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ABSTRACT

Retinal cysts are formed by accumulation of fluid in the retina caused by leakage due

to blood retinal barrier breakdown from inflammation or vascular disorders. Analysis

of retinal cystic spaces holds significance in detection, treatment and prognostication of

several ocular diseases like age-related macular degeneration, diabetic macular edema,

etc. Segmentation of intra-retinal cysts (IRCs) and their quantification is important for

retinal pathology and severity characterization. In recent years, automated segmentation

of intra-retinal cysts from optical coherence tomography (OCT) B-scans has gained

significance in the field of retinal image analysis.

In this thesis, a benchmark study is conducted to compare existing methods to iden-

tify the factors affecting IRC segmentation from OCT scans. A modular approach is

employed to standardize the different IRC segmentation algorithms followed by anal-

ysis of variations in automated cyst segmentation performances and method scalability

across image acquisition systems are done by using publicly available cyst segmentation

challenge dataset (OPTIMA cyst segmentation challenge). Such exhaustive analysis on

the scalability of OCT cyst segmentation methods in terms of methodological and input

data variations has not been done before.

An efficient cyst segmentation technique must be capable of performing cyst iden-

tification and delineation with minimum errors. Several methods proposed in the liter-

ature fail to delineate cysts up to their true boundary. To address this problem, an unsu-

pervised vendor dependent method using marker controlled watershed transformation

is proposed in this thesis. The method is based on two stages- k-means clustering tech-

nique is used to identify cysts in the form of marker, followed by topographical based

watershed transform for final segmentation. Qualitative and quantitative evaluation of
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the proposed method is carried out against ground truth obtained from two graders on

OPTIMA cyst segmentation challenge dataset (Spectralis Vendor OCT scans). Ob-

tained results show that the proposed method outperformed other considered unsuper-

vised methods.

Several segmentation methods have been proposed in the literature for IRC seg-

mentation on vendor-specific OCT images, but these lack generalizability across imag-

ing systems. To address this issue, a fully convolutional network (FCN) model for

vendor-independent IRC segmentation is proposed in this thesis. The proposed FCN

was trained using the OPTIMA cyst segmentation challenge dataset (with four different

vendor-specific images, namely, Cirrus, Nidek, Spectralis and Topcon). This method

counteracts image noise variabilities and model over-fitting by data augmentation and

hyper-parameter optimization. Additionally, sensitivity analysis of the model hyper-

parameters (depth and receptive field size) is performed to optimize the proposed FCN.

The Dice Correlation Coefficient of the proposed method outperforms the algorithms

published in the OPTIMA cyst segmentation challenge.

Deeper FCNs exhibit better feature learning capabilities than shallower networks

but those are computationally intensive due to large number of computation parameters

and may be prone to vanishing gradient problem. To address this issue, a depthwise

separable convolutional filter based end-end convolutional neural network architecture

with swish activation functions is proposed in this thesis. OPTIMA cyst segmentation

challenge dataset with four different vendor scans were used to evaluate the proposed

architecture for vendor independent IRC segmentation task. Obtained experimental

results show that the proposed method significantly reduced the number of computation

parameters compared to regular convolution based FCN.

Keywords: Optical Coherence Tomography; Segmentation; Retinal Image

Anaysis; Retinal Cyst; Cystoid Macular Edema; Convolutional

Neural Networks; Deep Learning; k-Means Clustering; Watershed

Transformation.
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CHAPTER 1

INTRODUCTION

1.1 Human Eye and Retina

The human visual system mainly comprises of two functional parts- eye and brain. Eye

acts as camera to capture light information that is converted to electrical impulses and

transmitted to the brain, which functions as image processing module for perception.

Eye is the second most complex organ in human body after the brain. Anatomy of the

human eye is shown in Figure. 1.1. Eye has various components performing unique

functions that coordinate with each other and with other parts of the human body facil-

itating three dimensional, colored moving visualization in a variety of light conditions.

Figure 1.1: Anatomy of the human eye. (Hogan and JA Weddell, 1971)



The eye’s anatomical structures are arranged in three layers, namely outer fibrous

tunic, intermediate vascular tunic and the innermost retina. The outer protective fibrous

tunic is composed of cornea and sclera. Cornea transmits and focuses lights into the

eye. Sclera is continuous with the cornea and forms the supporting wall of the eyeball.

The middle layer, or the vascular tunic, consists of choroid, ciliary body, pigmented

epithelium and iris. Iris is visible as the coloured part of the eye that functions like a

diaphragm and helps in regulating the amount of light that enters the eye. The anterior

chamber between the cornea and iris as well as the posterior chamber between the

lens and the iris is occupied by the aqueous humour, a fluid that nourishes the anterior

structures.

The lens is a transparent structure that focuses light rays onto the retina. Lens is

attached to the ciliary body by suspensory ligament, which transmit muscular forces for

changing the lens shape to focus on objects at various distances. The vitreous body is

a clear, jelly-like substance that fills the eye. The innermost layer or retina, gets oxy-

genation from choroidal blood vessels and retinal vessels. The retina is a multilayered

neural tissue that lines the back of the eye, senses light and creates electrical impulses

that travel through the optic nerve to the visual cortex, which is the part of the brain that

controls our senses of sight.

Retina is a thin optically transparent tissue consisting of several layers. The main

function of the retina is to convert received light to neural signals, which are forwarded

to brain for visual perception. Figure. 1.2 shows cross sectional view of the retina. Reti-

nal layers are organized into two distinct functional components namely neurosensory

retina and retinal pigment epithelium. Neurosensory layers of the retina contains total

9 layers. Starting from the vitreous surface, they are the internal limiting membrane

(ILM), retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform

layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer

(ONL), external limiting membrane (ELM) and the layer of photoreceptors. Retinal pig-

ment epithelium (RPE) is the outermost layer of the retina, this layer provides metabolic
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Figure 1.2: Cross sectional view of the retina. (Image courtesy: (Retina, 2015))

support to the nuerosensory layers of the retina and it absorbs incident scattered light.

1.2 Retinal Cyst and Cystoid Macular Edema

A retinal cyst is a fluid-filled space in the retina, and the presence of edema and cysts

increases the thickness of the involved retina. Retinal cysts have pathological signifi-

cance and are present in several eye disorders like age related macular degeneration, di-

abetic retinopathy, retinal vein occlusion, ocular inflammation, diabetic macular edema

(DME) etc. Such intra-retinal cysts (IRCs) in the macular region (Cystoid Macular

Edema) is an important impediment to retinal function and can cause central vision loss
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(WHO, 2007).

Cystoid macular edema (CME) following cataract surgery was initially reported by

Irvine in 1953 and is known as the Irvine-Gass syndrome (Irvine, 1953). CME devel-

ops when excess fluid accumulates within the macular retina. This is thought to occur

following disruption of the blood retinal barrier because of the aforementioned eye dis-

orders. This fluid accumulation in retina reduces macular retinal function. Medical

studies shows that visual acuity can be reasonably correlated from the volume of retinal

cystic fluids and their location in the retina (Wilkins et al., 2012).

1.3 Diagnosis of CME

Primary symptoms of CME are decreased, blurry or wavy vision, faded colors, and

distortion near or at the center of vision. Ocular diseases can be characterized using

several techniques. Initial Visual Acuity (VA) test is used to measure central vision ac-

cording to the size of letters or symbols viewed on Snellen chart or E chart respectively.

Figure. 1.3 shows an example of Snellen and E chart.

Amsler Grid test (AG) is used to detect visual distortion caused in macular disorders.

Amlser Grid contains horizontal and vertical lines with a small dot at the center of the

grid and is shown in Figure. 1.4(a). Patient is asked to view the AG from each eye

separately. If the patient has macular pathology, he/she may notice distortion or they

may be unable to see some lines in the AG. Both VA and AG tests are psychophysical

tests and needs patient cooperation. For clinical anatomical evaluation of the macula,

ophthalmoscopy or slit lamp biomicroscopy test (with a 78 or 90 diopter aspheric lens)

is used. Figure. 1.4(b) shows slit lamp system.

Imaging techniques can also be used for the detection of cystic fluids in the retina.

Color fundus photography (CFP) is used for imaging of the macula. With stereoscopic

view of the retina using CFP, ophthalmologist can identify thickening of retina that is
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(a) Snellen chart (b) E chart

Figure 1.3: Different type of charts used in visual acuity test.

(a) (b)

Figure 1.4: Amsler grid and slit lamp machine.
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(a) (b)

Figure 1.5: Color fundus photography and fundus fluorescein angiography scan of a
retina with CME.

caused due to intra-retinal fluid accumulation. Fundus fluorescein angiography (FA)

is widely available and used for dynamic evaluation of the retinal vasculature. In FA,

the amount of fluorescein leakage depends on the dysfunction of the retinal vascular

endothelium. Apart from being a significant diagnostic modality, Fundus Fluorescein

Angiography also improves the accuracy for planning the treatment of CME. Figure. 1.5

shows CFP and FA images of a retina with CME. Figure. 1.5(b) shows fluorescein leak-

age into the cystoid spaces is distributed radially in retina forming the classic honey-

comb like structure appearance near fovea. Slit-lamp bio-microscopy, fundus photogra-

phy and FA techniques gives 2D en face view of the retina and are prone to differences in

subjective assessment to quantify and diagnose retinal pathology. An advanced imag-

ing technique called optical coherence tomography (OCT) was introduced in clinical

practice for the purpose of high resolution cross-sectional imaging (as opposed to en

face) and for objective measurement of retinal structures.
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1.4 Optical Coherence Tomography

OCT is a non-invasive imaging technique that uses low coherence light for resolving

internal structures of biological tissues and obtains cross-sectional, high-resolution im-

ages of the retina and can detect retinal thickness (Huang et al., 1991). It is a widely

used diagnostic technique for several ocular diseases.

Figure. 1.6 shows a schematic diagram of OCT Scanner. A low coherence light

source (LCS) emits light towards beam splitter (BS). Part of this beam is projected on

to reference mirror (RM) and the rest to the sample (SMP) to be scanned. Reflected

light from both RM and SMP are combined at BS, creating interference patterns based

on the interferometry concept. When the reflected light beams from RM and SMP are in

phase, this generates constructive inference. At other times, it results in destructive in-

ference. Photo detector (PD) receives combined reflected light with interference pattern

and forward the signal to a digital signal processor (DSP) unit. DSP unit uses Fourier

transform to create a linear A-scan of the point scanned. Several adjacent A scans along

a linear path of scanning are combined to give a B-scan image. An OCT scan typically

consists of several B scan images taken over a fixed area, with a fixed protocol.

Figure. 1.7 shows a commercially available OCT Scanner. OCT provides excellent

visualization of several retinal structures like cysts, exudates and retinal layers. Fig-

ure. 1.8 shows OCT B-scan of the retina with en face macular projection. The dark

green line with arrow head shown on the en face macular image (left side of the figure)

corresponds to the projection line of the OCT B-scan shown on right side of the figure.

Figure. 1.9 shows OCT scans of the retina with normal and cystic fluids obtained using

Cirrus and Spectralis vendor OCT machines.
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Figure 1.6: Schematic diagram of OCT Scanner. Components include: low coherence
light source (LCS), beamsplitter (BS), reference mirror (RM), sample (SMP), photo
detector (PD), and digital signal processor (DSP). (Image courtesy: Wikipedia)

Figure 1.7: Cirrus optical coherence tomography scanner.
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Figure 1.8: En face macular projection and its corresponding OCT B-Scan of a retina.
(Image Courtesy: http://eyewiki.aao.org/ (Garg, 2014))

(a) (b)

(c) (d)

Figure 1.9: Optical coherence tomography scans of retina from two different vendors:
(a), (b) normal retina; (c), (d) retina with cystoid macular edema. (White colored ar-
row shows cystic fluids). (a) and (c) obtained from Spectralis imaging system, (b) and
(d) obtained from Cirrus imaging system. (Image courtesy: OPTIMA cyst challenge
dataset (OPTIMA, 2015))

.
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1.5 Motivation and Problem Statement

World Health Organization (WHO) estimated that by the year 2020, there will be 75

million blind people and 314 million partially blind people in the world (WHO, 2007).

Visual morbidity from CME is a major public health problem globally. If detected early

and treated effectively, most of this visual impairment from CME can be prevented or

cured.

Medical studies show that visual acuity can be fairly correlated to the location and

volume of retinal thickening, intra-retinal fluid and retinal cystic fluid spaces in retinal

tissue (Wilkins et al., 2012). Manually analyzing OCT data for the detection of cysts

and measuring their volume is time consuming and needs expertise, and currently is not

performed routinely, leading to qualitative assessment of the scan alone. Automated

cyst segmentation and quantification methods enable accurate quantification for faster

diagnosis and treatment.

Development of automated cyst segmentation techniques for OCT scans pose sev-

eral challenges such as, speckle noise in the scans, poor signal-to-noise ratio (SNR),

retinal vessel shadows, and scan intensity difference across the vendors.

1.5.1 Problem Statement

Spatial location and volume of accumulated intra-retinal cystic fluids in the retina can

be used for quantification of anatomical disturbance due to disease in the retina and can

be correlated to visual morbidity due to cystoid macular edema. This thesis aims to

identify factors affecting intra-retinal cyst segmentation from optical coherence tomog-

raphy scans. Furthermore, this thesis reports on the development of unsupervised and

supervised automatic intra-retinal cyst segmentation techniques using optical coherence

tomography scans for aiding diagnosis process in cases with cystoid macular edema.
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Research Objectives:

1. Identification of factors affecting intra-retinal cyst segmentation from OCT B-
scans.

2. Automatic segmentation of intra-retinal cystic fluid spaces from OCT B-scans.

1.6 Major Contributions

A comparative assessment of existing automated intra-retinal cyst segmentation meth-

ods on OCT B-scans is conducted to identify the factors affecting IRC segmentation.

For benchmarking purposes, a modular approach is employed for standardizing the dif-

ferent segmentation algorithms. Further, we analyze the variations in automated cyst

segmentation performances and method scalability across two image acquisition sys-

tems (Cirrus and Spectralis) using the publicly available OPTIMA cyst segmentation

challenge (OCSC) dataset.

An automatic unsupervised vendor-dependent IRC segmentation method using marker-

controlled watershed transform on OCT B-scans is proposed. This method is based on

two stages – k-means clustering technique to identify cysts in the form of markers and

topographical based watershed transform for final segmentation. Qualitative and quan-

titative evaluation of proposed method is carried out against ground truth obtained from

two graders on OCSC dataset.

Methods proposed for IRC segmentation on vendor-specific OCT images lacks

generalizability across imaging systems. To address this limitation, a fully convolu-

tional network (FCN) model for vendor-independent IRC segmentation is proposed.

This method counteracts image noise variability and trains FCN models on OCT sub-

images from the OCSC dataset (with four different vendor-specific images, namely,

Cirrus, Nidek, Spectralis, and Topcon). Further, data augmentation and model hyper-

parametrization is performed to prevent model over-fitting.

Deeper FCNs are computationally intensive due to regular convolutional filters which
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results in large number of computation parameters. These Deeper FCNs are prone to

vanishing gradient problem. Hence, to reduce the number of computation parameters

a depth-wise separable convolutional neural network architecture is proposed. To pre-

vent vanishing gradient problem Swish activation function is employed in the proposed

architecture. OCSC dataset with four different vendor scans are used to evaluate the

proposed architecture.

1.7 Organization of this Thesis

This thesis is organized as follows:

Chapter 2 summarizes the survey of automated methods developed for segmentation

of IRCs and presents a comparative study on different IRC segmentation techniques to

provide insights on factors affecting IRC segmentation from OCT images.

Chapter 3 presents a vendor dependent unsupervised IRC segmentation technique

based on marker-controlled watershed transformation with both qualitative and quanti-

tative evaluation.

Chapter 4 presents a fully convolutional neural network architecture for vendor in-

dependent IRC segmentation. Model based denoising technique is also proposed to

enhance the quality of the OCT scans prior to segmentation. Hyper-parametrization

and domain specific data augmentation techniques are employed to build customized

fully conventional neural network architecture for IRC segmentation task.

Chapter 5 presents a depthwise separable convolutional neural network architecture for

vendor independent IRC segmentation. Various analysis are conducted in this chapter

to overcome the limitations of regular fully convolutional neural network architectures.

Finally, Chapter 6 concludes the thesis and provides future work directions.
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CHAPTER 2

COMPARATIVE STUDY OF AUTOMATED

INTRA-RETINAL CYST SEGMENTATION

TECHNIQUES USING OCT B-SCANS

In the recent years, automated segmentation of intra-retinal cysts using optical coher-

ence tomography B-scans has gained significant importance in the field of retinal image

analysis. Automated segmentation of cystic spaces in retinal scans is a challenging

task due to noise, scan intensity variations, varied cyst morphology, confounding reti-

nal structures and pathologies. The objective of this Chapter1 is to compare different

intra-retinal cyst segmentation algorithms for comparative analysis and benchmarking

purposes.

In this Chapter, a modular approach is employed for standardizing the different IRC

segmentation algorithms. Further, analysis of the variations in automated cyst seg-

mentation performances and method scalability across image acquisition systems is

conducted using the publicly available cyst segmentation challenge dataset (OPTIMA

cyst segmentation challenge (OPTIMA, 2015)). Several key automated methods are

comparatively analyzed using quantitative and qualitative experiments. Our analysis

demonstrates the significance of variations in SNR, retinal layer morphology and post-

processing steps on the automated cyst segmentation processes. Finally, this Chapter

provides insights towards the scalability of automated methods across vendor-specific

imaging modalities to provide guidance for retinal pathology diagnostics and treatment

processes.

1The work described in this Chapter has been published as: G. N. Girish, V. A. Anima , Abhishek
R. Kothari, P. V. Sudeep, Sohini Roychowdhury and Jeny Rajan, “A Benchmark Study of Automated
Intra-retinal Cyst Segmentation Algorithms using Optical Coherence Tomography B-Scans”. Computer
Methods and Programs in Biomedicine, Volume 153, pages 105-114, ISSN 0169-2607, Elsevier, 2018.

https://www.sciencedirect.com/science/article/pii/S0169260717302614
https://www.sciencedirect.com/science/article/pii/S0169260717302614


2.1 Brief Review of Automated IRC Segmentation Meth-

ods

The existing OCT intra-retinal cyst segmentation methods can be classified into two

categories: semi-automated and fully automated. The semi-automated methods require

manual intervention to define initial markers for each cyst. These methods are time and

manual labor intensive owing to the large numbers of frames that need to be manually

examined to define the markers (Fernandez, 2005; Zheng et al., 2013). Thus, fully auto-

mated segmentation methods were developed to overcome these limitations. Figure. 2.1

highlights the categorization of existing automated methods for intra-retinal cyst seg-

mentation. The automated methods are initially categorized as 2D or 3D segmentation

techniques followed by further classification into unsupervised (Wilkins et al., 2012;

Wieclawek, 2015; Rashno et al., 2017; Chen et al., 2012) and supervised approaches

(Quellec et al., 2010; Gonzalez et al., 2013; Swingle et al., 2014, 2015; Chiu et al.,

2015; Lang et al., 2015; Zhang et al., 2015; Schlegl et al., 2015; Lee et al., 2017;

de Moura et al., 2017).

Wilkins et al. (2012) automatically segmented cysts from OCT B-scans using em-

pirically obtained intensity threshold. Segmenting cysts with empirical threshold makes

it difficult to generalize this method for clinical applications. Post-processing steps em-

ployed in their algorithm were not sufficient, which in turn affected sensitivity and

specificity adversely.

