(II) and Cu(II) (C-13 to C-

17) were synthesized using Schiff base ligand (L-4) and metal salt (Metal acetate or 
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chloride). A solution of metal salt (1.0 mmol) in 5 mL ethanol was mixed with the 

ligand (L-4) (2.0 mmol) in 5 mL ethanol. The resulting mixture was then refluxed for 

3 hours. The product was filtered and washed with methanol and dried in oven at 60 

˚C. 

 

Scheme 3.8 Synthesis of complexes (C-13 to C-17) 

3.2.11 Synthesis of Schiff base ligand (L-5) 

2-aminophenol (0.109 g, 1.0 mmol) and 2-hydroxy-1-naphthaldehyde (0.172 

g, 1.0 mmol) were dissolved in ethanol and heated to 60 ˚C in a 50 mL round bottom 

flask. The reaction mixture was then refluxed for 3 hours and filtered. The obtained 

product then washed with diethyl ether and re-crystallized from ethanol and dried. 
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Scheme 3.9 Synthesis of ligand (L-5) 

3.2.12 Synthesis of complexes (C-18 to C-22) 

Five complexes of Mn(II), Fe(II), Co(II), Ni(II) and Cu(II) (C-18 to C-22) 

were synthesized using simple reflux method. A solution of metal salt (1.0 mmol) in 5 

mL ethanol was mixed with ligand (L-5) (2.0 mmol) in 5 mL ethanol. The resulting 

solution was then refluxed for 3 hours. The product was filtered and washed with cold 

methanol and dried. 
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Scheme 3.10 Synthesis of complexes C-18 to C-22 

3.2.13 Synthesis of Schiff base ligand (L-6) 

In a round bottom flask o-phenylenediamine (0.108 g, 1.0 mmol) and 

salicylaldehyde (0.244 g, 2.0 mmol) were taken in 5 mL of ethanol and refluxed for 3 

hours.  The product was filtered and washed with diethyl ether and dried at 60 ˚C. 

 

Scheme 3.11 Synthesis of ligand (L-6) 
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3.2.14 Synthesis of complexes (C-23 to C-27) 

Metal Schiff base complexes (C-23 to C-27) were prepared by using simple 

reflux method. The dissolved solution of metal salts (1.0 mmol) in ethanol (5 mL) was 

slowly added to the ligand (L-6) (0.316 g 1.0 mmol) solution in ethanol (10 mL) 

under constant stirring and refluxed for 2 hours. Reaction was monitored by color 

change and precipitate formation. The obtained precipitate was filtered, washed with 

ethanol and diethyl ether to remove unreacted Schiff base. Product was dried at 60 ˚C 

for 5 hours. 

 

Scheme 3.12 Synthesis of complexes (C-23 to C-27) 
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3.3 RESULTS AND DISCUSSION 

The synthesized ligands and their metal complexes were characterized by 

FTIR, mass spectra and elemental analysis. All the results found were in good 

agreement with the proposed structure. 1H NMR spectral analysis of the ligands also 

validates the structures which are proposed for the ligands. Also, the TGA results of 

the complexes matches with structures of the complexes. 

3.3.1 Physical and analytical studies 

Analytical data and the physical properties of the ligands and the complexes 

are given in the (Table 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7). The elemental analysis (C, 

H and N) data were in good agreement with the proposed empirical formulae of the 

complexes.  

Table 3.1 Physical properties and analytical data of ligands (L-1 to L-6). 

 

Compounds 

 

Color 

 

Yield (%) 

Elemental analysis data 

Found 

(Calculated) 

C % H % N % 

L-1 
Light 

yellow 
80 

75.94 

(75.30) 

5.40 

(5.48) 

5.02 

(5.85) 

L-2 
Dark 

Yellow 
75 

52.50 

(52.01) 

3.01 

(3.27) 

5.54 

(5.77) 

L-3 Red 80 
75.94 

(75.90) 

5.40 

(5.48) 

5.50 

(5.85) 

L-4 Orange 84 
59.92 

(59.83) 

4.35 

(4.33) 

4.45 

(4.63) 

L-5 
Turmeric 

Yellow 
82 

77.40 

(77.55) 

4.77 

(4.98) 

5.02 

(5.32) 

L-6 
Turmeric 

Yellow 
82 

75.22 

(75.93) 

4.90 

(5.10) 

8.74 

(8.86) 
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Table 3.2 Physical properties and analytical data of Complex (C-1 to C-5). 

 

Compounds 

 

Color 

 

Yield (%) 

Elemental analysis data 

Found 

(Calculated) 

C % H % N % 

C-1 Light orange 60 
67.62 

(67.80) 

4.34 

(4.55) 

5.14 

(5.27) 

C-2 Dark purple 84 
59.92 

(59.83) 

4.35 

(4.33) 

4.45 

(4.63) 

C-3 Orange 68 
64.31 

(64.43) 

4.75 

(4.90) 

4.56 

(4.70) 

C-4 Bright green 78 
67.00 

(67.07) 

4.81 

(4.88) 

5.11 

(5.21) 

C-5 Brown 80 
66.68 

(66.72) 

4.40 

(4.48) 

5.17 

(5.19) 

 

Table 3.3 Physical properties and analytical data of complex (C-6 to C-10). 

 

Compounds 

 

Color 

 

Yield (%) 

Elemental analysis data 

Found 

(Calculated) 

C % H % N % 

C-6 Light yellow 75 
47.62 

(47.48) 

2.78 

(2.66) 

9.04 

(9.23) 

C-7 Dark purple 82 
47.92 

(47.41) 

2.83 

(2.65) 

9.10 

(9.21) 

C-8 Orange 71 
42.51 

(42.32) 

3.75 

(3.33) 

6.16 

(6.17) 

C-9 Bright green 76 
42.78 

(42.69) 

2.94 

(2.82) 

7.42 

(7.11) 

C-10 Brown 81 
47.00 

(46.81) 

2.77 

(2.62) 

9.17 

(9.10) 
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Table 3.4 Physical properties and analytical data of complex (C-11 & C-12) 

 

Compounds 

 

Color 

 

Yield (%) 

Elemental analysis data 

Found 

(Calculated) 

C % H % N % 

C-11 Red 78 
67.00 

(67.07) 

4.81 

(4.88) 

5.11 

(5.21) 

C-12 Brown 82 
52.02 

(52.32) 

3.35 

(3.55) 

9.05 

(9.39) 

 

Table 3.5 Physical properties and analytical data of complex (C-13 to C-17) 

 

Compounds 

 

Color 

 

Yield (%) 

Elemental analysis data 

Found 

(Calculated) 

C % H % N % 

C-13 Red 60 
64.88 

(64.98) 

4.47 

(4.77) 

4.64 

(4.74) 

C-14 Dark brown 64 
64.50 

(64.88) 

4.75 

(4.76) 

4.52 

(4.73) 

C-15 Brown 68 
64.31 

(64.43) 

4.75 

(4.90) 

4.56 

(4.70) 

C-16 Green 68 
64.60 

(64.57) 

4.61 

(4.74) 

4.52 

(4.71) 

C-17 Brown 78 
64.18 

(64.04) 

4.43 

(4.70) 

4.70 

(4.67) 
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Table 3.6 Physical properties and analytical data of complex (C-18 to C-22). 

 

Compounds 

 

Color 

 

Yield (%) 

Elemental analysis data 

Found 

(Calculated) 

C % H % N % 

C-18 Light green 68 
70.62 

(70.47) 

4.24 

(4.17) 

4.66 

(4.83) 

C-19 Light brown 74 
70.12 

(70.36) 

4.30 

(4.17) 

4.85 

(4.83) 

C-20 Dark blue 80 
54.54 

(54.50) 

3.82 

(3.77) 

3.68 

(3.74) 

C-21 Brown 78 
70.00 

(70.01) 

4.11 

(4.15) 

4.71 

(4.80) 

C-22 Green 82 
69.58 

(69.44) 

4.00 

(4.11) 

4.37 

(4.46) 

 

Table 3.7 Physical properties and analytical data of complex (C-23 to C-27) 

 

Compounds 

 

Color 

 

Yield (%) 

Elemental analysis data 

Found 

(Calculated) 

C % H % N % 

C-23 Light yellow 65 
54.62 

(54.32) 

3.34 

(3.62) 

6.64 

(6.34) 

C-24 Dark purple 84 
54.92 

(54.21) 

3.35 

(3.64) 

6.45 

(6.32) 

C-25 Brown 64 
64.30 

(64.35) 

3.67 

(3.78) 

7.50 

(7.50) 

C-26 Maroon 78 
64.20 

(64.40) 

3.55 

(3.78) 

7.40 

(7.51) 

C-27 Brown 82 
63.68 

(63.57) 

3.64 

(3.73) 

7.37 

(7.41) 

3.3.2 FTIR spectra 

The synthesized ligand (L-1) and complexes (C-1 to C-5) molecules were 

examined by the FTIR analysis and results are represented (Fig. 3.3). In addition, the 

individual FTIR spectra of ligand (L-1) as well as complex (C-1) have been presented 
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in Fig. 3.1 and 3.2, respectively. FTIR spectra of the ligand (L-1) shows intense peak 

at 1577 cm-1 corresponds to an azomethine (CH=N) group and O-H peak appears at 

3332 cm-1. The peak in the region 1269 cm-1 is indicative of phenolic (-C-OH) ν(C-O) 

stretching. Thus, the ligand is bidentate in nature with N, O coordination sites. In the 

FTIR spectra of complexes, the appearance of a band for ν(CH=N) in the range of 

1588-1606 cm-1 which indicates a shift to the higher frequencies by 10-19 cm-1 

compared to ligand (L-1) indicating the complexion of ligand with metal atom 

through nitrogen atom. Phenolic ν(C-O) stretching in complexes is shifted by 10-15 

cm-1 towards lower wave numbers compared to ligand indicating coordination of the 

phenolic oxygen of ligand to the metal ion (Kurup et al. 2011). The new bands in the 

range 580-672 cm-1 in complexes, tentatively assign coordination with oxygen atom. 

The bands which appear around 400-500 cm-1 in the spectra of complexes may be 

assigned to the coordination of metal with nitrogen atom. 

 

Figure 3.1 FTIR spectrum of ligand (L-1) 
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Figure 3.2 FTIR spectrum of complex (C-1) 

 

Figure 3.3 FTIR spectra of ligand (L-1) and complexes (C-1 to C-5) 

FTIR spectra of ligand (L-2) and the complexes (C-6 to C-10) are shown in 

the Figure 3.6. Additionally, the individual FTIR spectra of ligand (L-2) as well as 

complex (C-6) have been presented in Fig. 3.4 and 3.5, respectively. The strong band 
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in ligand at 1604 cm-1 assignable to azomethine ν(C=N) group. The peak in the region 

1278 cm-1 is indicative of phenolic ν(C-O) stretching. Moreover, for complexes, the 

appearance of a band for ν(CH=N) in the range of 1607-1627 cm-1 indicates a shifting 

to the higher frequencies compared to ligand (L-2) indicating the complexion of 

ligand with metal atom through nitrogen atom has been formed. Phenolic ν(C-O) 

stretching in complexes is shifted from 1278 cm-1 to 1202-1185 cm-1 towards lower 

wave numbers indicating coordination of the phenolic oxygen of ligand to the metal 

ion. 

 

Figure 3.4 FTIR spectrum of ligand (L-2) 
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Figure 3.5 FTIR spectrum of complex (C-6) 

 

Figure 3.6 FTIR spectra of ligand (L-2) and complexes (C-6 to C-10) 

FTIR spectra of ligand (L-3) and the complexes (C-11 & C-12) are shown in 

the Figure 3.7 to 3.9. The strong band in ligand at 1606.80 cm-1 assignable to 

azomethine ν(C=N) group and O-H peak appears at 3448.98 cm-1. The peak in the 
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region 1200 cm-1 is indicative of phenolic ν(C-O) stretching. Moreover, for 

complexes, the appearance of a band for ν(CH=N) in the range of 1604-1605 cm-1 

indicates a shifting to the lower wave numbers compared to ligand (L-3) indicating 

the complexion of ligand with metal atom through nitrogen atom has been formed. 

Phenolic ν(C-O) stretching in complexes is shifted from 1200 cm-1 to 1193-1188 cm-1 

towards lower wave numbers indicating coordination of the phenolic oxygen of ligand 

to the metal ion. 

