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ABSTRACT 

Nature in its fullest form is a reservoir of biochemical processes, regulated by 

various ionic species, which are primarily known to sustain the ecological balance in the 

living system. Among them, anions such as fluoride (F‒), dihydrogen phosphate   

(H2PO4
‒), acetate (AcO ‒) and cyanide (CN‒) have profound impact on human health, 

both beneficial and detrimental, depending on the amount present in the living system. In 

this direction, design and synthesis of artificial organic receptors have garnered great 

attention to mimic molecular recognition at physiological level. 

Owing to the profound utility of the artificial receptors, the present work has been 

focused towards rational design of organic receptors which can aid the colorimetric 

detection of anions. Seven different series of receptors based on various backbones 

following binding site-signaling unit approach have been designed, synthesized and 

characterized by standard spectroscopic techniques. The anion binding ability of the 

receptors have been evaluated in appropriate solvent system and confirmed by UV-Vis 

titration, 1H-NMR titration, cyclic voltammetric and DFT studies. The binding constant 

and binding ratio have been evaluated using Benesi-Hildebrand (B-H) equation and B-H 

plot respectively. The lower detection limit values of the receptors achieved towards 

active anions signifies their efficacy in real life applications. Biological applications of 

the selected active receptors such as DNA binding studies; detection of F‒ in sea water 

and commercially available mouthwash; detection of H2PO4
‒ in detergents; detection of 

AcO‒ ions in vinegar and bacterial culture and detection of CN‒ ions in sprouting potatoes 

prove their utility as chemosensors. The sol-gel transition of the organic receptors in the 

presence of anions highlights the utility of soft materials in the sensor applications. Based 

on the experimental findings, it could be concluded that artificial organic receptors are 

potent candidates to mimic molecular recognition at physiological level.  

Keywords: Organic Receptors; Colorimetric; Anions; Ratiometric; Tautomerism; 

Solvatochromism; bacterial studies; DNA binding; Gelation 
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1.1 SUPRAMOLECULAR CHEMISTRY 

Supramolecular chemistry is a highly multidisciplinary field of science which 

impinges on various other disciplines, such as the traditional areas of organic and 

inorganic chemistry, needed to synthesize the precursors for a supermolecule; physical 

chemistry, to understand the properties of supramolecular systems and computational 

modelling to understand complex supramolecular behavior. Prof. Jean-Marie Lehn, has 

defined supramolecular chemistry as ‘the chemistry of molecular assemblies and of the 

intermolecular bond’. More commonly, it is described as ‘the chemistry of the non-

covalent bond’ and ‘non-molecular chemistry’ (Steed et al. 2009). In the year 1987, 

Cram, Lehn and Pedersen were jointly honored with Nobel Prize for their important 

findings in the field. The general structural aspects of supramolecular chemistry are 

shown in Fig. 1.1. 

 

 Fig. 1.1 Representation of the structural aspects of supramolecular Chemistry 

1.2 Host-Guest Chemistry 

 Supramolecular chemistry involves the interactions of two or more components. 

The term “host-guest chemistry” could be correlated to complexation phenomenon. It 

involves the binding of the host molecule with the guest molecule forming a host-guest 

complex. Donald James Cram has defined host and guest components as follows. An ion 
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or an organic molecule whose binding sites converge in the complex is called as the host 

component. An ion or molecule whose binding sites diverge in a complex is called as the 

guest component. A region of the host or guest that is of correct size, geometry and 

chemical nature which can interact through non-covalent interactions is referred to as the 

binding site. In supramolecular chemistry, a molecular complex is said to be highly 

structured if it is composed of at least one host and one guest component. For an efficient 

host-guest relationship, there should be complementary stereo-electronic arrangement of 

binding sites in host and guest. Simple guests are quite abundant because the location of 

divergent binding sites does not involve more organization. Hosts with appropriate 

binding sites are rare to find, which necessitates them to be designed and synthesized. It 

all means to say that the binding and supporting parts of hosts which when compared to 

the guests have to be quite larger. 

1.3 ANIONS 
 

 By definition, anions are the species that have gained an electron and are 

negatively charged. They possess more number of electrons than protons. Though many 

elements form stable atomic cations or positively charged ions, only a hand few form 

stable atomic anions. Elements belonging to Group 17 or the halides F, Cl, Br and I 

readily form anions bearing -1 charge (F ̶ , Cl ̶ , Br ̶ and I ̶ ). And, group 16 elements O 

and S form atomic anions with -2 charge (O2 ̶ and S2 ̶ ). Molecular ions or the 

polyatomic ions are abundant in nature. They are stable chemical species which retain 

theirstructure in crystals as well as in solution. Mostly, polyatomic ions are classified 

into three categories. (i) Diatomic anions E.g. OH– and CN ̶ (ii) Anions with carbon 

E.g. CO3
¯, CH3COO ̶ and C2O4

2 ̶ (iii) oxoanions: They possess a central atom 

surrounded by one to four oxygen atoms. Eg. SO4
2–,   SO3

2–, NO3
¯, NO2¯, ClO4

¯ etc 
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1.3.1 Environmentally and biologically important anions: 
 

1.3.1.1 Fluoride (F  ̶ )                                                         
 

Fluoride is known to have multiple implications on human health. Fluoride gains 

entry into the human body through the gastrointestinal tract and is readily absorbed in the 

stomach (Whitford 1996). Fluoride is known to decrease the incidence of dental carries 

and enhance the rate of enamel remineralization (Bratthall et al. 1996; Margolis and 

Moreno 1990; Murray 1993). However, excessive fluoride ingestion during tooth 

formation would lead to hypomineralization of dental enamel leading to dental fluorosis 

(Fejerskov et al. 1987, 1994; Richards et al. 1986). Long term exposure of smaller 

amounts of fluoride in drinking water can lead to skeletal fluorosis (Evans and Darvell 

1995).  

1.3.1.2 Cyanide (CN  ̶  ) 

 Cyanide is occasionally found in drinking water as a result of industrial 

contamination and has even encroached the dietary sources. The toxicity of cyanide is 

well known for its propensity to bind to the iron in cytochrome c oxidase affecting the 

electron transport chain and resulting in hypoxia. Cyanide induced occasional fire related 

deaths have been reported by several researchers (Anderson and Harland 1982; Becker 

1985; Levin et al. 1990; Lou et al. 2009; Matsubara et al. 1990; Mayes 1991; Way 1984). 

Nevertheless, cyanide is extensively used as raw materials for synthetic fibers, resins, 

herbicides (Tsui et al. 2012).   

1.3.1.3  Acetate (AcO–) 

 Acetate, being a planar oxy-anion plays important role in chemical, environmental 

and biochemical metabolic process. Acetate are a common building block for 

biosynthesis. The fatty acids are produced by connecting C2 units derived from acetate 

(March 1992). They play an important role in nylon industry and also in the manufacture 

of paper, paints, dyes, plastics. Acetate, for example, is used as an indicator of organic 

decomposition in marine sediments based on the rate of acetate production and oxidation 
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(Christensen 1984; Sørensen et al. 1981). Also, it exhibits specific biochemical behavior 

in enzymes and antibodies (Vella 1990).  

1.3.1.4 Phosphate (PO4
2 − )                                                                                                      

 Phosphate is ubiquitous in biochemistry. Phosphate is usually the leaving group in 

metabolic reactions (Preiss and Handler 1958). Inorganic phosphates commonly used as 

fertilizer in agriculture are a potent cause for eutrophication of aquatic system when they 

runoff into rivers (Greenhalgh and Selman 2012). Maintenance of phosphate level at 

physiological conditions is crucial as it is one of the prime factors influencing bone health 

(Marks et al. 2010). Detergents are also a reservoir of polyphosphates which when let out 

from laundry or industries into the water sources could be a potent threat to aquatic 

system. 

1.3.1.5 Arsenite (AsO2
−) 

 Arsenic is a potent source of toxicity to the living system as it presents severe 

health issues at physiological level. Researchers have extensively studied the 

biogeochemistry of arsenic (Ferguson and Gavis 1972; M.S and Ph.D 1991) and found 

that arsenate is predominant in well oxidized water and arsenite is predominant in 

reduced environments. Owing to the relatively slow redox transformations (Masscheleyn 

et al. 1991), both arsenite and arsenate are found in either redox environment. Research 

indicates arsenite to be almost 25-60 times more toxic than arsenate and more mobile in 

the environment (M.S and Ph.D 1991). 

1.4 ANION RECEPTOR CHEMISTRY: 

 The prominent feature of anions is their negative electrostatic charge which 

distinguishes themselves from other guest species. Also, the pre-organized placement of 

complementary binding sites on the receptors constitutes the basic design criteria. 

Combining above two features, it could be said that anion receptor chemistry involves in 

designing new synthetic receptors for quantifying and sensing anions (Sessler et al. 

2006). 
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1.4.1 Challenges of Anion Receptor Chemistry: 

The design of anion receptors involves the criteria of specificity arising from the pre-

organized placement of complementary binding sites. Even if the above necessity is 

fulfilled, certain properties of anions make the task a little more challenging. They could 

be summarized as follows:  

i) Anions being larger than cations require larger receptors which can accommodate 

them. F ̶, being the smallest anion has a radius comparable to that of K+ (Shannon 

1976) Cations are generally found as spherical species, with the exception of organic 

cations while anions exist in many shapes and sizes. Examples include: Halides 

– Spherical, SCN ̶  -linear, NO3– - planar, HPO4 ̶  -tetrahedral and PF6 ̶  octahedral. 

On the other hand, biologically important anions like nucleotides and proteins have 

complex shapes.( Fig 1.2) 

 
Fig 1.2 Different shapes and sizes of anions 

 

ii) Anions have high free energy of solvation and thus the nature of the solvent interferes 

in the anion binding event through the factors such as binding strength and selectivity. 
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Electrostatic interactions stabilize the anions in solution dwarfing other recognition 

forces. Hydroxylic solvents are potent enough to form strong hydrogen bond with 

anions. Therefore, a potential anion receptor has to face a tough competition with the 

solvent environment in an anion recognition event. Considering the example of a 

neutral receptor where the interaction with the anion is primly hydrogen bonding, it is 

less likely to be capable of competing with the polar protic solvation shell present 

around the target anion in a hydroxylic solvent. Thus, it can only function as an anion 

receptor in aprotic organic solvents. While a charged receptor incurs benefit from 

electrostatic effects and as a result it competes more effectively with polar protic 

solvents. Lastly it is the anion receptor that must not just compete with the solvent, 

but also with the counter anion paired with the target anion. 

iii) Anions may become protonated at low pH, tending to lose their negative charge. So, 

by virtue of the pH sensitive nature, receptors must function within the pH window of 

the target anions. This problem arises with the protonated receptors whose 

protonation window must be carefully looked upon. On the other part, neutral 

receptors and those containing permanent built-in charges designed to work in aprotic 

media overrule the above problem.  

iv) Anions being co-ordinatively saturated, bind to the receptor through weak 

interactions, such as hydrogen bonding and van der Waals interactions. Positively 

charged receptor is generally used in anion binding studies. Cation- anion binding 

event leads to either a solvent separated or contact-ion pair. Due to the difference in 

electrostatic charge, anion binds to neutral receptors despite there being large 

difference between cations and anions. Neutral receptors, devoid of the burden of 

competing with counter anion offer the possibility of enhanced selectivity. In order to 

overcome the non-directional nature of electrostatic interactions, introduction of a 

Lewis-acidic site would be more suitable as most anions are Lewis basic. This 

basically signifies the hydrogen bond acceptor and hydrogen bond donor property of 

the anions. The Lewis acid base interaction is strong and directional too. As the 

anions are polarizable, van der Waals interactions play a vital role in binding. This 
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case is encountered when anion has been encapsulated within the cavity of a host 

system and exhibit a high degree of surface area contact. 

v) Hydrophobicity is one of the factors influencing the selectivity of the receptor. It 

could be well explained with the Hofmeister series (HOFMEISTER 1888) which is 

the result of studies on the effect of salts on the solubility of the proteins (Scheme 

1.9). This series orders anions by their decreasing hydrophobicity and consequent 

increase in the degree of aqueous solvation. Hydrophobicity could be used in the 

design of anion receptors to bias selectivity towards larger anions with low charge. 

Both hydrophobicity and Hofmeister series could be used in solvent extraction of 

anions from aqueous solution. Those anion receptors which perturb the Hofmeister 

series from its normal order help in the selective extraction of a particular anion. 

 

Organic anions > ClO4
 ̶ > SCN ̶ > I ̶ > salicylate > NO3

 ̶   >Br ̶  > Cl ̶  > HCO3
 ̶ > H2PO4

 ̶  

> F ̶ > SO4
2 ̶  >  H2PO4

 ̶  

Scheme 1.1 Representation of Hofmeister series 

1.4.2 History of Anion Receptor Chemistry: 

 The design and synthesis of anion receptors commenced in 1968 by Simmons and 

Park, (Park and Simmons 1968) with a report on halide binding properties of 

macrobicyclic receptors with two ammonium bridgehead centers spanned by three alkyl 

linkers (Scheme 1.2). It showed high affinity for chloride when a linker having 7 to 10 

methylene groups in length was introduced. 

 Following this, Lehn and coworkers (Graf and Lehn 1976) designed variety of 

macrobicyclic and macrotricyclic ammonium based receptors (cryptands) which 

demonstrated the optimization of the anion fit for a given charged cavity for stronger 

binding (Scheme 1.3). Further they extended their work to the synthesis of protonated 

cryptands to bind linear species like azide (Scheme 1.4). The crystal structure of the azide 

bound receptor showed the presence of hydrogen-bonding interactions. It was 
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Schmidtchen (Schmidtchen 1977; Schmidtchen and Müller 1984) who designed and 

synthesized a series of receptors having quaternary ammonium groups arranged in a 

tetrahedral fashion that bind anions in their cage like structure through electrostatic 

interactions. The selectivity towards anions was increased by altering the alkyl chain 

length between ammonium centers (Scheme 1.5). Since ammonium based receptors were 

positively charged, they were accompanied with counter ions which made them compete 

with the anions in the binding process. To overcome this issue, neutral zwitter ionic 

receptors were synthesized by the same group for the binding of fluoride ion 

(Scheme1.6). On the contrary, Pascal and coworkers (Pascal Jr. et al. 1986) reported the 

hydrogen bonding between neutral receptors and anions, wherein the receptors included 

groups like amide, urea or pyrroles within the cyclophane host (Scheme 1.7). In 1993, a 

series of acyclic tripodal receptors containing amide groups were synthesized by 

Reinhoudt and coworkers (Valiyaveettil et al. 1993) as shown in Scheme 1.8 measured 

by conductivity measurements in acetonitrile.  

 Apart from these pioneering works, nature has also contributed in the validation 

of some naturally available compounds as receptors. Positively charged guanidinium 

group present in the biological system as a side chain of arginine, helps in the binding of 

anions. These receptors by virtue of the strong electrostatic interactions allow binding of 

anions in aqueous as well as partially aqueous environment. Using guanidinium unit as a 

binding motif, Lehn and coworkers (Dietrich et al. 1978) designed a synthetic anion 

receptor which showed relatively poor anion affinities. Schmidtchen further incorporated 

bicyclic fused ring system into the guanidinium motif, and hydrogen bonding array as in 

urea was observed which showed activity towards carboxylates and phosphates (Scheme 

1.9). In 1980’s studies on the role of porphyrin based receptors like sapphyrin, a 

pentapyrrolic macrocycle was reported (Bauer et al. 1983; Shionoya et al. 1992) (Scheme 

1.10). As it was susceptible to protonation readily, generation of monopositive and 

dipositive macrocycle was much easier. In an attempt to crystallize 

bishexafluorophosphate salt of porphyrin, rather a mixed fluoride/ 

bishexafluorophosphate salt were obtained.  This proved the binding of fluoride ion 
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within the macrocyclic core doubly protonated sapphyrin. Pyrrole based cyclic and 

acyclic receptors, having relatively good anion binding properties have been extensively 

studied. With this a rich anion complexation chemistry, pyrrole based receptors have 

been extensively worked upon by Gale, Sessler and others (Brooks et al. 2006; Gale et al. 

1996; Sessler and Seidel 2003). 

 

Scheme 1.2 Macrobicyclic  receptors  with  ammonium  bridgehead  centres  and alkyl 

linkers 

 Scheme 1.3 Macrobicyclic and macrotricyclic ammonium based receptors(cryptands) 
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Scheme 1.4 Receptors bearing quaternary ammonium groups and alkyl linkers 

 

Scheme 1.5 Neutral zwitter ionic receptors  

 

Scheme 1.6 Neutral cyclophane based receptors 
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 Scheme1.7 A series of acyclic tripodal receptors bearing amide groups 

 

Scheme 1.8 Bicyclic fused ring system with guanidinium motif 

 

Scheme 1.9 Porphyrin based receptor 
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1.5 COLORIMETRIC CHEMOSENSORS: 

 The design and synthesis of new receptors since its inception has focused on 

practical   applications.   Molecular   sensing   is   one   such   field which has received 

more attention in the last decade. According to analytical chemistry, sensor is a device 

that can detect and quantify the concentration of the analyte. In the field of 

supramolecular chemistry, molecular biology and biochemistry, the term “sensor” is 

closely associated with a molecular event. Receptor could be called as a sensor when a 

chemical receptor gives a measurable signal in response to the binding of an analyte. It 

was Antony Czarnick, who coined the term ‘chemosensor’ to differentiate between the 

designed chemical receptors and biosensors (Czarnik 1994).  Design of new synthetic 

receptors for sensing applications could be referred to as a fertile ground for the creativity 

of the supramolecular chemists. As receptor design is vital for the sensing process, 

binding strategy is much more important. 

 Depending on the type of signal produced on the binding event, chemosensors can 

be classified into two categories as, electronic sensors and optical sensors. Electronic 

sensors exhibit change in the electrochemical properties and optical sensors exhibit 

change in the optical signals on the binding event. In general, three components get 

together in the construction of optical anion sensors; anion binding site, the chromophore 

or signaling unit and the method of measuring the change and converting it into useful 

information (Suksai and Tuntulani 2003). A general representation of colorimetric 

chemosensor is shown in Fig. 1.3. 

Optical sensors could be further classified as follows; 

i) Chromogenic / Colorimetric chemosensors: Here, the signaling unit results 

in colour change on the binding of guest moiety by the receptor. 

ii) Fluorogenic/ Fluorimetric chemosensors: In this type, the interaction 

between the guest moiety and the receptor results in changes in the 

fluorescence behavior of the signaling unit. 
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Optical approaches like colorimetry and fluorometry are the commonly used techniques 

to quantify and sense anions. Simple instrumentation involved with the colorimetric 

techniques and possibility of achieving lower detection limits through fluorimetry have 

made them much more appealing. 

 

Fig. 1.3: Basic components of a chemosensor 

1.5.1. Types of colorimetric chemosensors 

 Depending on the nature of interaction of binding site with the signaling unit, 

three different approaches have been used by various groups in pursuing the synthetic 

receptors. 

i. Binding site-signaling unit approach 

This involves the attachment of binding site to the signaling unit through covalent bonds. 

Interaction of the anion with the binding site changes the electronic property of the 
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signaling unit. This leads to the sensing of target anion through color or emission 

modulation. And, in this approach sensing feature could be observed only in organic 

solvents. The color change could be related to the basicity of the anions that either form 

hydrogen bond interaction or/and induce deprotonation  of the receptor (Amendola et al. 

2006; Gunnlaugsson et al. 2005, 2006). A schematic representation of binding site-

signalling unit approach is shown in Fig 1.4.  

  

 

 Fig 1.4: General representation of binding site-signaling unit approach 

ii. The Displacement assay approach 

This approach is commonly used due to its wide application in immnunoassay protocols. 

Here, the receptor forms an inclusion complex with the dye and upon introduction of 

anion results in displacement of the dye which goes into the solution. It involves non-

covalent interactions between the binding site and indicator group that in turn allows 

testing of large number of combinations in order to obtain a tuned sensing system. It 

allows the design of realistic sensing protocol because it could be applied to both aqueous 

as well as organic-aqueous system(Nguyen and Anslyn 2006; Wiskur et al. 2001).  A 

general representation of displacement assay approach is shown in Fig. 1.5.  
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 Fig. 1.5: General representation of the displacement assay approach 

iii. The Chemodosimeter approach 

This represents a well-established procedure for the design of anion receptors. It involves 

specific anion-induced reactions involving the rupture and formation of covalent bonds. It 

results in major chemical changes in the receptor along with remarkable spectroscopic 

changes. This approach involves nucleophilic attack of target species to electron deficient 

functional groups which leads to a re-organization of electron density in the entire 

molecule and results in color change (Xu et al. 2009). The general representation of 

chemodosimeter approach is shown in Fig 1.6.   
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Fig. 1.6 General representation of the chemodosimeter approach 

1.6 SUPRAMOLECULAR GELS 

Supramolecular gels are a fascinating class of soft materials. Their gelators can self-

assemble into nano or micro-scale superstructures, such as fibers, ribbons, sheets and 

spheres in an appropriate solvent, thereby resulting in the formation of 3D networks 

which are interconnected by multiple non-covalent interactions, such as hydrogen 

bonding, metal coordination, van der Waals interactions, p–p stacking interactions, 

solvophobic forces (hydrophobic forces for hydrogels) etc. (Banerjee et al. 2009; Lloyd 

and Steed 2009; Maeda 2008; W. Steed 2010). The dynamic and reversible nature of the 

noncovalent interactions that contribute to the formation of these network structures 

together gives these supramolecular gels the inherent ability to respond to external 

stimuli. The process of formation of supramolecular gel is represented in Fig.1.7. 
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Soft materials have been attracting increasing attention as a ‘‘transformable’’ functional 

class of materials, owing to their moderate mobility and flexibility, which readily enables 

them to change their bulk shape and properties depending on the conditions. (Estroff and 

Hamilton 2004; Terech and Weiss 1997). Gels are soft materials that are reasonably less 

mobile agglomerates with mechanical properties ranging from soft and weak to hard and 

tough. Gels are defined as substantially dilute cross-linked systems, which exhibit no 

flow in the steady-state. This internal network structure may result from physical bonds 

(physical gels) or chemical bonds (chemical gels), as well as crystallites or other 

junctions that remain intact within the extending fluid.  

 

  

 

Fig. 1.7   Schematic representation of the formation of a supramolecular gel 
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1.7 LITERATURE REVIEW 

Despite there being challenges towards the anion detection process, researchers have 

extensively worked upon designing artificial receptors which can bind anions though 

various non-covalent interactions such as hydrogen bonding, anion-π and reactions like 

hydrogen abstraction and electron transfer (Beer et al. 2003).  

Dey et al. (2011) have synthesized dinitrophenyl functionalized tris-(amide) receptor S 

1.1 for the selective detection of fluoride by encapsulation within the tripodal 

pseudocavity in polar aprotic solvents exhibiting solvatochromism and solvatomorphism. 

UV-Vis studies confirmed the nature of the chromophoric change to be a result of F–---π 

CT interactions wherein F– is hydrogen bonded to the NH groups which was evident in 

the crystal structure of solvatomorph.  

O2N

NO2

O
NH

N

HN O

O2N

NO2

HN

O

NO2

O2N

 

S 1.1 

Li et al. (2011) have designed and synthesized a novel acetate selective anion sensor S 

1.2 based on azophenol and mercapto thiadiazole. Sensor exhibits selectivity and 

sensitivity for AcO− anion over other anions such as F−, Cl−, Br−, I−, H2PO4
−, HSO4 and 

ClO4
− by naked-eye and UV–Vis spectra changes in aqueous solution (H2O/DMSO, 5:5, 

v/v). The color of the solution containing sensor had an obvious change from colorless to 

orange after the addition of AcO− in aqueous solution while other anions did not cause 

obvious color change. The binding constant was found to be 7.35 x 103 M-1. The 

detection limit of the sensor for AcO− was 1.0 x 10−6 mol L-1. 
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O2N N
N OH

N
S

N
N

SH

 

S 1.2 

Bose et al. (2011) have designed and synthesized a series of new symmetrically 

functionalized guanidinium chlorides (S 1.3, S 1.4, S 1.5, S 1.6, S 1.7, S 1.8, S 1.9, S 

1.10, S 1.11, S 1.12) wherein the reactivity towards anions have been tuned by varying 

the functional groups attached to the guanidium moiety. Addition of fluoride ion induces 

vivid color changes from yellow to red to reddish orange and finally to blue color. One of 

the receptors exhibited NIR signature at 930 nm. Single crystal X-ray analyses supports –

NH deprotonation in the presence of highly basic F− and 1:1 binding in the presence of 

less basic anion benzoate. 

NR
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Dalapati et al. (2011) have reported two organic receptors S 1.13 and S 1.14 possessing –

OH functionality as binding site for anions. Receptor S 1.13 exhibited colorimetric 

response towards F‒ and AcO‒ ions with a color change from colorless to pale yellow. 

UV –Vis titration studies performed in 95:5, v/v, CH3CN: DMSO with the gradual 

addition of anions. The binding of anions by the receptor has been confirmed from the 

density functionality studies (DFT). Binding constant was found to be 1.36 x 104 M-1 

with F‒ ion (1 : 1 complex) and 7.05 x 109 M-2 with AcO‒ ion (1:2 complex).  

NN

HOOH XX

S 1.13: X=H
S 1.14: X=NO2  

Kumari et al. (2011) have designed and synthesized colorimetric probes based on 

anthraimidazolediones of which one of the probes, S 1.15 exhibited selective detection of 

both fluoride and cyanide ions in organic medium whereas in aqueous organic medium, it 

exhibited selective detection of cyanide ions with a ratiometric response. Job’s plot 

revealed 1:1 binding ratio of the probe with fluoride and cyanide ions. 

N
HN

N
ONa

O

O
NaO

O

O  

S 1.15 
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Santos-Figueroa et al. (2012) have synthesized a family of heterocyclic 

thiosemicarbazone dyes, S 1.16 – S 1.22 containing furyl groups, and their response in 

acetonitrile in the presence of selected anions was studied. Acetonitrile solutions of 

receptors showed absorption bands in the 335–396 nm range which are modulated by the 

electron donor or acceptor strength of the heterocyclic systems appended to the 

thiosemicarbazone moiety. Fluoride, chloride, bromide, iodide, dihydrogen phosphate, 

hydrogen sulphate, nitrate, acetate and cyanide anions were used in recognition studies. 

From these anions, only sensing features were seen for fluoride, cyanide, acetate and 

dihydrogen phosphate.   

S

N
H

N
H

NR
O

S 1.16 - 1.22
S 1.23

S 1.16: R = Br

S 1.17:  R = NO2

S 1.18:  R =

S 1.19:  R = O

S 1.20: R = Br

NO2S 1.21: R =

CHO

N
N
H

N
H

S O

N
HN

NH
S

S 1.22: R =
 

 Basu et al. (2013) have synthesized two amidothiourea based receptors (S 1.24 

and S 1.25) containing π–acidic 3, 5-dinitrophenyl chromophore in good yields and their 

anion recognition properties were evaluated both in organic and aqueous organic 

environment by spectroscopic techniques. Anions such as F−, AcO− and H2PO4
 – were 

examined to be suitable analytes for the receptor molecules, displaying optical signaling 

from colorless to orange/red, whereas anions of lesser basicity such as Cl−, Br−, I−, NO3
− 

and HSO4
− did not cause any discernable spectral changes. Highly basic OH− ions 
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induced stepwise color change with increasing equivalence from red to green and anion--

-𝜋 interactions has been confirmed.  

O2N NO2

N
H

O

N
H

S

S 1.24

O2N NO2
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H

O

N
H

S

S 1.25
 

Roy et al. (2014) have synthesized a cascade reaction based colorimetric and fluorescent 

probe, S 1.26 for the selective detection of fluoride ions. The fast response time, 

considerably low detection limit and biological applications prove the efficacy of the 

receptor in sensor applications.  

  

O

O
O

O

OO

OMe  

S 1.26 

 

Jakusova et al. (2014) have designed receptors based on isatinphenylcarbazone S 1.27 

and S 1.28 which is capable of detecting F‒ and AcO‒ ions in organic and semiaqueous 

media. The ability of receptor to exhibit tautomerism in the presence of anions has been 

supported by UV-Vis and 1H-NMR titration studies. The acid base properties of anions 

are known to influence the equilibrium ration of tautomeric forms.   
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S 1.27: R=H
S 1.28: R=CH3  

 

Agarwalla et al. (2014) have reported the synthesis of two new receptors S 1.29 and S 

1.30 bearing positively charged phosphonium ion aiding the binding of fluoride and 

acetate to the methylene functionality.  The role of hydrogen bonding interaction between 

hydrogen atoms of the active methylene group and anionic analyte has been explored and 

the experimental results were rationalized with the detailed computational studies.  

N
N

N

Ph3P
PPh3

PF6 PF6

N
N

N

Ph3P
PPh3

PF6 PF6

Ru

N
NN

(PF6)2

S 1.29 S 1.30
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Farrugia et al. (2014) have reported a series of four new receptors S 1.31 – 1.34 based on 

thiosemicarbazide substituted with phenyl/nitrophenyl units which exhibited colorimetric 

response towards OH‒, Cl‒, F‒, AcO‒ and H2PO4
‒ ions. UV-Vis titration studies of 

receptors in 9:1, v/v, DMSO: H2O revealed red shift of original absorption band of 

receptor accompanied by dramatic color changes visible to the naked eye. The 

deprotonation of NH functionality has been confirmed by the NMR titration studies.   

 

 

 

 

 

 

You et al. (2014) (You et al. 2014)have synthesized a colorimetric and fluorometric 

chemosensor, S 1.35 bearing aminobenzothiazole moiety for the selective detection of 

acetate and cyanide ions without inference between the two analytes.  

NS

N

HO

 

S 1.35 

Gunupuru et al. (2014) have studied the anion binding properties of dipicrylamine (DPA), 

S 1.36, wherein –NH group solely acts as binding site and –NO2 functionality acts as 

signaling unit. This suggests that the acidic nature of –NH group is sufficient enough to 

X

N
H

N
H

N
H

Y
S

S 1.31: X=H, Y=H
S 1.32: X=H, Y=NO2
S 1.33: X=NO2, Y=H
S 1.34: X=NO2, Y=NO2
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bind anion through single strong hydrogen bond interaction. The interaction of DPA in 

acetonitrile with wide range of anions revealed strong interactions with F‒, AcO‒ and 

H2PO4‒ with sharp color changes from yellow to red. UV-Vis titration studies performed 

with the addition of anions revealed the significant red shift of the original absorption 

band of receptor with clear isobestic point. 1H-NMR titration and computational studies 

of DPA in the presence of anions reveal the binding of anion by the –NH functionality 

followed by deprotonation process.  