Gonzalez et al. (2013) used watershed transform followed by region merging and

texture analysis for detecting retinal cysts. The result of watershed segmentation con-

tained over-flooded regions due to improper regional minima. Hence, these regions

were combined into larger catchment basins by region merging approach using inten-

sity profiles of each region. However, after region merging, there were large number of

sets of regions that did not correspond to cystic fluids. Gray level co-occurrence ma-

trix (GLCM) and Gabor filter based texture features were computed from the remaining
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Figure 2.1: Taxonomy of segmentation approaches used for automated intra-retinal cyst
segmentation.
[Ref: unsupervised [1, 2, 3, 13]-(Wilkins et al., 2012; Wieclawek, 2015; Rashno et al.,
2017; Chen et al., 2012) and supervised [4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15]-(Pilch et al.,
2013; Gonzalez et al., 2013; Swingle et al., 2014, 2015; Chiu et al., 2015; Lang et al.,
2015; Schlegl et al., 2015; Lee et al., 2017; de Moura et al., 2017; Zhang et al., 2015;
Quellec et al., 2010)]

regions. Finally, these regions were classified using the random forest (RF) classifier

(Breiman, 2001), support vector machine (SVM) (Hearst et al., 1998) and naive Bayes

(NB) classifier (Ng and Jordan, 2002) into cystic and non-cystic spaces based on ex-

tracted features.

k-means clustering and k-nearest neighbor (k-NN) techniques were employed by

Pilch et al. (Pilch et al., 2013). k-means clustering (Hartigan and Wong, 1979) was

used to segment cystic structures, and subsequently Hu-moment (Hu, 1962) features

were extracted from each segmented region. Finally, segmented regions were classified

using k-NN classifier (Cover and Hart, 1967).

Swingle et al. (2014, 2015) proposed automated pseudo- and micro-cysts detection
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algorithm and also identified their spatial distribution in primate retina. This algorithm

was based on pixel-wise classification approach. Lang et al. (Lang et al., 2015) used

both intensity and spatial features with RF classifier for classifying pseudo-cyst pix-

els from OCT B-scans. Pixel-wise classification approaches suffer from presence of

speckle noise and shadow artifacts which are always present in OCT scans.

Chiu et al. (2015) proposed an automatic retinal layer and fluid segmentation ap-

proach based on kernel regression (KR), graph theory and dynamic programming (GTDP)

framework. Initially, a KR-based classification was used to estimate fluid and retinal

layer positions. Then these classification results were used for finer segmentation using

GTDP. This algorithm was evaluated on 110 B-scans from 10 patients with severe dia-

betic macular edema pathology. This method produced better segmentation correlation

coefficient but was computationally expensive compared to normal GTDP algorithm.

Wieclawek (2015) proposed an approach utilizing different image processing tech-

niques such as non-linear complex diffusion and mathematical morphology operations.

In particular, h-minima transform and image reconstruction by erosion and geodesic

operations were used to segment the cysts from OCT images. The obtained results

were qualitatively reported.

Schlegl et al. (2015) used convolution neural network (CNN) to segment the intra-

retinal fluid (IRF) and sub-retinal fluid (SRF) from retinal OCT scans. The CNN was

trained with approximately 300,000 2D image patches which were extracted from 157

OCT image volumes available at the Vienna Reading Center. The trained CNN model

achieved an overall accuracy of 96% across three classes (Normal retinal tissue, IRF

and SRF) using pixel-wise classification approach.

Similar patch based CNN approach was proposed by (Lee et al., 2017) to segment

IRF from 1289 OCT images. However the model was trained on OCT images obtained

from single vendor OCT machine and could not be generalized.

de Moura et al. (2017) proposed intensity and texture based supervised method for
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the identification of IRCs. A heterogeneous set of 326 intensity and texture based fea-

tures was extracted from corresponding IRC and normal patches in OCT images. Then,

Relief-F and L0 feature measures were used to identify optimal feature subset. Finally,

linear Bayes normal classifier, quadratic Bayes normal classifier and k-NN classifier

were used for the discrimination of IRC and normal patches. The method was evalu-

ated on 363 and 360 patches of IRC and normal patches extracted from 51 OCT images.

The LDC classifier with L0 feature selector provided better accuracy (0.91) than Relief-

F and other classifiers.

However, in patch-based segmentation methods, the selection of an appropriate

patch size has a considerable impact on segmentation results. Selection of small patches

leads to inaccurate segmentation of bigger cysts whereas larger patches result in seg-

mentation of non-retinal vascular regions as cystic structures.

Very recently, a neutrosophic sets and graph-cut algorithms based approach was

proposed by Rashno (Rashno et al., 2017) to segment IRCs from OCT images. Initially

the images were transformed into neutrosophic domain and candidate cyst regions were

segmented using fuzzy based clustering technique. Finally, fine segmentation was per-

formed on the clustered candidate regions using graph-cut technique. The method was

evaluated on three different datasets (UMN, OPTIMA and Duke) obtained using Spec-

tralis vendor OCT scans. Even though the method was unsupervised, lot of parameters

had to be manually identified for fuzzy clustering objective function. Choosing appro-

priate number of clusters and initial coarse segmentation affects the performance of the

method.

Automated 3D volumetric segmentation of retinal cysts has been attempted (Quel-

lec et al., 2010; Chen et al., 2012; Zhang et al., 2015). 3D volumetric analysis of retinal

cysts from OCT requires densely sampled data with a higher number of C-scans, other-

wise small cystic structures can go undetected.

The key challenges posed by the OCT images to most existing methods for au-

tomated segmentation of cystic regions include pixel-level variabilities due to noise,
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image intensity variations, varied cyst morphology, confounding retinal structures and

complex pathologies.

Based on the existing methods for automated cyst segmentation from OCT images, a

generic methodological framework is proposed in Figure. 2.2. This framework consists

of four main steps: (1) pre-processing; (2) retinal layer segmentation; (3) cyst segmen-

tation; and (4) post-processing. Since OCT images contain varying degrees of additive

speckle noise, a pre-processing module is required for quality enhancement and equal-

ization of the OCT images. Finally, the post-processing step is implemented to reduce

the incorrectly segmented non-cystic regions (i.e., false positive regions). In this Chap-

ter, existing automated retinal cyst segmentation methods are standardized based on the

work-flow shown in Figure. 2.2 and comparatively analyzed to evaluate the significance

of the automated methods with respect to input data and output metrics.

This Chapter makes three key contributions. First, a modular approach to standard-

ize existing OCT cyst segmentation methods is presented for methodological bench-

marking purposes. The methodological contributions from significant automated OCT

cyst segmentation methods are reviewed and comparatively discussed. Secondly, quan-

titative and qualitative analysis through experiments are presented for evaluation of the

existing automated OCT cyst segmentation methods. It is observed from the results

that supervised OCT segmentation methods achieve higher cyst segmentation recall

when compared to unsupervised approaches with degradation in segmentation preci-

sion across data sets with variable scan qualities. Lastly, OCT images from two differ-

ent image acquisition systems (Cirrus and Spectralis) are comparatively analyzed for

scalability limitations owing to the image-level variabilities introduced by imaging sys-

tems. This Chapter also provide novel insights into the limitations of automated cyst

Figure 2.2: Generic framework of automated intra-retinal cyst segmentation system.
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Table 2.1: OPTIMA cyst segmentation challenge dataset description

Vendor Train set # B-Scans Test set # B-Scans
Cirrus 4 584 4 512
Nidek 3 384 3 15
Spectralis 4 196 4 112
Topcon 4 512 4 270
Total 15 1676 15 909

segmentation tasks for retinal diagnostic and screening purposes.

2.2 Materials

2.2.1 Dataset

Comparative analysis of the existing automated intra-retinal OCT cyst segmentation

methods is performed using publicly available OPTIMA cyst segmentation challenge

dataset (OPTIMA, 2015). OCSC dataset contains 30 SD-OCT scans with 2585 B-scans

with random presence of IRC obtained from CME subjects using four different imaging

systems, namely Zeiss Cirrus, Nidek, Spectralis Heidelberg and Topcon. Ground truth

(GT) for all scans are annotated by two expert ophthalmologists.

The selected OCT scans are acquired over 6×6 mm of the macula and foveal center

from subjects with CME. The OCT frames (B-scans) represent gray-scale images with

resolution of [496 × 512] and [496 × 1026] pixels, respectively. The description of

data set is presented in Table 2.1 and a sample OCT B-scan frame from each vendor is

shown in Figure. 2.3. This dataset can be obtained from Christian Doppler Laboratory

for Ophthalmic Image Analysis, Department of Ophthalmology, Medical University of

Vienna2.

In this comparative study, OCT scans from Cirrus and Spectralis image acquisition

2optima@meduniwien.ac.at
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(a) Cirrus (b) Nidek

(c) Spectralis (d) Topcon

Figure 2.3: Sample retinal OCT B-scans from four different vendors of OCSC dataset.
(Image courtesy: OPTIMA cyst challenge dataset (OPTIMA, 2015)).

systems are used to evaluate the methods, since the data sets from these systems demon-

strate moderate to severe pathological features when compared to the other imaging

systems.

2.2.2 Performance Metrics

For quantitative analysis of the automated OCT cyst segmentation methods, the pre-

diction of cystic regions from the automated methods are compared with the manually

annotated ground truth region images, which are provided for the input data sets from

two independent trained ophthalmologists. In this work, we perform segmentation of

cystic regions followed by the evaluation of the number of true Positive (TP), false

positive (FP) and false negative (FN) regions. Here, TPs are defined as actual cystic re-

gions that are automatically detected, whereas the non-cystic regions detected as cysts
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by an automated algorithm are FPs, and the actual cystic regions that are undetected by

an automated algorithm are FNs. The output metrics for evaluation of the automated

segmentation algorithms are defined as precision (2.1) and recall (2.2).

Precision =
TP

TP+FP
(2.1)

Recall =
TP

TP+FN
(2.2)

As an additional measure for methodological evaluation, the Dice coefficient (DC)

(Dice, 1945) (2.3) analyzes the correlation of automated segmentation (AS) vs. GT

per patient image stack.

DC = 2 · |AS ∩ GT|
|AS|+ |GT| (2.3)

2.3 Methods

2D intra-retinal cyst segmentation methods published till March-2015 are selected for

performing the comparative study. We have chosen 2D methods instead of 3D segmen-

tation methods because of the spatial resolution between scans is too high and which

can results miss out small cystic structures. The methodological contributions of auto-

mated OCT cyst segmentation techniques considered for this comparative benchmark

study are summarized below.

Wilkins et al. (2012) proposed an automated cyst segmentation method using em-

pirically obtained global intensity threshold. For reducing the speckle noise, the authors

applied a fast bilateral filter on the SNR balanced and normalized OCT B-scans. In ad-

dition, the top-bottom search mechanism with the intensity threshold was employed to

identify the RPE-nerve fiber layer (NFL) boundaries. Next, regional thresholding was

used for the rejection of FPs. In (Wilkins et al., 2012), the method was evaluated using

19 OCT-volumes (16 captured from eyes of patients with vitreo-retinal disease and 3
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control eyes) and the mean sensitivity and specificity were reported as 0.91 and 0.96,

respectively. However, cyst segmentation using empirical thresholding is not feasible in

a clinical setup and thus, the post-processing steps mentioned in (Wilkins et al., 2012)

are insufficient for generalizable removal of FPs.

Gonzalez et al. (2013) used Watershed (WS) transformation for detecting cysts fol-

lowed by region merging and texture analysis. In (Gonzalez et al., 2013), the retinal

layers were initially segmented using a graph cut segmentation approach. After delim-

iting the region of interest (ROI) between ILM and RPE layers, WS was applied to seg-

ment the cyst regions. After WS segmentation, the authors combined the over-flooded

regions to form larger catchment basins by region merging approach and performed the

post-processing steps using 14 different parameters for each region.

The detected cysts were then classified with texture descriptors based on GLCM

and Gabor filters and by using classifiers such as naive-Bayes, support vector machine

or random forest with 10-fold cross validation. The comparative evaluation in (Gon-

zalez et al., 2013) indicates that GLCM+SVM and Gabor+SVM have segmentation

accuracies of 0.8293 and 0.8244, respectively. The limitations of this method include

over-flooding of WS due to improper regional minima-estimation and the large number

of parameters while post-processing. Hence, this method suffers from generalizability

in a clinical setup.

In (Pilch et al., 2013), Pilch et al. segmented the cysts with the k-means clustering

technique and classified them using k-nearest neighbor. Beforehand, the speckle noise

in B-scans was removed with Bayesian estimation method, followed by implementation

of an automated active contour model for retinal layer segmentation. The experiments

discussed in (Pilch et al., 2013), using eight OCT B-scans with 130 cysts, indicate that

the retinal structures are over-segmented with k-means clustering method if k is set too

low and improper delineation of segmented retinal micro-structures occurs when k is

set too high. Segmented regions were classified using Hu-moment features and k-NN

classifier.
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Swingle et al. (2014, 2015) proposed an automated pseudo-cyst detection algorithm,

based on pixel-wise classification approach, and identified the spatial distribution of

cysts in the retinal fundus images. Prior to classification, B-scans were normalized

and ILM and Bruchs membrane (BM) retinal boundaries were segmented. The authors

trained an RF classifier with 14 features extracted from manually segmented data. Next,

intensity profiles and image-based features were also estimated for the test data set. Fi-

nally, RF-based classification is performed on the test images, where each test-image

pixel was probed for being cyst-like. Due to the presence of spurious pixels in the clas-

sification output, post-processing was performed to remove all connected components

below the threshold of 30 pixels. In (Swingle et al., 2014), the proposed method was

evaluated on 49 OCT B-scans obtained from five subjects with Micro-cystic macular

edema (MME) and the results demonstrated automated classification accuracy of 0.846

and DC of 0.75 obtained against two manual graders. However, this pixel-wise classifi-

cation approach for cysts is limited in its performance by the presence of speckle noise

and shadow artifacts in OCT images.

Lang et al. (2015) used both intensity and spatial features with an RF classifier for

classifying pseudo-cyst pixels from OCT B-scans. Initially B-scans were normalized,

followed by extraction of eighteen features, of which sixteen were intensity based and

two were spatial position based features. The system was trained on the features ex-

tracted from manually segmented data. After extracting features for test data, the RF

classifier was used with 60 trees, each with minimum terminal leaf size of 10. Experi-

mental analysis was performed using leave-one-out approach. Further, this method was

assessed on images obtained from 10 MME patients and 10 control candidates. For

MME data, precision of 0.85, recall of 0.79 and DC of 0.98 was reported with this

algorithm. In case of control data, this method correctly labeled all the pixels.

Wieclawek’s segmentation method involved different image processing techniques

including non-linear complex diffusion and mathematical morphology operations (Wieclawek,

2015). The authors segmented the cysts from OCT B-scans using h-minima transform
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and image reconstruction by erosion and geodesic operations. The segmented regions

above and below the NFL and RPE layers and the regions connected to image bound-

aries were removed for reducing FPs. However, in this work, the performance of the

cyst segmentation method were qualitatively reported.

2.4 Experimental Setup

Experiments analysis for automated segmentation of cysts using the methods described

above is performed on OCT images from Spectralis and Cirrus imaging systems, and the

segmentation outcomes are comparatively evaluated. For standardization purposes, the

pre-processing module for the removal of additive speckle noise from the OCT B-scans

precedes the retinal layer segmentation step. For each method described in section 2.3,

the automated segmentation algorithm module is followed by post-processing modules.

The segmentation methods are implemented in MATLAB on a standalone computer

with following specifications: 64-bit operating system, Core i7 3700 CPU and RAM

size 8 GB. The functional modules for the automated OCT segmentation methods are

described below.

2.4.1 Pre-processing and Retinal Layers Segmentation

Since the segmentation methods are sensitive to noise, all the input OCT images are

denoised first. Recently proposed adaptive and unbiased bilateral (AUB) filter (Sudeep

et al., 2016a) is employed for denoising OCT scans. In (Sudeep et al., 2016a), a three

parameter Gamma distribution function is used to fit the noisy (observed) OCT B-scans

and a maximum likelihood (ML) approach is used to estimate the parameters of the

Gamma distribution, based on which, the bias B̂e parameter is computed. Next, B̂e

is subtracted from the output of an adaptive version of the conventional bilateral filter

(Tomasi and Manduchi, 1998). The various parameters associated with the AUB filter
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Figure 2.4: OCT image of retina to visualize the order and position of the boundaries
of layers. (From top: 1- internal limiting membrane (ILM); 2- retinal nerve fiber layer
boundary (RNFL); 3- ganglion cell layer (GCL); 4- inner plexiform layer (IPL); 5 -
outer plexiform layer (OPL); 6- outer nuclear layer (ONL); 7- Boundary of myoid
and ellipsoid of inner segments (BMEIS); 8- Inner Segment/Outer Segment (IS/OS)
junction; 9- Outer Photoreceptor (OPR); 10- Retinal Pigment Epithelium (RPE); 11-
Bruch’s Membrane Complex (BMC). (The Iowa Reference Algorithms (Retinal Image
Analysis Lab, Iowa Institute for Biomedical Imaging, Iowa City, IA) (Li et al., 2006;
Garvin et al., 2009; Abramoff et al., 2010))

are as follows: Half width of the filter = 5, geometrical parameter σ̂d=1.5, photometric

spread σ̂r=2.5σ̂ and 0.6σ̂ for Cirrus and Spectralis respectively. Where σ̂2 denotes

the estimated noise variance from the given input image. The estimated bias B̂e is

empirically estimated as 32 and 15 for the Spectralis and Cirrus scans, respectively.

For cyst segmentation, retinal layer segmentation is an important pre-processing

step because it provides information regarding variations in morphology and thickness

of retinal layers, which leads to refine the cyst segmentation results. Among different

automated retinal layer segmentation methods (Li et al., 2006; Mayer et al., 2010; Lang

et al., 2013), the Iowa reference algorithm (Retinal Image Analysis Lab, Iowa Institute

for Biomedical Imaging, Iowa City, IA) (Li et al., 2006; Garvin et al., 2009; Abramoff

et al., 2010) is used in this Chapter to obtain the eleven segmented retinal layers as

shown in Figure. 2.4.
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2.4.2 Cyst Segmentation and Post-processing

The cyst segmentation methods described in section 2.3 are implemented with method

specific post-processing steps as follows. For (Wilkins et al., 2012), cyst segmentation

method is implemented with empirically computed gray level threshold of 49 and 37

for Spectralis and Cirrus scans, respectively. Post-processing is achieved with the gray

level intensity standard deviation of 41, by removing regions less than 10 pixels and

regions outside ROI (NFL-RPE). This step reduces FPs.

For Gonzalez method (Gonzalez et al., 2013), post processing is performed after

WS segmentation as follows: elongated cysts (t1 = 1.5; t2 = 2; pocc = 0.6), small cysts

(regions lesser than nmin = 10 pixels), cysts next to image slides, cysts above ILM

and below OPL are removed to reduce FPs followed by classification (Gonzalez et al.,

2013).

In the implementation of k-means clustering and k-NN method (Pilch et al., 2013),

pre-processed B-scans are automatically segmented using k-means algorithm. Opti-

mal value of k is empirically determined as 3. Next, the gray-level pixel intensities

of B-scans are clustered as hyper reflective layer, hypo-reflective layer and cystic or

low intensity regions, respectively. Finally, the clusters are post-processed to remove

outliers using boundary layers of retina (ILM and RPE), pseudo-cyst ratio (lesser than

10 pixels) and width to height ratio (width is 4 times greater than height). After this

post-processing step, texture features are extracted using Hu-moments and k-NN clas-

sification (k = 6) is performed with manually segmented training data from 4 OCT

volumes.

