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ABSTRACT

This thesis is dedicated to study the problem of restoring images corrupted by data

correlated noise and linear blurring artifacts. Image restoration being an ill-posed prob-

lem, a closed form solution hardly exists, even if one exists, it does not continuously

depend on the data. Therefore, in general, an iterative solution is being sought under a

regularization framework. To this end, the image degradation process is modeled math-

ematically under a variational framework and it is solved using various computational

methods to ensure the desired output.

Three different noise distributions (viz. Chi, Rayleigh and Poisson) are being con-

sidered in this thesis. The reason for choosing these distributions are well justified

by their presence in various practical imaging modalities such as Magnetic Resonance

(MR), Synthetic Aperture Radar (SAR), Ultrasound(US) etc. Three different restoration

models are proposed to handle these noise distributions and they are detailed in three

chapters of this thesis. The Bayesian framework (which uses the statistical information

of the noise present in an image to derive the energy functional) is being employed for

designing the functional that corresponds to the model whose solution is being sought.

The solutions (corresponding to the three restoration models proposed in this thesis) are

provided using Non-Local Total Variational (NLTV), Non-Local Total Bounded Varia-

tional(NLTBV) and Non-Local p− norm total variation schemes as the regularization

priors, since they ensure preservation of the details in the input data better compared

to many other state-of-the art regularization priors. The numerical solution is provided

using the split Bregman iterative scheme to improvise the convergence rate and reduce

the parameter sensitivity of these models. Qualitative and quantitative analysis of these

models are provided for various images from different imaging modalities (such as MR,

SAR, US etc) to justify their performance and substantiate their relevance in the context

of the current literature.

Keywords: Image restoration, data-correlated noise, split Bregman scheme, Total Vari-

ation, linear blur.

AMS Classification: 68U10, 94A08.
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Chapter 1

INTRODUCTION

1.1 INVERSE PROBLEMS

Many well-known problems in the field of science and engineering are categorically in-

verse in nature (Vogel (2002); Bertero and Boccacci (1998)). Being ubiquitous in most

computing applications, these problems have attracted the attention of scientist and en-

gineers for decades altogether. Apart from various problems in the other disciplines, the

applicability of these problems also spans over imaging and image processing, such as

medical imaging like X-ray, Computed Tomography (CT), Magnetic Resonance (MR),

ultrasound, etc and satellite imaging systems like, Synthetic Aperture Radar(SAR), hy-

perspectral, multi-spectral, etc.

Inverse problem is defined as the problem in which the solution is known, using

this solution, the problem is derived with certain conditions and prior knowledge of the

given solution (Hansen (2010)). For example, let Ax = B, in which B is given and we

have some prior knowledge about the degradation A (is a known linear operator), using

this knowledge, one has to find the value of x. If the solution of this problem satisfies the

following three conditions: 1. existence, 2. uniqueness and 3. continuous dependence

on the initial data, then it is said to be a well-posed problem (Hadamard and Morse

(1953)). If the solution fails to satisfy any one of these three criteria, then the problem

is said to be an ill-posed one. See Appendix A.1 for the numerical verification of an

inverse ill-posed problem.

One of the well-known techniques for solving an ill-posed inverse problem is pe-

nalization model. This theory deals with solving an inverse problem, by stating it as a
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constrained minimization problem, which is further approximated to an unconstrained

minimization problem by adding the penalty function. For instance, let the constrained

minimization problem be

min
x

f (x) subject to x ∈Ω, (1.1)

where Ω ⊂ Rn. Above problem is approximated to an unconstrained minimization

problem using the Lagrange formulation as,

min
x
{ f (x)+λP(x)} , (1.2)

where P : Rn→ R , is the penalty function and λ is the penalty parameter. P is said

to be a penalty function if it satisfies the following conditions:

1. P is continuous.

2. P(x) = 0 if and only if x ∈Ω.

3. P(x)≥ 0 for all x ∈ Rn.

The penalization theory is further categorized into two: regularization framework and

sparsity model. The data of interest is sufficiently smooth in case of regularization,

whereas sparsity models consider the data as sparsely represented on a given basis.

Now let us consider the inverse problem,

Ax+ ε = B, (1.3)

where ε is an additive noise in the observed data B. Using the penalization theory to

solve above problem gives,

min
x

{
||Ax−b||L2 +λ ||x||Lp

}
, (1.4)

where λ acts as the regularization parameter and L2 represents L2 norm (‖.‖p will be

used instead of ‖.‖Lp throughout this thesis). When p = 0 (L0 norm) or p = 1 (L1

norm), the problem tends to a sparsity reduction model and for p > 1 its a regulariza-

tion framework, in general. Though the penalization approach provides a satisfying

approximation to the desired data, it does not care about the statistical properties of the

distortion such as distribution (Mohammad Djafari (2002)). To overcome such situa-

tions, a statistical approach such as Bayesian inference method is employed. In this

approach, a prior knowledge of the perturbation and unknowns i.e, ε and x in (1.3), are

translated to prior probability laws P(ε) and P(x), respectively. Hence the observed

2



data can be represented as P(B|x). The posterior probability of the desired data P(x|B)

is then determined by applying the Bayes rule, given by,

P(P1|P2) =
P(P2|P1)P(P1)

P(P2)
, (1.5)

where generally P1,P2 are events and P(P2) 6= 0. Finally, estimation theories such as

Maximum A Posteriori (MAP) or Maximum Likelihood(ML) estimator are employed

in order to get a better approximation to the desired data x.

From the discussion regarding the inverse problems and their solutions using the

two aforementioned approaches, one can conclude that the penalization method gives a

better approximation to the original data, but it tends to neglect the statistical knowledge

in the given noisy data. Whereas, the Bayesian approach maps a priori information in a

distortion into an appropriate probabilistic law and solves it using one of the estimation

techniques to get a much better approximation to the required data. Since we are dealing

with images, our primary goal is to perform the image restoration by stating it as an

inverse problem, which is detailed in the next section.

1.2 IMAGE RESTORATION AS AN INVERSE PROBLEM

A digital image comprises of a matrix with intensity values acquired by the active light

sensors (in the visible range of the electromagnetic spectrum) in an image acquisition

device. An atmospheric interference (such as lightning, dust, moisture etc), insufficient

light while capturing the image data and defects in the acquisition device sensors cause

disturbances in the acquired data leading to the so called noise. Improper focusing of

the lens of the camera or motion of the object or subject also causes imperfections in

the acquired images, generally coined as blurs. Both noise and blurring artifacts cause

data loss and result in deviation of the acquired data from their original observations.

Recovering of an image from such distortions meanwhile retaining vital information

(such as sharp edges, textures and fine details) in the given image is the main task

of image restoration. Due to uncertainty about the desired data, image restoration is

an approximation problem. Hence, the problem thus defined is an inverse and ill-posed

problem in the sense of Hadamard and Morse (1953). The given noisy and blurry image

3



data u0 is modeled as,

u0 = Ku+n, (1.6)

which is the most widely assumed data independent noise model (Gunturk and Li

(2012)) where u is the original image, n is generally an additive white Gaussian noise

with mean zero and K is the linear shift invariant blurring operator.

However, some of the prominent imaging fields such as medical(computed tomog-

raphy, magnetic resonance, ultrasound etc.), microscopic(fluorescence, confocal) and

satellite(synthetic aperture radar, multi and hyper-spectral etc.) produce images con-

taminated by data-correlated noise distortions. Here the image representation is differ-

ent from the usual intensity images and the images are not generally formed in the vis-

ible range of the electromagnetic spectrum (Chang (2003); Borengasser et al. (2007)).

For instance, CT images are formed in the X-ray frequency range and they represent

the attenuation coefficient of the X-ray waves, whereas ultrasound images are formed

due to the reflections of the sound wave from various objects, see Smith and Webb

(2010) for the details of the image formation and representation in medical imaging.

Restoring images from distortions such as noise and blur is a challenging task due to

the inherent correlation between the data and noise, hence a proper modeling of the de-

terioration process needs to be done to yield better approximations to the original data.

Regularization theory solves this problem by replacing (1.6) by

K∗u0 = (K∗K +λB′)uλ , (1.7)

where λ is regularization parameter, B′ is a positive definite operator such that K∗K +

λB′ is an invertible operator with bounded inverse and K∗ is the adjoint operator to

K. The redefined inverse problem is then solved using a linear system of equations.

Sparsity based methods replace (1.6) by

uλ = arg min ||u0−Ku||2 +λ ||u||1. (1.8)

Further, it is usually solved using the optimization(minimization) theory. As discussed

earlier, the penalization theory neglects the nature of degradation. Deterioration of an

image varies depending on the acquisition device and the environment in which it is

being captured. Hence, these scenarios should be dealt with utmost care while design-

ing the model to obtain a better approximation to the data of interest. The next sec-
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tion highlights the design of a degradation problem and its solution using the Bayesian

framework.