N
H

NO2
NO2

NO2

NO2
O2N

O2N

 

S 1.36 

Ghosh et al. (2015) have examined the gelation and anion responsive behavior of some 3-

aminopyridine-based urea molecules (S 1.37, S 1.38, S 1.39, S 1.40 and S 1.41). Of the 

different pyridyl ureas, two compounds formed instant gel from DMSO/H2O and 

DMF/H2O solvents. Here, the influence of hydrogen bonding of the urea groups, π-

stacking of the naphthyl units and role of water in linking the pyridine ring nitrogen make 

a possible cross-linked arrangement in solution to undergo gelation. Among them, only 

the gel state of one of the compounds has been noted, for the first time, to detect iodide 

ion over a series of other anions through a color change involving no phase 

transformation.   
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Suganya et al. (2015) have designed and synthesized the receptor S 1.42, for the detection 

of both cations and anions. Receptor- Zn2+ complex formed has been utilized for the 

reversible recognition of H2PO4
− ions selectively.  

  

S
NNHN NH

O O

N N  

S 1.42 

 Mahapatra et al. (2015) have reported an anion chemosensor based on 

phenanthroimidazole conjugate of biscarbonohydrazone, S 1.43 which could selectively 

detect F‒ ion with remarkable spectroscopic changes. The ratiometric response of the 

receptor towards F‒ ion is revealed from the gradual color change form colorless to 

yellow and orange with the incremental addition of F‒ ion. UV-Vis, NMR titration and 
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DFT studies clearly indicates the binding of F‒ ion by the imidazole –NH and urea –NH 

proton and a subsequent deprotonation process leading to the visible color changes.   
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S 1.43 

Wan et al. (2016) have designed and synthesized Schiff base chemosensor, S 1.44 for the 

selective detection of fluoride and cyanide ions. The anion binding mechanism has been 

proved by DFT and 1H-NMR titration experiments.  
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 Nie et al. (2017) have reported three hydrazone derivatives, S 1.45, S 1.46 and S 

1.47 possessing electron withdrawing groups which could selectively detect fluoride ions 

with a ratiometric colorimetric response.   
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1.8 SCOPE OF THE WORK 

Anions, though ubiquitous in the biological system have to be present in optimum 

amount because too much or too less of anions both have an equal impact on the human 

health. Right from the pioneering work on anion receptor chemistry, researchers have 

employed fluorometry and colorimetry methods in the detection of anions. Though being 

a thrust area of research, fluorometry is accompanied with complications in the detection 

process owing to its sensitivity towards environmental changes. Light used for excitation 

can even lead to photochemical changes. In this scenario, there is lot of opportunity to 

look into colorimetric sensing method where quantitative detection of anions is relatively 

easier by virtue of the simple instrumentation used. 

Water is unique in its own way with its property to form highly structured infinite 

dynamic network of hydrogen bonds among themselves. In general, the formation of 

hydrogen bond between anions and water molecules is possible due to the hydrogen bond 

donor or acceptor nature of water. In biological system, natural receptors such as 

enzymes and antibodies interact with guest molecules through non-covalent interactions 

which are specific and mediated through functional groups present on them. Mimicking 

this naturally occurring system, model compounds have been designed by researchers 

which can recognize the host-guest complexation event in organic, non-polar solvents. 

For practical applications like the detection of anions in sea water or commercially 

available mouthwash, there is a need for organic receptors that are active in water. Water 

being a competitive solvent, it mediates interactions between the receptor and anions. 

Detection of anions in water is highly challenging in the field of research by virtue of the 

high solvation energy, large size of anions and its tendency to involve in protonation 

equilibrium in aqueous solution. Researchers have so far reported positively charged 

receptors and neutral anion receptors capable of detecting anions mostly in non- 

competitive organic solvents such as DMSO, CH3CN etc. and in solvent mixtures such as 

DMSO:H2O(v/v) and very few reports are available on anion recognition in purely 
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aqueous media. For practical applications, there is a need to design and synthesize 

organic receptors that can detect anions in competitive media. 

OBJECTIVES 

• To design and synthesize organic receptors with suitable binding sites. 

• To characterize and analyze the receptors through FT-IR, 1H-NMR, elemental 

analysis and ESI-MS. 

• To monitor the color change through naked eye on addition of appropriate 

equivalent of anions to the receptor and quantify the color change by UV-Vis 

spectrophotometric titration by monitoring the shift in the λmax. 

• To analyze the binding event through NMR titration experiments. 

• To determine the binding constant through Benesi-Hildebrand (B-H) method and 

the binding ratio either by method of continuous variation (Job’s plot) or B-H 

plot. 

• To apply the designed sensor system to realize real life applications like detection 

of fluoride in sea water and commercially available mouthwash. 

• To arrive at the binding mechanism for selective receptors. 

• To calculate the detection limit of the receptors towards particular anion. 

 

Overall, the present research is focused on synthesis of organic receptors aiming towards 

biological and environmental applications. In this regard, six different series of receptors 

have been synthesized and analysed for the detection of anions. Chapter 2 deals with the 

syntheses of a receptors based on nitrophenol derivative and pyridine derivative for the 

detection of anions. Fluoride ion in commercially available mouthwash have been 

quantitatively analyzed and presented. UV-Vis spectral and DFT studies have been 

performed to confirm the anion binding process and discussed in detail. Chapter 3 deals 

syntheses of dinitrophenylhydrazine based receptors for the colorimetric detection of 

fluoride, acetate and dihydrogen phosphate ions in organic media. Further, the absorption 

ratiometric response of receptor in the presence of anion has been studied. The anion 
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induced azo-hydrazone tautomerism has been observed and confirmed by 1H-NMR 

titration studies. Chapter 4 describes syntheses and characterization of five organic 

receptors based on positional substitution of –NO2 and –OH functionalities on 

dinitrophenylhydrazine derivatives. Solvatochromism property of one of the receptors has 

been studied in the presence of acetate ion. UV-Vis titration, 1H NMR titration, cyclic 

voltammetry and DFT studies has been discussed in detail. Chapter 5 describes syntheses 

of furan based colorimetric receptors for selective detection of acetate ion have been 

discussed. The colorimetric anion sensing properties, electrochemical properties have 

been studied in detail. Biological studies have been performed with one of the receptors 

for the detection of acetate in physiological conditions. Chapter 6 comprises syntheses of 

thiadiazole Schiff’s base derivatives for multianion colorimetric detection. In addition, 

the selected active receptor was used to study the DNA binding ability, detection of 

cyanide in sprouting potatoes and detection of dihydrogen phosphate in detergent sample.  

 Chapter 7 encompasses synthesis of naphthaldehyde based receptor which has been 

employed in the selective colorimetric and fluorometric detection of fluoride ion. The 

gelation property of the receptor and sol-gel transition in the presence of anion have been 

discussed in detail. Towards the end, Chapter 8 summarizes the conclusion of the present 

research work and highlights the scope for future work.   
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Abstract: In this chapter, the design, syntheses of organic receptors have been 

described. The anion binding properties of the receptors have been studied and 

confirmed by UV-Vis spectrophotometric, 
1
H-NMR and DFT studies. 

2.1 INTRODUCTION 

The development of new organic receptors for the detection of anions is of key 

interest to supramolecular chemists owing to the biological and environmental 

importance of anions(A. Gale et al. 2008, 2014; Caltagirone and Gale 2009; Gale 

2006, 2010; Sessler et al. 2006; Wenzel et al. 2012). The leading role of anions such 

as fluoride, acetate and phosphate at physiological level in promoting tooth and bone 

health, metabolism and genetic transduction has been well established(Tetilla et al. 

2011; Amendola et al. 2010; A. Gale et al. 2008; Boiocchi et al. 2005; Duke and 

Gunnlaugsson 2011; Ali et al. 2008). Increasing research interest on selective and 

sensitive detection of anions has enriched the field of anion receptor chemistry with a 

wide array of design strategies(Gunnlaugsson et al. 2004; Misra et al. 2009; He et al. 

2014; Camiolo et al. 2003). Among these various analytical techniques, colorimetry 

has drawn significant attention among chemists for its rapid response rate, low cost, 

easy method and high selectivity(Yang et al. 2013; He et al. 2014; Hsieh et al. 2009; 

Wang et al. 2014; Ye et al. 2013; Huang et al. 2013; Yin et al. 2010). The choice of 

appropriate detection technique is highly essential as it directly dictates the efficacy of 

the sensor. Anion binding with colorimetric probes comprising of a binding site and a 

signaling unit work in a coordinative way yielding an optical output visible to the 

naked eye. The detection of anions is commonly encountered with challenges in the 

receptor- anion interactions such as size and shape effects, pH, and solvation effects. 

In this regard, considerable efforts have been devoted towards the design of a receptor 

in the past few decades. Numerous receptors for anions have been developed based on 

various modes of interactions such as hydrogen bond and electrostatic interactions 

which are reliant on directionality and distance-dependent nature respectively. 

Hydrogen bond is further tuned by the acidity of protons by virtue of the presence of 

electron withdrawing substituents (Sessler et al. 2006). Pyridine based derivatives 

have been designed by researchers in the context of detection of anions involving 

hydrogen bonding and a deprotonation mechanism. Gunnlaugsson and coworkers 
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have reported pyridine- based thiosemicarbazide derivative for the detection of OH
−
, 

F
−
and AcO

−
 ions through hydrogen bond interaction followed by a deprotonation 

process (Gunnlaugsson et al. 2005; Pandurangan et al. 2013). 

In this direction, we report the design and synthesis of new organic receptors 

R and L with suitable substitution of electron withdrawing substituent nitro 

functionality as signaling unit on the aromatic ring. With a vision towards 

enhancement of the chromogenic signaling output, signaling unit has been linked to a 

conjugated system possessing –OH functionality which acts as binding site for anions. 

UV-Vis, 
1
H NMR titration studies along with the DFT studies of R and L would help 

to arrive at the binding mechanism.  

2.2 EXPERIMENTAL SECTION 

2.2.1 Materials and methods 

All the chemicals used in the present study were procured from Sigma-Aldrich 

and Alfa Aesar and were used as received without further purification. All the 

solvents were purchased from SD Fine, India, were of HPLC grade and used without 

further distillation.  

 Melting point was measured on Stuart SMP3 melting-point apparatus in open 

capillaries. Infrared spectrum was recorded on Bruker Apex FTIR spectrometer. UV-

Vis spectroscopy was performed with analytik jena Specord S600 spectrometer in 

standard 3.0 mL quartz cell with 1cm path length. The 
1
H NMR spectra were recorded 

on Bruker Ascend (400 MHz) instrument using TMS as internal reference and 

DMSO-d6 as solvent. 
13

C NMR spectra were recorded on Bruker Ascend (100 MHz) 

instrument using TMS as internal reference and DMSO-d6 as solvent. Resonance 

multiplicities are described as s (singlet), d (doublet), t (triplet) and m (multiplet). 

Mass spectrum was recorded on Bruker Daltonics ESI Q TOF. 

Density functional theory simulation have been performed on the receptor 

molecules using GAUSSIAN 09 package. A closed shell Becke–Lee–Yang–Parr 

hybrid exchange-correlation three-parameter functional (B3LYP) (Becke 1993; Lee et 

al. 1988; Perdew and Wang 1992)along with 6-311++G (d,p) basis set were used in 

the simulation to derive a complete geometry optimization for isolated receptor as 
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well as the receptor binding with AcO 
  
 and F 

  
 ions.  The basis set 6-311 ++G (d,p) 

augmented by ‘d’ polarization functions on heavy atoms and ‘p’ polarization 

functions on hydrogen atoms were used (Petersson et al. 1988; Petersson and 

Al‐Laham 1991). Molecular geometry was fully optimized by using Berny’s 

optimization algorithm, which uses redundant internal coordinates. Molecular Orbitals 

(HOMO-LUMO) were plotted using Gauss View software. In a second step, the time 

dependent DFT (TD-DFT) method were used considering the same B3LYP exchange-

correlation functional with 6-311++G (d,p) basis set to obtain the UV-Visible 

absorption spectra of free and ion bonded receptor in DMSO solvent. 

2.2.2 Synthesis of receptors R and L 

Receptors R and L have been synthesized by simple Schiff base condensation 

reaction of aromatic aldehyde and amine (Scheme 2.1 and Scheme 2.2).  

R: (2-((E)-((E)-3-((E)-(2-hydroxy-4-nitrophenylimino)methyl)benzylidene)amino)-5-

nitrophenol) 
 

Isophthalaldehyde (0.15 g,1.14 mmol) and 2-amino,5-nitrophenol (0.4 g, 2.29 mmol) 

were mixed in 5 ml ethanol. A drop of acetic acid was added and the reaction mixture 

was refluxed for 5 h. The formation of the product was confirmed through TLC by the 

generation of single spot indicative of the disappearance of starting materials.                                                             

 Yield: 80%., m. p. 210 
o
C. 

1
H NMR (DMSO- d6, 400 MHz, ppm): δ 10.31 (br. s, 1H), 

10.07 (br. S., 1H), 8.81 (m, 1H), 8.55(br. S., 1H), 8.34 (br. s, 1H), 8.12 (br. s, 1H), 

7.61-7.48 (7.66 (ddd, J = 7.9, 1.7, 1.3 Hz, 4H)), 7.33 (m, 1H), 6.60 (d, J = 7.8, 2H) 

6.20 (br. s, 2H). FT-IR (cm
-1

): (C-O) 1155, (C-O) 1228, (NO2) 1342, (C=C) 1513, 

(C=N) 1625, (C-H) 2902, (C-H) 2984, (OH) 3426. 
13

C NMR (DMSO-d6, 100 MHz, 

ppm): δ 108.61, 110.96, 111.12, 115.03, 118.22, 120.58, 129.70, 133.82, 134.71, 

136.59, 145.48, 150.56. Mass (ESI): m/z Calculated: 406.09 Obtained: 428.9 (M + 

Na
+
). 
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Scheme 2.1 Synthesis of receptor R 

L: (E)-3-(((5-nitropyridine-2yl-)imino)methyl)naphthalene-2-ol)   

2-amino-5 nitropyridine (0.1g, 0.71 mmol) and 2-hydroxynaphthaldehyde (0.12 g, 0.71 

mmol) were appropriately weighed and transferred to a round bottom flask. 5 ml of methanol 

and a drop of acetic acid was added and the mixture was refluxed for about 5h. The progress 

of reaction was confirmed by TLC. After cooling to room temperature, the reaction mixture 

was filtered through filter paper, washed with methanol to obtain pure product.  

Yield: 78 %, Melting point: 227 0C, FT-IR (cm
-1

):(ring stretch) 1545, (C=N stretch) 

1630, (C=N),(=C-H) 2978, 3364 (Ar CH), (-OH stretch) 3494,1H NMR (DMSO-d6, 400 

MHz, ppm): δ 14.78 (s, OH), 9.71 (s, 1H ), 9.29 (dd, J = 1.5, 0.5 Hz, 1H ), 8.66 (ddt, J 

= 8.8, 1.9, 0.4 Hz, 1H ), 8.30(ddt, J = 8.1, 1.7, 0.4 Hz, 1H), 7.92 (ddt, J = 8.1, 1.7, 0.4 

Hz, 2H), 7.71 (dddd, J= 7.6, 7.4, 1.7s, 1H), 7.37-7.56 (dd, J=8.8, 0.5 Hz, 2H), 6.78 

(dd, J=8.8, 0.5 Hz, 1H), Mass: Calculated: 293.08, Obtained:(M+ H 
+
)294.15, Anal. 

calcd for C16H11N3O3: C, 65.53; H, 3.78; N, 14.33; O, 16.36; found: C, 65.48; H, 

3.72; N, 14.19; O, 16.29.  

 

Scheme 2.2 Synthesis of receptor L 
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2.2.3 CHARACTERIZATION DATA  

 

Fig. 2.1 FT-IR spectrum of the receptor R 

 

Fig. 2.2 (a) 
1
H-NMR spectrum of receptor L 
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Fig. 2.2 (b) 
13

C NMR spectrum of receptor R 

 

 

Fig. 2.3 Mass spectrum of the receptor R 
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Fig. 2.4 FT-IR spectrum of receptor L 

 

Fig. 2.5 (a) 
1
H-NMR spectrum of receptor L 
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Fig. 2.5 (b) 
13

C-NMR spectrum of receptor L 

 

 

Fig. 2.6 Mass spectrum of receptor L 
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2.3 RESULTS AND DISCUSSION 

2.3.1 Colorimetric studies 

The receptor R and L, comprising of chromogenic signaling unit and 

hydrogen bond donor functionality viz, -NO2 and –OH respectively are likely to 

exhibit appreciable color change in the presence of anions. Preliminarily, qualitative 

analysis has been performed to figure out the interaction of various anions with the 

receptor. Receptor solution of 1x10
   4 

M has been prepared in dry DMSO. Standard 

solution of anions (TBA salts of F
  
, Cl

   
, Br

   
, I

   
, HSO4

   
,H2PO4

   
 and AcO

   
) as 1x10

-2
 M 

has been prepared in dry DMSO. With the addition of 2 equiv. of test anions to the 

receptor solution, visible color change was observed for F
   
and AcO

   
 ions from pale 

yellow to pale red and pale pink respectively. There was no appreciable color 

response upon addition of other anions. In this regard, the receptor could serve the 

purpose of detecting F
     

and AcO
   

ions amongst all as depicted in Fig. 2.7. UV-Vis 

absorption spectra were recorded to confirm the color change, with the addition of test 

anions to receptor solution. Initial absorption peak of the receptor at 325 nm 

corresponds to the transitions between the π orbitals localized on the azomethine 

group (C=N) and second absorption peak at 383 nm could be assigned to the 

intramolecular charge transfer occurring within the schiff’s base moiety. The 

azomethine and the nitro functionality lead to pale yellow coloration of the receptor. 

The shift in the λmax was observed for F
   
and AcO 

    
differing by a unit of 135 nm and  

145 nm respectively in comparison with the free receptor and a subsequent decrease 

in the absorption band centered at 383 nm. The shift in the λmax was not observed with 

the addition of other anions involved in the present study as shown in Fig. 2.8.  

 

 

Fig. 2.7 Color changes of receptor R upon addition of 2 equiv. of various anions in 

dry DMSO 
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Fig. 2.8 UV-Vis absorption spectra of receptor R (1x10
-4

M in DMSO) after the 

addition of 2 equiv. of different anions at 519 nm 

Anion binding properties of receptor L (4.5x10
–5

Min DMSO) has been studied with 

the addition of 2 equiv. of a series of anions as tetrabutylammonium salts (F
 –

, Cl
 –

, Br 

–
, I 

–
, NO3

–
, HSO4

–
, H2PO4

–
 and AcO

– 
of concentration 1x10

–2
M in DMSO).  Receptor 

L exhibited significant color change from pale yellow to orange and blue respectively 

in the presence of F
― 

and AcO
— 

ions. The color change is shown in Fig. 2.9.  The 

observed color changes reflect the corresponding redshift in the absorption spectra as 

seen in Fig. 2.10. 

 

Fig. 2.9 Color change observed for L (4.5x10
–5 

M in DMSO) with the addition of 1 

equiv. of different anions (1x10
– 2 

M in DMSO) 
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Fig. 2.10 UV-Vis absorption spectra of L (4.5x10
–5 

M in DMSO) upon addition of 1 

equiv. of various anions as TBA salts 

2.3.2 UV-Vis titration studies 

UV-Vis spectrophotometric titration was performed as a means to quantify the 

observed shift in absorption maxima. The receptor solution was prepared in organic 

media, 1x10
–4

 M in DMSO and TBAF as 1x10
–2 

M in DMSO. To a measured quantity 

of receptor, incremental amount of F
  
 (0.1 equiv.) was added each time until 

absorbance attained saturation. Bathochromic shift was observed with the emergence 

of new peak at 519 nm, reason being the charge transfer interactions between the 

proton donor –OH functionality and the acceptor viz., F
   

ion. The concomitant 

decrease in the absorption maxima at 383 nm depicts subsiding O-H---N 

intramolecular charge transfer within the receptor moiety upon binding of F
   
ion. The 

binding is further strengthened due to the presence of ancillary substituent in the 

receptor viz, –NO2 functionality which increases acidity of hydroxyl moiety. The 

presence of isobestic points at 360 nm and 426 nm indicate the complex formation 

process and the presence of equilibrium between the free receptor and the anion-
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receptor complex. Upon addition of 2 equiv. of F
  
, the absorption spectra reached a 

plateau indicating the saturation point of the receptor as shown in Fig. 2.11. 

Similar results were obtained with the incremental addition of standard 

solution of AcO
    

ion (0.1 equiv.) to a measured quantity of receptor. A new peak was 

observed at 528 nm with a concomitant decrease in the peak centered at 383 nm. The 

red shift by a unit of 145 nm could be due to the bifurcated hydrogen bonding 

interaction of AcO
    

ion with hydroxyl moiety. The geometry of the receptor suits well 

with the trigonal planar structure of AcO
    

ion with a bond angle of 120
0
. The bond 

distance between two oxygen atoms of AcO
    
ion is appropriate to bind to the hydroxyl 

protons present on complementary positions in the receptor. Presence of 

conformational complementarity between the receptor R and AcO
   

ion assists the 

binding process. The presence of isobestic points at 362 nm and 434 nm represent the 

formation of a new complex in the system. The titration reached saturation value with 

the addition of 1 equiv. of AcO 
   
 ion as represented in Fig. 2.12. 

 

Fig. 2.11 UV-Vis titration spectra of receptor R (1x10 
–4

 M in DMSO) with 

incremental addition of TBAF (0-2 equiv.). Inset showing the binding isotherm at 

selected wavelength (519 nm) 
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Fig. 2.12 UV-Vis titration spectra of receptor R (1x10
– 4

 M in DMSO) with 

incremental addition of TBAAcO (0-2 equiv.). Inset showing the binding isotherm at 

selected wavelength (528 nm) 

Inorganic fluoride, NaF is an essential part of the biological system which 

must be present in optimum amount to maintain the physiological process. Deficiency 

or excess of it leads to disorders in the ecosystem. In this regard, the detection of F
   

ion is essential. The study has been extended to detect NaF (1x10
–2

 M in distilled 

water). With the incremental addition of F
    

(0.1 equiv.) to the measured quantity of 

the receptor solution (1x10
– 4

 M in DMSO), a new peak emerged at 513 nm due to the 

hydrogen bonding interactions. The saturation point was reached with the addition of 

2 equiv. of F
   
as represented in Fig. 2.13. This reflects the property of the receptor to 

detect F
    
 ions present in aqueous medium.  
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Fig. 2.13 UV-Vis titration spectra of receptor R (1x10
– 4

 M in DMSO) with 

incremental addition of NaF (0-2 equiv.). Inset showing the binding isotherm at 

selected wavelength (513 nm) 

With the UV-Vis titration studies as the basis, the stoichiometric ratio of 

binding of receptor to anion has been analyzed by Benesi-Hildebrand (B-H) 

plot(Benesi and Hildebrand 1948). The plot of 1/ [A-Ao] vs   1 / [F 
   
] gave a straight 

line confirming the 1:2 binding process between receptor and F
  

. Due to the 

geometrical considerations, one AcO
  
 ion could effectively bind to a receptor yielding 

1:1 binding ratio with B-H plot. This is represented in Fig. 2.14, Fig. 2.15 and Fig. 

2.16. 
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Fig. 2.14 B-H plot of R –F 
  
(TBAF) complex at a selected wavelength of 519 nm 

 

Fig. 2.15 B-H plot of R –AcO 
   
(TBAAcO) complex at a selected wavelength of 528 

nm 
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Fig. 2.16 B-H plot of R–F 
  
(NaF) complex at a selected wavelength of 513 nm 

With the above results, the receptor R was further utilized for the detection of 

F
   

in commercially available mouthwash. The receptor R exhibited a color change 

from pale yellow to red by the addition of a drop of mouthwash into a measured 

quantity of receptor as shown in Fig. 2.17. As a quantification procedure, the UV-Vis 

titration analysis was performed with incremental addition of mouthwash (0.1 equiv.) 

to the measured volume of receptor. The titration profile exhibited a significant shift 

in λmax by 120 units in comparison with the free receptor with the emergence of new 

peak at 513 nm and a subsequent decrease in the peak at 382 nm as displayed in Fig. 

2.18. Calibration curve of absorbance vs concentration of F
   

ion has been plotted to 

determine the amount of F
  
 in mouthwash. Prior to the analysis, mouthwash was 

diluted 50 times and the value obtained from the standard plot has been multiplied by 

an appropriate dilution factor to arrive at the actual concentration of F
   
 in mouthwash. 

It is represented in Fig. 2.19. The value obtained from the standard plot for 

mouthwash is 225 ppm which is comparable with standard values (WHO report, 

1994).  
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Fig. 2.17 Colour changes of receptor R upon addition of 2 equiv. of NaF and 

mouthwash 

 

Fig. 2.18 UV-Vis titration spectra of receptor R (1x10 
–4

 M in DMSO) with 

incremental addition of mouthwash (0-3 equiv.). Inset showing the binding isotherm 

at selected wavelength (513 nm) 
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Fig. 2.19 Calibration curve for the determination of F 
– 
ion in mouthwash 

Similarly, UV–Vis spectral analysis has been performed as part of quantitative 

analysis to support the observed color changes. Receptor L exhibits absorption band 

at 363 nm corresponding to transitions of azomethine group along with low energy 

band at 459 nm relating to the ICT transition from naphthyl –OH moiety(donor) to the 

-NO2 substituent (acceptor) of the pyridine group. Upon incremental addition of 0.1 

equiv. of F
–
 and AcO

–
 ions to receptor L, absorption band at 459 nm red shifted to 

560 nm indicative of the strong influence of –R and –I effect of -NO2 substituent on 

the intermolecular proton transfer process. Substantial enhancement of ICT in L 

indicates an efficient push pull tendency existing in the host-guest interaction 

mechanism. Appearance of clear isobestic point at 500 nm clearly indicates the 

formation of new complex. The complete disappearance of the peak at 459 nm at 

higher equivalence of F
–
and AcO 

–
 ions is suggestive of the deprotonation 

mechanism. The saturation point was achieved with the addition of 2 equiv. of F
–
and 

AcO
–
 ions indicating the completion of reaction. Titration profile of L with F

–
and 

AcO
–
 ions is represented in Fig. 2.20 and Fig 2.21. B-H plot for L-F

–
and L-AcO

–
 

complex yielded a linear plot with second power of concentration of anions indicating 

the strong hydrogen bond formation followed by deprotonation of receptor. B-H plot 

of L with F
–
and AcO

–
 ions is shown in Fig. 2.22 and Fig 2.23. 
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Fig. 2.20 UV-Vis titration spectra of receptor L (4.5x10
–5

 M in DMSO) with the 

incremental addition of 0.1 equiv. of TBAF (1x10
–2 

M in DMSO). Inset plot 

representing the binding isotherm at 560 nm 

 

Fig. 2.21 UV-Vis titration spectra of receptor L (4.5x10
–5

 M in DMSO) with the 

incremental addition of 0.1 equiv. of TBAAcO (1x10
–2 

M in DMSO). Inset plot 

representing the binding isotherm at 560 nm 
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Fig. 2.22 B –H plot of receptor L- F
–
(TBAF) complex at a selected wavelength of 560 

nm  

 

Fig. 2.23 B –H plot of receptor L- AcO
–
complex at a selected wavelength of 560 nm 

Titration experiments of L with sodium salts of F
–
and AcO

– 
ions revealed 

redshift of band to 556 nm and 559 nm correspondingly with clear isobestic points 

indicative of the complex formation. Titration profile of L with the addition of sodium 

salt of F
–
and AcO 

–
 ions is shown in Fig. 2.24 and Fig. 2.25. Stoichiometric ratio of 
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1:2 between L-F
–
and L-AcO 

–
complex is represented in Fig. 2.26 and Fig. 2.27. The 

resultant binding constant calculated using B-H equation and detection limit for L has 

been tabulated in Table 2.1. 

 

Fig. 2.24 UV-Vis titration spectra of receptor L (4.5x10
–5

 Min 9:1, v/v, DMSO:H2O) 

with the addition of 0.1 equiv. of NaF (1x10
–2

 M in distilled water). Inset plot 

representing the variation of absorbance with concentration of NaF at 556 nm 

 

Fig. 2.25 UV-Vis titration spectra of receptor L (4.5x10
–5

 M in 9:1, v/v, DMSO:H2O) 

with the addition of 0.1 equiv. of NaAcO (1x10
–2

 M in distilled water). Inset plot 

representing the variation of absorbance with concentration of NaAcO at 559 nm 
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Fig. 2.26 B –H plot of receptor L- F
–
(Na

+
) complex at a selected wavelength of 556 

nm 

 

Fig. 2.27 B –H plot of receptor L- AcO
–
(Na

+
) complex at a selected wavelength of 

559 nm 



 

 

Chapter 2 

_____________________________________________________________________ 
 

___________________________________________________________________________________ 

Dept. of Chemistry, NITK                              53 

 

The ability to detect anions in aqueous media reflects the suppression of solvent 

interferences in the detection process. Anion binding studies of L has been extended 

to detect F
–
ion in commercially available mouthwash sample. L exhibited remarkable 

color change from pale yellow to blue with the addition of 2 equiv. of mouthwash. 

The color change observed is shown in Fig. 2.28. 

 

Fig. 2.28 Color change of receptor L upon addition of NaF and mouthwash 

2.3.3 Time dependency studies 

With a view to validate the real time detection of anions, time evolution of 

receptor R in the presence of 2 equiv. of F
   
and AcO 

   
 ion was investigated. Binding 

interaction between R and F
   
ion continued till the 10

th
 minute while the binding of R 

with AcO
   
 was almost completed at the 5

th
 minute beyond which the receptor attained 

saturation (Fig. 2.29 and Fig. 2.30). Owing to the geometrical complementarity 

combined with the bifurcated hydrogen bond interaction, the binding of R---AcO
   
 ion 

involved a short response time. The requirement of two F
   
ions to bind the receptor R 

in 2:1 binding ratio would have been the probable reason for the longer response time 

required for the detection process.  
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Fig. 2.29 Time evolution study of receptor R (10 
–4

 M in DMSO) in the presence of 

TBA salt of F¯ ion 

 

Fig. 2.30 Time evolution study of receptor R (10 
–4

 M in DMSO) in the presence of 

TBA salt of AcO¯ ion 
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The colorimetric response of receptor L towards AcO
– 

ion was found to be 

instantaneous. During the titration process, it was found that with the increase in 

equiv. of AcO 
–
 ion, the spectral changes exhibited a substantial increase in the 

absorption value corresponding to the linear dependence on concentration. The 

decrease in the intensity of the original absorption band of receptors L centered at 459 

nm, and the gradual increase of the band centered at 560 nm with clear isobestic 

points indicates the complexation process. It gives an indication that AcO
–
 ion 

interacted with the receptors forming an intermediate compound which further 

transformed into a stable complex. It was observed that the binding of anions attained 

saturation at 2 eq. of anions at 10
th

 minute beyond which there was no significant 

alteration of the intensity of the absorption band. With this in view, spectral changes 

have been recorded as a function of time with the incremental addition of AcO 
–
ion to 

receptors L. Owing to the sharp changes in UV-Vis titration spectra with clear 

isobestic points, it could be assumed that there were no significant side reactions. 