Swingle et al. (2014) is implemented to extract 14 intensity features on manually

segmented data from the 4 OCT volumes as follows: 2 features are obtained from the

the voxel intensity before and after gray-scale morphological closing operation and 9

features are retrieved after Gaussian filtering at various scales. Next, 2 features are ex-

tracted by Laplacian and Laplacian of Gaussian (LoG) of the image and a final feature
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is the relative distance of intra-retinal cyst to the retinal boundary (ILM-Boundary of

myoid and ellipsoid of inner segments (BMEIS)). Finally, an RF classifier is trained

from the features with 60 trees and the test data is probed. Here, all connected compo-

nents lesser than 30 pixels are ignored to remove spurious pixels in the post-processing

step.

The method by Lang et al. (Lang et al., 2015) is implemented with 15 features that

are extracted from the OCT images, followed by the aforementioned steps for training

RF classifier with parameters mentioned in (Lang et al., 2015). Next, the test data is

probed to classify cyst and non-cyst pixels. To generate final segmentation results, two-

stage thresholding approach is employed with probability threshold of 0.5 and 0.85,

respectively. Finally, all connected components lesser than 5 pixels are ignored to re-

move spurious pixels.

For the method by Wieclawek (Wieclawek, 2015), value of h = 3 and h = 4

are used to compute h-minima transform on Spectralis and Cirrus scans, respectively.

Next, h-minima transformed B-scans are thresholded to obtain the segmented results.

The segmented regions above and below NFL and RPE layers, and regions connected

to image boundaries are removed to reject FPs .

2.5 Results and Analysis

The quantitative and qualitative comparative assessment of the automated cyst segmen-

tation methods is presented below. Since low precision is indicative of FPs (over-

detection) and low recall is indicative of missing patients with abnormalities (under-

detection), high precision and high recall values are desired for an ideal automated cyst

segmentation method.
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2.5.1 Quantitative Assessment

Table 2.2 and Table 2.3 demonstrate precision and recall for the methods under analysis

against grader 1 (G1), grader 2 (G2) and intersection of both the graders (G1 ∩ G2) on

the Spectralis and Cirrus scans, respectively. Here, observe that cyst segmentation re-

sults obtained with mathematical morphology based approach proposed by Wieclawek,

achieve higher recall across input dataset variabilities (i.e., mean recall of 0.38 and 0.59

on Spectralis and Cirrus scans, respectively, with G1) as compared to other unsuper-

vised method (Wilkins et al., 2012). However, segmentation precision varies largely

with the image quality (i.e., mean precision of 0.35 and 0.09 on Spectralis and Cirrus

scans, respectively, with G1).

Among the supervised cyst segmentation methods, Swingle et al. method (Swingle

et al., 2014) outperforms other supervised methods in terms of recall while preserv-

ing marginal precision rates across dataset variabilities. Also, trends in degradation of

precision with respect to image quality, similar to that of the unsupervised methods, is

observed. Thus, from Table 2.2 and Table 2.3, it can be inferred that supervised meth-

ods outperform unsupervised methods in terms of overall precision and recall. Also,

texture-based supervised methods such as GLCM, Gabor and Hu-moments are found

to be efficient discriminators for cystic regions. Additionally, from Table 2.2 and Ta-

ble 2.3, also observe that the variations in performances with respect to manual graders

due to inter-grader variability (OPTIMA, 2015).

Further, comparative assessment of cyst segmentation methods on a sample Spec-

tralis OCT B-scan are presented in Figure. 2.5. The original B-scan and GT provided

by G1 (see the marked region in red colour) are shown in Figures. 2.5(a) and 2.5(b),

respectively. It can be observed from Figure. 2.5(c) that Wilkins method has failed to

identify some cysts due to intensity variations, and it has also failed to delineate the

cysts up to their actual boundary. In Figure. 2.5(d), the Wieclawek method shows over-

segmentation by considering consecutive cysts as a single entity in an image. Here, the

boundaries between cysts are missed and FPs in the ONL layer are observed.
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It is observed from Figure. 2.5(e) that the Gonzalez method introduces an additional

cyst (on the left side of the retina) and fails to segment consecutive cysts due to im-

proper regional minima-estimate and over-flooding. Although the Pilch method is able

to detect both micro and macro-cysts, it fails to delineate the cysts to their actual bound-

ary as shown in Figure. 2.5(f)). In case of Swingle method and Lang method, all the

identified consecutive cysts are merged into large cysts (see Figures. 2.5(g) and 2.5(h),

respectively) due to the lack of boundary discrimination around each individual cyst.

Besides precision and recall, DC is also evaluated to validate the experimental re-

sults and plotted in Figures. 2.6 and 2.7 for Spectralis and Cirrus scans, respectively.

In these box plots, the line inside the box indicates the median value and as a rule of

thumb, any segmentation method performs well if the corresponding median in the box

plot is high. Here, the range of the box gives the spread of the DC-values that are

computed from different patient image volumes. It can be noticed from Figure. 2.6 and

Figure. 2.7 that the Lang method has the highest median values for both Spectralis and

Cirrus scans, respectively.

It is observed that automated sub-retinal layer segmentation techniques are prone to

erroneous segmentation on pathological B-scans, when compared to normal subjects.

For this analysis, an evaluation on IRC segmentation is conducted using automated

retinal segmentation method against manual retinal layer ground-truth provided by the

ophthalmologist on a Spectralis vendor test volume with 7 pathological OCT B-scans.

Ophthalmologist manually segmented 6 retinal layer boundaries (ILM, RNFL, OPL,

ONL, BMEIS and RPE) using GIMP (GNU Image Manipulation Program) software.

A tablet computer with stylus is used for freeform (drawing) marking the boundaries as

if writing on a flat surface. Grader also has the option to erase/add/correct markings.

The grader made the best estimate for marking the boundaries of layers, which were

completely obscured or lost due to CME.

Obtained mean Dice correlation results of the cyst segmentation methods using

both automated and manual layer segmentation is reported in Table 2.4. Reported
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.5: Results of different automated intra-retinal cyst segmentation methods
on Spectralis scans against the GT from G1 (a) Original B-scan, (b) GT (c) Wilkins
Method (Wilkins et al., 2012), (d) Wieclawek Method (Wieclawek, 2015), (e) Gonza-
lez Method (Gonzalez et al., 2013), (f) Pilch Method (Pilch et al., 2013), (g) Swingle
Method (Swingle et al., 2014), (h) Lang Method (Lang et al., 2015).
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Figure 2.6: Whisker Box plot for the Dice correlation coefficient against intersection of
both the graders on Spectralis dataset for Wilkins Method (Wilkins et al., 2012) (0.30),
Wieclawek Method (Wieclawek, 2015) (0.46), Pilch Method (Pilch et al., 2013) (0.38),
Gonzalez Method (Gonzalez et al., 2013) (0.45), Swingle Method (Swingle et al., 2014)
(0.35), Lang Method (Lang et al., 2015) (0.59),) .

Figure 2.7: Whisker Box plot for the Dice correlation coefficient against intersection
of both the graders on Cirrus dataset for Wilkins Method (Wilkins et al., 2012) (0.14),
Wieclawek Method (Wieclawek, 2015) (0.08),Pilch Method (Pilch et al., 2013) (0.12),
Gonzalez Method (Gonzalez et al., 2013) (0.00), Swingle Method (Swingle et al., 2014)
(0.05), Lang Method (Lang et al., 2015) (0.77),) .

results in Table 2.4 shows that methods proposed by Wilkins (Wilkins et al., 2012),

Weiclawek (Wieclawek, 2015) and Pilch (Pilch et al., 2013) are robust to initial layer

segmentation errors (minimal difference in the Dice rate between manual and automated

layer segmentation), whereas, Gonzalez (Gonzalez et al., 2013), Swingle (Swingle

et al., 2014) and Lang (Lang et al., 2015) methods are more sensitive to layer segmen-

tation errors (observe the significant variation in Dice rate obtained between manual

and automated layer segmentation). Methods (Wilkins, Weiclawek and Pilch) utiliz-
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Table 2.4: Mean Dice correlation of the different cyst segmentation methods using au-
tomated and manual layer segmentation on Spectralis vendor OCT scans using ground
truth provided by G1

Method Manual Grader Iowa reference algorithm
Wikkins (Wilkins et al., 2012) 0.3702 0.3628
Weiclawek (Wieclawek, 2015) 0.4130 0.4058
Pilch (Pilch et al., 2013) 0.3094 0.3060
Gonzalez (Gonzalez et al., 2013) 0.2397 0.0150
Swingle (Swingle et al., 2014) 0.4225 0.3437
Lang (Lang et al., 2015) 0.5467 0.4487

ing RPE as the lower boundary of the ROI are robust to initial layer segmentation errors

compared to methods (Gonzalez, Swingle and Lang) utilizing inner layer as ROI bound-

aries. In case of pathological cases it is difficult to accurately segment inner layers of

the retina for both manual and automated algorithms.

In addition, an analysis on the accuracy of different cyst segmentation algorithms on

segmenting cysts located in the inner sub-retinal layers is performed. Table 2.5 shows

the mean recall rate of segmentation methods on different inner layers of the retina

with Spectralis vendor OCT scans. It is observed that layer thresholding limiting in

retina to select ROI affects the performance of the methods. The methods in Wilkins et

al. (Wilkins et al., 2012) and Weiclawek (Wieclawek, 2015) fails to segment the cysts

between ILM-RNFL layers due to ROI of these methods restricted between (RNFL-

RPE). Method proposed by Gonzalez (Gonzalez et al., 2013) efficiently segments the

cysts in all the inner layers of the retina, when compared to other methods. All the seg-

mentation methods perform well in hypo-reflective layers compared to hyper-reflective

layers (observe the recall rate in Table 2.5). Supervised methods proposed in Swingle

et al. (Swingle et al., 2014) and Lang et al. (Lang et al., 2015) utilizes the intensity and

texture based features, and therefore both these methods outperformed other methods

in mean recall rate at respective inner layers.

Additionally, to evaluate the performance of segmentation methods on normal B-

scans, experiments are conducted using first 20 normal B-scans of volume 2 in the
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Table 2.5: Accuracy of cyst segmentation methods in different intra-retinal layers on
Spectralis vendor OCT scans using ground truth provided by G1.

Method ILM-RNFL RNFL-GCL GCL-IPL IPL-INL INL-OPL OPL-ONL
Wikkins (Wilkins et al., 2012) 0 0.3333 0.2857 0.2839 0.1739 0.6097
Weiclawek (Wieclawek, 2015) 0 1 0.2857 0.5061 0.3478 0.5121
Pilch (Pilch et al., 2013) 0 0.3333 0.2857 0.1604 0.2173 0.1951
Gonzalez (Gonzalez et al., 2013) 0.5 1 0.2857 0.3086 0.3043 0.1707
Swingle (Swingle et al., 2014) 1 0.6666 0.5714 0.8888 1 0
Lang (Lang et al., 2015) 0.5 0 0.4285 0.5061 0.5217 0

Table 2.6: Mean Dice correlation of the different cyst segmentation methods on normal
B-scans obtained using Cirrus and Spectralis vendor OCT system

Method Cirrus Scan Spectralis Scan
Wikkins (Wilkins et al., 2012) 0.3032 8.51E-05
Weiclawek (Wieclawek, 2015) 2.53E-05 1
Pilch (Pilch et al., 2013) 4.16E-06 0.4507
Gonzalez (Gonzalez et al., 2013) 1.17E-10 0.8500
Swingle (Swingle et al., 2014) 1.39E-08 0.0501
Lang (Lang et al., 2015) 1 0.9500

Cirrus and Spectralis vendor test set. Table 2.6 shows the mean Dice correlation rate

on both vendor normal B-scans. It can be inferred from the results that all the methods

perform well in the Spectralis scans compared to Cirrus scans. Methods proposed by

Wieclawek in (Wieclawek, 2015) and Lang et al. in (Lang et al., 2015) perform better

compared to other methods in both vendor scans (higher Dice-coefficient) rate. Method

proposed by Lang (Lang et al., 2015) et al. preserves higher precision and efficiently

reduces the false positives when compared to other methods as shown in results of

Tables 2.2, 2.3 and 2.6.

2.5.2 Qualitative Assessment

This sub-section discuss about the qualitative limitations of the aforementioned meth-

ods to segment cysts from OCT images. Future works that address these limitations can

significantly enhance the accuracy of automated cyst segmentation and retinal pathol-
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ogy diagnostics.

First, for the Wilkins method, the number of FPs are high and precision is low due

to the lack of proper post-processing. For e.g., retinal blood vessel shadows and elon-

gated cysts are not removed here. This method also suffers from manual thresholding,

thus leading to low generalizability. It is observed that for a high threshold value, the

number of FPs tremendously increases while for a low threshold value the number of

FNs increase. Similar observations are found for the Wieclawek method.

Furthermore, the Cirrus scans are more noisy and they have a low mean precision

value when compared to the Spectralis scans. With the Gonzalez method, the Bayesian

classifier outperforms SVM and RF classifiers. This indicates that the selection of clas-

sifier plays an important role for cyst segmentation. Also, GLCM features are found

to produce better accuracy than Gabor filters. From this analysis, we can infer that

texture-based features have a significant role in discriminating cystic structures from

other regions in OCT B-scans.

Further, it can be observed from the recall values with Pilch method, the method

performs well in the low intensity regions even though it is more prone to generating

FPs in the presence of pixel intensity variations and blood vessel shadows. Experiments

with the Pilch method also demonstrates that Hu-moment features extracted from the

segmented regions are sufficient for separating cysts from non-cysts. Besides, is ob-

served that several factors including blood vessel shadows, epi-retinal membrane folds

and distortions in layers can affect the method by Swingle et al. and Lang et al.. Also,

notice that the empirically selected threshold values for classifiers yields better segmen-

tation accuracies when compared to the default threshold value of 0.5. Finally, it can be

observed that the three stage post-processing of classifier output with the method pro-

posed in (Lang et al., 2015) leads to higher precision by reducing FPs when compared

to that in the Swingle method.

Apart from cyst segmentation, an analysis on the impact of the denoising mod-

ule on the overall cyst segmentation process is conducted. The DC box plots charts
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(a)

(b)

Figure 2.8: Results of DC in effect of denoising process on different automated intra-
retinal cyst segmentation methods on Spectralis scans against the ground truth obtained
from grader 1 ; (a) Before Denoising, (b) After Denoising.

in Figure. 2.8 and Figure. 2.9 show the variations in precision and recall for different

segmentation methods before and after denoising. Here, observe that the DC values

gradually increase when images are segmented after denoising. Thus, it can be inferred

that the presence of image noise significantly distorts the segmentation of intra-retinal

cystic regions.

From the experiments, it is observed that some of the automated segmentation meth-

ods are effective only in detecting the cyst locations but not at delineation of the actual

lesion boundary, while other methods are sensitive to method parameters, thus lack-

ing generalizability. It is acclaimed that a very important goal of any automated cyst

segmentation technique should be able to segment the cyst boundary accurately for
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(a)

(b)

Figure 2.9: Results of DC in effect of denoising process on different automated intra-
retinal cyst segmentation methods on Cirrus scans against the ground truth obtained
from grader 1 ; (a) Before Denoising, (b) After Denoising.

volumetric assessment and follow-up treatment protocols. This Chapter is aimed at

providing guidance for the selection of an optimal automated intra-retinal layer and

cyst segmentation method, given a specific clinical/research set-up. Various analysis

conducted in this Chapter demonstrates that for clinical applications, the most signif-

icant metrics for selection of an automated segmentation method are: high recall rate

and DC, followed by high precision and low-variability across vendor-specific imaging

systems.
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2.6 Summary

In this Chapter, the performances of a variety of supervised and unsupervised methods

are compared using OCT images from Spectralis and Cirrus acquisition systems, and

the cyst segmentation results are quantitatively and qualitatively analyzed. Such ex-

haustive analysis of existing OCT cyst segmentation methods has not been presented so

far.

Analysis shows that the performance of the unsupervised methods highly depends

on the quality of OCT B-scans and the supervised methods outperform unsupervised

methods, even if the quality of the OCT B-scan is low. However, the limitations posed

by supervised methods include: over-segmentation in the presence of several conse-

quent cysts, and the need for training data. To overcome challenges mentioned in this

Chapter, next Chapters of this thesis propose both unsupervised and supervised intra-

retinal cyst segmentation methods which can efficiently discriminate cyst and non-cyst

pixels.
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CHAPTER 3

MARKER CONTROLLED WATERSHED

TRANSFORM FOR INTRA-RETINAL CYST

SEGMENTATION

An automatic intra-retinal cyst segmentation method using marker-controlled watershed

transform on OCT B-scans is proposed in this Chapter3. The proposed method is based

on two stages – k-means clustering technique is used to identify cysts in the form of

markers, followed by topographical based watershed transform for final segmentation.

Qualitative and quantitative evaluation of proposed method is carried out against ground

truth obtained from two graders on OCSC dataset Spectralis vendor OCT scans.

3.1 Introduction

In the literature, marker-controlled watershed (MWS) segmentation approach has given

promising segmentation results on other medical image modalities such as mammo-

grams (Xu et al., 2011), computerized tomography (Yan et al., 2006; Cristoforetti et al.,

2008), ultrasound (Gomez et al., 2010) and magnetic resonance imaging (Cui et al.,

2009). This motivated us to explore MWS in segmenting retinal cysts from OCT im-

ages.

3The work described in this Chapter has been published in: G. N. Girish, Abhishek R. Kothari and
Jeny Rajan, “Automated Segmentation of Intra-Retinal Cysts from Optical Coherence Tomography Scans
Using Marker Controlled Watershed Transform”, in 38th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC’16). Orlando, Florida, USA: IEEE, Aug 2016.
G. N. Girish, Abhishek R. Kothari and Jeny Rajan, “Marker controlled watershed transform for intra-
retinal cysts segmentation from optical coherence tomography B-scans”, Pattern Recognition Letters,
Elsevier, (In Press, 2017).

http://ieeexplore.ieee.org/document/7590943/
http://ieeexplore.ieee.org/document/7590943/
https://www.sciencedirect.com/science/article/pii/S0167865517304658
https://www.sciencedirect.com/science/article/pii/S0167865517304658


In OCT images, cysts are consecutive and congruent in nature and boundaries among

them are very difficult to differentiate. The proposed approach overcomes this by locat-

ing cysts as markers using k-means clustering (coarse segmentation step) and segment-

ing them up to their true boundary using the gradient magnitude image as segmentation

function in MWS (fine segmentation step). Method proposed in this Chapter makes

three key contributions. First, an efficient marker generation technique for OCT images

based on k-means clustering is proposed and the optimal value of k for distinguish-

ing the OCT layers and abnormalities has been suggested. Second, post-processing

steps for reducing the false positives is used. Third, delineates the cysts up to their true

boundary, which is crucial in case of consecutive cysts and varied cyst morphology.

3.2 Methodology

OCT acquired images of the retina contain vitreous fluid region followed by retina and

choroid regions. Detection of different layers of the retina is important for disease

characterization (Al-Mujaini et al., 2013). In the proposed method, pre-processing and

retinal layer segmentation is performed and subsequently cysts are segmented using

topographical based marker controlled watershed transform. Finally, segmented results

are post-processed to reduce false positives.

3.2.1 Pre-processing

Performance of any segmentation algorithm depends on the quality of the input image.