1.3 IMAGE DEGRADATION

As discussed in the previous section, in a real-world scenario, the formulation of an

image is usually affected by two kinds of distortions namely, noise and blur. Blur is a

common phenomenon in images which transpires due to the improper focusing of the

camera lens (out of focus blur) and unexpected movement of the subject or the object

(motion blur) (Hansen et al. (2006)) being imaged. An out of focus blur can be modeled

as,

u0 = Ku, (1.9)

where K is a bounded linear blurring operator, under the assumption that it is shift

invariant, the operation can be modified as a linear convolution(*) with the Gaussian

kernel k, eventually leading to the formulation

u0 = k ∗u, (1.10)

where k ∗ u is the convolution of u with the filter mask k. As discussed earlier, u and

u0 are original and corrupted images respectively. The point spread function of this

blurring phenomena can be defined as a two-dimensional Gaussian function as follows,

K(i, j) =
1

2πσ2 e−
i2+ j2

2σ2 , (1.11)

where σ is the standard deviation of the Gaussian distribution and (i, j) represents the

Cartesian coordinates.

The image noise causes random fluctuations in all the pixel values. Let us recall the

data-independent additive noise model (with the linear blur):

u0 = Ku+n, (1.12)

where n is usually zero mean white Gaussian noise which is random, identically and

independently distributed (IID). The probability density function(PDF) P of Gaussian

distribution is given by,

P(z|σ ,µ) =
1

σ
√

2π
e−

(z−µ)2

2σ2 , (1.13)

where σ and µ are the standard deviation and mean of a random sample z respectively.

Gaussian plot for various values of σ and µ are shown in Figure 1.1. A visual represen-
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Figure 1.1 Gaussian PDF with various mean and standard deviation.
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Figure 1.2 (a) Original “Peppers” image, (b) corrupted by Gaussian noise, (c) histogram of
highlighted area in (b).

tation of “peppers” image corrupted by Gaussian noise is shown in Figure 1.2(b) and

histogram of the portion highlighted in this figure is given in Figure 1.2(c).

Many image degradation models, especially from medical and satellite modali-

ties, are observed to follow a data-correlated noise distribution such as Rice, Gamma,

Rayleigh, Poisson etc. For instance, in magnitude MR images the data is corrupted by

Rician noise (Fernandez and Vega (2013)), ultrasound and SAR images are distorted by

Rayleigh noise which is multiplicative in nature (Jin and Yang (2011a)). A multiplica-

tive noise model is generally given by,

u0 = Kun, (1.14)

where n follows Gamma or Rayleigh distribution and has a unit mean. The PDF of
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Figure 1.4 (a)“Peppers” image corrupted by Gamma noise, (b) histogram of highlighted
area in (a).

Gamma distribution is,

p(z|k,θ) =


1

Γ(k)θ k zk−1e−
z
θ if z≥ 0

0 if z < 0
, (1.15)

where k,θ > 0, mean µ = kθ and variance σ2 = kθ 2. Plots of Gamma distributed PDF

with different values of k and θ are shown in Figure 1.3. The peppers image corrupted

by gamma noise is given in Figure 1.4(a) and the histogram of the highlighted area in

this image is given in Figure 1.4(b).

The PDF of the Rayleigh distribution is given by,

p(z|σ ′) = z
σ ′2

e
−z2

2σ ′2 , (1.16)
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Figure 1.6 (a)“Peppers” image corrupted by Rayleigh noise, (b) histogram of highlighted
area in (a).

where σ ′ is a scale parameter, variance σ2 = 4−π

2 σ ′2 and mean µ = σ ′
√

π/2. The PDF

plot of Rayleigh distribution with various σ ′ values are given in Figure 1.5. Rayleigh

corrupted peppers image is shown in Figure 1.6(a) and histogram of the homogeneous

area highlighted here is shown in Figure 1.6(b). The speckle noise which is multiplica-

tive in nature usually follows either a Gamma or a Rayleigh PDF.

Apart from Rayleigh and Gamma, there are other noise distributions which are

data-correlated, for instance, Rician and Poisson noise distortions are generally data-

correlated. The PDF of a Rice distribution is,

p(z|µ,σ) =
z

σ2 e
−(z2+µ2)

2σ2 I0

( zµ

σ2

)
, (1.17)

where I0 is the modified zeroth order Bessel function of the first kind. As mentioned
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Figure 1.8 (a)“Peppers” image corrupted by Rician noise, (b) histogram of highlighted area
in (a).

earlier, Rician noise is common in magnitude MR data, where the data is formed in

the complex domain 1. PDFs of Rician distribution with various values of σ and µ are

given in Figure 1.7. Peppers image corrupted with a Rician distributed noise and the

histogram of the homogeneous area in this image are shown in Figures 1.8(a) and 1.8(b)

respectively.

Furthermore, the Poisson PDF is given by,

P(z|σ) =
e−σ σ z

z!
, (1.18)

where z≥ 0 and σ is the standard deviation. Microscopic images (such as confocal and

1The noise in each (real and imaginary) plane is additive Gaussian, however, the noise in the magni-
tude data formed by squaring and adding each plane is found to be Rice distributed.
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Figure 1.10 (a)“Peppers” image corrupted by Poisson noise, (b) histogram of highlighted
area in (a).

fluorescence), hyperspectral, multispectral and telescopic images are commonly cor-

rupted by Poisson noise2 (see Kervrann and Trubuil (2004); Liu et al. (2017); Mansouri

et al. (2016) for more details). Poisson PDFs for different values of σ are given in Fig-

ure 1.9. Histogram of the selected homogeneous area from the Poissonian image shown

in Figure 1.10(a) is given in Figure 1.10(b).

Once the degradation is modeled properly, the next task involves recovering the

original image from the distorted observation using these degradation statistics. The

next section gives a bird’s eye view of most popular image restoration methods from

the literature.

2As these images are generally formed as a result of a Poisson process.
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1.4 BRIEF HISTORY OF IMAGE RESTORATION PROBLEM

Image restoration is a classical image processing problem in the literature. The image

restoration started ever since digital images started dominating the imaging applica-

tions (Gonzalez and Woods (2006). Most imaging applications acquire images under

various imaging conditions. The acquired data is apparently distorted in most imaging

applications. The data representation differs with reference to the application under

consideration. Nevertheless, the distortion or degradation is observed to follow a cer-

tain pattern. The major causes of distortion are noise and device artifacts (Gunturk and

Li (2012)). The noise intervention happens during the acquisition stage or transmission

of the data. The noisy features are random fluctuations that disturb the data. Since they

are random, their probability follows different distributions. The common distributions

found in the imaging literature are already discussed earlier in this thesis. The noise dis-

tribution changes with the conditions under which the images are captured. The medical

imaging systems are prone to various kinds of noises. The common ones among them

are Gamma (Aubert and Aujol (2008)), Poisson (Zhu et al. (2012)) and Rayleigh (Mäk-

italo et al. (2010)). The distortions are mainly due to the improper reflection of the

signals used to probe the details of the subject. For instance, the ultrasound imaging

is prone to speckles, as the sound wave gets reflected and transmitted upon hitting the

object (Abbott and Thurstone (1979)). The final images formed are generally noisy due

to the improper interference of the signals sent to probe the data and many times they

are received out of phase at the sensors. Similar conditions arise in the other kinds of

applications such as satellite imaging. In satellite imaging, the images are captured by

devices located at large distances from the object (Porcello et al. (1976)). Therefore,

the signal sent to probe the data gets reflected or deviated from the desired path while

transmitting through a medium. Moreover, distortions can also be caused due to the

improper functioning of the devices used for capturing the data. The device artefacts

cause distortions in the data (such as blurriness) which gets combined with the noise

resulting in a tedious restoration process.

One of these major issues with the degradation is that it results in different kinds of

distortions. Therefore, a common method becomes inadequate to handle them properly.
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Therefore, many methods have been proposed for restoring images from different kinds

of distortions.

1.5 SOLUTION TO AN IMAGE DEGRADATION PROBLEM

Modeling the degradation process has already been discussed in previous sections. Now

the subsequent step deals with solving the model thus designed. There have been a

plethora of restoration models for restoring data uncorrelated noise distributions such

as additive Gaussian, salt and pepper(also called as impulse noise), etc. Mean filter

(Gonzalez and Woods (2006)) replaces each pixel in the noisy image by the average of

the neighborhood (also known as a patch) pixels. Here, as the size of the patch increases,

the degree of smoothness also increases in the restored version of the image. This filter

performs better for a low density additive Gaussian distributed noise. Salt and pepper

noise shall be removed using the median filter which replaces each pixel in the target

image by the median of pixel values of the patch around it. Here, the patch is reshaped

into a one dimensional array with N elements and sorted (in ascending order). The

element in the position: (N +1)/2 of the sorted array replaces the center pixel in each

patch. Some of the advanced averaging filters such as non-local means (Buades et al.