 

Figure 3.7 FTIR spectrum of ligand (L-3) 
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Figure 3.8 FTIR spectrum of complex (C-11) 

 

Figure 3.9 FTIR spectrum of complex (C-12) 

The synthesized ligand (L-4) and complexes (C-13 to C-17) molecules were 

examined by the FTIR analysis and results are represented (Fig. 3.12). In addition, the 

individual FTIR spectra of ligand (L-4) as well as complex (C-14) have been 



Chapter 3 

47 

 

presented in Fig. 3.10 and 3.11, respectively. FTIR spectra of the ligand (L-4) shows 

intense peak at 1588.62 cm-1 corresponding to an azomethine (CH=N) group and O-H 

peak appears at 3692 cm-1. In the FTIR spectra of complexes, the appearance of a 

band for ν(CH=N) in the range of 1591.85-1593.46 cm-1 which indicates a shifting to 

the higher wave number compared to ligand indicating the complexion of the ligand 

with metal atom through a nitrogen atom. The peak in the region 1261.90 cm-1 is 

indicative of phenolic ν(C-O) stretching. Phenolic ν(C-O) stretching in complexes is 

shifted from 1261.90 cm-1 to 1235-1263.09 cm-1 indicating coordination of the metal 

ion to the phenolic oxygen of ligand. The new bands in the range 580-672 cm-1 in 

complexes, tentatively assign coordination of metal with oxygen atom ν(M-O) 

(Sravanthi et al. 2016). The bands which appear around 400-500 cm-1 in the spectra of 

complexes may be assigned to the coordination of metal with a nitrogen atom (More 

et al. 2017). 

 

Figure 3.10 FTIR spectrum of ligand (L-4) 
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Figure 3.11 FTIR spectrum of complex (C-14) 

 

Figure 3.12 FTIR spectra of ligand (L-4) and complexes (C-13 to C-17) 

FTIR spectra of ligand (L-5) and the complexes (C-18 to C-22) are shown in 

the Figure 3.15. In addition, the individual FTIR spectra of ligand (L-5) as well as 

complex (C-19) have been presented in Fig. 3.13 and 3.14, respectively. The strong 
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band in ligand at 1630.01 cm-1 assignable to azomethine ν(C=N) group and O-H peak 

appears at 3448.98 cm-1. The peak in the region 1240.32 cm-1 is indicative of phenolic 

ν(C-O) stretching. Moreover, for complexes, the appearance of a band for ν(CH=N) in 

the range of 1597-1628 cm-1 indicates a shifting to the lower wave numbers compared 

to ligand (L-5) indicating the complexion of ligand with metal atom through nitrogen 

atom has been formed. Phenolic ν(C-O) stretching in complexes is shifted from 

1240.32 cm-1 to 1248-1359 cm-1 towards higher wave numbers indicating 

coordination of the phenolic oxygen of ligand to the metal ion. 

 

Figure 3.13 FTIR spectrum of ligand (L-5) 
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Figure 3.14 FTIR spectrum of complex (C-19) 

 

Figure 3.15 FTIR spectra of ligand (L-5) and complexes (C-18 to C-22) 

FTIR spectra of ligand (L-6) and the complexes (C-23 to C-27) are shown in 

the Figure 3.18. In addition, the individual FTIR spectra of ligand (L-6) as well as 

complex (C-24) have been presented in Fig. 3.16 and 3.17, respectively. The strong 
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band in ligand at 1615 cm-1 assignable to azomethine ν(C=N) group. The peak in the 

region 1275 cm-1 is indicative of phenolic ν(C-O) stretching. In the FTIR spectra of 

complexes, the appearance of a band for ν(CH=N) in the range of 1608-1599 cm-1 

which indicates a shifting to the lower frequencies compared to ligand (L-6) 

indicating the complexion of ligand with metal atom through nitrogen atom (Garga et 

al. 2000). Phenolic ν(C-O) stretching in complexes is shifted from 1275 cm-1 to 1251-

1245 cm-1 towards lower wave numbers indicating coordination of the phenolic 

oxygen of ligand to the metal ion. The new bands in the range 503-541 cm-1 in 

complexes, can be tentatively assigned to coordination of metal with oxygen atom. 

The coordination through azomethine N is further supported by the appearance of 

band at 420-455 cm-1 in metal complexes can be assigned to νM–N (Chandra and 

Kumar 2005). 

 

Figure 3.16 FTIR spectrum of ligand (L-6) 
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Figure 3.17 FTIR spectrum of complex (C-24) 

 

Figure 3.18 FTIR spectra of ligand (L-6) and complexes (C-23 to C-27) 
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3.3.3 UV-Vis spectra 

UV-Vis spectra of the complexes along with their corresponding ligands were 

recorded as a confirmatory measure to imply the complex formation (Fig. 3.19 to 

3.24). The UV-Vis spectra of synthesized ligand (L-1) and complexes (C-1 to C-5) 

were recorded in ethanol solvent (Fig. 3.19). Quartz cells with a 1 cm pathlength were 

employed in the 200-700 nm spectral range. In ligand (L-1), the peak in the region 

218 nm is assigned to the 𝜋 - 𝜋* transitions of aromatic rings. The peak at 310-350 

nm involves n - 𝜋* transition of the CH=N group (Raman et al. 2007). Complexes (C-

1 to C-5) show bands from 210 nm to 563 nm, which clearly indicates that the 

formation of the complex. 

 

Figure 3.19 UV-Vis spectra of ligand (L-1) and complexes (C-1 to C-5) 

UV-Vis spectra of the complexes (C-6 to C-10) along with ligand (L-2) were 

recorded as a confirmatory measure to imply the complex formation (Fig. 3.20). In all 

the spectra recorded, we observed the change in the absorption band from the ligand 

to the complex which clearly indicates that the formation of the complex. Moreover, 

the absorption bands which we observed in the free ligand spectrum have been shifted 

to lower energy region in the spectra of complexes because of the ligand coordination 
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with a metal ion. These transitions are due to intra-ligand charge transfer transitions 

(ILCT) and ligand to metal charge transfer transitions (LMCT) (Kumar and Bhat 

2017). 

 

Figure 3.20 UV-Vis spectra of ligand (L-2) and complexes (C-6 to C-10) 

Ligand (L-3) shows peaks at 261 nm and 327 nm which are due to 𝜋 - 𝜋*, n - 

𝜋* transitions, respectively (Abd El-Halim et al. 2017). In case of complexes, peaks at 

281 nm, 310 nm, 403 nm (C-11) and 300 nm, 450 nm (C-12) were observed. In the 

spectra recorded, we observed the change in the absorption band from the ligand to 

the complex which clearly indicates that the formation of the complex (Fig. 3.21). 

The peak in the region 222 nm in ligand (L-4) is assigned to the 𝜋 - 𝜋* 

transitions of aromatic rings. The peak at 318 nm involves n - 𝜋* transition of the 

CH=N group. The complexes (C-13 to C-17) show bands from 220-500 nm which 

clearly indicates that the formation of the complex (Fig. 3.22). 
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Figure 3.21 UV-Vis spectra of ligand (L-3) and complexes (C-11 & C-12) 

 

Figure 3.22 UV-Vis spectra of ligand (L-4) and complexes (C-13 to C-17) 

UV-Vis spectra of the complexes (C-18 to C-22) along with ligand (L-5) were 

recorded as a confirmatory measure to imply the complex formation. In the spectra 
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recorded (Fig. 3.23), we observed the change in the absorption band from the ligand 

to the complex which noticeably indicates that the formation of the complex. 

 

Figure 3.23 UV-Vis spectra of ligand (L-5) and complexes (C-18 to C-22) 

The prepared complexes (C-23 to C-27) were confirmed by using UV-Vis 

absorption measurements in ethanol solvent. In the UV-Vis absorption spectrum of 

ligand (L-6), the molecule shows maximum wavelength values at 212 nm and 257 nm 

which are attributed to 𝜋 - 𝜋* transition. Similarly, 325 nm and 387 nm can be 

assigned to imino n - 𝜋* transitions in ligand. Compared to the free ligand, the imine 

n - 𝜋* transitions of the complexes were shifted to some extent, possibly the 

coordination of nitrogen atom of the ligand imine group to the metal ion (Temel and 

Şekerci 2001). Moreover, quite higher absorption intensity band at 484 nm (20,661.2 

cm-1) for complex (C-25) was observed, which confirms the square planar geometry 

of C-25. Similarly, absorption at 470 nm (21,276.5 cm-1) in complex (C-26) indicates 

the square planar geometry of C-26 (Rashad et al. 2014). 
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Figure 3.24 UV-Vis spectra of ligand (L-6) and complexes (C-23 to C-27) 

3.3.4 Mass spectra 

The electron impact mass spectra of the Schiff base ligand and metal 

complexes were recorded and investigated to confirm the molecular weight of the 

compounds. The important mass fragmentations of the ligands and complexes are 

shown in the spectra (Figs. 3.25 to 3.57). The expected molecular weight and the 

observed molecular weight of the ligands and complexes are given in the Table 3.8. 

From the table, it is confirmed that the observed molecular weight of the compounds 

is matches with expected molecular weight of the compounds.  
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Table 3.8 ESIMS data of ligands and complexes 

Compound 
Expected 

mass 

Observed 

mass 
Compound 

Expected 

mass 

Observed 

mass 

L-1 239.00 239.09 C-12 594.00 594.55 

L-2 277.12 277.00 C-13 591.13 592.00 

L-3 306.00 306.10 C-14 592.13 592.52 

L-4 269.11 269.09 C-15 380.01 380.10 

L-5 263.09 263.00 C-16 594.13 594.24 

L-6 316.12 317.10 C-17 599.12 599.60 

C-1 531.11 531.00 C-18 579.11 579.61 

C-2 567.08 568.10 C-19 580.11 580.44 

C-3 535.11 535.90 C-20 374.00 374.70 

C-4 534.11 535.85 C-21 582.11 582.00 

C-5 539.10 539.00 C-22 587.10 587.90 

C-6 606.90 607.00 C-23 441.00 441.05 

C-7 607.90 607.55 C-24 441.99 442.25 

C-8 452.95 452.50 C-25 373.04 373.00 

C-9 391.93 391.80 C-26 372.04 373.10 

C-10 612.89 612.30 C-27 377.04 378.00 

C-11 482.96 482.85 
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Figure 3.25 ESI mass spectrum of ligand (L-1) 

 

Figure 3.26 ESI mass spectrum of ligand (L-2) 
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Figure 3.27 ESI mass spectrum of ligand (L-3) 

 

Figure 3.28 ESI mass spectrum of ligand (L-4) 
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Figure 3.29 ESI mass spectrum of ligand (L-5) 

 

Figure 3.30 ESI mass spectrum of ligand (L-6) 
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Figure 3.31 ESI mass spectrum of complex (C-1) 

 

Figure 3.32 ESI mass spectrum of complex (C-2) 
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Figure 3.33 ESI mass spectrum of complex (C-3) 

 

Figure 3.34 ESI mass spectrum of complex (C-4) 
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Figure 3.35 ESI mass spectrum of complex (C-5) 

 

Figure 3.36 ESI mass spectrum of complex (C-6) 
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Figure 3.37 ESI mass spectrum of complex (C-7) 

 

Figure 3.38 ESI mass spectrum of complex (C-8) 
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Figure 3.39 ESI mass spectrum of complex (C-9) 

 

Figure 3.40 ESI mass spectrum of complex (C-10) 
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Figure 3.41 ESI mass spectrum of complex (C-11) 

 

Figure 3.42 ESI mass spectrum of complex (C-12) 
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Figure 3.43 ESI mass spectrum of complex (C-13) 

 

Figure 3.44 ESI mass spectrum of complex (C-14) 
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Figure 3.45 ESI mass spectrum of complex (C-15) 

 

Figure 3.46 ESI mass spectrum of complex (C-16) 
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Figure 3.47 ESI mass spectrum of complex (C-17) 

 

Figure 3.48 ESI mass spectrum of complex (C-18) 
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Figure 3.49 ESI mass spectrum of complex (C-19) 

 

Figure 3.50 ESI mass spectrum of complex (C-20) 
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Figure 3.51 ESI mass spectrum of complex (C-21) 

 

Figure 3.52 ESI mass spectrum of complex (C-22) 
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Figure 3.53 ESI mass spectrum of complex (C-23) 

 

Figure 3.54 ESI mass spectrum of complex (C-24) 
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Figure 3.55 ESI mass spectrum of complex (C-25) 

 

Figure 3.56 ESI mass spectrum of complex (C-26) 
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Figure 3.57 ESI mass spectrum of complex (C-27) 

3.3.5 1H NMR spectrum of ligand and complex 

1H NMR spectra were recorded at 400 MHz for the ligand and complex which 

further provided their structural confirmation (Table 3.9). The 1H NMR spectra of the 

ligands are represented in the figures (Figs 3.58 to 3.63).  

The 1H NMR spectrum of ligand (L-1) represents the singlet peak at δ 12.90 

which corresponds to the phenolic proton (Fig. 3.58). The peak at δ 8.62 describes the 

characteristic peak of azomethine proton. The presence of a multiplet at δ 7.00-8.02 is 

due to the aromatic protons. The spectrum displays peaks at δ 2.60 due to methyl 

protons. 

The 1H NMR spectrum of ligand (L-2) represents the singlet peak at δ 12.60-

12.80 which corresponds to the phenolic proton (Fig. 3.59). The peak at δ 9.40-9.50 

describes the characteristic peak of azomethine proton. The presence of a multiplet at 

δ 6.90-8.65 is due to the aromatic protons. 