OCT images are generally corrupted with speckle noise. Hence, these images need

to be despeckled prior to segmentation. Several methods have been proposed in the

literature for de-speckling OCT images (Wilkins et al., 2012; Gonzalez et al., 2013;

Sudeep et al., 2016a). In the method proposed in this Chapter, Bayesian non local

means (BNLM) filter (Coupe et al., 2009) is applied to denoise OCT scans due to its
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(a) (b)

Figure 3.1: Optical coherence tomography scan of the retina to visualize the order
and position of the boundaries of layers (a) normal retina (b) retina with CME pathol-
ogy. (From top: red- internal limiting membrane(ILM); light green- retinal nerve fiber
layer boundary (RNFL) orange- inner plexiform layer (IPL); dark green- outer plexi-
form layer (OPL); yellow- outer nuclear layer (ONL); blue- retinal pigment epithelium
(RPE)). (Segmented using OCTSEG (Optical Coherence Tomography Segmentation
and Evaluation GUI) tool (Mayer et al., 2010))

superior performance over other methods.

3.2.2 Retinal Layer Segmentation

Retina is a complex layered structure between vitreous fluid and choroid region in a

OCT scan. Understanding the morphological characteristics and distortion in retinal

layers is a primary task in any pathological analysis. Intra-retinal cysts are prone to

occur in region between internal limiting membrane and outer plexiform layer layers of

the retina. Segmentation of retinal layers play vital role in region of interest boundary

determination for cyst segmentation. Methods have already been developed for retinal

layer segmentation (Mayer et al., 2010; Lang et al., 2013).

In this Chapter, OCTSEG Tool (optical coherence tomography segmentation and

evaluation GUI tool) (Mayer et al., 2010) is used to automatically segment six retinal

layers namely, ILM, RNFL, IPL, OPL, ONL, and RPE layer. Results of layer segmen-

tation on normal retina and on a CME pathological case are shown in Figure. 3.1. It can

be seen that OCTSEG tool is robust even in the presence of pathological changes in the

retina and accurately estimates the boundary of intra-retinal layers. This is crucial for

segmenting retinal images.
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3.2.3 Intra-Retinal Cyst Segmentation using Marker Controlled Wa-

tershed Transform

Watershed transform algorithm segments the image into several regions using geodesic

transform approaches (Beucher and Meyer, 1992). Improper regional minima imposi-

tion leads to over-segmentation problems in traditional watershed transform. Marker

controlled watershed transform approach addresses this problem by initially marking

the patterns to be segmented, followed by watershed computation on segmentation func-

tion (Beucher and Meyer, 1992; Lotufo and Falcao, 2000). Intra-retinal cysts are low

intensity regions in the retinal OCT images and marker controlled watershed transform

can be used to segment these regions effectively. To accomplish this, initially markers

are generated for cystic regions followed by segmentation function creation and water-

shed computation.

Marker Generation and Segmentation Function Computation

Marker generation for watershed segmentation depends on scope of the problem. For

intra-retinal cyst segmentation, the markers are cystic region locations. In the proposed

approach, k-means clustering technique (Hartigan and Wong, 1979) is employed to

identify cystic locations. k-means clustering algorithm groups the unlabeled data into

k different clusters based on minimum squared error criterion SE . It is an iterative

clustering technique which aims to reduce the intra-cluster variance. The minimum

squared error criterion SE is given as (Hartigan and Wong, 1979),

SE =
k∑
i=1

∑
p∈Ci

||p− µi||2 (3.1)

where ||p− µi|| is the Euclidean distance between mean vector (cluster center) µi of

cluster Ci and pixel p of the image.

After performing k-means clustering, cluster with minimum centroid Cmin is cho-

44



Algorithm 1 Marker generation using k-means clustering
1: Input: Image I , ILM and OPL layer boundaries, and number of clusters k.
2: Output: Marker Image Mk.
3: Initialize k random points as centroids.
4: Initialize marker image Mk with zeros of size equal to original image I.
5: For each pixel p of image I , calculate the squared error SE between the cluster

centroids µi and p using Eq. (3.1).
6: Assign each pixel p in I to the nearest center based on SE .
7: After labeling of all the pixels in I , recalculate new centre µi for each cluster Ci

using

µi =
1

n

n∑
k=1,p∈Ci

pk (3.2)

8: Repeat the process until cluster centroids are unchanged.
9: Find cluster Cmin with minimum centroid µmin among all centroids µk.

10: Assign cluster pixels p ∈ Cmin to 1 in image Imin.
11: for each region r ∈ Cmin do
12: if r is connected to image extremes (boundaries) or is outside ILM and OPL

layers then
13: goto 12
14: else
15: Compute center of r: [rx, ry]← centroid(r).
16: Create marker in Mk: Mk(rx, ry)← 1.
17: end if
18: end for
19: Return marker image Mk.

sen for marker generation as cysts are very low intensity regions in OCT scans. Subse-

quently, segmented outlier regions are removed inCmin and center pixel location (rx, ry)

are computed for each remaining region r. After this, the pixel Mk(rx, ry) in marker

image Mk is labeled as 1. Algorithm 1 explains the marker generation process.

Next step in the proposed method is to compute the segmentation function (S(x)),

which is another input to the MWS. S(x) is computed by obtaining the gradient mag-

nitude of the input image f (Eq. (3.3)). S(x) is given as,

S(x) = mag(∇(f)) =
√
g2x + g2y (3.3)

where gx and gy are gradient along x and y dimensions of the image f .
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Watershed Computation and Post-processing Operations

Marker controlled watershed approach proposed in this Chapter utilizes graph-cut and

image foresting transform for creating catchment basins (Lotufo and Falcao, 2000).

This method models segmentation function S(x) as a connected digraph by representing

each pixel as node and connectivity between pixels as edges. Computation of watershed

catchment basin is done using marker image Mk and connectivity between nodes is

determined by structuring element St. Initially, marker pixels of Mk are imposed on

S(x) by marking them as source nodes in the digraph. Then, catchment basin CBi

associated with marker pixel region Ri of S(x) is given as (Lotufo and Falcao, 2000),

CBi = {x : S∗(Ri, x) ≤ S∗(Rj, x), i 6= j}, (3.4)

where S∗(Ri, x) is the shortest path from source region Ri to given pixel x (Lotufo and

Falcao, 2000). The shortest path S∗(Ri, x) is calculated as,

S∗(Ri, x) = min{C∗(s, x) : s ∈ Ri}, (3.5)

where C∗(s, x) is the minimum cost of all the paths between source node s and desti-

nation node x. This can be computed as (Lotufo and Falcao, 2000),

C∗(x, y) = mini{C(πi(s→ x))}, (3.6)

where πi(s → x) is a path from source s to destination x with connectivity defined by

St.

Resultant catchment basins segmented using MWS contain true cystic regions and

additional false positive regions. Watershed regions are post-processed to reduce FP. In

OCT scans, intra-retinal cysts appear as low intensity and oval shaped regions. Hence,

regions having intensity greater than catchment basin maximum intensity threshold

(CBmax) are removed. For removal of rectangular cystic structures, catchment basin
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width to height ratio (CBh) is used. Due to noise and shadow artifacts in OCT scans,

some small structures are segmented as pseudo-cysts, which are removed using catch-

ment basin area threshold (CBa) pixels.

3.3 Experimental Results and Discussions

To evaluate the performance of the method proposed in this Chapter, several exper-

iments were conducted on OPTIMA cyst segmentation challenge dataset (Spectralis

vendor scans) (OPTIMA, 2015). Performance of the proposed segmentation algorithm

was compared against k-means clustering, traditional watershed transform and other

unsupervised state-of-the-art IRC segmentation methods.

3.3.1 Dataset Description

The OPTIMA cyst challenge dataset (Spectralis vendor scans) contains 8 volumes in

total (6 with 49 frames and 2 with 7 frames). All OCT volumes were acquired over a

6×6 mm area of the macula centered on the fovea, from subjects with CME pathology.

The provided OCT scans contain grayscale frames with a resolution 496 × 512 and

496 × 1026 pixels. Sample OCT B-scans from OPTIMA challenge dataset (obtained

using Spectralis Heidelberg OCT) is shown in Figure. 2.3(c). This dataset was used for

validation of the proposed segmentation algorithm because of the presence of variety of

features and pathologies (including foveal scans, hard exudates, blood vessel shadows,

epiretinal membrane, and ILM folds) compared to other vendor scans.

3.3.2 Experiments

Since OCT scans have significant speckle noise, prior to segmentation tasks, scans are

denoised using BNLM filter (Coupe et al., 2009). The BNLM filter is a variant of non-
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local means filter which denoises the images using self similar non-local patches. The

BNLM filter is executed with the following parameters: search window size 11 × 11,

similarity window size 5 × 5 and Sσ = 0.7 . After denoising, six retinal layers are

automatically segmented using OCTSEG tool (Mayer et al., 2010).

Intra-retinal cyst segmentation is done using marker controlled watershed transform.

Initial marker image is generated using k-means clustering. An experimental analysis

is conducted to verify the best choice for selecting value of k. Marker images are gen-

erated with different values of k (varying from 2–9) and the results are as shown in Fig-

ure. 3.2. It can be inferred from the images that retinal structures are over-segmented for

smaller values of k. However, higher value of k leads to poor delineation of structures

due to the presence of high number of clusters (see Figure. 3.2). Hence, it is evident

that k-means clustering produces optimal results when k = 3.

Clusters formed with the obtained optimal value were grouped together according

to hyper-reflective, hypo-reflective and very low intensity pixels. Clusters with hypo-

and hyper-reflective pixels represent different retinal layers while the very low intensity

clusters contain candidate cyst regions.

After clustering the image, cluster with minimal centroid is used to remove outliers.

These are the regions connected to left and right extremes of the image (20 pixels) and

regions outside the region of interest (ILM and OPL layers). Finally, center pixel of

each remaining region is used to construct the marker image Mk (See Section 3.2.3 and

Algorithm 1).

After marker generation, segmentation function is computed as explained in Sec-

tion 3.2.3. Topographical watershed segmentation is performed as described in Sec-

tion 3.2.3. In order to reduce false positives, catchment basin maximum intensity thresh-

old CBmax ≥ 125, catchment basin width to height ratio CBh ≥ 4 and pseudo cysts

with catchment basin area threshold CBa = 10 are used. After removal of FP regions,

resultant image contains the segmented output by the proposed method.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.2: Segmentation result of a OCT image using k-means clustering with different
number of clusters k. (Different colors represents different clusters) (a) Original image;
(b) k = 2; (c) k = 3; (d) k = 4; (e) k = 5; (f) k = 6; (g) k = 7; (h) k = 8; (i) k = 9.

3.3.3 Results and Discussions

Evaluation of the proposed method is done qualitatively and quantitatively. To analyze

the generalizability, segmentation is performed using 8 OCT volumes of Spectralis ven-

dor scans. Obtained segmentation results are ascertained using ground truth obtained

from two expert ophthalmologists (OPTIMA, 2015).
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Table 3.1: Mean (standard deviation) of precision and recall for proposed method, k-
means clustering, traditional watershed transform and state-of-the-art unsupervised seg-
mentation methods against G1, G2, and G1 ∩ G2 (computed using region-wise analy-
sis).

Method
G1 G2 G1 ∩G2

Precision Recall Precision Recall Precision Recall
k-means clustering 0.81 (0.26) 0.56 (0.35) 0.81 (0.25) 0.59 (0.35) 0.81 (0.25) 0.57 (0.34)

Traditional watershed 0.55 (0.25) 0.65 (0.36) 0.54 (0.25) 0.65 (0.35) 0.53 (0.24) 0.63 (0.37)

Wilkins (Wilkins et al., 2012) 0.34 (0.28) 0.67 (0.39) 0.34 (0.27) 0.68 (0.40) 0.34 (0.27) 0.66 (0.39)

Wieclawek (Wieclawek, 2015) 0.57 (0.26) 0.39 (0.23) 0.57 (0.24) 0.41 (0.23) 0.57 (0.26) 0.41 (0.23)

Proposed 0.78 (0.14) 0.65 (0.27) 0.80 (0.15) 0.68 (0.28) 0.78 (0.15) 0.67 (0.28)

Quantitative Analysis

Region-wise precision (2.1) and recall (2.2) metrics are computed per OCT volume

against ground truth of G1, G2, and G1 ∩ G2.

Table 3.1 shows the result of mean precision and recall computed using region-wise

analysis of the proposed segmentation algorithm, k-means clustering, traditional wa-

tershed transform and other unsupervised intra-retinal cyst segmentation techniques

against G1, G2, and G1 ∩ G2. For proposed method, recall rates are 0.65, 0.68, and

0.67 for G1, G2, and G1 ∩ G2, respectively, whereas precision rates are 0.78, 0.80, and

0.78 for G1, G2, and G1 ∩ G2, respectively. It can be seen that proposed method gives

better recall rate while maintaining high precision rate.

Results are also compared with other unsupervised intra-retinal cyst segmentation

methods. The same pre-processing and retinal layer segmentation steps are used across

all the methods for unbiased comparison.

For k-means clustering technique, segmented regions are post-processed to remove

FPs using, retinal boundary (ILM-OPL) threshold, region width to height ratio Rh ≥ 4,

and, region area Rp ≤ 10 . In traditional watershed segmentation technique, post-

processing is carried out as mentioned in Gonzalez method (Gonzalez et al., 2013), to
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reduce FP with following parameters: elongated cysts (t1 = 1.5, t2 = 2 and pocc =

0.8), small cysts (nmin < 10 pixels), cysts next to image margins, and cysts outside

the retinal boundary (ILM-OPL). Precision and recall rates of our method surpasses the

results of k-means clustering and traditional watershed segmentation methods.

For the methods reported by Wilkins et al. and Wieclawek, core algorithm and post-

processing steps are implemented as mentioned in the published papers (Wilkins et al.,

2012; Wieclawek, 2015). For Wilkins et al. (Wilkins et al., 2012), cysts are segmented

using empirically computed intensity threshold value t = 40. The standard deviation

value Sd = 41 and pseudo cyst area Pa = 10 pixels are used to reject FP regions.

In Wieclawek (Wieclawek, 2015), h-minima transform is obtained using empirically

computed value h = 6% of the maximum normalized intensity threshold. To construct

binary image, h-minima transformed image is thresholded. To improve the results,

ILM-OPL layers are used instead of RNFL-RPE layers to limit the region of interest.

In both the algorithms, segmented regions outside region of interest as well as regions

connected to image margins are removed to reduce FP regions.

Precision obtained from the proposed method is improved by 44% and 21% com-

pared to Wilkins et al. (Wilkins et al., 2012) and Wieclawek (Wieclawek, 2015), re-

spectively. In addition to this, recall of the proposed method also improved by around

1% and 26%, respectively, on GT of G1 ∩ G2.

In the literature, cyst segmentation techniques have been evaluated based on region-

wise analysis without considering individual pixels that are segmented into the cystic

regions. In this study, we have additionally computed precision and recall metrics based

on pixel-wise analysis to better characterize the performance of individual segmenta-

tion methods. For pixel-wise analysis, true positives are true cystic pixels detected by

the algorithm, false positives are not actual cystic pixels identified as cystic pixels by

the algorithm and false negatives are true cystic pixels that remain undetected by the al-

gorithm. Precision and recall metrics are computed against grader gold standard using

Eqs. (2.1) and (2.2), respectively. Results are tabulated in Table 3.2.
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Table 3.2: Mean (standard deviation) of precision and recall for proposed method, k-
means clustering, traditional watershed transform and state-of-the-art unsupervised seg-
mentation methods against G1, G2, and G1 ∩ G2 (computed using pixel-wise analysis).

Method
G1 G2 G1 ∩G2

Precision Recall Precision Recall Precision Recall
k-means clustering 0.89 (0.09) 0.33 (0.25) 0.90 (0.09) 0.32 (0.23) 0.87 (0.10) 0.38 (0.26)

Traditional watershed 0.43 (0.24) 0.43 (0.25) 0.43 (0.24) 0.41 (0.23) 0.40 (0.22) 0.48 (0.26)

Wilkins (Wilkins et al., 2012) 0.40 (0.34) 0.35 (0.27) 0.40 (0.34) 0.33 (0.26) 0.38 (0.34) 0.39 (0.29)

Wieclawek (Wieclawek, 2015) 0.72 (0.19) 0.33 (0.19) 0.73 (0.17) 0.31 (0.17) 0.68 (0.20) 0.36 (0.21)

Proposed 0.75 (0.21) 0.56 (0.19) 0.76 (0.22) 0.54 (0.19) 0.70 (0.23) 0.61 (0.20)

Precision and recall values with pixel-based analysis demonstrate some differences

as compared to region-wise analysis. Even though a segmentation algorithm might seg-

ment cyst regions, the accuracy of correctly delineating the regions up to the boundary

is crucial. Pixel-wise analysis provides a measure of accuracy of pixel classification

and accurate delineation of identified cyst region. The importance of the same in quan-

titative analysis of the OCT image can not be overstressed. Therefore, this rigorous

method is employed to test and represent the performance of segmentation algorithms

along with region-wise analysis.

It is noted that recall values of the state-of-the-art methods reduced by around 10–

20% in pixel-wise analysis compared to region-wise analysis (Table 3.2). It can be

inferred from this result that these methods cannot reproducibly delineate the segmented

region up to the boundary. In pixel-wise analysis for accuracy (recall rate), proposed

method outperforms other compared methods while preserving the precision rate, and

improved upon the performance of k-means method by around 23%, with delineation

of cyst regions up to the true boundary. It also improved upon traditional watershed

method by around 30% (precision) and 13% (recall) (see Table 3.2) by limiting over-

flooding using a marker function to define proper regional minima. This method also

performs favorably compared to method reported by Wilkins et al. (Wilkins et al., 2012)

and Wieclawek (Wieclawek, 2015) by improving precision and recall as well. Precision
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Figure 3.3: Whisker Box plot for the Dice correlation coefficient against intersec-
tion of both the graders for k-means clustering (median = 0.69), traditional water-
shed transform (median = 0.59), Wilkins (Wilkins et al., 2012) (median = 0.31),
Wieclawek (Wieclawek, 2015) (median = 0.74), Proposed segmentation method
(median = 0.80) and inter grader observability between G1 and G2 (median = 0.92).

of the proposed method is lower compared to k-means clustering. This is due to false

positives generated from over-flooding.

To measure the segmentation correlation between algorithm result and ground truth,

Dice coefficient (2.3) (Dice, 1945) is used.

DC is computed between segmentation result of the methods and ground truth of

G1 ∩ G2 for each OCT volume, and it is plotted in Figure. 3.3. It is observed that the

proposed method has higher overlap rate compared to other methods with a median of

0.80 and maximum correlation up to 0.95. k-means clustering method given DC coeffi-

cient (with a median of 0.69, maximum correlation up to 0.90 and minimum correlation

of 0.35) due to failure of proper delineation of cystic regions.

Traditional watershed method has a median correlation of 0.59 and the maximum

correlation of 0.73. The method of Wilkins et al. (Wilkins et al., 2012) has a median

DC of 0.31 and maximum of 0.57 as manual thresholding led to imperfectly delin-

eated segmented regions. The method proposed by Wieclawek (Wieclawek, 2015) has

maximum DC of 0.92 and a median DC of 0.75. Inter-grader segmentation correlation

between two graders on the dataset has a median DC of 0.92, a maximum of 0.98 and a
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minimum of 0.70. Due to intensity variations and confounding retinal pathologies, it is

difficult to accurately delineate cystic fluids even for expert ophthalmologists in some

OCT scans.