(2005)), block matching collaborative filter (Dabov et al. (2007)) replaces each target

patch by the average of similar patches in a search window. The data independent nature

of additive Gaussian noise makes the restoration easier. But under data-dependent noise

distribution, the restoration process is more challenging. There are a few proposals

toward restoring images from such distortions as well, see Makitalo and Foi (2013a);

Foi (2011); Fernandez and Lopez (2006), for the details.

As discussed in the beginning, we deal with the restoration of images, considering

it as an inverse problem. The ability of the Bayesian approach over the penalization

theory for a better approximation of the data of interest makes it a suitable choice for

solving the image restoration problem. In the Bayesian approach, the problem is re-

formulated as an energy minimization problem using a MAP estimation technique and

further solved under a variational framework, see Le et al. (2007); Aubert and Aujol

(2008) for details.
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1.5.1 Variational methods

Calculus of variation is used to state the problem of finding a function’s integral which

is maximum or minimum for a certain value, which is similar to the extrema

(see Gelfand and Fomin (1963), Jost and Li Jost (1998) for the details). The integral is

also known as a functional. These functionals include functions and their derivatives.

One straightforward example for such a problem is finding a curve that joins two points

such that the length of the curve is as shortest as possible. If there are no conditions, then

the solution would be the straight line joining the two points. If there is a condition such

as the two points are on some surface in the hyperplane, then the surface need not be flat.

So, there can be many other solutions. These solutions are called geodesics. We can find

the extrema of a functional by finding the maxima or minima of the associated function.

This is done by finding the points where the derivative of the function vanishes, which

is usually performed using the Euler-Lagrange (E-L) derivatives (see Appendix-A.2 for

more details).

A general variational framework in terms of energy formulation can be written as

min
u

φ(u) subject to H(u),

where φ(u) is the objective function and H(u) is the constraint. In a general, basis

pursuit problem of Ku = u0, the problem is an unconstrained problem or it has infinitely

many solutions. So the goal is to find the approximate solution or probable optimal

solution. The solution is sought under a minimization framework where the L1 norm of

u should be minimized subject to the constraints to be defined, i.e,

min
u∈Rn
||u||1 subject to Ku−u0 = 0. (1.19)

By relaxing the constraints, we can form an unconstrained minimization problem, that

is,

min
u0∈L2,u∈Rn

||u||1 +λ ||Ku−u0||22. (1.20)

Here L2 norm is taken under the assumption that u0, the observed data is in L2(Ω) and

residue should be smooth. In the similar lines, we can form image denoising problem,

where the degradation model is u0 = u+n. Here we assume that u belong to the space

of bounded variation (BV(Ω)), where the Total Variation (TV (u) =
∫

Ω
‖∇u‖2 dxdy) is
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bounded. Now the constrained minimization problem is,

min
u∈BV (Ω)

||u||BV subject to ||u−u0||22 = |Ω|σ2, (1.21)

where |Ω| represents the total pixel count in the image. The above problem can be made

unconstrained by formulating as given below,

min
u0∈L2(Ω),u∈BV (Ω)

||u||BV +λ ||u−u0||22−|Ω|σ2. (1.22)

Generally the energy minimization problem is stated as,

Etotal = ESmoothness(u)+λEFidelity(u,u0). (1.23)

The smoothness term involves derivatives of Lp norm, which is also called as the reg-

ularization term. The data fidelity term controls the smoothness of the data by adding

back the lost details in the minimization process. λ represents the regularization pa-

rameter. The functional of ESmoothness(u) can be stated as (see Gilboa (2018) for more

details):

F(u) =
∫

Ω

f (x,u(x),∇u(x))dx, (1.24)

where f (x,u(x),∇u(x)) ∈ Rn, x = (x1,x2, ..,xn). For the regularization, we are con-

cerned with derivatives of u, thus we can have a simplified formulation of the problem.

Let J(u) be regularization functional, defined as:

J(u) =
∫

Ω

φ(|∇u(x)|)dx, (1.25)

where φ(u) is a function of norm of u. Further, the E-L of the functional (1.25) is

∂uJ(u) =−div
(

φ ′(|∇u|)
|∇(u)|

∇u
)
. (1.26)

The gradient descent marching with artificial time t is applied on above equation with

the following conditions,

• Neumann boundary condition : ∂u/∂N = 0 on ∂Ω.

• Initial condition : u(0,x,y) = u0(x,y).

The above boundary and initial conditions are assumed for all PDEs described in this

thesis unless defined otherwise. The gradient descent solution is given by

ut =−∂uJ(u) = div
(

φ ′(|∇u|)
|∇u|

∇u
)
, t ≥ 0,(x,y) ∈ R2. (1.27)

In the next section, the derivation of an energy functional using a MAP estimation is

detailed.
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1.5.2 Deriving variational model using the MAP estimator

Consider the most common additive noise model given in (1.12). Let us opt for the

Bayesian methodology to solve this inverse problem, for that, one has to first model

the degradation process. The noise distribution assumed is given by (1.13). Using the

Bayesian theory we can redefine (1.13) with original (u) and noisy observation(u0) as,

P(u0|u) =
1

σ
√

2π
e−

(u0−u)2

2σ2 , (1.28)

where P(u0|u) is the conditional probability of u0 given u. It is also the likelihood

estimate of the distribution. Now let us apply Bayes rule given in (1.5) to the above

equation, which leads to,

P(u|u0) =
P(u0|u)P(u)

P(u0)
. (1.29)

The next step is to maximize the posterior probability P(u|u0). Here P(u0) is a constant

and does not affect the minimization step, therefore it is omitted from the further steps.

The maximization problem after substituting likelihood estimation of P(u0|u) is,

max
u
{P(u|u0)}= max

u

{
1

σ
√

2π
e−

(u0−u)2

2σ2 P(u)
}
. (1.30)

where P(u) is the prior probability. Next, we apply a negative log transform on both

sides of the above equation, which modifies the maximization problem into a minimiza-

tion problem i.e,

min
u
{− log(P(u|u0))}= min

u

{
− log

(
1

σ
√

2π

)
+

(u0−u)2

2σ2 − log(P(u))
}
. (1.31)

For the sake of simplicity, omit -log from the left hand side and constant terms on the

right hand side of the above equation and simplify, to get,

min
u
{P(u|u0)}= min

u

{
(u0−u)2− log(P(u))

}
. (1.32)

Now let us consider prior probability P(u) = e−
λ

2 J(u) (the Gibb’s prior), where J(.) is

the regularization prior (defined in the previous section) and λ is the regularization pa-

rameter. Further, reformulating the above equation as an energy minimization problem

E(u) (and also considering linear blur K) yields,

E(u) = min
u

{∫
Ω

(u0−Ku)2dxdy+
λ

2
J(u)

}
, (1.33)

where Ω is the image domain. The above minimization problem yields the restored

version of the image for an appropriately chosen regularization prior, such as J(u) =

TV (u), which is well known as total variation regularization. Further, the problem is

numerically solved using artificial time marching scheme (or gradient descent scheme).
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Though the gradient descent solver is trivial, it takes a large number of iterations to

converge to the solution and the solution in each iteration depends on the regularization

parameter λ as well as the time step. In order to overcome such drawbacks, one can

opt for the fast solvers such as augmented Lagrangian (Chan et al. (2011)), primal-

dual (Zhu and Chan (2008)), forward backward splitting (Combettes and Wajs (2005)),

Chambolle projection (Chambolle and Pock (2010)) scheme, split-Bregman (Goldstein

et al. (2010)) iterative approach etc. The split-Bregman approach has been employed in

this thesis for solving the proposed models, since it converges faster and moreover, the

convergence is less sensitive to the parameters used therein. The next section gives a

brief survey on some of the variational approaches.

1.5.3 Review of the variational models

Tikhonov regularization (Tikhonov and Arsenin (1977)) is one of the pioneer approaches

for solving an ill-posed problem. The regularization prior φ(u) in the Tikhonov regu-

larization takes the form, φ(u) = |∇u|2. Hence, the energy functional in 1.33 changes

to,

E(u) = min
u

∫
Ω

{
(u0−Ku)2 +

λ

2
|∇u|2

}
du. (1.34)

The E-L formulation of the above equation is given by,

−∆u−λK∗(u0−Ku) = 0, (1.35)

where ∆ represents Laplacian operator and K∗ is the adjoint of K. Above equation can

be solved using gradient descent scheme. The diffusion process in the Tikhonov method

is effective but edges and fine details are penalized extensively during the process. Mo-

tivated by the Tikhonov method, Rudin et al. (1992) proposed a restoration model that

performs well in restoring images and known as total variation regularization. Here,

φ(u) = ‖∇u‖2, u ∈ BV (Ω), total variation is represented as TV (u), which is given by

TV (u) =
∫

Ω

‖∇u‖2 dxdy.

