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Abstract

From the literature it was studied that, most of the medical error was due to the faulty

system/ process, because of which there is a delay in treatment management, leading to

complications in later stages. Proper management of healthcare system is necessary to

provide good medical care. Medical error due to failure in the healthcare system can be

reduced by employing an appropriate clinical decision support system (CDSS). CDSS

helps in identifying the severity of disease, predicting its progression, and recommend-

ing required resources for proper management of the disease. In the recent years, the

information system is employed in the healthcare system to improve the management of

healthcare.

CDSS are being used to predict the disease progression and length of stay in the

hospital. In our work, a CDSS was developed with the help of process mining techniques

for providing improved treatment management. Process mining with its ability to build

e�cient process models was used for discovering this critical treatment path. The critical

treatment path is a sequence of clinical and non-clinical activities that are critical. Pro-

cess mining helps in stream-lining these activities along with the e�cient resources for

performing those activities. The gallstone disease treatment management is considered

as a case study in this work.

Modi�ed Cascade Neural Network (ModCNN) was built upon the architecture of

Cascade-Correlation Neural Network (CCNN) and, was trained and tested using the

ADAptive LInear NEuron (ADALINE) circuit. In CDSS the performance of ModCNN

was evaluated and compared with Arti�cial Neural Network (ANN) and CCNN. CDSS,

using ModCNN strati�ed the cases that may need Endoscopic Retrograde Cholangio-

Pancreatography (ERCP) as the treatment progresses. Our result shows improvement in

accuracy of prediction and reduction in waiting time. ModCNN showed better accuracy

of 96.42% for predicting the disease progression when compared with CCNN (93.24%)

and ANN (89.65%). CDSS developed in this work is aimed at providing better treatment

planning to reduce medical error.
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Chapter 1

Introduction

� Nearly every patient hospitalized have a life threat at some point of time

during their stay.

�
Peter Pronovost, "Safe Patients, Smart Hospitals:

How One Doctor's Checklist Can Help Us Change Health Care from the

Inside Out", (Pronovost and Vohr, 2010)

It is been studied that the one of the common cause of medical error is a faulty

healthcare system. This could be overcome or prevented by providing proper attention

towards improving the healthcare system and the resources involved in it (Donaldson

et al., 2000).

In this chapter, we will introduce the healthcare system, types and causes of medical

error, along with their statistics. We will also introduce our approach to reduce this

medical error and provide "care-�ow" to the patients.

1.1 Healthcare System

The focus of hospitals in a comprehensive healthcare system is to streamline their process

(Anyanwu et al., 2003) and reduce medical error (Fanjiang et al., 2005). Healthcare

process is compiled of series of clinical and non-clinical activities, performed by di�erent

resources. Resources are the people assisting in conducting those activities and taking

critical clinical decisions. Streamlining processes in a healthcare is needed to provide

proper "care-�ow" by providing quality healthcare at reduced cost and waiting time. The

biggest challenge in the healthcare system is the extraction of knowledge, as they are
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associated with highly complex processes. Complexity of the process is due to �exibility

in patients movement and dynamic nature of care. Along with that, multidisciplinary

make them more complicated to understand and build a model out of it.

Dynamic in nature is due to sudden changes in the path followed by patients as-well-as,

changes in administration, drugs and treatment procedures. Multidisciplinary is because

there involves many internal and external departments for the successful execution of the

process. Hence, there are many people/ resources involved in the completion of an activity

in a process. And each resource has his way of process execution. Above this, the free

application developed by the hospital make it more ad-hoc (Lenz et al., 2002). Due to this

complexity and ad-hoc nature of healthcare system, it is tough to make them complete

automated. Moreover, the entire healthcare process can't be replaced by supercomputers,

as they need clinicians expertise. This is because, here we are dealing with the human

life, a huge number of diseases and their causes, and multiple ways of managing those

conditions, unlike any other research areas. A simple healthcare system is shown in the

Figure 1.1 and it can see that, a lot of time goes in waiting. Application of process mining

in healthcare process enables better healthcare as it helps in reducing delay and con�rms

the proper execution of a process.

Figure 1.1: A Simple illustration of healthcare system.
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1.1.1 Medical error: Its cause and types

In the studies conducted during the 1950s regarding patients safety, a medical error was

de�ned as disease of medical progress (Moser, 1956). Later in the 1990s three most

important studies on medical error: the "Harvard Medical Practice Study" (Leape et al.,

1991), the "Quality in Australian Health Study" (Wilson et al., 1999) and the "Utah and

Colorado Medical Practice Study" (Thomas et al., 2000), de�ned it as an adverse event.

An adverse event is a failure in medical management, causing unintended injury. As a

result of this, the patients may su�er from a disability or longer hospital stay, sometimes

even both. But later studies showed that the outcome of an adverse event was a subset of

medical error. According to Reason et al. (2001b), any hospital is protected by multiple

layers of protections. This protection should defend the patients from any adverse events.

But, even then there is an error due to �aws in an individual layer of protection as shown

in Figure 1.2. Hence, there was a need to understand the processes that cause such errors

(Thomas and Brennan, 2001).

From the studies of Donaldson et al. (2000); Hatch (2001); Leape (1994); Fish (2001);

Liang and Storti (1999) it was understood that, a safer healthcare system could be built

only by properly design of the processes involved in it. Hence, according to Reason (2000);

Donaldson et al. (2000) medical error is a failure in completing the planned action in a

pre-de�ned way or application of an alternative plan (can also be called as the wrong plan).

Figure 1.2: Swiss cheese model illustrating causing of medical error (source (Reason
et al., 2001a)).

A Medical error a global issue

Donaldson et al. (2000) conducted a comprehensive study to reduce medical error and
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improve patients safety. The study reported that in the US about 98,000 people die every

year due to this avoidable medical error, at the rate of at least two errors in ICU every day.

The latest study by Leapfrog (2013) estimated the death rate of 4,40,000 annually, making

the medical error as the third leading cause of deaths in the US (Tait Shanafelt, 2017). A

UK study conducted by Avery et al. (2012) observed 12% of primary care patients were

a�ected by medical error annually. The chance of medical error for 75 and older aged

patients was 38% and 30% for the patients receiving �ve or more drugs. A Swedish study

conducted by Soop et al. (2009) observed an adverse event of 12.3% out of which 70%

was avoidable. A Saudi Arabian study conducted by Khoja et al. (2011) showed one-�fth

of primary care prescription had error. A Mexican study Zavaleta-Bustos et al. (2008)

observed 58% of prescription error. In India, a Harvard study conducted by Jha et al.

(2013) showed that the medical error was estimated around 5.2 million. Agrawal et al.

(2012) conducted a study to evaluate the medication error in general hospitals at Delhi.

The study revealed that 8.2% of patients have the risk of being a�ected by an adverse

event.

Unfortunately, these studies did not give much insight to the methodological issues

such as failure in treatment planning and management. And from this, we observe that

medical error is a global issue.

B Cause of medical error

Among these adverse events, half of the errors were due to "surgery" and rest were due

to "medication," "diagnostic," and "therapeutic" error. The medication error is due to

prescribing, dispensing and administering illegal drugs. Diagnostic error is frequent non-

operative error. The error due to omission and commission were the therapeutic errors.

The error in omission was due to failure in appropriate action such as missed diagnosis

(missing any predominant symptoms, neglecting or not identifying some signi�cant pa-

rameters and missing to prescribe the correct drugs). The error in commission was due

to inappropriate action such as administering incorrect drugs (Eldar, 2002). Figure 1.3

shows the types and causes of medical errors.

1.1.2 Process error: A main cause of medical error

Leape et al. (1995); Bates et al. (1995), together re-de�ned medical error. According to

them, healthcare process is a complex chain of events, and medical error is a result of
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Figure 1.3: Block diagram showing the causes and types of medical error (source (Leape
et al., 1993)).

this chain. Stump (2000), with an interdisciplinary team, re-designed healthcare process.

Stump (2000) observed that "A medical error is due to series of events in action, in

a faulty process model." Further research on cognitive psychology and human factors by

Leape (1997) and studies conducted by Fanjiang et al. (2005) suggested that many serious

medical errors were due to failure in the process rather by any individual. A survey carried

out by Institute of Medicine Donaldson et al. (2000), clearly stated that "medical error are

more commonly caused due to faulty systems, processes and the conditions due to which

resources involved commit mistakes or even fail to prevent them". The process error is

the failure in process execution, events and working condition. Medication, therapeutic

and diagnostic error were more likely to happen due to process error.

The most disturbing is the absence of relevant knowledge to improve healthcare process

and avoid this medical error (Donaldson et al., 2000). The key for improving healthcare

process is by extracting knowledge to understand its weakness and vulnerability present

in the medication process (Stump, 2000). In the initial research, Leape et al. (1995)

showed that the existing healthcare process models are seldom de�ned only at a higher

level. Such model failed to deal with a drifted situation. Moreover, those models were

built using traditional process mining techniques and were very complex/ spaghetti and

vague, making it harder to understand (Kaymak et al., 2012).
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1.2 Process Engineering Approach for Reducing Medi-

cal Errors

Recently, medical error and its consequences were recorded for statistical analysis. The

result of this study has astonished both, the doctors as-well-as a common man (Quaglini,

2009). As a solution for this, an approach was needed that could identify the possible error

in healthcare process and recommend an alternative path of execution. This would provide

a smoother and safer execution of treatment process (care-�ow) (Mans et al., 2009).

Motivated by this, and by the advancement in process mining, we aimed at investigating

process engineering research and analysis to assist in reducing the medical error. Thereby,

providing proper care-�ow to the patients.

The process analysis tools such as Business Process Management (BPM) and Work�ow

Management (WFM) has assisted in understanding the concept of process engineering.

Process engineering monitors and standardizes the behaviour of a business process. This

concept was mainly applied to improve the quality of a business process. But, in recent

time there is a paradigm shift towards healthcare process. The medical community wanted

to build a better healthcare system by reducing the medical error. Hence, they started

recording each activity. Such recorded data is known as Electronic Health Record (EHR).

Using this EHR in process mining a well-established healthcare system could be built,

in-order to assist in taking the critical clinical decision with less medical error (Davido�

et al., 1995).

This awareness of medical error and EHR in medical community was due to clinical

pathways (Weiland, 1997) proposed by the principles of Evidence-Based Medicine (EBM)

(Davido� et al., 1995). The clinical pathways are the protocols written by the multidis-

ciplinary team, who timely intervened and examined the healthcare process (Hunter and

Segrott, 2008). These protocols aim to avoid any medical negligence in healthcare, assist

in taking critical clinical decisions (Blaser et al., 2007) and avoid any unseen errors in

clinical treatment (Donaldson et al., 2000).

1.2.1 Deployment of electronic health record

With an intention of digitization, deployment of clinical pathways and reducing the med-

ical error in healthcare process, Lary Weed in 1960 introduced the concept of problem

oriented medical record. This was named as electronic medical record (EMR)/ (EHR)

(Weed, 2017). EHR assists in retrieving the patient-centric records having an information

6



of treatment plan, medical history and medications of the patients. It also provides an

access to clinical data and assist in taking appropriate clinical decisions by streamlining

the work�ow. The illustration of EHR is shown in Figure 1.4.

Figure 1.4: Example structure of EHR.

In 1972, Dr. McDonald came up with an idea of an advanced medical recording system

known as Regenstrief Medical Record System (RMRS), which was not encouraged by

many physicians (McDonald, 1972). In 1991 Institute of Medicine in the US recommended

the use of EHR in all the hospitals by 2000, due to the increasing prevalence of medical

errors (Weed, 2017). This forced all the hospitals to record the clinical data, and since

then there is a substantial growth in clinical data digitization.

As an impact of Health Information Technology for Economic and Clinical Health

(HITECH) Act 2009, in the US it became mandatory to maintain EHR (Almasalha et al.,

2013). The HITECH was highly concerned about improving the patients care by reducing

medical errors. In early 2002, National Program for IT (NPfIT) proposed a nation wide

EHR project in the UK. The aim was to have an EHR system within four years. This

was very di�cult for National Health Service (NHS) and EHR vendors. The government

spent 12.7 billion pounds on this project, but it was incomplete even after nine years
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(Bowers, 2013). As a result, they failed in building a healthcare IT domain that could

connect everyone. France is one of the nations having best healthcare system and are

currently in the same stage of the US in implementing EHR (Blackstone and Taylor,

2012). In 1998, Carte Vitale launched and proposed computer based medical information

system, and this was extended in 2004 as Dossier Medical Personnel (DPM). The goal was

to improve the overall quality of care. In 2011 Ministry of Health, made it compulsory

to have "DPM-compatible" EHR system (Stone, 2014). At present, EHR adoption rate

is 67% when compared to 69% of the USA. In 2011, Government of India had initiated

implementation of EHR. The Center for Development of Advanced Computing (C-DAC) is

responsible for building a comprehensive EHR system (Stone, 2014). But, the challenge is

in providing better security and privacy. This is because, in October 2013, 90,000 patients

information was breached in the USA (Stone, 2014). India having even bigger population

than the USA this would be a major concern while building an EHR system.

In 2009, it was seen that 73% of EHR deployed healthcare system are not correctly

using it (Renner, 2009), and in 2013 the statistics remain same. With such a little

advancement in deploying EHR in a healthcare system, implementing a Clinical Decision

Support System CDSS was a challenge. CDSS is needed for assisting clinicians in taking

appropriate clinical decisions and recommending a treatment pathway for the healthcare

process (Kong et al., 2008). In this work, we installed an information system that collected

the treatment related data along with the patient's journey in the hospital. Information

collected was converted into EHR format for further analysis in process mining. Thus,

we developed a CDSS for assisting clinicians in taking clinical decisions as-well-as in

recommending an alternative path of treatment for the critical cases using process mining

techniques. The CDSS model is shown in Figure 1.5. It is an information system, which

extracts the knowledge from the clinical inputs by running the computer-based algorithms

and provides an inference from the knowledge extracted to assist the clinicians in taking

critical decisions.

1.3 Process Mining

The recent advancement in the �eld of process mining has been able to stratify and

standardize the treatment process. This improvement is due to an evolution of Process

Aware Information System (PAIS), which extract knowledge from EHR data and build

an information model (Ma, 2007). Developing such an information model for a structured
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Figure 1.5: Model of Clinical Decision Support System. Source Nair (2007)

non-linear representation of clinical data is a challenge. This problem is due to the

uncertainty of clinical data and complexity of diagnostic information. Healthcare process

employed with such an information system is essential to have a low-cost service, to meet

the clinician's demands, reduce the waiting time of patients, and provide better process

transparency.

Process mining is a technique for managing the executable processes by analyzing the

data recorded. With the help of various machine learning techniques, it discovers what is

happening inside the process, does the conformance for the executed path by comparing

with the actual path of execution and enhances the existing model by recommending the

new way of execution. Discovery plays a vital role in extracting knowledge from the event

log and building a process model (Van Der Aalst et al., 2007).

Process mining provides a detailed insight into the process execution using EHR data.

It bridges the gap between the process-oriented nature of BPM and the data-oriented

nature of machine learning/ data mining. It is a research discipline that discovers, moni-

tors, and improves the real processes (not the assumed processes) by extracting knowledge

from the EHR (Van der Aalst, 2011). The advantage of using process mining is two fold.

• It o�ers information on how processes are to be carried out in the real-world envi-

ronment.

• And, it o�ers the possibility to compare the actual behavior of the model with

discovered one. The expected behavior is usually de�ned either in a formal way

(by de�ning a formal process model) or in an informal way. By this comparison,

deviation from the intended behavior could be analyzed and can be used to improve

the process execution.
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Process mining, in short, is a reverse engineering of BPM and is shown in Figure

1.6. BPM usually starts with high-level process design followed by con�guration and

implementation phases. But, in case of process mining, the behavior observed by the

information system is utilized to discover the real process model.

Figure 1.6: Relationship between process mining and BPM.

1.3.1 Basic types and techniques

The underlying architecture of process mining is shown in Figure 1.7. The �gure shows

three most important dimensions of process mining techniques: discovery, conformance,

and enhancement.

Discovery

Conformance

Enhancement

World

Business

processes
Machines

Components

People

Organizations
Software, hardware, 

and embedded 
systems

Supports/ 

Controls

Process Model Event logs

Records 

events

Specifies

Configures

Implements

analyzes

Models

analyzes

Figure 1.7: Basic types of process mining techniques.
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A Discovery

In process mining, event log is read and analyzed to discovers the process models. These

models give the best description about the behavior observed in the event log. Process

discovery methods are used to provide insights into what occurs in reality. Discovery tech-

niques produce control-�ow, data, organizational, time, and case models. Process mining

has a huge number of de�ned and tested methods to discover models of various notations.

As an illustration of healthcare process, we developed a simple hospital treatment process

model, shown in Figure 1.8. This model is generated using α process discovery algorithm

(Van der Aalst et al., 2004).

Figure 1.8: Petri net Model illustrating hospital treatment Process.

B Conformance

In conformance checking the discovered process model is analyzed with the event log of

same process. It measures and quanti�es, how closely a given process model conforms to

the reality and evaluates the quality of a discovered model. Simplicity, precision, �tness,

and generalization are the dimensions used for measuring the conformance.

C Enhancement

Enhancement improves the discovered process model to make it more informative. With

the information extracted from event log, process models can be enhanced further to ac-

commodate the changing requirement. For example, a control-�ow model can be enhanced

and made more readable by overlaying the additional information such as time-stamps,

bottlenecks, service levels, throughput times, frequencies, resources, decision rules quality

metrics, etc.
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1.3.2 Petri net

α algorithm de�ned by Van der Aalst et al. (2004) and available in process mining can

generate control �ow of a process in the petri net notation. Petri net model of hospital

admission process is given in Figure 1.8. A petri net is a triplet N = (P, T, F) where,

• P is a set of places.

• T is a set of transitions such that P ∩ T = ∅

• F ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs called �ow relations.

Petri net consists of places and transitions. The structure of petri net model is static,

but it is controlled by �ring rule. Distribution of tokens over network is referred as

marking and it determines the state of petri net.

1.3.3 Process mining in healthcare system

A process in healthcare system is a sequence of activities recorded during the treatment

procedure and medication of patients. EHR records both the clinical and administration

(non-clinical) activities. Process mining discovers healthcare process models using EHR

and is known as EHR process mining. The objectives of healthcare system could be met

by building an e�cient process model and by improving the resource e�ciency.

Process mining is relatively young research discipline known for its existence more than

a decade (Van der Aalst, 2011). Since then a lot of investigations have been conducted

on its application, and it has now become mature enough to be applied on any type and

complex process. This was initially developed with an intention of assisting the business

management for taking critical business decisions and was successful. This success was

because, the processes involved in business execution were recorded as event logs. Event

log is a set of traces containing sequence of process performed for a successful completion

of a particular process instance.

EHR process mining monitors and diagnose the work�ow deadlocks, errant process,

and ideal and idle resources. It was observed from the study of Schuld et al. (2011)

that, by applying process mining techniques on EHR, performance of healthcare sta�/ re-

sources could be improved and it also enhances the process e�ciency. Such a well-designed

healthcare process not only employs a clinical pathway e�ciently but also, improves the

diagnosis and treatment options to the patients, providing better care.
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1.4 Case Study: A Gallstone Disease (GSD)

GSD once known as the western disease, is showing high prevalence in India since last

one decade. So, GSD was considered as the case study. This is a retrospective analysis

of 260 complicated cases of GSD from the tertiary care center in North Malabar, Kerala,

India, from 2014 to 2015. In our experiment, by the help of machine learning techniques

49% of complicated cases were classi�ed and rest were uncomplicated.

Progression of chronic disease is usually slower when compared to that of acute disease.

For example chronic obstructive pulmonary disease may take more than ten years to

progress from stage I (mild) to stage IV (very severe) (Pauwels et al., 2001). It is same

for congestive heart failure (Wang et al., 2014). The patients su�ering from chronic

pancreatitis have all the possibility to have the episodes of Acute Pancreatitis (AP).

Similarly, chronic GSD causes a scar on the gall bladder, making it rigid and giving a lot

of abdominal pain. Hence determining the progression of the disease having the episodes

of chronic as-well-as acute is a challenge. In this study, the proposed system predict the

disease progression, and for the cases that may become critical, it recommends a safer

treatment path known as critical path.

1.4.1 Gallstone disease (GSD)

Gallstone disease is a heterogeneous disease (Cetta et al., 1995) and the most common

biliary pathology. After the appearance of Laparoscopic Cholecystectomy (LC) in the late

1980s, the incidence of gall bladder surgery has raised all over the world (Steiner et al.,

1994). Due to its unpredictability in progressive organ failure, the mortality rate has been

observed from one-third to one-half during the �rst week of diagnosis. The previous study

conducted by Hong et al. (2013) showed that most of the death occurred after admission

was due to local complication such as pancreatic necrosis, with the symptoms of sepsis

and multi organ failure. GSD is also studied to be a signi�cant risk factor for gall bladder

cancer (Kapoor, 2006). An early detection and timely management of GSD would prevent

the progression towards an adverse complication.

Thus, there is a need for an optimal classi�cation technique for identifying the spec-

trum of GSD and signi�cant factors/ predictors associated with each class. These signif-

icant factors help in predicting the disease progression from which any unseen complica-

tions could be avoided. This would assist the physicians to have close surveillance and

provide alternative treatments. Signi�cant factors also known as risk factors are identi�ed
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from the features detected by lab investigations and observations.

1.5 Proposed System

Here we aimed in devising a mandated process model to be followed in a healthcare system.

Especially, for the cases which are identi�ed as at high risk. The healthcare process model

would reduce the waiting time between the activities and employ an e�cient resource for

the completion of a task. In this work, we in assistance of medical experts re-de�ned the

healthcare process using technique of EHR process mining. The model not only captured

the standard path of execution but also predicted the exception cases that may happen.

Those exception cases were known as critical cases, initially treated at triage unit and

needed special attention.

Emergency department in-order to handle such cases would want to reduce the wait-

ing time and provide a hassle free care-�ow known as critical treatment path. This could

be achieved by identifying the bottlenecks and improving the resource utilization. Paths

assisted by adequate resources for successful completion of events were chained in health-

care process making it a critical treatment path. The proposed system is shown in Figure

1.9. This works in two phase, in the �rst phase, disease progression is predicted using

statistical tools, and in the second phase, safest care-�ow is recommended. The error in

prediction and recommendation were analyzed to make the model more optimal, thus

signi�cantly decreasing the space for medical error.

Figure 1.9: Framework of proposed clinical decision support system.
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1.5.1 System architecture

For accurately predicting the disease progression, we Modi�ed the architecture of Cascade-

correlation Neural Network (ModCNN) and compared its performance with Arti�cial

Neural Network (ANN) and Cascade Correlation Neural Network (CCNN). From the lit-

erature, we understood that ANN and CCNN were well-established models for conducting

the statistical analysis in clinical �eld. These statistical tools identi�ed the signi�cant fac-

tors associated with the disease. It is vital to �nd right signi�cant factors as they would be

fed into the system to predict the disease progression. Hence, the accuracy of prediction

purely depends on this identi�ed signi�cant factors. This prediction would help in �nding

the cases that are critical. A case is known as critical if they need emergency interven-

tion or may require in near future hours. A medical error can happen when clinicians

fail to notice this and plan a wrong treatment management. On identifying the critical

case, we try to provide the quickest and safest care-�ow. Hence, an early detection and

management of GSD will prevent the progression towards an adverse complication.

The complete system function for predicting the disease progression is shown in Figure

1.10. Here in the �gure, data collected from the retrospective study is fed into Committee

of Machines (CoM). ANN, CCNN, and ModCNN are optimized and included in CoM.

Each statistical tools �nd their signi�cant factors, which are fed back to the system to

predict the disease progression eliminating all those features, which are not signi�cant.

The accuracy of prediction is measured using the concept of AZ . Thus the system �rst

�nds the best suitable tool and then using that predicts progression of the disease.

1.6 Thesis Outline

This section provides the brief overview about the structure of this thesis.

• Chapter 2: This chapter provides the insight study for �nding di�erent statistical

techniques along with the scoring system for predicting the disease progression.

The study was also conducted to �nd the process mining application in the �eld of

healthcare system.

• Chapter 3: Here, the framework of study material is detailed. The lab investiga-

tions conducted were used to identify the signi�cant factors and then predict the

progression. The patient's journey in the hospital, recorded by EHR system is used

to provide better treatment management using process mining.
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Figure 1.10: Design structure of statistical comparator for identifying the e�cient model.

• Chapter 4: Here the architecture of proposed ModCNN is explained using the

concept of ADALINE circuit and gradient descent algorithm.
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• Chapter 5: The ModCNN is tested, and the result is presented in this chapter.

Here the model is compared for its accuracy in prediction of critical cases.

• Chapter 6: In this chapter, the annotation system is developed for predicting the

future state of the partially executed trace. Annotated system used the application

of process mining for achieving this. Here, the critical treatment path along with an

e�cient resource for conducting the activity streamlined along the treatment path

is recommended. This would decrease the patient's journey in the hospital.

• Chapter 7: The result of recommendations made by the process mining application

is presented in this chapter.

• Chapter 8: This chapter summarizes the total work conducted along with the

future direction of research.
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Chapter 2

Related Work

This chapter details the literature about an application of process mining in healthcare

management. Along with this, an analysis of di�erent statistical techniques for predicting

the disease progression is made. As an outcome of this analysis, we could �nd and un-

derstand the performance of well-established statistical tools and techniques, along with

process mining for managing the critical cases.

2.1 Complications and Stages of Gallstone Disease

GSD is studied to be a signi�cant risk factor for gall bladder cancer (Hundal and Sha�er,

2014). It is a heterogeneous disease and the most common biliary pathology (Cetta et al.,

1995). The process of gallstone formation is referred to as cholelithiasis. It is a slow

process and usually doesn't show any pain or other symptoms. 10% of patients with

cholelithiasis passes the stone into common bile duct resulting in a condition called as

choledocholithiasis (Almadi et al., 2012). In few conditions, these stones are likely to cause

infection leading to cholangitis. Between 1-3% of people with symptomatic gallstones

develop an in�ammation in the gallbladder accounting into cholecystitis (Times, 2008).

This occurs when stones or sludge block the duct. Pancreatitis is a process of in�ammation

of the pancreas. 80% of cases are mild with interstitial edema which normally recovers

within weeks (Beger and Rau, 2007). But, 15%-20% of cases become severe by systemic

or local complications leading to severe morbidity and even death (Beger and Rau, 2007).

Early death within the �rst week is seen due to multiple organ dysfunctions. The mortality

rate has been observed from one-third to one-half during the �rst week of diagnosis due

to unpredictability in progressive organ failure of the pancreas (Johnson and Abu-Hilal,

2004). Hong et al. (2013) showed that most of the death occurred after admission was due
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to a local complication with the symptoms of multi organ failure. Late mortality is usually

a consequence of organ dysfunction and local or systemic infections, including infected

pancreatic necrosis (Blum et al., 2001). Thus, an early detection and timely management

of GSD would prevent the disease progression towards an adverse complication in later

stages.

From the study we could observe that GSD leads to a serious complication if neglected

and may cause death. The �rst week of admission is considered as the high-risk period.

But, as the disease progresses there are later stage complications. If not properly treated,

it may grow to become cancer. Due to its heterogeneity, predicting its progression was

highly di�cult and challenging. Hence there was a need for a technique that could cat-

egorize the study material, identify the risk factors and predict the disease progression

using the identi�ed risk factors.

2.2 Disease Severity Scoring System

Initial clinical assessment is inadequate for classifying the disease severity (McMahon

et al., 1980). For that, an algorithm of action is required from an interdisciplinary team.

Accurate prediction of the disease severity at the time of admission is vital as GSD has a

high risk during its �rst week of admission. During recent years several scoring systems

were applied for classifying the disease severity.

2.2.1 Intensive Care Unit (ICU) scoring system

ICU Scoring system can be categorized based on the clinical criteria and radiologic features

at computerized tomography (CT).