Qualitative Analysis

Segmentation results of the proposed and compared methods are shown in Figures. 3.4

and 3.5. In Figure. 3.4, the OCT B-scan does not show undulations in retinal layers and

retinal fluid is accumulated in multiple individual consecutive cysts (see Figure. 3.4(a)).

Figure. 3.4(b) shows the ground truth ofG1 ∩G2, in which accumulated fluid is marked

as different independent consecutive cystic locations in the retina. k-means clustering

method segmented cysts in the retina as several broken cysts and fails to delineate them

up to the boundary possibly due to intensity variations inside the cystic structures (see

Figure. 3.4(c)).

Traditional watershed transform method segments independent consecutive cysts as

one large cyst because of over-flooding in the catchment basin (see Figure. 3.4(d)). In

Figure. 3.4(e), the method proposed by Wilkins et al. (Wilkins et al., 2012) segments

large cysts as several broken cysts. This method is sensitive to intensity variations, and

it may fail to delineate the cystic fluids up to their true boundary (observe the marginal

difference between the ground truth and segmented result). The method proposed by

Wieclawek (Wieclawek, 2015) over-segments individual consecutive cystic regions as

large cyst regions as seen in the Figure. 3.4(f). There are several false positives due to

lack of post-processing steps (Figure. 3.4(f)). The method proposed by us delineates the

cysts accurately up to the boundary by the two stage approach (see. Figure. 3.4(g)). Our

method also segments two false positives due to scan intensity variations of the OPL

(see Figure. 3.4(g)). Figure. 3.4(h) shows inter-grader observability betweenG1 andG2,

in which G1 segmented consecutive large cysts as several independent cysts (pink color

marked boundaries) and G2 segmented consecutive cysts as large cysts (yellow color

marked boundaries).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.4: Results of proposed automatic cyst segmentation method and state-of-the-
art methods in presence of limited retinal layer undulations: (a) Original B-scan; (b)
Ground truth of G1∩G2; (c) k-means clustering; (d) Traditional watershed; (e) Wilkins
method (Wilkins et al., 2012); (f) Wieclawek method (Wieclawek, 2015); (g) Proposed
method; (h) Inter grader observability (Pink: G1, Yellow: G2). ( Red: Ground truth of
G1 ∩G2, Green: Algorithm result)

Figure. 3.5 shows the segmentation of intra-retinal cyst in the presence of significant

retinal layer undulation due to vitreomacular traction. The B-scan shown in Figure. 3.5

contains a cyst with vitreomacular traction and a pigment epithelial detachment (PED)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.5: Results of proposed automatic cyst segmentation method and state-of-the-
art methods in presence of significant retinal layer undulations due to vitreomacular
traction with pigment epithelial detachment with cysoid macular edema: (a) Original
B-scan; (b) Ground truth of G1∩G2; (c) k-means clustering; (d) Traditional watershed;
(e) Wilkins method (Wilkins et al., 2012); (f) Wieclawek method (Wieclawek, 2015);
(g) Proposed method; (h) Inter grader observability (Pink: G1, Yellow: G2). ( Red:
Ground truth of G1 ∩G2, Green: Algorithm result)

in the foveal region of the retina (see Figure. 3.5(a)). Figure. 3.5(b) shows the ground

truth of G1 ∩ G2, in which accumulated fluid was marked as different independent
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consecutive cystic locations in the retina. k-means clustering method segments the

cystic fluid as one region with minimal difference in the correlation of the true boundary

of the cyst (see Figure. 3.5(c), best viewed in zoom). Traditional watershed transform

method effectively segments the cyst up to its true boundary; it also segment a false

positive on left beside the foveal region (see Figure. 3.5(d)).

Wilkins et al. (2012) segments true cyst with minimal correlation difference in the

true boundary delineation, along with false positives due to scan intensity variation

and limited post-processing steps (see Figure. 3.5(e)). Wieclawek method (Wieclawek,

2015) over-segments the cyst due to the undulation in the retinal layers and intensity

variations (see Figure. 3.5(f)).

Proposed method segments the cyst up to its true boundary with higher correlation

to the ground truth and without segmenting any false positives inspite of distortions in

retinal layers, vitreomacular traction as well as PED beneath the foveal region of the

retina (see Figure. 3.5(g)). In Figure. 3.5(h), G1 marked one cyst (red color marked

boundaries), while G2 marked two cysts (yellow color marked boundaries), displaying

inter-grader variability. Inter-grader variability increases when acquired OCT scans are

affected with significant retinal irregularities, scan intensity variations and low signal-

to-noise ratio.

Discussions

The obtained results with the proposed method are better than those obtained with k-

means clustering, traditional watershed, and state-of-the-art unsupervised cyst segmen-

tation techniques by improving recall and segmentation correlation while preserving

precision. Preserving higher precision plays a vital role in adapting the method to clin-

ical applications.

Delineation of the cysts by utilizing our strategy of k-means clustering for marker

generation followed by watershed transform has higher accuracy and reproducibility
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than other tested methods. Proper delineation is an important factor where cyst area

and volume quantification is required as in clinical treatment process. Average compu-

tational cost of the proposed method per B-scan is 1.31 seconds on a workstation with

Intel (R) Xeon (R) CPU E5-2670 v3 2.30GHZ processor, 128 GB DDR3 RAM, 64 GB

Windows 10 operating system and MATLAB computational environment.

The proposed method has following advantages:

• It is a fully automatic unsupervised segmentation technique.

• It follows a two stage segmentation approach, which initially locates the cysts
and delineates them up to their true boundary.

• It is robust against retinal layer distortions, epiretinal membrane folds and blood
vessel shadows.

• It is validated against benchmarked intra-retinal cyst segmentation dataset and
gives better results compared to other reported unsupervised segmentation tech-
niques.

There are certain limitations for the proposed method. The performance of our

method depends significantly on the quality of input image. Watershed transform is

very sensitive to noise and requires robust speckle reduction in pre-processing stage to

improve the SNR, otherwise it affects the performance of the segmentation algorithm.

Incorrect retinal layer segmentation also leads to the removal of candidate cysts during

post-processing steps. Accurate segmentation of layers is in turn dependent on quality

the of input OCT image.

3.4 Summary

This Chapter presented a novel unsupervised two-stage automatic intra-retinal cyst seg-

mentation algorithm based on marker-controlled watershed transform. Experimental

results show that the proposed method performs favorably compared to other reported
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state-of-the-art methods for segmentation of intra-retinal cysts from OCT images. How-

ever, the proposed method is vendor dependent and sensitive to noise and image inten-

sity variations. To address this issue an automatic supervised method using convo-

lutional neural network is proposed in the next Chapter for vendor independent IRC

segmentation.
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CHAPTER 4

A FULLY CONVOLUTIONAL NEURAL NETWORK

MODEL FOR AUTOMATED SEGMENTATION OF

INTRA-RETINAL CYSTS FROM CROSS VENDOR

OCT SCANS

All the methods described in the previous two Chapters are vendor dependent stud-

ies and this limits the complexity associated with accurate IRC segmentation across

different manufacturing vendors. To address this problem, this Chapter4 proposes a

fully convolutional network model for vendor-independent IRC segmentation. Pro-

posed FCN extracts more abstract and complex features from the cross vendor OCT

scans that accurately defines cystic structures across different scan intensity variations

and noise levels.

4.1 Introduction

Over the past few years, several automated IRC segmentation methods have been pro-

posed in the literature. To the best of our knowledge, the existing methods are de-

pendent on vendor-specific acquisition systems and require human intervention to de-

termine acquisition and visualization-specific parameters. Additionally, segmentation

of fluid-filled spaces in retinal volumes across different OCT vendors is a challenging

4The work described in this Chapter has been published as: G. N. Girish, Bibhash Thakur, Sohini
Roychowdhury, Abhishek R. Kothari, and Jeny Rajan, “Segmentation of Intra-Retinal Cysts from Optical
Coherence Tomography Images using a Fully Convolutional Neural Network Model”. IEEE Journal of
Biomedical and Health Informatics, IEEE, (In Press, 2018).

https://ieeexplore.ieee.org/document/8304533/
https://ieeexplore.ieee.org/document/8304533/


task due to the variations in the noise levels and pixel intensities across scans (see Fig-

ure. 2.3). The proposed method addresses these challenges posed to the development of

automated vendor independent cyst segmentation methods.

Recent forays into the usage of convolutional neural networks for biomedical image

segmentation have shown significant improvements over other approaches (Kamnit-

sas et al., 2015; Lequan et al., 2016). CNNs are a specific variant of standard neural

network models, which take an image as an input and perform repetitive convolution

operations to abstract features specific to the segmentation task. The learnable weights

and biases of the neurons serve as convolution filters. These filters may be arranged in

different ways to design architectural variants for various segmentation problems.

One such significant CNN model used in a variety of different medical image seg-

mentation tasks, is the U-Net architecture proposed by Ronneberger et al. (Ronneberger

et al., 2015). U-Net is a fully convolutional network, such as the one popularized by

Long and Shelhammer (Long et al., 2015), where, if an image is provided as the input,

the output obtained is its corresponding segmentation mask. Milletari et al. (Milletari

et al., 2016) further expanded this concept and converted their model to accept 3D im-

age stacks as input. They also introduced the concept of residual connections described

in the widely cited ResNet architecture (He et al., 2016). The self-learning and abstract

feature learning capabilities of CNNs for distinguishing subtle spatial variations moti-

vate our choice of FCN in vendor-independent cyst segmentation tasks. So far, FCNs

have not been utilized for IRC segmentation from vendor-independent OCT scans.

This Chapter makes two key contributions. First, a customizable state-of-the-art

FCN model is presented that is capable of automating IRC area segmentation from

OCT images across vendor-specific imaging systems. The sensitivity of model param-

eters, such as number of layers and kernel dimensions, towards the IRC area segmenta-

tion goals are analyzed. It is observed from the results that an optimally parametrized

model can achieve higher recall rate of 0.66 while preserving the precision rate of 0.79

across multiple vendor data, when compared to state-of-the-art methods. Second, the
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importance of OCT image pre-processing by image noise suppression using Gamma

noise models, sub-retinal region of interest segmentation and optimal data augmen-

tation methods are presented. It is observed that image pre-processing and domain-

specific data augmentation methods significantly prevent model over-fitting while en-

suring generalizability across vendor-specific imaging systems.

4.2 Brief Introduction to Neural Networks

Before diving into the methodology and framework of the proposed solution, this

section provides brief introduction into the working of neural networks in general and

convolutional neural networks in particular. Artificial neural networks (ANNs) are a

type of machine learning algorithm which essentially are a stack of linear models con-

nected in succession. A linear model is basically a function f(x) which is defined as

(Martin and Maes, 1979):

f(x) = W.x+ b (4.1)

Here, x is a vector of inputs to the function, W is a matrix of weights mapping the

input vector to the output and b is a vector of bias parameters added to the output of the

vector-matrix multiplication. The output of this linear model will also be a vector of the

size defined by the weight matrix and bias vector. The simplest classification strategy

can be implemented with just one linear model. In that case, x will be the input to be

classified, let‘s say a vector of size D × 1. The task is to classify the input into one of

C classes and hence, the output of the linear model will be a vector of size C × 1. So

logically, the weight matrix W has to be of a size C ×D and the bias vector will be of

size C × 1. The vector output from this model is called a score vector, as it typically

contains the confidence value of each output class associated with the current input.

Generally, the vector index with the greatest value associated with it is considered the

class predicted by the model.
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In machine learning, such types of models are used to make a computer learn to

accurately solve complex problems. This is done with the process of optimization. Op-

timization in machine learning is an iterative process where a model learns to correctly

classify the input by looking at a large number of similar examples given to the model,

gradually improving its predictions. This is done with the aid of an error or loss func-

tion.

4.2.1 Optimization and Loss Functions

In standard machine learning workflow, the first task performed is to divide the data into

a separate training, validation and test sets. The training and validation sets are used to

optimize the model to make correct predictions and the test set is used to model the real

world and judge how well the model performs in the specified task. No optimization

is performed on the test set. After the division, the model is initialized with some

random weights and the data in the training set is fed into the model in some order.

The input passes through the random weights and outputs a score vector. This score

vector is compared with the actual class output of the provided input using a loss or

error function. Based on the magnitude of this loss function, the weights are updated

such that the model gives a lower loss the next time this input is seen.

Cross-Entropy Loss

There are different loss functions proposed in literature to optimize such models. One

of the popular ones is the cross-entropy loss and it is defined as (Goodfellow et al.,

2016):

CLi = − log(
efyi∑
j e

fj
) (4.2)

where, CLi is the loss and yi is the actual correct label for input i. fj denotes the j-

th element of the vector of class scores f . The cross-entropy loss is composed of the

softmax function efyi∑
j e

fj
. The softmax function can be intuitively understood from a
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probabilistic perspective. It can be can be interpreted as the (normalized) probability

assigned to the correct label yi given the input x and parameterized by W and b. The

softmax function interprets the scores inside the output vector f as unnormalized log

probabilities. Exponentiating these quantities therefore gives the unnormalized proba-

bilities, and the division performs the normalization so that the probabilities sum to one

(Li et al., 2016). Therefore, the cross entropy loss minimizes the negative log likelihood

of the correct class.

CLi is the loss associated with a single input value. The total loss value TLoss over

all Nall inputs is defined as the mean of the individual loss function values for each

input (Goodfellow et al., 2016):

TLoss =
1

Nall

∑
i

CLi (4.3)

Optimization: Stochastic Gradient Descent

Once the loss function value is computed, the weights in the model need to be updated

such that the loss is minimized, i.e., the weights and bias of the model has to be such

that the loss function reaches a global minima. This is done with the process of gradient

descent. The gradient of a function with respect to its parameters is a vector of the

magnitude of change of the function output along each direction, i.e., it is a vector of

the partial derivatives of the function with respect to its parameters (Nielsen, 2015).

∇f(a, b, c, x) =


∂
∂a
f

∂
∂b
f

∂
∂c
f

 (4.4)

Here, f is a function taking an input x and having parameters a, b, and c. ∇f is then

defined as the gradient of f . In the context of linear models, the gradient of TLoss with

respect to W and b of the model is calculated, and the corresponding weights and bias
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are updated yielding W ′ and b′ respectively (Nielsen, 2015).

W ′ = W − α ∂

∂W
TLoss (4.5)

b′ = b− α ∂
∂b
TLoss (4.6)

In Eqs. (4.5) and (4.6), the parameter α refers to the step size or learning rate of the

gradient descent. It defines the magnitude of change on the original parameters in each

iteration. The learning rate is an important hyperparameter in machine learning algo-

rithms, which defines how fast the model will train. A hyperparameter is a parameter

that must be explicitly specified by the user and cannot be learned by a machine. A

higher learning rate, which makes the loss converge faster, may not always be ideal as

the updated parameters may overshoot the minima. The gradients are subtracted from

the original values because a positive slope value of a function is always in the direction

of the minima. W ′ and b′ are updated such that TLoss moves toward its minima.

In practice, instead of computing the loss over the entire training set, and then com-

puting the gradient and then updating the parameters, a method called stochastic or

mini-batch gradient descent is performed. In this approach, the gradient is calculated

over a set batch of inputs and the weights are updated. These batches are fed into

the model one after the other until the entire training set is exhausted. This is called

an epoch. The size of the batches is generally constrained by the amount of physical

memory of the machine, as the entire batch has to be fed into the memory at once.

4.2.2 Artificial Neural Networks

A single linear model is generally not powerful enough to emulate complex mappings

from the input to the output classes. There is a need to stack these linear models one

after another to better describe complex functions that occur in the real world. A stack
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of linear models arranged in a manner such that the output of one linear model becomes

the input of another linear model forms the basis for artificial neural networks. An ANN

is just a stack of linear models with activation functions between them that map some

complex relation between the input to some output.

Activation Functions

Activation functions or non-linear functions are functions applied on the output of a

linear model to make it non-linear. This non-linear output may be passed as the input

to another linear model. Activation functions are required because of the property of

composition of linear models. This property states that, if f and g are two linear models

and we have a composite function y = f(g(x)), then there always exists another linear

model h that accurately describes y, i.e. (Nielsen, 2015),

y = f(g(x)) = h(x) (4.7)

Practically, this means that multiple linear models without a non-linearity in between

can be broken down into a single linear model. To better map complex relationships, a

non-linear function is applied on the output of a linear model. The two most commonly

used non-linear activation functions are the sigmoid function and the Rectified Linear

Unit (ReLU) function. Figure. 4.1 shows sigmoid and ReLU activation functions. The

sigmoid function takes a value and squashes it into the range 0 to 1. The sigmoid

function is of the form (Goodfellow et al., 2016):

σ(x) =
1

1 + e−x
(4.8)

where, x is the input to the sigmoid function σ. The sigmoid function can be interpreted

as a binary softmax function, where its value can be thought of as the confidence level

between 2 distinct classes. If the value is leaning more toward 0 or 1, the model is more

confident about the input belonging to that particular class. Median values near 0.5 can
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(a) Sigmoid Activation (b) ReLU Activation

Figure 4.1: Non-linear activation functions. (Li et al., 2016)

be treated as unsure observations. The sigmoid function is generally not used in any

intermediate layers of an ANN because, if a sigmoid model output is 0 or 1, its gradient

becomes 0, after which the model cannot update the weights. Sigmoid can be used in

the last layer if it is a binary classification problem.

The ReLU is most commonly used activation function for intermediate layers. Its

simple definition of thresholding the output at zero (4.9) greatly accelerates the training

time of neural networks applying gradient descent (Goodfellow et al., 2016).

Re(x) = max(0, x) (4.9)

It has been proved that a stack of one or more linear models followed by a non-

linearity, work as universal approximators, i.e, they can approximate the output of any

mathematical function with a tolerance value of ε (Nielsen, 2015). This concept is

analogous to how the human brain works. As shown in Figure. 4.2(a), the working

component of the human brain is a nerve cell, called a neuron.

A neuron accepts inputs from other neurons with variable synaptic strengths through

its dendrites. Its output is propagated through the axon towards its terminals and is

accepted by the dendrites of some other neurons with their respective strengths. In

the computational model of the neuron, Figure. 4.2(b), multiple inputs coming in may
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(a) Model of Nerve Cell (b) Neuron as a Linear Model

Figure 4.2: Models of biological and computational neurons. (Li et al., 2016)

Figure 4.3: An artificial neural network with 2 hidden layers. (Li et al., 2016)

be multiplied with some pre-defined weights and then added. An activation function

is applied to the sum of the weighted inputs and the bias parameter of the neuron,

thus functioning as a linear model passed through a non-linearity. The output is then

passed to other neurons. A combination of these neurons arranged in an acyclic graph

architecture forms a ANN.

Neurons are arranged in distinct layers. The neurons in a single layer accept inputs

from the previous layer and passes outputs to the next layer, but individual neurons in a

single layer are not connected. A simple ANN with fully connected layers is described

in Figure. 4.3. A fully connected layer is a layer in which every neuron is connected to

every neuron in the previous layer. The input and output layer out of a neural network do

not have any weights assigned. Weights are present in the hidden layers which perform

the linear computations.
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Backpropagation

All the weights of an ANN are randomly assigned when it is first created. The weights

are automatically updated based on the training data and its associated labels by com-

puting the loss function at the output layer. The entire network then acts as a single

model which accepts an input and outputs a class as the output. Based on the loss ob-

tained, the weights of the hidden layers are updated such that the loss is minimized.

Propagating the gradient of the loss function through the layers of the network is per-

formed by a method called backpropagation.