Thus, the energy functional in case of TV takes the form,

E(u) = min
u

∫
Ω

{
(u0−Ku)2 +

λ

2
‖∇u‖2

}
dxdy. (1.36)

Applying E-L equation on 1.36 we get,

−div
(

∇u
|∇u|

)
−λK∗(u0−Ku) = 0. (1.37)
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(a) (b) (c)

Figure 1.11 (a) Test image corrupted by the Gaussian noise of variance 35, restored using
(b) Tikhonov regularization (150 iterations) (c)TV regularization (200 iterations).

The solution for the above equation is sought as in the previous case. In homogeneous

regions where |∇u| ≈ 0,1/|∇u| is unbounded, hence the smoothening is more. Near the

edges where |∇u| → ∞,1/|∇u| vanishes and the diffusion gets stopped. The selection

of smaller time step in the gradient descent evaluation leads to a stable solution. Hence,

the restoration process needs a larger number of iterations to converge. Tested results

of TV and Tikhonov restoration are shown in Figure 1.11. The denoising and edge

preserving capability of the model is evident in this figure.

Many variants of TV model are available in the literature, some prominent ones are

highlighted subsequently. The anisotropic TV takes the function φ(u)= |∂u/∂x+∂u/∂y|

(Esedoglu and Osher (2004)), where x and y are the directions of the derivative. The L1

norm regularizer has been implemented in Alliney (1992) for controlling the smooth-

ness relatively better. Kuijper (2007) proposed a p-Laplacian driven restoration model,

here, the function φ(.) is defined as φ(u) = ‖∇u‖p
p. Marquina and Osher (2000) in-

troduced a gradient descent model based on level set motion for noise removal. For all

these TV variants, numerical implementation is done by using finite difference schemes,

explained below. Let us consider two dimensional image u and define the partial deriva-

tive using the central differencing scheme (with h as the pixel difference, which is usu-

ally considered as one) as follows,
∂u
∂x

=
ux+1,y−ux−1,y

2h
, (1.38)
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and
∂u
∂y

=
ux,y+1−ux,y−1

2h
. (1.39)

Using (1.38) and (1.39) the numerical implementation of the gradient operator ∇ for

image u can be derived as,

∇u =

[
∂u
∂x

∂u
∂y

]
.

Divergence operator ∇. or div is defined as,

div(∇u) =
[

∂

∂x
∂

∂y

]′ [
∂u
∂x

∂u
∂y

]
,

which leads to,

div(∇u) =
∂ 2u
∂x2 +

∂ 2u
∂y2 = ∆u.

1.5.4 Nonlocal methods

Unlike the image filtering methods which replaces the pixels with the average of their

neighborhood, non-local methods select similar patches in a predefined image domain

and perform averaging (Non-Local Means (NLM) by Buades et al. (2005)) or thresh-

olding (Block Matching 3D (BM3D) filtering by Dabov et al. (2007)) and replace the

filtered patches back on the respective indices. Here we discuss the basic formulation

of non-local variational framework (based on TV-norm) proposed by Gilboa and Os-

her (2008). The TV non-local variants (Azzari and Foi (2014)) are formally designed to

handle additive data independent noise with Gaussian PDF. The Non-Local TV (NLTV)

methods performs well (in terms of local details preservation) compared to the ordinary

TV variants. The non-local averaging filter introduced in Buades et al. (2005) is

NL(u(x)) =
1

c(x)

∫
Ω

e−dσ (u(x),u(y))/h2
u(y)dy, (1.40)

where x, y ∈Ω, h is the space step and

dσ (u(x),u(y)),
∫

Ω

Gσ (t ′)|u(x+ t ′)−u(y+ t ′)|2dt, (1.41)

where t ′ is the distance from the center pixel (usually half of the size of a patch), Gσ is

the Gaussian kernel
(

Gσ , 1
2πσ2 e−

(x2+y2)
2σ2

)
with standard deviation σ and

c(x),
∫

Ω

e−dσ (u(x),u(y))/h2
dy, (1.42)

hereafter we consider h = 1. Now let us define the weight matrix w(x,y) = dσ (x,y)−2

which is a symmetric matrix. Define the non-local gradient as:

∇NL u(x,y) = (u(y)−u(x))
√

w(x,y). (1.43)
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(a) (b) (c) (d)

Figure 1.12 (a) Noisy image (additive Gaussian with variance = 25), restored with (b)
Nonlocal means, (c) BM3D and (d) Nonlocal TV.

Further defining the Laplacian as a weighted graph G = (V,E), with V as a finite set of

vertices and E as finite set of edges, we have

∆NL(u(k)) = ∑
l∈Nk

w(k, l)(u(l)−u(k)), (1.44)

where k, l ∈ V and Nk is the local neighborhood of k (or set of nodes with edges con-

nected to k). Now let us describe the NLTV as

E(u,u0,λ ) = JNLTV (u)+
λ

2
(‖Ku−u0‖2

L2−|Ω|σ2), (1.45)

JNLTV (u) is defined as

JNLTV (u) =
∫

Ω×Ω

φ(|∇NLu|2)dxdy,

=
∫

Ω

φ

(∫
Ω

(u(y)−u(x))2w(x,y)dy
)

dx. (1.46)

The Euler-derivative of JNLTV (u) with respect to u is

J′(u) =−2∇.(∇NLuφ
′(|∇NLu|2(x))), (1.47)

The gradient descent/artificial time marching solution of NLTV for an additive Gaussian

noise and linear blur, amounts to

un+1 = un +∆t[−2∇NL.(∇NLuφ
′(|∇NLu|2(x)))

+λK∗(Ku−u0)]. (1.48)

The restoration results using various non-local variants are demonstrated in Figure 1.12.

Image restoration under a data independent Gaussian noise distribution has been

discussed in detail in the preceding sections. Many of these approaches have also been

extended to the data-correlated noise scenarios as well, see for instance: TV variant,

for Poisson denoising by Le et al. (2007), for Gamma restoration by Aubert and Aujol

(2008), for restoring MR images corrupted by Rician noise (Liu et al. (2015)). How-
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ever, in case of data-dependent noise, proper analysis of distortion should be done and

an efficient regularizer should be selected to get better results. Most of the proposed

schemes under data-correlated noise models lag such elaborative analysis.

1.6 PROS AND CONS OF EXISTING VARIATIONAL MODELS

Many variational methods have been proposed for restoring images based on differ-

ent degradation models described in the literature. Nevertheless, they have their own

pros and cons. A brief description of various restoration models under the variational

framework and their pros and cons are detailed in the table shown below.

Model Name, Pros Cons
Authers and Year
Perona and Malik 1. Better removal of noise in 1. Fails in well and preserva-

(Perona and Malik (1990)) homogeneous area. tion of sharp edges and fine
details.

2. Smoothing can be controlled 2. Noise distribution is not
using the diffusion coefficient. being considered.

Total Variation 1. Better preservation of sharp 1. Smooths out some of the
(Rudin et al. (1992)) edges. fine structures.

2. The fidelity term helps in 2. Diffusion process dependent
retaining lost details. on the regularization parameter.

3. Smooth areas are transfor-
med into piecewise constant
regions (staircase effect).

Mean Curvature Motion 1. Reaches the steady state 1. Smooths out some edges
(Marquina and Osher (2000)) solution quickly compared to and fine details.

the TV.
2. The staircase effects are 2. Uses gradient descent scheme
solved.

Non-local Total Variation 1. Efficient in texture 1. Diffusion process dependent
(Gilboa and Osher (2008)) preserving. on the regularization parameter.

2. Non-local restoration metho- 2. Low convergence rate.
ds give better approximation to 3. Designed to handle data inde-
the desired data. pendent noise.

Aubert and Aujol 1. Smooths out data-dependent 1. Staircase effect remains.
(Aubert and Aujol (2008)) gamma noise.

2. Noise distribution took 2. Low convergence rate.
into consideration.

TV Poisson 1. Data-dependent Poisson 1. Dependent on regularization
(Le et al. (2007)) noise is being removed. parameter.

2. Model being derived using the 2. Low convergence rate.
noise PDF, which produces better
result.
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1.7 MOTIVATION OF THE RESEARCH

Restoring images from data-correlated noise setup is a challenging task, as the noise is

a function of data itself. Since restoration is an inverse and ill-posed problem, an ac-

curate approximation to the original data is highly challenging. Though there are some

studies relating to the data-dependent noise distortions, still there are further scopes

for thoroughly analyzing the models and devising more improvised models to han-

dle such degradation scenarios. Unlike the data-independent noise restoration models,

data-dependent models are not analyzed quite extensively in terms of their theoreti-

cal and practical aspects. Most of the real-life imaging systems are found to produce

data-correlated noise distributions, so handling such distortions is the need of the hour.