A Clinical criteria

The two clinical criteria scoring systems are Ranson and APACHE (Acute Physiology

And Chronic Health Evaluation). Ranson scoring system is the �rst meta-analysis model

developed by Ranson et al. (1974). In the current study, we identi�ed eight signi�cant

factors for predicting the morbidity and mortality. Out of that, �ve were identi�ed at the

time of admission and three based on the treatment response in �rst 48 hours. The major

shortcoming was, we had to wait for 48 hours after admission of the patient for �nding

the signi�cant factors. Imrie et al. (1978) proposed Glasgow scoring system but, even this

had the same shortcoming as of Ranson.
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Knaus et al. (1985) introduced the APACHE II scoring system. It classi�ed the severity

of adult patients admitted to ICU. Here, the severity was calculated using age, chronic

health condition and the score calculated for acute physiological measurements. In the

Atlanta symposium conducted in 1992, it was awarded as the best scoring system, that

could assess within 24 hours of admission. It identi�ed obesity as the major risk factor

for mortality and development of severe AP. Hence forth, it was named as modi�ed

APACHE scoring system (APACHE-O). But to our knowledge, we could not �nd any

major prospective study using this scoring system.

B Radiologic features at CT

The radiologic features at CT is a Balthazar scoring system proposed by Balthazar et al.

(1990). This is the currently used scoring system and was developed in 1985. It classi�es

the patients into �ve classes: (class A, class B, class C, class D and class E ), based on

the severity. But even this scoring system had the same disadvantage of being able to

complete its evaluation only after 48 hours of admission.

Table 2.1: Di�erent scoring system

Scoring System Author and Year
of Introduction

Signi�cant Fac-
tors Identi�ed

Comment

Ranson Ranson et al. (1974) 08 Complete assess-
ment only after 48
hours of admission

Glasgow Imrie et al. (1978) 05 Complete assess-
ment only after 48
hours of admission

Balthazar Balthazar et al.
(1990)

Classify the severity
into �ve groups of
severity

Not well imple-
mented

APACHE II Knaus et al. (1985) 11 Widely used

Marshall Marshall et al.
(1995)

5 Widely used based
on organ failure

SOFA Vincent et al.
(1996)

5 Widely used based
on organ failure
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Marshall score and Sepsis-related Organ Failure Assessment (SOFA) score were proposed

in 1995 and 1996 respectively (Marshall et al., 1995; Vincent et al., 1996). The idea

of SOFA and Marshall was not to predict the disease progression but to sequence the

complications. As observed by Andersson (2010), there are several scoring systems, but

they are not widely used for assisting in identifying the signi�cant factors, at the time of

admission. The generalized performance of the di�erent scoring system is summarized in

the Table 2.1.

The following are the challenges observed in the existing scoring systems.

• There exist many hidden covariates involved in the progression of the disease. The

scoring systems failed to identify those hidden covariates.

• Identifying the chronic and acute cases were a real challenge.

• Due to the incomplete patient record regarding the disease progression, it was hard

to build and train a model in a directed way.

• Due to abnormal check-ups, it was hard to identify the continuity in the disease pro-

gression. This caused irregularity in record maintenance because of the inconsistent

data.

2.3 Meta-Data Analysis

Meta analysis is a statistical model for combining the data from multiple studies. It is

used for analysing the existence of a common pattern in the treatment outcome. These

identi�ed patterns are found to be consistent with one study to other. It also determines

the parameters responsible for variation in the treatment response pattern. According to

Plackett (1958) the invention of meta-analysis was made in 17th century for the studies

related to astronomy. But, the �rst medical application was made by Simpson and Pearson

(1904) where they collected data from typhoid a�ected patients and observed its outcome

using meta-analysis.

In several papers presented by GREPCO (Group for Epidemiology and Prevention

of Cholelithiasis), it is observed that meta-analysis is used as a statistical technique.

GREPCO is a cross-sectional study conducted in Rome, Italy. For GSD, we found its

application in identifying the risk factors associated with gallbladder cancer by Larsson
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and Wolk (2007). Clayton et al. (2006) used it for �nding the better therapeutic approach

among endoscopic and surgical interventions. With the help of meta-analysis Gurusamy

et al. (2010) was able to determine the e�ect of early and delayed LC for acute cholecystitis

and �nd a better approach among them. Geng et al. (2013) compared the procedure of

Single-Incision LC (SILC) with Conventional LC (CLC) and identi�ed the better approach

among them using meta-analysis. Zhang et al. (2008) discovered the prognostic factors

of race and tumour size in carcinosarcoma of gallbladder using meta-analysis.

On studying the di�erent application of meta-analysis, we could observe that:

• With the limited study of meta-analysis application on GSD, we observed that they

were applied for determining the risk factors associated with the disease. Using

these risk factors, the prognosis could be conducted.

• But, it failed in accurately predicting the expected results for a single large study

(LeLorier et al., 1997).

• This failure is due to its source of bias, on which the model failed to have control

(Slavin, 1986).

• Hence, we could �nd the limited successful application of meta-analysis in identifying

the factors associated with GSD.

2.4 Regression

Due to the limitation of a meta-analysis of being non-operable on a single large experiment,

researchers started statistical analysis using regression. Regression application in the

epidemiology of GSD is relatively recent.

2.4.1 Introduction to regression

Regression relates the probability of an event to the regressor variables. Let, x be the

factor of disease progression, and y be any complications due to the disease. The linear

relationship is a slope connecting x and y and is de�ned as "a unit change in x on y".

The challenge here is to estimate and calculate the correct slope, i.e., the e�ect of y for

a unit change in x. The Figure 2.1 shows the use of regression model for predicting the

progression of lung cancer mortality (y) due to the consumption of cigarettes (x).
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Figure 2.1: Illustration of Logistic Regression

One of the objective of multivariate analysis in epidemiology is to identify the risk

factors. On �nding the risk factors, its presence and absence in test data would assist

in predicting the disease progression. So that, the complexity of the patient's health

condition is understood with more clarity, based on which an appropriate treatment could

be initiated. Risk factors associated with the disease is computed using the equation 2.1

where ∆ (Delta) is "change in" slope.

βRiskFactor =
Change in Disease Progression

Change in Risk Factors
=

∆DiseaseProgression

∆RiskFactors
(2.1)

The equation 2.1 could be re-written as a straight line equation 2.2 where β0 is an

intercept for the straight line and βRiskFactors is the slope found in equation 2.1.

Disease Progression = β0 + βRiskFactors ×RiskFactors (2.2)

To make the equation more generalized, we need to consider other factors other than

the determined risk factors. The updated equation is shown in 2.3.

Disease Progression = β0 + βRiskFactors ×RiskFactors+ other factors (2.3)

Then the generalized regression equation using equation 2.3 could be written as shown

in equation 2.4, for each distinct cases with i = 1, 2...n.

yi = β0 + βixi + ∆ui (2.4)

In the equation 2.4, for n distinct cases:
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• yi is the result of the treatment (progression of the disease) of ith case

• xi is the factor seen by testing various clinical tests, including UltraSonoGraphy

(USG), Computed Tomography (CT), and

• ui determines the other factor that may in�uence the change in disease progression.

Therefore, equation 2.4 is a simple linear regression model with y being the only

regressor and is linearly dependent on x, where x is the independent factor or known as

regressor.

2.4.2 Regression in epidemiology

Epidemiology is a branch of medicine and deals with the factors related to identifying

the incidence of the disease, along with the possible way to control its progression. In

epidemiology, the regression model assists in not only identifying the risk factors associated

with disease but also in predicting its progression (Montgomery et al., 2015). Regression

model achieves this by building a relationship between the disease and identi�ed risk

factors. Historically, the main advantage of a regression model is its computational and

theoretical simplicity. This allows the statisticians to have closer view towards the data

behaviour.

But, it was observed that an application of these methods became a challenge as num-

ber of variable that were to be investigated increased Attili et al. (1995). Suppose, there

are ten variables and from these variables, we are intended to identify the associated risk

factors. In regression, an association of each of these variables is analysed at two levels,

developing 1024 cells of multiple cross classi�cation and each cell needed rigorous obser-

vation and analysis. This may lead to information loss during the analysis. This challenge

becomes bigger while dealing with a highly complex pattern of risk factors generated by

cross multiplication between the factors. By the introduction and application of max-

imum likelihood (Walker and Duncan, 1967) and also by the advancement in machine

learning algorithms, regression was able to overcome these challenges.

This invited a lot of researchers to di�use the model in identifying the risk factors

associated with and predicting the disease progression. Truett et al. (1967) �rst applied

regression in cardiovascular epidemiology. Since then a lot of researchers have analysed

its application in various other streams of medicines. We could �nd their application in

estimating the volume of liver for liver transplantation (Oltho� et al., 2015), for identifying
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the prognostic factors for predicting the disease progression (Kumarasinghe et al., 2015)

and �nding the risk factors associated with cancer along with predicting their prevalences

(Group, 2016).

2.4.3 Signi�cance of regression in gallstone disease

Alvi et al. (2011) conducted a retrospective analysis of odd ratio among case-control for a

period of 19 years. Cases were the patients with gallbladder and control were the patients

with no gallbladder. They used regression technique to �nd the odd ratio of control and

cases. Odd ratio = odds(cases)
odds(control)

, where odd = probability of success
probability of failure

(Bruin, 2011). Using the

regression model and methodology of �nding odd ratio, Alvi et al. (2011) were able to �nd

the risk factors (age> 55 years, solitary stone and stone> 1 cm). Kim et al. (2011) applied

the regression model for analysing the signi�cant association of insulin resistance with the

formation of gallstone. This study included 4125 Korean women between the age group

of 30-79 years. The regression model categorized the study and showed the gallbladder

stones, age, obesity, abdominal obesity, hyperinsulinemia, and high Homoeostatic Model

Assessment-Insulin Resistance (HOMA-IR) index, were the signi�cant independent factors

in post-menopausal women and low high density lipoprotein-cholesterol in pre-menopausal

women.

Wang et al. (2012) applied the technique for identifying prognostic factors for gallblad-

der. They compared the result of univariate analysis with regression model and found

that earlier statistical method identi�ed (�ve) signi�cant factors while later identi�ed

(three). Using these signi�cant factors, they were able to diagnose the complication at an

early stage so that the prognosis of the gallbladder could be done more e�ectively. Wang

et al. (2017) analysed the per-operational condition causing the risk for post-operation

of gallbladder ejections. They utilized the technique of uni-variable and multi-variable

regression model. They found the two factors: wall thickness of the gallbladder and

lithotrity that are to be analysed before conducting an operation. The �nding suggested

that they may cause gallbladder ejection even after the operation.

Srivastava et al. (2010) used regression model for �nding the signi�cance and associa-

tion of toll-like receptors polymorphism with gallbladder cancer. They used the technique

of odds ratio for calculating the probability of association. Mønsted Shabanzadeh et al.

(2016) found the symptoms associated with the abdominal pain due to a newly formed

gallstone. They applied the technique of logistic regression for analysing the signi�cance
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of newly formed gallstone and the reason for abdominal pain along with the projected

pain for a longer duration. Using regression model, they were able to �nd that newly

formed gallstone does show the indication of abdominal pain at upper abdominal and for

a longer duration. Muszynska et al. (2017) investigated using multiple logistic regression

for identifying the predictors that could predict the gallbladder cancer. On statistical

analysis, they could �nd that older aged women su�ering from jaundice and had under-

gone cholecystitis were under higher risk for gallbladder cancer. Gautham et al. (2011)

conducted a study using regression to identify the prevalence of GSD in India based on

geographic and gender distribution along with the progression of the disease over time.

Ryu et al. (2016) observed the risk level of gallstone progression towards cancer. Using

the regression model they were able to identify that gallstones are signi�cantly associated

with mortality due to hepatobiliary cancer. Creasy et al. (2017) analysed the probability

of residual disease at the time of re-operation. They used logistic regression and classi-

�cation, and regression tree for conducting the analysis. The model showed AZ of 0.78

for predicting the risk-level of the patients at the time of operation. Using this result,

patients at high risk were strati�ed.

On studying performance of regression we could observe that:

• Regression models assume that all the identi�ed signi�cant risk factors are available

in all the test cases. But their absence in the test cases is one of the limitations

in applying heterogeneity in regression analysis. Such a limitation of regression is

known as data dredging (Marshall, 2001).

• This situation could be avoided by pre-identifying the signi�cant factors. But, with

the property of data dredging, it fails in accounting adequately the large errors and

cant be widely applied for computational purpose (Draper and Smith, 2014).

• The associative relationship observed by the regression models are less interpretable

when compared to the casual relationship. However, identifying the casual variances

which are inverse and used for regression is very di�cult. With these restrictions,

regression models could be recommended only with pre-analysed signi�cant factors.

But, this purely depends on the methodologies and planning of systematic reviews

executed by the clinicians to get an insight to the clinical data.

• Further, the performance of regression model is determined by the sample size. But,
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with the restricted samples, discovering the right interpretation is always a challenge

in regression.

• Regression models were built with an unrealistic assumptions of data and error

distributions, due to which they had a lot of limitations. Hence, this might be few

of the reasons for the statistical shift from regression analysis to Arti�cial Neural

Network (ANN).

• As in many cases, ANNs have proved to perform well we continued our interest to

�nd their utilization and application in the �eld of medicine.

2.5 Arti�cial Neural Network (ANN) Outperforming

Regression

In literature, a lot of regression related studies in many diversi�ed areas were found.

But at the same time, many comparative studies between ANN and regression model

were performed. And it was observed that ANN had outperformed the regression mod-

els. Jovanovic et al. (2014) compared their work on regression with ANN for selecting

the patients with higher risk towards Endoscopic Retrograde Cholangio-Pancreatography

(ERCP). They could �nd that, ANN showed better accuracy with AZ = 0.884 when com-

pared to their earlier regression model AZ = 0.787 (Jovanovi¢ et al., 2011). Vukicevic

et al. (2016) proposed an expert system which can automatically build ANN and validate

its performance. They also mentioned in their study that among various statistical tools,

ANN was more suitable for the prediction and diagnosing concurrent Common Bile Duct

Stones (CBDS). Suarez et al. (2016) aimed in accurately predicting the choledocholithia-

sis using the impact of laboratory trends. They compared the performance of regression

model with ANN and found that ANN was more accurate than the earlier one. Wall

(2013) used ANN for predicting the possibility of survival of the patients su�ering from

pancreatic ductal adenocarcinoma. In his study, he found that ANN outperformed the

regression model. Hong et al. (2013) compared the performance for predicting the organ

failure in the people su�ering from AP and observed that ANN shows higher accuracy for

the prediction.
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2.5.1 Arti�cial Neural Network

ANNs mimics the human brain and are composed of a non-linear combination of computa-

tional elements known as neurons. Neurons formed by the biologically non-decomposable

units is a mathematical function in ANN. Its task is to receive the inputs, perform some

mathematical processing and produce the calculated output. The output is processed

through the processing units simulating the neurons. For this, neurons are interconnected

using the synaptic connections as in the human brain. This synaptic connection allows

the signal to pass through the network. The signals are the processing elements in ANN

which are processed through the interconnecting weights.

Figure 2.2: Illustration of ANN

2.5.2 Application of ANN

The accuracy of ANN could be evaluated in many ways based on their properties. The

�rst feature is variability. It is a property of ANN to evaluate the performance of risk-

adjusted models (Anderson et al., 2003). Calibration is the second feature which de�nes

the property of ANN to assign the rightly identi�ed risk factors to the individual cases

(Hosmer Jr et al., 2013). The third feature is about discriminating the cases based on

the outcome of interest and is known as discrimination (Swets, 1988). The fourth feature

is related to the precision of the model. The model can repeatedly give an accurate and

similar result for the same input variables using the same statistical techniques leading

the accurate output. This makes the model more reliable and stable (Altman, 1990).
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2.5.3 ANN in epidemiology

Due to its non-linearity classi�cation nature, we could see a lot of its application in medical

science. Analysing the samples of blood and urine (Catalogna et al., 2012), classi�cation

of leukemia (Dey et al., 2011), for identifying and diagnosing tuberculosis (Elveren and

Yumu³ak, 2011), analysing the complicated e�usion samples (Barwad et al., 2012). We

could �nd a lot of their application in speech and image processing. They were seen in

radiography analysis and even analysis of living tissues (Saghiri et al., 2012). They have

been successfully applied for classi�cation of; benign from malignant breast lesions (Chan

et al., 1997), lung disease and coronary artery disease (Ashizawa et al., 1999) and for the

outcome analysis of pancreatitis (Keogan et al., 2002).

In general we could see their application in oncology (Saxena and Burse, 2012), urol-

ogy (Mantzaris et al., 2011), paediatric (Mantzaris et al., 2010), cardiology (Karabulut

and �brikçi, 2012), ophthalmology (Güven and Kara, 2006), neurology (Blahuta et al.,

2012) and others (Dobchev and Karelson, 2016). Keogan et al. (2002) investigated ANN

predictive model, devised with both clinical and radiologic features. Since then, they

have been successfully applied for diagnostic radiology including pulmonary embolism on

ventilation-perfusion scans and di�erentiation of benign from malignant breast lesions

(Chan et al., 1997).

Though ANNs have been applied in diversi�ed branches of medicines (Figure 2.3),

we continued our interest to know how successfully they are involved in the analysis of

gallstone. We aimed to �nd the e�ciency of ANN for the prediction and classi�cation

and if there any scope for further research?

Figure 2.3: Overview of the main applications of ANN in medicine
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2.5.4 ANN for disease management of GSD

Due to the limitations of traditional statistical techniques for predicting the disease sever-

ity and mortality, several statisticians (Mo�di et al., 2007; Yoldas et al., 2008) have

recommended the use of ANN as the predictive model for predicting and assessing the

patients with GSD. The application of ANN can be broadly classi�ed into prediction,

identi�cation of signi�cant factors and classi�cation. In prediction ANNs were applied

for predicting the severity of choledocholithiasis (Adams et al., 2015), Acute Pancreatitis

(AP) (Andersson et al., 2011), disease progression and organ failure in AP (Hong et al.,

2013), conversion of LC to Open Cholecystectomy (OC) (Eldar et al., 2002), CBDS on

ERCP (Vukicevic et al., 2016) and whether the stones in distal ureter would pass or may

need intervention (Cummings et al., 2000). It was used for identifying the signi�cant

factors associated with pancreatitis (van den Heever et al., 2014) and CBDS (Vukicevic

et al., 2016). Opa£i¢ et al. (2015) applied ANN for classifying the benign and malignant

in pancreatic cancer. Where in Yang et al. (2013) classi�ed pancreatic adenocarcinoma

from non-neoplastic tissue. They were also e�ciently applied in regions segmentation

in ultrasound image for analysing high intense region and identifying the percentage of

gallstone (Lian et al., 2017).

Ikeda et al. (1997) compared the performance of ANN with Bayesian analysis, Hayashi's

quanti�cation method II, and the observation of radiologists. They found that ANN was

better for classifying pancreatic ductal adenocarcinoma and mass-forming pancreatitis.

Due to the complications in removing CBDS by laparoscopic procedure, Golub et al.

(1998) with the help of ANN conducted experiments on it. They accurately screened the

patients, who are at high risk for CBDS so that a pre-operative ERCP could be avoided.

Jovanovic et al. (2014) studied 291 patients undergoing ERCP for suspected choledo-

cholithiasis. They applied ANN and found that it accurately predicted the patients with

positive and negative �ndings on ERCP. This study was further investigated and anal-

ysed by Adams et al. (2015). Cummings et al. (2000) conducted analysis for assisting the

clinicians in taking appropriate decisions about "will the small stones present in the distal

ureter would pass out or may need interventions".

Mo�di et al. (2007) developed a model to identify AP and predict the reason for causing

mortality. On comparison with APACHE II and Glasgow severity scoring system, ANN

showed better accuracy in prediction of disease progression, organ failure and mortality

of the patients su�ering from AP. Organ failure during the �rst week after onset of AP is
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one of the death threat (Hong et al., 2013). Hong et al. (2013) used ANN for accurately

predicting the patients who may have organ failure. Another challenge was in identifying

the prognostic factors for prognosis of pancreatic disease (Bartosch-Härlid et al., 2008)

so that proper diagnosis could be provided. For that, Andersson et al. (2011) using

ANN identi�ed the signi�cant factors and predicted the progression of AP for �nding its

severity.

With an advancement in image processing techniques, Das et al. (2008) applied ANN

for classifying the pancreatic adenocarcinoma from a non-neoplastic tissue of chronic

pancreatitis, benign from malignant patterns and diagnosing pancreatic cancer (Yang

et al., 2013). After �ltering the noise in the image to get a narrow region of the gallbladder,

Lian et al. (2017) used the pulse-coupled neural network to identify the high-intensity

region in the image obtained through an ultrasound of GSD.

2.5.5 ANN as an expert system for predicting the disease pro-
gression

Vukicevic et al. (2016) proved that ANNs were slow learners, so they developed ANN

expert system by applying evolutionary assembling approach. They used a genetic al-

gorithm for automatically con�guring ANN and overcoming the limitations of being a

slow learner. The model identi�ed the signi�cant predictors and accurately predicted the

patients who may have CBDS when compared to all other statistical techniques. ANN

were known as slow learners due to its high computational steps needed for identifying the

right combination of neurons and hidden unit. Fahlman and Lebiere (1990) stated this

slowness as a moving target problem. The back-propagation algorithm used for learning

this combination was slower for highly complex data. The model proposed by Vukice-

vic et al. (2016) not only increased the accuracy of prediction but also built a simpli�ed

expert system. Keogan et al. (2002) used ANN for predicting the length of stay in the

hospital for the patients su�ering from AP. A similar kind of study was later conducted

by Muhammet and Guneri (2015).

2.5.6 Observations and limitations of ANN

We understand that ANNs are well-established models for classifying the disease sever-

ity and pattern recognition. But, with its high processing units and limited room for

computational combinations, it was not only slow for identifying the infrequent patterns,

but also failed (Ohno-Machado, 1996). Halonen et al. (2003) compared the performance
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of regression with ANN for predicting the fatal outcome of severe AP. But, surprisingly

the earlier one showed better accuracy (AZ=0.862) than the later (AZ=0.847). Chang

and Hsu (2009) developed a screening test for prediction of pancreatic cancer. They

compared stepwise logistic regression, ANN, Genetic algorithm-logistic regression. Ge-

netic algorithm-logistic regression showed better performance Az = 0.921 than ANN

Az = 0.895.

The performance of ANN is unstable due to the presence of local minimum in back

propagation (Akande et al., 2014). The convergence towards the local minimum is done

by backpropagation and is very slow. The convergence at local minimum is the objective

of ANN and is never ending learning process (Balázs, 2009). Further, backpropagation

requires functions in a networked structure and has a high impact on learning capabilities.

This limitation of ANN was widely reported by Cunningham et al. (2000).

2.5.7 If not ANN then what?

Though we found a lot of successful application of ANN, other statistical models have

performed well. The major limitation in ANN was in training and identifying the optimal

combination of neurons and hidden units, where the error was minimum. Because of

these reasons, there was a need for e�ective training algorithms which could build model

adaptively during the training phase. This prompted us to think and research further

on constructive training algorithms. These algorithms have two main classes. One set

of classes uses the traditional model for structuring the network by training and accu-

mulating several networks. This needs high computation and must be infeasible. Other

categories are represented by the CCNN (Fahlman and Lebiere, 1990). CCNN automat-

ically adapts the model based on the training process. The training process here takes

lesser computation and address the problems as mentioned earlier of backpropagation. So

we continued our research to �nd the application of CCNN and their suitability in the

�eld of medicine.

2.6 Cascade-Correlation Neural Network (CCNN)

Fahlman and Lebiere (1990) introduced a new CCNN architecture with cascade correla-

tion of network which learns by experience. Here the weights are frozen as the hidden

units are added to the network. CCNN works on two key architecture. First during the

training phase, if the network demands that addition of new neurons would assist in solv-
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ing the complex problem more accurately, then CCNN would add new neurons. Secondly,

addition and training are sequential.

2.6.1 Study on application of CCNN

Fahlman and Lebiere (1990) built a model which adaptively identi�ed the optimal network

connectivity and weights. The model could solve the classi�cation task more e�ciently

than the existing models through supervised learning. Shavlik et al. (1991) conducted

experiments on linearly separable data (audiology and soybean) as well as non-linearly

separable data (chess). It was noted that CCNN used 1-2 magnitude lesser epochs than

backpropagation and perceptron algorithm. As-well-as they needed fewer hidden nodes

(Shavlik et al., 1991). On testing for accuracy, CCNN found to be better than backpropa-

gation on soy-bean data, but backpropagation was better on chess and radiology data. On

comparison with perceptron algorithm, CCNN was better in all the tested experiments.

Itchhaporia et al. (1996) compared the performance with ANN by applying in cardiol-

ogy for diagnosis of coronary artery disease and myocardial infarction. They found that

ANN was too complicated and complex in training process, which made it too slow to get

modelled when compared by CCNN. Hirayama et al. (1993) experimented feedforward

controlling of arm movement. They were successful in planning time-accuracy trade o�

and quasi�power-law type of speed�accuracy trade-o�.

Doering et al. (1997) modi�ed CCNN and built an optimal CCNN which converged

faster than the existing techniques. They proved that the linear output of neurons could

be solved within a �nite number of steps. The model was optimized by choosing optimal

weights. Thus the proposed model showed better performance when compared to CCNN

proposed by Fahlman and Lebiere (1990). The model was further generalized by Chudova

et al. (1998). The ability and time elapsed in discovering an optimal model were com-

parably faster. But on further investigation, we observed that the existing model needed

di�erent training and retraining techniques to improve its performance. Song et al. (2011)

regularized the correlation method and reduced complexity of CCNN. This improved the

e�ciency of CCNN and helped in faster convergence. Using this e�cient model Song et al.

(2011) developed �rst break the auto-picking model. The model identi�ed �ve signi�cant

risk factors which were adequate for separating the �rst break and non-�rst break. The

model achieved good e�ciency in testing seismic data.
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Chandra and Varghese (2007) used CCNN for identifying cipher system from cipher

text generated by block cipher and stream cipher and found CCNN was 14% more ac-

curate than ANN. Zhao et al. (2011) observed that CCNN showed better performance

for fault detection in sensor and recovering data. (Lam and Smith, 1998) modeled and

improved the performance of Abrasive Flow Machining (AFM) using CCNN. AFM is a

part of an automotive engine. CCNN was able to predict the termination point where the

AFM would meet the air�ow speci�cation. The result showed that CCNN outperformed

regression model. Diamantopoulou et al. (2005) modi�ed ANN by applying cascade cor-

relation algorithms for its training. The weights interconnecting neurons were changed

using Kalman's learning rule (Kalman, 1960). The modi�ed ANN here successfully proved

to be a useful model for identifying the monthly values of water quality parameters and

predicting the quality parameters in water (Diamantopoulou et al., 2007). Bathen et al.

(2007) used CCNN for predicting the progression of breast cancer. The objective of this

study was to discover the hormone status, histological grade and axillary lymphatic spread

the diseased patients.

On studying performance of CCNN we could observe that:

• Though we found very limited applications of CCNN, it outperformed ANN and

other statistical techniques.

• They addressed the limitations of ANN and gave better accuracy though with its

limited application. We understood that on some data their performance was not as

expected. The comparison study conducted by Burke et al. (1994) showed that ANN

had better accuracy than CCNN. Chudova et al. (1998) on evaluating the ability

of CCNN understood that the model needs training and retraining for optimizing

their performance.

• However, CCNN had a challenge of identifying where to add new neuron, but tradi-

tionally it was studied that the neurons were added sequentially. The other challenge

was to �nd when to add a new node and develop the connection of these new node

(Yang and Honavar, 1991).

• It is learned that though CCNN performs better than ANN, it needed further mod-

i�cation/ optimization for showing better performance. This made to propose a

ModCNN.
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• Here in ModCNN the neurons and hidden units are adapted automatically/ dynam-

ically for giving better accuracy. ModCNN assisted in identifying the independent

factors, which were fed to predict and identify the cases which may need emergency

interventions in later stages of treatment. The experimental comparison of the pro-

posed study with ANN and CCNN showed that ModCNN was better than later

techniques.