Backpropagation or reverse-mode differentiation is a method by which we can check

the influence of every input and intermediate node of a computational graph in the out-

put. In the context of neural networks, it can be used to calculate the effect of every

neuron in the loss function. Before computing the reverse gradient, for all the layers,

the gradient of that layer with respect to the previous layer must be known. Then,

starting from the output layer, the reverse is calculated using the chain rule of differ-

entiation. Let the gradient of the loss function TLoss with respect to the weights of the

output layer p be δLp . Then the gradient of the loss function with respect to the weights

of the previous layer will be

δTLoss
p−1 =

∂TLoss
∂fp−1

=
∂TLoss
∂fp

∂fp
∂fp−1

(4.10)

i.e., δTLoss
p−1 = δTLoss

p

∂fp
∂fp−1

(4.11)

where fp and fp−1 signify the activated outputs of the pth and p− 1th layer respectively.

Eq. (4.11) can be iteratively applied on every layer in sequence till the input layer is

reached.
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4.2.3 Convolutional Neural Networks

In Convolutional Neural Networks, the standard linear model of an ANN is replaced

by a convolution operation. All other concepts of ANNs like Loss Functions, Optimiz-

ers, Activation Functions and Backpropagation carry forward to CNNs. The successful

training and implementation of CNN architectures have been a landmark in the field of

Computer Vision and Machine Intelligence. On the ImageNet classification challenge,

widely regarded as the Olympics of Computer Vision, different CNN architectures have

brought down the error rate from 28% in 2011 to 2.9% in 2016. In comparison, hu-

mans have an error rate of 5.1% (Russakovsky et al., 2015). An understanding of the

convolution operation and its use as a feature extractor is necessary to understand the

significance of convolutional neural networks.

The Convolution Operation

Mathematically, a convolution is an integral that expresses the amount of overlap of one

function g as it is shifted over another function f. Convolution of two functions f and g

is given by (Weisstein, 2017):

f ∗ g ≡
∫
f(τ)g(t− τ)dτ (4.12)

where the symbol f ∗ g denotes convolution of f and g. In the context of image

processing, a convolution is the dot product of a convolution matrix or kernel G being

shifted over an input image matrix F . The kernel or filter is aligned with a portion of

the image having the same size as the kernel itself, all the values in the corresponding

positions are pairwise multiplied and finally added to get a single value as the output.

This process can be clearly understood from Figure. 4.4.

It can be intuitively understood that the convolution output will have a higher value

when the overlapped region of the image is very similar to the convolution kernel. As
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Figure 4.4: Convolution with a Sobel filter (Hartley, 2014)

a result, filters can be said to identify particular visual “elements” of an image (Zeiler

and Fergus, 2014). The advantage of using convolutions for detecting these features

of the image is positional invariance. Since one filter is slided over the entire image,

it will detect the feature wherever it is located in the image. A collection of filters

which work on the same input is grouped together and named a convolutional layer.

The reason why CNNs work so well is because they function as automated hierarchical

feature extractors. The first convolution layer accepts the image itself as the input. Later

layers, on the other hand, take the output activation of the previous layer as its input.

This forms a hierarchical structure.

CNN Components

Apart from a convolutional layer, CNNs stack pooling layers and fully connected layers

to construct a complete architecture. A pooling layer is a downsampling operation per-

formed on the input. This is done for two reasons: Reducing the number of parameters

in the network and also to counter overfitting. It accepts two hyperparameters as input:

the filter size and the stride. These parameters decide the extent of downsampling to
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be performed. For example, a [2 × 2] pooling size with stride 2 will reduce the spatial

resolution of the input by exactly half. The most common pooling operation performed

is max-pooling, where the maximum value in a filter-size space in the input is given as

the output.

Fully connected layers in CNNs function in the same way as in ANNs. They are

generally used as the final layers of a CNN architecture to map the features extracted

from convolutions to the corresponding class score outputs. Stacking convolutional

layers with pooling, fully-connected layers, etc., in different arrangements form a CNN

architecture. Coming up with the best architecture and hyperparameters for the specific

problem at hand is the core research area when working with neural networks.

4.3 Proposed Methodology

The proposed method comprises of two stages, namely: pre-processing stage that in-

cludes image noise removal and retinal layer segmentation, followed by IRC segmen-

tation stage. OCT scans are inherently affected by speckle noise, which influences the

performance of automated IRC segmentation methods. The initial pre-processing mod-

ule suppresses speckle noise and improves the IRC segmentation performance. The two

methodological stages are described below.

4.3.1 Pre-processing: Denoising and Sub-retinal Layer Segmenta-

tion

OCT scans contain varying degrees of speckle noise as in other medical imaging modal-

ities like ultrasound. The work in (Sudeep et al., 2016a) experimentally showed that

OCT images with presence of noise can be approximated with a Gamma distribution.

Motivated by this work, approach given in (Sudeep et al., 2016b) is implemented as

Unbiased fast non local means (UFNLM) to denoise the OCT image data set. First,

73



each input image is denoised with a Fast NLM (FNLM) method proposed in (Fro-

ment, 2014) followed by the subtraction of bias due to speckle. Here, the bias term

is estimated from the noisy image using the maximum likelihood method described

in (Sudeep et al., 2016a,b),

B̂e = ρ̂ML · β̂ML (4.13)

where B̂e is the estimated bias and ρ̂ML, β̂ML are the estimated shape and scale param-

eters (of the Gamma distribution) from the noisy image. Since the shape and scale

parameters can be assumed to be consistent throughout all regions in an input OCT im-

age, they can be estimated from any homogeneous image region (where the underlying

intensity is constant). If we assume that many such piece-wise homogeneous regions

may exist, then ρ and β can also be estimated as (Sudeep et al., 2016a,b),

ρ̂ML = mode
{
ρML(i,j)

}
, β̂ML = mode

{
βML(i,j)

}
(4.14)

where, ρ̂ML and β̂ML represent the estimated values of ρ and β, respectively, for each

pixel at location (i, j) using a neighborhood of size [m×n]. In this work, the neighbor-

hood window size is empirically determined as [5 × 5]. Finally, the FNLM algorithm

is executed with the following parameters: search window and similarity window sizes

of the filter are [11 × 11] and [7 × 7], respectively. The smoothing parameter Sσ is

empirically estimated across vendors. The estimated bias parameter B̂e and smoothing

parameter Sσ for images acquired with different vendors are reported in Table 4.1.

Table 4.1: Automatically estimated bias value ‘B̂e’ and smoothing parameter ‘Sσ’ on
different vendor OCT scans considered in this study for speckle noise reduction.

Vendor Smoothing Parameter (Sσ) Bias Value (B̂e)
Cirrus 10 15
Nidek 15 26

Spectralis 10 32
Topcon 10 9

Following the image denoising process, sub-retinal layer segmentation provides in-

74



formation regarding morphology variations and thickness of the layers. This informa-

tion is utilized to refine the IRC segmentation results. In this Chapter, the Iowa Refer-

ence algorithm (Li et al., 2006; Garvin et al., 2009; Abramoff et al., 2010) is used to

segment 11 different retinal layers. As intra-retinal cysts are prone to occur in the reti-

nal area enclosed by ILM to BMEIS layers, the OCT B-scans are cropped by delimiting

this region as the ROI.

After delimiting the ROI of the OCT scans, contrast enhancement is performed

using Contrast-limited adaptive histogram equalization (CLAHE) (Zuiderveld, 1994)

to increase the intensity difference between the cystic and non-cystic regions. Kernel

size of (1
8
)

th of the image width and height and clip limit of 0.01 is used for CLAHE.

4.3.2 Cyst Segmentation: FCN Model

The FCN model (Long et al., 2015) accepts denoised sub-retinal layer regions of OCT

images as input and produces a prediction score matrix that is then used to construct a

binary output mask corresponding to segmented cyst regions. Proposed FCN model is

inspired by Ronneberger’s U-Net architecture (Ronneberger et al., 2015) that captures

both local and global features from an input image to construct an accurate segmentation

map. While global features indicate the exact location and relative size of the cystic

region, the local features determine the exact cyst boundaries.

The proposed architecture follows a multi-stage two-phase approach. The first phase

performs convolutions in five stages. Every stage has two convolutional layers followed

by a down-sampling layer with max-pooling operation to garner a larger receptive field.

The second phase aims to revert the activations of the first phase to the original reso-

lution. This up-sampling is performed with trainable deconvolution layers in 4 stages,

thus enabling end-to-end predictions regarding the location of IRCs.

For accurate segmentation both local and global features are taken into considera-

tion. Thus, the features extracted from the previous stages, in phase one, are forwarded
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Figure 4.5: The proposed network architecture. The FCN model comprises of 18 con-
volutional layers with the number of kernels varying from 16 to 256.

and concatenated with the features in the corresponding output of up-sampled stages in

phase two. The advantage of this architecture is that every pixel is considered as an indi-

vidual training sample with per-pixel back-propagation error. This process significantly

increases the size of the training data set, thereby avoiding model over-fitting.

The proposed network architecture is shown in Figure. 4.5. The model is designed

to process images of size [256×512]. The convolution filter width and height ([kw×kh])

is chosen as [3×3] across the entire network. This filter size is motivated by prior work

(Simonyan and Zisserman, 2014) to ensure discriminative feature learning from pixel

neighborhood while ensuring low parametrization when compared to larger filter sizes.

In the analysis/down-sampling phase, there are two [3 × 3] convolutions before a

[2 × 2] max-pooling layer which reduces the resolution of the image exactly by half.

All convolutions are followed by a ReLU activation function and batch normalization

operation. The addition of batch normalization (Ioffe and Szegedy, 2015) speeds up the

network training and convergence process. The number of filters (N ) in each convolu-

tional layer also doubles after every stage.

The second phase of the network up-samples the activations using deconvolution
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or fractionally-strided convolution. It follows a path symmetric to the down-sampling

path but the pooling operations are replaced with deconvolutions. The final layer in the

network is a [1 × 1] convolution layer. The loss function of the network is computed

by pixel-wise sigmoid activation function over the output of the final [1× 1] layer with

the binary cross entropy loss, which maps the input to a probability map having the

same dimensions as the input image. The loss function of the network for a single input

image with nout pixels is given in (4.15),

BCLnet = −
∑nout

i=1 (t(i) log (σ(i)) + (1− t(i)) log (1− σ(i))) (4.15)

where t(i) is the actual binary output (target) and σ(i) is the predicted binary output for

the pixel i. The sigmoid activation function σ() applied on weighted sum of the inputs

and the final output y are given in (4.16).

σ(i) =
1

1 + e−yi
, yi =

∑n
j=1 xjwji (4.16)

Here, n signifies the number of neurons present in the layer just before the sigmoid

activation. Hence, the model output represents a pixel-wise likelihood of being cystic

or non-cystic. The resulting binary image mask is then compared with the actual target

t cyst mask, and with the aid of the loss function BCLnet, model weights are updated

such that the loss is minimized for subsequent epochs. Thus, the FCN model is trained.

The proposed model (see Figure. 4.5) is designed with 18 total convolutional layers

(denoted by red arrows in Figure. 4.5) across the two phases. The number of filters

(N ) for the 2 starting layers are assigned as 16. After each pooling layer, the number

of filters are doubled for the next 2 convolutional layers. There are 4 pooling layers,

making the maximum number of filters in a convolutional layer to be 256.

In the up-sampling phase, the number of convolutional filters is reduced by half after

every up-sampling operation. Similar to the first phase, this is also performed 4 times,

leaving the last 2 convolutional layers with N = 16 filters each. This is followed by a

[1 × 1] convolutional layer with a filter to produce a [256 × 512] sized output image
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mask, to match the input dimensions.

4.4 Experimental Setup

To evaluate the performance of the proposed method, experiments are conducted on

the benchmarked OPTIMA cyst segmentation challenge dataset (OPTIMA, 2015). The

proposed FCN architecture is implemented in Keras 1.0 (Chollet, 2015) with Tensor-

flow back-end on a workstation with a 64-bit Ubuntu operating system, Intel Xeon

Processor E5-2600 (Intel, Mountain View, CA), solid state hard drive, 128 GB of RAM

and the NVIDIA Quadro K2200 GPU with 4GB dedicated memory.

4.4.1 Data

The OPTIMA cyst challenge dataset contains OCT scans with cystoid macular edema

obtained using four different vendors, namely Zeiss Cirrus, Nidek, Spectralis Heidel-

berg and Topcon (OPTIMA, 2015). This dataset consists of separate training and test

subsets. Each OCT volume is acquired over 6 × 6 mm of the macula and foveal cen-

ter from subjects with CME. Table 2.1 shows the dataset description. A sample OCT

B-scan frame from each vendor is shown in Figure. 2.3.

4.4.2 FCN Model Training and Hyper-parametrization

Model hyper-parameters need to be optimally tuned for the final objectives. In the

context of FCNs, the most important parameters/hyper-parameters that need to be opti-

mized include: the number of weights and biases in the network, the number of layers,

the number of filters/kernels in each layer and the learning rate of the model. The

best combination of these parameters is identified by performing grid-search using the

hold-out method (Kohavi et al., 1995). Finally, the test data set is used for trained
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Table 4.2: Different FCN architectures formed by varying number of layers.

# Layers Starting Filter Size (kw × kh ×N ) Depth # Parameters
4 3× 3× 64 0 112,513
6 3× 3× 64 1 367,809

10 3× 3× 64 2 1,866,817
14 3× 3× 64 3 7,707,457
18 3× 3× 64 4 31,054,145

model performance analysis. Several experiments have been designed to validate the

FCN model architecture as described in section 4.3.2. As U-net model, in the proposed

architecture two convolutional layers are always followed by a max-pooling layer or

a deconvolution layer. Keeping this feature constant and the number of filters as de-

scribed in (Ronneberger et al., 2015), the number of layers can be varied for different

architectures. An overview of these architectures is presented in Table 4.2. Here, Depth

signifies the number of max-pooling layers, parameters signify the number of weights

and biases in the network, and layers specify the convolutional layers.

For experimental evaluation of the FCN parameters on the various architectures,

one volume from each vendor is extracted from the training set to act as the validation

set, i.e., the training and validation sets contain 11 and 4 volumes, respectively. First,

these 3D OCT volumes are separated into 2D B-scans, which constitute training data of

1243 B-scans and validation data of 433 B-scans across all the vendors. As discussed

in the section 4.3.1, only the ROI between the ILM and BMEIS sub-retinal layers are

considered for intra-retinal cyst segmentation. All the images are then resized using

bilinear interpolation to a standard resolution of [256 × 512]. After resizing, the OCT

scans are normalized to zero mean and unit variance.

The FCN network is trained with the binary cross-entropy loss function (refer (4.15)).

The Adam optimizer (Kingma and Ba, 2014), which is a variant of stochastic gradient

descent, is used to update the weights. The default hyper-parameters used for this opti-

mizer are: β1 = 0.9, β2 = 0.999, ε = 1× 10−8. The learning rate is empirically chosen

as 3× 10−4 based on a short random search.
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(a) Layers = 4, Depth = 0
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(b) Layers = 6, Depth = 1
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(c) Layers = 10, Depth = 2
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(d) Layers = 14, Depth = 3
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(e) Layers = 18, Depth = 4

Figure 4.6: Loss Value vs. Epoch graphs for FCN model Depth: [0, 1, 2, 3, 4] architec-
tures after model training. Blue: Training Loss. Red: Validation Loss. (Plotted in Log
Scale)
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Initial network weights are assigned according to the He initializer (He et al., 2015).

No other pre-trained weights are used in the process. The FCN network is trained from

scratch completely on the train data set. Nevertheless, the train data comprises of rel-

atively less number of samples to train a full-scale FCN. Hence, data augmentation

is applied to generalize the model and reduce over-fitting. Several data augmenta-

tion schemes are evaluated for their impact on training loss and model convergence.

These include image gradient enhancement, edge enhancement, brightness and contrast

variations. However, it is observed that augmented data generated by horizontal flip-

ping, random shear, height, width and zoom shifts are best for IRC segmentation tasks.

This observation is intuitive since domain knowledge suggests cysts to have variable

shapes, structures and orientations but similar appearance with respective to neighbor-

ing tissues. Thus, domain-specific data augmentation process is key to a generaliz-

able FCN model. The data transformations for augmentation are performed on-the-fly

during training, thereby alleviating storage concerns. The proposed model is trained

up to 120 epochs, beyond which, no further change in loss function is observed. To-

tal train samples presented to the network after data augmentation for final training is

120× 1243 = 149, 160.

Figure. 4.6 show the training process for various FCN model architectures. Depth

0, 1, 2 models (see Figures. 4.6(a), 4.6(b) and 4.6(c)) exhibit limited learning capa-

bilities and the training loss does not reduce significantly. Depth 3, 4 models (see

Figures. 4.6(d) and 4.6(e)) can be further investigated for their receptive fields. The

receptive field is defined as the effective area of the original input image covered by

a convolution filter (Luo et al., 2016). If the convolution filter size is kept the same

throughout the network, the receptive field of a filter increases after every pooling op-

eration. This is because the resolution of the image is reduced, but the size of the filter

remains the same.

Even though both Depth 3 and Depth 4 models converge to a lower training loss,

the latter one is chosen for its higher receptive field, which can account for more fea-
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(c) Layers = 18, Depth = 4, Starting Filter Size
N = 64

Figure 4.7: Loss Value vs. Epochs graphs for Depth 4 architecture with different start-
ing filter sizes. Blue: Training Loss. Red: Validation Loss. (Plotted in Log Scale)

tures. However, in Depth 4 model the rate of change in loss function demonstrates some

over-fitting trends. Keeping this Depth 4 as constant, the number of parameters can be

varied by changing the number of filters in each layer, thereby reducing over-fitting. Ta-

ble 4.3 shows the number of parameters in the different architectures formed at Depth

4 by varying the starting filter size, and Figure. 4.6(e) shows their training processes,

respectively.

It can be observed that both N = 32 and N = 16 starting filter sizes converge to

low training losses with significantly less over-fitting trends. Thus, the model with a

fewer number of parameters is chosen as the final architecture, because of higher gener-

alizability and low over-fitting trends. The proposed Depth 4 FCN model requires 338

seconds to train per epoch (total 1234 samples in the training data), and 0.06 seconds

per test image (total 909 samples in the test data) for prediction.
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Table 4.3: Architectures designed by varying number of filters in Depth 4

Starting Filter Size (kw × kh ×N ) # Parameters
3× 3× 64 31,054,145
3× 3× 32 7,771,297
3× 3× 16 1,946,705

Table 4.4: Mean (standard deviation) of precision and recall of the proposed method on
different vendor OCT scans.

Vendor
G1 G2 G1 ∩G2

Precision Recall Dice Precision Recall Dice Precision Recall Dice

Cirrus 0.71 (0.21) 0.61 (0.38) 0.62 (0.35) 0.71 (0.21) 0.61 (0.38) 0.62 (0.35) 0.67 (0.18) 0.66 (0.40) 0.63 (0.35)

Nidek 0.83 (0.02) 0.75 (0.23) 0.77 (0.15) 0.81 (0.01) 0.75 (0.24) 0.76 (0.14) 0.74 (0.03) 0.80 (0.25) 0.75 (0.11)

Spectralis 0.82 (0.09) 0.62 (0.09) 0.71 (0.08) 0.84 (0.09) 0.64 (0.11) 0.72(0.10) 0.79 (0.09) 0.69 (0.10) 0.74 (0.09)

Topcon 0.82 (0.09) 0.70 (0.17) 0.75 (0.13) 0.82 (0.08) 0.73 (0.14) 0.77 (0.11) 0.76 (0.11) 0.78 (0.13) 0.77 (0.12)

Overall 0.79 (0.12) 0.66 (0.22) 0.71 (0.20) 0.80 (0.12) 0.67 (0.22) 0.72 (0.19) 0.74 (0.12) 0.73 (0.23) 0.72 (0.19)

4.5 Results and Analysis

Segmentation results of the proposed method are compared with manually graded ground-

truth provided with dataset images (ascertained by two trained ophthalmologists). Pixel-

wise analysis is conducted and precision and recall metrics are computed for each of the

OCT volumes in the test dataset against GT from two independent graders (G1, G2) and

their intersection (G1 ∩ G2). Precision and recall metrics are given in (2.1) and recall

(2.2).