Data-correlated multiplicative and additive noise models (following Rayleigh and Rice

noise distribution, respectively) are being assumed in most of the medical and satel-

lite imaging applications. Medical X-ray, CT and PET images, microscopic (confocal

and fluorescence) and telescopic images are said to be contaminated by data-dependent

Poisson noise. It is essential to improvise these models in terms of the detail preserva-

tion (viz. textures and fine-details) and faster convergence so as to put them in place in

a real-time image restoration system.

This thesis is structured towards the restoration of different data-dependent noise

distortions which are common in several important imaging fields such as medical and

satellite imaging. For the proper diagnosis and analysis in these fields, the images

should be restored efficiently. The Bayesian theory has been used in this work to solve

the image restoration problem since it can efficiently approximate the solution.

1.8 PERFORMANCE MEASURES

The qualitative analysis has to be done to ensure the restoration capability of the model.

Visual and qualitative together determines the performance of the restoration technique.

There have been several approaches which are used to measure the quality of the resul-

tant image for instance Signal to Noise Ratio (SNR), which calculates the noise removal

capability of the restoration model. Most of the quality metrics need the noiseless im-

age to calculate the performance. This section gives the details of the quality metrics
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used in this thesis.

1. Signal to Noise Ratio: Calculates the noise removal capacity of the restoration

model. The high value of SNR represents the high noise removal capability of

the model, but sometimes causes the over-smoothing. SNR is calculated as given

in the equation below,

SNR(u, û) = 10log10

(
∑i ∑ j u(i, j)2

∑i ∑ j(u(i, j)− û(i, j))2

)
, (1.49)

where u can be an output or a noisy image, û is the original or reference image.

2. Mean Squared Error (MSE): Calculates the error between the original and an

estimated data. The resultant value is always non-negative. The value close to

zero represents better whereas higher value results in poor estimation.

MSE(u, û) =
1
|Ω|

∫
Ω

(û−u)2dx, (1.50)

where Ω represents image domain and |Ω| stands for the number of pixels in

discrete domain.

3. Peak Signal to Noise Ratio (PSNR): Gives a real positive value as long as MSE is

smaller than max(û)2, higher the value is better the signal preservation capability

of the model under consideration. MSE and PSNR are inverse to each other, as

one increases the other one decreases.

PSNR(u, û) = 10log10

(
max(û)2

MSE(u, û)

)
. (1.51)

4. Structural Similarity Index Measure (SSIM) (Wang et al. (2004)): Measures

structure preservation capability of the restoration model. High SSIM (in the

range of 0 to 1) shows high structure preserving ability of the restoration model.

SSIM is defined as follows,

SSIM(u, û) =
(2µuµû + c1)(2σuû + c2)

(µ2
u +µ2

û + c1)(σ2
u +σ2

û + c2)
, (1.52)

where µu and µû are the averages of u and û respectively, σu and σû are the

variances of u and û. σuû is the co-variance of u and û. c1 = (k1L)2 and c2 =

(k2L)2 are two variables to stabilize the division with the weak denominator, L is

the dynamic range of the pixel values and k1 = 0.01 , k2 = 0.02 by default.
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1.9 RESEARCH OBJECTIVES

The complete recovery of an image from a distorted observation is not practically feasi-

ble. Also, the solution is dependent on the initial data. Hence the problem is an ill-posed

inverse problem in its actual form. There have been several approaches proposed to get

an approximated solution to the ill-posed problems. Theory such as penalization does

the error minimization to get a better approximation, but it does not care about the

degradation models in general. Bayesian theory models the degradation as a probabilis-

tic approach and by using the prior information, the posterior probability is maximized

(using MAP estimator) to get a much better approximation for the desired data. So the

primary goal of this thesis work is to mathematically model the data-dependent degra-

dation in the real-life imaging scenarios. Once the perturbation is properly modeled,

the next step is to choose a relevant approach to solve it. Since we deal with the vari-

ational framework, energy minimization functional has to be defined. The functional

should feature both regularization as well as data fidelity aspects. The regularizer re-

duces the fluctuations in an image (due to noise) by smoothing the homogeneous areas,

whereas data fidelity controls the smoothening process by adding back the lost details.

The overall objectives can be summarized as follows:

• To devise variational frameworks to handle data-correlated noise distributions and

analyze them thoroughly in terms of theoretical and practical aspects.

• To tune the regularization and data-fidelity terms so as to handle the data-correlated

noise distributions such as Chi, Rayleigh, and Poisson, while preserving impor-

tant information (like textures, edges and finer details) present in the data which

are essential for further analysis and diagnosis.

• Fine-tune the models to make it adaptive and less sensitive to the input noise

parameters so as to yield the optimal solutions.

• Improving the convergence rate by modeling them using the faster numerical ap-

proaches in order to fit them in a real-time restoration scenario. And also to yield

stable solutions which are independent of the chosen time step and regularization

parameters.
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• Analyzing the performance (qualitatively and quantitatively) and comparing it

with the state of the art restoration models using real time models in medical and

satellite imaging applications.

1.10 ORGANIZATION AND CONTRIBUTIONS OF THE THE-
SIS

The remaining chapters in this thesis are organized as follows:

Chapter 2: Nonlocal Total Bounded Variation approach to restore
multiple-coil MRI data

In this chapter, a variational model is proposed for restoring multiple-coil magnetic

resonance images (MRI) corrupted by non-central Chi distributed noise. The energy

functional corresponding to the restoration problem is derived using the maximum a

posteriori (MAP) estimator. The non-local total bounded variation prior is being used

as the regularization term in the functional derived using the MAP estimation process.

Further, the split-Bregman iteration scheme is being followed for fast numerical com-

putation of the model.

Chapter 3: Nonlocal Total Variational Restoration Models for Restor-
ing Rayleigh data

Restoration of images corrupted by data-correlated Rayleigh noise distribution has not

been studied much extensively in the literature, unlike the other noise distributions. In

this chapter, the degradation analysis is done on data-correlated Rayleigh noise and a

linear blurring artifact. Further, a variance stabilization approach and two variational

approaches for restoring images from their noisy and blurred observations have been

introduced. The split-Bregman iterative scheme is used for numerically solving the

models to improve their convergence rates. Furthermore, non-local total variation and

non-local total bounded variation priors are being used as regularizers in these models

to improve their restoration efficiency.
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Chapter 4: Nonlocal variational approach to restore Poissonian im-
ages

Poisson noise (also known as shot or photon noise) arises due to the lack of information

during the image acquisition phase, it is quite common in the field of microscopic or

astronomical imaging applications. In this chapter, a non-local total variation regular-

ization framework has been proposed with a p−norm driven data-fidelity for denoising

Poissonian images. In precise, the energy functional is derived using a Maximum A

Posteriori (MAP) estimator of the Poisson probability density function (PDF). The dif-

fusion amounts to a non-local total variation minimization process, which eventually

preserves fine structures while denoising the data. The numerical solution is sought

under a fast converging split-Bregman iterative scheme.

Chapter 5: Conclusions and Future Directions

This chapter contains the conclusions about the proposed schemes and avenues of future

research. Since the image restoration is an ill-posed problem, the obtained result will

always be an approximation to the original image. As the outcome of the restoration is

close to the original data, further analysis becomes easy and accurate. Since the image

restoration is one of the most important tasks in image processing, there is always a

need for a better restoration algorithm. Adoption of fast solvers improves the efficiency

of the model, thus extends their software portability.

Appendix

Some of the mathematical definitions, derivations and sample MATLAB codes used

for the implementation are included in this section for improving the readability of the

thesis and to ensure its completeness.
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Chapter 2

NONLOCAL TOTAL BOUNDED
VARIATION APPROACH TO RESTORE
MULTIPLE-COIL MRI DATA

2.1 INTRODUCTION

The main intention of image restoration is to extract the original image from the given

noisy image. The target image is assumed to be degraded by some degradation phe-

nomenon. So, the restoration techniques are oriented toward modeling the noise phe-

nomena and applying one of the recovering processes to restore the original image. The

additive noise which follows a Gaussian distribution is a widely appearing degrada-

tion in the literature. An active imaging system such as medical CT, MRI, ultrasound,

satellite etc is found to be corrupted by data-correlated noise. Performing image restora-

tion of such images without considering the noise distribution will cause over smooth-

ing, which subsequently leads to data loss. Ill-posedness of the restoration problem is

caused due to the non-existence of the unique solution or the continuous dependence

of the restored data on the initial data. The variational formulation is one of the widely

used regularization techniques to solve such ill-posed problems, which has already been

discussed in the previous chapter.