2.7 Bridging Statistical Analysis with Process Mining

The Figure 2.4 explains about the analysis and how we are trying to bridge a gap between

the statistical analysis and process mining for meeting our objective. The proposed work

aims to recommend the critical treatment path for the identi�ed critical cases. Critical

treatment path is a sequence of activities in a healthcare process to be performed with

minimum waiting and processing time with the help of adequate resources. We applied

the technique of EHR process mining for �nding the critical path. It is observed that

EHR improves the quality of care and process mining assist in modelling the treatment

management by quantifying the resource utilization using EHR data (Baker et al., 2017).

In this section, we would discuss the application of EHR process mining in the healthcare

process.

Figure 2.4: Flow of Study
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2.8 Electronic Health Record Process Mining

EHR is a prospective and actual information of a patient medication, history of opera-

tion, treatment including past diagnostics and follow-ups, and result of laboratories and

signal/ image processing recording which are carried retrospectively (Rosenthal, 2013).

They also provide assistance for non-clinical information. This would help in developing a

generalized protocols and treatment pipelines. The primary care centre, hospitals, phar-

maceutical and laboratories are interconnected by Health Information Exchange (HIE)

to record EHR and make them to play a vital role in communication between healthcare

and statisticians (Mertz, 2014). Sittig and Wright (2015) addressed the use-cases of EHR

in-order to assist:

• Clinicians : For providing safe and e�cient healthcare.

• Researchers : To mine and extract information about disease health-

care process.

• Administrators : The reliability on single EHR developer is decreased.

• Software Developors : To overcome the limitations of current EHR and build

an innovative application.

• Patients : To access their personal health information from any-

where, where they are getting health check-up.

2.8.1 Assistance of EHR in Clinical Decision Support System
(CDSS)

Kim et al. (2008) developed an independent as well as inter-operable and extensible CDSS

using EHR. The interoperability was between the CDSS and knowledge engine. Knowl-

edge engine is the key for understanding EHR and assisting in taking appropriate clinical

decisions. Focsa (2010) re-engineered EHR for assistance in taking clinical decision in

clinical work�ow system. This was achieved by management of process in work�ow along

with knowledge extracted using semantic models. Further re-engineering on EHR was

performed to make it more optimal. (Peleg, 2013) integrated EHR with organizational

work�ow to �nd the non-compliance pattern (Riha et al.). By discovering frequent non-

compliance pattern, CDSS could be made more e�cient and accurate. Such an CDSS
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that could identify positive correlation between prior study and EHR about a case was

highly needed in emergency department (Grana and Jackwoski, 2015). With the assis-

tance of model that could identify the non-compliance pattern, Chen and Sarkar (2014)

developed a knowledge discovery framework for mining EHR data. Using this framework,

they were able to �nd an association of disease-disease, disease-drug, and disease-gene.

The identi�cation of this association would assist in data selection, preprocessing, trans-

formation, data mining, and validation. Jonnagaddala et al. (2017) used EHR data having

information of demographic, billing, medication and lab reports and investigated the ad-

vantage of text mining on it. This analysis helped in providing better healthcare by

identifying cohorts, correlations in disease, phenotypes in genome-wide association and

the associated risk factors.

2.8.2 EHR in healthcare system

It is observed that for better EHR based event logs, it is important to have better process-

aware EHRs and healthcare information technology. Most of the issues raised and analysed

about the EHR application is in its work�ow system. For this, an application of process-

aware EHR and healthcare information technology system would enhance the adaptability

of EHR in healthcare. Using a well established and adopted EHR process model,

• The best treatment process could be identi�ed.

• The communication about the treatment among the clinical sta�s (task assignments)

could be made.

• Provide best possible care to the patients.

• Healthcare resources could be used in a best possible way.

Delias et al. (2013) clustered the activity patterns in emergency department. Ba-

sole et al. (2015) used EHR data to develop an interactive model that could mine the

data and provide the visual interaction by exploring process. Helm and Paster (2015)

applied process mining to get an insight of complex healthcare process. Kumar et al.

(2014) developed a prototype (AsthmaFlow). This framework helped clinicians in visu-

ally analysing and exploring the process involved in emergency department of paediatric

asthma. The framework proposed here assisted clinicians to predicting the drifts in clin-

ical cases by combining process mining with machine learning and understanding the
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process �ow (Bostock et al., 2011). Wu et al. (2010) developed a model that could predict

the heart failure, six months prior to the event along with actual date of diagnosis using

EHR data. Almasalha et al. (2013) mined the hidden patterns in EHR and extracted

knowledge in nursing care. Using this model the authors were able to predict whether the

patients admitted in the hospital would be able to meet pain relief goals. Here the patients

with less than three days of hospital stay were compared with the patients su�ering with

end-of-life disease for longer hospital stays. Jensen et al. (2012) mined the EHR data to

classify the patients more accurately based on the disease. As-well they could �nd the

correlation-ship among the diseases. Li et al. (2013) proposed a semi-automatic model for

phenotype (Phenotype studies are set of observable characteristics in an individual due

to interaction of its genotype).

From the study of Jalloh and Waitman (2006) it was understood that EHR were the

best data source for reducing the medical error. Using this EHR Chazard and Beuscart

(2009) built a framework to identify the risk factors associated and prevent its prevalence.

Helm and Paster (2015) investigated whether EHR data generated is suitable for applying

in process mining. For this they developed a simpli�ed simulation of radiological work�ow

process using Petri nets. Hence it is observed that EHR event logs could be used for

process mining of healthcare process.

2.8.3 Adoption of EHR in India

Most of the healthcare industry is trying to implement EHR based system. This is

achieved by encouraging the conversion of paper-based application to EHR-based (Black

et al., 2011). Very soon we can see them becoming a default healthcare application in

India, marking beginning of digital India. Sharma and Aggarwal (2016) in their study

could �nd around twenty hospitals where EHR system has been successfully implemented.

Karthikeyan and Sukanesh (2012) observed that the hospitals which have successfully

implemented EHR are more e�cient and consistent. The medical error in those hospitals

are exponentially very low and patients satisfaction is very high. In a report on "Electronic

Health Record standards for India" by Ministry of Health & Family Welfare, Government

of India (2013), EHR vendors were classi�ed based on their new scienti�c creation and

work�ow processes. Hence it is not just important to adopt any EHR system, but one

which is scienti�cally tested and has a better process model for the healthcare system

under consideration.
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The recent paradigm shift in process mining has seen lot of its research applications

in healthcare domain. EHR process mining extracts the information by building the

relationship between activities and the resources conducting those activities. Mans et al.

(2013) showed several related applications of process mining in a healthcare process.

Rebuge and Ferreira (2012) designed and proposed a process model for an emergency

care in a public hospital in Portugal. Perimal-Lewis et al. (2012) from Australia studied

the patients journey within the hospital. Poelmans et al. (2010) developed a process

model for breast cancer treatment. On literature survey, we found several related works

on healthcare process.

2.9 Process Mining in Healthcare

EHR records the healthcare activities and assist in maintaining proper and complete

information. Nasiri et al. (2013) suggested the standard format for data exchange in EHR

so that it can be further analysed using process mining techniques (Grana and Jackwoski,

2015). By adopting EHR in healthcare, application of process mining in healthcare system

has increased largely in recent years. This would assist in understanding the clinical

process and its complexity (Kaymak et al., 2012).

The data that are recorded in a healthcare process are events and it varies based on

the department. These recordings are limited to a particular department. For example

in billing department, it records the information about the payment related to health-

care services. This could be overcome by proper coordination among intra-department

and inter-department known as cross-organizational process mining. Tomar and Agarwal

(2013) worked on cross-organizational process mining and its application in healthcare

to identify the regular and exceptional cases. Yang and Hwang (2006) built a process

model to detect the fraudulent and abusive cases in claiming expensive health insurance.

The model was built using data mining technique with an adaptable and extensible de-

tection model. Gupta (2007) built a process mining model to assist in cross function and

multidisciplinary process. The model was built with the combination of clustering and

association rule techniques. They helped in grouping similar characteristic patients.

Its been two decades since the clinical data were recorded as EHR (Shortli�e and

Cimino, 2013) and data mining been �rst applied for statistical analysis on them (Klösgen

and Zytkow, 2002). On research we saw a lot of statistical technique for analysing the

clinical data (Benneyan, 2001). Obenshain (2004) surveyed various statistical techniques
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which can be applied for analysing the healthcare data and is shown in Table (2.2).

Table 2.2: Di�erent statistical techniques categorised based on di�erent objectives

Objective Supervised Unsupervised Comment

Prediction Ordinary least,
Squares regression,
Logistic regression,
Neural networks,
Decision trees,
Memory-based rea-
soning, Support
vector machines,
Multi-adaptive re-
gression splines

Not applicable From analysis we
understood all
these models per-
formed well.

Classi�cation Decision trees, Neu-
ral networks, Dis-
criminant analy-
sis, Bagging and
boosting ensembles,
Naïve Bayes classi-
�ers.

Clustering (eg, K
means), Kohonen
networks, Self-
organizing maps.

Performed well,
but needed further
research

Exploration Decision tree Principal compo-
nents Clustering
(eg, K means), Link
analysis

Not well imple-
mented

A�nity Not applicable Associations, Se-
quences Factor
analysis

Well used

2.9.1 Spaghetti-like process model

Healthcare system integrated with clinical guidelines could be used to dynamically guide

clinicians in taking critical decisions (Dumas et al., 2005). Even though EBM has strictly

asked all the hospitals to follow the clinical guidance, often most of the hospitals fail

to obey them due to their complex policies and patients characteristics. So, Rovani

et al. (2015) applied process mining and built a declarative model to act as a mediator

between the clinical guidance and a healthcare process. They improved the existing system

using process mining technique to analyse the deviations/ drift and assist in following the
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guidelines more e�ectively. But, Kaymak et al. (2012) argued that current algorithms

discovered spaghetti-like process (Kaymak et al., 2012) for healthcare system, due to

which adapting them was a challenge. The complexity of healthcare process is due to

dynamic (Gupta, 2007), complex (Mans et al., 2009), ad-hoc (Mans et al., 2009) and

multidisciplinary (Gupta, 2007) in nature. An Example spaghetti-like process is shown

in Figure 2.5. But, this could be overcome by:

• Incorporating medical knowledge in process mining algorithm.

• Preprocessing the data based on clinical knowledge and decreasing the search space.

Smaller the search space, simpler model could be discovered.

• Healthcare processes are not always simple sequence of events and we cant expect

the process to follow the prede�ned sequence. Hence they are dynamic in nature.

This is due to physical system that are dynamically described. Thus, build an expert

system that could predict the changes in the sequence.

• Clinicians aim at multiple goals, following the single healthcare process. The goals

are needed to be known and subjected, if the algorithm has to be properly depicted.

Due to highly �exibility and heterogeneous nature of healthcare process it is impor-

tant to have a model which is ready to adapt the sudden changes in the process. This is

needed, because most of the healthcare process believes that the process remains in the

steady-state from the beginning to the end of its process �ow, but this is not true. Since,

the patients frequently deviate from the actual treatment path (Song et al., 2009), so

Bose et al. (2011) proposed the concept drift. They understood that the process may be

changing on the course of execution, while the cases are getting handled. This is known

as second-order dynamics and was well analysed. The result of simpli�ed process is shown

in Figure 2.6.

2.9.2 Care�ow: A patients journey within the hospital

Kim et al. (2013) evaluated a patient care process in a healthcare clinic in-order to reduce

the waiting time. For this, they built a machine-driven model which could identify fre-

quent path of execution. The frequent path of execution is the treatment path through

which the patients make their journey in the hospital. McGregor et al. (2011) built a
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Figure 2.5: Example spaghetti model discovered from standard process mining event log
repository (4TU.Centre for Research Data).

framework that could be used to update the patients journey and provide critical care.

An approach was made to discover knowledge and develop a process �ow mappings. The

framework can be used to update the patients journey and provide critical care. A model

was built using "patients journey modelling architecture" of MacDougall et al. (2011).

This journey or process �ow needed to be monitored so that proper treatment manage-

ment could be provided. For that, the processes in the healthcare should be streamlined.

43



8,571

1,865

2,569906

1,435

3,728

1,2991,212

2,923

1,143

1,143

9,00871

234

225

4,275 4,255 2,968

1,143

1,143

336

365

15,353

1,469

3,899

2,724

Start\\Start

1,143

End\\End

1,143

consult Outpatients\\410100

1,136

Administrative Rate\\419100

2,171

Follow-up counseling outpatient\\411100

5,239

Assumption laboratory research\\370000

15,353

hemoglobine photo-electric\\370407

4,275

creatinine\\370419

3,899

Sodium Flame photometric\\370442

4,255

Potassium potentiometric\\370443

4,326

Leukocytes count electronically\\370712B

2,968

Counting platelets - electronically\\370715A

2,724

order tarief\\379999

9,008

sgot-acit  kinetic\\370488E

1,468

sgpt-acit  kinetic\\370488G

1,469

Figure 2.6: Lasagne: Simpli�ed model of spaghetti process model shown in Figure 2.5.

This is known as �care�ow�, on which process mining is applied to mine and understand

the process �ow. This would help in discovering the treatment path and stratifying them,

as they are followed by a particular group of patients. They also help in analysing the

healthcare process from control, organizational, and performance perspective (Mans et al.,

2009).

2.10 Motivation and Contributions

From observation we understood that there is still a need for comprehensive research for

providing clinical solutions. There has been a good quality research on applying process

mining on healthcare system for providing better healthcare services. Process mining

algorithm assist in retrieving knowledge from EHR data and transfer them into a model

which would save lives. This would also reduce the cost along with the waiting time. As

the EHR data is inconsistency, extracting knowledge out of a real spaghetti-like healthcare

process is a challenging task and there is huge scope for addressing this challenge.

From the literature, we observed " the prevalence of GSD, the statistical tools used

for �nding signi�cant factors, emergence of CCNN from ANN, and application of process

mining in healthcare system". The study motivated us to research further in use of process

mining to provide a better decision support in healthcare.

• The study revealed that the mortality rate due to medical error is more than that

of due to accidents. The reason for this is improper medication, diagnostic and

therapeutic errors. But the primary cause of the medical error was in the failure

of healthcare process modelling. In this work, we developed an information system,
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which was capable of analysing EHR data and converting it to a healthcare model.

The proposed model was tested for its accuracy, thus reducing the medical error.

• From study we found very less research done on GSD. Hence, there was a need

for analysing the disease progression so that any emergency situation could be well

handled without making any medical error. Our aim was to identify those case

which may become complicated and suggest critical treatment path. We built a

model for identifying the signi�cant factors associated with GSD and to predict

its progression. This model could identify critical cases which needed emergency

interventions and recommend the critical treatment path.

• We could �nd few work that predicted the patient's journey in the hospital. This

motivated us to work further on this. In this work, we recommend the journey path,

along with right resources for handling the activities in the path and provide proper

care-�ow.

• ANN has shown good accuracy in clinical research. But, few studies revealed that it

was slow due to its very complicated backpropagation technique. This made us to

think of a model, that could perform better than ANN. Later studies has shown that

CCNN has performed better than ANN. But, it too had limitations so we modi�ed

it and proposed our model, ModCNN.

• Process mining was studied to be applied for the analysis of business application.

But its application in clinical research was very less. This was due to improper data

recording. On having EHR data, we could run EHR process mining techniques on

them and recommend the critical treatment path along with the e�cient resources.

2.11 Problem Statement

Design and development of a clinical decision support system for identifying the cases

which may need emergency intervention and recommend a critical treatment path using

machine learning and process mining techniques.

2.11.1 Research objectives

• To develop a clinical decision support system by dynamically selecting the best

suitable machine learning technique discovered by comparing their performance for
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the input data.

• Identifying the critical cases by predicting the disease progression using the signi�-

cant factor associated with each spectrum. (Gallstone disease � a case study).

• Recommending the treatment path and an e�cient resource for each evidence in

the treatment path using electronic health record process mining technique, for the

identi�ed critical cases.

2.12 Synergies of process mining in Healthcare

Aim of this work is to assist the clinicians in taking appropriate clinical decisions regard-

ing the treatment management and reducing the medical errors using process mining and

machine learning techniques. From the study it was understood that most of medical

errors were due to process error. For that matter, we designed and developed a CDSS

to recommend the critical treatment path for the cases which needed immediate inter-

ventions. But, it was retrospectively observed in the case study of GSD, that few cases

initially showed positive response towards the treatment, later needed interventions. The

CDSS developed in this work identi�es the critical cases at the time of admission using

ModCNN and then recommends the critical treatment path for them using process mining

techniques.

The challenge and issues in this work was in developing an information system to

record EHR of the patients who came with the complaint of abdominal pain. It was hard

to maintain the system in our study area. The recorded information was later converted

into the compatible format. Yet, another challenge was in selecting an optimal model that

could stratify the cases and predict the disease progression more accurately. Precision was

more important here as the experiments were conducted on real life study. The proposed

ModCNN though showed better accuracy in prediction failed to perform well, when tested

with varying feature size. This challenge was addressed by adding neurons in parallel for

di�erent hidden units using master-slave model. The identi�ed critical cases were further

needed to be recommended with the critical treatment path to avoid later complications.

The real challenge was in �nding the critical activities and right set of available resource

for performing the critical activities along the treatment path. The complete approach

towards the de�ned research problem is showed as a roadmap in the Figure 2.7 and 2.8.

46



Lab investgations

32 features

Statistical Comparison

ANN CCNN ModCNN

Identify the significant factors

Predict the disease progression

Accuracy of prediction is evaluated using AZ

Based on accuracy a model is selected. 
ModCNN showed higher accuracy

Using the selected model, 
classify different spectrum of GSD

Predict the disease progression. 
This prediction helps in identifying 

the treatment response at

the time of admission itself

Prediction is tested by:

1. Chi-squared test

2. Relative risk of each different spectrum of GSD

3. Accuracy of prediction is tested by AZ

Identifty the critical cases

For identified critical cases recommend 
the critical treatment path

Objective 1

Objective 2

Figure 2.7: Roadmap of the Problem approach
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Complicated cases identified by ModCNN

Recommend the critical treatment path

Construct the annotated transition system

Aim of annotated transition system is to 

1. find and recommend the future state of execution 

2. Identify the adequate resources

Partrial trace       Future state
A  B  C  D  E  F     ?

1. Identify the next succeeding activity in the future state.

This was achieved by:

1. Activity metric: To identify the waiting time at each activity 

2. Transition metric: To identify the performance of activity and 

resource at different position of execution 

3. Causal metric: Build a causal relationship between the 

succeeding and preceeding activity. This is needed to find the 

reason of occurance of an activity 

2. On identifying the activity to succeed the current state, we measure the 

cost of occurance of that activity using TDABC 

3. On identifying the activity to succeed the current state, we need to find

the efficient resource who is available and capabale of performing the 

recommended activity.

1. Theory of Arousal: Using this theory proposed by 

yerkes-dodson, we identified the optimal load of each resource 

where his performance is better. Based on this finding the 

recommendation was made.   

2. Analytic Hierarchy Process: The concept of AHP was used to 

rank the resources. This means that higher the rank of the 

reource, his performance is higher. 

3. Hence, Based on ranking and availability, the adequate 

resource was recommended to perform the activity in the 

future state.

Objective 3: Application of process mining

Figure 2.8: Roadmap of the Problem approach
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Chapter 3

Framework and Study Material

The proposed study aimed in identifying the risk level of each patient at the time of

admission. Our study population included the patients with abdominal pain, dyspep-

tic symptoms, and evidence of gallstone in radiography, USG, CT. The patients with

pancreatitis who were not clinically improving, underwent Contrast-Enhanced Computed

Tomography (CECT) abdomen to rule out severe pancreatitis. The percentage of each ob-

servation of these investigations are represented as stack bar in the Figures 3.1,3.2,3.3,3.4

and 3.5. In these �gures the length of stack bar shows the percentage of observation and

is shown on top of the bar. Patients with chronic alcohol abuse, elevated Renal Functional

Test (RFT), salivary gland pathology, consuming drugs causing pancreatitis, concomitant

abdominal conditions like a perforated peptic ulcer, mesenteric vascular occlusion, intesti-

nal obstruction and who had undergone ERCP in the past, were excluded from the study.

The pie chart in the Figure 3.6 shows the classi�cation of di�erent spectrum of GSD. The

treatment procedure of these patients were recorded using EHR system for management

of GSD.

Figure 3.1: Clinical readings showing SYMPTOMS observed through lab investigations
in the study cases.
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Figure 3.2: Clinical readings showing SIGNS observed through lab investigations in the
study cases.

Figure 3.3: Clinical readings showing COMORBID Conditions observed through lab
investigations in the study cases.

Figure 3.4: Clinical readings showing TESTS conducted on the study cases.
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Figure 3.5: USG Findings

Figure 3.6: Classi�cation result of GSD patients

3.1 Experimental Set-up

The Figure 3.7 illustrates how the data from inter-department (pharmacy, laboratory,

radiology, and narrative) are processed. Narratives are free text but coded with clinical

terms. The information system stores this information in EHR format in a repository.

The statistical analysis could be conducted to classify the patients and identify their risk

factors using the stored EHR data. This would be helpful if any clinician wants to read a

particular patients data. The system would help him in getting the statistical summary

of the data. This statistical analysis is illustrated in Figure 3.8. Here the patient's data

associated with the clinical features are considered. The clinical features are diagnosis,

medication and laboratory test data. The diagnosis is shown in pink, medication in blue

and laboratory in green. This data is fed into ModCNN, which identify the prevalence of

signi�cant factors: C2 and C4. Based on the presence of this factors, an expected number
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of patients having the signi�cant factors are strati�ed. Thus �nding those cases which

may have a higher risk. This would help the clinicians in understanding the patients

health status and also provide them with the information about how the disease may

progress. In this work, we installed an information system that collected the treatment

related data along with the patient's journey in the hospital. The information collected

was converted into EHR format for further analysis in process mining.

Figure 3.7: Statistical analysis of EHR.

3.1.1 Description of ModCNN

ModCNN was built using the architecture of CCNN using Matlab platform. Due to its

high computational capability, it was run on workstation built with Intel i7 core processor

with the processing speed up to 3.6 GHz. ModCNN was developed in a attempt to address

and overcome the slow learning algorithm of ANN and challenge of adding new neurons,

when to add them and develop a connection between the neurons as in case of CCNN. From

the literature it was studied that CCNN performed better but needed some modi�cation

and optimization. In this work we developed a ModCNN, where neurons and hidden units

are adapted automatically/ dynamically for giving better accuracy. Here, we examined

the performance of ModCNN and compared it with ANN and CCNN. It was observed

that ModCNN performed better than other two. This is shown in Figure 3.9

When it was tested for accuracy with varying feature size, it was seen that the Mod-

CNN's accuracy started drifting as the feature size was increased above 100. This infor-

mation is shown in the Figure 3.10.
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Figure 3.8: Experimental setup for analysis of EHR data using ModCNN.
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Figure 3.9: Accuracy testing of ANN, CCNN, and ModCNN.
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Figure 3.10: Empirical testing of ANN, CCNN, and ModCNN.

To overcome this situation, we parallelized the learning function using master-slave

model. The Master assigns tasks to slaves with the information about number of neurons,

input data and expected result. Slaves built and learns the model. Slaves on reaching the

threshold would return number of iteration it took to reach the threshold along with the

MSE. Master on receiving this information from slaves would run the gradient descent

algorithm to �nd the optimal set of neurons that would yield least MSE with minimum

number of iterations. This master-slave model is shown in Figure 3.11.

3.2 Electronic Health Record for Healthcare Process

Mining

In Process mining, the sequence of activities are known as trace (Van Oirschot et al., 2014).

A patient in his journey within the hospital goes through di�erent activities which are

conducted by the hospital sta�. Clinical sta� are responsible for performing the clinical

activities. Administrative based activities such as registration, taking patient to the ward,

managing their diet, preparing discharge procedure and so on were performed by non-

clinical sta�. The information system recorded and maintained the events as EHR. Every

activity used the time stamp to add information such as waiting and service time, along

with resource information. The occurrence of an event in a healthcare system, not only
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Figure 3.11: Illustration of master-slave model.

depends on the completion of the previously assigned task, but also need to consider the

patient's health condition and his/ her response towards the treatment (Partington et al.,

2015). Along with this, various other factors such as: sudden change in treatment options

based on how patients respond towards the ongoing treatment, shared decision making

by multidisciplinary professionals and availability of resources are also to be considered

before starting an activity. Hence a healthcare system is a non-trivial as they may not

get executed in the way it has been sequenced/ built.

In the current study, the process starts its recording when a patient comes with the

complaint of abdominal pain at the emergency care unit. The patient is then advised to un-

dergo some lab investigations, to get the parameters mentioned in the Figure 3.1,3.2,3.3,3.4

and 3.5. ModCNN is run on the vitals to retrieve the information about the patients

health condition. Using this information, the process mining technique recommends dif-

ferent treatment path. The process ends with a de�nitive treatment management based

on the disease progression. The complete model consisted 23 events with 575 traces and

58 resources. Here the trace is the sequence of events and resources are the people con-

ducting those events. The goal of the proposed technique is to identify the trace match

for a partial trace σ and recommend the path of execution along with an e�cient resource

who can handle the assigned task.
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3.3 Trace Clustering and Trace Matching

Traces were needed to be clustered in-order to complete the partial trace. The cluster-

ing helps in identifying the remaining time and recommending the optimal path for the

partially executed trace. The overall distribution of the traces based on the time taken

for the completion of an assigned task is shown in the Figure 3.12. And the clustered

output showing the traces that took the best, better and good time for the completion

of an entire process is shown in Figure 3.13, 3.14, and 3.15 respectively. The K-means

clustering algorithm clustered the traces that took an time duration from 0− 36 hours as

the best traces. Similarly the traces that took the duration of upto 85 hours were clustered

as better and the traces that took more than 82 hours were considered as good.

Figure 3.12: Bar chart showing overall distribution of traces based on the duration.

The distribution of activities based on the position of their occurrence is shown in

the Figure 6.13. This information is extracted from the event logs recorded. On running

Longest Common Subsequence (LCS) algorithm on the distributed set of activities, we

identi�ed the sequence of occurrence that repeatedly occurred and is shown in the Figure

6.14. The common sequence of events that repeatedly occur is known as variant. The

traces occurring in the variants are clustered as good, better and best cluster and is

shown in the Figure 6.15. The knowledge extracted from this information is useful for

matching the sequence for a partial trace σ. Using this discovered sequence of activities,
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Figure 3.13: Bar chart showing the cluster of BEST traces.

Figure 3.14: Bar chart showing the cluster of BETTER traces.

an alternative path of execution was recommended if any delay in process execution was

observed.
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Figure 3.15: Bar chart showing the cluster of GOOD traces.

Figure 3.16: Activity position distribution showing the execution of activities.

3.4 Control-Flow: A Causal Relationships

An activity is the minimum requirement for discovering the control-�ow perspective of a

process. The control-�ow shows the causal relationships between activities in a process.

Control-�ow model depicting the causal relationship between activities of hospital treat-
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Figure 3.17: Traces at each variants.

ment process is shown in Figure 3.19. It is built using Petri net notations 1. According to

control �ow process model shown in Figure 3.19, a patient has to take an appointment/

registration (AR) and visit the hospital, based on the condition of patient, the case is

considered as out patient (OP) or in patient (IP). Concurrently, the check history(CH) of

the patient is veri�ed. On the basis of veri�cation outcome, the decision making (DM) is

taken either to begin treatment (BT) or discharge (D) the patient. If the case still needs

further evaluation, case is re-examined (RE) and the process is repeated.

3.5 Representing and Storing Event Log: Mining eX-

tensible Markup Language

Until recently, Mining eXtensible Markup Language (MXML) (shown in listing 3.1) and

its variant such as Semantically Annotated Mining eXtensible Markup Language (SA-

MXML) are the de-facto standards for storing and exchanging event logs in digital format.

Based on many practical limitations with MXML (and SA-MXML), the eXtensible Event

Streams (XES) format has been accepted as a standard event log format. XES has been

made less restrictive and truly extensible.

1A Petri net is a triplet N = (P, T, F ) where P is a �nite set of places, T is a �nite set of transitions

such that P ∩ T = φ, and F ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs, called the �ow relation.

59



Figure 3.18: cluster of variants showing the traces belonging to di�erent variants.

Figure 3.19: Petri-net model of hospital treatment process.