Consequently, we tried fit the data of change in absorbance as a function of time to 

the first order rate equation ln│A - A∞│= -kt + ln│A0 - A∞│where A0 is the initial 

absorbance (0
th

 min), A is the absorbance at an intermediate (5
th

 min) and A∞ is the 

absorbance at saturation (10
th

 min)(Gunupuru et al. 2014). The rate constant was 

calculated for Las a comparison over the reactivity of receptors towards AcO
–
ion. The 

rate constant was calculated at two different wavelengths corresponding to the 

original absorption band of free receptor and red shift bandobserved in presence of 

AcO
–
ion for L.  The time response for AcO

–
 ion monitoring the band at 560 nm for 

Lis shown in Fig. 2.31. The rate constant calculated for the band at 459 nm and 560 

nm are too close indicating the relative dependence of anion concentration on the 

reacting species. Similarly, the rate constant has been calculated for receptors L in the 

presence of F
–
 ion. The lower order of magnitude of the rate constant in the presence 

of F
–
 ion could be correlated to the pKa value of 3.2 (F

–
 ion) in comparison with AcO

–

ion whose pKa value is 4.8.  The time response of receptors L in the presence of F
–
 ion 

is represented in Fig. 2.32. The observed rate constant at different wavelength for L is 

summarized in Table 2.1. 
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Table 2.1 Observed rate constant for the reaction of receptor L with AcO 
‒ 
and F

– 
ion 

 

Anion 

Rate constant k (min
-1

) 

459 nm 560nm 

L+ AcO 
‒ 0.00216 0.0027 

L+ F 
‒ 0.00005 0.00014 

 

 

Fig. 2.31 Time dependent plot of first order rate equation to determine rate constant 

from UV-Vis spectral change of L in the presence of AcO
– 
ion at 560 nm  

 

Fig. 2.32 Time dependent plot of first order rate equation to determine rate constant 

from UV-Vis spectral change of L in the presence of F
– 
ion at 560 nm 
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2.3.4 Reversibility studies 

In order to analyse the reversibility of the anion detection process, UV-Vis 

study has been performed with the addition of Ca(NO3)2 as an anion binding agent. 

Upon addition of Ca(NO3)2 (2 equiv.) to a mixture of receptor R and F
   
 ion (2 equiv.), 

the UV-Vis spectra displayed the original absorption band of the free receptor R as 

shown in Fig. 2.33. The disappearance of the absorption band corresponding to the 

receptor R- F
  
 complex reflects the effective displacement of F

   
ion from the receptor 

unit by Ca
2+

 ions. Correspondingly, with the addition of Ca(NO3)2 (2 equiv.) to a 

mixture of receptor R and AcO
   
  ion (2 equiv.), there was no complete restoration of 

original absorption band of the free receptor R as shown in Fig. 2.34. The bifurcated 

hydrogen bonding interaction between AcO
  
 ion and the receptor being more stronger, 

hindered the complete reversibility of the anion detection process. The study clearly 

indicate the successful reversal of F
   
ion binding process.  

 

Fig. 2.33 UV-Vis spectra representing reversibility of receptor R –F 
  
complex in the 

presence of Ca(NO3)2 
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Fig. 2.34 UV-Vis spectra representing reversibility of receptor R –AcO 
  
complex in 

the presence of Ca(NO3)2 

2.3.5 
1
H-NMR titration studies 

The study has been further extended to monitor the binding of anions by the 

receptors R and L through 
1
H NMR titration in DMSO- d6 solvent. The 

1
H-NMR 

spectrum of R is characterized by the peaks for (a) –OH proton around δ 10.31 ppm, 

(b) imine proton at 8.8 ppm and aromatic protons at 6.2-8.5 ppm. It was observed that 

with the successive addition of F
   
ion, the OH proton experienced an upfield shift with 

slight broadening depicting the strong hydrogen bonding interaction with F
    

ion. This 

was accompanied with a downfield shift of the imine proton. There was no formation 

of triplet at 16 ppm which suggests the absence of the deprotonation process. Similar 

observation was obtained with the successive addition of AcO
  
 ion to the receptor. In 

both of the above cases, there was no shift in the peaks corresponding to the aromatic 

region, reflecting that there was no delocalization of the charges as shown in Fig. 2.35 

a and b. The formation of receptor R-anion complex was thus confirmed and the 

binding mechanism has been proposed. 
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(a) 

 

(b) 

Fig. 2.35 
1
H NMR titration spectra of receptor R upon addition of 0.5, 1.0, 1.5 and 2.0 

equiv. of a) F 
 
 and b) AcO

  
 ion 

Similarly, to obtain an insight into the binding mechanism, 
1
H-NMR titration 

studies have been performed with the incremental addition of TBAAcO to DMSO-d6 

solution of receptor L. The unbound receptor exhibited OH proton signal at ~14 ppm 

owing to the presence of intramolecular hydrogen bond interaction with the imine 
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nitrogen (Farinha et al. 2010; Thiampanya et al. 2012; Yadav et al. 2014). The proton 

corresponding to the –OH functionality centered at 14.9 ppm exhibited strong 

hydrogen bond with AcO
‒ 

ion indicated by the broadening of the signal upon 

successive addition of 0.5 and 1 eq. of anion. With the addition of 2 eq. of AcO
‒ 

ion, 

the proton signal diminished indicating the deprotonation mechanism. The imine 

proton did not exhibit upfield or downfield shift, yet the signal decreased in intensity 

upon successive addition indicative of its involvement in the bifurcated hydrogen 

bond interaction with AcO 
‒ 

ion. The aromatic protons in L exhibited a gradual 

decrease in intensity indicating the charge transfer interactions occurring in the 

presence of AcO
‒ 

ion. 
1
H-NMR titration spectra of L in the presence of AcO

‒ 
ion is 

given in Fig. 2.36. 

 

Fig. 2.36 
1
H-NMR titration spectra of L on incremental addition of AcO

 ‒ 
ion 

2.3.6 Theoretical results 

To support the experimental study and to understand the stability and the 

intermolecular charge transfer of the receptor R upon ion reception, we performed 

density functional theory calculation. Simulation does not show significant 

conformational change in the receptor upon binding of F
   

and AcO 
 
 ions, however 

binding with an additional ion leads to more stable structure of the receptor. The 

calculated value of interaction energies (Eint = ER+ion  - ER – Eion) are -28 kcal/mol and -
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12 kcal/mol respectively for F
   
 and AcO 

 
  ion reception. The DFT result shows that 

the HOMO and LUMO of the receptor spread over whole π-unit viz. over both aryl 

rings. The presence of nitro group is responsible for the spatial distribution of charges. 

Since both of the nitrophenyl ring bears –OH functionality, in the case of R+F
   
, one 

of the nitrophenyl units linked to isophthalaldehyde through imine linkage acts as 

HOMO and another nitrophenyl unit alone acts as LUMO. The HOMO-LUMO gap is 

reduced by 0.056 units from 0.3506 eV (band gap of R) to 0.345 eV in the presence of 

F
  
 ion. The reduction of band gap is due to the intramolecular charge transfer. 

Mulliken population analysis confirms the intramolecular charge transfer occurring 

within the receptor moiety upon reception of F
   
ion.  

Similar observation is found in the case of binding of receptor R with AcO 
 
 

ion where one of the nitrophenyl units linked to isophthalaldehyde through imine 

linkage acts as HOMO and another nitrophenyl unit alone acts as LUMO. There is 

stabilization of the HOMO and LUMO upon binding of AcO 
 
 ion, which is 

represented by the reduced band gap by 0.046 eV in comparison with the free receptor 

R. This in turn reflects the intramolecular charge transfer occurring in the system. The 

optimized structure of free and anion bonded receptors are shown in Fig. 2.37. The 

distribution of HOMO, LUMO states and their energy differences are shown in Table 

2.2. 

 

Fig. 2.37 Optimized geometry of receptor (A), receptor with NaF (B) and receptor 

with TBAAcO
    
(C) 
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Charge distribution calculations confirms the acidity of the –OH functionality 

with a very high positive charge of the O-H1 and O-H14 protons. The corresponding 

Mulliken’s atomic charge at O atoms varies from negative to a more negative value 

confirming the intramolecular charge transfer process existing between the anion and 

receptor. Mulliken charge distribution is represented in Table 2.3. 

Table 2.2 Distribution of HOMO, LUMO orbital and corresponding energy gap of 

receptor R with F
   
 ion and AcO

   
 ions, obtained from TD-DFT calculations 

Molecular 

Orbitals 

           Receptor (R)    Receptor R + F
  
 ion Receptor R + AcO

  
 

ion 

 

HOMO 

 

 

 

HOMO 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LUMO 

 

 

LUMO 

 

 

 

 

 

 

 

 

  

 

 

 

 

Band gap 3.506 eV 3.45 eV 3.46 eV 

 

Table 2.3 Mulliken charges on O-H9, O-H14 in the receptor molecule upon binding 

of anions calculated at the (B3LYP) along with 6-311++G (d) basis set with the 

structural representation of receptor R 

Molecule O-H9 O-H14 O1-H O4-H 

 
Receptor R 0.330604 0.330603 -0.551569 -0.551567 

 
R + 2F 

 
 0.478032 0.470679 -0.723528 -0.712401 

 
R + AcO 

 
 0.447474 0.446262 -0.665529 -0.656278 
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The optimized structure of the receptors L with the distribution of its HOMO 

and LUMO levels has been represented in Fig. 2.38. It was found that there were no 

any conformational changes observed in receptors L with the addition of anions 

indicating the structural stability of the receptor – anion complex. The results show 

that HOMO and LUMO are spread over both the aromatic rings due to the presence of 

electron withdrawing -NO2 functionalities.  E which corresponds to energy difference 

between HOMO and LUMO (EHOMO - ELUMO) of L has been calculated and found to 

be 0.1252 Eh. In order to confirm the stability of receptor anion complex, the HOMO 

and LUMO in the presence of F 
–
 and AcO 

– 
ion has been studied. Significant 

reduction in the value of  E to 0.08 Ha (L+ F 
–
 and L + AcO 

–
) confirms the presence 

intramolecular charge transfer transitions during the anion detection process. The 

reduction in the band gap values is supported with red shift of the original absorption 

band of receptors L. The emergence of new band at higher wavelength confirms the 

complex formation process. HOMO and LUMO of L-F 
–
 and L -AcO 

–
 is represented 

in Fig. 2.39 and Fig. 2.40.  The decrease in the bond length value corresponding to the 

–OH group from 0.96 Å to 1.47 Å and 1.55 Å reflects the host-guest supramolecular 

interaction. The Mulliken charge distribution calculations exhibits the alteration of 

magnitude of atomic charge on oxygen atom of receptor L from less negative to more 

negative value indicative of the intramolecular charge transfer transitions upon anion 

binding. Theoretical calculations yield the absorption maxima at 361 and 487 nm for 

L. The shift in absorption maxima to 572 and 571 nm for L--F 
–
 and L--AcO 

– 
ion 

complex provides full proof of the anion binding process. 

The substantial increase in the dipole moment of receptor-F
–
 complex 

indicates efficient charge separation aiding the formation of hydrogen bond 

interaction between OH and F 
–
. While the receptor L – AcO 

–
 complex exhibited 

one-fold increase in the dipole moment implying the bifurcated nature of hydrogen 

bonding interact which involves equal sharing of one OH proton with two 

electronegative oxygen atoms of acetate ion.  
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Fig. 2.38 Optimized structure of receptor L; (a) HOMO, (b) LUMO 

 

Fig. 2.39 Optimized structure of receptor L- F
-
 complex; (a) HOMO, (b) LUMO 



 

 

Chapter 2 

_____________________________________________________________________ 
 

___________________________________________________________________________________ 

Dept. of Chemistry, NITK                              65 

 

 

Fig. 2.40 Optimized structure of receptor L- AcO
-
 complex; (a) HOMO, (b) LUMO 

2.3.7 Calculation of binding constant from UV-Vis studies 

Binding constant has been calculated using Benesi-Hildebrand equation(Benesi and 

Hildebrand 1948)as given below; 

1/(A-A o) = 1/(A max –A o) + 1/K [X
     

]
n
 (Amax –Ao)   

where, A0, A, Amax are the absorption considered in the absence of anion, at an 

intermediate, and at a concentration of saturation. K is binding constant, [X¯] is 

concentration of anion and n is the stoichiometric ratio. 

2.3.8 Binding ratio and detection limit 

The binding ratio has been obtained from B-H plot. The detection limit was calculated 

and in particular, the detection limit was for F
   
ion was found to be 1.12 ppm organic 

media and 2 ppm in aqueous media. The reason for relatively higher detection limit 

could be ascribed to the solvent- anion interactions prevailing during the anion 

binding event. The binding ratio, binding constant and detection limit are given in 

Table 2.4. 
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Table 2.4 Binding constant, binding ratio and detection limit of receptors R and L 

 

2.3.9 Binding mechanism 

Based on UV-Vis titration studies, 
1
H-NMR studies and DFT studies, the 

probable binding mechanism has been proposed. Receptor R is involved in strong 

hydrogen bond interactions with of F 
 
 and AcO 

 
 ions. Receptor L exhibited anion 

induced deprotonation of the –OH moiety with incremental addition of F
 
 and AcO 

 
 

ions. Binding of R and L with F 
–
 and AcO 

– 
ions are represented in Scheme 2.3, 2.4, 

2.5 and 2.6 correspondingly. 

 

Scheme 2.3 Proposed binding mechanism of F 
   
ion by receptor R 

 

CH

N

HC

N

OOO2N NO2

H

HF

F

Receptor Anions Binding 

ratio 

Binding constant 

(K)  

 

LOD 

(ppm) 

 

R 

F
    
(TBAF) 1:2 1.52x10

4 
M

-2
 1.12 

AcO
    
(TBAAcO) 1:1 5.54x10

4
 M

-1
 3.01 

F
    
(NaF) 1:2 7.01x10

3 
M

-2
 2.00 

 

L 

 

 

F
    
(TBAF) 1:2 0.30 x10

4
 M

-2
 5.2 

AcO
    
(TBAAcO) 1:2 5.6 x10

4
 M

-2
 3.39 

F
    
(NaF) 1:2 0.85 x10

4
 M

-2
 0.94 

AcO
      

(NaAcO) 1:2 6.3 x 10
4
 M

-2 
0.92 
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Scheme 2.4 Proposed binding mechanism of AcO
    
ion by receptor R 

 

 

Scheme 2.5 Proposed binding mechanism of L with AcO 
  
 ion  

O2N

N

HC CH

N

NO2OO
H H

OO
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Scheme 2.6 Proposed binding mechanism of L with F
  
 ion  

2.4 CONCLUSIONS 

Organic receptors R and L could detect F 
 
 and AcO

  
 ions with distinct color 

changes. The UV-Vis titration studies confirmed the binding of anions with a 

significant shift in absorption maxima and clear isobestic points. The lower detection 

limit of 1.12 ppm achieved in the organic media gives way for its practical utility. The 

applicability of detecting F 
 
 ion in mouthwash makes it appropriate to be regarded as 

a real time colorimetric sensor. Lower detection limit of 0.92 ppm for sodium salt of 

AcO 
  
ion reflect the sensitivity of receptor L in the anion detection surpassing the 

constraints of the aqueous media. Time dependent studies confirm the first order rate 

equation for the anion binding process. 
1
H-NMR and TD-DFT calculations further 

confirm the anion binding process of receptor R and L with F 
–
 and AcO 

– 
ions.  
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Abstract 

In this chapter, design, syntheses and characterization of two organic receptors have 

been described. Anion induced color change of the receptor has been monitored 

through UV-Vis, 1H-NMR, electrochemical techniques. The plausible binding 

mechanism of the receptor towards active anion has been proposed.    

3.1 INTRODUCTION 

Colorimetric technique for the detection of anions have been in the limelight 

for their capability of providing qualitative and quantitative insight of the anion 

binding mechanism (Cho et al. 2005; Duke et al. 2010; Sakai et al. 2012). To date, 

numerous organic receptors featuring binding site-signaling unit approach have been 

reported, most of which are restricted to work in organic solvents (Cho et al. 2005; 

Kubik 2010). Higher solvation energy of anions in aqueous media result in restricted 

interaction between the host and guest (Bencini et al. 2012; Huang et al. 2012; Wang 

et al. 2011). Therefore, there is a need to strategically design organic receptors 

capable of detecting anions by surpassing the constraints of the aqueous media. In 

addition, compared with the usual detection method utilising an absorbance value at a 

single wavelength, the absorption ratiometric method provides more reliable 

quantitative information since it employs the ratio of absorption intensity at two 

different wavelengths as a function of analyte concentration, thereby a built-in 

correction for adverse environmental effects is obtained (Bao et al. 2013). 

Researchers have developed myriads of receptors having sound knowledge of how the 

receptor-anion binding operates (Santos-Figueroa et al. 2012). Most of the anion 

binding receptors are based on hydrogen bonding and electrostatic interactions 

(Blondeau et al. 2007; Gale 2006; Yoon et al. 2006). In comparison with the purely 

electrostatic interactions, which are distant dependent, hydrogen bonds have garnered 

great attention as it offers the advantage of being directional and discriminate anions 

of different geometries (Li et al. 2010; Lin et al. 2009). In this regard, presence of 

potential hydrogen bond donors like –OH and –NH functionalities in the receptor 

which can increase the binding affinity of anion via highly dissociable protons are 

desirable. The presence of –NO2 group as a chromophore generally tends to exert –I 
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and -R effects which increases the acidity of the –OH and –NH proton (Ghosh et al. 

2015). 

Furthermore, azo-hydrazone tautomerism is an age-old mechanism wherein 

the tautomers are known to show different optical and physical properties (Adegoke 

2011). Azo-hydrazone tautomerism is a phenomenon commonly encountered with azo 

dyes having substituent conjugated to azo linkage possessing a labile proton that can 

be intramolecularly exchanged (Ball and Nicholls 1982). It could be correlated to the 

fact that a receptor exhibiting such structural features would exhibit anion sensing 

behavior. Further, with the addition of anion, depending on the acidity of proton, 

abstraction could be possible which would lead to conversion of one tautomeric form 

to another exhibiting a color change visible to naked eye (Satheshkumar et al. 2014). 

Electroanalytical techniques such as cyclic voltammetry is found to be of great use in 

this regard as it provides clear cut idea of the redox process and stability of the 

complex formed.  

With these concepts in view, we demonstrate two organic receptors: (E)-2-((2-

(2,4-dinitrophenyl)hydrazono)methyl)quinolin-8-ol namely S1R1 and (E)-2-(2-(2,4-

dinitrophenyl)hydrazono)-1-phenylethan-1-one as S1R2. Among them, S1R1 exhibits 

a selective response towards AcO‒ ion in the presence of HEPES buffer and S1R2 

exhibits an absorption ratiometric response towards AcO‒ ion and azo-hydrazone 

tautomerism. UV-Vis titration studies, cyclic voltammetric studies and 1H-NMR 

titration studies are known to provide full proof of the binding mechanism. 

 

3.2 EXPERIMENTAL SECTION 

3.2.1 Materials and methods 

All the chemicals used in the present study were procured from Sigma-Aldrich 

and Alfa Aesar and were used as received without further purification. All the 

solvents were purchased from SD Fine, India, were of HPLC grade and used without 

further distillation. Melting point was measured on Stuart SMP3 melting-point 

apparatus in open capillaries. Infrared spectrum was recorded on Bruker Apex FTIR 

spectrometer. UV-Vis spectroscopy was performed with Thermo Scientific Genysys 
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10S spectrometer in standard 3.0 mL quartz cell with 1 cm path length. The 1H NMR 

spectra were recorded on Bruker Ascend (400 MHz) instrument using TMS as 

internal reference and DMSO-d6 as solvent. Resonance multiplicities are described as 

s (singlet), d (doublet), t (triplet) and m (multiplet). Mass spectra was recorded on 

JMS- T100LC, Accu TOF Mass Spectrometer. Cyclic voltammogram was recorded 

on Ivium electrochemical workstation (Vertex) at a scan rate of 20 mV/s with the 

potential range 1.0 mV to -1.0 mV. Fluorescence spectra were recorded on Horiba 

spectrofluorometer. 

 

3.2.2 Synthesis of receptor S1R1: (E)-2-((2-(2,4-dinitrophenyl) hydrazono) 

methyl) quinolin-8-ol  

8-hydroxy,quinoline-2carboxaldehyde (0.2 g, 1.15 mmol) and 2,4-

dinitrophenylhydrazine (0.22 g, 1.15 mmol) were refluxed in 6 ml methanol at 60 0C 

for 5 h in the presence of acetic acid as catalyst. (Scheme 2.1) The formation of the 

product was confirmed through TLC by the generation of single spot indicative of the 

disappearance of starting materials. After cooling to room temperature, the reaction 

mixture was filtered through filter paper, washed with methanol to obtain pure 

product.  

 

Scheme 3.1 Synthesis of S1R1 

Yield: 75%., m. p. 252 oC., 1H NMR (DMSO- d6, 400 MHz, ppm): δ 7.15 (dd, J = 8.7, 

0.5Hz, 1H), 7.42-7.50 (2H, 7.50 (dd, J = 8.7, 1.7 Hz), 7.46 (td, J = 7.9,0.5 Hz)), 8.24-

8.43 (3H, 8.25 (dd, J = 7.9, 1.3 Hz), 8.42 (dd, J = 1.7, 0.5 Hz)), 8.88 (td, J = 1.7, 0.5 

Hz, 2H) 9.9 (s, 1H), 11.99  (s, 1H). FTIR (KBr)(cm-1): 3302 (NH), 3222 (OH), 3038 

(Ar-CH), 1612 (CH=N), 1505 (C=C), 1487 (C=C), 1374 (NO2), 1099 (C-H). Mass 

(ESI): m/z Calculated: 353.08 Obtained: 354.00 (M+H+). 
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3.2.3 Synthesis of S1R2: (E)-2-(2-(2,4-dinitrophenyl)hydrazono)-1-phenylethan-

1-one  

Phenylglyoxal (0.1 g, 0.74 mmol) and 2,4-dinitrophenylhydrazine (0.14 g, 0.74 

mmol) were refluxed in 6 ml methanol at 60 0C for 5 h in the presence of acetic acid 

as catalyst. (Scheme 2.2) The formation of the product was confirmed through TLC 

by the generation of single spot indicative of the disappearance of starting materials. 

After cooling to room temperature, the reaction mixture was filtered through filter 

paper, washed with methanol to obtain pure product.  

 

Scheme 3.2 Synthesis of S1R2 

Yield: 75%., m. p. 252 oC.,1H NMR (DMSO- d6, 400 MHz, ppm): δ 7.85 (tt, J = 7.4, 

1.5 Hz, 2H), 8.56 (s, 2H), 8.67 (s, H), 8.79 (dd, J = 7.8, 0.5 Hz, 1H), 9.02 (dd, J = 7.8, 

1.9 Hz, 1H), 9.76 (dd, J =1.9, 0.5 Hz, 1H), 11.34 (s, 1H). FTIR (KBr)(cm-1): 3386 

(NH), 3102 (Ar-CH), 1694 (C=O), 1615 (CH=N), 1505 (C=C), 1337 (NO2), 1099 (C-

H). Mass (ESI): m/z Calculated: 314.07 Obtained: 315.15 (M+H+). 

3.2.4 Characterization data  

  
(a) (b) 

Fig. 3.1(a) FT-IR spectrum of receptor S1R1; (b) FT-IR spectrum of receptor S1R2 
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Fig. 3.2 1H NMR spectrum of receptor S1R1 
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Fig. 3.3 1H NMR spectrum of receptor S1R2 
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Fig. 3.4 (a) Mass spectrum of receptor S1R1 

 

Fig. 3.4 (b) Mass spectrum of receptor S1R2 
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3.3 RESULTS AND DISCUSSION 

3.3.1 Colorimetric detection of anions 

Receptor S1R1 displayed significant colorimetric response towards F‒, 

H2PO4
‒ and AcO‒ ions with a color change from pale yellow to bright pink, red and 

purple respectively (Fig. 3.5). Receptor S1R2 exhibited color change from pale 

yellow to orange and purple with the addition of F‒ and AcO ‒ ions correspondingly 

(Fig. 3.6). UV-Vis spectra of S1R1 and S1R2 has been recorded with the addition of 

1 equiv. of tetrabutylammonium salts of anions (1x10 –2 M in DMSO) such as F –, Cl –

, Br –, I –, NO3 
–, HSO4 –, H2PO4 – and AcO – as shown in Fig. 3.7 and Fig. 3.8 

respectively. 

 

 

Fig. 3.5 Color change of the receptors S1R1 (10 –4 M in DMSO) with the addition of 

1 equiv. of TBA salts of anions (10 –2 M in DMSO) 

 

Fig. 3.6 Color change of the receptors S1R2 (10 –4 M in DMSO) with the addition of 

1 equiv. of TBA salts of anions (10 –2 M in DMSO) 
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Fig. 3.7 UV-Vis spectra of receptor S1R1 (10 –4 M in DMSO) with the addition of 1 

equiv. of tertabutylammonium salts of various anions (10 –2 M in DMSO) 

 

Fig. 3.8 UV-Vis spectra of receptor S1R2 (10–4 M in DMSO) with the addition of 1 

equiv. of tertabutylammonium salts of various anions (10–2 M in DMSO) 
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3.3.2 UV-Vis titration studies 

UV-Vis spectrophotometric titration has been performed with the incremental 

addition of TBA salt of F‒, H2PO4
‒ and AcO‒ ion inorder to investigate the interaction 

of S1R1 and S1R2 with different anions. In case of free receptor S1R1 and S1R2 (1 x 

10 –4 M in DMSO), a strong absorption band was observed at 402 nm and 389 nm 

correspondingly indicating the intramolecular charge transfer interaction within the 

receptor.  

Interaction of S1R1 with F‒, H2PO4
‒ and AcO‒ ion resulted in redshift of 

original absorption band to 531 nm and 534 nm respectively. The appearance of clear 

isobestic point at 450 nm indicate the formation of anion-receptor complex. Titration 

profile of S1R1 with F‒, H2PO4
‒ and AcO‒ ion is represented in Fig. 3.9, Fig. 3.11 and 

Fig. 3.13 correspondingly. The B-H plot indicated the binding ratio of 1:2 and 1:1 for 

S1R1- F‒ and S1R1- H2PO4
‒/ S1R1- AcO‒ complex (Fig. 3.10, Fig. 3.12 and Fig. 

3.14).  

The color change of S1R1 on interaction with F−and AcO−can be explained by 

the fact that the intramolecular charge transfer (ICT) process occurred between the 

oxygen of hydroxyl functionality of quinolone ring and the electron withdrawing 

phenyl ring with the formation of a hydrogen bonded complex between the hydroxyl 

groups of S1R1 and the anion added (Gunnlaugsson et al. 2005). A slight color 

change was also depicted in the case of H2PO4
− but it was not prominent as for F− and 

AcO−. Moreover, the requirement of two F‒ ions to bind with the receptor S1R1 

implies the strong hydrogen bond tendancy of –OH and NH proton individually with 

the anion. It could be clearly visualized that a single AcO‒ / H2PO4
‒ anion is sufficient 

to form a stable complex involving –OH and NH functionality through bifurcated 

hydrogen bond interactions resulting in a 1:1 receptor-anion complex. 
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Fig. 3.9 UV-Vis titration spectra of receptor S1R1(10–4 M in DMSO) with the 

incremental addition of TBAF (10–2 M in DMSO). Inset plot representing the 

absorption isotherm at 531 nm 

Fig. 3.10 B-H plot of receptor S1R1- TBAF complex at a selected wavelength of 531 

nm 
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Fig. 3.11 UV-Vis titration spectra of receptor S1R1(10–4 M in DMSO) with the 

incremental addition of TBAH2PO4 (10–2 M in DMSO). Inset plot representing the 

absorption isotherm at 531 nm 

 

Fig. 3.12 B-H plot of receptor S1R1- TBAH2PO4
 complex at a selected wavelength of 

531 nm 



 
 

Chapter 3 
_____________________________________________________________________

Dept. of Chemistry, NITK                                             80 

 

Fig. 3.13 UV-Vis titration spectra of receptor S1R1(10–4 M in DMSO) with the 

incremental addition of TBAOAc (10–2 M in DMSO). Inset plot representing the 

absorption isotherm at 534 nm 

 

Fig. 3.14 B-H plot of receptor S1R1- TBAAcO  complex at a selected wavelength of 

534 nm 
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UV-Vis studies of receptor S1R1 in DMSO/HEPES buffer solution (9:1, v/v, 

pH 7.4) revealed excellent selectivity of the receptor towards AcO ̶ ion with pale pink 

coloration (Fig. 3.15 and Fig. 3.16). The titration spectra revealed the shift of original 

absorption band to 520 nm with an isobestic point at 450 nm indicating complex 

formation process (Fig. 3.17). Yet, unlike receptor S1R1, S2R2 did not exhibit 

selective response towards a particular anion in the presence of HEPES buffer.  