The 1H NMR spectrum of ligand (L-3) represents the singlet peak at δ 12.74-

12.80 which corresponds to the phenolic proton (Fig. 3.60). The peak at δ 9.0-9.43 
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describes the characteristic peak of azomethine proton. The presence of a multiplet at 

δ 6.88-8.63 is due to the aromatic protons. The spectrum displays peaks at δ 3.81 due 

to methoxy protons (-OCH3). 

The 1H NMR spectrum of ligand (L-4) represents the singlet peak at δ 12.80 

which corresponds to the phenolic proton (Fig. 3.61). The peak at δ 9.02 describes the 

characteristic peak of azomethine proton. The presence of a multiplet at δ 6.93-8.07 is 

due to the aromatic protons. The methyl protons of O=C-CH3 appears at δ 3.36 ppm 

and singlet of -OCH3 appear at δ 3.85 ppm. 

The 1H NMR spectrum of ligand (L-5) represents the singlet peaks at δ 15.71-

15.74 which corresponds to the phenolic proton of naphthalene ring (Fig. 3.62) and 

singlet peak at δ 10.35 which corresponds to the phenolic proton of benzene ring. The 

peak at δ 9.45-9.52 describes the characteristic peak of azomethine proton. The 

presence of a multiplet at δ 6.79-7.97 is due to the aromatic protons. Moreover, the 

shift of the peak at δ 15.71-15.74 in ligand (L-5) to δ 15.91 in the spectrum of 

complex (C-21) confirms the bonding between phenolic oxygen with nickel ions (Fig. 

3.64). Also, the shift in the peak of azomethine proton (δ 9.97) as well as in aromatic 

protons (δ 6.65-8.67) was obsereved. 

The 1H NMR spectrum of ligand (L-6) portrays the well characteristic singlet 

peaks at δ 12.90 which corresponds to the phenolic proton (Fig. 3.63). Similarly, the 

peak at δ 8.9-9.0 represents the characteristic peak of azomethine proton. The 

presence of a multiplet at δ 6.95-7.65 is due to the aromatic protons (Ar-H). The 

spectrum displays all the characteristic peaks without any impure peak confirming the 

prepared Schiff base ligand (L-6). 
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Table 3.9 1H NMR shifts of ligands and complex 

Compound Chemical shift (ppm) 

L-1 δ 12.90 (s, -OH), 8.62 (s, 1H), 7.00-8.02 (m, 8H), 2.60 (s, 3H) 

L-2 δ 12.60-12.80 (s, -OH), 9.40-9.50 (s, 1H), 6.90-8.65 (m, 7H) 

L-3 
δ 12.74-12.80 (s, -OH), 9.0-9.43 (s, 1H), 6.88-8.63 (m, 7H), 

3.81 (s, 3H) 

L-4 
δ 12.80 (s, -OH), 9.02 (s, 1H), 6.93-8.07 (m, 8H), 3.36 (s, 3H), 

3.84 (s, 3H) 

L-5 
δ 15.71-15.74 (s, -OH), 10.35 (s, -OH), 9.45-9.52 (s, 1H), 

6.79-7.97 (m, 10H) 

L-6 δ 12.90 (s, -OH), 8.9-9.0 (s, 1H), 6.95-7.65 (m, 12H) 

C-21 δ 15.91 (s, -OH), 9.97 (s, 1H), 6.65-8.67 (m, 10H) 
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Figure 3.58 1H NMR of ligand (L-1) 

 

Figure 3.59 1H NMR of ligand (L-2) 
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Figure 3.60 1H NMR of ligand (L-3) 

 

Figure 3.61 1H NMR of ligand (L-4) 
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Figure 3.62 1H NMR of ligand (L-5) 

 

Figure 3.63 1H NMR of ligand (L-6) 
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Figure 3.64 1H NMR of complex (C-21) 

3.3.6 Thermogravimetric analysis 

The purpose of thermal study is to confirm the course of the degradation and 

the presence of the hydrated water molecules in the complexes. Complexes were 

subjected to thermal analysis in order to interpret the stability as well as the structural 

information. C-2, C-3, C-4 and C-5 which are the complex of ligand L-1 show typical 

TGA curves (Fig. 3.65) representing single step dissociation of the complexes. The 

dissociation of the ligands is observed well near at temperature 500 ˚C indicating the 

stability of the complex formed. 

 



Chapter 3 

82 

 

 

Figure 3.65 TGA curves of complexes (C-2 to C-5) 

TGA curve for C-9 corresponding to cobalt complex of ligand L-2 is shown in 

Fig. 3.66. Complex C-9 was subjected to thermal analysis in order to interpret the 

stability as well as the structural information. The thermogravimetric analysis of 

complex proceeds in three steps with 16.90% mass loss due to acetate group 

decomposition. Further, 49.57% residual mass which can be attributed to the 

decomposition of ligand moiety. Decomposition of cobalt oxide can be seen with the 

remaining percentage mass loss. There is no peak observed from 100 to 200 °C which 

confirms that there is no coordinated water molecules present in the complex 

(Fasihizad et al. 2016). In case of complex (C-11) (Fig. 3.67), decomposition of 

complex was carried out with the ligand dissociation (31.40% and 35.53%). The 

remaining percentage mass loss can be assigned for cobalt oxide residue. 
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Figure 3.66 TGA curve of complex (C-9) 

 

Figure 3.67 TGA curves of complex (C-11) 

The thermogravimetric analysis of complex (C-15) proceeds in four steps with 

4.21% mass loss due to water molecule. Decomposition of chloride ion can be seen 

with the 18.42 percentage mass loss. Further, 40.17% residual mass which can be 
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attributed to the decomposition of half ligand moiety (Fig. 3.68). The other half part 

of ligand decomposed with 35.02% mass loss. Decomposition of cobalt oxide can be 

seen with the remaining percentage mass loss. 

 

Figure 3.68 TGA curves of complex (C-15) 

The thermogravimetric analysis of complex (C-18) proceeds in one step with 

decomposition of ligand molecule. Decomposition of ligand moiety can be seen with 

the 54.12 percentage mass loss. Decomposition of manganese oxide can be seen with 

the remaining percentage mass loss (Fig. 3.69). In case of C-19, the first weight loss 

of 11.88% in the temperature range 280 to 380 ˚C indicated by the thermogram is due 

to loss of loosely bound ligand moiety. The second loss of 18.50% in the temperature 

range of 400 to 496 ˚C is attributed to decomposition of ligand moiety. The third 

weight loss of 27.00% indicates removal of ligand. The thermogravimetric analysis of 

complex (C-21) indicates that removal of ligand (L-5) proceeds in single step with 

64.00% mass loss with remaining 25.02% residual mass which can be attributed to 

formation of metal oxides (Fig. 3.96). Complex showed complete decomposition at 

≥520 ˚C. Absence of peak from 100 to 200 ˚C confirms that no coordinated water 
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molecule present in the complex (C-21). Losses of weight are in agreement with the 

calculated values. 

 

Figure 3.69 TGA curves of complexes (C-18, C-19 & C-21) 

The thermal decomposition curves for the complex C-25 and C-26 at a 

temperature range from 30 ˚C to 700 ˚C are given in Fig. 3.70.  The 

thermogravimetric analysis of complexes (C-25 & C-26) indicates that removal of 

ligand (L-6) proceeds in single step with 84.98% mass loss with remaining 15.02% 

residual mass which can be attributed to formation of metal oxides. Complexes 

showed complete decomposition at ≥450 ˚C. Absence of peak from 100 to 200 ˚C 

confirms that no coordinated water molecule present in both the complex. Losses of 

weight are in agreement with the calculated values. 
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Figure 3.70 TGA curves of complexes (C-25 & C-26) 

3.3.7 Magnetic Susceptibility Measurements 

Room temperature magnetic moments of these complexes were found. Values 

obtained are shown in Table 3.10. The magnetic moment for manganese complex C-

1, C-6, C-13, C-18 and C-23 was found in the range 1.35-1.80 BM, which indicates 

that one unpaired electron is present in the complex (low spin). The magnetic moment 

for iron complexes C-2 is 1.70 BM (paramagnetic). The magnetic moment for iron 

complex C-14, C-19 was found in the range 3.85-4.25 BM. Iron complexes (C-14 and 

C-19) are paramagnetic in nature with four unpaired electrons. Magnetic moment of 

iron complex C-7 and C-24 was found 0 BM, which indicates that no unpaired 

electron is present in both the complex. Cobalt complexes, C-3, C-8, C-11, C-15, C-

20 and C-25 are paramagnetic low-spin complexes with magnetic moments in the 

range 1.09-1.75 BM suggesting the presence of Co2+. Magnetic moment for the nickel 

complex (C-4) is 0 BM suggesting that diamagnetic complex. Similarly, the zero 

effective magnetic moment of nickel complex C-9, C-21 and C-26 clearly confirms 

the absence of unpaired electrons. Magnetic moment for the nickel complex C-16 is 

2.23 BM suggesting that paramagnetic complex. The magnetic moment for copper 
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complexes (C-5, C-10, C-12, C-17, C-22 and C-27) was observed in the range of 

1.15-1.54 BM.  

Table 3.10 Magnetic moment and proposed geometry of the complexes 

Compound 
μ eff. 

(BM) 
Geometry Compound 

μ eff. 

(BM) 
Geometry 

C-1 1.80 Tetrahedral C-15 1.26 
Trigonal 

bipyramidal 

C-2 1.70 
Trigonal 

bipyramidal 
C-16 2.23 Octahedral 

C-3 1.73 Tetrahedral C-17 1.15 Octahedral 

C-4 Zero Square planar C-18 1.17 Octahedral 

C-5 1.65 Tetrahedral C-19 4.10 Octahedral 

C-6 1.35 Octahedral C-20 1.09 
Trigonal 

bipyramidal 

C-7 Zero Octahedral C-21 Zero Octahedral 

C-8 1.75 
Trigonal 

bipyramidal 
C-22 1.54 Octahedral 

C-9 Zero Square planar C-23 1.80 Octahedral 

C-10 1.40 Octahedral C-24 Zero Octahedral 

C-11 1.08 
Trigonal 

bipyramidal 
C-25 1.23 

Square 

planar 

C-12 1.35 Octahedral C-26 Zero 
Square 

planar 

C-13 1.75 Octahedral C-27 1.45 Tetrahedral 

C-14 4.25 Octahedral 

3.3.8 Crystal data 

Ligands and complex crystal were obtained by recrystallization using 50% 

DCM in ethanol. The X-ray diffraction studies for these crystals were performed on a 
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Bruker APEX-II CCD diffractometer with Mo Kα radiation (λo = 0.71073 Å) at 296K. 

The structure was solved using SHELXL-2007/2014 software and refined by full 

matrix least square methods. The crystallographic data of the ligand and complex are 

shown in Table 3.11. The molecular structures of L-1, its complex C-5, and L-2 are 

shown in (Fig. 3.71, 3.72, and 3.73, respectively). 

Table 3.11 Crystallographic data of the ligand L-1, its complex C-5, and ligand L-2 

Compound L-1 C-5 L-2 

Chemical formula C15H13NO2 C30H24CuN2O4 C12H9BrN2O 

Crystal system Monoclinic Orthorhombic Monoclinic 

Space group P 21/C P c a 21 P 21/C 

Unit cell dimensions    

a (Å) 

b (Å) 

c (Å) 

α (˚) 

β (˚) 

γ (˚) 

14.7983 (4) 

7.4185 (2) 

11.5988 (3) 

90 

106.877 (2) 

90 

28.3587 (12) 

8.0006 (4) 

10.6118 (4) 

90 

90 

90 

5.79290(10) 

8.9062(2) 

21.6227(5) 

90 

93.0550(10) 

90 

Z 2 4 4 

T (K) 296 296 296 

V (Å3) 1218.49 2407.68 1113.99(4) 

R-Factor (%) 4.64 5.51 3.94 
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Figure 3.71 Single crystal structure of ligand L-1 

 

Figure 3.72 Single crystal structure of complex C-5 
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Figure 3.73 Single crystal structure of ligand L-2 

Ligand L-4 crystal was obtained by slow evaporation method in ethanol. The 

crystallographic data of the ligand is shown in Table 3.12. The molecular structure of 

L-4 is shown in Fig. 3.74. 

 

Figure 3.74 Single Crystal structure of ligand L-4 
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Table 3.12 Crystallographic data of the ligand (L-4) 

Compound L-4 

Chemical formula C15H15NO3 

Crystal system Monoclinic 

Space group P 21/c 

Unit cell dimensions 

a (Å) 

b (Å) 

c (Å) 

α (˚) 

β (˚) 

γ (˚) 

 

14.932 (4) 

6.913 (3) 

13.973 (4) 

90 

113.530 (4) 

90 

Z 4 

T (K) 296 

Radiation (λ, Å) 
Mo Kα (λ = 0.71073 Å) graphite 

monochromator 

Number of reflections 2240 

Number of refined parameters 184 

Residual electron density 

(max/min), e/ Å3 
0.188/-0.200 

V (Å3) 1322.4 (7) 

R-Factor (%) 8.17 

The crystallographic data of complex (C-26 and C-27) is shown in Table 3.13. 