To assess the correlation accuracy of the segmentation, Dice coefficient (ref (2.3))

is computed between segmented results of the algorithm and ground truth for each test

OCT volume.

Table 4.4 shows the mean precision, recall and Dice coefficient results of the pro-

posed method against G1, G2, and G1 ∩G2. It can be noticed that the proposed method

gave highest mean recall rate on scans obtained from Nidek vendor compared to other
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vendors (0.75 on G1, 0.75 on G2 and 0.80 on G1 ∩G2). The precision of the proposed

method is stabilized across the three vendors (Nidek, Spectralis and Topcon). In case

of Dice coefficient, scans obtained from Nidek and Topcon result in higher correlation

on G1 (0.77 and 0.75, respectively) and G2 (0.76 and 0.77, respectively) compared to

other two vendors (Cirrus and Spectralis). On Cirrus scans, precision, recall and Dice

correlation rates are lower compared to other vendors due to high-intensity variations

and noise.

Also, observe the variations in the results obtained against G1, G2, and G1 ∩ G2,

due to inter-observer variability between manually annotated GTs. The scan intensity

variations and retinal vessel shadows often increase the difficulty in cyst identification

and delineation for human graders, thus accounting for such inter-observer variabil-

ity. Observe a variable degree of inter-observer variability across vendors for the IRC

segmentation task.

Qualitative results using the proposed segmentation method are shown in Figure. 4.8

and Figure. 4.9. Images in the first column of these figures show original scans from

different vendors, the second column show GTs provided by G1 ∩ G2, and the third

column show the result of the proposed FCN model, respectively. It is observed that

due to intensity variations on the sample Cirrus scan, the boundaries between individual

cysts are ill-defined (see Figure. 4.8(a)). Hence, the proposed segmentation method

merges individual cysts into larger cystic region due to small intensity variations in the

boundaries of cysts (see Figure. 4.8(c)).

In the sample Nidek scan, the proposed method over-segments the cystic structures

by merging two cysts into a single large cyst, thereby resulting in false positive (see

Figures. 4.8(d) and 4.8(f)). In case of sample Topcon and Spectralis scans (see Fig-

ures. 4.8(g) and 4.8(j)), the proposed method finely segments the cystic structures when

compared to the other two vendors owing to the clear boundary between the cystic

structures (see Figures. 4.8(i) and 4.8(l)).

Figure. 4.9 shows the limited segmentation performance results of the proposed
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(a) Sample B-scan of Cirrus
Vendor

(b) Ground truth (c) Segmented output

(d) Original B-scan of Nidek
Vendor

(e) Ground truth (f) Segmented output

(g) Sample B-scan of Spectralis
Vendor

(h) Ground truth (i) Segmented output

(j) Sample B-scan of Topcon
Vendor

(k) Ground truth (l) Segmented output

Figure 4.8: Results of proposed method on different vendor scans against the GT from
G1 ∩G2.

method on different vendor scans. For the sample Cirrus scan (see Figures. 4.9(a),

4.9(b) and 4.9(c)), the proposed method is unable to detect cysts due to low inten-

sity variations between the cysts and neighboring non-cystic regions. In the sample

Nidek scan (see Figure. 4.9(d)) the boundary between cysts beside the larger cysts is

relatively unclear and the cyst merges with the ONL. Here, the model ignores the cyst

by misclassifying it as ONL layer (see Figures. 4.9(e) and 4.9(f)).

In the sample Spectralis scan, the grader had marked a non-cystic region as cystic

region on right to the foveal center. Here, the proposed method shows its robustness to

such instances by not segmenting this region (see Figures. 4.9(g), 4.9(h) and 4.9(i)). The

proposed method segments 6 FPs in the sample Topcon scan due to intensity variations

(see Figures. 4.9(j), 4.9(k) and 4.9(l)). These limiting results demonstrate the vital role

of scan intensity variations towards OCT cyst segmentation tasks.
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(a) Sample B-scan of Cirrus
Vendor

(b) Ground truth (c) Segmented output

(d) Sample B-scan of Nidek
Vendor

(e) Ground truth (f) Segmented output

(g) Sample B-scan of Spectralis
Vendor

(h) Ground truth (i) Segmented output

(j) Sample B-scan of Topcon
Vendor

(k) Ground truth (l) Segmented output

Figure 4.9: Limiting segmentation results by the proposed method for each vendor,
against the GT from G1 ∩G2

The Dice coefficient using the proposed method when compared with the published

OPTIMA Cyst Segmentation Challenge results (OPTIMA, 2015) are shown in Ta-

ble 4.5. Here, the method proposed by de Sisternes et al. (de Sisternes et al., 2015), uses

34 handcrafted features to train a machine learning model. While designing appropri-

ate features manually across imaging vendors may be manually tedious and insufficient

task, it is observed that the designed features unable to encompass all the OCT scan

variations.

In (Venhuizen et al., 2016), a cascaded CNN working on multiple resolutions is

used to segment the IRC. This method requires training of 3 different networks inde-

pendently. Moreover, the selection of patch sizes is found to impact the final segmen-

tation results. Another method involving two-stage graph-cut segmentation approach

is proposed by Oguz et al. (Oguz et al., 2016), where the cost function for the graph-
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Table 4.5: Comparison mean (standard deviation) of Dice coefficient of the proposed
method against the results of OPTIMA cyst segmentation challenge on all vendor OCT
volumes (Test set).

Method G1 G2 G1 ∩G2

de Sisternes et al. (de Sisternes et al., 2015) 0.68 (0.15) 0.67 (0.14) 0.69 (0.15)
Venhuizen et al. (Venhuizen et al., 2016) 0.61 (0.19) 0.60 (0.19) 0.59 (0.19)
Oguz et al. (Oguz et al., 2016) 0.60 (0.15) 0.59 (0.15) 0.60 (0.14)
Esmaeili et al. (Esmaeili et al., 2016) 0.55 (0.27) 0.55 (0.27) 0.55 (0.28)
Haritz et al. (Gopinath and Sivaswamy, 2016) 0.23 (0.15) 0.23 (0.15) 0.23 (0.15)
Proposed Method 0.71 (0.20) 0.72 (0.19) 0.72 (0.19)

cut algorithm is computed using initial intra-retinal layer segmentation results. Since

segmentation of inner retinal layers is more prone to error on pathological images than

on normal ones, the cost function is found to be impacted significantly. Also, Haritz

et al. (Gopinath and Sivaswamy, 2016) initially identified candidate cyst regions using

a center-surround difference technique. In this method, local descriptors are extracted

from cystic regions and classified using random forest classifiers. Nonetheless, this

rule-based method is found to fail while segmenting small cyst regions.

Esmaeili et al. (2016) proposed an automated IRC segmentation method using 3D

curvelet transform and K-SVD dictionary learning approaches. However, this method is

proposed and validated only on Spectralis vendor OCT scans of the challenge dataset.

Generalizing this method for vendor-independent IRC segmentation might affect the

dictionary learning process and performance because of the higher level of noise present

in other OCT vendor (Cirrus, Nidek, and Topcon) scans.

The method proposed in this paper uses a pre-processing module to equalize the

OCT images across vendors. Next, the FCN model automatically captures both micro

and macro-level features for better characterization of cystic structures. Thus, the pro-

posed method outperforms reported challenge results with highest Dice rate (0.71 on

G1, 0.72 on G2 and 0.72 on G1 ∩G2) with an improvement of 3% on ground truth pro-

vided by G1 and 5% on G2 compared to results reported in de Sisternes et al. (de Sis-

ternes et al., 2015). Additionally, slight variations are observed in the segmentation
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Table 4.6: Mean Dice coefficient of cyst segmentation results on Duke DME dataset.

Method Dice coefficient on G1 ∪G2

Proposed Method 0.53
KR + GTDP (Chiu et al., 2015) 0.53

results for the comparative methods on the ground-truth provided by both graders due

to inter-observer variabilities.

4.6 Validation on the Duke DME Dataset

Additional experiments are conducted on the publicly available Duke DME dataset (Chiu

et al., 2015) to validate the robustness of the proposed method for cross-vendor OCT

scans. The Duke DME dataset contains a total of 110 B-scans with ground truth

for both retinal layer boundaries and fluids. These images are pre-processed using

UFNLM+CLAHE and the parameters specific to Spectralis vendor scans as mentioned

in section 4.3.1 of this thesis. Retinal ROI (ILM-BMEIS) is obtained from the ground

truth provided with the dataset, and the B-scans are cropped and resized to the resolution

of [256 × 512] pixels. The pre-trained Depth 4 FCN model is tested on these B-scans.

The results are given in Table 4.6. As compared with KR + GTDP method (Chiu et al.,

2015), the proposed FCN method gives mean DC of 0.53 on ground truth obtained from

union of both graders, noteworthy that our model is not explicitly fine-tuned or trained

on Duke DME dataset.

Figure. 4.10 shows the proposed segmentation method result on a B-scan from Duke

DME dataset. In Figure. 4.10(b) ground truth provided by both graders missed a cyst

on the left extreme of the B-scan and the marked cystic structures are merged even

though the boundaries between cysts are clearly separated by the hard exudates (see

Figure. 4.10(b)). In Figure. 4.10(c) the proposed segmentation method robustly seg-

ments all cysts without significant overlap between the consecutive cysts boundaries.
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(a) Input image (b) Ground truth

(c) Segmented output

Figure 4.10: Result of the proposed segmentation method on Duke DME dataset B-
scan: (a) Input image, (b) Ground truth, (c) Segmented output.

4.7 Effect of Pre-processing on Intra-Retinal Cyst Seg-

mentation

To evaluate the effect of pre-processing on intra-retinal cyst segmentation, automated

cysts segmentation using the proposed FCN model analyzed using noisy, raw OCT

scans and UFNLM denoised scans, respectively. As described in section 4.3.1 of this

Chapter, we have performed denoising followed by contrast enhancement to improve

the quality of OCT scans. For raw OCT scans analysis, the optimal model (Depth 4)

is trained using raw OCT scans with the procedure as described in section 4.4.2 of

this Chapter. Table 4.7 shows the mean Dice coefficient of segmentation results on the

overall dataset. It can be inferred from the Table 4.7 that denoising (with UFLNM) im-

proves the segmentation results by 50%. UFNLM method removes bias introduced after

denoising image with FNLM filter, which in turn provides better segmentation results.

Experiments are also conducted to analyze the effect of contrast enhancement technique

on segmentation result. We observe 4% improvement on UFNLM+CLAHE compared

to UFNLM, respectively (refer Table 4.7). Figure. 4.11 shows the segmentation results
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Table 4.7: Mean Dice coefficient of cyst segmentation using different pre-processing
techniques compared against ground truth provided by G1 ∩G2.

Pre-processing Dice coefficient
Raw data 0.18
UFNLM 0.68
UFNLM + CLAHE 0.72

(a) Noisy raw image (b) Ground truth

(c) UFNLM + CLAHE pre-processed image (d) Segmentation result on raw image

(e) Segmentation result on UFNLM + CLAHE
pre-processed image

Figure 4.11: Result of the segmentation with and without pre-processing: (a) Noisy raw
image, (b) Ground truth, (c) UFNLM+CLAHE pre-processed image, (d) Segmentation
result on raw image, (e) Segmentation result on UFNLM + CLAHE pre-processed im-
age.

on raw image and denoised images, respectively.

Proposed UFNLM + CLAHE pre-processing technique significantly improves the

quality of the image (see Figure. 4.11(c)) by reducing the noise and enhancing the con-

90



trast between cyst and non-cystic pixels compared to the raw and noisy OCT image

(see Figure. 4.11(a)). It can be seen from Figure. 4.11(d) that the proposed model par-

tially segments few cystic structures on the raw image. Noise and poor contrast in the

raw image (see Figure. 4.11(a)) significantly affects the distinguishing capability of the

FCN model for IRC segmentation (see results in Figure. 4.11(d)) when compared to the

UFNLM + CLAHE pre-processed image shown in Figure. 4.11(e).

4.8 Summary

This Chapter presents an FCN model-based vendor independent IRC area segmentation

technique. The FCN model is customized for IRC area segmentation by utilizing de-

noised retinal OCT images to train it from scratch. Sensitivity analysis of the model

hyper-parameters demonstrates that deeper networks exhibit better feature learning ca-

pabilities than shallower networks while higher receptive fields induce higher training

losses that may lead to model over-fitting. However, deeper networks results in large

number of computation parameters. Next Chapter address this issue by utilizing depth-

wise separable convolution filters instead of regular convolution filters.
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CHAPTER 5

DEPTHWISE SEPARABLE CONVOLUTIONAL

NEURAL NETWORK ARCHITECTURE FOR

AUTOMATED SEGMENTATION OF

INTRA-RETINAL CYSTS FROM CROSS VENDOR

OCT SCANS

In previous Chapter, a pixel-level segmentation system of IRCs using FCN model was

proposed, where a model based denoising technique and contrast enhancement im-

proved the initial quality of OCT scans. Next, several varieties in network architec-

tures were experimentally evaluated to obtain the optimal FCN hyperparameters. It

was showed that although deeper networks with higher receptive fields improve IRC

segmentation accuracy, they also increased the model computation complexity propor-

tionally and lose generalizability with significantly deep networks.

In this Chapter5, we address this limitation of increase in computational complex-

ity for a deep neural network by introducing a novel depthwise separable encoder de-

coder architecture that is efficient for vendor independent IRC segmentation tasks. This

Chapter has three key contributions. First, a depthwise separable convolutional neural

network (DSCN) architecture comprising of an encoder-decoder pair is introduced that

significantly reduces the computational parameters when compared to regular FCNs

models. Second, the impact of an efficient activation function for reducing the effect of

5The work described in this Chapter has been submitted for possible publication as: G. N. Girish,
Banoth Saikumar, Sohini Roychowdhury, Abhishek R. Kothari, and Jeny Rajan, “Depthwise Separable
Convolutional Neural Network Model for Intra-Retinal Cyst Segmentation” in Biomedical Signal Pro-
cessing and Control, Elsevier, 2018. (Under Review)



vanishing gradient in deeper networks is analyzed. Third, hyper-parameter analysis is

presented to achieve optimal architecture for IRC segmentation.

5.1 Data and Method

The proposed method comprises of the following two stages: pre-processing and reti-

nal layer segmentation performed for enhancement and region of interest limitation,

followed by cyst segmentation using the proposed DSCN model. The publicly avail-

able OPTIMA cyst segmentation challenge dataset obtained from four different vendors

namely Cirrus, Spectralis, Topcon, and Nidek is used for assessment of the proposed

method. Detailed dataset description is provided in section 2.2.1 of Chapter 2.

5.1.1 Pre-processing: De-noising and Retinal Layer Segmentation

OCT scans are affected by speckle noise, which degrades the quality of the scans.

Speckle noise in OCT scans can be approximated to Gamma Distribution (Sudeep et al.,

2016c). To reduce the effect of speckle noise, UFNLM filter is employed in this Chap-

ter as described in section 4.3.1 of Chapter 4. Denoising is performed on OCT scans

using FNLM filter then bias is deducted from the resultant scans. The estimated bias

B̂e, shape ρ̂ML and scale β̂ML parameters of the Gamma distribution are calculated using

Eqs. (4.13),(4.14).

Although denoising improves the quality of OCT scans, scan intensity variations

among different vendors can lead to poor contrast. To further enhance the quality of the

scans CLAHE algorithm is employed with threshold of (1
8
)

th of maximum intensity as

mentioned in section 4.3.1 of Chapter 4.

Typically, retinal OCT scans contain the retina along with vascular regions above

and below the retina. Also, IRCs are found accumulated within the ILM and BMEIS

layer. Thus, following OCT image contrast enhancement, the region of interest for IRC
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Figure 5.1: Regular convolution

segmentation limited by utilizing ILM-BMEIS boundaries which are obtained using

OCT-Explorer tool (Li et al., 2006; Garvin et al., 2009; Abramoff et al., 2010).

5.1.2 Network Architecture for Intra-retinal Cyst Segmentation

The proposed architecture is inspired by Google’s Xception network. Xception network

was proposed for classification of larger images in the ImageNet dataset (Chollet, 2016).

Our proposed architecture is entirely based on depthwise separable convolution layers.

A depthwise separable convolution is a superlative version of inception modules. These

are performed in two steps– initially, separable convolutions in spatial domain over each

channel of an input, followed by [1 × 1] point-wise convolution. On the other hand, a

regular fully convolution layer takes an image with size [W ×H ×M ] as an input and

produces output of feature maps with size [W × H × N ] by convolving filters with

kernel size [kw × kh], as shown in Figure. 5.1. Total parameters (Tparam) of a regular

fully convolutional layer can be calculated as (Paul-Louis),

Tparam = W ×H ×M × kw × kh ×N. (5.1)

Figure. 5.2 shows depthwise separable convolution stages. Separable convolution stage

takes an image of size [W × H ×M ] as an input and performs spatial channel-wise

convolutions with kernel size [kw × kh]. Finally, it produces feature maps of size [W ×
H ×M ], as shown in Figure. 5.2(a). The total number of parameters in this stage is
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(a) Stage 1: Depthwise convolution

(b) Stage 2: Point-wise convolution

Figure 5.2: Detailed representation of depthwise separable convolutions

given as:

Tsep = W ×H ×M × kw × kh. (5.2)

The point-wise convolution stage takes the output produced by separable convolution

stage of size [W × H ×M ] and performs [1 × 1] convolution to produce N number

of output channels, as shown in Figure. 5.2(b). Total parameters in point-wise stage can

be given as:

Tpoint = W ×H ×M × 1× 1×N. (5.3)
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Finally, total number of parameters of a depthwise separable convolution layer is given

as:

Tdepth = Tsep + Tpoint. (5.4)

For example, consider an input image with size [5 × 5 × 3], filter with kernel size

[3 × 3], and number of output channels as 6. The total number of parameters in the

regular convolution layers will be calculated as 5× 5× 3× 3× 3× 6 which results in

4050 number of parameters. In case of depth-wise separable convolutional layer– the

number of parameters in first stage Tsep = 5× 5× 3× 3× 3 = 675, and in second stage

Tpoint = 5×5×3×1×1×6 = 450. Finally, total parameters in depth-wise convolutional

layer Tdepth = 675 + 450 = 1125. Hence, the depth-wise separable convolution layers

are computationally efficient compared to regular convolutional layers.

The proposed architecture is two phased, comprising of an encoder and decoder,

with multiple stages in each phase. In the first encoder phase, 4 stages exist with each

group of depthwise separable convolutions, batch normalization, activation and down-

sampling layer followed by residuals. The down-sampling layer with max-pooling op-

eration is used to reduce the size of the receptive field for extracting features at micro

and macro levels.