 

Fig. 3.15 Color change of the receptor S1R1(DMSO: HEPES buffer, 9:1, v/v) with 

the addition of 1 equiv. of TBA salts of anions  

 

 

Fig. 3.16 UV-Vis spectra of receptor S1R1 (10 –4 M in DMSO: HEPES buffer, 9:1, 

v/v) with the addition of 1 equiv. of tertabutylammonium salts of various anions (10-2 

M in DMSO) 
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Fig. 3.17 UV-Vis titration spectra of receptor S1R1(10–4 M in DMSO: HEPES buffer, 

9:1, v/v) with the incremental addition of TBAAcO (10–2 M in DMSO) 

UV-Vis titration spectra of S1R2 with the incremental addition of F‒ and 

AcO‒ ion resulted in distinct changes with respect to colorimetric response and red 

shift of original absorption band (Fig. 3.18 and Fig. 3.20). Further, more significant 

colorimetric response has been observed with TBA salt of AcO‒ ion owing to the 

geometrical complementarity of the receptor. Until the addition of 0.5 equiv. of AcO‒ 

ion to the solution of S1R2, original absorption band of S1R2 shifted from 403 nm to 

537 nm and spectra showed clear isobestic point at 439 nm. This is indicative of the 

typical hydrogen bond formation between S1R2 and AcO‒ ion. However, when an 

excess equiv. of anion were added, a broad shoulder band appeared at 628 nm which 

could be attributed to the deprotonated receptor resulting in improved ICT process 

(Chowdhury et al. 2015). In addition, spectra revealed a new isobestic point centered 

at 468 nm confirming the deprotonation process. B-H plot indicated 1:1 binding ratio 

of S1R2 with F‒ and AcO‒ ions as shown in Fig. 3.19 and Fig. 3.21 respectively. The 

corresponding color change of S1R2 from pale yellow to orange with 0.25 equiv. of 

AcO‒ ion indicates that solution exists as a mixture of hydrogen bond complex of 

receptor and its deprotonated form. Deprotonation of receptor has been verified with 

the titration of S1R2 with TBAOH (Fig. 3.22). With the addition of 1 equiv. of AcO‒ 
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ion, the color changes from orange to purple which could be ascribed to the 

deprotonation of –NH fragment (Fig. 3.23). The gradual color change from yellow to 

purple with significant redshift of original absorption band and simultaneous 

appearance of broad shoulder clearly suggest the deprotonation mechanism (Fig. 

3.24). The gradual increment in the color with the addition of anions confirms the 

ratiometric colorimetric response of the receptor S1R2 Gratifyingly, a good linear 

relationship was obtained between the A537/A389 ratio and the concentration of AcO ‒ 

ion to receptor S1R2 thus enabling the receptor to work as an absorption ratiometric 

chemosensor for the quantitative detection of AcO ‒ ion (Fig. 3.25).  

 

 

Fig. 3.18 UV-Vis titration spectra of receptor S1R2 (10-4 M in DMSO) with the 

incremental addition of TBAF (10–2 M in DMSO). Inset plot representing the 

absorption isotherm at 533 nm 
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Fig. 3.19 B-H plot of receptor S1R2 - TBAF complex at a selected wavelength of 533 

nm 

 

Fig. 3.20 UV-Vis titration spectra of receptor S1R2 (10–4 M in DMSO) with the 

incremental addition of TBAAcO (10–2 M in DMSO). Inset plot representing the 

absorption isotherm at 537 nm 
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Fig. 3.21 B-H plot of receptor S1R2- TBAAcO complex at a selected wavelength of 

537 nm 

 

Fig. 3.22 UV-Vis titration spectra of receptor S2R2 (10–4 M in DMSO) with the 

incremental addition of TBAOH (10–2 M in DMSO) 
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Fig. 3.23 Ratiometric response of receptor S1R2 with the increasing concentration of 

AcO ̶  ion 

 

Fig. 3.24 Ratiometric response of receptor S1R2 with the increasing concentration of 

OH ̶   ion 
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Fig. 3.25 Ratiometric plot of A537/A389 (receptor S1R2) with the increasing equiv. of 

AcO ‒ ion 

Fluoride and acetate ion are present in the form of sodium salt at physiological 

level. With this in view, it gains more interest to develop sensors which can detect 

anions in aqueous media. Titration studies performed with the incremental addition of 

F‒ and AcO‒ ions as sodium salt to receptor S1R1 revealed comparable red shift of 

original absorption band as seen in the presence of TBA salts (Fig. 3.26 and 3.28). 

The corresponding B-H plot for S1R1- F‒ and S1R1-AcO‒ complex is shown in Fig. 

3.27 and Fig. 3.29. Similarly, titration studies performed with the incremental addition 

of F‒ and AcO‒ ions as sodium salt to receptor S1R2 revealed comparable red shift of 

original absorption band as seen in the presence of TBA salts (Fig. 3.30 and 3.32). B-

H plot are represented in Fig. 3.31 and 3.33 for S1R1- F‒ and S1R1-AcO‒ complex 

respectively. The corresponding binding constant, binding ratio and detection limit is 

presented in Table 3.1. 

 

Fig. 3.26 UV-Vis titration spectra of S1R1(1×10–4 M, 9:1, v/v DMSO/H2O) with the 

incremental addition of standard solution of NaF (1×10 ̶ 2M in distilled water). Inset 

showing binding isotherm at 530 nm 
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Fig. 3.27 B-H plot of receptor S1R1- NaF complex at a selected wavelength of 530 

nm 

 

Fig. 3.28 UV-Vis titration spectra of S1R1(1×10–4 M, 9:1, v/v DMSO/H2O) with the 

incremental addition of standard solution of NaAcO (1×10 ̶ 2M in distilled water). 

Inset showing binding isotherm at 532 nm 



 
 

Chapter 3 
_____________________________________________________________________

Dept. of Chemistry, NITK                                             89 

 

Fig. 3.29 B-H plot of receptor S1R1- NaAcO complex at a selected wavelength of 

532 nm 

 

Fig. 3.30 UV-Vis titration spectra of S1R2 (1×10–4 M, 9:1, v/v DMSO/H2O) with the 

incremental addition of standard solution of NaF (1×10 ̶ 2M in distilled water). Inset 

showing binding isotherm at 535 nm 
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Fig. 3.31 B-H plot of receptor S1R2- NaF complex at a selected wavelength of 535 

nm 

 

Fig. 3.32 UV-Vis titration spectra of S1R2 (1×10–4 M, 9:1, v/v DMSO/H2O) with the 

incremental addition of standard solution of NaAcO (1×10 ̶ 2 M in distilled water). 

Inset showing binding isotherm at 534 nm 
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Fig. 3.33 B-H plot of receptor S1R2- NaAcO complex at a selected wavelength of 

534 nm 

The color change of the receptor S1R1 in the presence of NaF and NaOAc is 

shown in Fig. 3.34. Receptor S1R1 and S1R2 showed color change in the presence of 

mouthwash and seawater (Fig. 3.35). UV-Vis spectra recorded with the addition of 

seawater and mouthwash exhibits redshift band and were comparable to the spectra 

obtained with the addition of standard solution of fluoride to S1R1 and S1R2 (Fig. 

3.36 and Fig. 3.37). 

 

Fig. 3.34 Color change of receptor S1R1 in the presence of 1 equiv. of NaF and 

NaAcO, mouthwash and seawater 
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Fig. 3.35 Color change of receptor S1R2 in the presence of 1 equiv. of NaF, NaAcO, 

mouthwash and seawater 

 

Fig. 3.36 UV-Vis spectra of S1R1 with the addition of seawater and mouthwash 
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Fig. 3.37 UV-Vis spectra of S1R2 with the addition of seawater and mouthwash 

3.3.3 Competitive studies 

In order to investigate the interference of other anions in the detection process, UV- 

Vis absorption study has been performed with the addition of 1 equiv. of AcO ̶  ion to 

the receptor solution containing 1 equiv. of other anions. UV-Vis spectra displayed a 

significant red shift with a new peak centered at 520 nm as shown in Fig. 3.38. The 

color change has been represented in Fig. 3.39. The spectral pattern was similar to 

that obtained on the addition of F ̶ ion or AcO ̶ ion alone to the free receptor. Thus, the 

receptor S1R1 is found to be selective in the detection of AcO ̶ ions in mixed media. 

Whereas S1R2, devoid of selective nature showed equal colorimetric response in the 

presence of other interfering ions such as F–, H2PO4
 – and AcO – ions.  
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Fig. 3.38 UV-Vis spectra of S1R1 with the addition of 1 equiv. of AcO ̶ ion to the 

receptor solution containing 1 equiv. of other test anions 

 

Fig. 3.39 Colorimetric response of receptor S1R1 towards AcO ‒ ion in the presence 

of other interfering ions 

3.3.4 Fluorescence studies 

Fluorescence spectra has been recorded with the addition of TBA salt of anions 

inorder to investigate the interaction of S1R1 with different anions. The Fluorescence 

spectra is shown in Fig. 3.40. In case of free receptor, S1R1 (1 x 10 –4 M in DMSO), 

with an excitation wavelength of 395 nm, an emission band was observed at 486 nm. 

Incremental addition of AcO‒ ions to S1R1 yielded successive increase of band at 436 

nm and 633 nm with isoemissive points centered at 578 nm and 475 nm (Fig. 3.41).   
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Fig. 3.40 Fluorescence spectra of S1R1 (10 –4 M in DMSO) with the addition of 1 

equiv. of tertabutylammonium salts of various anions (10 –2 M in DMSO) 

 

Fig. 3.41 Fluorescence spectra of S1R1 (10 –4 M in DMSO) with the incremental 

addition of 1 equiv. of tertabutylammonium salts of AcO‒ ions (10 –2 M in DMSO) 

3.3.5 Cyclic voltammmetric studies 

Receptor S1R1 exhibits oxidation peak at 0.5 V clearly indicating the role of –NH 

functionality in the oxidation process. The reduction peak appears at -0.84 V with the 

incremental addition of acetate ion signifying the role of –NO2 functionality 

undergoing reduction process (Fig. 3.42). As the receptor S1R2 possesses keto 

functionality, the investigation of electrochemical properties would pave way to arrive 

at the binding mechanism. Cyclic voltammogram reveals the presence of oxidation 

peak at 0.37 V corresponding to the – NH functionality and the reduction peak at 0.29 

V and -0.5 V corresponding to the reduction of keto and nitro functionalities. With the 
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incremental addition of AcO‒ ion, there was subsequent increase in the intensity of 

oxidation peak to 0.53 V and reduction peak to 0.25 V and -0.62 V respectively (Fig. 

3.43). 

The concomitant shift of the peak to more negative potential represents the 

difficulty in electroreduction of the keto functionality. The probable reason could be 

the deprotonation of –NH proton by AcO‒ ion which render the oxygen atom 

relatively electron rich by delocalization of electrons through the conjugated system. 

Further, the conversion of C=O to C-O ‒ renders the electroreduction of keto group 

gradually more difficult (Anzenbacher et al. 2005).  

 

Fig. 3.42 Cyclic voltammogram of receptor S1R1 with the incremental addition of 

AcO ‒ ion  
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Fig. 3.43 Cyclic voltammogram of receptor S1R2 with the incremental addition of 

AcO ‒ ion 

Table 3.1 Binding constant, binding ratio and detection limit of receptors S1R1 and 

S1R2 with various anions 

Receptor Anion Solvent 
system 

Binding 
constant 

Binding 
ratio 

Detection 
limit 

(ppm) 
S1R1 F– (TBAF) DMSO 2.33 x 104 

M-2 
1:2 0.78 

 AcO– (TBAAcO) DMSO 1.37 x 102 
M-1 

1:1 1.5 

 H2PO4
¯(TBAH2PO4) DMSO 1.07 x 102 

M-1 
1:1 1.7 

 F– (NaF) DMSO:H2O 
(9:1, v/v) 

0.9 x 104 
M-2 

1:2 1.2 

 AcO– (NaAcO) DMSO:H2O 
(9:1, v/v) 

1.08 x 102 
M-1 

1:1 2.1 

 AcO– (TBAAcO) DMSO:HEPES 
(9:1, v/v) 

1 x 102  
M-1 

1:1 1.9 

S1R2 F– (TBAF) DMSO 1.46 x 102 
M-1 

1:1 1.35 

 AcO– (TBAAcO) DMSO 3.14 x 102 
M-1 

1:1 1.5 

 F– (NaF) DMSO:H2O 
(9:1 v/v) 

0.98 x 102 
M-1 

1:1 0.25 

 AcO– (NaAcO) DMSO:H2O 
(9:1 v/v) 

0.95 x 102 
M-1 

1:1 0.41 
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3.3.6 1H-NMR titration studies 

With a view to unveil the nature of reaction between receptor S1R1 and S1R2 with 

AcO ‒ ion, 1H-NMR titration studies have been performed. With the incremental 

addition of 0.5, 1.0 equiv. of TBAAcO to S1R1 and S1R2, the disappearance of NH 

proton was observed indicating the formation of strong hydrogen bond interaction 

between AcO ‒ and receptor. The aromatic proton signals in S1R2 underwent an 

upfield shift indicating the presence of through-bond effect which tends to increase 

the electron density on the aromatic ring (Fig. 3.44 and Fig. 3.45). The disappearance 

of the splitting pattern in the aromatic region indicates the formation of NH--AcO ̶ 

hydrogen bond followed by a deprotonation process. The appearance of vinylic proton 

represents the successful conversion of hydrazone form (with C=N chromophore) of 

the receptors to the azo form (with N=N chromophore). 

 

Fig. 3.44 1H NMR titration of receptor S1R1 with incremental addition of TBAAcO 

(0-1 equiv.) 
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Fig. 3.45 1H NMR titration of receptor S1R2 with incremental addition of TBAAcO 

ion (0-1 equiv.) 

3.3.7 Calculation of binding constant from UV-Vis studies 

Binding constant has been calculated using Benesi-Hildebrand equation (Benesi and 
Hildebrand 1948) as given below; 

1/(A-A o) = 1/(A max –A o) + 1/K [X  ̶  ]n (Amax –Ao)   

where, A0, A, Amax are the absorption considered in the absence of anion, at an 

intermediate, and at a concentration of saturation. K is binding constant, [X¯] is 

concentration of anion and n is the stoichiometric ratio. 

3.3.8 Binding mechanism 

The selectivity for specific anions can be rationalized on the basis of the guest 

basicity and the shape complementarity. In this regard, multiple hydrogen-bond 

interaction is a necessary factor in anion binding process. In terms of basicity of 

anions, H2PO4
–, F–, and AcO– can offer much stronger interactions with receptor than 

other halogen anions. Furthermore, S1R1 is an appropriate receptor for oxoanions 

because of the formation of N–H - O bonds and O—H- O bond with the two 

consecutive oxygen atoms of the anion. Consequently, the triangular acetate anion 
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with an O–C–O angle of ca. 120 0 may be the best fitting for the curvature shape of 

the binding sites of receptor among the anions tested (Boiocchi et al. 2004). 

Consequently, AcO– might be selectively recognized from other anions. The plausible 

binding mechanism of S1R1 with F ‒ and AcO ‒ ion is shown in Scheme 3.3 and 

Scheme 3.4 respectively. 

Scheme 3.3 Proposed binding mechanism of receptor S1R1 with F – ion 

 

Scheme 3.4 Proposed binding mechanism of receptor S1R1 with AcO – ion 

 

With the addition of incremental amounts of acetate ions to the solution of 

S1R2, the absorbance of the higher energy peak (due to C=N chromophore) 
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diminished gradually and that of the lower energy peak (due to N=N chromophore) 

increased gradually. This observation suggested that addition of acetate ion might 

have converted the hydrazone form (with C=N chromophore) of the receptors to the 

azo form (with N=N chromophore). The plausible binding mechanism of S1R1 with 

AcO ‒ ion is shown in Scheme 2.5. 

 

Scheme 3.5 Proposed binding mechanism of receptor S1R2 with AcO – ion 

3.4 CONCLUSIONS 

Colorimetric studies performed on S1R1 and S1R2 with the addition of anions 

revealed color change visible to naked eye. UV-Vis studies in DMSO/HEPES buffer 

solution (9:1 v/v, pH 7.4) revealed excellent selectivity of the receptor towards AcO ̶ 

ion with pale pink coloration. Receptor S1R1 exhibited excellent colorimetric sensing 

behavior towards F ̶, H2PO4
 ̶ and AcO ̶ ions in DMSO and specificity towards AcO ̶ 

ion in DMSO/HEPES buffer solution. Lower detection limit of 0.7 ppm, 1.7 ppm and 

1.5 ppm achieved for F ̶, H2PO4
 ̶ and AcO ̶ ions with receptor S1R1 proves its utility 

as a chemosensor. F ̶ and AcO ̶ ion sensing property of receptor S1R2 via anion 

induced tautomerism of C=N to N=N has been investigated and supported by UV-Vis 

spectroscopic studies. S1R1 exhibits an emission spectra with fluorescence 

enhancement with the addition of AcO – ions. Electrochemical studies performed on 

receptor S1R2 in the presence of AcO ̶ ion revealed the deprotonation of –NH 

functionality in the anion binding process. Lower detection limit of S1R2 of the order 
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0.25 ppm and 0.41 ppm towards F‒ and AcO – ions suggests its utility in the detection 

of anions in commercially available samples. To sum up, based on UV-Vis 

spectroscopic studies, 1H NMR titration studies and electrochemical studies receptors 

S1R1 and S1R2 could be regarded as efficient colorimetric chemosensors for anions. 

 

 

 



 Published in RSC Adv., 2016, 6, 74649-74653; 
   Sens. Actuators B, 2017, 247, 673–680. 

CHAPTER 4 

SYNTHESIS OF ORGANIC RECEPTORS FOR 
ANIONS: SOLVENT DEPENDENT CHROMOGENIC 

RESPONSE AND DFT STUDIES 
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Abstract 

In this chapter, design, syntheses and characterization of five organic 
receptors have been described. The applicability of the receptors in the colorimetric 
detection of anions have been discussed in detail through UV-Vis spectrophotometric, 
1H NMR titration, electrochemical and DFT studies. The binding mechanism of the 
receptors towards active anion have been included.    

 

4.1 INTRODUCTION 

Anion receptor chemistry has grown into an area of great interest for 

supramolecular chemists opening up new arena for precise design strategy. Primarily, 

binding interactions with anions being hydrogen bond or electrostatic force imposes 

vigilant insight for a constructive design unlike the simple metal-ligand coordination 

interactions involved in cation-receptor chemistry (A. Gale 2008; Best et al. 2003; 

Choi and Hamilton 2003; Davis and Joos 2003; Hay et al. 2005; Miyaji et al. 2000; 

Schmuck and Schwegmann 2005; Sessler et al. 2003; Sessler and Seidel 2003). 

Binding site-signalling unit approach involving covalent attachment of the 

chromophore and neutral receptor bearing hydrogen bond donor unit has been most 

commonly utilized in designing chromogenic receptors. Few receptors reported in the 

literature have successfully surpassed the challenges set by the anionic substrates such 

as similar basicity and surface charge density in the commonly encountered F ̶, AcO ̶   

and H2PO4
 ̶  ions. Despite these setbacks, colorimetric receptors bearing chromophores 

such as indoles (Caltagirone et al. 2008a; b; O. Yu et al. 2008; Pfeffer et al. 2007), 

bisindole (Chang et al. 2005; Kim et al. 2008b; Naidu et al. 2008), carbazole 

(Chmielewski et al. 2004; Hiscock et al. 2009; J. Chmielewski et al. 2008; Pia̧tek et 

al. 2004; Suk and Jeong 2008), nitrophenyl (Black et al. 1999; Boiocchi et al. 2004; 

Cho et al. 2005; Kwon et al. 2004), quinone (Jiménez et al. 2002; Jose et al. 2004; 

Miyaji et al. 2000; Miyaji and Sessler 2001), nitrobenzene (Lee et al. 2001, 2003; 

Nishiyabu and Anzenbacher 2005; Sancenón et al. 2002), azo groups and other 

electron withdrawing moieties (Chmielewski et al. 2004; Hiscock et al. 2009; 

J. Chmielewski et al. 2008; Pia̧tek et al. 2004; Suk and Jeong 2008) have been 

developed.  
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In the design of anion chemosensors, various non-covalent interactions such as 

hydrogen bonding, anion-π and reactions like hydrogen abstraction, electron transfer 

have been commonly encountered (A. Gale and Caltagirone 2015; Ajayakumar et al. 

2010; Beer and Hayes 2003; Dickson et al. 2008; Kim et al. 2008a; Lazarides et al. 

2005; Lin et al. 2007, 2006; R. Ajayakumar et al. 2013; Sharma et al. 2013). Studies 

performed with molecules comprising of secondary amine groups possessing highly 

acidic proton are known to promote hydrogen bond interactions with 

anions(Gunupuru et al. 2014). Furthermore, electroanalytical technique such as cyclic 

voltammetry could be a valuable tool to analyse the binding of anion by the receptors 

through redox process. Concurrently, band gap of the receptor and receptor-anion 

complex could be calculated. In addition, the presence of NO2 group as a signalling 

unit at position para to the NH functionality induced a strong colorimetric response 

visible to the naked eye. The anion binding studies performed reveals significant 

colorimetric response visible to the naked eye paving way for the quantitative study 

through UV-Vis, 1HNMR spectroscopy and cyclic voltammetric studies. Besides, the 

nature of interaction by increasing the number of –NO2 groups and introduction of –

OH functionality on the receptor molecule and its impact on anion binding has been 

studied. 

4.2 EXPERIMENTAL SECTION 

4.2.1 Materials and methods 
 

All the chemicals used in the present study were procured from Sigma-Aldrich 

and Alfa Aesar and were used as received without further purification. All the 

solvents were purchased from SD Fine, India, were of HPLC grade and used without 

further distillation.  

Melting point was measured on Stuart SMP3 melting-point apparatus in open 

capillaries. Infrared spectrum was recorded on Bruker Apex FTIR spectrometer. UV-

Vis spectroscopy was performed with analytik jena Specord S600 spectrometer in 

standard 3.0 mL quartz cell with 1 cm path length. The 1H NMR spectra were 

recorded on Bruker Ascend (400 MHz) instrument using TMS as internal reference 

and DMSO-d6 as solvent. Resonance multiplicities are described as s (singlet), d 
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(doublet), t (triplet) and m (multiplet). Mass spectrum was recorded on Bruker 

Daltonics	ESI	Q TOF. Cyclic voltammogram was recorded on Ivium electrochemical 

workstation (Vertex) at a scan rate of 20 mV/s with the potential range 1.0 mV to -1.0 

mV. The single-crystal X-ray diffraction (SCXRD) was performed on Bruker AXS 

APEX II system.  

Density Functional Theory (DFT) simulation has been performed on the 

receptor molecule using GAUSSIAN 09 package. A closed shell Becke–Lee–Yang–

Parr hybrid exchange-correlation three-parameter functional (B3LYP) along with 6-

311++G(d) basis set were used in the simulation to derive a complete geometry 

optimization for isolated receptor and its deprotonated form in the binding process. 

Berny’s optimization algorithm was used to fully optimize the molecular geometry, 

which involves redundant internal coordinates. To confirm the convergence to the 

minima on the potential energy surface, the harmonic vibrational wavenumbers were 

calculated using analytic second derivatives and properly scale down to control the 

systematic errors caused by incompleteness of the basis set. In a second step, the time 

dependent DFT (TD-DFT) method were used considering the same B3LYP exchange-

correlation functional with 6-311++G (d,p) basis set to obtain the UV-Visible 

absorption spectra of free and deprotonated receptor. 

 

4.2.2 Synthesis of receptor S2R1 
(E)-3-((2-(2,4-dinitrophenyl)hydrazono)methyl)-4-nitrophenol (S2R1) 
 
2-nitro, 5-hydroxybenzaldehyde (0.05 g, 0.29 mmol) and 2,4-dinitrophenylhydrazine 

(0.059 g, 0.29 mmol) were refluxed in 5 ml methanol for 5 h in the presence of acetic 

acid as catalyst. The formation of the product was confirmed through TLC by the 

generation of single spot indicative of the disappearance of starting materials. After 

cooling to room temperature, the reaction mixture was filtered through filter paper, 

washed with methanol to obtain pure product (Scheme 4.1).  
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Scheme 4.1 Synthesis of receptor S2R1 

Yield: 75%., m. p. 246 oC. 1H NMR (DMSO- d6, 400 MHz, ppm): δ 7.45 (dd, J = 8.2, 

1.9 Hz, 1H), 7.13-7.0 (dd, J = 1.9, 0.5 Hz, 1H), 8.08-8.02 (dd, J = 8.2, 0.5 Hz, 2H), 

8.43 (s, 1H), 8.86 (dd, J = 7.8, 1.9 Hz, 1H), 9.19 (dd, J = 1.9, 0.5 Hz, 1H), 11.16 (s, 

1H), 11.95  (s, 1H). FTIR (KBr)(cm-1): 3386 (OH), 3286 (Ar-CH), 3103 (NH), 1609 

(CH=N), 1505 (C=C), 1330 (NO2), 1099 (C-H). Mass (ESI): m/z Calculated: 347.05 

Obtained: 331.13  

4.2.3 Synthesis of receptor S2R2  

(E)-3-((2-(2,4-dinitrophenyl)hydrazono)methyl)benzene-1,2-diol  
 

2,3-dihydroxybenzaldehyde (0.05 g, 0.36 mmol) and 2,4-dinitrophenylhydrazine 

(0.071 g, 0.36 mmol) were refluxed in 5 ml methanol for 5 h in the presence of acetic 

acid as catalyst. The formation of the product was confirmed through TLC by the 

generation of single spot indicative of the disappearance of starting materials. After 

cooling to room temperature, the reaction mixture was filtered through filter paper, 

washed with methanol to obtain pure product (Scheme 4.2). 

	

Scheme 4.2 Synthesis of receptor S2R2 

Yield: 70%., m. p. 246 oC. 1H NMR (DMSO- d6, 400 MHz, ppm): δ 6.74 (dd, J = 8.6, 

2.3 Hz, 1H), 6.87 (dd, J = 8.2, 2.3 Hz, 1H), 7.3 (dd, J = 7.8 Hz, 0.5 Hz, 1H), 8.01 (dd, 

J= 8.6, 8.2 Hz, 1H), 8.37 (dd, J =7.3, 0.5 Hz, 1H), 8.87 (s, 1H), 8.97 (dd, J = 7.8, 1.9 
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Hz, 1H), 9.28 (dd, J = 1.9, 0.5 Hz, 1H), 9.66 (s, 1H), 11.71 (s 1H). FTIR (KBr) (cm-

1): 3458 (OH), 3252 (Ar-CH), 2922 (NH), 1616 (CH=N), 1338 (NO2), 1112 (C-H). 

Mass (ESI): m/z Calculated: 318.06 Obtained: 319.13 (M+H)+ 

 

4.2.4 Synthesis of receptor S2R3 

(E)-1-(2,4-dinitrophenyl)-2-(2-nitrobenzylidene)hydrazine  

2-nitrobenzaldehyde (0.05 g, 0.33 mmol) and 2,4-dinitrophenylhydrazine (0.065 g, 

0.33 mmol) were refluxed in 5 ml methanol for 5 h in the presence of acetic acid as 

catalyst. The formation of the product was confirmed through TLC by the generation 

of single spot indicative of the disappearance of starting materials. After cooling to 

room temperature, the reaction mixture was filtered through filter paper, washed with 

methanol to obtain pure product (Scheme 4.3). 

	

Scheme 4.3 Synthesis of receptor S2R3 

Yield: 85%., m. p. 280 oC. 1H NMR (DMSO- d6, 400 MHz, ppm): δ 7.82-7.70 (2H, 

7.80 (td, J = 7.9, 1.9 Hz), 7.67-8.03 (ddd, J = 8.3, 7.7, 1.5 Hz)), 7.84 (ddd, J = 7.7, 

1.5, 0.5 Hz, 2H), 8.20 (ddd, J = 8.3, 1.9, 0.5 Hz, 1H), 8.40 (dd, J = 7.8, 1.9 Hz, 1H), 

8.86 (dd, J = 1.9, 0.5 Hz, 1H), 9.08 (s, 1H), 11.96 (s, 1H). FTIR (KBr)(cm-1): 

3285(NH), 3087 (Ar-CH), 1615 (CH=N), 1502 (C=C), 1334 (NO2), 1138 (C-H). 

Mass (ESI): m/z Calculated: 331.06 Obtained: 332.13(M+H)+ 

4.2.5 Synthesis of receptor S2R4 

(E)-1-(4-nitrobenzylidene)-2-(2,4-dinitrophenyl)hydrazine (S2R4) 

4-nitrobenzaldehyde (0.05 g, 0.33 mmol) and 2,4-dinitrophenylhydrazine (0.065 g, 

0.33 mmol) were mixed in 5 ml methanol. A drop of acetic acid was added and the 

reaction mixture was refluxed for 5 h. The formation of the product was confirmed 
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through TLC by the generation of single spot indicative of the disappearance of 

starting materials. After cooling to room temperature, the reaction mixture was 

filtered through filter paper, washed with methanol to obtain pure product (Scheme 

4.4). 

	

Scheme 4.4 Synthesis of receptor S2R4 

Yield: 85%., m. p. 280 oC. 1H NMR (DMSO- d6, 400 MHz, ppm): δ 8.05 (dd, J = 7.8, 

0.5 Hz, 1H), 8.16 (s, 1H), 8.32-8.41 (ddd, J = 8.7, 1.8, 0.5 Hz, 4H), 8.80 (dd, J = 7.8, 

1.9 Hz, 1H), 8.86 (dd, J = 1.9, 0.5 Hz, 1H), 11.85  (s, 1H). FTIR (KBr) (cm-1): 

3279(NH), 3089(Ar-CH), 1613(CH=N), 1510(C=C), 1331(NO2), 1088(C-H). Mass 

(ESI): m/z Calculated: 331.06 Obtained: 338(M+N+) 

4.2.6 Synthesis of receptor S2R5 

(E)-1-benzylidene-2-(2,4-dinitrophenyl)hydrazine  

Benzaldehyde (0.05 g, 0.47 mmol) and 2,4-dinitrophenylhydrazine (0.093 g, 0.47 

mmol) were mixed in 5 ml ethanol. A drop of acetic acid was added and the reaction 

mixture was refluxed at 60 oC for 5 h. The formation of the product was confirmed 

through TLC by the generation of single spot indicative of the disappearance of 

starting materials. After cooling to room temperature, the reaction mixture was 

filtered through filter paper, washed with methanol to obtain pure product (Scheme 

4.5). The structure of S2R5 has been confirmed by single crystal X-ray diffraction 

study. Single crystals were obtained by slow evaporation of S2R5 from a binary 

solvent system comprising of acetonitrile and dimethylformamide. The ORTEP 

diagram of S2R5 is shown in Fig. 4.11 and the crystallographic data is presented in 

Table 4.1. 
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Scheme 4.5 Synthesis of receptor S2R5 

Yield: 85%., m. p. 230 oC. 1H NMR (DMSO- d6, 400 MHz, ppm): δ 7.4 (dddd, J = 

7.9, 1.5, 1.3, 0.5 Hz, 3H), 7.8 (s, 2H), 8.13 (tt, J = 7.4, 1.3 Hz, 1H), 8.38 (dd, J = 7.8, 

0.5 Hz, 1H), 8.72 (dd, J = 7.8, 1.9 Hz, 1H), 8.87 (dd, J = 1.9, 0.5 Hz, 1H), 11.68 (s, 

1H). FTIR (KBr) (cm-1): 3282(NH), 3086(Ar-CH), 1610 (CH=N), 1505 (C=C), 1324 

(NO2), 1128 (C-H). Mass (ESI): m/z Calculated: 286.07 Obtained: 287.13 (M+H)+. 