The molecular structure is shown in (Fig. 3.75 and 3.76). Selected interatomic 

distances (d) and bond angles (ω) in complex C-26 are given in Table 3.14 and 3.15 

respectively. The crystallographic analysis of complex reveals that the unit cell 
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contains two complex molecules. In complex molecule, metal atom is four-

coordinated via two nitrogen atoms and two oxygen atoms from the deprotonated 

Schiff base ligand. 

Table 3.13 Crystallographic data of the complex (C-26 and C-27) 

Compound C-26 C-27 

Chemical formula C20H14N2NiO2 C20H14Cu N2O2 

Crystal system Orthorhombic Orthorhombic 

Space group P212121 P212121 

Unit cell dimensions 

a (Å) 

b (Å) 

c (Å) 

α (˚) 

β (˚) 

γ (˚) 

 

5.4430 (3) 

16.6157 (7) 

17.2995 (8) 

90 

90 

90 

 

9.1346(5) 

18.0186(9) 

19.0127(9) 

90 

90 

90 

Z 4 8 

T (K) 296 296 

V (Å3) 1564.55 3129.4(3) 

R-Factor (%) 3.17 3.1 

 

Table 3.14 Selected Interatomic distances (d) in complex C-26 

Bond d, Å Bond d, Å 

Ni1–O1 1.840 Ni1–N1 1.858 

Ni1–O2 1.836 Ni1–N2 1.859 
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Table 3.15 Selected bond angles (ω) in complex C-26 

Angle ω, deg 

O2 Ni1 O1 84.34 (7) 

O2 Ni1 N2 94.74 (7) 

O1 Ni1 N1 94.72 (7) 

N2 Ni1 N1 86.20 (7) 

O1 Ni1 N2 178.43 (7) 

O2 Ni1 N1 179.03 (7) 

 

Figure 3.75 Single crystal structure of complex C-26 
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Figure 3.76 Single crystal structure of complex C-27 

3.4 SUMMARY 

Schiff base ligands (L-1, L-2, L-3, L-4, L-5 and L-6) were synthesized using 4-

aminoacetophenone, 2-amino-5-bromopyridine, 2-aminophenol, and 1,2-

phenylenediamine with different substituted aldehydes (salicylaldehyde, 2-hydroxy-3-

methoxybenzaldehyde, 2-hydroxy-1-napthaldehyde). Complexes (C-1 to C-27) of few 

3d-transition metals (Mn, Fe, Co, Ni, Cu) were synthesized using these six Schiff base 

ligands (L-1 to L-6). Synthesized ligands and complexes were characterized using 

relevant analytical techniques. All the results found were in good agreement with the 

proposed structure. 

 



 

 

 

 

 

 

 

 

 

CHAPTER 4 

APPLICATION OF METAL SCHIFF BASE 

COMPLEXES (C-1 to C-27) AS C-C COUPLING 

CATALYST
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This chapter presents the catalytic activity of complexes (C-1 to C-27) in the Suzuki-

Miyaura C-C Cross coupling of aryl halides and phenylboronic acid. Also, the effect 

of change of solvent, base, reaction time and concentration of the catalyst on the yield 

of cross coupling reaction has been described.  

4.1 INTRODUCTION 

The Suzuki cross-coupling reaction or simply Suzuki reaction is one of the 

most used cross-coupling reactions in modern organic synthesis, wherein a biphenyl 

molecule is being synthesized through coupling of an aryl halide or triflate to 

phenylboronic acid in the presence of a catalyst. High catalytic activity and selectivity 

has been achieved in C-C bond formation using palladium Schiff base complexes and 

to some with nickel and copper as the active metals. In practice, palladium (Pd) 

complexes are common catalyst for Suzuki coupling reactions, however, them being 

expensive and less abundant requires a search for more cost effective and eco-friendly 

catalysts. The research study aims to provide an alternative approach towards carrying 

out Suzuki reactions with Schiff base complexes of Mn, Fe, Co, Ni and Cu metal over 

the conventionally used palladium-phosphine ligand complexes which are not 

considered to be eco-friendly. The complexes are divided into 6 series namely, C-1 to 

C-5, C-6 to C-10, C-11 and C-12, C-13 to C-17, C-18 to C-22, and C-23 to C-27. This 

division is made on the basis of different ligands used to form metal complexes. 

4.2 EXPERIMENTAL 

4.2.1 General procedure for the Suzuki reaction 

Aryl halide (1.0 mmol) was added to a mixture of phenylboronic acid (1.5 

mmol), Schiff base complex (varied) and base (2.0 mmol) in 3 mL of solvent and 

heated to 80 ˚C for 16 hours. The mixture was then cooled to room temperature. 

Later, the organic layer was separated and analyzed by gas chromatography. Internal 

standard was used and calibrated against each and every one of the cross-coupling 

products. 
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4.2.2 Gas chromatography  

The Gas Chromatography (GC) of the coupled product was done in GC2014 

(Shimadzu, Japan) fitted with a 5% diphenyl and 95% siloxane Restek capillary 

column (30 m length and 0.25 mm diameter) and Flame Ionization Detector (FID). 

The temperature of the injection port was kept constant at 150 ˚C and 250 ˚C 

respectively during product analysis. After the injection of sample, the column 

temperature was increased from 60 ˚C to 150 ˚C at the rate of 10 ˚C/min and then 

further raised to 220 ˚C at the rate of 40 ˚C/min. Nitrogen gas was used as the carrier 

gas. The retention time for the products was determined by injecting the procured 

standards of the product under identical GC conditions. 

4.3 RESULTS AND DISCUSSION  

4.3.1 Catalytic activity studies of C-1 to C-5 

  The coupling of 4-bromobenzonitrile and phenylboronic acid was chosen as 

the model reaction to optimize the reaction conditions with synthesized catalyst. 

 

The reaction conditions have been optimized with respect to 

• Solvent and reaction temperature  

• Base  

• Catalyst concentration on the reaction  

• Reaction time  

(a) Effect of solvent and temperature  
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The catalytic activities of C-1 to C-5 were carried out in ethanol, toluene, 

THF, acetonitrile and 1,4-dioxane media (Fig. 4.1). Among the different solvents 

used, highest catalytic activity was observed with acetonitrile due to high polarity of 

the acetonitrile. Moderate catalyst activities were found in other solvents such as 

ethanol, THF, 1,4-dioxane and toluene. Acetonitrile was chosen as the optimum 

solvent for carrying out the reactions. With acetonitrile chosen as the solvent media, 

the other parameter considered for optimization is the reaction temperature. Reaction 

is found to work out best at its reflux temperature. 

 

Figure 4.1 Effect of solvent on C-1 to C-5 

(b) Effect of base on the reaction 

 The effect of bases on the product yield was examined for the coupling 

reaction. Et3N was found to be the most effective base (Fig. 4.2). Slightly lower yields 

were obtained when Cs2CO3, K2CO3, Na2CO3, KOtBu were used as base. 
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Figure 4.2 Effect of base on Suzuki coupling 

(c) Effect of catalyst concentration on the reaction 

Catalyst loading for the reaction was also considered for optimization. 0.02 

mmol of the catalyst proved to be well efficient in catalyzing the reaction in 

acetonitrile media (Fig. 4.3). 

(d) Effect of reaction time  

The dependence of product yield on the reaction time was investigated by analyzing 

the reaction mixture at regular intervals of time under similar conditions. Increase in 

yield was observed with increase in reaction time. Notable increase in the yield is 

observed up to 16 hours of reaction time, further which, there is no significant 

variation in the observed percentage yield (Fig. 4.4). 
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Figure 4.3 Effect of catalyst concentration for C-1 to C-5 

 

Figure 4.4 Effect of reaction time on C-1 to C-5 

Further, different substituted aryl halides were used to extend the cross-

coupling reaction with phenylboronic acid using the optimized reaction conditions. 

The results of different substituent are summarized in Table 4.1. All catalysts (C-1 to 
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C-5) were found to catalyze the coupling reactions very effectively. The conversion 

pattern different aryl halides with electron withdrawing groups accelerated the process 

of conversion to biaryls whereas presence of electron donating groups drop out the 

conversion (Bakherad et al. 2012). Iodide was observed to be a better leaving group 

than bromide. 

Table 4.1 Catalytic activity study for complexes (C-1 to C-5). 

Entry R X 

Yielda 

C-1 C-2 C-3 C-4 
C-

5 

1 OCH3 

 

 

Br 

58 64 60 64 65 

2 H 45 55 50 52 62 

3 CN 70 82 78 80 90 

4 COCH3 64 86 83 82 80 

5 NHCOCH3 65 75 74 73 72 

6 OH 51 59 50 55 65 

7 CH3 46 61 54 60 62 

8 F 42 46 40 42 50 

9 OH 

I 

60 72 58 65 75 

10 CN 72 86 79 81 91 

Reaction conditions: Aryl halide (1.0 mmol), phenylboronic acid (1.5 mmol), Et3N 

(2.0 mmol), catalyst (0.02 mmol), solvent (3 mL), 16 h. 
a Yield determined by GC, average of 3 trials (Isolated yield). 

4.3.2 Catalytic activity studies of C-6 to C-10 

(a) Effect of solvent and temperature 

The catalytic activities of C-6 to C-10 were carried out in DMF, THF, 1,4-

dioxane, toluene and acetonitrile media (Fig. 4.5). The highest percentage conversion 
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was observed with acetonitrile as the solvent media, closely followed by toluene and 

1,4-dioxane. Acetonitrile was optimized as solvent media under reflux temperature for 

further reactions. 

 

Figure 4.5 Effect of solvent on C-6 to C-10 

(b) Effect of base 

The effect of bases on the product yield was examined for the coupling 

reaction (Fig. 4.6). The highest percentage conversion was observed with base K2CO3 

followed by the organic base Et3N. 

(c) Effect of catalyst concentration on the reaction  

The effect of concentration of the catalyst on different substrate was studied at 

different substrate to catalyst ratios. The ratio was varied from total catalyst amount 

0.01 mmol to 0.06 mmol. It was observed from the catalytic activity studies; the 

coupling yield increases with increase in catalyst loading. The yield of coupling 

product did not change much after 0.04 mmol concentrations (Fig. 4.7). 0.04 mmol of 

the catalyst proved to be well efficient in catalyzing the reaction in acetonitrile media. 
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Figure 4.6 Effect of base on Suzuki coupling 

 

Figure 4.7 Effect of catalyst concentration for C-6 to C-10 
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(d) Effect of reaction time  

Product yield dependence on the reaction time was investigated by analyzing 

the reaction mixture at regular intervals of time. Product conversion was observed to 

increase with reaction time till the completion of 8 hours. The conversion remained 

almost insignificant after 8 hours (Fig. 4.8). Hence, optimized reaction time for 

coupling reaction was fixed at 8 hours. 

 

Figure 4.8 Effect of reaction time on C-6 to C-10 

The cross-coupling reaction was extended to the coupling between 

phenylboronic acid and different aryl halides using the optimized reaction conditions. 

The results are summarized in Table 4.2. The catalysts (C-6 to C-10) were found to 

catalyze the coupling reactions effectively. The conversion pattern with different 

substituents on the aryl halides was different. Electron withdrawing groups on the aryl 

halides accelerated the process of conversion to biaryls whereas presence of electron 

donating groups brought about lesser conversion. Iodide was observed to be a better 

leaving group compared to bromide. 
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Table 4.2 Catalytic activity study for complexes (C-6 to C-10) 

Entry R X 

Yielda 

C-6 C-7 C-8 C-9 C-10 

1 OCH3 

Br 

40 42 36 50 54 

2 H 41 39 35 48 56 

3 CN 80 79 75 81 85 

4 COCH3 67 69 65 75 78 

5 NHCOCH3 60 62 59 65 71 

6 OH 53 54 48 57 62 

7 CH3 53 54 52 56 60 

8 F 42 44 38 52 56 

9 OH 

I 

63 64 58 67 72 

10 CN 80.50 80 77 82 86 

Reaction conditions: Aryl halide (1.0 mmol), Phenylboronic acid (1.5 mmol), K2CO3 

(2.0 mmol), catalyst (0.04 mmol), solvent (3 mL), 8 h.  
a GC yields, average of 3 trials (Isolated yield). 

4.3.3 Catalytic activity studies of C-11 & C-12 

(a) Effect of solvent and temperature 

The catalytic activities of C-11 & C-12 were carried out in 1,4-dioxane, 

toluene, DMF, THF and acetonitrile media (Fig. 4.9). The highest percentage 

conversion was observed with toluene as the solvent media, closely followed by 1,4-

dioxane and acetonitrile. Toluene was optimized as solvent media under reflux 

temperature for further reactions. 
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Figure 4.9 Effect of solvent on C-11 & C-12 

(b) Effect of base  

The effect of bases on the product yield was examined for the coupling 

reaction (Fig. 4.10). The highest percentage conversion was observed with base 

K2CO3 followed by the Cs2CO3 and organic base Et3N. 