An MXML log starts and ends with the Work�owLog tag. Each Work�owLog can

contain information related to one or more processes (represented by Process tag). Each

process tag can have many cases (represented by ProcessInstance tag), and it can contain

any number of events (represented by ProcessInstance tag). For example, hospital admis-

sion MXML �le shown in the listing 3.1 consists of one event log with the information of
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a single process. The process consists of a single case with six events. Each case (Pro-

cessInstance) can be identi�ed by a unique attribute called id. Each event under a case

can have a various attribute such as (Id, EventType, TimeStamp, OriginatorId, etc.).

General structure of XES meta-model is shown in Figure 3.20. An XES document

contains one event log with any number of cases and attributes which can be nested.

XES permits the usage of �ve basic data types, namely, Boolean, Integer, String, Date,

and Float for the standard built-in data types of XML xs: boolean, xs: int, xs:string,

xs:dateTime, and xs: �oat respectively. The attribute that is mandatory should be de-

clared as global. Listing 3.2 shows the part of event log related to hospital admission

process in XES format. An XES document contains one event log with any number of

cases and attributes which can be nested. In the example XES log, three extensions are de-

clared: Concept, Time, and Organizational. For each of these extensions, a shorter pre�x

is given. These pre�xes are used in the attribute names. For example, the Time extension

de�nes an attribute timestamp. It also speci�es two lists of global attributes. Traces have

one global attribute: attribute concept:name is mandatory for all traces. Events have

three global attributes: attributes time:timestamp, concept:name and org:resource are

mandatory for all events. Further, classi�ers classify the events based on the attributes.

For example,e = #resource(e) classi�es events based on the resource executing the event.

• Concept: de�nes the name attribute for traces and events. For traces, the attribute

typically represents some identi�er for the case. For events, the attribute typically

represents the activity name.

• Time: de�nes the timestamp attribute for events.

• Organization: de�nes three standard attributes for events: resource, role, and group.

The resource attribute refers to the resource that triggered or executed the event.

The role and group attributes characterize the (required) capabilities of the resource

and the resource's position in the organization.

• Lifecycle: de�nes the transition attribute for events, possible values of this attribute

are schedule, start, complete, auto skip, etc.

• Semantic: de�nes the model reference attribute for all elements in the log. This is

used for pointing to concepts in the ontology. For example, if there is any ontology
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Listing 3.1: Event log of hospital treatment process in MXML format.

<WorkflowLog ...>

<Source program =" Hospital process"/>

<Process ...>

<ProcessInstance id="xx12">

<AuditTrailEntry >

<Data >

<Attribute name="Costs ">200</ Attribute >

</Data >

<WorkflowModelElement >AR </ WorkflowModelElement >

<EventType >complete </EventType >

<Timestamp >10 -10 -2012 T01:00</ Timestamp >

<Originator >Pete </Originator >

</AuditTrailEntry >

<AuditTrailEntry >

<Data >

<Attribute name="Costs ">130</ Attribute >

</Data >

<WorkflowModelElement >IP </ WorkflowModelElement >

<EventType >complete </EventType >

<Timestamp >10 -10 -2012 T01:02</ Timestamp >

<Originator >Sean </Originator >

</AuditTrailEntry >

<AuditTrailEntry >

<Data >

<Attribute name="Costs ">230</ Attribute >

</Data >

<WorkflowModelElement >CH </ WorkflowModelElement >

<EventType >complete </EventType >

<Timestamp >10 -10 -2012 T01:05</ Timestamp >

<Originator >Sue </Originator >

</AuditTrailEntry >

<AuditTrailEntry >

<Data >

<Attribute name="Costs ">340</ Attribute >

</Data >

<WorkflowModelElement >Decide </ WorkflowModelElement >

<EventType >DM </EventType >

<Timestamp >10 -10 -2012 T01:11</ Timestamp >

<Originator >Sara </Originator >

</AuditTrailEntry >

<AuditTrailEntry >

<Data >

<Attribute name="Costs ">280</ Attribute >

</Data >

<WorkflowModelElement >D</ WorkflowModelElement >

<EventType >complete </EventType >

<Timestamp >10 -10 -2012 T01:20</ Timestamp >

<Originator >Pete </Originator >

</AuditTrailEntry >

</ProcessInstance >

<ProcessInstance id="xx13">

<AuditTrailEntry >

<Data >

<Attribute name="Costs ">170</ Attribute >

</Data >

<WorkflowModelElement >AR </ WorkflowModelElement >

<EventType >complete </EventType >

<Timestamp >15 -10 -2012 T01:00</ Timestamp >

<Originator >Pete </Originator >

</AuditTrailEntry >

...

</ProcessInstance >

...

</Process >

</WorkflowLog >
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Listing 3.2: Event log of hospital treatment process in XES format.
<?log xes.version ="1.0" xes.features ="nested -attributes">

<extension name=" Concept" prefix =" concept" uri="http ://.../ concept.xesext"/>

<extension name="Time" prefix ="time" uri="http ://.../ time.xesext"/>

<extension name=" Organizational" prefix ="org" uri="http ://.../ org.xesext"/>

<global scope =" trace">

<string key=" concept:name" value="name"/>

</global >

<global scope =" event">

<date key="time:timestamp" value ="2012 -09 -16"/ >

<string key=" concept:name" value="name"/>

<string key="org:resource" value=" resource"/>

</global >

<classifier name=" Activity" keys=" concept:name"/>

<classifier name=" Resource" keys="org:resource"/>

<classifier name="Both" keys=" concept:name org:resource"/>

<trace >

<string key=" concept:name" value="xx12"/>

<event >

<string key=" concept:name" value="AR"/>

<string key="org:resource" value="Pete"/>

<date key="time:timestamp" value ="10 -10 -2012 T01:00"/ >

<string key=" Event_ID" value ="2342"/ >

<string key="Costs" value ="130"/ >

</event >

<event >

<string key=" concept:name" value="IP"/>

<string key="org:resource" value="Sean"/>

<date key="time:timestamp" value ="10 -10 -2012 T01:02"/ >

<string key=" Event_ID" value ="2343"/ >

<string key="Costs" value ="230"/ >

</event >

<event >

<string key=" concept:name" value="CH"/>

<string key="org:resource" value="Sue"/>

<date key="time:timestamp" value ="10 -10 -2012 T01:05"/ >

<string key=" Event_ID" value ="2344"/ >

<string key="Costs" value ="340"/ >

</event >

<event >

<string key=" concept:name" value="DM"/>

<string key="org:resource" value="Sara"/>

<date key="time:timestamp" value ="10 -10 -2012 T01:11"/ >

<string key=" Event_ID" value ="2345"/ >

<string key="Costs" value ="280"/ >

</event >

<event >

<string key=" concept:name" value="D"/>

<string key="org:resource" value="Pete"/>

<date key="time:timestamp" value ="10 -10 -2012 T01:20"/ >

<string key=" Event_ID" value ="2346"/ >

<string key="Costs" value ="170"/ >

</event >

</trace >

<trace >

<string key=" concept:name" value="xx13"/>

<event >

<string key=" concept:name" value="AR"/>

<string key="org:resource" value="Pete"/>

<date key="time:timestamp" value ="15 -10 -2012 T01:00"/ >

<string key=" Event_ID" value ="2347"/ >

<string key="Costs" value ="200"/ >

</event >

...

</trace >

...

</log >
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Figure 3.20: Event log structure in XES format.

explaining various classes of memberships, for example, Platinum, Gold, and Silver.

Using semantic extension, any given trace can refer to the suitable element in the

ontology for classifying the memberships.
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Chapter 4

Modi�ed Cascade Neural Network
(ModCNN)

The proposed system is a stochastic learning tool to analyse the disease behaviour and

predict its progression. For this, the signi�cant risk factors associated with the disease

were �rst identi�ed in a supervised way. And, using these risk factors the model learns

the disease behaviour and helps in prediction. The complete learning process is illustrated

in the Table 4.1. In the Table 4.1, {A, B, C, D, E} are the features associated with

the disease and {1, 2, 3, 4, 5, 6, 7} are the cases. Among the features, B , D , E

are identi�ed as signi�cant factors and the check mark (′ ′ ) indicates the presence of

feature in the respective cases. The model classi�ed the data set into {Not Present, At

the Edge, Partly Present and Present}. Just identifying signi�cant factors don't solve an

issue of predicting the disease behaviour. For this, we need to categorize the data and

then perform appropriate statistical analysis.

Table 4.1: Illustration of feature selection and classi�cation

Features →

Cases ↓ A B C D E Result

1 At the Edge

2 Not Present

3 Partly Present

4 Not Present

5 Partly Present

6 Not Present

7 Present
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This chapter explains the architecture and functioning of ModCNN. A systematic

analysis is conducted to understand and compare the e�ciency of ANN, CCNN, and

ModCNN in predicting the disease progression. On analysis and from the study, it was

observed that ANN was well applied for disease evaluation. But, we understood that

ANN is a slow learner when compared to CCNN. In this work, we modi�ed CCNN and

made it more e�cient.

4.1 Introduction

The synaptic connections in the human brain are unique for every individual and are not

entirely inherited. As a learning process, this synaptic connection iteratively trains itself

(Fukushima, 1975). The Carnegie Mellon University experimented on neurons and studied

that every feedback from di�erent part of the human body is purely due to neurons in the

brain, which are connected by this synaptic connections. Hence, as a learning process since

birth, this feedback system trains the brain to interpret and understand sensory stimuli.

It is impossible by any convention physiological experiment to understand the mechanism

of pattern recognition inside the brain. But in 1943, the neurophysiologist Warren and

Mc Cullon and a mathematician Walter Pitts (McCulloch and Pitts, 1943) understood

this mechanism. Using this knowledge of neurons, they introduced its functionality and

modeled simple neural network. Since then, a lot of research has been done. Due to the

recent advancement in computational units, there is resurgence in neural network.

4.2 Arti�cial Neural Network

ANNs are statistical tool inspired by the functioning of nervous system. They are pro-

cessed with a set of computational units known as input and output units. These units

are interconnected by hidden units via a set of weights. The synaptic connection builds an

electric circuit through which signals are processed from input to output. On obtaining

the output, its weighted sum of signals is calculated and compared with the threshold.

The threshold is a condition to break down processing of computation. If this threshold

exceeds the de�ned limit, then nodes in unit �res, else remain inactive.
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4.2.1 Flow of information in ANN

The structure of neural network is shown in Figure 4.1 and has three main units: input

unit as layer 1, hidden unit as layer 2 and output unit as layer 3. Activation of hidden

unit is shown in equation 4.2, where the θ11 is the weight from input unit 1 to hidden

unit 1 and x1 is the input 1. The output of hidden unit is shown in equation (4.3), where
1

1+e
−λ∗I1

H
is a sigmoid function with λ being the learning rate and I1

H
is an activation of

input to hidden unit. On obtaining the output from hidden unit, the input to output

is activated by equation (4.4), where O1
H
is the output from hidden layer and θ1 is the

weight from hidden unit to output. On activating the input to output unit, the output is

obtained by equation (4.5). Thus the output hθ(x) is obtained using O
O
, from which the

error ε = hθ(x)− y is calculated, where y is the desired output.

ANNs are trained with the cases of the known outcome, during which the weights

interconnecting the neurons are adjusted using the backpropagation technique. Some

hidden layers depends on the complexity of the problem. Addition of hidden layer may

increase or decrease the accuracy. The computation process aims to train the neurons

using backpropagation technique and �nd the optimal interconnecting weights. This entire

process of training is known as learning. Learning is usually achieved by decreasing the

error function between the input and actual targeted output. The process is iterated

to identify the patterns associated with the outcome. Unlike other statistical analysis

techniques as mentioned earlier, ANNs are not a�ected by the low frequencies in the input

pattern (Lippmann and Shahian, 1997; Tu et al., 1998). Further, ANN works better as

they use, in general, non linear functions of data (the activation function in ANN are

typically non linear functions).

Weights from input to hidden-neurons and hidden-neurons to output are initialized as

[W ]1k×n and [V ]1n×p respectfully, where k is number of inputs, n is number of neurons and

p is number of outputs. [W ]1k×n and [V ]1n×p are matrices and are shown in equation 4.1.

[W ]1k×n =



w1
1 w1

2 ... w1
n

w2
1 w2

2 ... w2
n

: : ... :

wk1 wk2 ... wkn


[V ]1n×p =



v11 v12 ... v1p

v21 v22 ... v2p

: : ... :

vn1 vn2 ... vnp


(4.1)
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Figure 4.1: Neural Network model

Input to Hidden Layer

I1
H

= x1θ11 + x2θ21 + ...+ xkθk1

I2
H

= x1θ12 + x2θ22 + ...+ xkθk2

::::::::: :::::::::::::::::::::::::::::::::::::::::

Ik
H

= x1θ1k + x2θ2k + ...+ xkθkk (4.2)

Output of Hidden Layer

O1
H

=
1

1 + e−λ∗I
1
H

O2
H

=
1

1 + e−λ∗I
2
H

::::::::: :::::::::::::::::::::::::::::::::::::::::

Ok
H

=
1

1 + e−λ∗I
k
H

(4.3)

Input to Output Layer

I
O

= O1
H
θ1 +O2

H
θ2 + ...+Ok

H
θk (4.4)

Output of Output Layer

O
O

=
1

1 + e−λ∗IO
(4.5)
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4.3 Cost Function J(θ0, θ1)

Cost function ( J(θ0, θ1) ) is the cost for identifying the weights θ, such that the predicted

output hθ(xi) is close to the desired output yi Chu et al. (2007), where i is an index of the

training example i = 1, 2....m. The hypothesis for linear regression is given in equation

(6.14), where the θ0 and θ1 are the parameters of a linear regression model, x is the input

and θT represents the transpose of the weight vector θ.

hθ(x) = θ0 + θ1x1 =
n∑
i=0

θixi = θTx (4.6)

The objective of cost function is to identify the parameter θ′s such that the predicted

output hθ(xi) is very close to the desired output yi, i.e., the error εi = yi − hθ(x
i) is

minimum. Hence the objective is to minimize
θ0θ1

J(θ0, θ1), i.e., to minimize the cost of

identifying θ0, θ1.

Theorem 1. Let

J(θ0, θ1) =
1

2m

m∑
i=1

(hθ(x
i)− yi)2 (4.7)

be a cost function of the linear regression model, from which cost function of logistic
regression and the neural network is derived.

Sigmoid function or Logistic regression model = g(z) =
1

1 + e−z

where z = −θTx

∴ Hypothesis hθ(x) =
1

1 + e−θT x

Using equation6.15

Cost function J(θ0, θ1) =

 −log(hθ(x)) if y = 1

−log(1− hθ(x)) if y = 0
(4.8)

Equation 4.8 rewitten as

Cost function of Logistic regression is =

J(θ0, θ1) = − 1

m

m∑
i=1

(ylog(hθ(x)) + (1− y)log(1− hθ(x))) +
λ

2m

n∑
i=1

θ2j (4.9)

On substituting y = (0, 1) in equation4.9 the equation4.8

is obtained and, where
λ

2m

n∑
i=1

θ2j is known as regularization term.
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4.3.1 Cost function for ANN

The Cost function of Neural Network is obtained using the theorem 2. The cost function is

the cost of identifying the optimal weights required to develop an optimal neural network

model.

Theorem 2. Neural Network has multiple inputs (k), L number of network layer, Sl number
of units in layer l and m training set. Updating equation (4.9) yields the modi�ed cost
function for neural network:

Let the cost function of Logistic regression be

J(θ) = − 1

m

m∑
i=1

(ylog(hθ(x)) + (1− y)log(1− hθ(x))) +
λ

2m

n∑
i=1

θ2j

(4.10)

where
λ

2m

n∑
i=1

θ2j is known as regularization term theorem 1

Since the neural network has L number of network layers,

Sl number of units in layer l, k input and m training set

∴ Cost function = J(θ) = − 1

m

m∑
i=1

k∑
k=1

(yiklog(hθ(x
i))k+

(1− yik)log(1− hθ(xi))k) +
λ

2m

L−1∑
l=1

Sl∑
i=1

Sl+1∑
j=1

(θlji)
2 (4.11)

4.4 Cascade Correlation Neural Network (CCNN)

ANN showed good accuracy and e�ciency in the �eld of medical research along with a lot

of other scienti�c areas. But, as the data grew to become complicated, they became a slow

learner. Their back-propagation computation made them slow to achieve their optimality.

So (Fahlman and Lebiere, 1990) proposed CCNN. This has shown better accuracy and has

overcome computational overlay. In CCNN, the process begins with a minimum number

of hidden units and neurons in each hidden unit to maximize the correlation. Figure 4.2

shows the architecture of CCNN.
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Figure 4.2: Schematic diagram of CCNN architecture .

4.4.1 Evolution of CCNN

The main reason for slow learning of ANN was "moving target problem". Instead of

moving towards target directly to �nd the problem solution, it kept dancing as illustrated

in Figure 4.3. In the Figure we can observe that CCNN moved towards the target directly

with very less number of epochs while ANN took time to converge. As a solution for this,

Fahlman and Lebiere (1990) proposed CCNN. CCNN was a cascade-correlation algorithm

architecture with cascade correlation of network that learn by experience. In CCNN,

weights of all the neurons are updated at once leading to a constant change in hidden

units.

Learning steps of ANN

Learning steps of CCNN

Figure 4.3: Moving target problem illustration of ANN, compared with CCNN

In CCNN, the weights are frozen as the hidden units are added to the network. CCNN

proved to be quicker than traditional ANN as it did not use backpropagation algorithm
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for adjusting the weights, instead, weights were adjusted to maximize the sum S over

all output units O. CCNN receives the trainable inputs to its pre-existing hidden units,

with no output units connected to it. The input units are then processed by adjusting

the weights to maximize the correlation C. The output O is the magnitude of correlation

between V (the candidate unit values) and εO (the residual output error).

C =
∑
o

∣∣∣∣∣∑
p

(Vp − V̄ )(εp,O − ε̄O)

∣∣∣∣∣ (4.12)

In the equation 4.12, p is the training pattern, and V̄ and ε̄ are averaged over V and

ε respectively. The objective here is to identify the best combinations of hidden units

which maximize S. To maximize S the backpropagation rule of taking partial derivation

of S concerning each combination of input weights θ is applied.

δC

δθ
=
∑
P,O

σO(EP,O − EO)f
′

OIi,P (where i = 1, 2, ....n) (4.13)

In the equation 4.13 σO is the correlation between candidates values and output O, f
′
O

is derivative of the pattern p concerning the sum of its inputs and X is the input. As the

objective is to maximize the correlation, gradient ascent is used to identify the maximum

of C after getting δC
δθi
.

4.4.2 Architecture of CCNN

On comparison and testing, it was noted that CCNN learns faster than backpropagation.

In CCNN the architecture is built upon two key ideas: cascade and correlation. In

cascade (meaning: the medium of passing information) hidden units are added linearly

or sequentially, one at a time and once added it is kept frozen. Correlation (meaning:

building connection) helps in building up the relationship between the already existing

hidden unit and newly added unit. This is achieved by maximizing the magnitude of

correlation and by eliminating the error of prediction in the outcome.

Initially, there are no hidden units, building the model only with an input and an

output unit. Each node in the input layer is connected to all the nodes in the output

unit. The output unit generates a linear or non-linear sum of their input by employing

sigmoid activation function. The hidden units are then added linearly. The newly added

hidden unit will get a connection from network original input unit and already existing

hidden unit (if any hidden unit is added). Addition of new hidden unit would freeze input
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Figure 4.4: Illustration of frozen and training state in CCNN

weights, and output connection is trained now. This means that the model remains under

consideration till hidden units optimality is obtained and don't need any more training.

Unlike in ANN, at every iteration, all the combination of weights are trained for every

epoch. The frozen and training state is illustrated in Figure 4.4. CCNN doesn't need

backpropagation algorithm for learning. Instead, single layer network learning algorithm

such as Widrow-Ho� or "delta" rule could be used. Fahlman and Lebiere (1990) applied

"Quickprop" algorithm for training the weights.

Quickprop is an iterative function for �nding the minimum of the cost function. The

optimization problem in statistics such as GD assist in minimizing this cost/ loss function.

That is, minimizing the error ε is an objective of the cost function. Similarly, in CCNN

we reduce the error and maximize the correlation C between the units. Thus, developing

a model of high quality and e�ciency.

4.4.3 Training phase

Training of the model begins with one input and a output layer, and no hidden layer. At

every iteration, a new neuron is added, and the decision about the neuron addition would

be made by Gradient Descent (GD) technique. The added neuron is placed in the hidden

layer and is connected to all preceding input units. On activating the neurons, the model

with a connection between the unit of entry and neuron is kept frozen. In this state, the

neurons are not connected to the output unit/ units. The neuron gets the connection to
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the output layer only after training the weights. This process is iterated till an optimal

weight is discovered. The architecture of CCNN is shown in Figure 4.2. Here, illustrates

that the network is in a frozen state and × shows it is in training state.

During the training of neurons, the objective was to adjust the weights to maximize

the sum S over all output units O. This is obtained by equation 4.14. CCNN receives

the trainable inputs to its pre-existing hidden units, with no output units connected to it.

The input units are then processed by adjusting the weights to maximize the sum S. The

output O is of the magnitude of the correlation between V (the candidate unit values)

and EO (the residual output error).

S =
∑
O

|
∑
P

(VP − V̄ )(EP,O − ĒO)| (4.14)

In the equation 4.14, P is the training pattern and are averaged over V and E. The

objective here is to identify the best combinations of hidden units which maximizes S.

In order to maximize S the backpropagation rule of taking partial derivation of S with

respect to each combinations of input weights (θ) is applied. The partial di�erentiation of

S with respect to θ is shown in the equation 4.15. Here f ′O is derivative of pattern p with

respect to sum of its inputs and X is the input. GD is used to identify the maximum of

S after getting ∂S
∂θi

.

∂S

∂θi
=
∑
p,O

σO(Ep,O − EO)f ′OIip (4.15)

4.5 Modi�ed Cascade-correlation Neural Network (Mod-

CNN)

We advanced CCNN by optimizing the model to �nd an optimal number of neurons in

each hidden unit along with some hidden units. In ModCNN, we are not freezing the

hidden units until an optimal number of neurons are identi�ed, and the hidden units are

not added linearly but in parallel. For every added unit, an optimal number of neurons

were identi�ed. ModCNN was developed for analyzing the patterns of the clinical data

and predicting the disease progression. The process begins with a minimum number of

hidden units and neurons in each hidden units. After each iteration, error ε is calculated

using Least Mean Square (LMS) algorithm. The objective here is to adjust the weights

so that it minimizes MSE and maximize the correlation. After computing MSE, the GD
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algorithm is applied on the set of MSE to �nd the minimum error ε. This would give us

the optimal set of weights for each hidden unit.

4.5.1 Architecture of ModCNN

ModCNN works in two primary layers of architecture. First layer is to add new neurons

to each hidden unit and to identify the optimal number of neurons. An attempt was made

in every epoch to maximize the correlation between the neurons by minimizing the error

(ε). This minimization was done by �nding its MSE, using LMS algorithm which is also

known as Widrow-Ho� or delta algorithm (Widrow and Ho�, 1960). On obtained MSE,

GD was applied to locate the combination of weights at which the ε was minimum. Thus,

GD converges to discover optimal correlation of neurons to that hidden unit, where the

error was minimum. On identifying the optimal number of neurons, a new hidden unit

is added to the architecture. Second layer is for adding new hidden unit by freezing the

number of neurons in the previous layer and computing the MSE with this new hidden

unit. Obtained MSE of the current hidden unit, it is compared with the MSE of the

previous hidden unit, and if the MSE has decreased, then that hidden unit is frozen else

discarded. On observing the ascend in the magnitude of correlation, the newly added unit

would be retained, else gets eliminated. The process of �nding neurons to this new hidden

units was continued, to �nd the optimal number of neurons. This process is repeated till

an optimal combination of hidden units and neurons for ModCNN were discovered, for

each set of inputs.

The architecture of ModCNN is shown in Figure 4.5. In the �rst layer, the optimal

neurons are identi�ed using the ADAptive LInear NEuron (ADALINE) network, and in

the second layer, it freezes the hidden units on �nding the optimal set of neurons. The F

indicates that the units are under training and not frozen. � shows that nodes are frozen

and are still under observation. The complete process is illustrated in Figure 4.6.

4.5.2 ADALINE circuit

ModCNN adopted ADALINE in developing a decision-making model. Bernard Widrow

with Marcian E Ho� developed ADALINE and the training algorithm known as LMS

in 1959, since then it has been expanded rapidly (Widrow and Ho�, 1960). The initial

objective using ADALINE is to identify the weights such that cost function J is minimum.

LMS algorithm is applied to identify the set of weights (θ) generating MSE ξ and is
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Figure 4.5: Schematic diagram of ModCNN architecture.

Stage 1: Similar to ANN Stage 2: New Node is added at hidden layer

Stage 3: Added node is optimized and frozen Stage 4: New Hidden unit is added and is trained

Stage 5: Frozen hidden unit is addde with node Stage 6: Final ModCNN

Figure 4.6: ModCNN training and frozen states

shown in Figure 4.7 (Widrow et al., 1994). It takes di�erent patterns of input x and
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gives analogue output hθ(x). This analog output is compared with desired output y to

calculate the error ε = hθ(x
i)−yi at each iteration, till the minimum error is not achieved.

ADALINE circuit has a hidden unit with multiple combinations of weights. The

process of �nding error ε is repeated by adjusting the weights till minimum error is

obtained. We applied the GD techniques to identify the optimal weights where the ε is

minimum. This �nally resulted in weights (θ) with less than a threshold is obtained and

they were optimal.

Figure 4.7: Architecture of ADALINE

4.5.3 Least Mean Square Algorithm: (LMS algorithm)

The LMS algorithm also known as Widrow-Ho� Delta learning rule was proposed by

Widrow and Ho� (1960). Each input X = x0, x1, ...xm goes to intermediate weights

θ = θ0, θ1, ....θn to give the actual output hθ(x) = XT × θ, which is the summation of

(x0 × θ0), (x1 × θ1), ...(xn × θn) =
∑n

i=0X
> × θ. For each input pattern, there are actual

output (hθ(x)) and desired output (y) and the error ε = hθ(x)−y = ((
∑n

i=0X
>×θ)−y).

The error is used to adjust the weights, so that MSE is minimum.

We identi�ed the optimal weights using GD algorithm. This is an iterative search

algorithm, which starts randomly at some point known as initial point, from a vector

space of weights. It moves towards an optimum position using gradient operator, thus
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identifying the weights at which the costs could be minimum. The algorithm starts with

initial weight = 0 (in most of the cases). On �nding MSE for this weights using equation

4.18, their gradients are identi�ed. The gradient is an inclined equation (either increasing

or decreasing). Thus, if gradient on MSE > 0 then, the error is increasing. This explains

that weights are to decrease to reduce the error. The weight equation is shown in equation

4.16. In this equation µ is the coe�cient of convergence. To �nd the minimized error we

go down the slope of error ε. So there is a subtraction from the current weight θi and

gradient coe�cient. ∇ is gradient operator.

θi+1 = θi − µ∇εi (4.16)

Let θ̄ = [θ0, θ1, .... θN−1]
> be the weight vector for the �rst hidden unit. x̄(n) =

[x(0), x(1), .... x(n)]> be n input vector. The analogue output be hθ(x) = θ̄>x̄i and error

is calculated using e(n) = hθ(x
i)− yi. The MSE (ξ) is calculated from the equation 4.17.

Output hθ(x) = X> ∗ θ

Error ε = hθ(x)− y = (X> ∗ θ − yi)

ε2 = y2 − 2yX>θ + θ>XX>θ

Then the mean square error ξ = E[ε2]

= E[y2]− 2E[yX>]θ + θ>E[XX>]θ (4.17)

Let P be cross-correlation vector between x̄(n) and y(n), R be an auto-correlation

matrix of �ltered inputs. The ADALINE circuit in equation 4.17 is generalized and the

quadratic equation of LMS is shown in equation (4.18).

let P = E[yX>]

R = E[XXT ]

Quadratic function over weight/

mean square error ξ = E[y2]− 2P>θ + θ>Rθ (4.18)

This MSE ξ is a quadratic equation and yields a bowl shaped plane as shown in

Figure(4.8). Here only two weights are considered on the x-axis, y-axis and the MSE on
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Z-axis. It has a global minimum and is achieved by GD as shown in the equation 4.19.