4.2.7 Characterization data of receptors  

 

Fig. 4.1 FT-IR spectrum of receptor S2R1 
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Fig. 4.2 FT-IR spectrum of receptor S2R2 

  

 

Fig. 4.3 FT-IR spectrum of receptor S2R3 
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Fig. 4.4 FT-IR spectrum of receptor S2R4 

 

 

Fig. 4.5 FT-IR spectrum of receptor S2R5 
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Fig. 4.6 1H-NMR spectrum of receptor S2R1 

 

Fig. 4.7 1H-NMR spectrum of receptor S2R2 

 



 
   

Chapter 4 
_____________________________________________________________________	

___________________________________________________________________________________	
Dept. of Chemistry, NITK                                        113 
	

 

Fig. 4.8 1H-NMR spectrum of receptor S2R2 

 

Fig. 4.9 1H-NMR spectrum of receptor S2R4 
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Fig. 4.10 1H-NMR spectrum of receptor S2R5 

 

Fig. 4.11 ORTEP diagram of receptor S2R5 
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Table 4.1 Crystallographic data of receptor S2R5 

 

4.3 RESULTS AND DISCUSSION 

4.3.1 Colorimetric detection of anions 

With a view to evaluate the effect of structural modification on the optical 

properties of phenylhydrazones, positional substitution of -OH and -NO2 groups on 

the phenyl moiety have been considered as part of the design strategy. UV-Vis 

spectroscopic study performed with 1x10– 4 M DMSO solution of the receptors S2R1, 

S2R2 and S2R5 displayed strong absorption band at 395 nm, 405 nm and 394 nm 

respectively whereas receptors S2R3 and S2R4 exhibited absorption band at around 

413 nm. The absorption maxima for S2R1 to S2R4 could be assigned to the 

intramolecular charge transfer interactions in the presence of Ar-CH=N-NH 

Crystal parameters S2R5 
Empirical formula C13 H10 N4 O4 
Formula weight (g mol-1) 286.25 
Temperature 296 (2) K 
Wavelength 0.71073 
Crystal system, space group Monoclinic, 'P 21/n' 
Unit cell dimension a = 13.2961(5), α = 900 

b = 6.8247(3), β = 92.5630 C(2) 
c = 14.3454(6),γ = 900 

Volume 1300.43(9)Å3 

Z, calculated density 4, 1.462 gcm-3 

Absorption coefficient 0.112 
F (000) 592 
Theta range for data collection 1.533 to 25.9870 
Index ranges -16<=h<=16, -8<=k<=8, -17<=l<=17 
Reflections collected 18519 
Completeness to theta =25.242 0 99. 4 % 
Absorption correction Semi-empirical from equivalents 
Refinement method Full-matrix least-squares on F2 
Data/ restraints/ parameters 2565/0/230 
Goodness-of-fit on F2 0.839 
Final R indices [I>2sigma(I)] 0.1449,0.1250 
R indices (all data) 0.0484 
CCDC No. 1468111 
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conjugation. The electron donor nature of –NH and acceptor nature of –NO2 

functionality are known to impart pale yellow coloration to the receptor in DMSO. 

The interaction of anion with receptors S2R1 to S2R5 has been assessed by color 

changes visible to the naked eye and quantified by UV-Vis spectral studies. UV-Vis 

spectroscopic studies of receptors S2R1 to S2R5 (1x10–4 M in DMSO) has been 

performed with the addition of tetrabutylammonium (TBA) salts of anions (1x10 –2 M 

in DMSO) such as F –, Cl –, Br –, I –, NO3 
–, HSO4 –, H2PO4 – and AcO –. Receptors 

displayed significant colorimetric response upon the addition of 1 equiv. of AcO – ion 

as shown in Fig. 4.12. Receptors S2R1, S2R2 and S2R5 displayed red shift of 

original absorption band to 545 nm, 497 nm and 495 nm respectively accompanied by 

distinct color change from pale yellow to blood red, orange red and red color visible 

to the naked eye (Fig. 4.13, Fig. 4.14 and Fig. 4.17). On the contrary, receptors S2R3 

and S2R4 exhibited a unique colorimetric response from pale yellow to purple and 

violet with a significant red shift and appearance of new band at 570 nm and 572 nm 

respectively (Fig. 4.15 and Fig. 4.16). However, receptors S2R1 to S2R4 exhibited 

relatively similar but less intense colorimetric response towards F – and H2PO4 – ions 

owing to their properties such as similar basicity and charge to radius ratio. Receptor 

S2R5 exhibited selective response towards AcO – ion. No significant changes were 

observed with other anions in the present study which clearly indicates the absence of 

complex formation.  
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Fig. 4.12 Colour change of the receptors S2R1 to S2R5 with the addition of 1 equiv. 
of TBA salts of anions 
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Fig. 4.13 UV-Vis spectra of receptor S2R1 (10–4 M in DMSO) with the addition of 
tertabutylammonium salts of various anions (10–2 M in DMSO) 

 

Fig. 4.14 UV-Vis spectra of receptor S2R2 (10–4 M in DMSO) with the addition of 
tertabutylammonium salts of various anions (10–2 M in DMSO) 
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Fig. 4.15 UV-Vis spectra of receptor S2R3 (10–4 M in DMSO) with the addition of 
tertabutylammonium salts of various anions (10–2 M in DMSO) 

 

Fig. 4.16 UV-Vis spectra of receptor S2R4 (10–4 M in DMSO) with the addition of 
tertabutylammonium salts of various anions (10–2 M in DMSO) 
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Fig. 4.17 UV-Vis spectra of receptor S2R5 (10–4 M in DMSO) with the addition of 
tertabutylammonium salts of various anions (10–2 M in DMSO) 

4.3.2 UV-Vis titration studies 

To obtain further insight into the interaction of S2R1 to S2R5 with TBA salt of 

AcO – ion, UV-Vis spectrophotometric titration has been performed. Fig. 4.18 shows 

the spectroscopic changes observed with the incremental addition of 0.1 equiv. of 

AcO – ion to S2R1. It was interesting to note the two different processes during the 

progression of titration. Until the addition of 0.7 equiv. of AcO – ion, the absorption 

band at 395 nm decreased in its intensity with a significant red shift differing by 150 

units. With the addition of higher equiv. of AcO – ions, there was red shift of the 

original absorption band from 395 nm to 454 nm with the appearance of new band at 

545 nm. The saturation point was reached with the addition of 2 equiv. of AcO – ion 

with complete diminution of the band at 395 nm. The first process corresponds to the 

strong hydrogen bond interaction between AcO – -- H-O and H-N in the ground state. 

The second process provides an evidence of the deprotonation of the –OH moiety due 

to the interaction of hydrogen bond donor group -OH and AcO – ion through 

intermolecular proton transfer process (Kaloo and Sankar 2013). Proton abstraction 

from the –OH moiety induces a negative charge on the oxygen atom of the hydroxyl 
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functionality of receptor S2R1 which further resulted in the enhancement of the 

intermolecular charge transfer transition. Presence of –NO2 chromophore at para 

position with respect to the OH group led to a colorimetric response from pale yellow 

to blood red visible to the naked eye. The presence of clear isobestic point at 422 nm 

denotes the formation of S2R1--AcO – ion complex. From the B-H plot, linearity 

obtained with first power of concentration of AcO – ion confirmed the binding ratio to 

be 1:1 for S2R1-- AcO – ion complex as depicted in Fig. 4.19 which clearly indicates 

the single step deprotonation process brought about by an AcO – ion. 

 

Fig. 4.18 UV-Vis titration spectra of receptor S2R1(10–4 M in DMSO) with the 

incremental addition of TBAAcO (10–2 M in DMSO). Inset plot representing the 

absorption isotherm at 545 nm  

Titration studies performed with incremental addition of AcO – ion to S2R2 

exhibits sharp changes in the absorption maxima accompanied by a red shift differing 

by 90 units and a clear isobestic point at 444 nm as displayed in Fig. 4.20. Presence of 

two –OH and a single NH substituent are known to promote strong ground state 

hydrogen bond interactions with AcO – ion. From the B-H plot, binding ratio was 

found to be 1:1 between S2R2--AcO – ion complex proving a single step 

deprotonation mechanism (Fig. 4.21).  
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Fig. 4.19 B-H plot representing 1:1 binding ratio of S2R1-TBAAcO complex 

 

Fig. 4.20 UV-Vis titration spectra of receptor S2R2 (10–4 M in DMSO) with the 
incremental addition of TBAAcO (10–2 M in DMSO). Inset plot representing the 
absorption isotherm at 497 nm 
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Fig. 4.21 B-H plot representing 1:1 binding ratio of S2R2-TBAAcO complex 

S2R3 exhibited a substantial colorimetric response in the presence of AcO – ion 

inducing a color change from pale yellow to purple. The presence of –NO2 group at 

ortho position of the phenyl ring triggered strong changes in the anion detection 

mechanism. The position of chromophore was found to have a direct influence on the 

chromogenic response upon anion binding. Correspondingly, there was considerable 

shift in the absorption maxima differing by 157 units from the original absorption 

band (Fig. 4.22). The absence of –OH group was balanced by introduction of –NO2 

substituent which enhanced the hydrogen bonding capability of the –NH group by 

rendering it acidic in nature. This is justified by the 1:1 binding ratio between S2R3---

- AcO – ion obtained from B-H plot (Fig. 4.23). Binding of AcO – ion is a one-step 

process involving an initial strong hydrogen bond interaction between AcO – --- HN 

group followed by deprotonation mechanism.  
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Fig. 4.22 UV-Vis titration spectra of receptor S2R3 (10–4 M in DMSO) with the 
incremental addition of TBAAcO (10–2 M in DMSO). Inset plot representing the 
absorption isotherm at 570 nm 

 

Fig. 4.23 B-H plot representing 1:1 binding ratio of S2R3-TBAAcO complex 

Titration studies performed upon gradual addition of standard TBAAcO (1×10 ̶ 2M 

in dry DMSO) to solution of S2R4 resulted in new absorption band centered at 572 
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nm with a clear isobestic point at 462 nm as shown in Fig. 4.24. The probable 

mechanism would be the anion-π charge transfer interactions existing between AcO ̶ 

ion and π- acidic receptor moiety. Diminution of the peak at 413 nm is a clear 

indication of deprotonation of the NH proton leading to a drastic color change. The 

1:1 binding ratio between receptor S2R4 and AcO  ̶   ion has been analysed with B-H 

plot as represented in Fig. 4.24. Titration performed with incremental addition of 

TBAOH resulted in the similar titration profile confirming the deprotonation process 

as shown in Fig. 4.26. Similarly, incremental addition of 0.1 eq. of H2PO4
 ̶ and F ̶ ions 

in dry DMSO resulted in bathochromic shift differing by units of 159 nm and 165 nm 

in comparison with absorption band of the free receptor S2R4. Isobestic points 

centered at 462 and 464 nm each for H2PO4
 ̶ and F ̶ ions represent the complex 

formation as displayed in Fig. 4.27 and Fig. 4.29. Resultant 1:1 binding ratio obtained 

with H2PO4
 ̶ and F ̶ ions indicate the deprotonation of receptor S2R4 in dry DMSO as 

represented in Fig. 4.28 and Fig. 4.30.     

 

Fig. 4.24 UV-Vis titration spectra of S2R4 (1×10–4 M in dry DMSO) with the 
incremental addition of standard solution of TBAAcO  (1×10 ̶ 2M in dry DMSO). Inset 
showing the binding isotherm at 572 nm 
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Fig. 4.25 B-H plot of receptor S2R4- TBAAcO complex at a selected wavelength of 
572 nm 

 

Fig. 4.26 UV-Vis titration spectra of S2R4 (1×10–4 M, DMSO) with the incremental 
addition of standard solution of TBAOH (1×10 ̶ 2M in DMSO) 
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Fig. 4.27 UV-Vis titration spectra of S2R4 (1×10–4 M in dry DMSO) with the 
incremental addition of standard solution of TBAH2PO4

 (1×10  ̶ 2M in dry DMSO). 
Inset showing the binding isotherm at 572 nm 

 

Fig. 4.28 B-H plot of receptor S2R4- TBAH2PO4
   complex at a selected wavelength 

of 572 nm
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Fig. 4.29: UV-Vis titration spectra of S2R4 (1×10–4 M in dry DMSO) with the 
incremental addition of standard solution of TBAF (1×10 ̶ 2M in dry DMSO). Inset 
showing the binding isotherm at 578 nm 

 

Fig. 4.30 B-H plot of receptor S2R4- TBAF complex at a selected wavelength of 578 
nm 



 
   

Chapter 4 
_____________________________________________________________________

Dept. of Chemistry, NITK                                        129 

Receptor S2R5, devoid of substituent groups exhibited colorimetric response from 

pale yellow to orange red in the presence of AcO – ion. The nitro substitutent on the 

hydrazine is potent enough to introduce acidity on the NH group rendering it active 

for proton abstraction by AcO – ion. Yet, the shift in absorption maxima differing by 

96 units is very minute in comparison with other receptors used in the present study. 

The occurrence of sharp isobestic point at 435 nm indicates the complex formation 

process (Fig. 4.31). Binding ratio was found to be 1:1 between receptor- AcO – ion 

indicating a one-step deprotonation process (Fig. 4.32).  

 

Fig. 4.31 UV-Vis titration spectra of receptor S2R5 (10–4 M in DMSO) with the 
incremental addition of TBAAcO (10–2 M in DMSO). Inset plot representing the 
absorption isotherm at 495 nm 
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Fig. 4.32 B-H plot representing 1:1 binding ratio of S2R5-TBAAcO complex 

Overall, the positional substitution effect of –NO2 substituent is found to have a 

prime role in detection of anion. The presence of –OH group and NO2 substituent on 

the receptor cumulatively effect the anion binding probability. Sodium salts of 

fluoride and acetate have been a major constituent of commercially available 

toothpaste, mouthwash and vinegar respectively. These have encroached into the 

household usage in the form of food, medicine and cosmetics. Beyond an optimum 

amount, anions can lead to health issues. Detection of sodium salts of anions in 

aqueous media is gaining more interest with a view to investigate the solvent 

interferences in the binding process. In this regard, the anion binding studies has been 

performed in aqueous media, 9:1, v/v DMSO: H2O with addition of sodium salt of 

AcO – ion and F – ion. UV-Vis titration studies have been performed with incremental 

addition of NaAcO and NaF to solution of receptors of concentration 1 x 10 -4 M (9:1, 

DMSO: H2O, v/v). S2R1, S2R2, S2R3, S2R4 and S2R5 showed a significant redshift 

which was comparable to the titration studies performed in 100% DMSO solvent. 

Titration profile of receptors S2R1, S2R2, S2R3, S2R4 and S2R5 with addition of 

active anions is shown in Fig. 4.33, Fig. 4.35, Fig. 4.37, Fig. 4.39 and Fig. 4.41 

respectively. Appearance of clear isobestic point indicate the complex formation 

between receptor and anion surpassing the solvent interferences in the binding 

process. B-H plot represents 1:1 binding ratio between target anions and receptor 

complex. B-H plot of S2R1-F‒, S2R2- F‒, S2R3- AcO‒, S2R4- AcO‒ and S2R5 is 
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shown in Fig. 4.34, Fig. 4.36, Fig. 4.38, Fig. 4.40 and Fig. 4.42 respectively. S2R4 

showed remarkable colorimetric response with the addition of NaF as shown in Fig. 

4.43. The corresponding B-H plot for S2R4—F- complex indicated the binding ratio 

of 1:1 as represented in Fig. 4.44. 

 

Fig. 4.33 UV-Vis titration spectra of receptor S2R1 (10–4 M in 9:1, v/v DMSO: H2O) 
with the incremental addition of NaF (10-2 M in distilled H2O). Inset plot representing 
the absorption isotherm at 544 nm 

 

Fig. 4.34 B-H plot of receptor S2R1- NaF complex at a selected wavelength of 544 
nm 
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Fig. 4.35 UV-Vis titration spectra of receptor S2R2 (10 -4 M in DMSO) with the 
incremental addition of NaF (10 -2 M in distilled H2O). Inset plot representing the 
absorption isotherm at 500 nm 

 

Fig. 4.36 B-H plot of receptor S2R2- NaF complex at a selected wavelength of 500 
nm 
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Fig. 4.37 UV-Vis titration spectra of receptor S2R3 (10 -4 M in DMSO) with the 
incremental addition of NaAcO (10 -2 M in distilled H2O). Inset plot representing the 
absorption isotherm at 576 nm 

 

Fig. 4.38 B-H plot of receptor S2R3- NaAcO complex at a selected wavelength of 
576 nm 
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Fig. 4.39 UV-Vis titration spectra of S2R4 (1×10 -4 M, 9:1, v/v DMSO/H2O) with the 
incremental addition of standard solution of NaAcO (1×10 ̶ 2M in distilled water). 
Inset showing binding isotherm at 574nm 

 

Fig. 4.40 B-H plot of receptor S2R4- NaAcO complex at a selected wavelength of 
574 nm 
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Fig. 4.41 UV-Vis titration spectra of receptor S2R5 (10 –4 M in DMSO) with the 
incremental addition of NaAcO (10 –2 M in distilled H2O). Inset plot representing the 
absorption isotherm at 489 nm 

 

Fig. 4.42 B-H plot of receptor S2R5- NaAcO complex at a selected wavelength of 
489 nm 
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Fig. 4.43 UV-Vis titration spectra of S2R4 (1×10–4 M, 9:1, v/v DMSO/H2O) with the 
incremental addition of standard solution of NaF (1×10 ̶ 2 M in distilled water). Inset 
showing binding isotherm at 575 nm 

 

Fig. 4.44 B-H plot of receptor S2R4 - NaF complex at a selected wavelength of 575 
nm 



 
   

Chapter 4 
_____________________________________________________________________	

___________________________________________________________________________________	
Dept. of Chemistry, NITK                                        137 
	

4.3.3 Solvatochromism studies 

The study was extended to investigate the solvent dependent charge transfer 

interactions in the presence of active anions. Addition of AcO ̶ ion to the receptor 

induced optical signalling from pale yellow to purple, deep blue, maroon, pale violet 

and pale brown in various aprotic polar solvents such as ACN, THF, acetone, DCM 

and dioxane respectively (Fig. 4.45). UV-Vis spectra recorded with addition of 1 eq. 

of TBAAcO to receptor in solvents of varying polarity resulted in new peak with 

significant bathochromic shift (Table 4.2). There was no any linear correlation 

observed between the solvent polarity and CT band due to the complex nature of 

solute solvent interactions dominated by the hydrogen bond accepting nature of the 

solvents. Among all the solvents, the shift in absorption maxima was greater in THF 

followed by DMSO, acetone and other aprotic solvents indicating the formation of a 

stabilized complex [S2R4---AcO ̶]. However, with 1, 4-dioxane there was minute shift 

in absorption maxima indicative of the minor interaction of the solvent molecules 

with complex [S2R4--- AcO ̶ ] (Dey and Das 2011)(Fig. 4.46). Mechanistically, the 

occurrence of π-π* transitions in the receptor unit resulted in gradual increase of the 

dipole moment upon excitation. Concurrently, presence of polar solvent directed the 

stabilization of excited state more than the ground state. This reduced the separation 

between the two energy states which ensued in red shift of the absorption band. 

Magnitude of red shift was further influenced by the extent of variation of dipole 

moment in the excitation process. The occurrence of smaller magnitude of dipole 

moment in the ground state than in the excited state, led to a substantial shift of 

absorption band (termed as positive solvatochromism or bathochromic shift) 

(B. Berryman and W. Johnson 2009; Berryman et al. 2008; Chifotides et al. 2010; 

Hadjmohammadi et al. 2008; Homocianu 2011; Marini et al. 2010; Saroj et al. 2011). 
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Fig. 4.45 Solvatochromic effect observed with the addition of 1 eq. of TBAAcO to 

receptor solution (10–4 M) in various polar aprotic solvents. Top row: 10–4 M in 

different solvents; Bottom row: S2R4 + AcO ̶  ion  

 

Fig. 4.46 UV-Vis absorption spectra of receptor S2R4 (1×10–4 M) in various polar 
aprotic solvents with the addition of 1 eq. of TBAAcO (10–2 M in dry DMSO) 

	

Table 4.2 Changes in absorption maxima of receptor S2R4 in various solvents upon 
addition of 1 eq. of TBAAcO in dry DMSO 

Solvent Dielectric constant λ max (nm) 
1,4-dioxane 2.21 553 
Tetrahydrofuran 7.58 587 
Dichloromethane 8.93 564 
Acetone 20.70 569 
Acetonitrile 37.50 563 
Dimethylsulfoxide 46.80 576 
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It was interesting to find out the solvent dependent properties of receptor S2R4 in 

the presence of H2PO4
 ̶ and F ̶ ions. THF solution of S2R4 could colorimetrically 

distinguish F ̶ and AcO ̶ ion in conjunction with H2PO4
 ̶ and AcO ̶ ion. Color change 

from pale yellow to green with the addition of F ̶ and H2PO4
 ̶ ions and pale yellow to 

deep blue with addition of AcO ̶  ion clearly represents the selectivity of receptor 

S2R4 for AcO ̶  ion (Fig. 4.47 and Fig. 4.48). The solvent dependent properties of the 

receptor S2R4 promoted optical signalling with less vivid color change ranging from 

pale violet to brown with H2PO4
 ̶  and F ̶ ions. The color change was restricted to 

solvents such as DMSO, THF and acetone (Fig. 4.49 and Fig. 4.50). 

 

Fig. 4.47 UV-Vis spectra of S2R4 (1×10 –4 M in THF) upon addition of 1 eq. of TBA 
salts of F ̶, AcO ̶ and H2PO4

  ̶   ions(1×10 –2 M in dry DMSO) 

 

Fig. 4.48 Colour change of S2R4 (1×10–4 M in THF) upon addition of 1 equiv. of F ̶, 
AcO  ̶  and  H2PO4

  ̶  (1×10 –2 M as TBA salts in dry DMSO) 
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Fig. 4.49 Solvatochromic effect observed with the addition of 1 equiv. of TBAH2PO4 
to receptor solution S2R4 (1×10–4 M) in various polar aprotic solvents 

 

 

Fig. 4.50 Solvatochromic effect observed with the addition of 1 equiv. of TBAF to 
receptor solution S2R4 (1×10–4 M) in various polar aprotic solvents 

 

Addition of a drop of commercially available mouthwash and vinegar induced 

violet coloration of the receptors S2R1, S2R2, S2R3 and S2R4. UV-Vis spectra of 

receptor S2R4 in the presence of seawater, mouthwash and vinegar yielded similar 

charge transfer bands as observed in the case of standard AcO ̶ and F ̶ ions (Fig. 4.51 

and Fig. 4.52). With an attempt to envisage the solidstate sensing property by grinding 

equimolar mixture of receptor with AcO- ion, a color change from yellow to greenish 

black coloration has been observed (Fig. 4.53). 
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Fig. 4.51 UV-Vis spectra of S2R4 (1×10–4 M in DMSO) upon addition of a drop of 
mouthwash, seawater and vinegar 
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Fig. 4.52 Color change of S2R1, S2R2, S2R3 and S2R4 (1×10–4 M in DMSO) upon 
addition of a drop of mouthwash, seawater and vinegar 

 

Fig. 4.53 Color change of receptor S2R4 upon dry grinding of receptor S2R4 with 1 
equiv. of TBAAcO; S2R4 alone (left), S2R4+ TBAAcO (right) 
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4.3.4 Electrochemical studies 

The presence of –NO2, -OH and -NH functionalities in the receptor drives in the 

need to investigate the impact of electrochemical reaction in the anion binding 

process. Considering the aforementioned fact, cyclic voltammetric studies have been 

performed with the incremental addition of AcO‒ ion to the receptor solution. 

Receptor S2R1 exhibited substantial decrease in the original oxidation peak and in the 

presence of AcO‒ ion, there was appearance of new oxidation peak owing to the 

oxidation of –OH and NH functionality (Fig. 4.54(a)). S2R2 exhibited broad 

oxidation peak corresponding to the two OH functionalities and one NH group. There 

was no much shift observed in the presence of acetate ion owing to the strong 

hydrogen bond interaction of receptor with anion. The cyclic voltammogram is 

represented in Fig. 4.54(b).  

In the presence of AcO– ion, S2R3 (Fig. 4.54(c)) and S2R5 (Fig. 4.54(e)) exhibited 

substantial shift of original oxidation and reduction peak along with the appearance of 

new oxidation peak in the case of S2R3 referring to the potent oxidation of the NH 

functionality leading to deprotonation. Cyclic voltammetric studies of receptor S2R4 

(5 x 10 ̶ 5 M) performed with three electrode cell in acetonitrile medium and 

tetrabutylammonium perchlorate as supporting electrolyte reveal the anodic peak at 

0.38 V due to the oxidation of –NH group and cathodic peak at -0.41 V due to the 

reduction of the nitro group (Zen et al. 1999).  Reduction of –NO2 group is a kinetic 

driven process involving a slow step i.e, reduction of –NO2 to –NHOH and reduction 

of –NHOH to nitroso group (-NO) as a fast step (Sharma et al. 2015). Addition of 1 

eq. of AcO ̶ ion resulted in an increase in intensity of the original oxidation peak with 

slight shift to 0.51 V which is attributed to the abstraction of proton from –NH group 

by AcO ̶ ion leaving behind N ̶ species. It depicts the complex electrochemical 

mechanism involving both electrochemical and chemical reactions. The diminution of 

original reduction peak and appearance of a new peak centered at -0.5 V indicates the 

direct involvement of redox active –NO2 moiety in the detection mechanism (Fig. 

4.54(d)). 
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Fig. 4.54 (a) Cyclic voltammogram of receptor S2R1 (5x10–5M) with incremental 
addition of TBAAcO ion (0-1 equiv.) 

 

Fig. 4.54 (b) Cyclic voltammogram of receptor S2R2 (5x10–5M) with incremental 
addition of TBAAcO ion (0-1 equiv.) 
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Fig. 4.54 (c) Cyclic voltammogram of receptor S2R3 (5x10–5M) with incremental 
addition of TBAAcO ion (0-1 equiv.) 

 

Fig. 4.54 (d) Cyclic voltammogram of receptor S2R4 (5x10–5M) with incremental 
addition of TBAAcO ion (0-1 equiv.) 
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Fig. 4.54 (e) Cyclic voltammogram of receptor S2R5 (5x10–5M) with incremental 
addition of TBAAcO ion (0-1 equiv.) 

4.3.5 1H-NMR titration studies 

To arrive at the binding mechanism, 1H-NMR titration studies has been performed 

with DMSO-d6 solution of receptor S2R3 and S2R4 upon addition of TBA salt of 

acetate ion. 1H-NMR titration was performed with 1x10-4 M of S2R3 in the presence 

of AcO – ion added as TBA salt in DMSO-d6 as solvent and the corresponding anion 

receptor interactions has been monitored. The color change was immediate upon 

addition of 0.1 equiv. of AcO – ion which revealed changes in the 1H-NMR spectra. 

With the incremental addition of 0.5, 1.0, 1.5 and 2.0 eq. of AcO – ion the –NH proton 

at δ 11.96 ppm of free receptor experienced simultaneous broadening with diminution 

of peak intensity referring to the initial hydrogen bond complex formation followed 

by deprotonation process. The signal corresponding to the aromatic protons and imine 

proton showed decrease in their intensity upon addition of higher eq. of AcO – ion. 

The titration spectra is represented in Fig 4.55.  
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Fig. 4.55 1H NMR titration of receptor S2R3 with incremental addition of TBAAcO 
ion (0-2 equiv.) 

Disappearance of resonance signal ascribable to the –NH proton at 11.8 ppm upon 

successive addition of AcO ̶  ion is indicative of the deprotonation mechanism 

involved in the binding process (Lee et al. 2001) (Fig. 4.56). The disappearance of the 

splitting pattern in the aromatic region indicates the formation of NH--AcO ̶ hydrogen 

bond followed by a deprotonation process.  
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Fig. 4.56 1H-NMR titration of receptor S2R4 with incremental addition of TBAOAc 
ion (0-1 eq.) 

4.3.6 pH dependency studies 

To infer the selectivity of receptors towards anions, Tris HCl buffer solution has 

been introduced into the receptor solution of S2R4 in varying ratio. It was found that 

with 9:1, DMSO: Tris HCl buffer, pH 7.4, S2R4 exhibited selective response towards 

AcO – ion with a color change visible to naked eye. The UV-Vis titration studies 

performed with incremental addition of AcO – ion added as TBA salt, represented a 

clear red shift of the original absorption band with growth of new isobestic point 

indicating the complex formation. This is represented in Fig. 4.57. The corresponding 

B-H plot for the S2R4-AcO- complex is given in Fig. 4.58. 
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Fig. 4.57 UV-Vis titration spectra of receptor S2R4 (DMSO/Tris HCl (9:1, v/v, 10 ̶ 4 

M) with incremental addition of standard solution of TBAAcO (1×10 ̶ 2 M in dry 
DMSO). Inset showing the absorption isotherm at 569 nm 

 

Fig. 4.58 B-H plot of receptor S2R4- TBAAcO complex (buffer media) at a selected 
wavelength of 569 nm 

4.3.7 DFT studies 

To support the AcO– ion induced optical signalling event of the receptor S1R4 in 

solvents of varying polarity, DFT calculations have been performed using B3LYP/6-

31G (d,p) basis set. The optimized structure of receptor S2R4 in gas phase (Fig. 
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4.59(a), (b) and (c)) and the deprotonated form observed upon AcO – ion binding in 

few selected solvents viz., acetone (Fig. 4.60(a), (b) and (c)) and DCM have been 

derived. HOMO and LUMO of the deprotonated receptor S2R4 in DCM is 

represented in Fig. 4.61. The band gap for optimized structure of receptor S2R4 in gas 

phase is found to be 3.36 eV. Anion induced deprotonation of receptor S2R4 in DCM 

results in lowering of the band gap value from 3.36 eV to 3.02 eV which is 

responsible for the red shift of the band observed in UV-Vis spectra. Significant 

redshift of the absorption band is the resultant of deprotonation of anion binding site. 