(c) Effect of catalyst concentration on the reaction 

The effect of concentration of the catalyst on different substrate was studied at 

different substrate to catalyst ratios. The ratio was varied from total catalyst amount 

0.02 mmol to 0.14 mmol. It was observed from the catalytic activity studies; the 

coupling yield increases with increase in catalyst loading. The yield of coupling 

product did not change much after 0.1 mmol concentrations (Fig. 4.11). 0.1 mmol of 

the catalyst proved to be well efficient in catalyzing the reaction in toluene media. 
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Figure 4.10 Effect of base on Suzuki coupling 

 

Figure 4.11 Effect of catalyst concentration for C-11 & C-12 
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(d) Effect of reaction time 

Product yield dependence on the reaction time was investigated by analyzing 

the reaction mixture at regular intervals of time. Product conversion was observed to 

increase with reaction time till the completion of 8 hours. The conversion remained 

almost insignificant after 8 hours (Fig. 4.12). Hence, optimized reaction time for 

coupling reaction was fixed at 8 hours. 

 

Figure 4.12 Effect of reaction time on C-11 & C-12 

The cross-coupling reaction was extended to the coupling between 

phenylboronic acid and different aryl halides using the optimized reaction conditions. 

The results are summarized in Table 4.3. The catalysts (C-11 & C-12) were found to 

catalyze the coupling reactions effectively. The conversion pattern with different 

substituents on the aryl halides was different. Electron withdrawing groups on the aryl 

halides accelerated the process of conversion to biaryls whereas presence of electron 

donating groups brought about lesser conversion. 
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Table 4.3 Catalytic activity study for complexes (C-11 & C-12) 

Entry R X 

Yielda 

C-11 C-12 

1 OCH3 

Br 

64 65 

2 H 48 51 

3 CN 90 91.5 

4 COCH3 82 82 

5 NHCOCH3 71 71.5 

6 OH 55 56 

7 CH3 44 51 

8 F 53 55 

9 OH 

I 

73 72 

10 CN 91 92 

Reaction conditions: Aryl halide (1.0 mmol), Phenylboronic acid (1.5 mmol), K2CO3 

(2.0 mmol), catalyst (0.1 mmol), solvent (3 mL), 8 h. 
a GC yields, average of 3 trials (Isolated yield). 

4.3.4 Catalytic activity studies of C-13 to C-17  

(a) Effect of solvent and temperature  

The catalytic activities of C-13 to C-17 were carried out in DMF, toluene, 

THF, acetonitrile and 1,4-dioxane media (Fig. 4.13). Among the different solvents 

used, highest catalytic activity was observed with toluene. Moderate catalyst activities 

were found in other solvents such as acetonitrile, THF, 1,4-dioxane and DMF. 

Toluene was chosen as the optimum solvent for carrying out the reactions. With 

toluene chosen as the solvent media, the other parameter considered for optimization 

is the reaction temperature. Reaction was carried out at reflux temperature of solvents. 
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Figure 4.13 Effect of solvent on C-13 to C-17 

(b) Effect of base on the reaction 

 The effect of bases on the product yield was examined for the coupling 

reaction. K2CO3 (mild base) was found to be the most effective base (Fig. 4.14). 

Slightly lower yields were obtained when Cs2CO3, Et3N, Na2CO3, KOtBu were used 

as base. 

(c) Effect of catalyst concentration on the reaction 

Catalyst loading for the reaction was also considered for optimization. 0.1 

mmol of the catalyst proved to be well efficient in catalyzing the reaction in toluene 

media (Fig. 4.15). 
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Figure 4.14 Effect of base on Suzuki coupling 

 

Figure 4.15 Effect of catalyst concentration for C-13 to C-17 
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(d) Effect of reaction time  

The dependence of product yield on the reaction time was investigated by 

analyzing the reaction mixture at regular intervals of time under similar conditions. 

Increase in yield was observed with increase in reaction time. Yield variance is 

apparent to a notable extent up to 8 hours of reaction time, further advance in reaction 

time no much effect on the percentage conversion of the product was observed (Fig. 

4.16). 

 

Figure 4.16 Effect of reaction time on C-13 to C-17 

Further, different substituted aryl halides were used to extend the cross-

coupling reaction with phenylboronic acid using the optimized reaction conditions. 

The results of different substituent are summarized in Table 4.4. All catalysts (C-13 to 

C-17) were found to catalyze the coupling reactions very effectively. The conversion 

pattern different aryl halides with electron withdrawing groups accelerated the process 

of conversion to biaryls whereas presence of electron donating groups drop out the 

conversion. Yield for coupling of substituted aryl iodide with phenylboronic acid was 

found to be more, since iodide is a better leaving group than bromide (Bakherad et al. 

2013). 
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Table 4.4 Catalytic activity study for complexes (C-13 to C-17) 

Entry R X 

Yielda 

C-13 C-14 C-15 C-16 C-17 

1 OCH3 

 

 

Br 

50 52 60 64 65 

2 H 35 38 45 45 46 

3 CN 68 70 88 88 92 

4 COCH3 77 79 80 81 82 

5 NHCOCH3 63 65 70 71 72 

6 OH 49 50 51 59 61 

7 CH3 42 43 40 42 45 

8 F 44 46 52 53 54 

9 OH 

I 

66 68 69 70 73 

10 CN 72 75 90 90 93 

Reaction conditions: Aryl halide (1.0 mmol), phenylboronic acid (1.5 mmol), K2CO3 

(2.0 mmol), catalyst (0.1 mmol), solvent (3 mL), 8 h.  
a Yield determined by GC, average of 3 trials (Isolated yield). 

4.3.5 Catalytic activity studies of C-18 to C-22  

(a) Effect of solvent and temperature  

The catalytic activities of C-18 to C-22 were carried out in 1,4-dioxane, 

toluene, DMF, THF and acetonitrile media (Fig. 4.21). Among the different solvents 

used, highest catalytic activity was observed with toluene. Moderate catalyst activities 

were found in other solvents such as acetonitrile, THF, 1,4-dioxane and DMF. 

Toluene was chosen as the optimum solvent for carrying out the reactions. With 

toluene chosen as the solvent media, the other parameter considered for optimization 

is the reaction temperature. Reaction was carried out at reflux temperature of solvents. 
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Figure 4.21 Effect of solvent on C-18 to C-22 

(b) Effect of base on the reaction 

 The effect of bases on the product yield was examined for the coupling 

reaction. K2CO3 was found to be the most effective base (Fig. 4.22). Slightly lower 

yields were obtained when Et3N, Cs2CO3, Na2CO3, KOtBu were used as base. 

(c) Effect of catalyst concentration on the reaction 

Catalyst loading for the reaction was also considered for optimization. 0.1 

mmol of the catalyst proved to be well efficient in catalyzing the reaction in toluene 

media (Fig. 4.23). 
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Figure 4.22 Effect of base on Suzuki coupling 

 

Figure 4.23 Effect of catalyst concentration for C-18 to C-22 
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(d) Effect of reaction time  

The dependence of product yield on the reaction time was investigated by 

analyzing the reaction mixture at regular intervals of time under similar conditions. 

Increase in yield was observed with increase in reaction time. Yield variance is 

apparent to a notable extent up to 8 hours of reaction time, further advance in reaction 

time no much effect on the percentage conversion of the product was observed (Fig. 

4.24). 

 

Figure 4.24 Effect of reaction time on C-18 to C-22 

Further, different substituted aryl halides were used to extend the cross-

coupling reaction with phenylboronic acid using the optimized reaction conditions. 

The results of different substituent are summarized in Table 4.5. All catalysts (C-18 to 

C-22) were found to catalyze the coupling reactions very effectively. The conversion 

pattern different aryl halides with electron withdrawing groups accelerated the process 

of conversion to biaryls whereas presence of electron donating groups drop out the 

conversion. 
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Table 4.5 Catalytic activity study for complexes (C-18 to C-22) 

Entry R X 

Yielda 

C-18 C-19 C-20 C-21 C-22 

1 OCH3 

 

 

Br 

50 53 51 59 63 

2 H 31 37 35 46 48 

3 CN 69 76 79 85 87 

4 COCH3 68 75 78 84 86 

5 NHCOCH3 64 65 66 70 71 

6 OH 47 48 49 57 59 

7 CH3 40 46 44 48 57 

8 F 42 47 54 59 68 

9 OH 

I 

52 53 55 61 63 

10 CN 70 77 80 85.5 88 

Reaction conditions: Aryl halide (1.0 mmol), phenylboronic acid (1.5 mmol), K2CO3 

(2.0 mmol), catalyst (0.1 mmol), solvent (3 mL), 8 h. 
a Yield determined by GC, average of 3 trials (Isolated yield). 

4.3.6 Catalytic activity studies of C-23 to C-27 

(a) Effect of solvent and temperature 

The catalytic activities of C-23 to C-27 were carried out in DMF, toluene, 

THF, CH3CN and 1,4-dioxane media (Fig. 4.25). Solvent optimization study indicates 

1,4-dioxane to be the optimum solvent for coupling at 100 ˚C.  
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Figure 4.25 Effect of solvent on C-23 to C-27 

(b) Effect of base  

The effect of various bases in the coupling reaction of 4-bromobenzonitrile 

with phenylboronic acid was investigated in 1,4-dioxane media. It was found that 

K2CO3 the most effective base (Fig. 4.26). Other bases such as Na2CO3, Et3N, Cs2CO3 

and KOtBu were less effective. 

(c) Effect of catalyst concentration on the reaction 

 In order to study the effect of concentration of the catalyst with respect to 

substrate, the reaction was studied at different substrate to catalyst ratios. The ratio 

was varied from total catalyst amount 0.01 mmol to 0.04 mmol (Fig. 4.27). From the 

catalytic activity studies, it was observed that, increase in catalyst loading increases 

the coupling yield and after reaching the optimum concentration further increase of 

catalyst amount did not affect the yield of coupling product significantly and 

remained almost constant. 0.02 mmol of the catalyst proved to be well efficient in 

catalyzing the reaction. 
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Figure 4.26 Effect of base on Suzuki coupling 

 

Figure 4.27 Effect of catalyst concentration for C-23 to C-27 
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(d) Effect of reaction time 

The dependence of product yield on reaction time for the coupling of 4-

bromobenzonitrile with phenylboronic acid was carried out by analyzing the reaction 

mixture at regular intervals of the time under same reaction condition. It could be 

analyzed that there was increase in the yield of product with time until 8 hours after 

which there was negligible change in the product yield (Fig. 4.28) 

 

Figure 4.28 Effect of reaction time on C-23 to C-27 

Based on the results, the reaction was extended to the cross coupling between 

different aryl halides and phenylboronic acid using the optimized reaction conditions. 

The results of these reactions are summarized in Table 4.6. The catalysts (C-23 to C-

27) were found to catalyze the coupling reactions very effectively. The conversion 

pattern with different substituents on the aryl halides were similar to that of the earlier 

two series, i.e. electron withdrawing groups on the aryl halides accelerated the process 

of conversion to biaryls whereas presence of electron donating groups brought about 

lesser conversion. Among the halides, iodide was observed to be a better leaving 

group. 
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Table 4.6 Catalytic activity study for complexes (C-23 to C-27) 

Entry R X 

Yielda 

C-23 C-24 C-25 C-26 C-27 

1 OCH3 

Br 

64 64 60 64 65 

2 H 32 34 35 45 46 

3 CN 77 78 82 88 89 

4 COCH3 75 77 80 82 81 

5 NHCOCH3 65 68 70 71 72 

6 OH 50 50 51 55 57 

7 CH3 40 42 44 44 43 

8 F 43 43 50 58 59 

9 OH 

I 

62 66 68 72 73 

10 CN 78 80 85 90 91 

Reaction conditions: Aryl halide (1.0 mmol), Phenylboronic acid (1.5 mmol), K2CO3 

(2.0 mmol), catalyst (0.02 mmol), solvent (3 mL), 8 h.  
a GC yields, average of 3 trials (Isolated yield). 

4.4 PROPOSED MECHANISM FOR SUZUKI REACTION 

The proposed mechanism is depicted in Fig. 4.13 for the synthesized metal 

Schiff base catalyzed reaction. The catalytic metal M(II) Schiff base complex getting 

reduced to M(0) (Beccalli et. al. 2007). It can be assume that the catalyst precursor (a) 

gets reduced to active M(0) species (b) in the presence of phenylboronic acid and base 

(K2CO3). The oxidative addition of metal complex to the aryl halide to forms the 

organometal species (c). Reaction with base gives intermediate (d), which 

via transmetalation with the phenylboronic acid forms the organometal species (e). 

Reductive elimination of the coupled product (f) brings back the original 

catalyst (b) which completes the catalytic cycle.  
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Figure 4.13 Proposed mechanism for Suzuki reaction 

4.5 SUMMARY 

The synthesized complexes (C-1 to C-27) were examined for their C-C 

coupling efficiency in Suzuki cross-coupling between phenylboronic acid and para 

substituted aryl halides. Effect of synthesized ligands on the catalytic activity of the 

complexes was explored based on the basis of coupling yields. 