In most of the medical image modalities, it is observed that the noise is source

dependent, say for instance, MR imaging. This chapter mainly focuses on removing

data-correlated noise from MR images which follows either a Rician or a non-central

Chi distribution. The variational formulation is being derived considering the noise
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Figure 2.1 MRI formation from the k-space for multiple-coil setup (courtesy: Fernandez
and Vega (2013)).Here each ρi, j denotes correlation coefficient, σ denotes the covariance,
Σ stands for the covariance matrix , F−1 is the inverse Fourier Transform and CMS is
expanded as the composite magnitude signal.

distribution present in the data using the MAP estimator. Two degradation scenarios are

being considered in this chapter, they are,

• Case 1: Image with noise and without blur (operator K is set as identity)

• Case 2: Image with both noise and linear shift-invariant blur.

Optimizing the functionals for both these cases yield solutions, which correspond to

the restored versions of the noisy images. The non-local total bounded variation prior

is being used as the regularization term in the functional derived using the MAP esti-

mation process. Further, the split-Bregman iteration scheme is being followed for fast

numerical computation of the model. The results are compared with the state of the art

MRI restoration models using visual representations and statistical measures.

Medical MRI has become the state of the art non-invasive imaging technique for

prompt diagnosis of disorders in the human body. MR Images are usually high-contrast

images formed in a complex domain. The image formation is given in Figure 2.1.

2.2 NOISE FORMULATION

MR images are formed in the spatio-frequency domain (also called as the k-space) con-

tain real and imaginary components. The points in the k-space (a complex space, where

the image is formed (Fernandez and Vega (2013))) measured from MRI scanners are
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thus independent samples of the radio frequency signal received by each coil. The data

in this complex domain will be affected by random thermal fluctuations which are uni-

form and independent of the frequency components. So these thermal fluctuations can

be considered as additive white Gaussian noise with variance σ2
n . These random fluc-

tuations will affect both real and imaginary components of the k-space image(on each

slice at each coil). The desired MR image is thus formed by applying linear inverse Dis-

crete Fourier Transform (iDFT) on the k-space data. Since the Fourier transform and

its inverse are linear and unitary, the noise in the image is still the additive Gaussian.

Now the final magnitude MR image is obtained by taking the Composite Magnitude of

the complex Signal/image (CMS). In this image, the noise distribution gets modified

because the magnitude function is non-linear. So the image contains transformed noise,

which is data-dependent and it is generally Rician distributed (Fernandez et al. (2009)).

In case of the multiple-coil setup, the image is generated by taking the square root of

the sum of the magnitudes of the complex data over all the gradient coils. Therefore,

the data independent Gaussian noise added in the real and imaginary components of

the complex MR data also gets squared and added and finally, the square-root of this

data gives the final magnitude MR image. The noise pattern in the complex image

domain may be seen as a complex multivariate (one variable per coil) additive white

Gaussian noise (AWGN) process, with zero mean and covariance matrix Σ. When the

coil count is one, the noise distribution becomes Rician (Fernandez et al. (2009)) as al-

ready mentioned. However, for coil count greater than one, it follows a non-central Chi

distribution. Since the final magnitude image is formed using sum of square method,

(which is similar to averaging) this leads to blurring artifacts in the resultant image.

Figure 2.2 shows the Probability Density Functions (PDF) for Rician and non-central

Chi distribution.

2.2.1 Theory

The complex image formed at lth coil is

u0l(x) = ul(x)+nl(σ
2), (2.1)
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Figure 2.2 Probability Density Function of (a) Rician distribution and (b) Non-central Chi
distribution.

where ul(x) ∈ R2 is the original signal at lth coil, u0l(x) ∈ C2 is the noisy complex

signal at lth coil and nl(σ
2) = nlr(x,σ2)+ j nli(x;σ2) is the complex noise in real (nlr)

and imaginary planes (with equal variances). In case of multiple-coil MRIs (L-coils)

the final image is formed by summing the magnitude images in each coil i.e.

u0(x) =

√√√√ L

∑
l=1
|u0l(x)|2. (2.2)

As already mentioned above, the k-space images are corrupted with data-uncorrelated

Gaussian noise N (0,σ2) in each of their domain, while taking the magnitude data,

summing it from L coils and then taking its square-root makes the noise non-central

Chi distributed (as root of sum of squares of Gaussian distributed random variables are

Chi distributed). The PDF for the Chi distribution is

P(u0|u,σ ,L) =
uL−1

σ2
n

uL
0e

(
−

u2
0+u2

2σ2n

)
IL−1

(
u0u
σ2

n

)
H (u0), (2.3)

where H (u0) denotes the Heaviside function defined as

H (x) =


1 i f x≥ 0

0 elsewhere,

and In(.) is a modified nth−order Bessel function of the first kind (see Fernandez and

Vega (2013)). On the other hand in the background MRI, where the signal to noise

ratio is considerably low i.e. µ/σ2 ≈ 0, the noise is observed to follow a central Chi

distribution with PDF

P(u0|u,σn,L) =
2L−1

Γ(L)
u2L−1

0
σ2L

n
e
−

u2
0

2σ2n H (u0). (2.4)
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When L = 1, (2.3) and (2.4) become Rician distributed with PDF

P(u0|u,σn) =
u0

σ2
n

e

(
−

u2
0+u2

2σ2n

)
I0

(u0u
σ2

)
H (u0) (2.5)

and Rayleigh distributed with PDF

P(u0|u,σ) =
u0

σ2
n

e−
u2
0

2σ2 H (u0), (2.6)

in foreground and background images, respectively. Hereafter let us denote the noise

variance with σ2 instead of σ2
n without losing generality.

2.3 OVERVIEW OF MRI RESTORATION

Many papers have appeared in the recent literature for restoring single-coil magnitude

MR images corrupted by Rician distributed noise, see Fernandez et al. (2009); Fernan-

dez and Vega (2013). In Manjo et al. (2008), the model uses the non-local means(NLM)

algorithm for restoring magnitude MR images, assuming the noise as a data indepen-

dent Gaussian. A variational approach has been introduced in Liu et al. (2014) using

the MAP estimation model for Rician distributed noise. A Variance Stabilization Trans-

form (VST) makes the data un-correlated and subsequently unbiased, making it resem-

ble a data-independent Gaussian, see Foi (2011). However, a MAP estimation method

(Liu et al. (2015)) duly considering the noise distribution provides a better restoration

compared to the VST based methods, as the noise distribution is being considered for

removing the noise in the previous case and the data-dependent nature of the noise is

being assumed throughout the restoration process.

While performing the image denoising, preserving of fine structures and edges are

very important for the diagnosis of abnormalities in a medical image. Non-parametric

neighborhood statistical information is being used in Awate and Whitaker (2005) for

restoring MR images. 3D MR denoising is considered in Mukherjee and Qiu (2011),

using local smoothing under non-parametric regression preserves edges and details to

a larger extent. Wavelet based image restoration is commonly done for MR image de-

noising. In wavelet approaches, images are represented in a scale-space domain and the

wavelet hard thresholding is applied to remove unwanted information in the image data

(Wood and Johnson (1999)). An advanced averaging method which replaces each patch

in the image by the mean of similar patches in a search window known as Non-Local
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Means(NLM) has become one of the popular techniques in image denoising (Buades

et al. (2005)). 3D non-local restoration method for MR images can be seen in Chang

et al. (2015). Motivated by the well known Perona Malik anisotropic diffusion model

(Perona and Malik (1990)), Krissian et al. (2005) proposed a similar model for Rician

distributed noise. The coefficient of diffusion of this model is derived based on the Lin-

ear Minimum Mean Square Error (LMMSE) method, proposed by Aja-Fernandez et al.

(2008) for denoising Rician distributed data. One of the common methods followed for

MR image restoration is the bias removal technique(Sijbers and den Dekker (2004)).

Since the magnitude image is formed by squaring and summing the magnitude data, the

Rician distribution yields a constant bias term, i.e. 2σ2, which may be removed easily

(see Sijbers et al. (1999)), i.e:

E(u0) = E(u)+2σ
2. (2.7)

Statistical estimation methods have been proposed for MR image restoration. These

models estimate the parameters using the Maximum Likelihood (ML) estimation and

using these estimated parameters the bias removal is performed by the LMMSE model

to retrieve the uncorrupted approximation of the image (Sijbers and den Dekker (2004)).

Most recently an SNR adapted non-local LMMSE model was also proposed in Golshan

et al. (2013) for MRI denoising and its recursive version can also be seen in the litera-

ture.

There are some models proposed for multiple-coil MR images corrupted by non-

central Chi distributed noise, see Rajan et al. (2012) and Aja-Fernandez et al. (2013).