Similar observations were obtained for the receptor S2R4 in acetone with variation in 

band gap from 3.36 to 3.0 eV. Structure of HOMO and LUMO of deprotonated 

receptor S2R4 in gas phase and acetone is given in Fig. 4.60 (a), (b) and (c) 

respectively. Dipole moment calculated for the receptor and its deprotonated form 

reveals a change from 2.59 D to 9.29 D and 9.63 D in DCM and acetone respectively. 

The higher dipole moment of receptor in acetone in comparison with DCM indicates 

efficient charge transfer from receptor to solvent in case of acetone. With these 

values, the role of dipole moment in stabilizing the excited state more than the ground 

state is justified. The receptor S2R4 in its deprotonated form in DCM and acetone 

exhibited absorption band at 564 and 569 nm respectively corroborating well with the 

experimentally observed UV-Vis spectral results (Fig. 4.62). 

 

Fig. 4.59 (a) Optimized geometry of the receptor S2R4 in gas phase 
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Fig. 4.59 (b) HOMO of the receptor S2R4 in gas phase 

 

Fig. 4.59 (c) LUMO of the receptor S2R4 in gas phase 

 

Fig. 4.60 (a) Optimized structure of the deprotonated receptor S2R4 in acetone 

 

 

Fig. 4.60 (b) HOMO of the deprotonated receptor S2R4 in acetone  
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Fig. 4.60 (c) LUMO of the deprotonated receptor S2R4 in acetone  

 

 

Fig. 4.61 Schematic representation of (a) chemical structure of deprotonated receptor 

S2R4 (b) DFT derived optimized structure of the deprotonated receptor S2R4 in 

DCM. Isosurface in (c) representing distribution of HOMO and (d)  LUMO in 

deprotonated receptor S2R4 
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Fig. 4.62 UV-Vis spectra of the receptor S2R4 in gas phase, in solvents such as DCM 
and acetone with addition of AcO – ion  

 

4.3.8 Calculation of binding constant from UV-Vis studies 

Binding constant has been calculated using B-H equation (Benesi and Hildebrand 
1948) (Eq. 1); 

1/(A-A o) = 1/(A max –A o) + 1/K [X  ̶  ]n (Amax –Ao)  ------------------- (Eq. 1) 

Where, A0, A, Amax are the absorption considered in the absence of F¯, at an 
intermediate, and at a concentration of saturation. K is binding constant, [X¯] is 
concentration of X¯ ion and n is the stoichiometric ratio. 

The corresponding binding constant and detection limit of receptors have been 
tabulated in Table 4.3. 
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Table 4.3 Binding constant and detection limit of receptors in the presence of various 
anions 

 

4.3.9 Binding mechanism 

Based on the UV-Vis and 1H-NMR titration studies, the following binding 

mechanism has been proposed. The addition of strong basic anion (AcO‒) initially 

leads to the bifurcated hydrogen bond interaction with the –NH and imine 

functionality with a subsequent deprotonation of NH proton. Deprotonation process 

further tends to increase the electron density by introducing charge separation in the 

receptor S2R4. This facilitates ICT transition between electron deficient –NO2 

functionality at para position and electron rich N‒ species resulting in the strong 

colorimetric response.The binding mechanism is represented in Scheme 4.6.	

 

Receptor Anion Solvent 
system 

Binding 
constant 

(M-1) 

Detection 
limit 

(ppm) 
S2R1 AcO –(TBAAcO) DMSO 2.33 x 102 9 

F – (NaF) DMSO:H2O 
(9:1 v/v) 

1.46 x 102 1 

S2R2 AcO – (TBAAcO) DMSO 2.18 x 102 4.5 
F – (NaF) DMSO:H2O 

(9:1 v/v) 
1.23 x 102 0.8 

S2R3 AcO – (TBAAcO) DMSO 2.2 x 102 3.7 
AcO – (NaAcO) DMSO:H2O 

(9:1 v/v) 
1.19 x 102 1 

S2R4 AcO – (TBAAcO) DMSO 5.28 x 102 1.5 
AcO – (NaAcO) DMSO:H2O 

(9:1 v/v) 
3 x 102 0.8 

F – (TBAF) DMSO 1.1 x 102 2.5 
F – (NaF) DMSO:H2O 

(9:1 v/v) 
4.2 x 102 0.4 

H2PO4
– (TBAH2PO4) DMSO 3.15 x 102 3.3 

S2R5 AcO – (TBAAcO) DMSO:Tris 
HCl (9:1 v/v) 

1.33 x 102 15 

AcO – (TBAAcO) DMSO 4.5 x 102 7.7 
AcO – (NaAcO) DMSO:H2O 

(9:1 v/v) 
3.14 x 102 1.2 
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Scheme 4.6 Proposed binding mechanism of receptor S2R4 with AcO – ion 
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4.4 Conclusions 

In conclusion, the present findings serve to illustrate the role of positional 

substitution of nitro functionality on the anion binding and selectivity. Receptors 

S2R1, S2R2, S2R3, S2R4 and S2R5 proved their ability to act as colorimetric 

receptor for anions. Receptor S2R5 exhibited selective response towards AcO ̶  ion in 

organic solvent with a binding constant of the order 4.5 x 102 M-1. Receptor S2R4-

AcO ̶ ion complexation induced pronounced change in the position and intensity of 

absorption band emphasizing the effect of solvent polarity on the anion binding 

process. Anion binding studies of S2R4 performed in Tris HCl buffer medium 

refelects the selective detection of AcO ̶ ion. Lower detection limit of 0.8 ppm and 0.4 

ppm observed in case of AcO ̶ ion and F ̶ ion with S2R4 which is relatively lower than 

the WHO guidelines highlights the efficacy of the receptor. The binding constant 

value of 5.28 x 104 M-1 with TBA+AcO ̶ ion and 4.2 x 104 M-1 with NaF reflect the 

stability of receptor S2R4 - anion complex. Electrooptical studies, 1H-NMR titrations 

and DFT calculations of S2R4 in solution phase provide full proof of the 

deprotonation involved in the binding mechanism. Colorimetric response of receptor 

S2R4 towards AcO ̶ ion in the organic, aqueous and solid phase signifies its practical 

utility as a chemosensor. 
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Abstract 

In this chapter, design, syntheses and characterization of three organic 

receptors have been described. The applicability of the receptors in the colorimetric 

detection of anions have been discussed in detail through UV-Vis spectrophotometric, 
1H-NMR titration studies and supported by DFT studies. The binding mechanism of 

the receptor towards active anions have been included. The biological application of 

one of the receptors in the detection of acetate in E. coli have been studied. 

5.1 INTRODUCTION 

Anion receptor chemistry has gained unique attention among supramolecular 

chemists in the light of their roles in biology and environment (Martínez-Máñez and 

Sancenón 2003; Sancenón et al. 2003; Gale 2003). Design-based synthetic receptors 

witness burgeoning interest for the selective detection of anions in aqueous media 

(Mizuno et al. 2002; Miyaji et al. 2000; Sessler et al. 2002; Sancenón et al. 2003). 

Synthetic receptors that can recognize and sense anions through visible, 

electrochemical and optical response are of special interest owing to the low cost and 

simple instrumentation required. Signaling unit-binding site approach is well known 

in translating receptor-anion association into an optical signal. Covalent linking of an 

optical signaling chromophoric fragment lead to visually observable color change 

assigned to the conformational changes in the receptor or charge transfer process 

(Atwood et al. 1996; Gale 2001; Beer and Gale 2001). Among the wide array of 

anions, fluoride and acetate has gained undivided attention for their significant role at 

physiological level. Fluoride is well known in the clinical treatments such as dental 

carries (Kirk 1991) and osteoporosis (Kleerekoper 1998). Physiologically, acetate ion 

plays a leading role in metabolic process and ecologically, it monitors the 

sedimentation of organic compounds in marine sediments. Diversity of function, both 

beneficial and otherwise urge the need for colorimetric sensors for the detection of 

fluoride and acetate ions relating to their size, basicity, electronegativity effects and 

strong hydrogen bond acceptor nature (Bhosale et al. 2009). 
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Receptors bearing amide, urea, thiourea units are known to promote fluoride 

and acetate ion binding through hydrogen-bond interaction and N-H deprotonation 

events. Recently, neutral-anion receptor system based on heterocyclic derivatives 

such as pyrrole, indole etc. which possess relatively acidic proton have been 

extensively studied (Jose et al. 2004; Vázquez et al. 2004; Lee et al. 2004; Esteban-

Gómez et al. 2005; Cho et al. 2005; He et al. 2006; Evans et al. 2006; Quinlan et al. 

2007; Lee and Gabbaï 2007). In pursuit of optical sensor for anions, a new series of 

furan based receptors S3R1, S3R2 and S3R3 have been synthesized to gain further 

insight into the binding mechanism. Receptors S3R1, S3R2 and S3R3 possess an 

anion binding site, –NH functionality, inherent in its structure, and it is worthwhile to 

link it with an electron deficient group such as nitro paving way for the intramolecular 

charge transfer process. The choice of including –NO2 group was based on the fact 

that it could act as a binding affinity control group by regulating the acidity of the 

hydrogen bond donor moiety. Further, the chromogenic signaling output in anion 

binding event could be fine-tuned by introducing substituent effect on the aromatic 

ring. Accordingly, depending on the basicity of the anion and increasing equivalence 

of the anion tendancy to deprotonate acidic sites is likely to increase. S3R1 possesses 

– NO2 functionality on the furan ring para to phenylhydrazine group. S3R2 comprises 

of nitrophenyl substituent attached to furan ring and is para to –NH functionality 

containing phenylhydrazine group whereas S3R3 is devoid of – NO2 functionality on 

the furan ring. Binding of anion through strong hydrogen bond followed by a 

deprotonation event is expected to yield a well resolved colorimetric and 

electrochemical response through modulated internal charge transfer process.  

5.2 EXPERIMENTAL SECTION 

5.2.1 Materials and Methods 

All chemicals and analytical grade reagents were used as bought without any further 

purification unless otherwise mentioned. Thin layer chromatography was performed 

using Merck TLC Silica Gel F254
 plates. Melting point was measured on Stuart SMP3 

melting-point apparatus in open capillaries. Infrared spectra were recorded on Bruker 

alpha FTIR spectrometer. 1H-NMR was performed using Bruker-400 AV-400 
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spectrometer. Chemical shift values are reported in ppm scale (in DMSO-d6 with 

Tetramethylsilane as internal standard). UV-Vis experiments were carried out using 

Thermo Scientific Genysys 10S spectrometer in standard 3.0 mL quartz cell with 1 

cm path length.   

5.2.2 Preparation of agar plates containing receptor S3R1 

A 5% (w/V) receptor stock solution was prepared in 100% ethanol. To this solution, 

1% (w/V) DMSO (Finar reagents) was added to dissolve receptor completely for use. 

The solution was prepared fresh for better results. The receptor solution (20 µL) was 

spread on the Luria Bertani (LB) agar plates (20 mL) containing glucose (2 g/L). The 

solution was dried for 30 minutes in the laminar air flow chamber. Wells were made 

on agar plate to load E. coli BL21 culture. 

5.2.3 Preparation of E.coli BL21 culture 

The E. coli BL21 cells were grown in 50 mL liquid LB medium containing glucose (2 

g/L) in orbital shaker for a period of 24 h at 37°C at 200 rpm. The samples were 

harvested at regular time intervals. Into each well, 100 µL of the liquid of E.coli BL21 

cells were inoculated. The plates were incubated at 37°C and observed for 

fluorescence at 365 nm after 24 h.  

5.2.4 Synthesis of receptors S3R1, S3R2 and S3R3 

Receptors S3R1, S3R2 and S3R3 were prepared by simple Schiff base condensation 

reaction between 2,4-dinitrophenylhydrazine and different substituted furaldehydes 

namely, 5-nitrofuraldehyde (0.70 mmol), 5-nitrophenylfuraldehyde (0.46 mmol) and 

furaldehyde (1.04 mmol) respectively. Ethanolic solution of resulting mixtures were 

refluxed at 70 oC for 5 h in the presence of catalytic amount of acetic acid. The 

formation of the product was confirmed through TLC by the generation of single spot 

indicative of the disappearance of starting materials. After cooling to room 

temperature, the reaction mixture was filtered through filter paper, washed with 

ethanol to obtain pure product. The general scheme of synthesis is shown in Scheme 

5.1. 
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Scheme 5.1 General scheme for the synthesis of receptors S3R1, S3R2 and S3R3 

S3R1: (E)-1-(2,4-dinitrophenyl)-2-((5-nitrofuran-2-yl)methylene)hydrazine 

Yield: 87 %, melting point: 210 0C, 1H NMR (DMSO- d6, 400 MHz, ppm): δ 11.99 

(m; NH), 8.73 (s; CH=N), 8.50 (dd; J= 9.5, 2.7; Ar-H), 8.25 (s; Ar-H), 8.03 (m; Ar-

H), 7.86 (d; J=3.9; Ar-H), 7.38 (d; J=4.2; Ar-H). FTIR (KBr) (cm-1): 3256 (NH), 

3135 (Ar-CH), 1617 (CH=N), 1339 (NO2).  

S3R2: (E)-1-(2,4-dinitrophenyl)-2-((5-(4-nitrophenyl)furan-2-yl)methylene)hydrazine 

Yield: 82 %, melting point: 242 0C, 1H NMR (DMSO- d6, 400 MHz, ppm): δ 11.83 

(br. s; NH), 8.90 (d; J= 2.7; Ar-H), 8.72 (s; CH=N), 8.34 (m; 3Ar-H), 8.09 (m; 3Ar-

H), 7.55 (d; J=3.7; Ar-H), 7.25 (d; J=3.7; Ar-H). FTIR (KBr) (cm-1): 3266 (NH), 

3084 (Ar-CH), 1614 (CH=N), 1329 (NO2).  
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S3R3: (E)-1-(2,4-dinitrophenyl)-2-(furan-2-ylmethylene)hydrazine  

Yield: 73 %, melting point: 206 0C, 1H NMR (DMSO- d6, 400 MHz, ppm): δ 11.7 (br. 

s; NH), 8.89 (m; Ar-H), 8.65 (s; CH=N), 8.41 (dd, J= 9.5, 2.7; Ar-H), 7.95 (m, 2Ar-

H), 7.02 (d; J= 3.2); Ar-H), 6.70 (dd, J=3.4, 1.7; Ar-H). FTIR (KBr) (cm-1): 3275 

(NH), 3118 (Ar-CH), 1619 (CH=N), 1321 (NO2).  

5.2.5 CHARACTERIZATION DATA 

 

Fig. 5.1 FT-IR spectrum of S3R1 
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Fig. 5.2 FT-IR spectrum of S3R2 

 

Fig. 5.3 FT-IR spectrum of S3R3 
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Fig. 5.4 1H NMR spectrum of S3R1  

Fig. 5.5 1H NMR spectrum of S3R2 
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Fig. 5.6 1H NMR spectrum of S3R3  

5.3 RESULTS AND DISCUSSION 

5.3.1 Colorimetric detection of anions 

With a view to evaluate the effect of structural modification on the optical 

properties of phenylhydrazones, positional substitution of -NO2 and nitrophenyl 

functionality on the furyl moiety have been considered as part of the design strategy. 

The sensing ability of receptors S3R1, S3R2 and S3R3 (1x10—5M in DMSO) were 

analysed with the addition of series of tetrabutylammonium salts of anions ([Bu4N]+X 
—, X = F —, Cl —, Br —, I — , NO3

—,HSO4
—, H2PO4

— and AcO — ion). S3R1, S3R2 

and S3R3 exhibited color change from pale yellow to blue, violet and pink 

respectively with the addition of 2 equiv. of F —, H2PO4
— and AcO — ions (Fig. 5.7).  

UV-Vis spectroscopic study performed with 1x10 –5 M DMSO solution of the 

receptors S3R1, S3R2 and S3R3 displayed strong absorption band at 432 nm, 442 nm 

and 405 nm respectively. The absorption maxima for S3R1, S3R2 and S3R3 could be 

assigned to the intramolecular charge transfer interactions in the presence of Ar-

CH=N-NH conjugation. The electron donor nature of –NH and acceptor nature of –

NO2 functionality are known to impart pale yellow coloration to the receptor in 
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DMSO. Addition of F —, H2PO4
— and AcO — ions to S3R1, resulted in the decrease 

in the band centered at 432 nm and growth of new band at 625 nm, 633 nm and 628 

nm respectively (Fig. 5.8). With S3R2, addition of F —, H2PO4
— and AcO — ions led 

to the decrease in the band centered at 442 nm with the emergence of new bands at 

554 nm, 555 nm and 556 nm respectively (Fig. 5.9). Upon addition of F —, H2PO4
— 

and AcO — ions to S3R3, the absorption band at 405 nm decreased at the expense of 

new bands centered at 500 nm, 486 nm and 501 nm respectively accounting for the 

observed color changes (Fig. 5.10).  

 

 

 

 

Fig. 5.7 Color change of the receptors S3R1, S3R2 and S3R3 (1x10 – 5 M in DMSO) 

with the addition of 1 equiv. of TBA salts of anions (1x10 – 2 M in DMSO) 
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Fig. 5.8 UV-visible absorption spectra of S3R1 (1x10―5M in DMSO) upon addition 

of 1 equiv. of various anions as TBA salts 

 

Fig. 5.9 UV-visible absorption spectra of S3R2 (1x10―5M in DMSO) upon addition 

of 1 equiv. of various anions as TBA salts 
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Fig. 5.10 UV-visible absorption spectra of S3R3 (1x10―5M in DMSO) upon addition 

of 1 equiv. of various anions as TBA salts 

5.3.2 UV-Vis titration studies 

For further investigation of the complex formation, UV-Vis titration 

experiments were performed with the incremental addition of anions to the receptor 

S3R1.  With the gradual addition of F —, H2PO4
— and AcO — ions, the band at 328 

nm and 432 nm decreased in its intensity signifying the hydrogen bond interactions of 

S3R1 with -NH and the imine –CH=N- moiety. The red shift observed at 625 nm, 633 

nm and 628 nm respectively for F —, H2PO4
— and AcO — ions with a hyperchromic 

effect is indicative of the deprotonation of the -NH moiety with the higher equiv. of 

anion. The occurrence of unclear isobestic points at 435 nm, 471 nm, and 482 nm 

clearly represent a complex equilibrium process with the coexistence of more than 

one type of S3R1-anion complex. The new red shift band reached its limiting value 

with the addition of 1 equiv. of anions.  The titration profiles are shown in Fig. 5.11, 

Fig. 5.12 and Fig. 5.13. The corresponding B-H plot yielded an appropriate binding 

ratio between S3R1-anion complex. (Fig. 5.14, Fig. 5.15 and Fig. 5.16). 
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Fig. 5.11 UV-Vis titration spectra of receptor S3R1 (10 ‒5 M in DMSO) with the 

incremental addition of TBAF (10 ‒2 M in DMSO); Inset plot representing the 

variation of absorbance with increasing concentration of TBAF 

 

Fig. 5.12 UV-Vis titration spectra of receptor S3R1 (10 ‒5 M in DMSO) with the 

incremental addition of TBAH2PO4 (10‒2 M in DMSO); Inset plot representing the 

variation of absorbance with increasing concentration of TBAH2PO4 
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Fig. 5.13 UV-Vis titration spectra of receptor S3R1 (10 ‒5 M in DMSO) with the 

incremental addition of TBAAcO (10‒2 M in DMSO); Inset plot representing the 

variation of absorbance with increasing concentration of TBAAcO 

 

Fig. 5.14 B-H plot for S3R1-TBAF complex 
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Fig. 5.15 B-H plot for S3R1-TBAH2PO4 complex 

 

Fig. 5.16 B-H plot for S3R1-TBAAcO complex 

Similarly, titration studies have been performed with the incremental addition of F —, 

H2PO4
— and AcO — ions to S3R2, wherein the band centered at 442 nm decreased in 

its intensity with the gradual appearance of new red shift bands at 554 nm, 555 nm 

and 556 nm respectively. Isobestic points at 513 nm, 497 nm, 479 nm during the 
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incremental addition of 0.2 eq., 0.4 eq. and 0.5 eq. to 1.0 eq. of F— and AcO—ions 

respectively, represent complex equilibrium involved in the anion binding process

(Sahu et al. 2016). Titration profile are represented in Fig. 5.16, Fig. 5.17 and Fig. 

5.18. The corresponding B-H plot are shown in Fig. 5.19, Fig. 5.20 and Fig. 5.21. 

 

Fig. 5.17 UV-Vis titration spectra of receptor S3R2 (10 ‒5 M in DMSO) with the 

incremental addition of TBAF (10 ‒2 M in DMSO); Inset plot representing the 

variation of absorbance with increasing concentration of TBAF
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Fig. 5.18 UV-Vis titration spectra of receptor S3R2 (10 ‒5 M in DMSO) with the 

incremental addition of TBAH2PO4 (10 ‒2 M in DMSO); Inset plot representing the 

variation of absorbance with increasing concentration of TBAH2PO4 

 

Fig. 5.19 UV-Vis titration spectra of receptor S3R2 (10 ‒5 M in DMSO) with the 

incremental addition of TBAAcO (10 ‒2 M in DMSO); Inset plot representing the 

variation of absorbance with increasing concentration of TBAAcO 
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Fig. 5.20 B-H plot for S3R2-TBAF complex 

 

Fig. 5.21 B-H plot for S3R2-TBAH2PO4 complex 
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Fig. 5.22 B-H plot for S3R2-TBAAcO complex 

Similarly, titration studies have been performed with the incremental addition of F —, 

H2PO4
— and AcO — ions to S5R3, wherein the band centered at 405 nm decreased in 

its intensity with the gradual appearance of new red shift band at 442 nm, 443 nm and 

442 nm respectively. Isobestic points at 442 nm for F —and AcO — ions and 443 nm 

for H2PO4
— ions represent complex formation in the anion binding process. Titration 

profile are represented in Fig. 5.23, Fig. 5.24 and Fig. 5.25. The corresponding B-H 

plot are shown in Fig. 5.26, Fig. 5.27 and Fig. 5.28.  
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Fig. 5.23 UV-Vis titration spectra of receptor S3R3 (10 ‒5 M in DMSO) with the 

incremental addition of TBAF (10 ‒2 M in DMSO); Inset plot representing the 

variation of absorbance with increasing concentration of TBAF 

 

Fig. 5.24 UV-Vis titration spectra of receptor S3R3 (10 ‒5 M in DMSO) with the 

incremental addition of TBAH2PO4 (10 ‒2 M in DMSO); Inset plot representing the 

variation of absorbance with increasing concentration of TBAH2PO4 
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Fig. 5.25 UV-Vis titration spectra of receptor S3R3 (10 ‒5 M in DMSO) with the 

incremental addition of TBAAcO (10 ‒2 M in DMSO); Inset plot representing the 

variation of absorbance with increasing concentration of TBAAcO 

 

Fig. 5.26 B-H plot for S3R3-TBAF complex 
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Fig. 5.27 B-H plot for S3R3-TBAH2PO4 complex 

 

Fig. 5.28 B-H plot for S3R3-TBAAcO complex 

Detection of sodium salt of anions by the receptors is highly necessary as it 

paves way for practical applications. Sodium fluoride is an essential ingredient of 
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toothpaste and mouthwash; sodium acetate is commonly found in vinegar. With this 

in view, UV-Vis studies have been performed with the addition of sodium salt of 

anions to receptors. With the incremental addition of of F —, H2PO4
— and AcO — ions 

to S3R1, S3R2 and S3R3, the shift in absorption maxima reflected similarity with the 

titration profile obtained with the addition of TBA salts of anions. The titration 

profiles are represented in Fig. 5.29, Fig. 5.30, Fig. 5.31, Fig. 5.32, Fig. 5.33 and Fig. 

5.34. The corresponding B-H plot are represented in Fig. 5.35, Fig. 5.36, Fig. 5.37, 

Fig. 5.38, Fig. 5.39 and Fig. 5.40. 

 

Fig. 5.29 UV-Vis titration spectra of receptor S3R1 (10 ‒5 M in DMSO) with the 

incremental addition of NaF (10 ‒2 M in H2O); Inset plot representing the variation of 

absorbance with increasing concentration of NaF 
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Fig. 5.30 UV-Vis titration spectra of receptor S3R1 (10 ‒5 M in DMSO) with the 
incremental addition of NaAcO (10 ‒2 M in H2O); Inset plot representing the variation
of absorbance with increasing concentration of NaAcO 

 

Fig. 5.31 UV-Vis titration spectra of receptor S3R2 (10 ‒5 M in DMSO) with the 
incremental addition of NaF (10 ‒2 M in H2O); Inset plot representing the variation of 
absorbance with increasing concentration of NaF 
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Fig. 5.32 UV-Vis titration spectra of receptor S3R2 (10 ‒5 M in DMSO) with the 
incremental addition of NaAcO (10 ‒2 M in H2O); Inset plot representing the variation 
of absorbance with increasing concentration of NaAcO 

 

Fig. 5.33 UV-Vis titration spectra of receptor S3R3 (10 ‒5 M in DMSO) with the 
incremental addition of NaF (10 ‒2 M in H2O); Inset plot representing the variation of 
absorbance with increasing concentration of NaF 



  
Chapter 5

_____________________________________________________________________

Dept. of Chemistry, NITK                                          181 

 

Fig. 5.34 UV-Vis titration spectra of receptor S3R3 (10 ‒5 M in DMSO) with the 
incremental addition of NaAcO (10 ‒2 M in H2O); Inset plot representing the variation 
of absorbance with increasing concentration of NaAcO 

 

Fig. 5.35 B-H plot for S3R1-NaF complex 
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Fig. 5.36 B-H plot for S3R1-NaAcO complex 

 

Fig. 5.37 B-H plot for S3R2-NaF complex 
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Fig. 5.38 B-H plot for S3R2-NaAcO complex 

 

Fig. 5.39 B-H plot for S3R3-NaF complex 
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Fig. 5.40 B-H plot for S3R3-NaAcO complex 

5.3.3 pH dependency studies 

Further on, pH dependent studies were performed by introducing HEPES buffer into 

the receptor solution in DMSO. The receptors S3R1, S3R2 and S3R3 exhibited 

selective detection of AcO‒ ions among all other anions used in the present study. The 

color change from pale green to dark green with the addition of AcO‒ ion to S3R1

could be explained based on the ability of –NH functionality to withstand instant 

deprotonation in buffer media. The drastic color change observed with the addition of 

AcO‒ ion to S3R2 and S3R3 could be attributed to the ease of deprotonation of –NH 

functionality upon anion binding unlike S3R1. The color change of receptors with the 

addition of anions is represented in Fig. 5.41. The corresponding UV-Vis spectra are 

shown in Fig. 5.42, Fig. 5.43 and Fig. 5.44 respectively. Titration studies have been 

performed with the incremental addition of AcO‒ ions to receptor S3R1, S3R2 and 

S3R3, and the titration profile are represented in Fig. 5.45, 5.46 and 5.47 respectively.

Binding constant has been calculated using B-H equation and is tabulated in Table 

5.1. The occurrence of higher order of binding constant reveals the strength of 

hydrogen bond involved in binding the anion to the receptor 
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Fig. 5.41 Color change of receptors S3R1, S3R2 and S3R3 (1x10―5M in HEPES: 

DMSO, 1:9, v/v) with the addition of TBA salt of anions (1x10―2 M in DMSO) 
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Fig. 5.42 UV-visible absorption spectra of S3R1 (1x10―5M in HEPES: DMSO, 1:9 
v/v) upon addition of 1 equiv. of various anions as TBA salts (1x10―2 M in DMSO)  

 

Fig. 5.43 UV-visible absorption spectra of S3R2 (1x10―5M in HEPES: DMSO, 1:9 

v/v) upon addition of 1 equiv. of various anions as TBA salts (1x10―2 M in DMSO) 
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Fig. 5.44 UV-visible absorption spectra of S3R3 (1x10―5M in HEPES: DMSO, 1:9 
v/v) upon addition of 1 equiv. of various anions as TBA salts (1x10―2 M in DMSO) 

 

Fig. 5.45 UV-Vis titration spectra of receptor S3R1 (1x10―5 M in HEPES: DMSO, 
1:9 v/v) with the incremental addition of TBAAcO (10 ‒2 M in DMSO); Inset plot 
representing the variation of absorbance with increasing concentration of TBAAcO 
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Fig. 5.46 UV-Vis titration spectra of receptor S3R2 (1x10―5 M in HEPES: DMSO, 
1:9 v/v) with the incremental addition of TBAAcO (10 ‒2 M in DMSO); Inset plot 
representing the variation of absorbance with increasing concentration of TBAAcO 

 

Fig. 5.47 UV-Vis titration spectra of receptor S3R3 (1x10―5 M in HEPES: DMSO, 
1:9 v/v) with the incremental addition of TBAAcO (10 ‒2 M in DMSO) 

 



 
   

Chapter 5 
_____________________________________________________________________

Dept. of Chemistry, NITK                                          189 

5.3.4 Calculation of binding constant from UV-Vis studies 

Binding constant has been calculated using Benesi-Hildebrand equation (Benesi and 

Hildebrand 1948) as given below; 

1/(A-A o) = 1/(A max –A o) + 1/K [X  ̶  ]n (Amax –Ao)   

where, A0, A, Amax are the absorption considered in the absence of anion, at an 

intermediate, and at a concentration of saturation. K is binding constant, [X¯] is 

concentration of anion and n is the stoichiometric ratio. 

Table 5.1 Binding constant and detection limit of receptors S3R1, S3R2 and S3R3 

with active anions 

Receptor Ions Binding constant Detection limit 
(ppm) 

S3R1 F– (TBAF) 2.3 x 10 15 M-2 1.23 
 H2PO4

¯
 (TBAH2PO4) 3.8 x 107 M-1 2.18 

 AcO– (TBAAcO) 2.52 x 107 M-1 1.98 
 F– (NaF) 1.5 x 1015 M-2 0.89 
 AcO– (NaAcO) 2.7 x 107 M-1 0.78 
S3R2 F– (TBAF) 0.88 x 1014 M-2 2.34 
 H2PO4

¯
 (TBAH2PO4) 0.87 x 107 M-1 3.67 

 AcO– (TBAAcO) 1.8 x 107 M-1 2.31 
 F– (NaF) 0.92 x 1014 M-2 0.62 
 AcO– (NaAcO) 1.7 x 107 M-1 0.58 
S3R3 F– (TBAF) 0.412 x 107 M-1 3.45 
 H2PO4

¯
 (TBAH2PO4) 0.69 x 107 M-1 2.13 

 AcO– (TBAAcO) 0.98 x 107 M-1 3.73 
 F– (NaF) 0.47 x 107 M-1 0.83 
 AcO– (NaAcO) 0.102 x 107 M-1 0.97 
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5.3.5 1H-NMR titration studies 

1H-NMR spectra were recorded to understand binding mechanism, with the addition 

of 1 eq. of AcO – ions to receptor S3R1, S3R2 and S3R3. The disappearance of 

proton signal corresponding to -NH functionality is a clear indication of deprotonation 

involved in the anion binding mechanism. The 1H-NMR spectra are represented in 

Fig. 5.48, Fig. 5.49 and Fig. 5.50 respectively. 