Rθ̄0 = P̄ (4.19)

Figure 4.8: Paraboloid of the cost function

4.5.4 Gradient descent

The objective is to minimize the cost function J for these weights. GD algorithm is

applied to identify the global minimum of the cost function (J ) (Burges et al., 2005).

Consider the graph in Figure (4.9), where the polynomial curve is obtained on plotting

cost function J against one θ, keeping θ0 = 0. The learning rates are the small baby

steps (α = µ
2
) that converges to a global minimum to identify the optimal θ. Consider a

contour graph in Figure (6.17) plotted against θ1 , θ2 and MSE. Using the GD algorithm

the minimum of θ1 & θ2 is achieved (Bottou, 2010).

GD algorithm starts the iteration with some initial θ such as J(θ0 = 0 & θ1 = 0)

and iteratively updates θ as shown in equation (6.16) till the algorithm converges at a

local minimum. The objective of gradient algorithm is to minimize
θ0θ1....θn

J(θ0, θ1....θn). The
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Figure 4.9: Learning Rate in gradient descent

Figure 4.10: Learning Rate of gradient descent using contour graph

algorithm starts an iteration by moving with small baby step α known as learning rate, in

a direction that moves down to reach minimum θ. After each iteration, the algorithm will

check the direction of movement that converges to a local minimum. The GD repeats the

equation (6.16) until it converges, by updating the θj the value after every iteration. ∂
∂θj

is

measured by theorem (3). Convergence is the stopping condition: (α ‖ 5J ‖) > ε, where
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‖ 5J ‖ is
√
J(θ21) + J(θ22) + J(θ23).... is the equation of normalization (Zhang, 2004).

θj = θj − α
∂

∂θj
J(θ) for all values of j : 0, ..., n (4.20)

Theorem 3. Let J(θ) be a cost function whose derivative exists, then ∂
∂θj
J(θ) is a contin-

uous function.
Let J(θ0, θ1) = 1

2m

∑m
i=1(hθ(x

i)− yi)2 from equation 6.15, then

∂

∂θj

1

2m

m∑
i=1

(hθ(x
i)− yi)2

Using product rule

∂

∂θj

1

2m

m∑
i=1

2× (hθ(x
i)− yi) =

∂

∂θj

1

m

m∑
i=1

(hθ(x
i)− yi)× ∂

∂θj
(hθ(x

i)− yi) (4.21)

Let
∂

∂θj
(hθ(x

i)− yi) =
∂

∂θj
(hθ(x

i))

where hθ(x
i) = θx if θ0 = 0

∴
∂

∂θj
(hθ(x

i)− yi) = xi (4.22)

Applying result of 4.22 in 4.21

∂

∂θj
J(θ) = hθ((x)− y)× x (4.23)

Theorem 4. Let ∂
∂θj
J(θ) = hθ((x)− y)× x be the partial derivative of the cost function.

Using which GD algorithm for multiple parameters is proved
Let θj = θj − α ∂

∂θj
J(θ) for all values of j : 0, ..., n from equation 6.16, then

θj = θj − α
∂

∂θj
J(θ)

where
∂

∂θj
J(θ) = hθ((x)− y)× x from equation 4.23 of theorem 3

Then θj = θj − αhθ((x)− y)× x
where hθ(x) = θ0 + θ1x

Update θ0 & θ1 (4.24)

temp0 = θ0 − α
∂

∂θ0
J(θ0, θ1)

temp1 = θ1 − α
∂

∂θ1
J(θ0, θ1)

θ0 = temp0

θ1 = temp1

81



Using theorem 4, the GD for multiple parameters can be achieved as shown in deriva-

tion of equation 4.26 and the GD algorithm is shown in algorithm 1.

∂

∂θj
J(θ0, θ1) =

∂

∂θj

1

2m

m∑
i=1

(hθ(x
i)− yi)2

=
∂

∂θj

1

2m

m∑
i=1

(θ0 + θ1x
i − yi)2

let θ0 i.e., j = 0 :
∂

∂θ0
J(θ0, θ1) =

1

m

m∑
i=1

(θ0 + θ1x
i − yi) (4.25)

let θ1 i.e., j = 1 :
∂

∂θ1
J(θ0, θ1) =

1

m

m∑
i=1

(θ0 + θ1x
i − yi)× xi (4.26)

Algorithm 1: GD algorithm
Result: Optimal θ0&θ1

1 initialize θ0&θ1 to random values;

2 while !convergenced do

3 θ0 = θ0 − α 1
m

∑m
i=1(θ0 + θ1x

i − yi)

4 θ1 = θ1 − α 1
m

∑m
i=1(θ0 + θ1x

i − yi)× xi

5 end

4.5.5 Finding correlation among the hidden units

The space or residual between analogue output could be decreased only by having an

ideal set of θ′s or the weights. By having so, the residual could be eliminated, and the

error could be brought down, i.e., (hθx(i) − y(i)), where i = 0 to m and m is number of

training set. Thus the cost function J(θ0, θ1) would be the MSE about taking the mean

of sum of all these errors as shown in equation 4.27.

J(θ0, θ1) =
1

2m
(
n∑
i=1

hθ(x
i)− yi)2 (4.27)

The objective of optimization problem is to minimize this cost function J(θ0, θ1) =

minimize
θ0,θ1

J(θ0, θ1). This is achieved by �nding the cost function for di�erent combinations

of θ0 and θ1. GD helps in �nding the optimized values for θ0 and θ1. The paraboloid curve

shown in Figure 4.11 illustrates the operation of GD. Here the weights θ0 is considered

on X-axis, θ1 on Y-axis, and MSE on Z-axis. GD is run on this to identify the optimal

weights where the cost function is minimized.
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Figure 4.11: Illustration of gradient descent

Now the challenge is in �nding the optimal θ where J(θ) = 0. For this, we applied

GD algorithm to climb down the hill of a paraboloid curve and �nd the optimal combina-

tions of θ. The training of Quickprop would stop at a point where the distance between

θ0 &θ1 and error ε are less than the threshold. Threshold is a user de�ned stopping

condition and helps in stopping the iteration when minimized cost function is obtained

(minimize
θ0,θ1

J(θ0, θ1)). The challenge here was in analysing the number of epochs the

system would take to reach an optimization state. The optimization problem here is in

training the output units to minimize the ξ and shown in equation 4.28. The equation is

obtained by modifying basic MSE regression equation 4.27.

ε =
1

2

∑
P

(hθ(x
P )− yP )2 (4.28)

In the equation 4.28, P is a pattern. The pattern is a set of activation across the

network. Example: given the input pattern of a car, the model should be able to classify

the type of the car. hθ(xP is the observed output, and yP is the desired output. Since the

model is trained in a supervised manner, we would train them using the desired output

to check the error the model is making. Hence the objective is to minimize the error

hθ(x
P )− yP . This minimizing of error is performed with an assistance of GD 4.30.

EP = (hθ(x
P )− yP ) f

′

P (netO) (4.29)

∂ε

∂θ
=
∑
P

εP , XP (4.30)

In the equation 4.30 f
′
P is the derivative of an activation function for the output

83



hθ(x
P ). XP is the input vector of the pattern P . After successful completion of training,

the hidden units are frozen. Correlation between the hθ(xP ) and the residual output εP is

maximized and is shown in 4.31. In the equation h̄θ(xP ) and ε̄P are averaged over hθ(xP )

and εP respectively.

Correlation C =
∑
P

|
∑
P

(hθ(x
P )− h̄θP )(εP − ε̄P )|

=
∑
P

|
∑
P

hθ(x
P )εP − ε̄P

∑
hθ(x

P )|

=
∑
P

|
∑
P

hθ(x
P )(εP − ε̄P )| (4.31)

Now, GD is applied to continue the maximization of correlation C and is shown in the

equation 4.32. Here, λO is a sign of the correlation between the output unit hθ(xP ) and

the residual error εP .

δP =
∑
O

λO(εP − ε̄P )f
′

P

∂C

∂θi
=
∑
P

δPXP,i (4.32)

4.5.6 Training phase

ModCNN used ADALINE circuit to identify the set of weights (θ values) to reduce the

error ε using LMS algorithm, instead of randomly selecting the θ. On identifying the

θ, cost function J(θ0, θ1) is calculated. Objective is to identify optimal θ and make the

model more e�cient. That is to �nd the system that can give minimum loss J(θ0, θ1) =

ε(hθ(x), y). The performance of training example data is measured by empirical risk

function En(hθ(x)) shown in the equation 4.34.

En(hθ(x)) =

∫
ξ(hθ(x), y)UP(x, y) (4.33)

In the equation 4.33 we assume that there is a joint probability distribution P(x, y)

over X and Y subjected hθ : X → y and U is a symbol of uniform distribution of joint
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probability. The objective is to reduce the empirical risk (4.34) and expected risk (4.33).

En(hθ(x)) =
1

n

n∑
i=1

ξ(hθ(x
i), yi) (4.34)

4.5.7 Testing phase

The quadratic model developed in a learning phase of ModCNN and is shown in Fig-

ure (4.11). On running the GD on this optimal load is identi�ed. In GD after each

iteration θ is updated as shown in equation 4.35. The objective here is to reduce the

empirical risk En(hθ(x)) shown in the equation (4.34), where γ is randomly chosen

gain function, n is a number of training examples, 5 is gradient (zi, θt), where zi =

{(x0, y0), (x1, y1)...(xm, ym)} is the training pair and t is the iteration, hence obtaining

minimum cost function.

θt+1 = θt − γ
1

n

n∑
i=1

∇θhθ(x)(zi, θt) (4.35)

Convergence is faster when convexity property of loss function ε is strong (Bottou,

2010). The Table 4.2 compares the asymptotic behaviour of ANN, CCNN, and ModCNN.

First three rows show the cost of computation at each iteration, some minimum iteration

required to reach optimized accuracy ρ and cost of similar computation. The fourth

row gives the signi�cant property of large scale machine learning, which indicates the

computational cost of prede�ned error, the expected risk (4.33).

Although CCNN performed in less optimal way for optimizing and showing better

accuracy ρ (third row in Table 4.2), they took exponentially lesser time in reaching the

prede�ned Expected risk E(f), when compared to ModCNN. Hence, when the importance

is computational time rather some examples, CCNN performed better. Though the pro-

posed ModCNN showed better accuracy than ANN and CCNN, they took a long time to

�nd E(f); this was only due to an intense computation of ModCNN. So, we designed our

system in a distributed manner using master-slave model and decreased this time to reach

E(f). In the Figure 4.12, the accuracy and time to achieve expected risk are evaluated.

From the �gure, we could analyse that ModCNN showed better accuracy than CCNN and

even ANN but, till the feature size was around 100. Later on, we could see ascent in their

accuracy. It is also clearly shown that, though proposed ModCNN performed better than

ANN, CCNN outperformed ModCNN. For overcoming this drawback of ModCNN, we
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distributed its computation using master-slave model of Map-Reduce (Ghemawat et al.,

2003) and made it more e�cient.

Table 4.2: Asymptotic equivalents for ANN, CCNN, and ModCNN

ANN CCNN ModCNN

Time per iteration 1 n n

Iteration to accuracy ρ log 1
ρ

log log 1
ρ

1
ρ

Time to accuracy ρ 1
ρ

nlog 1
ρ2

nlog log 1
ρ

Time to excess error ε 1

ε
1
α
log 1

ε
1
ε

1

ε
1
α
log 1

ε
loglog 1

ε
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Figure 4.12: Empirical testing of ANN, CCNN, and ModCNN.

4.5.8 Master-slave model

It was understood that complexity of the system was increased when compared with the

performance of CCNN. This complexity was due to high computation when compared

with CCNN. This ambiguity can be avoided by the application of the master-slave model.

At the hidden unit, the feed-forward operation from one layer to another is done for

di�erent combinations of neurons, by each slave in parallel. The MSE was calculated by

the slaves along with the number of iterations required to obtainMSE < threshold. The
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master then runs the GD algorithm to identify an optimal number of neurons, where MSE

and iterations are minimum. Hence the best optimal ModCNN model is discovered for

the input data.

A At slave

Each slave receives information about number of neurons, an input data (X) and an output

data (Y ) from the master. The slaves compute an input to the hidden and output unit.

The slaves also calculate output of hidden and output unit using the sigmoid function.

Each slave using an information of actual output y, computed MSE. Finally, the slave

would return the number of iterations it took to reach the threshold along with MSE to

the master. This would help the master in identifying the better combination of number

of neurons and input data.

B At master

The master on receiving the reply from all the slaves about some iterations and MSE

runs the GD algorithm. Using this technique, it identi�es an optimal set of neurons that

yielded least MSE with a minimum number of iterations. The result of optimal neurons

for di�erent hidden units on running GD is shown in Figure 4.13.

After �nding the optimal neurons for the �rst hidden unit, ModCNN adds a new

hidden unit and records the change in MSE. A polynomial model is developed using the

information of hidden unit and corresponding MSE. The GD algorithm is run on the

polynomial curve and identi�es the hidden unit where the overall MSE is less. This result

is shown in Figure 4.14.

4.6 Summary

ModCNN was able to identify the optimal combination of hidden units and neurons in

each hidden unit. This was achieved by applying GD on MSE obtained at each iteration.

The model was trained and tested for empirical risk factors. And it was observed that it

performed better when compared to ANN and CCNN. By the application of master-slave

model, it was made more optimised. Thus giving high prediction accuracy and assisting

in taking critical clinical decisions.
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Figure 4.13: Gradient descent identifying the optimal neuron for di�erent hidden units.

Figure 4.14: Gradient descent identifying the optimal hidden units using MSE.
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Chapter 5

Experimental Result

5.1 Background

The current work focused on developing a CDSS for the treatment management of GSD.

EHR data of treatment procedure for GSD patients were recorded from tertiary care

centre in north Malabar, Kerala, India, during the period of 2014 to 2015. 530 cases of

GSD were identi�ed among 4800 patients, who came with the complaint of abdominal

pain. Among the observed cases, 260 were complicated and rest were uncomplicated. Out

of 260 cases, 143 (55%) presented with cholecystitis, 57 (22%) had choledocholithiasis, 44

(17%) had pancreatitis and remaining 16 (6%) cases were cholangitis. The uncomplicated

GSD cases were more unlikely to undergo OC/ LC when compared to the complicated

cases. The spectrum of GSD in this study was found to be comparable with the modes of

presentations of California study (Glasgow et al., 2000), and the comparison is shown in

Table 5.1. Glasgow et al. (2000) conducted a retrospective study on those who underwent

cholecystectomy in 1996 in California, to identify the spectrum and cost of complicated

GSD. They conducted study in two settings, hospital based on 248 patients and community

based on 40571. This comparison shows that the incidence of choledocholithiasis and

pancreatitis is increasing in the subjected region.

GSD was considered here due to its increasing prevalence in last few decades in India.

Garg (2013) reported an epidemiological study by a group from All India Institute of

Medical Science (AIIMS), Delhi on the prevalence of GSD in Kerala. The study showed

prevalence of Acute Pancreatitis (AP): 1̃26/100, 000 population and calci�c pancreatitis:

9̃8/100, 000. This observation was very high when compared to 2̃7/100, 000 in the western

countries. Kumar Sangwan et al. (2016) conducted a retrospective analysis and observed

the incidence of GSD is seven times in north India than in the south.
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Table 5.1: Presentation of di�erent spectrum of GSD in the current study, compared
with California study (Glasgow et al., 2000)

Spectrum of
GSD

Hosp. Based
California Study

Community
Based California
Study

Proposed Study

Uncomplicated
GSD

56% 56.5% 51%

Cholecystitis 29% 35.9% 27%

Pancreatitis 6% 4% 8%

Choledocholithiasis 5% 3.1% 11%

Cholangitis 0% 0.2% 3%

5.2 Attribute Distribution

The description of the attribute used in this study is shown in Table 5.2. We used 32

features associated with GSD. In the Figures 3.1,3.2,3.3,3.4 and 3.5 the strati�cation of

patients based on the di�erent spectrum of GSD is shown. In these �gures di�erent

attributes along with their prevalence percentage is shown on the top of the bar. The

Figure 5.2 shows the feature distribution among the patients detected with complicated

GSD. The need was to �nd the features in each patient along with their association towards

the risk progression. Chi-squared test ((χ)2) was applied for statistically analysing and

conducting the hypothesis test about this feature distribution.

5.2.1 Chi-squared test ((χ)2)

Here the features are classi�ed into mutually exclusive classes. χ2 test evaluates the

likelihood of association of the features in similar class using statistical testing. χ2 test is

conducted to analyse the distribution of the features and �nd the signi�cantly associated

features. The signi�cant association is known as risk factors (red, yellow, green and blue),

shown in Figure 5.2. Red being highly relevant and blue being least. The aim is to �nd the

association between the signi�cant factors and the di�erent spectrum of GSD. Consider

the Table 5.3 illustrating the values of observed risk factors for a di�erent spectrum of

GSD. Each cell value is observed as the signi�cant value for di�erent spectrum. Row total

is the sum of the row values, column total is the sum of a column, and the total is either
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Figure 5.1: Classi�cation result of GSD patients.

Figure 5.2: Clinical readings, showing the feature distribution of 260 patients.

the sum of row total or column total.

A Hypothesis

Let the null hypothesis be:

• H0: Signi�cant factors are not associated with spectrum.

• H1: Signi�cant factors are associated with spectrum.
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Table 5.2: Description of the attribute

Attributes

Input Attributes: (32 No.):
The list of input attributes are:

Age, Sex, Abdominal pain (A1), Dyspepsia (A7),
Nausea & vomiting (A30), Fever (A8), Jaundice
(A14), Pruritus (A20), Anorexia (A3), Tenderness
(A26), Murphys sign (A16), Rebound tenderness
(A24), Gallbladder palpable (A31), Hepatomegaly
(A11), Obesity (A17), Diabetes Mellitus (A6), Hy-
pertension (A29), IHD (A13), Previous Surgery
(A19), Hereditary spherocytosis (A12), APD (A4),
Total count >12000 (A28), Total bilirubin >2
(A27), Raised ALT (A22), Raised AST (A23),
Raised ALP (A21), Amylase >three times upper
limit (A2), Lipase >three times upper limit (A15),
Dilated CBD (A5), Pancreas bulky and echotex-
ture (A18), Gallbladder Thickened & perichole-
cystic �uid (A9) and USG features of cholangitis
(A32). The attribute detail is shown in Figures
3.1,3.2,3.3,3.4 and 3.5

Signi�cant Attributes: Cholangitis (3): A1(P = 0.1969), A4(P =
0.1190), A7(P < 0.001), A8(P=0.2483), A9(P <
0.001), A10(P = 0.8016), A14(P = 0.7571),
A19(P = 0.2094), A21(P = 0.5802), A26(P <
0.001) ; Pancreatitis (6): A1(P < 0.001),
A4(P = 0.6994), A7(P = 0.4563), A8(P < 0.001),
A9(P < 0.001), A10(P < 0.001), A12(P =
0.6040), A14(P = 0.8876), A19(P < 0.001),
A21(P = 0.4855), A22(P = 0.6040), A26(P =
0.5300), A28(P < 0.001); Cholecystitis (5):
A1(P < 0.001), A3(P = 0.1568), A4(P < 0.001),
A7(P = 0.7350), A8(P < 0.001), A11(P < 0.001),
A16(P < 0.001), A17(P = 0.2145), A24(P =
0.0656), A26(P = 0.6537), A29(P = 0.9828);
Choledocholithiasis (2): A1(P < 0.001),
A3(P = 0.9179), A7(P < 0.001), A11(P = 0.2689),
A13(P = 0.4730), A14(P = 0.2689), A19(P =
0.5364) ()

Key attributes: Age, Sex and Patients ID

Output: Strati�cation of patients based on their risk level
towards ERCP.
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Table 5.3: Observed risk factors for a di�erent spectrum of GSD

Signi�cance →
Spectrum ↓ Red Yellow Green Blue Row Total

Choledocholithiasis 20 14 12 53 99
Cholangitis 18 13 18 32 81
Pancreatitis 12 48 39 33 132
Cholecystitis 18 23 42 14 97

Column Total 68 98 111 132 409

B Step 1: Finding the expected frequency

The expected frequency is calculated using the equation 5.1 and the observed values of

Table 5.3. The result of this calculation is shown in Table 5.4.

RowTotal × ColumnTotal
GrandTotal

(5.1)

Table 5.4: Expected frequency calculated for the observed values in Table 5.3

Signi�cance →
Spectrum ↓ Red Yellow Green Blue Row Total

Choledocholithiasis 16.4597 23.7213 26.8680 31.9511 99
Cholangitis 13.4670 19.4083 21.9829 26.1418 81
Pancreatitis 21.9462 31.6284 35.8240 42.6015 132
Cholecystitis 16.1271 23.2421 35.8240 42.6015 97

Column Total 68 98 111 132 409

C Step 2: Calculating (χ)2

χ2 is calculated using the equation 5.2. In the equation 5.2, the Observed and Expected

freq are the values shown in Table 5.3 and 5.4 respectively, and chi2cdf is a chi-square to

cumulative distribution function. The resulted values are tabulated in Table 5.5. If the

χ2 < 0.05 then that attribute is identi�ed as signi�cant. Signi�cance of each attribute of

the current study is shown in Table 5.6.

χ2 =
(Observed frequency − Expected frequency)2

Expected frequency

= 1− chi2cdf(χ− 1) (5.2)
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Table 5.5: Result of (χ)2

Signi�cance →
Spectrum ↓ Red Yellow Green Blue

Choledocholithiasis 0.3829 0.0459 0.0041 0.0002
Cholangitis 0.2167 0.1458 0.3956 0.2519
Pancreatitis 0.0337 0.0036 0.5957 0.1413
Cholecystitis 0.6410 0.9600 0.0023 0.0020

The relative importance of each feature along with their weight was calculated using

Relie�'s algorithm proposed by Kira and Rendell (1992). Relie� (X,Y,K) evaluates the

rank and weight of input X and output Y with K nearest neighbours. Here the rank and

weight give the importance of an attribute. Since the attributes were continuous, Pearson

correlation coe�cients test was conducted on the variables to represent the correlation

between the input and output. Pearson (1896) introduced Pearson correlation coe�cients

test. This was needed to evaluate the data distribution before being used for statistical

analysis. The result of ranking and correlation along with the weight calculation is shown

in Table 5.6.

5.3 Testing Relative Risk of each Factor for Di�erent

Spectrum of GSD

On identifying the association among the features, we needed to �nd its risk towards the

disease progression. Relative risk helps in measuring this association between exposed

and non-exposed groups towards disease. Non-exposed are the group of people who are

seen not to have any likelihood towards getting the disease. This measurement helps in

�nding the risk level they are in towards getting the disease. That is the probability of

getting exposed. Relative risk is calculated using the equation shown in 5.3.

Relative risk =

A
(A+B)

C
(C+D)

(5.3)

The values A,B,C,D and the illustrated values is shown in Table 5.7. Using the

relative risk equation 5.3, we could interpret that the people with jaundice have 6.5 times

higher risk towards GSD than who did not have GSD. On conducting the test for relative

risk for each spectrum of GSD, we could analyze that pancreatitis was among the high-risk

factors with relative risk of 98% followed by choledocholithiasis with 93% of the relative
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Table 5.6: The statistical analysis of current study

Attributes
Relie� Algorithms Pearsons Correlation (χ)2

Rank Weight Mean SD Correlation

A1 2 0.099978 0.627907 0.489083 0.36158 <0.01
A2 17 -0.002268 0.627907 0.489083 -0.03204 <0.01
A3 22 -0.010773 0.883721 0.324353 -0.14493 0.084385
A4 6 0.03987 0.255814 0.441481 0.256058 <0.01
A5 18 -0.003969 0.325581 0.474137 -0.04721 0.429324
A6 24 -0.014175 0.201551 0.67201 -0.5929 0.395804
A7 3 0.072979 0.72093 0.45385 0.345259 <0.01
A8 4 0.072226 0.488372 0.505781 0.314236 <0.01
A9 9 0.028821 0.186047 0.39375 0.142128 0.020465
A10 20 -0.007371 0.093023 0.293903 -0.06855 0.760918
A11 7 0.039034 0.372093 0.489083 0.228848 0.290007
A12 23 -0.012474 0.418605 0.499169 -0.47087 0.239873
A13 26 -0.017577 -0.356588 1.01868 -0.93905 0.668374
A14 1 0.595627 0.511628 0.505781 0.827636 <0.01
A15 19 -0.00567 0.046512 0.213083 -0.04727 0.255014
A16 5 0.047601 0.790698 0.411625 0.285507 <0.01
A17 32 -0.027783 -2.03100 2.05869 -1.97735 0.337364
A18 12 0.006237 0.093023 0.293903 0.095206 0.454107
A19 8 0.031822 0.209302 0.411625 0.182181 <0.01
A20 30 -0.024381 -1.472866 1.71202 -1.63125 0.638959
A21 16 -0.000567 0.162791 0.373544 -0.02996 0.966678
A22 25 -0.015876 -0.0775185 0.84534 -0.76600 0.431841
A23 31 -0.012474 -1.75193 1.88535 -1.8043 0.429324
A24 29 -0.02268 -1.1937 1.5386 -1.4582 <0.01
A25 15 0.001134 0.883721 0.324353 0.003451 0.252252
A26 11 0.017634 0.162791 0.373544 0.098879 0.795061
A27 21 -0.009072 0.976744 0.152499 -0.12477 0.966678
A28 10 0.024863 0.813953 0.39375 0.102332 0.956645
A29 27 -0.019278 -0.635657 1.19201 -1.1121 <0.01
A30 13 0.004536 0.093023 0.293903 0.095206 0.239873
A31 28 -0.020979 -0.914727 1.36535 -1.2851 <0.01
A32 14 0.002835 0.139535 0.350605 0.051078 0.977675

risk. People with uncomplicated GSD has a very less relative risk of lesser than 50%.

The Figure 5.3 shows the relative strength of each spectrum. The size of square gives the

graphical idea of relative risk, as it keeps moving towards 102%.
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Table 5.7: Illustration of feature selection and classi�cation

GSD (Yes) GSD (No) Row Total

Jaundice (Yes) 240 (A) 150 (B) 390 (A+B)
Jaundice (No) 20 (C) 120 (D) 140 (C+D)

Total 260 (A+C) 270 (B+D) 530 ((A+B)+(C+D))

Figure 5.3: Relative strength of treatment e�ects in di�erent spectrum of GSD.

The relative risk of each complicated cases of GSD was analysed and is shown in

Figure 5.4. The relative risk is calculated in a retrospective way and is studied based

on the disease progression for every hour, from the time of admission. On analysis, we

could �nd that all the patients reached normal stage within two days of admission. But

we could observe that the thirteen critical cases also descended towards normal as the

initial treatment progressed. This would have been the reason the ERCP was conducted

on them in the later stage of the disease progression.

On further risk analysis we could �nd that those thirteen critical cases had an incline

showing high relative risk. The clinical decision support system (CDSS ) developed by us

aimed in identifying those thirteen cases and predicting the disease progression at the time

of admission itself. Among the complicated cases of GSD, CDSS aimed in identifying the

cases which may become critical as the disease progresses. Those cases which were not

critical were found to become normal. This analysis will help in giving more attention to

such critical cases and avoid any later stage complications.
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Disease progression checked in hours

Figure 5.4: Analysing the disease progression and detecting the critical cases

5.4 Performance Comparison of ModCNN with ANN

and CCNN

The spectrum of GSD was identi�ed using ModCNN classi�cation technique in-order to

recognize the rare input pattern. This classi�cation accuracy was evaluated by comparing

it with ANN and CCNN. The result of this comparison is shown in Figure 5.5. For

illustrating and showing the performance comparison of ModCNN, ANN and CCNN, we

have considered ten patients data with equal distribution of di�erent spectrum of GSD.

Here, ten patients data is considered in order to show the performance of each model at

di�erent epochs, avoid spaghetti-like graphs and give better explanation.