 

 

 

 

 

 

 

 

 

CHAPTER 5 

SYNTHESIS CHARACTERIZATION AND CATALYTIC 

APPLICATION OF NANO Fe (II), Ni (II)-SCHIFF BASE 

COMPLEXES (C-28 & C-29)
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In this chapter, a brief introduction of the nano-catalyst and their importance in the 

field of catalysis has been described. The synthesis of nano iron and nickel-Schiff base 

complex has been mentioned along with their catalytic studies in Suzuki-Miyaura 

coupling reactions. 

5.1 INTRODUCTION 

Formation of C-C bond by transition metal-catalyzed coupling reaction is 

understood to be a powerful tool for synthetic investigations. These complexes play a 

significant role in development of coordination chemistry in field of catalysis and 

enzymatic reactions, magnetism and molecular architectures, and liquid-crystal 

technology (Gingsberg 1971; Kagan 1972; Ohta et al. 1986; Siegbahn 2006). In 

addition, transition-metal nanoparticles for formation of carbon-carbon bonds are 

attractive to researchers (Moreno-Mañas and Pleixats 2003). Among, various 

catalytically active nanoparticles, palladium nanoparticles have gained considerable 

attention for the formation of C-C bonds (Dehbanipour et al. 2017). Nanoparticles 

have attained great interest in recent years as a result of their unique chemical and 

physical properties, which differ from their bulk materials, single atoms and can have 

potential applications in optoelectronics, catalysis, and ceramics etc. (Teranishi et al. 

1998; Johnson 2003; Zhang et al. 2004). 

Transition-metals like nickel, cobalt, copper, iron etc. have also been utilized 

for the formation of C-C bond (Nakamura and Yoshikai 2010). Recently, Fe3O4 

nanoparticles (NPs) have been investigated as an efficient catalysts for C-C bond 

formation (Firouzabadi et al. 2011). However, the functional applications of Schiff 

bases and their metal complexes greatly rely on several properties, such as 

complexation ability towards metals, antibacterial activity (Raman et al. 2001) etc. On 

the other hand, the particle size plays important role on catalysis, so the synthesis of 

nano-sized compound has a basal role in many fields. In addition, the coupling of aryl 

halides with phenylboronic acids under mild condition is a subject of immense 

interest for both academicians and researchers.  
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In this chapter, we have described the synthesis of nano-iron (II) and nickel 

(II) complex of a Schiff base ligand, namely 1-((pyridin-2-

ylimino)methyl)naphthalen-2-ol using sonochemical method. The complexes (C-28 & 

C-29) were characterized and their catalytic activity was investigated for Suzuki-

Miyaura cross coupling reaction. 

5.2 EXPERIMENTAL 

5.2.1 Materials and methods 

All chemicals used were of analytical reagent (AR) grade and used without 

any further purification. 2-aminopyridine, 2-hydroxy-1-naphthaldehyde, Nickel 

acetate and ferrous chloride (hydrated) were procured from Merck India.  

The analysis of synthesized compounds was done using different analysis 

techniques as described in chapter 3 (Section 3.2.2). The product biphenyl was 

analyzed using Gas Chromatography (GC) (Shimadzu 2014, Japan), siloxane Restek 

capillary column (30 m length and 0.25 mm diameter) and Flame Ionization Detector. 

5.2.2 General procedure of Suzuki Miyaura reaction 

Aryl halide (1.0 mmol), phenylboronic acid (1.5 mmol), K2CO3 (2.0 mmol), 

catalyst (0.02 mmol) and 1,4-dioxane (3 mL) were added to a 50 mL flask, and the 

mixture was stirred in parallel synthesizer for 8 hours at 110 ˚C. The progresses of the 

reactions were monitored by Gas chromatography. 

5.2.3 Synthesis of ligand (L-7) 

2-aminopyridine (0. 095 g, 1.0 mmol) and 2-hydroxy-1-naphthaldehyde (0.172 

g, 1.0 mmol) were dissolved in ethanol and heated to 60 ˚C in a 50 mL round bottom 

flask. The reaction mixture was then refluxed for 3 hours and filtered. The obtained 

product then washed with diethyl ether and re-crystallized from ethanol and dried. 

Chemical Formula: C16H12N2O; Melting point: 180 ˚C. 
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Scheme 5.1 Synthesis of ligand (L-7) 

5.2.4 Synthesis of complex (C-28 & C-29) 

A proper volume of ligand (0.496 gm, 2.0 mmol) solution in (ethanol) (5 mL) 

was added in dropwise manner under the ultrasonic irradiation to the prepared 

FeCl2.XH2O (0.127 gm, 1.0 mmol) solution (5 mL) in ethanol. The mixture was 

irradiated under ultrasonic waves for one hour. The obtained solid was filtered, 

subsequently washed with cold methanol and dried. Similarly, complex C-29 was 

synthesized using Ni(OCOCH3)2.4H2O (0.248 gm, 1.0 mmol) with ligand (L-7) 

(0.496 gm, 1.0 mmol) in ethanol. 

 

Scheme 5.2 Synthesis of complex (C-28 & C-29) 
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5.3 RESULTS AND DISCUSSION 

5.3.1 1H NMR 

 

Figure 5.1 1H NMR of ligand L-7 

The 1H NMR spectrum of the ligand (L-7) was recorded in DMSO solvent to 

confirm the number of proton present in the molecule. The -OH peak was observed 

around 15.21 ppm. The peak at 9.85 ppm was observed for azomethine proton (Fig. 

5.1). 

 

 

 

 

 



Chapter 5 

131 

 

5.3.2 Physical properties and analytical data of ligand and its complexes 

Table 5.1 Physical properties and elemental analysis of ligand and its complexes (C-

28 & C-29). 

 

Compounds 

 

Color 

 

Yield (%) 

Elemental analysis data 

Found 

(Calculated) 

C % H % N % 

L-7 
Mehendi 

Yellow 
80 

77.45 

(77.40) 

4.75 

(4.80) 

11.00 

(11.28) 

C-28 
Dark 

brown 
80 

77.45 

(77.35) 

4.78 

(4.86) 

9.72 

(9.65) 

C-29 Brown 74.50 
59.13 

(59.23) 

4.02 

(3.87) 

7.55 

(7.67) 

5.3.3 FTIR spectra 

FTIR spectra of ligand and the complex are shown in the Figure 5.2, 5.3 & 

5.4. The strong band in ligand at 1618.59 cm-1 assignable to azomethine ν(C=N) 

group and and O-H peak appears at 3495.46 cm-1. The peak in the region 1140.00 cm-

1 is indicative of phenolic ν(C-O) stretching. Moreover, for complex, the appearance 

of a band for ν(CH=N) in the range of 1561.73 cm-1  to 1641.05 cm-1 indicates a 

shifting of bands compared to ligand suggesting the complexion of ligand with metal 

atom through nitrogen atom has been formed. Phenolic ν(C-O) stretching in complex 

is shifted to 1124.21 cm-1 (C-28) and 1183.80 cm-1 (C-29) indicating the coordination 

of the phenolic oxygen of ligand to the metal ion. The new band at 421.98 cm-1 (C-28) 

and 422.20 cm-1 (C-29) region, tentatively assign the coordination of metal with 

oxygen atom ν(M-O). The bands which appear around 515.10 cm-1 to 496.24 cm-1 in 

the spectrum of complexes may be assigned to the coordination of metal with a 

nitrogen atom (M-N) (Miyaura et al. 1981). 
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Figure 5.2 FTIR spectrum of ligand (L-7) 

  

Figure 5.3 FTIR spectrum of complex (C-28) 
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Figure 5.4 FTIR spectrum of complex (C-29) 

5.3.4 UV-Vis spectra 

 

Figure 5.3 UV-Vis spectra of ligand and complexes (C-28 & C-29) 
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The UV-Vis spectra of synthesized ligand and complexes were recorded in 

methanol solvent (Fig. 5.3). The absorption bands which we observed in the free 

ligand spectrum have been shifted to lower energy region in the spectra of complexes 

because of the ligand coordination with a metal ion. These transitions are due to intra-

ligand charge transfer transitions (ILCT) and ligand to metal charge transfer 

transitions (LMCT). Moreover, peaks at higher wavelength (≥400 nm) were observed 

due to d-d transition. 

5.3.5 Mass spectra 

The mass spectra of the ligand (L-7) and its nickel complex (C-29) were 

recorded at 50 eV of electron energy. The important mass fragmentations of the 

ligand and complex are shown in the spectra (Fig. 5.4 & 5.5). 

 

Figure 5.4 Mass spectrum of ligand (L-7) 
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Figure 5.5 Mass spectrum of complex (C-29) 

5.3.6 Magnetic moment 

The magnetic moment of both the synthesized Schiff base complex at room 

temperature have been investigated. The magnetic moment of complex (C-28) was 

found 4.10 BM, which indicates that 4 unpaired electron is present in the complex. 

The complex was found in octahedral geometrical shape and it is paramagnetic. The 

magnetic moment was found 2.2 BM for C-29, which indicates that 2 unpaired 

electron is present in the complex. The paramagnetic nature revealed tetrahedral 

geometry of the synthesized nickel complex. 
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5.3.7 Particle size analysis 

The size of the catalyst particles was observed 47.5 nm and 22.9 nm for iron 

and nickel respectively (Fig. 5.6 (a & b)). 

 

Figure 5.6 Particle size distribution of the synthesized complexes (C-28 & C-29) 

5.3.8 SEM & TEM analysis 

The morphology of the complex catalyst (C-28 & C-29) was studied by SEM 

images (Fig. 5.7 (a & b)). The tubular nanostructure of the nanotubes was found for 

both the complex. 

TEM image of the complex C-29 is depicted in Fig. 5.8. The data imply that 

the nickel nanoparticles are almost tubular in shapes. Due to high surface area of the 

complex, catalytic properties of the catalyst can be improved. 
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Figure 5.7 SEM micrographs of the complexes (C-28 & C-29) 

 

Figure 5.8 TEM micrograph of the complex (C-29) 
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5.3.9 Thermogravimetric analysis 

The thermal behavior of the Schiff base ligand and its metal complexes was 

studied by using thermogravimetric techniques in the range of 30-650 ˚C in a nitrogen 

atmosphere. The TGA curves of the molecules are given in Fig. 5.9. The purpose of 

the thermal study is to confirm the course of the degradation and the presence of the 

hydrated water molecules in the compounds. In Figure 5.9, as can be seen, 

decomposition of the complex (C-28) was completed in a single step. The remaining 

percentage mass loss can be assigned for iron oxide residue. The absence of the peak 

around 200 ˚C confirms that no water molecule present in the complex. As can be 

seen in the figure 5.9, decomposition of the complex (C-29) was completed in a three 

steps. Moisture removal was observed at 120 ˚C. The second weight loss (20.50%) 

was due to acetate group from the complex. The ligand decomposition was observed 

with final percentage mass loss. The remaining percentage mass loss can be assigned 

for Ni-oxide residue. 

 

Figure 5.9 TGA of the complexes (C-28 & C-29) 
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5.3.10 Catalytic activity 

The synthesized nano complexes (C-28 & C-29) used as a catalyst for the 

coupling of 4-bromobenzonitrile and phenylboronic acid as the model reaction to 

study the Suzuki-Miyaura coupling reaction. The effect of the base, solvent, time and 

concentration of the catalyst on the Suzuki coupling of the selected reactants were 

studied. The basic environment is essential for the Suzuki reaction. The impact of 

solvents on the reaction was also investigated and 1,4-dioxane (Fig. 5.10) gave the 

best result.  Among the bases examined (Fig. 5.11), K2CO3 showed the best effect. 

Product yield dependence on the reaction period of time was investigated by 

analyzing the reaction mixture at particular intervals of time. Product conversion was 

observed to increase with reaction time till the completion of 8 hours. The conversion 

remained almost constant after 8 hours (Fig. 5.12). Hence, optimized reaction time for 

the coupling reaction was fixed at 8 hours. 

 

Figure 5.10 Optimization of solvent for Suzuki coupling reaction 
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Figure 5.11 Optimization of base for Suzuki coupling reaction 

 

Figure 5.12 Optimization of effect of reaction time on coupling yield 

The concentration effect of the catalyst (C-28 & C-29) on the conversion yield 

was investigated by carrying out the reaction mixture with different catalyst 

concentration from 0.005 mmol to 0.025 mmol (Fig. 5.13). The result showed almost 
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constant yield with 0.02 and 0.025 mmol catalyst concentrations. Hence, 0.02 mmol 

concentration was taken for the further catalytic studies. 

 

Figure 5.13 Optimization of catalyst loading for Suzuki-Miyaura coupling 

Further, different substituted aryl halides were used to extend the cross-

coupling reaction with phenylboronic acid using the optimized reaction conditions. 