The second decoder phase reverts the operations of first phase with up-sampling

operation to obtain original resolution of input image as output. Features extracted in

encoder phase are concatenated with layers of the corresponding stage in decoder phase

after up-sampling with same receptive field size, which adds the advantage in recalling

past learned features and improves overall segmentation accuracy.

The proposed architecture is shown in Figure. 5.3. An input image of size [256 ×
512] is processed through the network resulting in a same size output with the seg-

mented mask. For convolution and depthwise separable convolutions, filters kernel size

is fixed as [3 × 3] based on the prior work (Simonyan and Zisserman, 2014) to extract
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Figure 5.3: Proposed DSCN architecture.
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discriminative features while preserving low parametrization. Batch normalization is

performed after convolution layer to avoid internal covariate shift. After the batch nor-

malization layer non-linear activation functions are employed.

In deeper networks, gradients accumulation in each update results in very large up-

dates in the weights, and in turn, unstable network. The accumulated gradients at each

update may results in overflow and NaN values in weights of the layers. This situation

is called as gradient explosion or vanishing gradient problem (Hochreiter, 1998). Most

activation functions such as sigmoid, tanh and ReLU are monotonic and their output

value increases proportional to input, which results in vanishing gradient problem in

deeper networks. Swish activation function is non-monotonic function, and output acti-

vations of Swish relies between linear and ReLU (Ramachandran et al., 2017). Swish is

unbounded above and bounded below, due to its non-monotonic attribute the output of

Swish might decreases even when the input is increased. In case of explosion of gradi-

ent occurs then clipping gradient is the best method to prevent such a scenario (Pascanu

et al., 2012; Goodfellow et al., 2016).

To prevent vanishing gradient problem in the proposed network, the Swish activa-

tion function is employed in all intermediate layers of except output layer. Swish acti-

vation function performed better than ReLU activation function in terms of accuracy on

many datasets by allowing flow of small gradients (Ramachandran et al., 2017; Arora

et al., 2016). In addition we have added skip connections and residuals with [1 × 1]

convolutions to counteract vanishing gradient problem. The Swish activation function

is defined as,

s(x) = x× σ(x) (5.5)

where x is an input tensor to function and σ(x) is sigmoid activation function which is

given in (4.16):

The final layer in the network is a [1× 1] convolution layer with sigmoid activation

function. The loss function of the network is binary cross entropy loss (Shore and

Johnson, 1980) and it is computed using (4.15).
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The proposed optimal model is designed with Depth = 4 and contains total 30 con-

volutional layers ( 3 regular convolutions and 27 depthwise separable convolutions).

Initial 2 layers and final output layer are regular convolutional layers, and remaining

layers are depthwise separable convolutional layers as in (Chollet, 2016).

5.2 Experimental Setup

The proposed architecture is implemented in Keras with Tensorflow as backend and

experiments are conducted using Google’s Colaboratory platform (GoogleColab, 2017).

It’s a Jupyter notebook environment that requires no setup to use and runs entirely in

the cloud.

5.2.1 DSCN Model Training and Hyper-parametrization

The experiments are conducted using OCSC dataset. The training set is divided into

train and validation set for hyper-parameter optimization. Several experiments are per-

formed to validate different FCN architectures by making validation set of 433 B-scans

(one volume from each vendor) from training set of 1676 B-scans (total 15 volumes).

While designing an optimal CNN architecture, the major factor is to optimize the

parameters and hyper-parameters, such as depth of the network, total number of layers

in network, number of filters in each layer, kernel size of the filter, and learning rate

of the model. Combination of optimal parameters or hyper-parameters can be identi-

fied using grid search and short random search. In this work, several experiments are

performed by varying depth of the network as shown in Table 5.1. Here, Depth refers

to the number of max-pooling layers, layers signify number of convolutional layers.

The learning rate is empirically chosen as 1× 10−3 based on short random search. The

Adam optimizer (Kingma and Ba, 2014) is used to minimize the loss of network.

Train set comprises less number of B-scans which results in over-fitting of the

100



Table 5.1: Different architectures formed by varying number of convolutional layers.

Total Layers Starting Filter Size [kw × kh ×N ] Depth Total Parameters
7 3×3×16 0 16,097
11 3×3×16 1 68,705
15 3×3×16 2 268,129
22 3×3×16 3 850,529
30 3×3×16 4 2,665,313
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Figure 5.4: Loss vs. epoch graphs for proposed model Depth: [0, 1, 2, 3, 4] architec-
tures after model training. (Plotted in log scale)

model. Hence, data augmentation technique is applied to generalize the model and

prevent over-fitting of the model. Different augmentation techniques are applied such

as horizontal flipping, image contrast and brightness variations, edge enhancement, and

width, height and zoom shifts. On-the-fly data augmentation is performed during train-

ing the model by alleviating storage constraints.

Various architectures of the DSCN model is constructed by varyingDepth and start-

ing filter size k for finding out optimal configuration. The loss graph across the different

Depth architectures is shown in Figure. 5.4. It can be inferred from the graph that the

training loss is significantly reduced in Depth = 4 compared to Depth = 0, 1, 2 and
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Table 5.2: Distinct architectures by varying number of filters in Depth = 4.

Starting Filter Size [kw × kh ×N ] Total Parameters
3×3×16 2,665,313
3×3×32 10,481,345

3 which exhibits limited learning capabilities. Our earlier study in Chapter 4 reports

that deeper architectures can account for more features thus yielding higher learning

capabilities. Hence, Depth =4 architecture is chosen over others.

To identify better receptive field of the Depth = 4 model, two architectures are

formed by using N = 16 and N = 32 as starting filter sizes. Table 5.2 shows the

number of parameters in these two architectures and Figure. 5.5 show their loss graph.

We observe that starting filter size N = 16 converges to the lower training loss and

exhibits lesser over-fitting trend compared toN = 32. Hence, final optimal architecture

is formed by using N = 16 and Depth = 4. Due to lesser train samples, we have

merged validation set with the training set thus yielding total 1676 B-scans as train

samples and on-the-fly augmentation is performed for training the proposed optimal

architecture. The proposed model is trained up to 100 epochs, beyond which, no further

change in loss is observed. Total train samples presented to the network after data

augmentation for final training is 100× 1676 = 167, 600.

5.3 Results and Analysis

The proposed architecture is validated using test datasets (909 B-scans) of the OCSC

dataset. Segmentation results are compared with the ground truth of the OCSC dataset,

ascertained by two expert ophthalmologists (G1, G2) and G1∩G2. Precision, recall and

Dice coefficient metrics are used to compute the performance of the proposed method.

Precision is the fraction of relevant instances among retrieved instances and recall is the

fraction of relevant instances that have been retrieved over the total amount of relevant
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Figure 5.5: Loss vs. epoch graphs of distinct architectures with varying starting filter
size in Depth = 4. (Plotted in log scale)

Table 5.3: Mean (standard deviation) of precision, recall and Dice of the proposed
method.

Vendor G1 G2 G1 ∩ G2

Precision Recall Dice Precision Recall Dice Precision Recall Dice

Cirrus 0.83 (0.04) 0.62 (0.34) 0.66 (0.30) 0.86 (0.02) 0.61 (0.33) 0.66 (0.30) 0.79 (0.03) 0.67 (0.36) 0.67 (0.29)

Nidek 0.83 (0.05) 0.70 (0.28) 0.74 (0.20) 0.81 (0.02) 0.70 (0.30) 0.73 (0.20) 0.75 (0.01) 0.75 (0.31) 0.72 (0.18)

Spectralis 0.91 (0.06) 0.62 (0.06) 0.74 (0.05) 0.92 (0.06) 0.64 (0.07) 0.75 (0.06) 0.88 (0.06) 0.70 (0.07) 0.78 (0.06)

Topcon 0.88 (0.05) 0.68 (0.25) 0.75 (0.20) 0.88 (0.04) 0.70 (0.23) 0.77 (0.17) 0.83 (0.06) 0.75 (0.22) 0.78 (0.16)

Overall 0.86 (0.03) 0.65 (0.03) 0.72 (0.04) 0.87 (0.04) 0.66 (0.04) 0.73 (0.04) 0.82 (0.05) 0.72 (0.03) 0.74 (0.05)

instances. Dice coefficient reports the segmentation correlation index. Precision, recall

and Dice coefficient are given in (2.1) , (2.2), and (2.3), respectively.

Table 5.3 present the results of proposed method compared with ground truth G1,

G2, and G1 ∩ G2 on precision, recall and dice co-efficient metrics. Our method gave

a mean recall rate of 0.72 and precision rate 0.82 across the vendors on ground truth

obtained from G1 ∩ G2. The precision and recall rates reported across all the vendors

shows that the proposed method provides better recall rate while preserving higher pre-

103



cision rates. Dice coefficient rate of our method shows higher segmentation correlation

across the ground truths (0.72 on G1, 0.73 on G2, and 0.74 on G1 ∩G2).

It can be noticed that, precision and recall results on the Cirrus scans are lower

compared to other vendor OCT scans due to the poor quality of the scans. Similar trend

can be observed in the segmentation correlation results reported using Dice metric.

Due to inter-grader observability, there is a marginal difference in the reported results

of G1, G2, and G1 ∩G2. Lower standard deviation values of Dice metric on Spectralis

vendor scans implies that proposed method performs accurate segmentation correlation

on these scans compared to others due to the lower scan intensity variation and noise of

the Spectralis scans.

For qualitative analysis, segmentation results of the proposed method are shown in

Figure. 5.6. The images shown in first column are original B-scans of four different

vendors (see Figures. 5.6(a), 5.6(d), 5.6(g), and 5.6(j)) and images of second column

are the corresponding ground truth (see Figures. 5.6(b), 5.6(e), 5.6(h), and 5.6(k)). Re-

sultant segmentation images of the proposed method are shown in third column (see

Figures. 5.6(c), 5.6(f), 5.6(i), and 5.6(l)).

We can observe that the proposed method segmentation merges consecutive cysts

into a larger cyst on Cirrus and Nidek scans (see Figures. 5.6(c) and 5.6(f)), which is due

to the intra-scan intensity variations and ill-defined boundary between individual cysts

(see Figures. 5.6(b) and 5.6(e)). In Spectralis and Topcon scans (see Figures. 5.6(i) and

5.6(l)), the proposed method is unable to detect the pseudo cystic regions due to low

intensity variations between the cysts and neighboring non-cystic regions.

Table 5.4 compares the mean Dice coefficient of the proposed method with the

OCSC challenge results and other state-of-the-art methods developed for OCSC dataset.

de Sisterns (de Sisternes et al., 2015) and Esmaeli (Esmaeili et al., 2016) proposed

handcrafted feature based supervised approaches, whereas Oguz (Oguz et al., 2016)

and Haritz (Gopinath and Sivaswamy, 2016) proposed unsupervised segmentation algo-

rithms for vendor independent IRC segmentation on OCSC dataset. Generalizing these
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(a) Input Cirrus B-scan (b) Ground truth (c) Segmented mask

(d) Input Nidek B-scan
.

(e) Ground truth (f) Segmented mask

(g) Input Spectralis B-scan (h) Ground truth (i) Segmented mask

(j) Input Topcon B-scan (k) Ground truth (l) Segmented mask

Figure 5.6: Segmentation results of proposed model on four vendors OCT input scans
from OCSC dataset.

methods across the vendors might affect the feature extraction and parameter selection

process, which may lead to poor performance on cross vendors OCT IRC segmentation.

Venhuizen et al. (2016) proposed multi-scale patch based cascaded CNN, but the

selection of appropriate patch sizes is tedious and it is found that patch-sizes affect fi-

nal segmentation methods. Very recently, Gopinath (Gopinath et al., 2017) proposed

FCN architecture for IRC segmentation on OCSC dataset. Both these methods use reg-

ular convolutions, which may lead to larger parameters and require lot of computation.

Our proposed method uses depthwise separable convolutions to reduce the computa-

tion complexity and outperforms other reported methods by providing mean Dice rate

of 0.74 on OCSC dataset (see Table 5.4).

Experiments are also conducted to analyze the effect of vanishing gradient problem

in deeper networks. Different activation functions, Swish and ReLU are used to analyze

the performance and it has been found that results of Swish activation function outper-

form the results of ReLU activation function with 3% improvement in the Dice rate.
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Table 5.4: Comparison based on Dice coefficient mean (standard deviation) of the pro-
posed method against the results of OPTIMA cyst segmentation challenge on all vendor
test OCT volumes.

Method DICE COEFFICIENT
G1 G2 G1 ∩ G2

de Sisternes et al. (de Sisternes et al., 2015) 0.68 (0.15) 0.67 (0.14) 0.69 (0.15)
Venhuizen et al. (Venhuizen et al., 2016) 0.61 (0.19) 0.60 (0.19) 0.59 (0.19)
Oguz et al. (Oguz et al., 2016) 0.60 (0.5) 0.59 (0.15) 0.60 (0.14)
Esmaeili et al. (Esmaeili et al., 2016) 0.55 (0.27) 0.55 (0.27) 0.55 (0.28)
Haritz et al. (Gopinath and Sivaswamy, 2016) 0.23 (0.15) 0.23 (0.15) 0.23 (0.15)
Gopinath et al. (Gopinath et al., 2017) 0.71 (0.17) 0.72 (0.15) 0.72 (0.16)
Proposed FCN Method (Chapter 4) 0.71 (0.20) 0.72 (0.19) 0.72 (0.19)
Proposed method 0.72 (0.04) 0.73 (0.04) 0.74 (0.05)

Table 5.5: Comparison between depthwise separable convolution and regular convolu-
tion architectures.

CNN architecture type # Parameters DC (in %)
FCN Method (Chapter 4, U-Net based Depth = 4) 1,946,705 72
Regular Convolution Network (Xception based Depth = 4) 20,404,257 72
DSCN (proposed network) 2,665,313 74

Further, we have analyzed the effect of regular convolution and depthwise separable

convolutions on the proposed architecture. We trained optimal Depth = 4 architecture

by replacing depthwise separable convolutions with regular convolutions from scratch

for 100 epochs. The obtained results show that regular convolution model requires 86%

more parameters than the proposed DSCN architecture (see Table 5.5). Table 5.5 also

reports the comparison of number parameters in FCN architecture proposed in Chapter4

with proposed DSCN architecture. We also observed that proposed DSCN architecture

outperforms regular convolution architecture and Chapter4 FCN architecture by pro-

viding 3% improvement in mean Dice rate. To analyze the generalizability of the pro-

posed architecture for vendor independent IRC segmentation, publicly available Duke

DME dataset is also used. The 110 B-scans of Duke DME datasets are pre-processed

as mentioned in section 5.1.1. The architecture is not explicitly trained on Duke DME

dataset. Our method provides Dice rate of 0.54 on ground truth obtained from G1 ∩G2
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by outperforming the results reported in (Chiu et al., 2015).

5.4 Summary

In this Chapter, an efficient end-end convolutional neural network architecture is pro-

posed for vendor independent IRC cyst segmentation. The proposed model utilizes

depthwise separable convolutional filters instead of regular convolutional filters, which

significantly reduces the computational parameters compared to regular FCN. To pre-

vent vanishing gradient problem, swish activation function is employed. Skip con-

nections used in the proposed architecture effectively combines higher-order semantic

information from down-sampling phase to up-sampling phase thus improving the seg-

mentation accuracy.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

One of the objectives of this thesis was to identify factors affecting intra-retinal cyst

segmentation from OCT scans. OCT images are generally affected by speckle noise,

signal intensity variations across scans, etc., and retinal scans have inherent anatomical

structures which produce artifacts, such as blood vessel shadows, layered architecture

disruption in disease, etc. IRC segmentation poses several challenges due to the above.

This thesis presents a comparative assessment of existing automated intra-retinal cyst

segmentation methods on OCT B-scans. The standardized methodological modules and

cyst segmentation experiments conducted in this thesis demonstrate that factors such as

pixel intensity variations, noise, blood vessel shadows and retinal layer distortions can

impact automated cyst segmentation accuracy. In addition, pre-processing and post-

processing steps are found to play a vital role in automated cyst segmentation processes.

A novel unsupervised two-stage automatic intra-retinal cyst segmentation algorithm

based on marker-controlled watershed transform has been proposed in this thesis to ad-

dress the accurate delineation of cystic structures. In this method, cystic regions are

initially detected and then they are delineated up to their true boundary. Spectralis ven-

dor OCT scans of OPTIMA cyst segmentation challenge dataset were used to validate

the proposed method. The proposed MWS method efficiently segmented the cystoid

regions with a high recall rate of 0.68 while maintaining precision rate at 0.80. Results

were analyzed by conducting pixel-based evaluation in addition to region-based evalu-

ation. Obtained results show that there was a marginal difference between the region-

and pixel-based analysis.



To address generalizability issues of IRC segmentation on cross vendor OCT scans,

a fully convolutional neural network architecture is proposed in this thesis. The pro-

posed architecture is customized for IRC segmentation and trained from scratch. Do-

main specific image enhancement, data augmentation and hyper-parameter optimiza-

tions were performed to design optimal architecture. The proposed optimal FCN model

with lower receptive field (starting filter size 16) and Depth 4 results in a computa-

tionally efficient yet robust vendor-independent model for IRCs. Additionally, domain-

specific data augmentation methods are found to improve model training and conver-

gence rates. The proposed model is evaluated qualitatively and quantitatively on OP-

TIMA cyst challenge dataset (four vendor OCT scan sets). The results demonstrate that

the proposed method efficiently segments the IRCs by providing mean Dice rate of 0.71

on scans obtained across four different vendors. The generalizability of the proposed

method was also tested using additional publicly available Duke DME dataset and it

performed well without additional training on this dataset.

Deeper FCNs leads to larger number of computation parameters and may be prone

to vanishing gradient problem. Hence, this thesis proposes a depthwise separable con-

volutional neural network architecture to address these issues. Proposed DSCN reduces

the computational parameters compared to regular FCNs. To reduce the effect of van-

ishing gradient in deeper networks, an efficient activation function has been employed

in the proposed architecture. The proposed architecture is robust to scan intensity vari-

ations and image noise variability across the vendors by providing segmentation results

with a mean dice rate of 0.74 on OPTIMA cyst segmentation challenge dataset. Gener-

alizability analysis of the proposed method is done using publicly available Duke DME

dataset. Without any further training and fine-tuning of the proposed method on this

dataset, proposed method produces a mean dice rate of 0.54.
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6.2 Future Work

The proposed IRC segmentation techniques in this thesis are able to segment intra-

retinal cysts in OCT scans upto their true boundary. Proposed CNN architectures are

able to segment the cysts efficiently across different vendor scans. However, proposed

CNN methods fail to delineate the cysts accurately when the quality of the scans is

poor. Hence, future work may be directed towards cystic boundary detection or cyst

counting tasks by suitably modifying the FCN parameters, goals and loss functions. It

is noteworthy that for area-based segmentation tasks, penalizing FP pixels more than

FN pixels in the loss function leads to smaller cysts getting missed while over detection

and merged cysts are observed for higher penalization of FNs over FPs. Future efforts

can be directed towards the implementation of such modified proposed architectures for

the detection of intra-retinal/sub-retinal fluid spaces, pigment epithelial detachment and

other macular degenerative pathologies.

It has been observed from studies conducted in this thesis, in future work several

factors must be considered while designing an automated cyst segmentation technique.

The desirable features to be included in prospective algorithms would include (but not

be limited to):

• Image denoising.

• Removal of blood vessel and hard exudate shadow artifacts prior to segmentation.

• Retinal layer segmentation.

• Detection of candidate regions and accurate delineation of lesion boundaries.

• Post-processing operations for removal of false positive candidate regions.
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