 

Fig. 5.48 1H NMR titration spectrum of receptor S3R1 with the addition of TBAAcO 
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Fig. 5.49 1H NMR titration spectrum of receptor S3R2 with the addition of TBAAcO 

 

Fig. 5.50 1H NMR titration spectrum of receptor S3R3 with the addition of TBAAcO 
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5.3.6 DFT Studies  

The geometrical and electronic properties of the molecules were performed 

using Gaussian 09 package, in order to study the structure–property relationship. 

Singlet ground state optimization of the geometry was achieved by means of the 

B3LYP with the 6-311++G (d, p) basis set and electronic orbitals were visualized 

using Avogadro software. The effect of solvent on the energy parameters of the 

molecules was incorporated by self-consistent reaction field using conductor 

polarizable continuum model (SCRF-CPCM). Vertical transition energies up to first 

10 singlet excited states and molar extinction coefficients of the entire series in 

solvent phase was estimated.  
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Fig. 5.51 Molecular orbitals of receptors S3R1, S3R2 and S3R3 and receptor-anion 

complex with their energy levels at 6-31+G (d,p) 

Ground state optimized geometry of the series shows that the bare receptors of 

the series possess no dihedral angle. Receptor S3R2 and S3R3 upon binding with F– 

ion lose their planarity and exhibits a steric hindrance in their structure with a dihedral 

angle of 460 and 60 respectively, while S3R1 doesn’t show any steric hindrance in 

their structure upon binding. Fig. 5.51 shows the spatial orbital distributions of the 

entire molecular series of bare receptors and ion bound receptors. Receptor S3R1, due 

to its structural planarity have their HOMO and LUMO spread across the entire 

molecular network and remains the same upon binding with the F– ion. S3R2, prior to 

binding with ion exhibits a good structural planarity having their entire HOMO-

LUMO distributed on the structure, and upon binding with F– ion possess a dihedral 

angle which in turn delocalizes HOMO completely on the entire structure and LUMO 

localized. HOMO levels of receptor S3R3 is delocalized on the entire network and 

LUMO localized only on the nitro phenyl moiety, the distribution of HOMO-LUMO 

of S3R3 remains the same upon binding with the F– ion. The energy value of HOMO 

and LUMO of the free receptors alter upon binding with the ion. Receptor S3R1 

possess a HOMO-LUMO value of -6.6 eV, - 3.65 eV with a bandgap value of 2.74 

eV, upon binding with F– ion, the bandgap is lowered to 2.55 eV, with HOMO being -

6.49 and LUMO being -3.68 eV. Receptor S3R2 and S3R3 show a change in bandgap 

with a value of 2.55 eV and 2.86 eV upon binding with F– ion respectively and their 

corresponding HOMO and LUMO values are tabulated in Table 5.2. 
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Table 5.2. Energy distribution of receptor and receptor-anion complex 

Receptor HOMO (eV) LUMO (eV) Eg (eV) 

S3R1 -6.60 -3.65 2.95 

S3R1+F - -6.49 -3.68 2.81 

S3R2 -6.11 -3.41 2.70 

S3R2+F - -5.87 -3.32 2.55 

S3R3 -6.19 -3.31 2.88 

S3R3+F - -5.84 -2.98 2.86 

 

TD-DFT calculations were performed on the receptors to predict excited state 

transition and the nature of absorption bands in DMSO as a solvent. Receptors and 

receptor-anion complex were optimized in DMSO and then their excited state 

properties were computed. Singlet excited state transition of the receptors and the 

complex for entire series is as given in the Fig. 5.52, 5.53 and 5.54. The correlation 

between the experimental and theoretical results further confirm the anion binding 

event. 

 

Fig. 5.52 DFT derived UV-Vis spectra of the S3R1 and S3R1+ F− complex 
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Fig. 5.53 DFT derived UV-Vis spectra of the S3R2 and S3R2+ F− complex 

 

Fig. 5.54 DFT derived UV-Vis spectra of the S3R3 and S3R3+ F− complex 
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5.3.7 Binding mechanism 

The proposed binding mechanism of receptors S3R1, S3R2 and S3R3 is shown in 

Scheme 5.2. 

 

Scheme 5.2 Proposed binding mechanism of receptors S3R1, S3R2 and S3R3 with 

anions 

5.3.8 Biological applications 

Selective detection of acetate by the receptors drives in the need to investigate the 

application of receptor at physiological level. E. coli BL21 produces acetate by 

consuming glucose. The receptor-acetate complex produced fluorescence at excitation 

wavelength of 365 nm. Fig. 5.55 shows the fluorescence observed due to binding of 

acetate receptor with acetate produced in each well. The amount of acetate produced 

increased with E.coli BL21 growth, which is clearly visible under fluorescent light. 

Blank sample containing only LB medium did not show any fluorescence. High levels 

of acetate-receptor fluorescence have been observed on a glass plate. This shows 

excellent specificity to acetate ions.      



  
Chapter 5

_____________________________________________________________________

Dept. of Chemistry, NITK                                          197 

 

A 

 

B 

Fig. 5.55 (A) Fluorescence observed using E.coli BL21 at different time intervals of the 
growth in LB Agar plate, (B) fluorescence observed by acetic acid, water and LB agar,
respectively, on a glass plate 

5.4 CONCLUSIONS 

Three new furan derivatives S3R1, S3R2 and S3R3 have been synthesized and their 

ion sensing abilities have been investigated by spectroscopic techniques. Visually 

observable color change of receptor S3R1, S3R2 and S3R3 towards AcO ‒ ions in 

buffer media reflects the selective sensing ability. 1H NMR titration studies confirms 

the deprotonation process involved in the binding mechanism. Higher order of the 

binding constant reflects the strength of receptor-anion complex. Lower detection 

limit value of 0.78 ppm, 0.58 ppm and 0.97 ppm of receptor S3R1, S3R2 and S3R3

towards AcO ‒ ions has been achieved. Receptor S3R1 could successfully detect the 

acetate ion produced in E. coli BL21 by exhibiting a visible fluorescence implying its 

utility in biological applications.
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Abstract 

In this chapter, design, syntheses and characterization of three organic receptors 

have been described. The applicability of the receptors in the colorimetric detection of 

anions have been discussed in detail through UV-Vis spectrophotometric, 

spectrofluorometric, 1H-NMR titration and electrochemical studies. The binding 

mechanism of the receptor towards active anion has been included. DNA binding studies, 

detection of cyanide ion in potato sprouts in support of the biological applications and 

detection of phosphate in detergents as an environmental application have been 

discussed.    

6.1 INTRODUCTION 

Biological process is primarily known to involve an effective interplay of 

chemical and biochemical mechanisms. Over recent decades, design of diverse receptors 

has been one of the most pressing challenges for researchers. The prime focus of 

researchers all over is on catering the needs of the society by monitoring the 

environmental pollution, ensuring food safety, improvising disease surveillance; 

eventually heading towards increasing care on human health (Carter et al. 2014; Grate et 

al. 2008; Khakh and North 2006; Nolan and Lippard 2008; Qiu 2013). Deoxyribonucleic 

acid (DNA), being a reservoir of genetic instructions have attracted great attention among 

molecular biologists and biochemists in a way towards development of DNA molecular 

probes and new therapeutic reagents (Maiti and Kumar 2007; Mrksich and Dervan 1993). 

Anticancer drugs, comprised of small organic molecules lead to significant changes in 

DNA, as a primary intracellular target leading to DNA damage in cancer cells, blocking 

the cell division and eventually leading to cell death (Cheng et al. 2006; Hecht 2000; 

Wang et al. 2013; Zuber et al. 1998). The unique properties of Schiff base derived 

receptors such as anti-carcinogenic, anti-bacterial and anti-fungal nature reflect them as 

potent DNA repair agents (Vijayalakshmi et al. 2006). The three most probable 

interactions of receptors include (a) non-covalent interactions such as intercalative 
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binding between DNA base pairs and ligand, (b) groove binding and (c) static electronic 

effects (Hurley 2002).  

A monomeric unit of DNA is comprised of nucleobases, deoxyribose and a 

phosphate group. With this in view, the design strategy of Schiff base receptor is of 

paramount importance in order to dictate the binding of desired anionic species of 

interest. The intercalative binding of DNA with receptor would be tedious if there exists a 

higher binding affinity towards phosphate group present on the backbone of DNA in 

comparison with the nucleobases. Subsequently, the active nature of receptor towards 

phosphate reflects on the ability to detect arsenic ion owing to the similarity between 

arsenic and phosphorous in terms of similar atomic radii, the same number of valence 

electrons, and nearly identical electronegativity and orbital configurations. The resultant 

similarity is known to be translated to other molecules being formed such as phosphate 

and arsenate. Extensive study by researchers posits the fact that similarity between the 

two makes arsenic more dangerous; finding its implication in many homicides and deaths 

over past 2000 years (Hughes 2002; Moore et al. 1983; Wolfe-Simon et al. 2011). 

Replication of DNA is an inherent phenomenon within each living cell. The 

presence of cyanide is known to inhibit the replication process by reducing the 

NAD/NADH ratio resulting in substantial number of single stranded interruptions. 

Higher concentration of cyanide results in depletion of intracellular pool of ATP via 

inhibition of cytochrome oxidase preventing regeneration of ATP (A Klein and 

Bonhoeffer 1972; Wickner and Kornberg 1973). 

Prompted by the above facts, in quest of artificial receptors active for biologically 

important anions, a new series of thiadiazole based receptors S4R1, S4R2 and S4R3 

possessing –SH functionality as an anion binding site have been synthesized. Further, the 

chromogenic signaling output in anion binding event could be fine-tuned by introducing 

substituent effect on the aromatic ring. Structurally, S4R1 possesses – NO2 functionality 

on the aromatic ring at position para to imine substituted thiadiazole group. S4R2 
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comprises of –SH (thiol) functionality and – NO2 functionality at position ortho to the 

imine functionality. S4R3 is devoid of any ancillary substituent on it. In the present 

study, we have reasoned the utility of receptor S4R1 to be apt as a colorimetric sensor for 

fluoride (F‒), acetate (AcO ‒), phosphate (H2PO4 
‒), cyanide (CN‒) and arsenite (AsO2

‒) 

ions. The anion receptive nature of S4R1 has been extended to DNA binding studies, 

cyanogenic glycoside detection in potato sprouts in support of the biological applications 

and detection of phosphate in detergents as an environmental application.  

6.2 EXPERIMENTAL SECTION 

6.2.1 Materials and Methods 

All chemicals and analytical grade reagents were used as bought without any further 

purification unless otherwise mentioned. Thin layer chromatography was performed 

using Merck TLC Silica Gel F254
 plates. Melting point was measured on Stuart SMP3 

melting-point apparatus in open capillaries. Infrared spectra were recorded on Bruker 

alpha FTIR spectrometer. 1H NMR was performed using Bruker-400 AV-400 

spectrometer. Chemical shift values are reported in ppm scale (in DMSO-d6 with 

Tetramethylsilane as internal standard). Mass spectra was recorded through DART-MS, 

JMS- T100LC, Accu TOF Mass Spectrometer. UV-Vis experiments were carried out 

using Jasco V-670 spectrophotometer in standard 3.0 mL quartz cuvette having 1 cm path 

length. Electrochemical studies were performed using Ivium (vertex) Electrochemical 

workstation using 50 mV scan rate, potential window −2.0 V to +2.0 V. 

6.2.2 Synthesis of receptor S4R1 

 (E)-5-((4-nitrobenzylidene)amino)-1,3,4-thiadiazole-2-thiol  

4-nitrobenzaldehyde (0.15 g, 0.99 mmol) and 5-amino-1,3,4-thiadiazole-2-thiol (0.132 g, 

0.99 mmol) were refluxed in 5 ml ethanol at 70 oC for 12 h in the presence of drop of 

acetic acid as catalyst. The formation of the product was confirmed through TLC by the 

generation of single spot indicative of the disappearance of starting materials. The 
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reaction mixture was cooled to room temperature, filtered through filter paper and 

washed with ethanol to obtain pure product. 

 

Scheme 6.1 Synthesis of receptor S4R1 

Yield: 87 %, melting point: 230 0C, 1H NMR (DMSO- d6, 400 MHz, ppm): δ 8.18-8.16 

(dd, 2H), 8.44-8.42 (dd, 2H), 8.77 (s, imine proton), 13.19 (s, SH). FTIR (KBr) (cm-1): 

3258 (SH), 3067 (Ar-CH), 1633 (CH=N), 1339 (NO2). Mass (ESI): m/z Calculated: 

265.99 Obtained: 265.35. 

6.2.3 Synthesis of receptor S4R2 

(E)-5-((2-nitrobenzylidene)amino)-1,3,4-thiadiazole-2-thiol (S4R2) 

2-nitrobenzaldehyde (0.15 g, 0.99 mmol) and 5-amino-1,3,4-thiadiazole-2-thiol (0.132 g, 

0.99 mmol) were refluxed in 5 ml ethanol at 70 oC for 12 h in the presence of  acetic acid 

as catalyst. The formation of the product was confirmed through TLC by the generation 

of single spot indicative of the disappearance of starting materials. The reaction mixture 

was cooled to room temperature, filtered through filter paper and washed with ethanol to 

obtain pure product. 

 

Scheme 6.2 Synthesis of receptor S4R2 
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Yield: 76%, melting point: 233 0C, 1H NMR (DMSO- d6, 400 MHz, ppm): δ 7.10 (dd, 

2H), 7.78-7.90 (ddd, 2H), 8.15 (s, SH), 8.99 (s, imine proton), 13.18 (s, SH). FTIR (KBr) 

(cm-1): 3234 (SH), 3083 (Ar-CH), 1603 (CH=N), 1348 (NO2). Mass (ESI): m/z 

Calculated: 265.99 Obtained: 265.334. 

6.2.4 Synthesis of receptor S4R3  

(E)-5-(benzylideneamino)-1,3,4-thiadiazole-2-thiol (S4R3) 

Benzaldehyde (0.15 g, 1.41 mmol) and 5-amino-1,3,4-thiadiazole-2-thiol (0.132 g, 1.41 

mmol) were refluxed in 5 ml ethanol at 70 oC for 5 h in the presence of acetic acid as 

catalyst. The formation of the product was confirmed through TLC by the generation of 

single spot indicative of the disappearance of starting materials. The reaction mixture was 

cooled to room temperature, filtered through filter paper and washed with ethanol to 

obtain pure product. 

 

Scheme 6.3 Synthesis of receptor S4R3 

Yield: 74 %, melting point: 210 0C, 1H NMR (DMSO- d6, 400 MHz, ppm): δ 7.12 (dd, 

2H), 7.46-7.52 (ddd, 2H), 7.97 (s, SH), 8.71 (s, imine proton), 13.20 (s, SH). FTIR (KBr) 

(cm-1): 3240 (SH), 3031 (Ar-CH), 1603 (CH=N), 1322 (NO2). Mass (ESI): m/z 

Calculated: 221.01 Obtained: 244.129 (M+Ag)+ 
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6.2.5 Characterization data of receptors 

 

Fig. 6.1 FT-IR spectrum of receptor S4R1 

 

Fig. 6.2 FT-IR spectrum of receptor S4R2 
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Fig. 6.3 FT-IR spectrum of receptor S4R3 

 

Fig. 6.4 1H NMR spectrum of receptor S4R1  
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Fig. 6.5 1HNMR spectrum of receptor S4R2 

 

Fig. 6.6 1HNMR spectrum of receptor S4R3 
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Fig. 6.7 ESI-MS spectrum of receptor S4R1 

 

Fig. 6.8 ESI-MS spectrum of receptor S4R2 
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Fig. 6.9 ESI-MS spectrum of receptor S4R3 

6.3 RESULTS AND DISCUSSION 

6.3.1 Colorimetric detection of anions 

Primarily, to 2 mL of test solution of S4R1 in ACN of concentration 10 ‒5 M, 1 

eq. of tetrabutylammonium salts of anions such as F –, Cl –, Br –, I –, NO3 –, HSO4 –, 

H2PO4 –, AcO – and CN ‒ ions (10‒3 M in ACN) were added. S4R1 exhibited visual 

colorimetric response from colorless to pink color towards F –, H2PO4 –, AcO – and CN ‒ 

ions (Fig. 6.10) and the corresponding UV-Vis spectra is shown in Fig. 6.11. Receptor 

S4R2 exhibited mild color change towards AcO – ion rendering other anions inactive, 

whereas S4R3 was colorimetrically inactive towards test anions even with the addition of 

10 eq. of anions UV-Vis spectra have been recorded in support of the observed color 

changes (Fig. 6.12 and Fig. 6.13). 
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Fig. 6.10 Color change of the receptors S4R1, S4R2 and S4R3 (10 
‒5 

M in ACN) with 

the addition of 1 eq. of TBA salts of anions (10
‒3 

M in ACN) 

 

Fig. 6.11 UV-visible absorption spectra of S4R1 (10
‒5 

M in ACN) upon addition of 1 

equiv. of various anions as TBA salts (10
‒3 

M in ACN) 
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Fig. 6.12 UV-visible absorption spectra of S4R2 (10
‒5 

M in ACN)) upon addition of 10 

equiv. of various anions as TBA salts (10
‒3 

M in ACN) 

 

Fig. 6.13 UV-visible absorption spectra of S4R3 (10
‒5 

M in ACN) upon addition of 10 

equiv. of various anions as TBA salts (10
‒3 

M in ACN) 
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6.3.2 UV-Vis titration studies 

Colorimetric response of receptors for anions was performed by UV-Vis titration 

experiments. Receptor concentration was set to 10 ‒5 M to arrive at a lowest possible 

colorimetric detection limit. Titration experiments were performed with the incremental 

addition of 0.1 eq. of F –, H2PO4 –, AcO – and CN ‒ ions. Free receptor S4R1 exhibited 

absorption bands at 396 nm and 506 nm, corresponding to the electronic transitions of the 

thiol functionality and localized transitions on the azomethine groups respectively. With 

the incremental addition of 0.1 eq. of F –, AcO – and CN ‒ ions, intensity of band centered 

at 506 nm increased with the concomitant appearance of unclear isobestic point at 430 

nm (Fig. 6.14). The formation of higher order complexes could be attributed to the 

existence of unclear isobestic point in the titration studies (Sahu et al. 2016). B-H plot 

analysis revealed a 1:1 ratio for S4R1-F –, S4R1-AcO – and S4R1-CN ‒ and S4R1-H2PO4 
– complexes (Fig. 6.15). Titration of receptor S4R2 with AcO – ions did not exhibit 

significant red shift (Fig. 6.16). Table 6.1 represents binding constant for receptor S4R1 

with various active anions.  

Table 6.1 Binding constant, binding ratio and detection limit values of receptor S4R1 

Receptor Anion Binding 
constant (M-1) 

Binding 
ratio 

Detection limit 
(ppm) 

 
 
 
S4R1 

F– (TBAF) 8.87  103 1:1 0.39 
AcO– (TBAAcO) 0.086  103 1:1 0.15 

H2PO4 
– (TBAH2PO4) 0.986  103 1:1 0.84 

CN– (TBACN) 1.003  103 1:1 0.26 
F– (NaF) 0.863  103 1:1 0.06 

AcO– (NaAcO) 0.949 × 103 1:1 0.08 
AsO2 

– (NaAsO2) 7.20    × 104 1:1 0.03 
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Fig. 6.14 UV-Vis titration spectra of receptor S4R1 (10 ‒5 M in ACN) with the 

incremental addition of TBA salts of anions (10 ‒3 M in ACN); Inset plot representing the 

variation of absorbance with concentration of: (a) Receptor S4R1+ TBAF, (b) Receptor 

S4R1 + TBAAcO; (c) Receptor S4R1 + TBAH2PO4; (d) Receptor S4R1+ TBACN 
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Fig. 6.15 B-H plot for 1:1 complex (a) Receptor S4R1: TBAF, (b) Receptor S4R1: 
TBAOAc; (c) Receptor S4R1: TBAH2PO4; (d) Receptor S4R1: TBACN 

 

Fig. 6.16 UV-Vis titration spectra of receptor S4R2 (10 -5 M in ACN) with the 
incremental addition of TBAAcO (10 -3 M in ACN) 
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6.3.3 Fluorescence studies 

Fluorescence behavior of receptors S4R1, S4R2 and S4R3 were analyzed and 

fluorescence spectra were recorded. S4R1, S4R2 and S4R3 exhibited similar 

fluorescence titration spectra in the region of 275-450 nm, although the max was at 397 

for S4R1, 318 for S4R2 and S4R3 respectively. The fluorescence intensity of R1 was ten 

times higher with the incremental addition of TBACN and TBAH2PO4 in comparison 

with the TBAF and TBAOAc. Receptors S4R2 and S4R3 exhibited higher emission 

intensity with TBAOAc in comparison with TBAF and did not exhibit fluorometric 

response in the presence of TBACN and TBAH2PO4. Fluorescence spectra are depicted 

in Fig. 6.17, 6.18, 6.19, 6.20, 6.21, 6.22, 6.23 and 6.24.  

 

Fig. 6.17 Fluorescence spectra of receptor S4R1(10‒5 M in ACN) with the incremental 
addition of TBAF(10‒3 M in ACN)  

 

Fig. 6.18 Fluorescence spectra of receptor S4R1(10‒5 M in ACN) with the incremental 
addition of TBAAcO(10‒3 M in ACN)  
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Fig. 6.19 Fluorescence spectra of receptor S4R1 (10‒5 M in ACN) with the incremental 
addition of TBACN(10‒3 M in ACN)  

 

 

Fig. 6.20 Fluorescence spectra of receptor S4R1 (10‒5 M in ACN) with the incremental 
addition of TBAH2PO4(10‒3 M in ACN)  
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Fig. 6.21 Fluorescence spectra of receptor S4R2(10‒5 M in ACN) with the incremental 
addition of TBAF (10‒3 M in ACN)  

 

 

Fig. 6.22 Fluorescence spectra of receptor S4R2 (10‒5 M in ACN) with the incremental 
addition of TBAAcO (10‒3 M in ACN)  
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Fig. 6.23 Fluorescence spectra of receptor S4R3(10‒5 M in ACN) with the incremental 
addition of TBAF (10‒3 M in ACN)  

 

 

Fig. 6.24 Fluorescence spectra of receptor S4R3 (10‒5 M in ACN) with the incremental 
addition of TBAAcO (10‒3 M in ACN)  

6.3.4 pH dependency studies 

Selectivity of receptor S4R1 in Tris HCl buffer was investigated using UV-

Visible spectrometry.  10‒4 M ACN solution of receptor S4R1: Tris HCl (8:2, v/v) 

exhibited pale yellow color. Addition of 1 eq. of TBAF, TBAOAc, TBA H2PO4 and 
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TBACN to S3R1, color changed from pale yellow to pale orange with TBAAcO and 

TBAH2PO4 respectively (Fig. 6.25). TBAF and TBACN exhibited minute color change 

from pale yellow to dark yellow.  

 

 

Fig. 6.25 Color change of receptor S4R1 (ACN: Tris HCl, 8:2, v/v) with the addition of 

TBAF, TBAAcO, TBAH2PO4 and TBACN 

6.3.5 Binding studies in organo-aqueous medium  

Binding studies of S4R1 as 10
 ‒ 5 

M in ACN performed with sodium salt of anions 

such as F 
–
 and AcO 

–
 (10

 ‒ 3 
M in distilled H2O), revealed similar titration profile as 

observed with addition of TBA salts (Fig. 6.26 and 6.27). B-H plot for S4R1-NaF and 

S4R1-NaAcO complex revealed 1:1 binding ratio as shown in Fig. 6.28 and 6.29.  

 

 

Fig. 6.26 UV-Vis titration spectra of receptor S4R1 (10
–5 

M in ACN) with the 

incremental addition of NaF (10
–3 

M in distilled water); Inset plot representing the 

binding isotherm at 455 nm 
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Fig. 6.27 UV-Vis titration spectra of receptor S4R1 (10–5 M in ACN) with the 
incremental addition of NaAcO (10–3 M in distilled water); Inset plot representing the 
variation of absorbance with the increasing concentration of NaAcO at 457 nm 

 

Fig. 6.28 B-H plot for 1:1 complex of S4R1-NaF  
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Fig. 6.29 B-H plot for 1:1 complex of S4R1-NaAcO 

Receptor S4R1, by virtue of the colorimetric response towards H2PO4
‒ ions, is 

expected to exhibit activity towards arsenic ion. To the free receptor S4R1 solution, 1.0 

equiv. of NaAsO2 was added. With the incrimental addition of 0.1 eq. of NaAsO2, the 

color of the receptor S4R1 changed from colorless to pink (Fig. 6.30 (a)). A gradual 

increment in the absorbance band centered at 500 nm with the incremental addition of 

NaAsO2 solution was obserbved  with a clear isobestic point at 435 nm (Fig. 6.30(b)). 

This is due to interaction of receptor and metal ion yeilding a complex. Further, The B-H 

plot revealed 1:1 binding ration of receptor and AsO2
‒ complex (Fig. 6.31). Receptors 

S4R2 and S4R3 were inactive towards NaAsO2. The calibration curve of concentration 

of AsO2 
‒ (range from 0.0 M  to 7.0  10-6 M) vs absorbance of S4R1 + AsO2 ‒ complex 

at 500 nm is shown in Fig. 6.32. 
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(a)   (b) 

Fig. 6.30 (a) Color change of receptor S4R1 with the addition of 1 eq. of NaAsO2; (b) 

UV-Vis titration spectra of receptor S4R1 (10
–5 

M in ACN) with the incremental addition

of NaAsO2 (10
–3 

M in distilled water); Inset plot representing the variation of absorbance

with concentration of NaAsO2 at 500 nm 

Fig. 6.31 B-H plot for 1:1 complex of S4R1-NaAsO2 
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Fig. 6.32 Linear calibration curve between concentration of AsO2

– (from 0.0 M  to 7.0  

10–6 M) and absorbance of receptor S4R1 + AsO 2
–  complex, monitored wavelength at 

500 nm 

 

6.3.6 1H NMR titration studies 

1H-NMR spectra have been recorded to understand binding mechanism with the 

addition of 1 eq. of F –, H2PO4 –, AcO – ions to receptor S4R1. The disappearance of 

proton signal corresponding to thiol functionality is a clear indication of deprotonation in 

the anion binding mechanism (Fig. 6.33). At higher equivalence of anion, deprotonation 

overrules hydrogen bond interaction resulting in the color change in the presence of 

active anions (Hong et al. 2001). The aforementioned fact is confirmed by the addition of 

1 equiv. of TBAOH to solution of S4R1. In support of the 1HNMR spectra, the UV-Vis 

spectra revealed the diminution of the peak corresponding to the thiol functionality 

affirming the deprotonation process. 
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Fig. 6.33 1H-NMR spectra of receptor S4R1 with the addition of 1 equiv. of TBAF, 
TBAAcO and TBAH2PO4  

6.3.7 Electrochemical studies 

Combined effect of the higher selectivity of optical techniques, and higher 

sensitivity in electrochemical analysis drives in the need to examine electrochemical 

properties of receptor S4R1. Cyclic voltammogram of free receptor S4R1 exhibited an 

anodic peak at 0.225 V corresponding to the oxidation of thiol functionality. The addition 

of TBAF and TBAOAc did not induce any significant change in the oxidation peak. Yet 

with the addition of 0.5 eq. of TBAH2PO4 to S4R1, a cathodic peak appeared at -0.29 V 

corresponding to the reduction of NO2 functionality (Chhibber et al. 2015). The 

subsequent shift of oxidation and reduction peak to 0.35 V and -0.67 V respectively is a 
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clear indicative of the complex electrochemical process occurring during the interaction. 

The cyclic voltammogram is represented in Fig. 6.34. 

 

Fig. 6.34 Cyclic voltammogram of receptor S4R1 with the incremental addition of 

TBAH2PO4 

6.3.8 DNA binding studies 

Enthused by the above results, we investigated the DNA binding ability of the receptor 

S4R1. The presence of hydrogen bond acceptor moieties (N) in thiadiazole group is 

expected to promote intercalative binding of receptor with DNA. UV-Vis absorption 

spectroscopy is a felicitous tool to analyze the DNA binding ability of the molecules. 

Bacterial DNA was isolated from Serratia marcescens strain ATCC 13880 and used in 

the present study. Solution were prepared with Tris-HCl/NaCl buffer (pH 7.2) in order to 

envisage the binding affinity between DNA and receptor S4R1. DNA purity was 
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confirmed with UV-Vis absorbance of DNA in buffer at 260 nm and 280 nm, which 

yielded a ratio of 1.8-1.9. To 2 mL Tris HCl/NaCl buffer and receptor S4R1 (10 
‒ 5

 M in 

ACN: Tris HCl) taken in two individual cuvettes, one aliquot of DNA was added to each 

cuvettes in order to exclude the absorbance of DNA itself. Prior to recording the UV-Vis 

spectra, receptor-DNA solutions were incubated at room temperature for 5 min. The 

absorption peaks at 266 nm, 313 nm and ~400 nm could be assigned to the intraligand π – 

π
* 

transitions. The absorption spectrum of S4R1 in the presence of varying concentration 

of DNA is shown in Fig. 5.35. With the increasing concentration of DNA, hyperchromic 

shift of the band at 266 nm, hypochromic and blue shift of ~ 3nm at 313 nm and a red 

shift band was observed at 455 nm. The occurrence of hyperchromic shift is suggestive of 

partial intercalative or electrostatic interactions between the DNA and chromophore. The 

red shift indicates the decrease in the energy band gap leading to the binding of DNA.
 