The results of different substituent are summarized in Table 5.2. The catalysts were 

found to catalyze the coupling reactions effectively. The conversion pattern with 

different substituents on the aryl halides was different. 
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Table 5.2 Catalytic activity study for complex (C-28 & C-29) 

Entry Aryl halides 
Yielda 

C-28 C-29 

1 

 

50 51 

2 

 

38 40 

3 

 

78 80 

4 

 

79 79 

5 

 

67 68 

6 

 

50 52 

7 

 

46 48 

8 

 

57 59 

9 

 

58 62 

10 

 

80 82 

Reaction conditions: Aryl halide (1.0 mmol), phenylboronic acid (1.5 mmol), K2CO3 

(2.0 mmol), catalyst (0.02 mmol), solvent (3 mL), 8 h.  
a Yield determined by GC, average of 3 trials (Isolated yield). 

 

 

 

 

 



Chapter 5 

143 

 

5.4 SUMMARY 

Nano iron (II) and nickel (II) Schiff base complexes have been synthesized via 

Ultrasonic irradiation and characterized. Suzuki cross-coupling of different aryl 

halides and phenylboronic acids was catalyzed with synthesized complexes. The 

synthesized complexes showed great potential in catalytic activity. The yields varied 

on the basis of substrates. Substrates having electron-donating groups showed lesser 

conversion whereas substrates having electron-withdrawing groups give 

comparatively better yield. It was concluded that the prepared catalysts is low-cost, 

highly catalytic active and stable, thus providing promising alternative for Suzuki-

Miyaura carbon-carbon cross coupling reaction. 





 

 

 

 

 

 

 

 

 

CHAPTER 6 

SYNTHESIS AND CHARACTERIZATION OF COPPER 

(II) SCHIFF BASE COMPOSITE WITH GRAPHENE 

OXIDE FOR SUZUKI-MIYAURA CROSS COUPLING 

REACTION 
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In this chapter, we report the synthesis and characterization of copper Schiff base 

composite grafted onto graphene oxide (Cu-NH2-GO). The catalytic performance of 

Cu-NH2-GO was studied in the C-C cross coupling of aryl halides with phenylboronic 

acid. The catalysts showed high conversion, easy recovery and safer reuse. 

6.1 INTRODUCTION 

The isolation of homogeneous catalysts is a tedious process and in order to 

facilitate the isolation, heterogenisation of the catalyst is carried out.  In this chapter, 

the copper Schiff base complex is grafted on graphene and the resulting catalyst is 

studied for Suzuki-Miyaura cross coupling reactions. 

Graphene and its derivatives aptly suit as a solid substrate to immobilize the 

transition metal complexes owing to their large surface area. They find great 

application in the fields of composite materials, catalysis, drug delivery, sensors and 

photovoltaics due to their distinguishable nanostructures and attractive properties 

(Kaniyoor et al. 2009; Yang et al. 2009; Liu et al. 2010; Zhu et al. 2010; Yun et al. 

2011; Nie et al. 2012). Graphene oxide (GO) obtained from graphene exhibits various 

advantages in comparison with graphene majorly because of the additional functional 

groups. The sheet edges having carbonyl and carboxyl groups, whereas the basal 

planes richly decorated with hydroxyl and epoxide groups makes graphene oxide 

heavily oxygenated (Park et al. 2008; Dreyer et al. 2010). These oxygenic groups 

present on the graphene oxide cause immobilization of metal complexes acting as 

active sites. Pd nanoparticles immobilized on graphene oxide was used for the 

Suzuki-Miyaura reactions. The Schiff base oxo-vanadium complex grafted onto 

graphene oxide has reportedly been used for the oxidation of alcohols (Mungse et al. 

2012). As discussed in chapter 4, the catalytic activities reported for theses transition 

metal complexes have prompted the research of low-cost catalysts for the coupling 

reactions. Schiff base complexes with N, O donor atom have been widely reported for 

their catalytic and biological properties (Balasubramanian et al. 2006) and their 

activity profile in both homogenous and heterogeneous catalysis are comprehensively 

documented (Baleizão et al. 2003; Gupta and Sutar 2008). 
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Here, we have reported the synthesis and characterization of metal Schiff base 

composite grafted onto graphene oxide (Cu-NH2-GO). The catalytic performance of 

Cu-NH2-GO was studied in the C-C cross coupling of aryl halides with phenylboronic 

acid. The catalyst showed high conversion, easy recovery and safer reuse. 

6.2 EXPERIMENTAL 

6.2.1 Materials and methods 

Salicylaldehyde, copper acetate monohydrate, 6% H2O2, H2SO4, and H3PO4 

were procured from Merck India, while (3-aminopropyl)trimethoxysilane (APTMS) 

and graphite powder were obtained from Sigma-Aldrich. All chemicals were used as 

received. The analysis of synthesized compounds was done using different analysis 

techniques as described in chapter 3 (Section 3.2.2). The product biphenyl was 

analyzed using Gas Chromatography (GC) (Shimadzu 2014, Japan), siloxane Restek 

capillary column (30 m length and 0.25 mm diameter) and Flame Ionization Detector. 

6.2.2 Synthesis of Cu-NH2-GO 

GO was prepared using improved Hummers method (Marcano et al. 2010). (3-

aminopropyl) trimethoxysilane was grafted on graphene oxide (Lin et al. 2011). 0.1 g 

of GO was dispersed in 50 mL of toluene. To this dispersion, 2 mL of APTMS was 

added and refluxed at 110 ˚C for 24 hours in inert atmosphere. The obtained product 

was filtered and washed with toluene and ethanol. The APTMS coated GO nanosheets 

(NH2-GO) was dried overnight at 70 ˚C. 0.05 g of functionalized graphene oxide 

(NH2-GO) was weighed and dissolved in ethanol (10 mL). To this 0.122 g of 

salicylaldehyde was added (Scheme 6.1). Then it was refluxed for about 8 hours. The 

obtained precipitate was filtered and dried overnight. The obtained product was 

named as GOSB. 0.1 g of GOSB was dispersed in 5 mL ethanol, to this 0.2 g of metal 

salt was added and refluxed for 24 hours. The product was filtered and dried 

overnight. The obtained composite was named as Cu-NH2-GO. 
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Scheme 6.1 Stepwise synthesis of Cu-NH2-GO 

6.2.3 Suzuki-Miyaura cross coupling  

Aryl halide (1.0 mmol), phenylboronic acid (1.5 mmol), Cu-NH2-GO (4.0 mg) 

and a base (2.0 mmol) was added in 3 mL of solvent and heated to 110 ˚C up to 12 

hours. The organic layer was analyzed using gas chromatography. 

6.3 RESULTS AND DISCUSSION 

6.3.1 FTIR spectra 

The obtained GO, NH2-GO, GOSB and M-NH2-GO were examined by the 

FTIR spectroscopy (Fig. 6.1). In the spectrum of GO. the broad peak at 3425 cm-1 

corresponds to stretching of O-H bonds and sharp peak at 1690 cm-1 ν(C=O) was due 

to the presence of carbonyl, hydroxyl, and carboxylic acid groups (Khatri et al. 2014). 

The peak at 1195 cm-1 and 1048 cm-1 are indicative of the C-OH and C-O- groups, 

respectively. NH2-GO shows additional peaks at 3441 cm-1 (N-H stretching) and 1600 

cm-1 (N-H bending) is due to presence of -NH2 groups. The peaks within 2850-3050 

cm-1 are due to presence of methylene and methyl groups (Mungse et al. 2012). Peaks 

at 1128 cm-1 and 1026 cm-1 are the evidence for the formation of Si-O-Si and Si-O-C 
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bonds, respectively. This shows successful grafting of APTMS on GO. The FTIR 

spectrum of GOSB shows a strong peak at 1616 cm-1 attributing to imine (C=N) 

stretching which is shifted to 1605 cm-1 in case of Cu-NH2-GO sample. This confirms 

the formation of composite. 

 

Figure 6.1 FTIR spectra of GO, NH2-GO, GOSB and Cu-NH2-GO 

 6.3.2 UV-Vis spectroscopy 

The GO and Cu-NH2-GO was analyzed by UV-Vis spectroscopy to investigate 

the chemical changes due to grafting of the complex on GO (Fig. 6.2). GO shows 

absorption at ∼220 nm due to sp2 bonded carbon atoms (Rayati et al. 2017). The 

presence of n-π* (∼259 nm) peak in Cu-NH2-GO supports the grafting of the catalyst 

on GO. 
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Figure 6.2 UV-Vis spectra of GO and Cu-NH2-GO 

6.3.3 X-ray diffraction analysis 

 

Figure 6.3 XRD patterns of GO and Cu-NH2-GO 
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Figure 6.3 demonstrates the XRD of GO and Cu-NH2-GO. GO shows a 

diffraction peak at 12.86˚ which corresponds to (002) plane (Mishra Praveen and Bhat 

B. Ramchandra 2017). The broad peak around 22˚ is observed due to reduced 

graphene oxide in Cu-NH2-GO catalyst. The XRD pattern for Cu-NH2-GO showed 

that the synthesized catalytic composite is amorphous, which is disclosed by broad 

peak (Gemeay et al. 2017). 

6.3.4 SEM and TEM analysis 

The SEM analysis was carried out to check the surface morphology of GO, 

NH2-GO, GOSB and Cu-NH2-GO (Fig. 6.4-6.7, respectively). It can be seen that 

SEM image of GO had sustained sheet-like structure and it became wrinkled with the 

reaction of APTMS (NH2-GO) (Su et al. 2015). SEM image of GOSB showed well 

defined arrangement of organic molecules onto sheets. Moreover, different distinctive 

shape of Cu-NH2-GO was identified and the SEM image was quite different from that 

of GOSB. TEM image of the Cu-NH2-GO is shown in Fig. 6.8. The black dots in 

TEM image could confirm the immobilization of copper Schiff base complex onto 

graphene oxide sheets. 

 

Figure 6.4 SEM images of GO 
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Figure 6.5 SEM images of NH2-GO 

 

Figure 6.6 SEM images of GOSB 
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Figure 6.7 SEM images of Cu-NH2-GO 

 

Figure 6.8 TEM image of Cu-NH2-GO 
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6.3.5 Thermogravimetric analysis 

The thermal behavior of the GO and Cu-NH2-GO was examined by TGA. The 

first weight loss of GO in under 115 ˚C is due to the removal of trapped moisture. The 

second significant weight loss was noticed in the range of 250-330 ˚C, due to 

decomposition of oxygen moieties (Fig. 6.9) (Stankovich et al. 2007, Su et al. 2014). 

The Cu-NH2-GO catalyst shows three weight losses up to 600 ˚C. The slight reduction 

in weight within 150-200 ˚C corresponds to the removal of water. The weight loss 

around 360 ˚C is due to the decomposition of complex on GO. The subsequent 

reduction in weight above 450 ˚C is attributed to the decomposition of the residual by 

products which resulted from the decomposition of complex. 

 

Figure 6.9 TGA of GO and Cu-NH2-GO 

6.3.6 Catalytic study 

The catalyst Cu-NH2-GO was examined for C-C cross coupling of 4-

bromobenzonitrile with phenylboronic acid. Optimum reaction condition was studied 

using different parameters like base, solvent, catalyst concentration and reaction time 

on product yield. The catalytic activity of catalyst was carried out in acetonitrile, 1,4-
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dioxane, toluene, THF and DMF solvent media at their reflux temperature (Table 6.1). 

Among different solvents chosen, highest catalytic activity was found in toluene, 

lightly lower yield by other solvents. Toluene was selected as solvent for further 

studies. The reaction was also examined for the effect of base on the yield of product. 

Among all the experimented bases, K2CO3 was found to be most active (Table 6.2). 

The effect of reaction time on the yield of product was established by examining the 

reaction mixture at different time intervals. The yield was observed to increase till 12 

hours of reaction after which there was no further significant improvement (Fig. 

6.10). The catalyst concentration effect on the reaction was analyzed with different 

catalyst concentration for coupling. An expected increase in yield was observed with 

increase in concentration till 4.0 mg catalyst concentration before reaching the plateau 

(Fig. 6.11). Further, different aryl halides were used to study the C-C coupling with 

phenylboronic acid. The yield obtained was different with various substituents. 

Presence of electron withdrawing group on the benzene ring facilitates the easy 

removal of halide group and thereby enhances the positivity on the para position 

favoring nucleophilic attack in the coupling reaction. The results are summarized in 

Table 6.3. Additionally, the catalyst was easily recovered and recycled without 

significant loss in its activity (Fig. 6.12). 

Table 6.1 Effect of solvents on Suzuki-Miyaura cross coupling reaction. 

Entry Solvents Base Yielda 

1 Acetonitrile 

K2CO3 

76 

2 Toluene 80 

3 1,4-dioxane 75 

4 THF 62 

5 DMF 61 

Reaction conditions: Aryl halide (1.0 mmol), phenylboronic acid (1.5 mmol), K2CO3 

(2.0 mmol), Cu-NH2-GO (4.0 mg), solvent (3 mL), 12 h.  
a Yield determined by GC. 
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Table 6.2 Effect of base on Suzuki-Miyaura cross coupling reaction. 