The inputs are patients clinical data and output is the spectrum of GSD (�0� cholecys-

titis, �1� choledocholithiasis, �2� pancreatitis and �3� cholangitis). It was observed that,

ModCNN achieved MSE=0.00 (classi�ed output) at 1283 epochs, while CCNN and ANN

still needed few more epochs to complete the classi�cation process. Figure 5.6 shows the

rate of error decrease and it is observed that, the convergence of ModCNN was faster

than other models.
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Figure 5.5: Performance comparison of ModCNN, CCNN and ANN for classifying
spectrum of GSD .
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Figure 5.6: Classi�cation performance of ModCNN, CCNN and ANN.

5.5 Validation of ModCNN

Along with the statistical analysis for �nding the risk factors, we used ANN, CCNN, and

ModCNN for discovering the signi�cant factors associated with each spectrum of GSD.

Each model identi�ed a di�erent set of factors. Figure 5.7 shows the factors identi�ed

along with performance comparison using AZ . A1 to A32 are the clinical and USG �nd-

ings and are shown in the Figures 3.1,3.2,3.3,3.4 and 3.5. Each stack in the stacked bar

graph is the factor shown as the signi�cant by di�erent techniques. The value on top

of the stacked bar is the value of AZ for that model. Higher the AZ , factors are more

signi�cant. On comparison, it was seen that ModCNN outperformed in the accuracy

of prediction when compared with ANN and CCNN. The signi�cant factors were vali-

dated by testing for accuracy of prediction using the concept of AZ and are tabulated

in Table 5.8. A Probability level of a random di�erence of P < 0.05 was considered as

signi�cant independent predictors using χ2. AZ is a ROC curve (plotted with sensitivity

versus 1-speci�city) that performs the comparison of di�erent tests and chooses the best

model. AZ = 1 is known as perfect discrimination, and 0.5 is referred to as absence of

discrimination. AZ was calculated using all variables (N=29) for each model.
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Figure 5.7: Comparison of ANN, CCNN and ModCNN for di�erent spectrum of GSD

5.6 Testing for Accuracy in Prediction and Detection

of Critical Cases

AZ is one of the well established statistical technique for evaluating the model perfor-

mance. Higher the area under the curve more is the accuracy of prediction. The curve is

obtained by plotting for sensitivity against (1−specificity). TP (True Positive) is when

the people with the disease is classi�ed as positive, and FN (False Negative) is when they

are classi�ed as negative. TN (True Negative) is when people with no disease are cor-

rectly classi�ed as negative, and FP (False Positive) is when they are classi�ed positive.

Sensitivity and speci�city can be de�ned using the Table 7.4. Sensitivity and Speci�city

is obtained using equation 7.3 and 6.1 respectively. On plotting the obtained values for

each feature, we will be able to get AZ .
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Table 5.8: Factors associated with each spectrum of GSD and AZ of ModCNN. Each
factor is parenthesized with its P value.

Spectrum of GSD Factors Associated AZ

Cholangitis A1(P = 0.1969), A4(P = 0.1190),
A7(P < 0.001), A8(P=0.2483),
A9(P < 0.001), A10(P = 0.8016),
A14(P = 0.7571), A19(P = 0.2094),
A21(P = 0.5802), A26(P < 0.001)

0.9768

Pancreatitis A1(P < 0.001), A4(P = 0.6994),
A7(P = 0.4563), A8(P < 0.001),
A9(P < 0.001), A10(P < 0.001),
A12(P = 0.6040), A14(P = 0.8876),
A19(P < 0.001), A21(P = 0.4855),
A22(P = 0.6040), A26(P = 0.5300),
A28(P < 0.001)

0.9875

Cholecystitis A1(P < 0.001), A3(P = 0.1568),
A4(P < 0.001), A7(P = 0.7350),
A8(P < 0.001), A11(P < 0.001),
A16(P < 0.001), A17(P = 0.2145),
A24(P = 0.0656), A26(P = 0.6537),
A29(P = 0.9828)

0.9348

Choledocholithiasis A1(P < 0.001), A3(P = 0.9179),
A7(P < 0.001), A11(P = 0.2689),
A13(P = 0.4730), A14(P = 0.2689),
A19(P = 0.5364)

0.9653

Table 5.9: Representation of TP (A), FN (B), FP (C) and TN (D)

Test GSD (Yes) GSD (No) Row Total

Positive TP (A) FP (C) A + C
Negative FN (B) TN (D) B + D

Total A+B C+D

Sensitivity =
A

A+B
(5.4)

Specificity =
D

C +D
(5.5)
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5.7 Performance Measurement of ANN, CCNN and

ModCNN

The current work aimed to build a model that could function more e�ciently in iden-

tifying the cases that may become critical as the disease progress. This has to be done

at the time of admission itself. On study, we came through many scoring systems for

predicting the disease progression, but most of them can predict only after 48 hours of

admission. On analysing the Figure 5.4, we can understand that all the 13 cases became

complicated within 48 hours after admission. Hence applying APACHE (Knaus et al.,

1985) or Balthazar (Balthazar et al., 1990) which are well-established tools would delay

the process of treatment management. We needed a technique that could predict the

disease behaviour at the time of admission and reduce the medical error.

The performance of proposed ModCNN was compared with ANN and CCNN. The

Figure 5.8 shows the initial contour graph of ANN, CCNN and ModCNN, Figure 5.9

shows the intermediate stage and the Figure 5.10 shows that ModCNN has already con-

verged, where in ANN and CCNN still needed more epochs to complete. This evaluation

shows that proposed ModCNN is an e�cient model when compared to ANN and CCNN.

The e�ciency was de�ned in terms of the rate of convergence as-well-as the accuracy of

prediction.

5.8 Accuracy Measurement Using the Concept of AZ

The performance of ModCNN was evaluated and compared with ANN and CCNN. Mod-

CNN showed better accuracy when tested forAZ with, AZ = 0.9768, 0.9875, 0.9348 and 0.9653

for cholangitis, pancreatitis, cholecystitis and choledocholithiasis respectively. The inde-

pendent predictors associated with each spectrum of GSD along with their P-value is

tabulated in Table 5.8 and the comparison of AZ for each spectrum is shown in 5.11, 5.12,

5.13 and 5.14. The overall accuracy comparison shows that ModCNN had better accuracy

of AZ = 0.9642 when compared to CCNN (AZ = 0.9324) and ANN (AZ = 0.8965). This

is shown in Figure 5.15.

5.9 Summary

In this chapter the performance of ModCNN was evaluated and compared with ANN and

CCNN. The patients data was recorded, who came with the complaint of abdominal pain
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Figure 5.8: Initial Stage: Decrease in MSE showing classi�cation performance

Figure 5.9: Intermediate Stage: Decrease in MSE showing classi�cation performance
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Figure 5.10: Final Stage: Decrease in MSE showing classi�cation performance

Figure 5.11: Comparison of accuracy of prediction for cholangitis using AZ

during the period of 2014 to 2015 at territory care centre in north malabar Kerala, India.

The study focused on complicated cases of GSD. ModCNN was successful in stratifying
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Figure 5.12: Comparison of accuracy of prediction for pancreatitis using AZ

Figure 5.13: Comparison of accuracy of prediction for cholecystitis using AZ
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Figure 5.14: Comparison of accuracy of prediction for choledocholithiasis using AZ

di�erent spectrum of GSD and also predicting the disease behaviour. Number of cases

found in this current study comparable with the modes of presentation of California study

(Glasgow et al., 2000). This comparison showed that the incidence of choledocholithias

and pancreatitis is increasing in the subjected region.

Total of 32 features were observed, out of which the signi�cant features were identi�ed

using χ2 test, along with their relative risk factors.These signi�cant factors were fed into

ModCNN, ANN and CCNN to evaluate their performance. On validating, it was studied

that ModCNN achieved MSE=0.00 at 1283 epochs, while CCNN and ANN still needed

few more epochs to complete the classi�cation process. Further the accuracy of prediction

was evaluated using the concept of AZ . The comparison showed that ModCNN was able

to accurately identify thirteen complicated cases of GSD on whom emergency intervention

was needed with an accuracy of 96.42%. Thus the experimental result showed that the

proposed ModCNN was able to identify the complicated cases more accurately then ANN

and CCNN.
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Figure 5.15: Accuracy comparison of ModCNN with ANN and CCNN AZ
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Chapter 6

Process Mining in Healthcare System

In the healthcare system, patients have to go through many non-trivial processes which are

time-consuming. The treatment procedures may vary from one patient to other based on

their age, sex, and medical history. This procedure is multi-discipline, and each discipline

follows their way of process execution. Hence, there must be a proper interaction between

these discipline for successful process execution. This interaction is done through the

messages as shown in Figure 6.1.

Process execution in a healthcare system needs proper monitoring and control (Dadam

et al., 2000). Process mining supports in capturing the knowledge of organizational work-

�ow. This would help in conducting proper coordination between healthcare professional

and organizational units (Lenz and Reichert, 2007). Process mining has a huge class

of techniques assisting in process evaluation and monitoring. Using this, we were able

to manage execution of an individual activity at the right time by the e�cient resource

(Ter Hofstede et al., 2009; Weske, 2010; Dumas et al., 2005; Van der Aalst et al., 2004).

The main advantage of applying process mining in healthcare domain is, it would reduce

the resource cost along with waiting time of the patients (Adams et al., 1999). This

chapter will discuss the application of process mining techniques for:

• Recommending the critical treatment path sequenced with critical activities.

• Identifying the adequate resources for conducting the critical activity.

• Clustering the traces and �nding the Next Probable Activity (NPA).

• Assisting in load balancing of the resources.

• Predicting the length of stay in the hospital.
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Figure 6.1: Typical process model of a healthcare system.
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6.1 Introduction

ModCNN was applied for assisting the clinicians in taking appropriate clinical decisions

by �nding the critical cases at the time of admission. The critical path of treatment is

recommended for those cases which were found to be critical. This path is the safest

care�ow, supported by adequate resources for completion of each activity. Thus, making

the journey of a patient more safer and faster. Process mining was used here for providing

the care�ow to the patients. Process mining discovers the process models and monitors

their behaviour. If any drift is observed in process execution, it would predict and suggest

the changes to improve the process behaviour. Process mining is built upon three main

pillars: process discovery, conformance, and enhancement. The architecture is shown in

Figure 1.7. As event logs are the starting point for process mining, EHR serves as an

input for process mining.

6.1.1 Electronic Health Record (EHR)

The illustration of EHR is shown in Figure 6.2. It is important to understand

the structure of EHR along with the attributes needed for process analysis. In the

current study, we focused on patient record, medications and encounter history for

analysing EHR and recommending the right critical path. EHR can be referred

as a multi-set of traces and traces are the sequence of activities shown in med-

ication section of Figure 6.2. Let A1 = {AR, IP,OP,CH,DM,RE,BT,D} and

A2 = {RAR,NP,RP,Ex, TP, FU,RT,RD} be set of activities shown in the Fig-

ure 6.1. Let 〈AR, IP,CH,DM,D〉 and 〈RAR,NP,RP,Ex, TP, FU,RT,RD〉 be the

trace of A1 and A2 respectively. Set of all the traces executed through process exe-

cution forms an event log L1 = [〈AR, IP,CH,DM,D〉21 , 〈AR,OP,CH,DM,D〉30 ,

〈AR, IP,CH,DM,BT,D〉25] and L2 = [〈RAR,NP,RP,Ex, TP, FU,RT,RD〉85]. In this

event log (L1 and L2), there are three and one instances of traces respectively, and

the superscripted values {21, 30, 25 and 85} are the number of times those traces

were executed. Figure 6.1 shows the interaction between two model using the messages

M = [〈m1,m2,m3,m4,m5,m6,m7,m8〉]. The goal of application of process mining in

healthcare process is to discover an optimal model (critical path of treatment) with an

e�cient resource for handling each activity in the path of execution.
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Figure 6.2: Example structure of EHR.

6.1.2 EHR process mining

As a prepossessing step, resources performing di�erent activities were identi�ed along

with the di�erent treatment execution paths known as variants. We also recorded in-

formation about the evidences and duration each resource took to handle it. Based on

this information the resources were clustered as best, good and an average performer.

The variants of treatment execution paths were identi�ed using the technique of LCS.

Variants are the frequently executed treatment paths. On discovering di�erent possi-

ble variants, the NPA for the currently executing partial trace could be identi�ed using

the technique of trace matching proposed by Song et al. (2008). On discovered NPA,

the set of resources capable of performing it were identi�ed along with their availability

and e�ciency. Among the set of identi�ed resource the best resource was chosen using

the concept of Yerkes-Dodson Law of Arousal. This law was developed by psychologists

Robert M. Yerkes and John Dillingham Dodson in 1908 Yerkes and Dodson (1908). It

is also known as Arousal Theory and it states that by increasing arousal, the worker's

performance can be improved. However, if the level of arousal increases too much, per-

formance decreases, as shown in Figure 6.3. Using this information of NPA and resource
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identi�ed, we recommended the critical path of treatment. On conformance it was seen

that applying the recommended path of execution, we could have avoided the thirteen

cases on whom emergency intervention was needed.
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Figure 6.3: Illustration of Yerkes-Dodson Law of Arousal.

6.2 Preliminaries

The following notations and de�nitions will help in understanding process mining.

De�nition 6.1. Relation
A relation R is a subset (⊆ ) of the Cartesian product of set A and B, and is denoted by
aRb.

Let A be a set and R ⊆ A× A be a relation, then,

• R is re�exive if aRa for all a ∈ A.

• R is irre�exive if ∼ (aRa) for all a ∈ A.

• If aRb implies bRa for all a, b ∈ A, the relation is symmetric.

• If aRb and bRc implies aRc for all a, b, c ∈ A, the relation is transitive.

• Relation R is antisymmetric if aRb and bRa imply a = b for all a, b ∈ A.
De�nition 6.2. Functions
A function is a relation that uniquely associates members of one set with members of
another set (denoted by f : A→ B).

A function f from A to B is a relation such that for all a ∈ A is individually linked

with an object f(a) ∈ B. This implies that a function can be many-to-one or one-to-one

relation.
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De�nition 6.3. Sequences
Let S be a set. A sequence σ over S of length n ∈ N is a function σ : {1, ..., n} → S.

Given a sequence s and set A,

• Sequence s of length n are represented as 〈s1, s2, s3, .., sn〉.

• Length of sequence s is denoted by |s|.

• ith symbol of s is represented by s(i).

• A subsequence of s that starts at position i and ends at position j of s is represented

by s(i, j).

• A Head pre�x of length i of s represented by hdi. The vector representation is

s(1, i).

• A tail su�x from the position i of s is represented by tli. The vector representation

is s(i : |s|).

• A new sequence p can be obtained by concatenating two sequences s = 〈s1, s2, ..sm〉

and t = 〈t1, t2, ..tn〉. After concatenation the resulting sequence p can be denoted

by s♦t, and it will be of length m+ n.

• A∗ represents the set of all �nite sequences over A.

• Set of all sequences of length n over set A is denoted by An (is ⊆ A∗).

De�nition 6.4. Tuple
Tuple (list) is a collection of ordered elements. Let A be a set and let t = 〈a1, a2, ..., an〉 ∈
A× ...×A be a tuple of n elements (generally called as n tuple). t(i) refers to ith element
of tuple t. For example, let 〈a, b〉 ∈ A × A be a tuple of 2 elements t1(〈a, b〉) = a and
t2(〈a, b〉) = b.

De�nition 6.5. Event and attribute Let E be the set of all event identi�ers and AN
be the set of all attributes.

• Let Xx be a universal set (set of all possible values of x), where x ∈ AN , and let
e ∈ E .

• #x : E → Xx ∪ {⊥} is

� the value for all attributes x not de�ned in e,

� #x(e) =⊥ denotes value of attribute x for any event e.
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De�nition 6.6. Event log A simple event log L is a multi-set of traces over E , i.e.,
L ∈ B(A∗). It basically contains following �elds

• Case id is used for distinctly identifying a particular instance of the process. For
example, xx12, xx13, etc. represent the case ids in the hospital admission event log
given in Table 6.1.

• Event id assigns a distinct identi�er for every event related to a speci�c case. For
example, event id for the case xx12 is 2346 and for the case xx13 is 3347.

• Activity assigns a readable name for every event of a case. For example, event 2346
of case xx12 and event of 2360 of case xx14 points to an activity named Discharge

(D).

• Resources identify the individuals who are assigned and responsible for executing
a speci�c activity. For example, Pete is assigned as a resource for executing the
activity Discharge related to all the cases.

• Timestamps record the duration between the start and end of a particular activity.

• Cost is the expenditure incurred while executing a speci�c activity.

All cases in the event log L can be converted into sequences of activity names using

the classi�er, #activity(e). Applying this classi�er to the cases shown in Figure 6.2, we get

the simple event log: L :

• L1 = AR
(0,3)
Pete, IP

(2,7)
Sean, CH

(5,15)
Sue , DM

(11,20)
Sara , D

(20,25)
Pete

• L2 = AR
(0,5)
Pete, IP

(3,11)
Sue , CH

(7,15)
Sean , DM

(12,18)
Sara , BT

(19,15)
Sean

• L3 = AR
(0,7)
Pete, OP

(2,12)
Sean , CH(7,15)

Sue , DM (11,20)
Sara , RE(15,15)

Sue , IP (21,20)
Sean , CH(26,15)

Sue , DM (30,22)
Sara ,

D
(108,93)
Pete

• L4 = AR
(0,5)
Pete, OP

(3,6)
Sue , CH

(6,11)
Sean , DM

(9,15)
Sara , BT

(15,30)
Sue , DM

(25,20)
Sara , D

(30,15)
Pete

• L5 = AR
(0,3)
Pete, IP

(2,9)
Sue , CH

(6,15)
Sean , DM

(10,15)
Sara , RE(16,23)

Sue , IP (21,19)
Sean , CH(29,15)

Sue , DM (38,15)
Sara ,

BT
(42,20)
Sean , DM (50,15)

Sara , D(52,19)
Pete

On classifying based on the resources using the classi�er #resource(e) we get the sample

event log as,

L =[〈 Pete, Sean, Sue, Sara, Pete 〉, 〈 Pete, Sue, Sean, Sara, Sean〉, 〈 Pete, Sean, Sue,

Sara, Sue, Sean, Sue, Sara, Pete 〉, 〈 Pete, Sue, Sean, Sara, Sue, Sara, Pete〉, 〈 Pete, Sue,

Sean, Sara, Sue, Sean, Sue, Sara, Sean, Sara, Pete 〉, ..]
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Table 6.1: Event log of hospital treatment process.

Case id Event id
Properties

Timestamp Activity Resource Cost ...

xx12

2342 10-10-2012:01.00 AR (P1) Pete 130 ...

2343 10-10-2012:01.02 IP (P2) Sean 230 ...

2344 10-10-2012:01.05 CH (P4) Sue 340 ...

2345 10-10-2012:01.11 DM (P5) Sara 280 ...

2346 10-10-2012:01.20 D (P8) Pete 170 ...

xx13

2347 15-10-2012:01.00 AR (P1) Pete 200 ...

2348 15-10-2012:01.03 IP (P2) Sue 100 ...

2349 15-10-2012:01.07 CH (P4) Sean 400 ...

2350 15-10-2012:01.12 DM (P5) Sara 50 ...

2351 15-10-2012:01.19 BT (P7) sean 10 ...

xx14

2352 17-10-2012:01.00 AR (P1) Pete 200 ...

2353 17-10-2012:01.02 OP (P3) Sean 100 ...

2354 17-10-2012:01.07 CH (P4) Sue 400 ...

2355 17-10-2012:01.11 DM (P5) Sara 50 ...

2356 17-10-2012:01.15 RE (P6) Sue 10 ...

2357 17-10-2012:01.21 IP (P2) Sean 10 ...

2358 17-10-2012:01.26 CH (P4) Sue 400 ...

2359 17-10-2012:01.30 DM (P5) Sara 50 ...

2360 17-10-2012:01.33 D (P8) Pete 10 ...

xx15

2361 19-10-2012:01.00 AR (P1) Pete 200 ...

2362 19-10-2012:01.03 OP (P3) Sue 100 ...

2363 19-10-2012:01.06 CH (P4) Sean 400 ...

2364 19-10-2012:01.09 DM (P5) Sara 50 ...

2365 19-10-2012:01.15 BT (P7) Sue 10 ...

2366 19-10-2012:01.25 DM (P5) Sean 10 ...

2367 19-10-2012:01.30 D (P8) Pete 10 ...

xx16

2368 21-10-2012:01.00 AR (P1) Pete 200 ...

2369 21-10-2012:01.02 IP (P2) Sue 100 ...

2370 21-10-2012:01.06 CH (P4) Sean 400 ...

2371 21-10-2012:01.10 DM (P5) Sara 50 ...

2372 21-10-2012:01.16 RE (P6) Sue 10 ...

2373 21-10-2012:01.21 IP (P2) Sean 10 ...

2374 21-10-2012:01.29 CH (P4) Sue 10 ...

2375 21-10-2012:01.38 DM (P5) Sara 50 ...

2376 21-10-2012:01.42 BT (P7) Sean 10 ...

2377 21-10-2012:01.50 DM (P5) Sara 10 ...

2378 21-10-2012:01.52 D (P8) Pete 10 ...

... ... ... ... ... ... ...
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6.3 Construction of Transition System

The event based transition system was constructed and is shown in Figure 6.4. This

transition system assist in predicting the possible future state of the partial incomplete

trace. The transition phase of any process has a previous state, current state and future

state. The trace 〈A,B,C,D,E,F,G,H〉 shown in Figure 6.4 is the sequence of activities that

are already executed and known as partial trace (σ)(previous state) with 〈H〉 being the

current state of execution and 〈I,J,K,L〉 being the possible future states.

Process Discovery Prediction

Predicted Completion

Time

A  B C  D  E  F  G  H          I  J  K  L

Current State Future State

Partial Trace Unknown

Unknown 

completion time

Annotated Transition

System

Event Log

 

Update 

the

event log 

Process Mining

Knowledge 

Extraced

Figure 6.4: Illustration of design approach for predicting the future behaviour.

Consider an illustration of a process model shown in Figure 6.5, where 〈A,B,C〉 are

the partially executed trace with 〈C〉 being the current state activity and 〈D,E,F〉 being

possible future state activities. The annotated transition system helps in predicting the

future state i.e., whether 〈D〉 or 〈E〉 or 〈F〉 to be followed after the current state activ-

ity. Annotated transition system having knowledge about the discovered process model

identi�es the resources capable for performing the future state activities.

A

B

C

D E F

Current State

Partial Trace

Future State

State transition

Possible future

state transition

Figure 6.5: Illustration of current state to future state transition.
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Annotated transition system with the help of activity, transition and causal metric,

predicts the performance of each activity and resources before recommending the future

state activity and resource.

• Activity metric helps in identifying the throughput/ processing time along with

the waiting time at each activity. Using this information an activity with lesser

processing and waiting time could be recommended as possible future state activity.

• Transition metric measures the performance of each activity and resource at di�erent

position based on their previous execution. This helps in �nding the best position

for each activity along with the resource for its execution.

• Causal metric assist in identifying the likelihood of occurrence of an event. This

is measured by causal relationship between the preceding and succeeding pair of

activity in the trace. This information helps in identifying the best position for each

activity based on its preceding activity.

Further, the annotated transition system �nds the cost of performing the activity

using Time Driven Activity Based Costing (TDABC). Thus the system predicts the best

future state which is measured in terms of time and cost incurred for the execution of

that activity.

6.3.1 Initial design

Sample traces extracted from the process model shown in Figure 6.1 is shown in Table

6.1. The event log shown in the Table 6.1 will be used for the discussion and illustration

in this chapter. To better understand the structure of event log, it is represented using

a tree diagram and is shown in Figure 6.6. The activities in the process model shown in

the Figure 6.1 is listed in Table 6.2

6.3.2 Current state

Here, process models discovered using process mining techniques are analysed for identi-

fying their executable strength and weakness. We developed a position matrix for each

activity along with its performance. Example: suppose, an activity is positioned at {2},

we identify its predecessor and successor, along with the duration it took for the com-

pletion of an assigned task, including the details about the resource performance is also
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Table 6.2: Activities in the process model shown in the Figure 6.1

Hospital Service Patients Response

AR Appointment/ Registration RAR Request Appointment/ Registration

IP In Patient NP New Patient

OP Out Patient RP Registered Patient

CH Check History Ex Examine

DM Decision Making TP Treatment Procedure

RE Re-Examine FU Follow Up

BT Begin Treatment RT Request Treatment

D Discharge RD Request Discharge

CL Close

Activity: Appointment

Timestamp: 10-10-2012:01.20

Resource: Anne

Cost: 200

...

Activity: Decide

Timestamp: 13-10-2012:1:37

Resource: Clar

Cost: 50

Activity: Begin treatment

Timestamp: 13-10-2012:13:25

Resource: Ram

Cost: 10

Activity: Appointment

Timestamp: 14-10-2012:7.47

Resource: Anne

Cost: 200

...

Activity: Decide

Timestamp: 15-11-2012:08.20

Resource: Clar

Cost: 50

Activity: Discharge

Timestamp: 15-11-2012:09.17

Resource: Ram

Cost: 100

...

...

Hospital 

Admission 

Process

Case Id Event Id

Activity: Appoint

Timestamp: 17-01-2013:22.20

Resource: Anne

Cost: 200

... ...

Event details

...

XX12

XX13

XX16

2342

2345

2346

3347

3351

2658

6366

... ... ...

Figure 6.6: Tree structure of process log.
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observed. Using this information, the NPA and an e�cient resource for performing that

NPA is identi�ed for the current state.

6.3.3 Abstraction of event log for generating transition system

The transition system is a triplet of State space (S), Event labels (E) and Transition

relation (T): (S,E,T) (Mans, 2011). State space is the set of all possible states of the

processes, in the discovered process model. Event labels are the labels de�ned for each

event. Transition relation describes the transition of process from one state to another

(T ⊂ S × E × S). Consider: S1 and S2 as two states, then transition state is de�ned as

S1
e→ S2, where e is the event label.

De�nition 6.7. State representation (lstate) Let C be a set of all the traces in a event
log, R be set of all the states then lstate is formally represented as lstate ∈ C → R

Example: Consider the partial trace σ = A,B,C..H in the Figure 6.4. Then lstate could

be either lstate = H or lstate = Resource performing H. But, we considered complete

trace execution as abstraction of lstate, i.e., lstate = σ.

De�nition 6.8. Event representation: (levent)
Let E be set of all events and R be event representation using event labeling E, then levent

is formally represented as lstate ∈ E → R

With the knowledge of lstate and levent we can now de�ne transition system as:

De�nition 6.9. Transition System: (ltransition )
Let, hdk be �rst k elements in the sequence, where hd is head, and similarly tlk be the
tail of last k elements in the sequence, where k = 0 ≤ k ≤ |σ|. By the de�nition of the
transition system (S,E,T).

S =

{
lstate

(
hdk(σ)

)
|σ ∈ Event Log(L) ∧ 0 ≤ k ≤ |σ|

}
E =

{
levent

(
σ(k)

)
|σ ∈ Event Log(L) ∧ 0 ≤ k ≤ |σ|

}
T ⊆ S × E × S =

{
lstate

(
hdk(σ), levent

(
σ(k + 1)

)
, lstate

(
hdk+1(σ)

}

For identifying the state of transition, it is important to have proper information about

current state transition system. For that, we need to have the performance information

of each activity and resource. This would help in predicting the future state along with

its completion time.
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6.3.4 Performance information

The performance is measured by the help of process metrics (activity and transition met-

ric), variant metrics and resource metrics. The activity metric provides the information of

arrival and processing time of each activity. Using this, the throughput and waiting time

at each activity is measured and helps in analysing each activity. The transition metric

gives the possible state of transition for each partial trace. The variant metric clusters and

�nds di�erent variants of process execution along with their performance. The resource

metric measures the performance of each resource for a di�erent set of activity they had

performed.

6.3.5 Activity metric

The life cycle of an activity has an arrival time, waiting time and a processing time. It

is important to trigger an activity when it is needed instead of making them wait. Delay

in an execution of activity would delay the process execution and completion. The goal

of this work is to bring down the waiting time and make the process more e�cient and

available.

De�nition 6.10. Life cycle of an activity

• Arrival time: Time an activity is triggered/ arrived.