In Rajan et al. (2012), the authors use an NLM approach to restore the multiple-coil

MR image. The LMMSE approach on the magnitude image of each coil is used to

get the desired output in Aja-Fernandez et al. (2013). Both are statistical models and

they rely on estimating the underlying true signal based on the likelihood estimate of

the non-local neighborhood selected based on the similarity among the pixels (in terms

of the Euclidean similarity measure within the chosen neighborhood). The extended

version of LMMSE with NLM denoising can be seen in Soumya et al. (2016). From

the next section onwards, the formulation of a variational restoration model to handle

multiple-coil MR images is discussed.
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2.4 RESEARCH WORK

Many of the models discussed so far were designed for single coil MR data where

the noise is found to follow a Rician PDF (Fernandez et al. (2009); Fernandez and

Vega (2013)). Nevertheless, there are some initiatives in the direction of multiple-coil

MR data restoration considering non-central Chi distribution (Rajan et al. (2012); Aja-

Fernandez et al. (2013)), but their performance is limited as they tend to neglect the

noise distribution and its data-correlated nature. This motivates us to propose a new

approach to restore the multiple-coil as well as the single coil MR images(since the

non-central Chi distribution becomes Rician distribution when the number of coils is

set to one) duly caring the noise distribution and nature of the noise interference. A

variational approach to denoise the multiple-coil MR image is being discussed in this

chapter. The non-local total variation technique is used as a diffusion term. The fidelity

term is derived using the MAP estimator of the non-central Chi distribution. For the nu-

merical implementation, the split-Bregman iterative method, which is one of the faster

converging schemes, is being used. Further, the condition for uniqueness of the solution

is analyzed in Appendix A.

Non-local methods and their details have already been discussed in the first chapter.

Here, non-local Total Bounded Variation (TBV) norm is being proposed in the place

of non-local TV for a better restoration (Liu and Huang (2011)). The TBV norm is

defined as ‖u‖BV = ‖∇u‖1 +
θ

2 ‖u‖
2
2, where the first term in the expression denotes the

usual TV-norm and θ ∈ [0,1] is a scalar parameter which controls the magnitude of the

two norms on the expression. The TBV norm imposes a constraint on the functional

which ensures that the L2 norm of the image function is minimum along with the TV

norm, which eventually performs better than normal TV while restoring the images.

2.4.1 Energy functional using MAP estimator

The methodology of deriving a MAP estimator by using the PDF of a noise distribution

is explained in the first chapter. MAP estimator for the non-central Chi distribution is
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derived in Appendix B.1. The final formulation is given by,

min
u
{− logP(u|u0)}= min

u

{
(L−1) log(u)+

u2

2σ2 − log
(

IL−1

(u0u
σ2

))
+ γφ(u)

}
.

(2.8)

Now replacing φ(.) with non-local total variation-prior (JNLTV ) we get the energy func-

tional

min
u
{− logP(u|u0)}= min

u

{∫
Ω

(L−1) log(u)+
u2

2σ2 − log
(

IL−1

(u0u
σ2

))
dxdy

+
γ

2
JNLTV (u)

}
. (2.9)

Further considering the special case, when L = 1 or assuming a Rician distribution of

the noise in the data, we get

min
u
{− logP(u|u0)}= min

u

{∫
Ω

u2

2σ2 − log
(

I0

(u0u
σ2

))
dxdy

+
γ

2
JNLTV (u)

}
. (2.10)

Now considering the JNLTV (u) as the non-local bounded variation scheme and omitting

the -log function from the LHS of above equation (since it is a monotonic function), we

get the functional in the form,

min
u

P(u|u0) = min
u

{
(L−1) log(u)+

u2

2σ2 − log
(

IL−1

(u0u
σ2

))
+

γ

2

(
‖∇NLu‖1 +

θ

2
‖u‖2

2

)}
. (2.11)

When we consider the image u which is corrupted by linear blur with the Gaussian

blurring kernel K, the above equation becomes,

min
u

P(u|u0) = min
u

{
(L−1) log(Ku)+

(Ku)2

2σ2 − log
(

IL−1

(
u0Ku
σ2

))
+

γ

2

(
‖∇NLu‖1 +

θ

2
‖u‖2

2

)}
. (2.12)

The above equation can be solved using Gradient descent time marching scheme, but it

takes a long time to converge. Here, the split Bergman approach is being used for faster

convergence.

2.4.2 Split-Bregman Iteration Method

The Bregman iteration is a technique used for solving of unconstrained minimization

problems which is given below,

min
u

J(u) subject to H(u) = 0, (2.13)
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Figure 2.3 The Bregman distance Dp
J (ũ,v) (image courtesy, Getreuer (2012a))

where J and H are convex functionals defined on Hilbert space. More details about

analysis and applications can be seen in Bregman (1967) , Osher et al. (2005) ,

Wotao et al. (2008) and Jia et al. (2009) . The assumption is, there exists a minimizing

of H for H(u) = 0 and J(u)< ∞. The main idea used here is the Bregman distance. The

diagram in Figure 2.3 gives the visual definition of the Bregman distance. The Bregman

distance is defined as,

Dp
J (u,v) := J(u)− J(v)−〈p,u− v〉, p ∈ ∂J(v). (2.14)

The Bregman distance compares the value of J(u) with tangent plane J(v)+ 〈p,u−

v〉. Figure (6) shows the distance in one-dimension. The curve denotes J(u) and the

line is tangent to the plane J(v)+〈p,u−v〉. ∂J is sub differential of J, (for more details

see Lemarechal and Hiriart Urruty (1996)) which is defined as

∂J(v) :=
{

p : J(u)≥ J(v)+ 〈p,u− v〉∀u
}
. (2.15)

Bregman distance is not symmetric. It satisfies following definitions and convexity of J

(refer Osher et al. (2005)).

• Dp
J (v,v) = 0.

• Dp
J (u,v)≥ 0.

• Dp
J (v,v)+Dp̃

J (v, ṽ) = 〈p− p̃,v−u〉.

Considering a starting point u0, and setting parameter λ > 0, minimizing functional of
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Bregman iteration will be (see Bregman (1967)),

uk+1 = arg min
u

Dpk

J (u,uk)+λH(u), pk ∈ ∂J(uk). (2.16)

This gives,

uk+1 = arg min
u

J(u)−〈pk,u−uk〉+λH(u). (2.17)

Goldstein and Osher (2009), considered H(u) = λ

2 ||Au− b||22. Where A is a linear

operator and b is a vector. The simplified iteration scheme is as follows,

uk+1 = arg min
u

J(u)+
λ

2
||Au−bk||22, (2.18)

bk+1 = bk +b−Auk. (2.19)

The considered minimization functional for diffusion was, J(u) =
∫

Ω
φ(u)dxdy (as de-

tailed in the section 1.5.1), which can be any regularizer (such as TV minimization) and

the minimization problem defined is,

min
u,d
‖d‖1 +H(u) subject to d = φ(u). (2.20)

Using (2.18) and (2.19), the split-Bregman iteration scheme is given as follows,

(uk+1,dk+1) = arg min
u,d

‖d‖1 +H(u)+
λ

2
||d−φ(u)−bk||22, (2.21)

bk+1 = bk +(φ(uk+1)−dk+1). (2.22)

u and d in (2.21) can further be split as follows,

uk+1 = arg min
u

H(u)+
λ

2
||d−φ(u)−bk||22, (2.23)

dk+1 = arg min
u
‖d‖1 +

λ

2
||d−φ(u)−bk||22. (2.24)

The generalized split-Bregman iterative algorithm is given in Algorithm 1.
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Algorithm 1 split-Bregman Algorithm
Input: Noisy image: u0.
Output: Restored image: u.

1: Initialize λ , tol = 10−4.
2: while do||uk−uk−1||2 > tol
3:
4: for do n = 1 to N
5: uk+1 = arg min

u
H(u)+ λ

2 ||d−φ(u)−bk||22
6: dk+1 = arg min

d
‖d‖2 +

λ

2 ||d−φ(u)−bk||22
7: end for
8: bk+1 = bk +(φ(uk+1)−dk+1)
9: end while

2.4.3 Formulated model using split-Bregman iteration scheme

In the numerical implementation, the proposed model is derived for the two degradation

scenarios,

• case 1: Image corrupted with noise (Blurring operator K is set to identity).

• case 2: Image corrupted with noise and linear shift-invariant blur.