Entry Bases Solvent Yielda 

1 Et3N 

Toluene 

72 

2 K2CO3 80 

3 Cs2CO3 75 

4 Na2CO3 69 

5 KOtBu 60 

Reaction conditions: Aryl halide (1.0 mmol), phenylboronic acid (1.5 mmol), base 

(2.0 mmol), Cu-NH2-GO (4.0 mg), solvent (3 mL), 12 h.  
a Yield determined by GC. 

 

Figure 6.10 Effect of reaction time on coupling yield 
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Figure 6.11 Effect of catalyst concentration on coupling yield 

 

Figure 6.12 Recovery and reusability of the catalyst (Cu-NH2-GO) 
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Table 6.3 Reaction yield for various aryl halides in Suzuki-Miyaura cross coupling 

reaction. 

 

Scheme 6.2 Suzuki-Miyaura cross coupling reaction 

Entry R X Yielda 

1 OCH3 

Br 

55 

2 H 50 

3 CN 80 

4 COCH3 78 

5 NHCOCH3 75 

6 OH 59 

7 CH3 44 

8 F 52 

9 OH 

I 

64 

10 CN 84 

Reaction conditions: Aryl halide (1.0 mmol), phenylboronic acid (1.5 mmol), K2CO3 

(2.0 mmol), Cu-NH2-GO (4.0 mg), toluene (3 mL), 12 h. 
a Yield determined by GC. 

6.4 SUMMARY 

This work reports the immobilization of different chemical moieties on the 

graphene oxide and presents opportunities for designing high activity, heterogeneous, 

and eco-friendly catalysts. The catalytic activity of synthesized composite was studied 

in Suzuki-Miyaura reaction. Yield of Aryl halides with electron withdrawing groups 

fared better as compared to those with electron donating groups. Among the various 

aryl halides, iodide was found to be a better leaving group. The grafted catalyst was 
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easy to recover and recycle with consistent activity (~80%, 4-bromobenzonitrile). 

Therefore, the developed GO based catalyst is viable heterogenous catalyst owing to 

its ease of synthesis and stability for the Suzuki-Miyaura reaction. 
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This chapter discusses the summary of the work existing in the thesis and the 

important findings on synthesis, characterization, and application of some transition 

metal complexes for cross coupling reactions. 

7.1 SUMMARY 

In summary, the method used low cost, abundant, and environmentally benign 

metals in the synthesis of complexes and thereafter their efficient catalytic activity in 

Suzuki-Miyaura C-C cross coupling reaction. Six series of metal complexes which 

totals to 27 complexes were synthesized to study their catalytic activity in Suzuki-

Miyaura coupling reactions. Schiff bases (L-1, L-2, L-3, L-4, L-5 and L-6) were 

synthesized using 4-aminoacetophenone, 2-amino-5-bromopyridine, 2-aminophenol, 

and 1,2-phenylenediamine with different substituted aldehydes (salicylaldehyde, 2-

hydroxy-3-methoxybenzaldehyde, 2-hydroxy-1-napthaldehyde). Complexes (C-1 to 

C-27) of 3d-transition metal namely manganese, iron, cobalt, nickel, and copper were 

synthesized using these six Schiff base ligands (L-1 to L-6). The synthesized 

complexes were examined for their C-C coupling efficiency in Suzuki cross-coupling 

between phenylboronic acid and para substituted aryl halides. Effect of synthesized 

ligands on the catalytic activity of the complexes was explored based on the coupling 

yields. Further, we have described the synthesis of nano-iron (II) and nickel (II) 

complex of a Schiff base ligand (L-7), namely 1-((pyridin-2-

ylimino)methyl)naphthalen-2-ol using sonochemical methods. The nano-complexes 

were characterized and their catalytic activity was investigated for Suzuki-Miyaura 

cross coupling reaction. Also, the immobilization of Schiff base copper complex onto 

graphene oxide was carried out to synthesize heterogeneous and eco-friendly catalysts 

for Suzuki-Miyaura cross coupling reaction. 

The present study has led to the consideration of the role of ligands and their 

electron donating ability in enhancing the catalytic activity of a complex. Among all 

the complexes, copper complex catalyzed Suzuki reaction showed good yield with the 

reaction proceeding efficiently under mild condition. This catalytic system is more 

attractive because it is very cheap compared to more expensive palladium catalyst. 
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The absence of reducing agent and phosphine ligand in the catalytic system together 

are other advantages of this system as it leads to more ecofriendly catalyst. Also, the 

grafted copper catalyst was easy to recover and recycle with consistent activity 

(~80%, 4-bromobenzonitrile). 

7.2 CONCLUSIONS 

From the experimental results obtained in the presented research following 

conclusions were drawn: 

• Presence of 3d-transition elements as the active metal center in the complexes 

resulted in satisfactory catalytic activity. 

• Among the synthesized series, Copper Schiff base complexes (C-5, C-10, C-

12, C-17, C-22 and C-27) showed best catalytic activity owing to the higher 

availability of electrons compared to other metals. Thus, exhibiting highest 

coupling efficiency.  

• Presence of electron withdrawing substituents on the aryl halides enhances the 

coupling process. The electron donating substituents slightly reduces the biaryl 

conversion as evident from the higher yield obtained for aryl halides with 

electron withdrawing -CN group as compared to donating group like -OCH3 

group. 

• Presence of iodide which is better leaving group among the halides leads to 

higher yield in Suzuki Miyaura cross coupling reaction. This indicates the 

importance of having good leaving group for better yield. 

• Prepared iron and nickel nano-catalysts (C-28 & C-29) are low-cost, highly 

active, and stable, thus providing promising alternative for Suzuki-Miyaura 

carbon-carbon cross coupling reaction. 

• The GO based copper catalyst (Cu-NH2-GO) proved to be the viable 

heterogenous catalyst owing to its ease of synthesis and stability for the 

Suzuki-Miyaura coupling reaction. 
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SCOPE FOR THE FUTURE WORK 

Based on the results obtained, it is planned to synthesize and characterize more Schiff 

base transition metal complexes, nano-metal Schiff base complexes and grafted metal 

composites. Their effect on C-C coupling will be carried out. 
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Thesis Title                            :- “Synthesis, Characterization and Application of Some Transition 

                                                  Metal Complexes for Cross Coupling Reactions”. 

Institute                                 :- National Institute of Technology, Mangalore, Karnataka 

M.Sc. (Organic Chemistry)  :- 2009-2011 

University                               :- University of Mumbai  

Marks                                      :- 63.50 % 

B.Sc.(Chemistry)                  :- 2006-2009 

University                               :- University of Mumbai 

Marks                                      :- 75.00 % 

 

❑ Work Experience 

 

1. In-plant Trainee at Aarti Industries Ltd., Aarti Healthcare API Div. Unit I. 

Dombivli (Maharashtra) India. From June 2010 to July 2010. 
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❑ Teaching Experience 

 

1. Lecturer at Aqsa Women’s Degree College, 4th Millat Nagar, 4th Nizampur, 

Chavindra, Bhiwandi 421302, Thane (Maharashtra) India. From 13th June 

2012 to 13th Jan 2014. 

 

❑ Research Areas of Interest 

 

1. Multistep organic synthesis. 

2. Synthesis of Chromen, Pyrazole and Pyrimidine based active ingredient 

compounds for antibacterial and antifungal activity. 

3. Synthesis of Schiff base ligand and their transition metal complexes for cross 

coupling reactions. 

4. Development of nano-metal Schiff base catalysts for Suzuki-Miyaura cross 

coupling reaction. 

 

❑ Research Papers in International Peer Reviewed Journals 

1. Rasheeda M. Ansari and B. Ramachandra Bhat.  Schiff base transition metal 

complexes for Suzuki-Miyaura cross-coupling reaction. Journal of Chemical 

Sciences 2017, 129, 1483-1490. 

2. R. M. Ansari, Lolakshi M. K and B. Ramachandra Bhat. Air stable cobalt (II) 

and nickel (II) complexes with Schiff base ligand for catalyzing Suzuki 

Miyaura cross coupling reaction. Russian Journal of Coordination Chemistry 

2018, 44, 1-8. 

3. Rasheeda M. Ansari, Lolakshi M. K and B. Ramachandra Bhat (2018) 

“Cobalt Schiff base Complexes: Synthesis Characterization and Catalytic 

Application in Suzuki-Miyaura Reaction” Chinese Journal of Chemical 

Engineering (Accepted) (doi:10.1016/j.cjche.2018.05.002) 

4. Rasheeda M. Ansari, Gawale YK, Bansode TN. Synthesis, Antibacterial and 

Antifungal Activity of Some New Pyrimidin-2 (5H) -One/Thione and 4H-

Chromen-4-One Derivatives. Pharmaceutical Chemistry Journal 2011, 45, 

366-368. 

 

5. Rasheeda M. Ansari, Gawale YK, Bansode TN. Synthesis and biological 

activity of some new pyrazole derivatives. Journal of Pharmacy Research 

2012, 1, 1141-1142.  

 

 

 

 



 

217 

 

❑ Presentations  

 

1. “National Conference on Advances and Innovations in Chemical Sciences 

(NCAICS-2015)” organized by University of Mumbai Vidyanagri, Santacruz 

(E). Mumbai-400 098 (India) on 12-13th February, 2015. 

 

2. “International Conference on Multifunctional Materials for Future 

Applications (ICMFA- 2015)” organized by Department of Chemistry Indian 

Institute of Technology (BHU) Varanasi (India) on 27-29th October 2015. 

 

3. “International Conference on Advances in Chemical Engineering 

(ICACE-2015)” organized by Department of Chemical Engineering, National 

Institute of Technology Karnataka, Surathkal, Srinivasnagar-575025, 

Karnataka (India) on 20-22nd December 2015.  

 

4. “National Conference on Recent Trend in Chemical Sciences (NCRTCS-

2016)” organized by Department of Chemistry Manipal Institute of 

Technology, Manipal-576104, Karnataka (India) on 11-12th January 2016. 

 

5. “International Conference on Impact of Chemical Research on 

Environment (ICRE-2016)” organized by Department of Chemistry and 

Research Centre, New Arts, Commerce and Science College, Parner-414302, 

Ahmednagar, Maharashtra (India) on 17-18th February, 2016. 

 

6. “International Conference on Emerging Trends in Nanomaterials Science 

and Technology (ICETNMST-2017)” organized by Department of Science 

and Humanities, National Institute of Technology Nagaland, Dimapur-797103, 

Nagaland (India) on 4-6th January, 2017. 

7. “International Conference on Recent Trends in Chemical Science 

(ICRCS-2017)” organized by Govt. Engineering College, Bikaner-334004, 

Rajasthan (India) on 12-13th January, 2017. 

 

8.  “International Conference on Nanoscience and 

Nanotechnology (ICONN-2017)” organized by Department of physics and 

Nanotechnology, SRM University, Kattankulanthur, Chennai-603203 Tamil 

Nadu (India) on 9-11th August, 2017. 

 

❑ Conferences/ Workshops participated 

1.  “6th Science Conclave: A Congregation of Nobel Laureates and Eminent 

Scientists” organized by Indian Institute of Information Technology, 

Allahabad (India) on 8th to 14th December 2013. 
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❑ Sophisticated Instrument Handled 

1. SCXRD (Bruker APEX-II) 

2. Freeze Dryer 

3. UV-Visible Spectrophotometer (Analytik Jena SPECORD) 

 

❑ Analytical Instrument Handled 

1. GC for Reaction Monitoring 

(Shimadzu 2014, Japan) 

2. HPLC 

3. FTIR (Bruker-Alpha) 

4. DSC 

5. TGA 

6. Autolab 

7. Magnetic balance (Sherwood 

UK) 

8. Parallel Synthesize

 

❑ Computer Programs 

1. Chemdraw 

2. Chemsketch 

3. Chemcraft 

4. Origin 

5. Windows, MS Office 2013

 

❑ Personal Details 

Date of birth : July 6, 1987 

Birth place : Bhiwandi 

Marital Status : Single 

Sex  : Female 

Languages known : English, Hindi, Marathi, Urdu 

Nationality : Indian 

Hobbies     : Travelling, Singing. 
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Prof. B. Ramachnadra Bhat, 

Professor, 

Department of Chemistry, 

National Institute of Technology, 

Mangalore  

Karnataka - 575025. 

ram@nitk.edu.in 

Dr. T. N. Banasode, 

Associate professor, 

Department of Chemistry, 

BNN college 

Bhiwandi, Thane 

Maharashtra - 421305. 

bansodetanaji42@gmail.com  
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❑ Declaration 

I hereby declare that the information mentioned above is correct up to my knowledge 

and I accept the responsibility for the correctness of the above-mentioned particulars. 

Place: Mumbai (India)                                                                                               

 

(Ansari Rasheeda Bano Maqbool Hasan) 
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