• Waiting time: It is the time an activity wait for its execution after being arrived.

• Processing time: Total throughput of an activity. It is the time from actual start
to its completion.

• Start time: It is the time when the process begins its execution.

Consider the time line illustration shown in Figure 6.7 for the trace L1 with case id

xx12 in Table 6.1 . The Figure 6.7 clearly illustrate the turn-around time, waiting time

and processing time. It can be seen from the Figure 6.7 that activity P2 arrived at time

2 and had to wait for 1 unit time for the completion of processing of activity P1. The

arrival and processing time for L1 is shown in Table 6.3 and the subsequent Gantt chart

is shown in Figure 6.8.

Using the formula shown in equation 6.2 and 6.3 the arrival metric is constructed for

the trace L1 and is shown in Table 6.4.
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Table 6.3: Initials: Arrival and processing time of L1

Activity Arrival Time Processing Time

AR (P1) 0 3

IP (P2) 2 7

CH (P4) 5 15

DM (P5) 11 20

D (P8) 20 25

TT = 3
PT = 3

0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45

PT = 7 TT = 8

WT = 5

PT = 15
TT = 20

 

WT = 14

TT = 34

=   Arrival 

Figure 6.7: Illustration of di�erent process life time.

Figure 6.8: Gantt chart for the trace shown in Table 6.3.

T PiTurn around =

(
T Pi−1

Processing + T PiProcessing

)
− T PiArrival (6.1)

T PiWaiting = T PiTurn around − T
Pi
Processing (6.2)

(6.3)

Suppose, if an allotted time for the completion of a process execution is 20, then the

annotation is added with 20 unit time. For illustration, let us only consider the arrival

time for each activity as 〈P 0
1 , P

2
2 , P

5
3 , P

11
4 , P 20

5 〉. We add 〈P 0
1 〉 with the time remaining

in annotation being 20. On addition of 〈P 0
1 , P

2
2 〉, the remaining time at annotation is

20− 2 = 18. Similarly, on adding 〈P 0
1 , P

2
2 , P

5
3 〉, the remaining time would become 13, on

adding P 11
4 the remaining time = 2, thus making no room for adding P5. This situation

arises only due to the waiting time at each activity. Hence it is important to reduce the
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Table 6.4: Arrival Metric of L1

T Process Completed T PiTurn around T PiWaiting

0 � � �

03 P1 03 - 00 = 03 03 - 03 = 00

10 P2 10 - 02 = 08 08 - 07 = 01

25 P4 25 - 05 = 20 20 - 15 = 05

45 P5 45 - 25 = 34 34 - 20 = 14

70 P8 70 - 20 = 50 50 - 25 = 25

TWaiting. For that we aggregated the T̄Waiting of all the traces, along with preceding and

succeeding activity and is shown in Table 6.5. This mean, activity 〈IP 〉 is preceded by

AR and succeeded by CH with the waiting time period of 1. Aggregating the waiting

time of all the succeeding activity along with its preceding activity and by constructing

annotation system, the NPA for a partial trace σ could be decided.

Table 6.5: Initials: Succeeding and preceding activities L1

Activity TWaiting

AR (P1) 0

IP (P2) 1

CH (P4) 5

DM (P5) 14

D (P8) 25

The Figure 6.9 shows behaviour of process execution with the error bar showing the

waiting time at each activity. Each horizontal line in the plot represents traces 'xx12,

xx13, xx14, xx15, xx16" in the Table 6.1 and vertical line in the trace is the waiting time

for the execution of each activity in the trace. Trace length in the Figure 6.9 is measured

by total throughput of process execution in the trace instance. Total throughput is the

sum of arrival, waiting and processing time, and annotated transition system is intended

to identify the trace with higher waiting time. By decreasing waiting time, throughput

of process execution could be made faster. The error bar chart is plotted for the instance

of traces shown in Table 6.1 with the arrival time and processing time shown in simple

event log L in the de�nition 6.6. On analysing the Figure 6.9 we observe that the trace
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xx14 had highest throughput time when compared to other traces. This analysis assist

in identifying drifted traces in terms of time taken and provide an alternative path of

execution.
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Figure 6.9: Analysis of process behaviour.

6.3.6 Transition metric

The transition metric function ltransition is used to measure the performance of an

activity and resource at di�erent position of its execution. Using this, for a partially

executed trace σ1, the NPA σ2 could be identi�ed i.e., ltransition(σ1, σ2). Along with

time function T for each activity,the possible execution position P ∈ P1, P2, P3....Pn

were also recorded. To identify σ2, we �rst need to know the currently executing state

ltransitionCurrent State along with information of its P = lPiCurrent state. Along with this informa-

tion TWaiting and TTurn around for each traces were calculated. Based on the outcome of

this, the best possible position of each activity was measured and is shown in equation 6.4.

ltransition(σ1, σ2) =


0 if σ2 = 〈 〉,

MaxT (σ2) −MinT (σ2) if σ1 = 〈 〉 and σ2 6= 〈 〉

MaxT (σ2) −MaxT (σ1) if σ1 6= 〈 〉 and σ2 6= 〈 〉

(6.4)

where MaxT (σ) = max{ltransitionCurrent State|l
transition
Current State ∈ σ}
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Suppose the trace L = 〈P 0, P 2, P 5, P 11, P 20〉 is split into σ1 = 〈P 0, P 2, P 5〉 and

σ2 = 〈P 11, P 20〉, then ltransition(σ1, σ2) = MaxT (〈P 0, P 2, P 5〉) − MaxT (〈P 11, P 20〉) i.e.,

20− 5 = 15. Here, 15 is the remaining time in annotation from the completion of process

execution, but the elapsed time could be calculated using equation 6.5.

MaxT (σ1) −MinT (σ1) if σ1 6= 〈 〉 (6.5)

The equation 6.4 is modi�ed to �nd the position of each activity and is shown in 6.6.

ltransitionPi (T1, T2, ...Tn) =

0 if T1, T2, ...Tn = 〈 〉,

MaxT (σ1) −MinT (σ1) if T1, T2, ...Tn 6= 〈 〉
(6.6)

On identifying the possible set of activities at each position, the set of preceding and

succeeding activities for the current state activity is discovered. This will help in predicting

the future state. Preceding is required to match the currently executing partial trace σ.

This is achieved by the help of causal metric.

6.3.7 Causal metric

In a process model, any two nodes (activities) are in causal relationship if there is

a sequential order of execution between them. Suppose, A and B are two activities

such that A → B, then there exist causal relationship between A and B, where the

symbol → is the symbol of sequential execution. This means, in a trace any event get

executed due to the execution of its preceding event and the reason of this occurrence

is recorded in causal metric. Statistically, it gives the information about the likelihood

of occurrence of an event based on the information about the preceding event. Let,

X be GSD where {x1, x2...xn} ∈ X are di�erent stages in GSD and {y1, y2....ym} ∈ Y

be the factors associated with GSD. Then probability distribution function, we could

�nd P (Y = y|Causing(X = x)), where y is the factor causing disease to reach stage x.

Using this concept of causal relationship we developed the metric for turn around time

and waiting time and is shown in Table 6.6 and 6.7 respectively. Turn around time and

Waiting time is calculated using the equation 6.2 and 6.3 respectively and illustrated in

Table 6.4. For illustration about the values in table 6.6, let us consider event log L in
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the de�nition 6.6. For �nding the causal relationship between P1 and P2.

• L1 = (P1)
(0,3)
Pete, (P2)

(2,7)
Sean

• L2 = (P1)
(0,5)
Pete, (P2)

(3,11)
Sue

• L3 = (P1)
(0,7)
Pete, (P3)

(2,12)
Sean , (P4)

(7,15)
Sue , (P5)

(11,20)
Sara , (P6)

(15,15)
Sue , (P2)

(21,20)
Sean

• L4 = No causal relationship between P1 and P2

• L5 = (P1)
(0,3)
Pete, (P2)

(2,9)
Sue , (P4)

(6,15)
Sean , (P5)

(10,15)
Sara , (P6)

(16,23)
Sue , (P2)

(21,19)
Sean

Using the equation 6.2 = T PiTurn around =

(
T Pi−1

Processing + T PiProcessing

)
− T PiArrival

• L1 = (3 + 7)− 2 = 8

• L2 = (5 + 11)− 3 = 13

• L3 = (7 + 12 + 15 + 20 + 15 + 20)− 21 =68

• L4 = No causal relationship between P1 and P2

• L5 = (3 + 9) − 2 = 10 and (3 + 9 + 15 + 15 + 23 + 19) − 21=63. Now taking the

average of these = 10+63
2

= 36.5

Now the T PiTurn around = 8+13+68+36.5
4

= 31.375. This is entered in the causal metric

shown in the Table 6.6. Likewise all other values are entered along with for the Table 6.7.

Using the information of causal relation, the position metric showing the execution

position of di�erent activities is plotted and is shown in Figure 6.10. Figure 6.11, shows

the successor and predecessor, along with the waiting and processing time at each position.

This information helps in identifying the possible future state of currently executing trace

σ. Before recommending the NPA to succeed the partial trace, we need to �nd the cost

incurred for the delivery of the service. For the technique of Time Driven Activity Based

Costing (TDABC) proposed by Kaplan and Anderson (2003) is used, for measuring the

cost of activity and the resources.
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Table 6.6: Causal relationship for all the activities based on turn around time for the
event log L shown in Table 6.1

P1 P2 P3 P4 P5 P6 P7 P8

P1 0 31.37 12.5 31.6 50.9 51.5 63 86.5

P2 0 0 0 41.87 59 49 68.5 91.33

P3 0 68 0 41 57.25 54 52 90

P4 0 65.5 0 0 50.9 51.5 63 86.5

P5 0 65.5 0 74 0 51.5 63 86.5

P6 0 65.5 0 74 91.75 0 92 112

P7 0 0 0 0 80.5 0 0 94

P8 0 0 0 0 0 0 0 0

Table 6.7: Causal relationship for all the activities based on waiting time for the event
log L shown in Table 6.1

P1 P2 P3 P4 P5 P6 P7 P8

P1 0 18.37 3.5 18.4 32.6 32.5 41.33 68

P2 0 0 0 26.87 53.25 26 51 71.66

P3 0 48 0 8.5 38 39 22 75

P4 0 46 0 0 32.6 32.5 41.3 68

P5 0 46 0 59 0 32.5 41.3 68

P6 0 46 0 59 73.25 0 72 95

P7 0 0 0 0 63 0 0 77

P8 0 0 0 0 0 0 0 0

6.3.8 Construction of annotated transition system for analysing
the resource performance based on TDABC

TDABC starts by identifying the cost of all the activities contributing to the completion

of a process. The cost of the activity is the amount spent on it for its completion, and

it is the cost of the resources, assisting in performing that activity. For example, let's

consider two traces: 〈A→ B → C → D〉 and 〈A→ B → E → D〉, where 〈B〉 is followed

by 〈C and E〉. 〈C〉 took 10 unit time with resource cost of 200 for conducting it, where

in 〈E〉 took 5 unit time with resource cost of 400. Recommending NPA for 〈B〉 with an

adequate resource is a challenge and can be dealt with the technique of TDABC.
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Position of occurrence

Figure 6.10: Position of di�erent activity in the example log L.

First, per unit cost is calculated by aggregating with activity and resource cost. Next,

identify the priority of each activity. And �nally, the resource cost per unit time of service

delivered is measured, thus giving the cost/ activity. The complete process is listed below:

• List all the activities.

• Identify per unit cost of each resource based on service overhead.

• Aggregate the cost identi�ed

• Prioritize each activity.

• Calculate the resource cost per unit of service.

A Estimating cost per unit time

Here we �rst identify the load and capacity along with Levels of arousal of the performance

using Yerkes�Dodson law. In the level of arousal the Optimal Load is the maximum load

a resource can handle e�ciently, along with its performance. Performance is a ratio of
Total time taken

Load
. The performance was analysed by increasing the load and observing the

time taken. It was observed that, as the load was increased, there was a decrease in time

taken for completing the assigned task. But at some point, there was a drift, and there

was an increase in time taken for completion. That drifted point is known as Arousal
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Figure 6.11: Process model with the information of processing time, waiting time,
successor and predecessor for the example log L.
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(optimal load and performance of the resources). As a thumb rule, we assume the best

capacity of any resource is between 80 − 85% of the estimated values. Suppose, if any

resource's Levels of arousal is 10 hours, we consider his optimal performance is about 8

hours per day and remaining to be his transit time.

B Estimating duration of an activity

Knowing the cost per unit time, we now need to know the time each resource takes for

completing one unit of activity. This is measured by the ratio of the total cost incurred

by the resource performing the assigned activity, by total hours spend on it. Consider the

traditional way of Activity Based Costing (ABC) for �nding the cost per unit activity.

The values extracted using tradition ABC technique, for the �rst case with case ID xx12

(shown in Table 6.1), is shown in Table 6.8.

Table 6.8: Traditional activity based costing

Activity Resource % of time
spent

Assigned
cost

Activity
quantity

Cost driver rate

AR Pete 2.6% 130 5 (130/5) = 26

IP Sean 6.9% 230 4 (230/4) = 57.5

CH Sue 17.39% 340 7 (340/7) = 48.57

DM Sara 29.56% 280 9 (280/9) = 31.11

D Pete 43.47% 170 4 (170/4) = 42.5

Total Assigned Cost 1150

In the Table 6.8, % of time spent is identi�ed by calculating the total-turn-around

time of activity than �nding its percentage in the total duration of the case. Assigned

cost is the cost for running that activity. It is an expense incurred by the resource and is

calculated for per unit time. Activity quantity is a number of time the activity is played

in the entire process. Cost driver rate is calculated using the values of assigned cost and

activity quantity.

Let's consider the total allotted time be 1000 unit. The impact of practical capacity

is now calculated and is tabulated in Table 6.9. Here the total time unit e�ectively used
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is 576. Hence, it is 57.6% of the time which is allotted for the completion of the process,

rest of 42.4% is wasted in transit time, and the resource is paid for that. Based on the

% of time spent the e�ective time would be: AR=2.6% (1000) which is 26, similarly it is

69, 173.9 295.6 and 434.7 percentage for IP , CH, DM and D respectively. This explains

that, out of 26 time unit spent, only 15 (see Total Min. in Table 6.9) unit time was

e�ectively used i.e., 57.69% was e�ectively used by the resource Pete for the activity AR.

Similarly, 46.37%, 80.50%, 63.93% and 46% was used by resource Sean, Sue, Sara and

Pete. Using the value of e�ective time usage and the assigned cost, the e�ective total cost

can be calculated. The values measured is shown in Table 6.9.

Using the technique of TDABC, the e�ective time usage of each resource could be

analysed and cost for completing the process could also be reduced. This method assist in

analysing the behaviour of each resource before they are recommended for the completion

of the partial trace σ.

Table 6.9: Impact of practical capacity

Activity Resource Unit time
in min.

Activity
quantity

Total time
in Min.

Total Cost

AR Pete 3 5 3× 5 = 15 (57.69%(130)) =
75

IP Sean 8 4 8× 4 = 32 (46.37%(230)) =
106.6

CH Sue 20 7 20× 7 = 140 (80.5%(340)) =
273.7

DM Sara 21 9 21× 9 = 189 (63.93%(280)) =
120.82

D Pete 50 4 50× 4 = 200 (46%(170)) =
78.20

Total Min and Cost: 576 654.32

6.3.9 Construction of annotated transition system based on re-
maining turn-around time

Aim of constructing the transition system is to assist the prediction of future unknown

state as shown in Figure 6.4. In any partial trace, it is important to understand already
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executed trace and the time remaining for the completion of process. By the help of Mod-

CNN, we can predict an average time a patient may become critical. This was achieved by

observing the disease behaviour. Thus, by knowing the time elapsed by the partial trace,

we can �nd the remaining time. Based on the remaining time, prediction of best possible

future state is done. Along with this, we analysed the behaviour of each possible activity

in the future state and resource performance as well, before recommending any possible

path of execution. Consider the log �le shown in the Table 6.10. The superscript values

are turn-around time (TTurn around) for each activity, measured by using the equation 6.2.

Table 6.10: Event log of Table 6.1 with the information of turn around time

Case ID Trace

xx12 〈AR3, IP 11, CH31, DM65, D115〉

xx13 〈AR5, IP 18, CH42, DM79, BT 124〉

xx14 〈AR7, OP 24, CH51, DM94, RE148, IP 216, CH294, DM390, D498〉

xx15 〈AR5, OP 13, CH29, DM57, BT 109, DM171, D243〉

xx16 〈AR3, IP 13, CH34, DM66, RE115, IP 178, CH248, DM324, BT 416, DM515, D631〉

The state transition metric function ltransition 6.4 is used to identify the performance

of an activity and the resources. They assist in identifying the NPA (σ2) for a partially

executed trace σ1 i.e., ltransition(σ1, σ2). For constructing the annotated transition sys-

tem, set of possible traces {σ2} following the successor σ1 are identi�ed. Thus using the

de�nition of transition system 6.9 the annotated transition system could be de�ned as:

De�nition 6.11. (Annotated Transition System): Annotated transition system is
aimed in �nding the future state activities for the partially executed trace and is shown
in the equation 6.7.

AT =
∑
σ∈L

∑
0≤k≤|σ|

lstate(hdk(σ))

[
ltransition

(
hdk(σ), tl|σ|−k(σ)

)]
(6.7)

The annotated transition system make use of transition metric function ltransition 6.4 to
measure the performance of an activity and resource at di�erent position of its execution.
Here hdk (head) represents the pre�x of length k, tlk (tail) is su�x from the position k
and |σ| is the length of the partial trace σ.
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Using this, for a partially executed trace σ1, the NPA σ2 could be identi�ed i.e.,

ltransition(σ1, σ2). Suppose the trace L = 〈P 0, P 2, P 5, P 11, P 20〉 is split into σ1 =

〈P 0, P 2, P 5〉 and σ2 = 〈P 11, P 20〉, then ltransition(σ1, σ2) = MaxT (〈P 0, P 2, P 5〉) −

MaxT (〈P 11, P 20〉) i.e., 20−5 = 15. Here, 15 is the remaining time in annotation from the

completion of process execution, but the elapsed time could be calculated using equation

6.5. The annotated transition system (AT ) is constructed and is represented in Figure

6.12. The transition system depicts the process model shown in the Figure 6.1. Activ-

ity 〈AR〉 being the Starting activity in the event log shown in Table 6.10 the annotated

transition system also starts with 〈AR〉.

Now let us consider a trace instance 〈AR3, IP 11, CH31, DM65, D115〉 shown in the

�rst row of Table 6.10. In this instance, 〈AR〉 has total turn-around time of 3 units.

Similarly 〈IP 〉 took 11, 〈CH〉 took 31, 〈DM〉 took 65 and 〈D〉 took 115 unit of time.

The ltransition starts with empty successor ltransition(σ1) = 〈 〉 and maps to state ∅.

Thus remaining time is TRemaining = 115 − 3 = 112 and is added to annotation state

∅. Now the successor is added to with ltransition(σ1) = 〈AR3〉 and is mapped to cur-

rent state ltransitionCurrent State(σ1) = {AR}. Now the remaining time is 115 − 3 = 112 and is

added to the annotation of state {AR}. Successor {IP} is now added ltransition(σ1) =

〈AR3, IP 11〉. This is mapped to current state ltransitionCurrent State(σ1) = {AR, IP}. Remaining

time TRemaining = 115 − 11 = 104 is added to annotation of state {AR, IP}. Activity

〈CH31〉 is added to its successor ltransition(σ1) = 〈AR3, IP 11, CH31〉 and is mapped to cur-

rent state ltransitionCurrent State(σ1) = {AR, IP,CH}. Remaining time TRemaining = 115− 31 = 84

is added to annotation of state {AR, IP,CH}. Activity 〈DM65〉 is added to its

successor ltransition(σ1) = 〈AR3, IP 11, CH31, DM65〉 and is mapped to current state

ltransitionCurrent State(σ1) = {AR, IP,CH,DM}. Remaining time TRemaining = 115 − 65 = 50 is

added to annotation of state {AR, IP,CH,DM}. Finally activity 〈D115〉 is added to its

successor ltransition(σ1) = 〈AR3, IP 11, CH31, DM65, D115〉 and is mapped to current state

ltransitionCurrent State(σ1) = {AR, IP,CH,DM,D}. Remaining time TRemaining = 115 − 115 = 00

is added to annotation of state {AR, IP,CH,DM,D}.

After this annotation is followed to all the process instance in the Table 6.10, we

will have a state ∅ annotated with bag containing �ve elements: {112, 119, 491, 238, 628}.

State {AR, IP} is annotated with [(115− 11 = 104), (124− 18 = 106), (631− 13 = 618)].

Similarly the state {AR, IP,CH} is annotated with [84, 82, 597], {AR, IP,CH,DM} is

annotated with [50, 45, 565] and {AR, IP,CH,DM,D} is annotated with [0].
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is the total turn around time 
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Figure 6.12: Annotated transition system based on log shown in Table 6.10.
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6.4 Prediction Function

The annotation transition system is built with an information about the probable set of

activities that precedes and succeeds the current state ltransitionCurrent State along with the infor-

mation about the resource performance behaviour. It is now used for predicting the future

state as shown in Figure 6.4. Let us consider the partial trace σ = 〈AR, IP,CH,DM〉.

By the de�nition of annotation de�ned by Van der Aalst et al. (2011), the future state

include the possibility of 〈BT 〉, 〈D〉 and 〈RE〉. But, the prediction function that was

de�ned in the annotation state earlier predicted the average time needed for the comple-

tion of a process. Suppose, the annotation state of the successor for 〈AR, IP,CH,DM〉

be {b1, b2, b3, ....bn}. Here bi, i = 1, 2, 3...n is the start time of an event in the successor.

Then by the de�nition of prediction function b̄ =
∑n
i=1 bi
n

. But in this work, we annotated

the turn-around time and averaged it to �nd the TRemaining. Based on the annotation

transition system AT , the waiting time at each state is identi�ed and it is reduced by

recommending an e�cient resource.

The annotated transition not only annotated the activities but also annotated the

resource performance using the time they spend on completing the allotted task. The

system assisted in identifying the load at a unit time and then measuring their arousal.

Based on this observation an e�cient resource for each activity is identi�ed. Further for

predicting the complete process we need to know the possible trace in the future state.

For that we used the trace clustering and matching technique.

6.4.1 Trace clustering and trace matching using similarity check

Predicting the probability of the trace match for a partial trace with the cluster of traces

is a crucial issue in many information retrieval and process mining applications. The

traces are clustered based on the variants of process �ow using the technique of Longest

Common Subsequence (LCS). The aim is to match an partial trace (σ1) with the variants

of traces known as annotated transition system AT , to identify the matching traces, i.e.,

LCS(σ1, AT ) where σ1 is an incomplete partial trace.

Song et al. (2008) clustered the traces based on the feature and distance matrices. The

feature matrix measures the number of features each trace has speci�cally for an individual

event and distance matrix measures the distance between any two traces (σ1, σ2). Based

on the result of feature and distance matrix the traces were clustered. We applied this
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technique of trace clustering and clustered the traces not only based on features but also

including the duration each trace took for the completion of an assigned task. The trace

matching for a partial trace was done by applying the technique of LCS with clustered

traces. llength = LCS(σ1, AT ) measures the length of LCS between σ1 and AT . Based

on the matching length llength, an e�ciency of the process execution is predicted. This

prediction avoids any emergency interventions by recommending an alternative path of

execution.

On identifying the set of matched traces (AT (sim)) similarity test between σ and

AT (sim) i.e., Sim(σ,AT (sim)) would estimate the similarity between them. The initial

point of measurement for similarity check between σ and AT (sim) is �nding the lp −

distance between them, i.e., lp(σ,AT (sim)). Here since the boundary is not de�ned, an

in�nite metric space equipped with a real space Rk known as Minkowski norms lp(1 ≤

p ≤ ∞) is applied. The two points (σ,AT (sim)) ∈ Rk and lp − distance between them is

measured by equation ||σ − AT (sim)||p 6.8.

||σ − AT (sim)||p = (
k∑
i=1

|σi|p)
1
p for 1 ≤ p ≤ ∞ (6.8)

Aim of the trace clustering and similarity checking using LCS technique is to identify

and recommend the probable path of execution in future state. LCS is a well known

application in the �eld of bio-informatics (Lin et al., 2006). It is a dynamic programming

and assist in determining the maximum length of the match that can be obtained between

the two strings (Ullman et al., 1976). Here two strings are the partially executed trace

and the set of traces that are already been executed. The study showed that there exist

lot of algorithms (Chvátal et al., 1972; Hirschberg, 1975; Wagner and Fischer, 1974)

which identi�ed the LCS, but they all had the best time complexity of O(n2). Hunt and

Szymanski (1977) proposed an optimized method which took O((r+n)logn) time for the

same problem of identifying LCS and they named it as O((r+n)logn) algorithm for LCS.

Here r is the order paired position at which the sequence match. In the proposed method,

identifying the positing of trace match is much important since, we are not intended in

just matching the trace at any position but at the current position. Let A and B be two

traces with sequence "babcdaa" and "abccbaaba" of length m and l respectively. LCS is

"abc", but the trace actually don`t match since they occur at unrelated positions. Hence

for a trace to match it is very important for the activities to occur at the exact position.
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By the rule of decision making using decision tree, let P1 and P2 be the relative position r

of the string A and B (say ai and bj). If i < j then r returns �less-than� else if i > j then

r would return �greater-than� else it will return �equal�. If the relative position r return

�equal� then only the string values are compared using LCS.

The distribution of activities based on the position of their occurrence is shown in the

Figure 6.13. This information is extracted from the event logs recorded. On running LCS

algorithm on the distributed set of activities, we identi�ed the sequence of occurrence

that repeatedly occurred and is shown in the Figure 6.14. The common sequence of

events that repeatedly occur is known as variant. The traces occurring in the variants are

clustered as good, better and best cluster and is shown in the Figure 6.15. The knowledge

extracted from this information is useful for matching the sequence for a partial trace σ.

If any delay in process execution was observed, an alternative path of execution was

recommended using the discovered sequence of activities.

Figure 6.13: Activity position distribution showing the execution of activities.

Consider the partial trace 〈IP, CH,DM〉 and a simple event log L from the de�nition

6.6. By the de�nition of LCS the partial trace 〈IP, CH,DM〉 was matched with the

traces L1, L2, L3 and L5. LCS would suggest the sequence of activities to be followed as

〈D〉 from L1 and L3, 〈BT 〉 from L2 and L5 and 〈RE, IP, CH,DM,BT,DM,D〉 from L5.
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Figure 6.14: Traces at each variants.

But, based on the position r=eight of the current state 〈DM〉 of the partial trace, LCS

would now recommend 〈BT,DM,D〉 from L5 as the sequence of traces to be executed in

the future state.

The annotation system on matching the similarity between partial trace and the cluster

of traces, identi�es the possible successor. Along with, the adequate resources required

for performing NPA is also identi�ed. Thus avoiding any emergency interventions by

recommending an alternative path of execution.

6.4.2 Identifying the resource load and their performance

The resources are classi�ed based on their performance for an activity. The classi�cation

of best suitable resource is done for each performed activity in the process model. This

analysis helps in recommending the suitable resources for performing an activity which

will probably succeed the current state activity. On identifying the succeeding activity for

the current state activity in the partial trace, the resources capable of performing those

succeeding activities are discovered. Suitable resource is recommended using the concept

of Analytical Hierarchy Process (AHP) and the theory of Arousal. Highly ranked resource

with less arousal is recommended to perform the succeeding activity.
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Figure 6.15: Cluster of variants showing the traces belonging to di�erent variants.

A Best resource for an activity: Analytical Hierarchy Process

AHP is applied for ranking the resources capable of performing the succeeding activity

of the current state activity. AHP is a quantitative method for making decision and for

selecting most e�cient alternative. It was developed by Saaty (1970) and is extensively

studied and re�ned since then. The AHP �rst decomposes the problem into a hierarchy

of sub-problems where each of these sub-problems are analysed independently. Once the

hierarchy is built, the decision makers evaluate systematically using pair-wise comparison.