 

 

Fig. 6.35 UV-Vis spectra with the addition of increasing amounts of DNA at room 

temperature in Tris–HCl/NaCl buffer (pH 7.2) to receptor S4R1 
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6.3.9 Detection of CN
‒ 

ions in sprouting potatoes
 

The colorimetric response of receptor S4R1 towards CN
‒ 

ions was extended 

further to explore the practical utility in day to day life. Inspired by the work of Wei and 

coworkers, we chose the sprouting potatoes as source of target anions (CN
‒ 

) owing to the 

presence of glycoalkaloids. The sprouting potato (150 g) was mashed initially and soaked 

in distilled water (200 mL) for 4 days. Upon appearance of muddy nature of the extract, 

the mixture was filtered, followed by elution with 100 mmol/L NaOH solution (100 mL) 

yielding the cyanide-containing solution. With the addition of cyanide-containing 

solution to S4R1, an instantaneous color change from colorless to pink was observed 

indicating the detection of CN
‒ 

ions by the receptor S4R1. The UV-Vis spectra were 

recorded which indicates the redshift of original band of receptor S4R1 with the addition 

of cyanide-containing solution. (Fig. 6.36) This proves the practical utility of receptor 

S4R1.  

 

Fig. 6.36 UV-Vis spectra with the addition of sprouted potato extract to receptor S4R1 

(10
 ‒5 

M in ACN) 
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6.3.10 Detection of H2PO4 ‒ ions in detergent sample 

Phosphates are commonly found in detergents and are known to enhance 

detergent’s performance by softening hard water and suspend dirt in water. Detergent-

loaded waste water are a threat to aquatic system as they reduce the surface tension of 

water, leading to damage of mucus layer on fish which usually protects them from 

bacteria and parasites. Owing to the colorimetric response of receptor S4R1 towards 

H2PO4 – ions, we were keen to analyze the phosphate present in commercially available 

detergent sample. Calibration curve of absorbance vs concentration of H2PO4 
‒ ions has 

been plotted to determine the amount of H2PO4 
‒ in detergent sample. (Fig. 6.37) Prior to 

the analysis, detergent sample was diluted 50 times and the value obtained from the 

standard plot was multiplied by an appropriate dilution factor to arrive at the actual 

concentration of H2PO4 
‒ in detergent sample. 

In order to justify the colorimetric detection of H2PO4 
‒ ions by receptor S4R1, a 

standard procedure was followed to detect H2PO4 
‒ ions in detergent sample by using 

molybdenum blue method. With the addition of sample to 2 mL of ammonium molybdate 

solution and 2 mL of 1-amino-2-naphthol-4-sulfonic acid, the appearance of blue color 

indicated the detection of H2PO4 
‒ ions. From the value of absorbance obtained at 690 nm, 

the concentration of H2PO4 
‒ ions in detergent sample was determined from the 

calibration curve. The amount of phosphate present in detergent sample was estimated to 

be 1153.8 ppm by receptor S4R1 and 1153.51 ppm by molybdenum blue method. The 

similar results obtained with receptor S4R1 and molybdenum blue method indicated the 

successful application of receptor S4R1 in the detection of H2PO4 
‒ ions in detergent 

sample.  
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Fig. 6.37 Calibration plot for the quantitative estimation of phosphate in detergent sample 

6.3.11 Calculation of binding constant from UV-Vis studies 

Binding constant has been calculated using Benesi-Hildebrand equation (Benesi and 
Hildebrand 1948) as given below; 

1/(A-A o) = 1/(A max –A o) + 1/K [X  ̶  ]n (Amax –Ao)   

where, A0, A, Amax are the absorption considered in the absence of anion, at an 

intermediate, and at a concentration of saturation. K is binding constant, [X¯] is 

concentration of anion and n is the stoichiometric ratio. 

6.3.12 Binding mechanism 

The presence of nitro functionality at position para to the imine linked thiol 

functionality is known to promote strong hydrogen bond interactions in the presence of 

anions. 1H-NMR studies of receptor S4R1 in the presence of anions confirms the 

deprotonation of thiol functionality during the anion binding process. The occurrence of 

1:1 binding ratio for S4R1-anion complex reveals the successful binding of anions to the 
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thiol functionality following a deprotonation event. The binding mechanism is shown in 

Scheme 6.4.  

Scheme 6.4 Proposed binding mechanism of receptor S4R1 with active anions 

6.4 CONCLUSIONS 

Detailed UV-Vis spectroscopic, fluorometric, 1H-NMR and cyclic voltammetric studies 

reveals the multi-anion binding behavior of receptor S4R1.  The role of thiol 

functionality as a potent binding site and nitro functionality as signaling unit are highly 

significant in inducing the colorimetric response in the presence of anions such as F –, 

H2PO4 –, AcO –, CN ‒ and AsO2
‒ ions of varying basicity. The detection of AsO2

‒ ions by 

receptor S4R1 confirms the analogous properties of phosphate and arsenite.  The lower 

detection limit of 0.03 ppm and a higher binding constant value of 7.2 x 104 M-1 for 

S4R1- AsO2
‒ complex indicates the practical utility. The practical investigation of S4R1 

in DNA binding reveals partial intercalative or electrostatic interactions between the 

DNA and chromophore. Concurrently, analysis of sprouted potato sample reveals 

successful detection of CN ‒ ions with a visual colorimetric response. The receptor S4R1 

was successful in quantification of phosphate in detergent sample. Overall, the receptor 

S4R1 serves as a multi anion chemosensor with its interesting real life practical 

applications. 
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Abstract 

In this chapter, design, synthesis and characterization of a new organic 

receptors have been described. The applicability of the receptors in the colorimetric 

and fluorometric detection of anions have been discussed in detail through UV-Vis 

spectrophotometric, spectrofluorometric and 1H-NMR titration studies. The binding 

mechanism of the receptor towards active anion has been included. The gelation 

property of the receptor and its response to anions has been evaluated. 

 
7.1 INTRODUCTION 

Multi-stimuli responsive supramolecular gels have emerged into a well-

recognized class of “smart” materials (Ren et al. 2014; Steed 2011; Foster et al. 

2010). Supramolecular gels have shown promising applications in tissue engineering, 

microfluidic devices, drug delivery, sensors, optoelectronic devices, smart films, bio-

adhesion mediators and actuators etc. (Segarra-Maset et al. 2013; Kuksenok et al. 

2013). Non-covalent interactions such as multiple hydrogen bonding, π-π* 

interactions, metal–organic coordination, hydrophobic interactions, and Vander Waals 

forces are the driving force leading to gels assembled from low molecular weight 

supramolecular gelators (Noro et al. 2013; Wang et al. 2014; Datta and Bhattacharya 

2011; Yan et al. 2012; Rajamalli et al. 2014). Stimuli responsive supramolecular gels 

which respond to external environmental stimuli, such as heat, (Rao and Sun 2013) 

cations/anions (Nebot et al. 2014) and oxidative/reductive reactions (Sun et al. 2014) 

have garnered more attention for the dynamic and reversible nature of non-covalent 

interactions.  

The length of the alkyl chain is known to have great impact as it directly 

influences the vander Waals interaction in gel formation. The reports of organogels 

which exhibit selective response towards F‒ ion is limited. Owing to the multiple 

interactions between gelators and different anions, the utilization of urea and amide 

group as recognition units have been a quest.  Keeping this in view, a new 

naphthalene derivative, possessing –OH as anion binding site, covalently linked to a 
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long alkyl chain has been synthesized aiming towards the selective detection of 

anions.   

7.2 EXPERIMENTAL SECTION 

7.2.1 Materials and methods 

All the chemicals used in the present study were procured from Sigma-

Aldrich, Alfa Aesar or Spectrochem and were used as received without further 

purification. All the solvents were purchased from SD Fine, India, were of HPLC 

grade and used without further distillation.  

Melting point was measured on Stuart SMP3 melting-point apparatus in open 

capillaries. Infrared spectra were recorded on Bruker alpha FTIR spectrometer. 

UV/Vis spectroscopy was performed with analytik jena Specord S600 spectrometer in 

standard 3.0 mL quartz cell with 1cm path length. The 1H-NMR spectra were 

recorded on Bruker Ascend (400 MHz) instrument using TMS as internal reference 

and DMSO-d6 as solvent. 13C-NMR spectra were recorded on Bruker 

Ascend(100MHz) instrument using TMS as internal reference and DMSO-d6 as 

solvent. Resonance multiplicities are described as s (singlet), d (doublet), t (triplet) 

and m (multiplet). ESI-MS was recorded on Waters UPLC-TQD Mass spectrometer. 

7.2.2 Synthesis of receptor S5R1 

 (E)-1-((hexadecylimino)methyl)naphthalen-2-ol  

2-hydroxynaphthaldehyde (0.178 g, 0.414 mmol) and hexadecylamine (0.25 g, 0.412 

mmol) were stirred in 10 ml ethanol at room temperature for 12 h in the presence of 

drop of acetic acid as catalyst. The reaction mixture filtered through filter paper and 

washed with ethanol to obtain pure product. The formation of the product was 

confirmed through TLC by the generation of single spot indicative of the 

disappearance of starting materials. (Scheme 7.1) 
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Scheme 7.1 Synthesis of receptor S5R1 

Yield: 76 %, melting point: 210 0C, 1H NMR (DMSO- d6, 400 MHz, ppm): δ 14.13 

(td; J= 2.6 (2), 1.5; 1H), 9.1 (m; CH=N), 8.06 (d; J=8.6; 1H), 7.71 (d; J=9.3; 2H), 

7.41 (m; 1H), 7.18 (d; J=7.8, 1H), 6.7 (d; J=9.3; 1H), 3.64 (m; 2H), 1.64 (m; 2H), 1.27 

(m; 26H), 0.85 (m; 3H). 13CNMR (DMSO- d6, 100 MHz, ppm): δ 178.07, 159.42, 

137.46, 134.82, 129.30, 128.28, 126.14, 125.55, 122.49, 118.87, 105.99, 51.00, 40.62, 

40.41, 40.21, 40.00, 39.79, 39.58, 39.37, 31.75, 30.61, 29.48, 29.38, 29.16, 28.99, 

26.52. FTIR (KBr) (cm-1): 3526 (OH), 2913 (Ar-CH), 1631 (CH=N). ESI-MS 

Calculated: 395.63, Obtained: 396.5 (M+H+). 
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7.2.3 Characterization data of receptor  

 

Fig. 7.1 FT-IR spectrum of receptor S5R1 

 

Fig. 7.2 (a) 1H-NMR spectrum of receptor S5R1 
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Fig. 7.2 (b) 13C NMR spectrum of receptor S5R1 

 

 

Fig. 7.3 ESI-MS spectrum of receptor S5R1 
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7.3 RESULTS AND DISCUSSION 

7.3.1 Complexation studies 

7.3.1.1 UV-Vis and Fluorescence studies 

The anion binding ability of receptor S5R1 was evaluated in DMSO (10 ‒5 M) using 

the anions as their tetrabutylammonium salts (F –, Cl –, Br –, I –, NO3 –, HSO4 –, H2PO4 
– and AcO – ions as 10‒2 M in DMSO). Receptor S5R1 exhibited a selective 

colorimetric response towards F ‒ ion exhibiting a color change from colorless to pale 

yellow (Fig. 7.4).  

 

Fig. 7.4 Colour change of the receptors S5R1 (10–4 M in DMSO) with the addition of 

2 equiv. of TBA salts of anions (10–2 M in DMSO) 

The UV-Vis spectra of receptor S5R1 exhibited bands centered at 306 nm, 401 nm 

and 420 nm corresponding to the transitions between the π orbitals localized on the 

azomethine group (C=N) and aromatic π electron transitions corresponding to the 

naphthalene moiety (Fig. 7.5). 



 
 

Chapter 7 
_____________________________________________________________________ 

___________________________________________________________________________________	
Dept. of Chemistry, NITK                                        237  
	
	
	

 

Fig. 7.5 UV-Vis absorption spectra of S5R1 (1x10―5M in DMSO) upon addition of 2 

equiv. of various anions as TBA salts (10–2 M in DMSO) 

 When the DMSO solution of S5R1 was investigated under fluorescent light, it 

was found to be non-fluorescent in the absence of F‒ ion. With the addition of 2 equiv. 

of TBA salts of anions to S5R1, a strong blue fluorescence emission was observed in 

the presence of F‒ ion. (Fig. 7.6). When DMSO solution of S5R1 excited at 420 nm, it 

did not exhibit any emission proving its non-emissive nature. The addition of F ‒ ion 

resulted in an emission maximum at 475 nm whereas addition of other test anions 

could not induce similar response (Fig. 7.7). Receptor S5R1 is non-emissive in 

DMSO owing to the photoelectron transfer (PET) process occurring between 

naphthalene and the hydroxyl moiety. In the presence of F ‒ ion, hydroxyl moiety 

partakes in hydrogen bonding with F‒ ion and hinders the PET process. Consequently, 

strong fluorescent response of naphthalene is restored and receptor S5R1 acts as turn 

on sensor for fluoride.(Tanaka et al. 2004) 
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Fig. 7.6 Fluorometric response of the receptors S5R1 (1x10–5 M in DMSO) with the 

addition of 2 equiv. of TBA salts of anions (10–2 M in DMSO) 

 

 

Fig. 7.7 Fluorescence spectra of S5R1 (1x10–5 M in DMSO) upon addition of 2 equiv. 

of various anions as TBA salts (10–2 M in DMSO) 

 To confirm the anion binding event, UV-Vis and fluorescence titration studies 

have been performed with the incremental addition of F – ions to receptor S5R1. The 

receptor solution was prepared in organic media, 1x10–5 M in DMSO and TBAF as 
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1x10–2 M in DMSO. In the UV-Vis titration studies, to a measured quantity of 

receptor, incremental amount of F ̶ (0.1 equiv.) was added each time until absorbance 

attained saturation. Mild bathochromic shift was observed with the emergence of new 

peak at 450 nm. The new peak at 450 nm could be assigned to the charge transfer 

interactions between the proton donor –OH functionality and the acceptor viz., F ̶ ion. 

The concomitant decrease in the absorption maxima at 306 nm depicts subsiding O-

H---N intramolecular charge transfer within the receptor moiety upon binding of F ̶ 

ion. The band centered at 401nm gradually diminished and band at 420 nm decreased 

in its intensity with the incremental addition of F ̶ ion. The presence of four well-

defined isobestic points at 299 nm, 321 nm, 334 nm and 426 nm indicate the receptor 

– anion complex formation process and the co-existence of complex equilibrium 

between the free receptor and the anion-receptor complex. Upon addition of 1.5 

equiv. of F ̶, the absorption spectra reached a plateau, remaining steady till 2.0 equiv. 

indicating the saturation point of the receptor (Fig. 7.8). From the B-H plot, the 

binding stoichiometry was found to be 1:1 for S5R1: F ̶ complex and 1:2 for 

deprotonated form of the complex (Fig. 7.9(a)). Binding stoichiometry has been 

verified using Job’s plot, which yielded 1:1 ratio for hydrogen bound R1: F ̶ complex 

and 1:2 ratio for deprotonated form (Fig. 7.9 (b)). The binding constant has been 

calculated using B-H equation considering 1:1 binding ratio and it was found to be of 

the order 5.9 × 105 M-1. Detection limit has been calculated and found to 0.8 ppm. 
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Fig. 7.8 UV-Vis titration spectra of receptor S5R1 (10‒5 M in DMSO) with the 

incremental addition of TBA salts of anions (10‒2 M in DMSO); Inset plot 

representing the plot of absorbance at 306 nm vs concentration of TBAF 

 

Fig. 7.9(a) B–H plot of 1/(A-A0) at 450 nm indicating 1:1 binding between S5R1 and 

F ̶   ion. Inset shows the B–H plot of 1/(A- A0) at 450 nm vs. 1/[F ]2 indicating 1:2 

binding between S5R1 and F ̶    ion. 
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Fig. 7.9 (b) Job’s plot for S5R1-TBAF complex  

In the fluorescence titration studies, with the incremental addition of F ̶ ions to 

receptor S5R1, a strong emission band appeared at 475 nm which increased in its 

intensity until the addition of 1.5 equiv. of F ̶ ions, beyond which it exhibited 

saturation as shown in Fig. 7.10. Emission could be being attributed to the 

complexation-induced formation of excimer owing to the presence of naphthalene 

moiety (Ghosh et al. 2016). 
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Fig. 7.10 Fluorescence spectra of receptor S5R1 (10‒5 M in DMSO) with the 

incremental addition of TBA salt of F– ion (10‒2 M in DMSO) 

 

To confirm the deprotonation of hydroxyl functionality of the receptor S5R1 

in the anion binding process, studies has been performed with the addition 2 equiv. of 

base, TBAOH (10 –2 M) to receptor S5R1. S5R1 exhibited similar color changes as 

that was observed with the addition of TBAF which confirms the deprotonation 

mechanism. The color change observed with the addition of OH‒ to S5R1 are 

presented in Fig. 7.11 and Fig. 7.12. The corresponding spectral data are shown in 

Fig. 7.13 and Fig. 7.14. The large turn on increase with the addition of 2 equiv. of OH ̶ 

could be assigned to the formation of neutral species upon deprotonation of the 

fluoride bound –OH group. The non-fluorescent nature of the complex formed by 

initial hydrogen bond interactions could be understood by fluorescence titration 

experiments. Until the addition of 0.5 equiv. of fluoride there was no much increase in 

the emission intensity, rather above 1 equiv. there has been substantial increase 
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indicative of deprotonation of the -OH group, confirming the fact that neutral form of 

the fluorophore is fluorescent in nature.  

 

 

Fig. 7.11 Color change of S5R1 with the addition of 2 equiv. of TBAOH 

 

Fig. 7.12 Fluorometric response of S5R1 with the addition of 2 equiv. of TBAOH 

 

 

Fig. 7.13 UV-Vis spectra of S5R1 with the addition of 2 equiv. of TBAOH 
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Fig. 7.14 PL spectra of S5R1 with the addition of 2 equiv. of TBAOH 

 

7.3.1.2 1H-NMR titration studies 

 The study has been further extended to monitor the binding of anions by the 

receptor through 1H-NMR titration in DMSO-d6 solvent. The 1H-NMR spectrum of 

R1 is characterized by the peaks for (a) –OH proton around δ 14.13 ppm, (b) imine 

proton at 9.1 ppm and aromatic protons at 6.7 – 8.06 ppm. With the addition of F ̶ 

ions, there was initially a hydrogen bond interaction with OH proton, followed by 

disappearance of the peak at 14.13 ppm indicating the deprotonation process involved 

in the anion binding event (Fig. 7.15). The reduction in the splitting pattern in the 

aromatic region indicates the hydrogen bond interaction followed by deprotonation of 

the OH proton involved in the anion binding process.  The appearance of new peak at 

𝛿 16.1 ppm (Fig. 7.15, inset) at higher equivalence of F ̶ ions correspond to the 

formation of HF2
–

 (hydrogen difluoride), which confirmed the deprotonation of OH 

proton.(Boiocchi et al. 2004) 
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Fig. 7.15 1H-NMR spectra of S5R1 with the incremental addition of TBAF. Inset: (a) 

absence of peak at 16.1 ppm in free receptor S5R1 and (b) peak corresponding to HF2 

observed with the addition of 2.0 equiv. of F–. 

 

7.3.2 Gelation studies 

 Owing to the presence of long alkyl chain as a prerequisite for multiple self-

assembly driving forces, such as π-π stacking, hydrogen bonds and Vander Waal 

forces, in the receptor, along with naphthalene moiety as a signaling scaffold, it was 

decided to explore the structure of S5R1 in gel chemistry. The gelation ability of 

S5R1 was scrutinized in fifteen different types of organic solvents through the 

standard heating-and-cooling method (Fig. 7.16) and the results are shown in Table 

7.1. Among these solvents, S5R1 formed stable and strong supramolecular organic 

gel in DMSO, DMF and ACN. Moreover, sol-gel transition was very rapid in DMSO 

wherein gelation occurred within a minute after the heating process. It could be 

assumed that formation of cross-linked network through hydrogen bonding between –

OH functionality and imine nitrogen aiding the solvent trapping. The presence of 𝜋 

stacking interactions exerted by the naphthalene ring is expected to stabilize the 

hydrogen bonded network (Ghosh et al. 2016). 
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Fig. 7.16 Photographs showing the gelation behavior of S5R1 in selected solvents (1) 
DMSO, (2) DMF, (3) Cyclohexane, (4) Chloroform, (5) Methanol, (6) ACN, (7) n-
Hexane, (8) Diethyether, (9) DCM, (10) THF, (11) DMF: H2O (1:2, v/v), (12) 
DMSO: H2O (1:2, v/v), (13) Propyl alcohol, (14) Ethanol and (15) Dioxane 

The UV-Vis spectrum revealed broad absorbance bands indicating the presence of 

intermolecular interactions through hydrogen bond in the gel state. (Fig. 7.17) 

Fluorescence emission was not observed in gel state as shown in Fig. 7.18 which 

could be probably associated with the aggregation-caused quenching (ACQ) 

phenomena that caused non-radiative decay of the fluorophore (Hong et al. 2011).  

Table 7.1 Gelation properties of S5R1 

 

 

 

Solvent State 

DMSO G (26 mg/mL) 
DMF G (26 mg/mL) 

Cyclohexane S 
Chloroform S 
Methanol S 

Acetonitrile G (26 mg/mL) 
n-Hexane S 

Diethyl ether S 
DCM S 
THF S 

DMF : H2O (1:2 , v/v) I 
DMSO: H2O (1:2 , v/v) I 

Propyl alcohol S 
Ethanol S 
Dioxane S 

S = solution; G = gel (minimum gelatination concentration); I = insoluble 
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Fig. 7.17 Comparison of UV–Vis spectra of S5R1 in the solution and gel state 

 

 
Fig. 7.18 Comparison of fluorescence spectra of S5R1 in the solution and gel state 

 

For the naked-eye sensing test of gelators S5R1, 2 equiv. of anions 

(tetrabutylammonium salts, 0.2 M) were dropped on the top of the organogel and the 

sample was inversed after 30 min to assess the gel–sol transition. The gel gradually 

turned into solution state in the presence of F‒ ions. The disrupted gel resulted in sol 
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which exhibited fluorescence emission as observed in solution state studies.  Under 

similar conditions, the gel state of S5R1 remained unaffected in the presence of other 

anions studied. (Fig. 7.19) The gel–sol transition in the presence of F‒ ions, is ascribed 

to the rupturing of hydrogen bonded network via intermolecular hydrogen bonding of 

S5R1 with the anions and deprotonation with highly basic F− ion. The deprotonation 

phenomenon has been confirmed in the sol state indicating the reason for disruption 

of gel. Fluorescence was observed upon gel to sol transformation as seen in Fig. 7.20. 

 

 
Fig. 7.19 Photographs showing the phase changes of gel (26 mg/mL) of S5R1 

(obtained from DMSO upon addition of 2 equiv. of TBA salts of anions 

 

 

Fig. 7.20 Gel-sol transition and fluorescent response of S5R1 with the addition of F− 

ion 
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7.3.3 Calculation of binding constant from UV-Vis studies 

Binding constant has been calculated using Benesi-Hildebrand equation (Benesi and 
Hildebrand 1948) as given below; 

1/(A-A o) = 1/(A max –A o) + 1/K [X  ̶  ]n (Amax –Ao)   

where, A0, A, Amax are the absorption considered in the absence of anion, at an 

intermediate, and at a concentration of saturation. K is binding constant, [X¯] is 

concentration of anion and n is the stoichiometric ratio. 

7.3.4 Binding mechanism 

The presence of potent binding site viz., -OH functionality in the receptor S5R1 aids 

selective binding of F− ion. With the addition of F− ion, initial hydrogen bond 

interaction with –OH functionality further diminishes with incremental addition 

indicating the deprotonation mechanism. Binding mechanism is shown in Fig. 6.13. 

Scheme 7.2 Proposed binding mechanism of S5R1 with F− ion 
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7.4 CONCLUSIONS 

A new organic receptor R1 has been successfully utilized in the selective 

detection of F− ion with a colorimetric and fluorometric turn on response. R1 acts as 

good gelator in DMSO and the gel state is observed to yield a selective response to F− 

ion with the disruption of gel. The efficacy of the naphthalene motif as signaling 

scaffold, long length alkyl chain aiding gelation and –OH as F− ion binding site has 

been recognized in sol-gel transition properties of R1. Higher order of binding 

constant of the order 5.9  105 M-1 for hydrogen bound 1:1 R1: F ̶ complex in the 

solution phase indicates the strong recognition ability of the receptor R1. DFT studies 

provide full support of anion binding mechanism highlighting the energy minimized 

geometry of R1-F− ion complex. Detection limit was found to 0.8 ppm and it indicates 

the utility of the receptor R1 in practical applications. 
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 8.1 SUMMARY 

• The main objective of the present work was to strategically design organic 

receptors for the colorimetric detection of anions.  

• To this end, the application of designed receptors in the detection of anions in 

commercial, biological and environmental samples have been achieved. 

• Six different series of receptors possessing signaling unit and anion binding 

site have been synthesized, characterized and applied in the colorimetric 

detection of anions. 

• Binding of F–, AcO–, H2PO4
–, CN– and AsO2

– by different receptors in the 

series in organic and semi-aqueous media has been qualitatively and 

quantitatively assessed by UV-Vis spectroscopic, 1H-NMR, cyclic 

voltammetric and DFT studies. 

• The evaluation of binding constants for the receptor-anion complexes by B-H 

equation revealed the dependence of hydrogen bond in fine tuning the binding 

strength.  

• It was observed that there was significant increase in the binding constant of 

hydrogen bond with the decrease in the competition of solvent with the 

receptor.  

• This implies the role of non-competitive and non-polar solvents towards the 

strong increase of binding constant.  

• Of all, receptors S4R1, S4R2 and S4R3 displayed higher order of binding 

constant implying the strength of hydrogen bond interactions.  

• The occurrence of lower order of binding constant of other receptors in the 

order of S5 > L > R > S4 > S1 > S2 could be attributed to the existence of 

shortest hydrogen bond distances between the receptor and anion.  

• Binding constant values have been successfully utilized in analyzing the 

strength of hydrogen bond interaction in the receptor-anion complexation 

process. 

• Lower detection limit of 0.25 ppm, 0.4 ppm and 0.8 ppm for F– ions with 

receptors S1R2, S2R4 and S5R1 respectively; 0.92 ppm, 0.58 for AcO– ions 
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with receptors L and S3R2 and 0.03 ppm for AsO2
– ions with receptor S4R1 

highlights the efficacy of the receptors in practical applications. 

• Detection of F– in mouthwash, seawater; AcO– in E. coli; CN– ions in 

sprouting potatoes; H2PO4
– in detergent sample; DNA binding studies elicit 

the practical applicability of the selected receptors in real life applications. 

 
8.2 CONCLUSIONS 
 

The present research work has merged in the field of anion receptor chemistry 

with the design strategy paving way for the detection of multitude of anions such as 

F–, AcO–, H2PO4
–, CN– and AsO2

–. The practical utility of the designed receptors in 

real life applications has enriched the early explorations in a way leading to successful 

physiological applications.  

 

Six different series of organic receptors have been synthesized, characterized by 

standard spectroscopic techniques and evaluated for their anion sensing properties. 

Based on the evaluation of anion binding behavior by UV-Vis, 1H NMR, cyclic 

voltammetric and DFT, following conclusions have been derived. 

 

• Organic receptors R and L exhibited pink and blue coloration with the 

addition of F– and AcO– ions respectively and revealed sharp changes in the 

absorption maxima with the emergence of isobestic points. Quantification of 

F ‒ ions in mouthwash proves the utility of receptor R in practical applications. 

Rate constant values of receptor L with the addition of F ‒ and AcO ̶ ions 

confirmed the first order reaction kinetics. 1H NMR titration studies and DFT 

studies confirmed the binding mechanism.  

• Receptors S1R1 and S1R2 exhibited absorption ratiometric response in the 

UV-Vis spectra with the addition of F– and AcO– ions with a significant color 

change from yellow to bright pink. Anion binding studies of S1R1 in DMSO: 

HEPES buffer (9:1, v/v) media exhibited selective detection of AcO‒ ions with 

pale pink coloration. 1H-NMR titration spectra of S1R1 in the presence of 
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AcO‒ ions confirmed the formation of azo-hydrazone tautomers in the anion 

binding process.  

• The influence of positional substitution of nitro functionality in the series of 

phenylhydrazine based receptors S2R1, S2R2, S2R3, S2R4 and S2R5 has 

been confirmed. UV-Vis spectra of receptor S2R4 revealed positive 

solvatochromism confirming the vivid color changes observed with the 

addition of AcO‒ ions to receptor in solvents of varying polarity. Solid state 

sensing property and selective detection of AcO‒ ions in solution phase 

highlights the efficacy of nitro group in fine tuning the colorimetric response 

of the receptor S2R4.  

• The effect of suitable substitution of electron withdrawing moieties on furan 

based organic receptors S3R1, S3R2 and S3R3 proved for the colorimetric 

detection of F ‒, AcO‒, H2PO4
‒ ions with sharp color changes in DMSO. 

Studies in DMSO: HEPES buffer (9:1, v/v) media confirmed the selective 

detection of AcO‒ ions by receptors S3R1, S3R2 and S3R3. Receptor S3R1 

has been successfully utilized in the detection of AcO‒ ions in E. coli BL21 

during its growth phase.  

• In the series of thiadiazole based receptors S4R1, S4R2 and S4R3, acetonitrile 

solution of receptor S4R1 exhibited colorimetric response and a red shift band 

in the presence of F ‒, AcO‒, H2PO4
‒, CN‒ and AsO2 ‒ ions revealing multi-

anion sensing property. Receptor S4R1 was successfully applied in the 

detection of CN‒ ions in sprouted potatoes, DNA binding and quantification of 

H2PO4
‒ ions in commercially available detergent sample.  

• Naphthaldehyde based organic receptor S5R1 exhibited selective colorimetric 

and fluorometric detection of F ‒ ions in DMSO. Gelation studies scrutinized 

in fifteen different organic solvents revealed the gelation properties of S5R1 in 

DMSO. The gel was successfully utilized in the detection of F ‒ ions. Lower 

detection limit of 0.8 ppm implies the practical utility of the receptor S5R1 in 

real life applications. 
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8.3 SCOPE FOR FUTURE WORK 
 
 The present research work has been successful in the detection of biologically 

and environmentally important anions paving way for practical applications. Yet, the 

selective and sensitive detection of anions have to be addressed in future as it could 

pave way for device applications. The reproducibility and reversibility of sensor have 

to be optimized by rational design of receptor with appropriate binding sites. If a 

receptor could be designed such that it exhibits vivid color change in the presence of 

different anions, it could certainly be utilized in the detection and extraction of anions 

from groundwater sources, industrial effluents. With the development of new 

receptors which could induce gelation upon anion binding, it would be a benchmark 

in the field of anion recognition chemistry heading towards more specific biological 

applications. 
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