AHP converts this evaluation into numerical values that can be compared and processed

on entire problem. The weight of priority (wt) is assigned to each element along the

hierarchy and then compared in a rational manner (Saaty, 2008). Using the ranking

outcome proper decisions can be taken about the resources.

Let A,B, ...G be the set of resources identi�ed for performing an activity. The com-

parable judgement on the pair of resources A,B is represented by n×n matrix where the

entries aij in the matrix is de�ned by following rules
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Rule 1 if aij = a then aji = 1/a

Rule 2 If A = B then aij = 1, aji = 1; ⇒ aii= 1 for all i.

Rule 3 Weight and judgement relationship:

wi
wj

= aij where i, j = 1, ....n (6.9)

Rule 4 Multiple the �rst entry in ith row by w1 and second entry by w2. Therefore the

general relation for ith row is

wi = aijwj where i, j = 1, ....n (6.10)

More explicitly

wi =
1

n

n∑
j−1

aijwj (6.11)

Rule 5 Principal Eigenvalue of a matrix. A is n × n reciprocal matrix, let w be principal

right eigenvector of A, let D = diag(w1,...wn) be diagonal entries of w and set

E/D−
1
AD = [aijwj/wi] = [γij]. E is equal to principal eigenvalue of A

n∑
j=1

=
n∑
j=1

aijwj/wi = [Aw]i/wi = λmaxwi/wi = λmax (6.12)

The computation reveals that λmax = Eigenvalue

Rule 6 Consistency index µ is now chosen

µ =
λmax − n
n− 1

(6.13)

 1 α

α−1 1


 1 + α

(1 + α)α−1

 = 2

 1 + α

(1 + α)α−1

 .

On getting the index µ for each resource, the resource with higher index value is

decided to be e�cient to perform the succeeding activity.

B Resource load and performance analyser

The Yerkes-Dodson Law of Arousal also known as theory of Arousal states that by increas-

ing arousal, the workers performance can be improved. However, if the level of arousal
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increases too much, performance decreases (Nakatumba and Van der Aalst, 2009). Here,

the level of arousal : optimal load the resource can handle e�ciently is identi�ed using

ADALINE model. For this, the performance of each resource at di�erent load is recorded.

The performance is then analysed by increasing the load and observing the time taken. It

was observed that, as the load increases the time taken to complete the assigned task was

decreasing, but at some point there was a drift where the time taken started increasing.

That drifted point is known as Arousal.

Thus in pre-processing phase, information about resources performing the activities are

identi�ed. The resource set is then developed for each activity, which are then ranked.

The higher ranked resources have high probability for performing that activity. The

performance capability known as level of arousal for each resource is identi�ed.

Consider the load and service time by a resource in the Table 6.11. Load is the size

of task assigned on a resource per unit time and the service time is total time taken by

that resource for executing that assigned task.

Table 6.11: Load and Service Time

Load: x 1 2 3 4 5 6 7 8 9 10

Service Time: y 32 29 26 21 19 24 29 35 40 42

Let X and Y be input and output value space, then the hypothesis h(x) is X 7−→ Y .

The hypothesis h is represented as in equation(6.14) and is known as univariate linear

regression function, where θ′is are the weight vector and vector x̄0 is always = 1.

hθ(x) = θ0 + θ1x1 =
n∑
i=0

θixi = θTx (6.14)

The cost function of linear regression model is shown in equation 6.15.

J(θ0, θ1) =
1

2m

m∑
i=1

(hθ(x
i)− yi)2 (6.15)

The cost function J(θ) is now measured for each training example. The resultant cost

function is shown in Table(6.12).

Curve plotted in the Figure6.16 is obtained by �xing θ0 = 0. On using both weight

parameters (θ0 & θ1) the hyperplane is obtained and is shown in Figure 6.17 the corre-

sponding cost function values are shown in Table 6.13. In the contour graph shown in

Figure 6.17 each curve represents the cost function. Objective is to �nd an optimal θ
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Table 6.12: Cost function with θ0 �xed as 0

θ1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 cont..

J(θ1) 110.45 88.2 68.45 51.2 36.45 24.2 14.45 7.2 2.45 0.2 cont..

θ1 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

J(θ1) 0.45 3.2 8.45 16.2 26.45 39.2 54.45 72.2 92.45 115.2 140.45

value, so that cost function is minimum and this is achieved by using gradient descent

algorithm.

Figure 6.16: Cost function

Figure 6.17: Learning rate of gradient descent using contour graph
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Table 6.13: Cost function with θ1&θ2

θ1 -0.5 0 0.5 1 1.5

θ1 -100 -50 0 50 100

J(θ1, θ2) 5.4340e+004 1.4688e+004 8.6113e+001 1.0534e+004 4.6032e+004

θ1 2 2.5 3 3.5 4

θ1 150 200 250 300 350

J(θ1, θ2) 1.0658e+005 1.9218e+005 3.0283e+005 4.3852e+005 5.9927e+005

Gradient Descent

Gradient descent algorithm starts the iteration with some initial θ such as J(θ0 = 0 & θ1 =

0) and iteratively updates θ as shown in equation 6.16 till the algorithm converges at

local minimum. The objective of gradient algorithm is to minimize
θ0θ1....θn

J(θ0, θ1....θn). The

algorithm starts an iteration by moving with small baby step α known as learning rate, in

a direction that moves down to reach minimum θ. After each iteration, the algorithm will

check the direction of movement that converges to local minimum. The gradient descent

repeats the equation 6.16 until it converges, by updating the θj value after every iteration.
∂
∂θj

is measured by theorem 3. Convergence is the stopping condition: (α ‖ 5J ‖) > ξ,

where ‖ 5J ‖ is
√
J(θ21) + J(θ22) + J(θ23).... is equation of normalization Zhang (2004).

θj = θj − α
∂

∂θj
J(θ) for all values of j : 0, ..., n (6.16)

Gradient decent �nally converges at the optimal point which would be the optimal

load a resource could handle. With this information and with the information about the

current load on each resource, the annotated transition system would recommend the

right resource to perform the succeeding activity in the future state. Thus, on identifying

the succeeding activity and resource, next thing the annotated transition system had to

do was to check the critical path of execution. The complete learning steps in gradient

descent is shown in Figure 6.18. Here the learning stop when the algorithm converges

giving the optimal load of the resource.

6.4.3 Identifying critical path activities

ModCNN helped in identifying the cases which were critical and needed interventions.

Now, using the process mining techniques the critical path of execution for those identi�ed

critical cases were recommended. The critical path is a sequence of critical activities and
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Figure 6.18: Learning rate in gradient descent

can be de�ned using:

Earliest Start time (ES) : Earliest time an activity can be started (with waiting
time ' zero).

Earliest Finish time (EF) : ES + processing time.

Latest Finish time (LF) : Latest time an activity could be started.

Latest Start time (LS) : LF − processing time.

Consider the time line illustration shown in Figure 6.19 for the trace

〈AR0,15, IP 3,11, CH7,15, DM12,18, BT 19,15〉. The �gure clearly illustrate the turn-around

time, waiting time and processing time. While recommending the critical path of execu-

tion we need to assure that all the critical activities are included. For that we need to

�rst identify which are the signi�cant activities. An activity is critical if the earliest and

latest �nish time is same, i.e., waiting time ' zero. If P5 with waiting time of 30 units

is identi�ed as critical, then we need to reduce its waiting time by employing an e�cient

resource for its execution.

6.4.4 Steps involved in identifying critical path

The critical path was identi�ed using following steps:

• Identifying the speci�cation of an activity:
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Figure 6.19: Illustration of process time execution.

Here, the lstate of an activity that includes

ltransition, TWaiting, TTurn−around, TRemaining is identi�ed along with its succes-

sor and predecessor. Using causal metric we identi�ed its waiting and turn-around

time. Among them an activity with lesser waiting and turn-around time is given

higher priority.

• Establishing activity sequencing

Using the transition metric ltransition, performance of each activity and resource

at di�erent position is identi�ed. Along with the time function T for each

activity, their possible executable position P ∈ P1, P2, P3....Pn is also discovered.

Based on the outcome of this, we measured the best possible position of each activity.

• Construct the process model

With the information of di�erent possible positions of all the activities and the

resource performance information, we could discover all the possible critical traces

in a process model.

• Identify the critical activity

Among the speci�ed activities, we identify the critical ones with higher priority and

minimum waiting time.

• Construct the critical path

Based on the priority of each activity, its waiting time was decreased by assigning

the best e�cient resource who could complete the assigned task within the allotted

time.
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6.5 Summary

The current study aimed in identifying the complicated cases at the early stage of disease

progression. This would prevent any complications in the later stage of disease. With

the help of ModCNN critical cases were identi�ed. Such identi�ed critical cases needed

immediate interventions and for that, critical treatment path was recommended. Critical

treatment path is a sequence of critical activities, where each activity was performed by

adequate resource. With the help of EHR process mining technique, we were able to

build a annotation transition system and recommend this critical treatment path. The

approach followed by us is explained as a �ow chart in the Figure 6.20.
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Complicated cases identified by ModCNN

Recommend the critical treatment path

Construct the annotated transition system

Aim of annotated transition system is to 

1. find and recommend the future state of execution 

2. Identify the adequate resources

Partrial trace               Future state
A    B    C    D    E    F                ?

1. Identify the next succeeding activity in the future state.

This was achieved by:

1. Activity metric: To identify the waiting time at each activity 

2. Transition metric: To identify the performance of activity and 

resource at different position of execution 

3. Causal metric: Build a causal relationship between the 

succeeding and preceeding activity. This is needed to find the 

reason of occurance of an activity 

2. On identifying the activity to succeed the current state, we measure the 

cost of occurance of that activity using TDABC 

3. On identifying the activity to succeed the current state, we need to find

the efficient resource who is available and capabale of performing the 

recommended activity.

1. Theory of Arousal: Using this theory proposed by 

yerkes-dodson, we identified the optimal load of each resource 

where his performance is better. Based on this finding the 

recommendation was made.   

2. Analytic Hierarchy Process: The concept of AHP was used to 

rank the resources. This means that higher the rank of the 

reource, his performance is higher. 

3. Hence, Based on ranking and availability, the adequate 

resource was recommended to perform the activity in the 

future state.

Figure 6.20: Flow chart showing the chapter summary.

147



148



Chapter 7

Performance Evaluation of Annotated
Transition System

The healthcare management are primarily faced with two uncertainties i.e., in managing

the resources and the facilities. Due to this, e�cient resource utilization could not be

made, leading to high �uctuations between the occupancy and demand. The uncertainty

of healthcare system could be reduced if the resource and disease behaviour is predicted

well in advance along with the length of stay and journey the patients would make in the

hospital. Journey of a patient is the path he follows to complete the treatment process.

The path followed is known as a trace in process mining.

Aim of the study is to identify the cases that are critical at initial stage of observation

and recommend a critical treatment path, to avoid any later stage complications. In this

work, we applied the concept of EHR process mining to develop a annotated transition

system. This system assisted in predicting the best possible future state for the partial

incomplete trace. The system tried to identify the critical activities in the path along

with the e�cient resources capable of conducting those activities. The transition system

conducted various conformation tests before recommended the path of execution. The

goal was to recommend the critical treatment path having all the critical activities along

with the probable time of completion. Thus the annotated transition system assisted

not only in easing the journey of patients in the hospital but also reduced their stay in

the hospital along with the cost. This chapter evaluates the performance of annotated

transition system.
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7.1 Length of Stay in the Hospital

EHR system was installed to record the journey of the patients who were su�ering with

complicated GSD. The length of stay for complicated GSD was higher along with their

cost, when compared with uncomplicated GSD. This was because, the uncomplicated cases

were those on whom OC/ LC was not performed. The length of stay is shown in Table

7.1. The Figure 7.1 explains that the frequency is very high for the complicated cases

in the initial hour of treatment, which gradually decreases. But, for the uncomplicated

cases there is a constant frequency with standard deviation (SD = 3.8) when compared

with complicated cases having SD = 8.3.

Table 7.1: Length of stay and its cost in the hospital

Attributes
Diagnosis Probability

valueUncomplicated Complicated

No. of Cases 270 260 ...
Length of stay in hospital,
mean and ± SD

3.3 ± 3.8 7.8 ± 8.3 < 0.0001, t test

LC/ OC ration 170.5:1 38.5:1 < 0.0001, χ2 test

Figure 7.1: Frequency distribution of length of stay.

This is a priori knowledge representation and there is no optimization techniques being

applied for reducing this length of stay distribution. Average length of stay is 65 − 70
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hours with mean and SD = 4.8 ± 3.6. The Figure 7.2 and 7.3 shows the corresponding

frequency distribution along with the average length of stay for the identi�ed spectrum

of complicated GSD. On observing the SD of each spectrum, we understood that among

the complicated cases though choledocholithiasis and cholecystitis had more mean value,

their SD was lesser than pancreatitis.

Figure 7.2: Frequency distribution of cholecystitis and choledocholithiasis.

7.1.1 Statistics

For the patients on whom OC/ LC was performed, the SD of length of stay from the

time of admission to the procedural date was 90± 15 hours. This delay was signi�cantly

less for the critical cases, as we identi�ed their progression at the time of admission itself.

Table 7.2 shows the mean delay of 42± 18 hours between the duration of �rst USG where

gallstone was con�rmed to the date of OC/ LC. But, the delay for the critical cases

between the USG and procedure of LC/ OC was signi�cantly lesser.

This treatment delay was well assessed and overcome by identifying critical path of

execution in future state and appointing e�cient resources. This reduced delay rate for

each critical activities in the critical path is shown in Table 7.3. The procedural diagram

of LC and OC for di�erent spectrum of GSD is illustrated in the Figure 7.4 7.5 7.6.
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Figure 7.3: Frequency distribution of pancreatitis and cholangitis.

Table 7.2: Delay in length of stay

Diagnosis
P

Uncomplicated Complicated

Delay: From time of admission to
surgery mean and ± SD

34±12 90±15 < 0.0001, t test

Delay: From �rst USG to surgery
mean and ± SD

� 42±18 < 0.56, t test

Table 7.3: Comparison in length of stay before and after applying the proposed system

Complicated Cases
P

Before 1 After 2

Delay: From time of admission to surgery
mean and ± SD

60±15 28 ± 6 < 0.0001, t test

Delay: From �rst USG to surgery mean
and ± SD

42±18 8 ± 3 < 0.001, t test

1 Reading recorded in a retrospective way.
2 Recorded after critical path was recommended with e�cient resource for each critical
activities.
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Figure 7.4: Gallstone management for ERCP of cholangitis.

Figure 7.5: Gallstone management for ERCP of pancreatitis.

Figure 7.6: Gallstone management for ERCP of gallstone related jaundice and
cholangitis.

7.2 An approach to develop a decision support system

for GSD management

To build an established healthcare process model we need to reduce the waiting time at

each event. This would in-turn decrease the length of stay in the hospital along with the

journey of patient. Let us consider the GSD management process model followed and ob-

served in the current study, shown in the Figure 7.7. The activities that were observed are

patient waits for consultation, History and physical examination, Lab investigations, MD

consultation, Decision making, USG, CT, Surgical procedure. On analysing the signi�-
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cance of each activity, we could understand their behaviour. Figure 7.8 and 7.9 illustrates

how the proceeding and succeeding activities waiting time is considered for analysis. Each

scattered dots are the waiting time distribution and the bar is process execution. Aim is

to reduce this scattered dots. The waiting time at each activity could be either because

of unavailability of proper facilities or ine�ciency of the resources.

By constructing annotated transition system, we were able to identify the waiting

time and measure the resource performance. Using this system, we optimized the process

model by discovering the critical path of execution and reducing the waiting time. Thus,

by recommending/ replacing each identi�ed resource by an e�cient resource, we could

optimize the process execution.

7.2.1 Resource performance

Overall Equipment E�ectiveness (OEE) is used for measuring how e�ectively the resource

available is performing. OEE is calculated using three main factors: availability, perfor-

mance and quality and is shown in equation 7.1.

OEE = availability × performance× quality (7.1)

A Availability

It is a state of an event where it has stopped execution before it was scheduled to be

stopped. Suppose, a resource has to provide his service for 10 hours in a day and by some

reason on a particular day he was not available for 2 hours, then his availability is 10

hours - 2 hours = 8 hours.

Example 1 Let us consider that resource A is theoretically capable of consulting 25

cases in one hour. On a normal day he works for 12 hours i.e., he consults 300 cases in a

normal day. On some particular day he was not available for 2 hours, then:

Scheduled consultation time 12 hours

Down time (not available) 2 hours

Available time 12 - 2 = 10 hours

Available time/ scheduled consultation time 10 hours/ 12 hours = 83% availability

Thus the availability of resource A is 83%
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Figure 7.7: Process model of current system.
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Figure 7.8: Analysing the activities for their processing and waiting time 1.

Figure 7.9: Analysing the activities for their processing and waiting time 2.
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B Performance

It is an estimation of how a resource has completed the assigned task. Performance �nds

the reason/ cause of under-performance of the resource. Actual performance is measured

based on the average time he normally takes to serve the assigned task.

Continuing the previous example, let the recorded diagnosed cases be 225 for 10 hours

of availability. It should be remembered that the resource A is capable of serving 25 cases

per hour. Based on this observed information:

Available time 10 hours

Total consultation (throughput) in available time 225 cases in 10 hours of time

Theoretical time to serve 225 cases 225 cases/25 cases per hour = 9 hours

Theoretical time/ Available time 9 hours/ 10 hours = 90% performance

C Quality

Quality measures how correctly the resource has diagnosed the cases. This is needed to

�nd error the resource has made during that particular day of service.

Continuing the previous example, out of 225 cases consulted, it was observed that

only 200 cases were properly diagnosed, and remaining 25 cases were wrongly diagnosed.

Based on this information quality is checked as follows:

Consultation/ theoretical service time 9 hours

Properly diagnosed cases in time 200 cases/ 25 cases in 1 hours = 8 hours

properly diagnosed (in time)/ performance time 8 hours/ 9 hour = 89% Quality

Hence OEE = availability × performance × quality = 83% × 90% × 89% = 66%.

This means that, there is loss of 34% in a day. Since the resource ideally works for 12

hours in a day then 34% of 12 hours = 4 hours of service period is lost.

Further, using the concept of TDABC we were able to identify the cost and quality

of each activity. This cost is the time taken for the completion of a task. As the cost of

the resources was measured based on the time they spend on each allotted task, more the

time they spend, more costly would be each activity. This, not only delays the completion

of the process, but also become expensive. Hence it was highly needed to �nd the cost

of each activity along with the load at each resources to provide better quality service.
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Figure 7.10 and 7.11 shows the error rate, where the di�erence of cost driver rate was

compared with the impact of practical capacity (for illustration please refer Table 6.8 and

6.9). In the Figure 7.10 and 7.11, length of error bar specify the duration of corresponding

activity. In 7.11 we could see the length of error bar is signi�cantly smaller than in 7.10

and the trace completion time is also averaging around 50 unit, when compared to 90

units in 7.10. This was because, values in the Figure 7.11 were obtained after optimizing

the availability, performance and quality of the resources.

Figure 7.10: Time taken by resources for the completion of assigned task.

7.2.2 Trace execution

Further, the future state of partial trace σ was identi�ed using the technique of trace

clustering and matching. Here the traces were clustered using LCS. The partial trace σ

was matched with the variant of traces (annotated transition system AT ), to identify the

matching traces, i.e., LCS(σ,AT ). The LCS technique was modi�ed using the technique

of trace clustering proposed by Song et al. (2008), to match σ with the cluster of traces

based on the feature and distance matrices.

Thus, two major objectives: identifying the probable path of execution in the future

state and �nding the e�cient resources available for executing each task in that path, was

achieved in this work. For validation, we retrospectively ran the recommended path and
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Figure 7.11: Time taken by resources for the completion of assigned task after
application of TDABC.

compared its performance with that of conventionally executed path. We could observe

that recommended path of execution took substantially lesser time for completing the

task, when compared with conventional path of execution. This is well illustrated with a

help of stem graph in Figure 7.12.

Figure 7.12: Conventional v/s recommended traces.
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On optimization and recommendation, we checked the frequency rate and distribu-

tion of waiting time in predecessors and successors. On comparison, the earlier highest

frequency of stay for cholecystitis was 14 which was reduced to 3.5−4, similarly for chole-

docholithiasis, it was 8− 10, and was reduced to 2.5− 3 (7.2). On comparing the highest

frequency stay for pancreatitis, it was 8− 9 which was reduced to 3.5− 4, for cholangitis

it was reduced from 2−3 to 1.5−2 (7.3). The resulted frequency distribution is shown in

the Figure 7.13 and 7.14 respectively. The decrease in waiting time distribution is shown

in the Figure 7.15.

Figure 7.13: Frequency distribution of cholecystitis and choledocholithiasis after
optimizing the resource performance.

7.3 Accuracy of prediction

The accuracy of prediction and recommendation about the future state and process be-

haviour was evaluated using the concept of AZ . The accuracy of recommendation was

AZ = 93.562 and is shown in Figure 7.16. AZ is one of the well established statistical

technique for evaluating the model performance. Higher the area under the curve more

is the accuracy of prediction. The curve is obtained by plotting for sensitivity against

(1− specificity). TP (True Positive) is when the people with the disease is classi�ed as
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Figure 7.14: Frequency distribution of pancreatitis and cholangitis after optimizing the
resource performance.

Figure 7.15: Analysing the activities for their processing and waiting time after
optimizing the resource performance.

positive, and FN (False Negative) is when they are classi�ed as negative. TN (True Neg-

ative) is when people with no disease are correctly classi�ed as negative, and FP (False
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Positive) is when they are classi�ed positive. Sensitivity and speci�city can be de�ned

using the Table 7.4. Sensitivity and Speci�city is obtained using equation 7.3 and 6.1

respectively. On plotting the obtained values for each feature, we will be able to get AZ .

Table 7.4: Representation of TP (A), FN (B), FP (C) and TN (D)

Test GSD (Yes) GSD (No) Row Total

Positive TP (A) FP (C) A + C
Negative FN (B) TN (D) B + D

Total A+B C+D

Sensitivity =
A

A+B
(7.2)

Specificity =
D

C +D
(7.3)

Figure 7.16: ROC showing the accuracy of recommendation.
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7.4 Summary

The study aimed in recommending and providing proper care-�ow to the patients who

were found to be critical . This care-�ow was achieved by providing proper treatment

path and decreasing the length of stay in hospital along with the cost. The objective of

whole work was to identify the critical case at the early stage and prevent them from

becoming worse. With the help of EHR process mining we were able to achieve this . The

experiment was tested and validated to �nd the accuracy of prediction.

On optimization and recommendation it was noted that the frequency rate and distri-

bution of waiting time in predecessor and successor has come down. The detailed statistics

is shown in Table 7.5.

Table 7.5: Frequency distribution comparison

Earlier After Optimization

Cholecystitis 14 days 3.5 to 4 days

Choledocholithiasis 8 - 10 days 2.5 - 3 days

Pancreatitis 8 - 9 days 3.5 - 4 days

Cholangitis 2 - 3 days 1.5 - 2 days

Thus, by decreasing the waiting time, we were able to reduce the length of stay in

hospital. By applying the technique of LCS proper recommendation was made. It was

noted that recommended path of execution took 40-50% lesser time for completion when

compared with conventional path of execution. The resource performance was evaluated

with the concept of OEE. Accuracy of prediction and recommendation was evaluated using

the concept of AZ and it was noted that the proposed annotated transition system showed

the accuracy of 93%. Hence by this approach we were able to successfully recommend

proper path of execution, preventing the critical cases from becoming worse.
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Chapter 8

Conclusions

The medical error is one of the leading cause of death, and faulty system is one of the

reasons for medical error. Hence, it has become essential for building a better healthcare

system. As a healthcare system is sequenced by series of clinical and non-clinical activities,

it is important to streamline them and identify the critical activities. A treatment path

�lled with critical activities is known as a critical treatment path. A patient can be

given proper care-�ow in a healthcare system by analysing the disease progression and

their treatment response. Care-�ow in a healthcare system is treatment path sequenced

by critical activities, and each activity performed by the e�cient resource. The aim of

this research work was to provide the quickest treatment and reduce the medical error.

ModCNN was built for predicting the disease behaviour and assisting in �nding the critical

cases. It was designed to discover the optimal combination of hidden units and neurons.

The performance of ModCNN was evaluated by comparing with ANN and CCNN and was

validated using AZ . It was noted that ModCNN outperformed other statistical models in

�nding the critical cases and showed the highest accuracy.

The study was focused on complicated GSD and was conducted in a retrospective

way from territory care centre in north malabar, Kerala, India. 260 complicated cases

were recorded during the study period and the spectrum of GSD was comparable with

California study conducted by Glasgow et al. (2000). This shows that the prevalence of

GSD is increasing in India.

On learning the performance of existing ANN and CCNN models, we developed Mod-

CNN using the architecture of CCNN. In ModCNN, neurons and hidden units are adapted

dynamically for giving better accuracy. ModCNN �rst identi�ed the signi�cant risk factors

associated with each spectrum of GSD which were again fed into the system for predicting

the disease progression. As this was a retrospective study, it was noted that ModCNN
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accurately identi�ed the 13 cases which were critical with an accuracy of AZ = 0.9642

The identi�ed critical cases were further recommended with critical treatment path for

providing proper care-�ow, thereby decreasing the life threat, length of stay in the hospital,

and avoiding any further complications. For achieving this, annotated transition system

was built for predicting the future state and recommending the succeeding activity in the

treatment path. Future state was identi�ed using the concept of activity, transition and

causal metric. They helped in reducing the waiting time and improving the performance.

This shortened the patient's journey in the hospital and decreased the length of stay

40 to 50%. Further it was necessary to �nd the adequate resources for performing the

future state activities. This was achieved by the theory of arousal and AHP. Overall, the

recommendation of critical treatment path showed better accuracy when tested with the

concept of AZ = 93.56%

8.1 Summary of Contribution

The proposed CDSS can be used in routine clinical practice to predict the patients who

may need immediate interventions at the time of admission and avoid any further com-

plications. Following are the brief description of the contributions:

• CDSS, an information system was developed to classify the spectrum of GSD, iden-

tify the complicated cases among them and then to recommend critical treatment

path to avoid any later stage complication.

• ModCNN was built for identifying the complicated cases. And to recommend the

critical treatment path we developed a annotated transition system. This system

identi�ed the critical activities in the future state and the adequate resurces ca-

pable of performing those activities. The accuracy of prediction of ModCNN and

recommendation of annotated transition system was evaluated using the concept of

AZ . Thus we were successful in developing a CDSS for assisting the clinicians in

reducing the medical error.

• Modi�cation to CCNN (ModCNN) was made and was further optimized by paral-

lelizing it by using the master-slave model. In CCNN adopted the linear addition

of neurons, while in ModCNN the pattern of neurons in hidden unit were identi�ed

parallelly. This made ModCNN's learning process much faster when compared to

CCNN and ANN.
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• ModCNN was used to identify the signi�cant factors associated with each spectrum

of GSD. This was needed since there were 32 features observed in each patient.

Processing them would had taken lot of time. Hence we �rst identi�ed the signif-

icant factors associated with each spectrum and then fed them into the model to

predict the disease progression. By soing so, we were able to get better accuracy in

prediction.

• Thus, ModCNN accurately predicted the 13 critical cases at the time of admission

itself. This would assist the clinicians in starting the right treatment and reducing

the medical error.

• The identi�ed 13 critical cases, further needed the recommendation of critical treat-

ment path to provide proper care-�ow. For this an annotated transition system

was built to identify the future state of the partial trace and required resource for

providing proper treatment management. The annotated transition system with the

help of many techniques was able to evaluate the performance of each activity and

reduce the waiting time along with the cost. Performance of the resources was eval-

uated to �nd the adequate resource capable of performing the future state critical

activities.

8.2 Direction for Future Work

To make the system more optimal the following future works are recommended.

• The current work was a retrospective analysis. The model can be made more optimal

by testing and validating with a prospective study. The challenge here is getting

access to clinical data.

• The model was tested for GSD analysis. It can be generalized for taking routine

clinical decisions.

• To make the system complete other parameters in healthcare system like: a number

of available beds, availability of medicines, working condition of equipment and

other resources which a�ect the treatment management along with the expertise

level of the doctors can be considered.
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