Case 1: First let us consider the degraded image without blur. So the energy func-

tional in (2.11) must be solved using split-Bregman iteration scheme. The total BV

norm was used for image restoration with split Bergman iteration scheme for additive

noise in Liu and Huang (2011). Since we deal with multiple-coil MR data, the denois-

ing mechanism for the non-central Chi distributed noise is being detailed. The revised

formulation under the total BV norm appears as

min
u∈BV (Ω)

{∫
Ω

(L−1) log(u)+
u2

2σ2 − log IL−1

(u0u
σ2

)
dxdy

+
∫

Ω

γ

2

(
‖∇NLu‖1 +

θ

2
‖u‖2

2

)
dxdy

}
. (2.25)

Let us define

H(u), ∑

(
(L−1) log(u)+

u2

2σ2 − log IL−1

(u0u
σ2

))
,

for a discrete image let us drop the integration and assume a summation (without loosing

the generality, we are further dropping the summation sign to avoid abuse in notation
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and attaching the regularization parameter γ with the data fidelity H) and adding the

constraint z = u as the penalty term, this gives

min
z

{
γ

2
H(u)+‖∇NL z‖1 +

θ

2
‖z‖2

2 +
β

2
‖z−u‖2

2

}
, (2.26)

where β ∈ [0,1] is a scalar parameter.

(zk+1,uk+1), arg min
z,u

{
γ

2
H(u)+‖∇NL z‖1 +

θ

2
‖z‖2

2 +
β

2
‖z−u‖2

2

}
. (2.27)

Now splitting the above expression into two sub-problems we get u− subproblem and

z− subproblem, respectively i.e,

min
u

{
γ

2
H(u)+

β

2
‖z−u‖2

}
, (2.28)

and

min
z

{
‖∇NL z‖1 +

θ

2
‖z‖2

2 +
β

2
‖z−u‖2

2

}
. (2.29)

Further adding the constraint d = ∇NL z in the above z− subproblem gives

min
z,d

{
‖d‖1 +

θ

2
‖z‖2

2 +
β

2
‖z−u‖2

2 +
λ

2
‖d−∇NL z−bk+1‖2

2

}
, (2.30)

where bk+1 = bk− (dk+1−∇NL zk+1) and λ ∈ [0,1] is a scalar parameter. By further

splitting the above problem into two subproblems we have (d− subproblem and z−

subproblem, respectively)

min
d

{
‖d‖1 +

λ

2
‖d−∇NL z−bk+1‖2

2

}
, (2.31)

and

min
z

{
θ

2
‖z‖2

2 +
β

2
‖z−u‖2

2 +
λ

2
‖d−∇NL z−bk+1‖2

2

}
. (2.32)

Now taking the first variation of the above functional with respect to z gives

zk+1 =
1

(θ I +β I−λ∆NL)
(βu+λ∇NL.(d−bk)), (2.33)

and using Gauss-Seidel method (as θ I + β I− λ∆NL is diagonally dominant and ∆NL

is the graph Laplacian which is positive semi-definite) we get solution for z. The d−

subproblem can be solved using the shrinkage operator as:

dk+1 =
∇NL z+bk

|∇NL z+bk|
max

(
|∇NL z+bk|− 1

λ
,0
)
, (2.34)

and u subproblem is solved using the Newtons method (un+1 = un− f (x)/ f ′(x)). With

these formulations we can solve the optimization problem in (2.25) with split-Bregman

scheme in an efficient manner.

Case 2: In the energy functional in (2.12) the image is considered with a linear blur.

Split-Bregman deconvolution scheme for the Gaussian additive noise can be seen in
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Zhang et al. (2010). Here, denoising and deblurring mechanisms are simultaneously

done for the non-central Chi distributed noise. The revised formulation under the TBV

norm appears as

min
u∈BV (Ω)

{∫
Ω

(L−1) log(Ku)+
(Ku)2

2σ2 − log IL−1

(
u0Ku
σ2

)
dxdy

+
∫

Ω

γ

2

(
‖∇NLu‖1 +

θ

2
‖u‖2

2

)
dxdy

}
. (2.35)

Let us define

H(u), ∑

(
(L−1) log(Ku)+

(Ku)2

2σ2 − log IL−1

(
u0Ku
σ2

))
.

Image having both blur and noise can be restored by using the modified version of

minimization problem defined in Zhang et al. (2010) as follows

vk+1 = uk−δH ′(u), (2.36)

uk+1 = arg min
u

{
‖∇NLu‖1 +

θ

2
‖u‖2

2 +
1

2δ
‖u− vk+1‖2

2

}
, (2.37)

f k+1 = f k +u0−Kuk+1, (2.38)

where δ is a constant. By using the above constraint and putting a constraint d = ∇NLu,

let us define the new unconstrained minimization problem

(uk+1,dk+1) = arg min
u,d

‖d‖1 +
λ

2
‖u− v‖2

2 +
µ

2
‖d−∇NLu−bk+1‖2

2, (2.39)

where λ = 1/δ and

bk+1 = bk +(∇NLu−dk+1). (2.40)

Further the above problem can be split into two subproblems

u-subproblem

min
u

λ

2
‖u− v‖2

2 +
θ

2
‖u‖2

2 +
µ

2
‖d−∇NLu−bk+1‖2

2, (2.41)

d-subproblem

min
d
‖d‖1 +

µ

2
‖d−∇NLu−bk+1‖2

2. (2.42)

Now the taking the first variation of u in the above u-subproblem, we have:

0 = λ (u− v)+θu+µ∇NL(d−bk)−µ∆NLu, (2.43)

uk+1 =
λv−µ∇NL(d−bk)

(λ +θ)I−µ∆NL
, (2.44)

since the matrix (I−∆NL) is diagonally dominant one can opt Gauss-Seidel method for

solving it. Similarly, the d-subproblem can be solved using the shrinkage operator as
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follows:

dk+1 = shrink(∇NLu+bk,1/µ),

where

shrink(x,y) =
x
|x|
∗max(|x|− y,0). (2.45)

Now considering a non-local TV in place of normal TV we can rewrite the above sub-

problems by just replacing ∇ and ∆ with ∇NL and ∆NL, where ∇NL and ∆NL denotes the

non-local gradient and Laplacian (as already defined earlier), respectively.

2.4.4 Algorithm for the proposed scheme

Case 1: The split-Bregman iterative algorithm for multiple-coil MRI corrupted with

Chi noise distribution (without blur) is detailed below

Algorithm 2 Split-Bregman algorithm for non-central Chi distributed noise.
Input: u0← Image corrupted by Chi noise distribution.
Output: Restored image u.

1: Initialize all parameters λ , β , γ etc.
2: Initialize u0, z0, d0 and b0

3: while do not converged
4: Solve the z− subproblem to get zk+1 using (2.32) (Gauss-Seidel Method)
5: Solve the d− subproblem to get dk+1 using (2.31) (Shrinkage Operator)
6: Solve the u− subproblem to get uk+1 using (2.28) (Newtons method)
7: bk+1 = bk +(∇NL z−dk+1)
8: end while

Case 2: The algorithm for the proposed MR image restoration scheme for the non-

central Chi distributed noise with linear blur can be stated as follows

2.5 EXPERIMENTAL RESULTS

For the testing purpose, the images being used are downloaded from the Brain Web

(URL: htt p : //brainweb.bic.mni.mcgill.ca/brainweb/selection_normal.html). To check

40



Algorithm 3 Split-Bregman algorithm for non-central Chi distributed noise and linear
blur.

Input: u0← Image corrupted by Chi noise distribution.
Output: Restored image u.

1: Initialize k = 1,u1 = u0,u0 = 0, f 1 = u0.
2: while do |u

k−uk−1|
|uk| ≥ ε

3: vk+1 = vk−δH ′(u)

4: uk+1 = λvk+1−µ∇NL(d−bk)
(λ+θ)I−µ∆NL

5: f k+1 = f k +u0−Kuk+1

6: dk+1 = shrink(|∇NLu+bk|,1/µ)
7: bk+1 = bk +(∇NLu−dk+1)
8: uk = uk+1, k← k+1
9: end while

the restoration capability of our restoration model, three types of MR images have

been considered, namely MRI T1-Weighted, T2-Weighted and PD-Weighted. The slice

thickness is selected as 3mm. The intensity values are transformed to the range [0,1]

(or normalized) for all test images. The non-central Chi distributed data is generated

in the multiple-coil setup. We have tested all recent and relevant methods proposed for

MRI noise removal(both for single and multiple-coil MR data) in the literature. Most

of the methods in the literature works well for the single coil MR images which contain

Rician distributed noise. When we tried to apply those methods for the multiple-coil

MR images, the outcome was not as good as single coil case. The noise distribution in

foreground data is observed as Chi and background is Rayleigh. Since background is

zero SNR region we focus on the foreground region where the noise is non-central Chi

distributed. The noise parameters for original MR images can be estimated from the

zero SNR background region where the signal contribution is negligible. The magni-

tude of the image formed in k−space for each coil(total number of coils=6) can be seen

in Figure 2.4. The final magnitude image is formed using SoS (sum of square) of the

magnitudes (or CMS) at each coil. The magnitude images used for testing are shown

in its original form in Figure 2.5. For the comparison purpose, mainly six models from

the literature have been chosen, which are shown below,

• Model 1: LMMMSE by Aja-Fernandez et al. (2008)

• Model 2: variance stabilization for Rician by Foi (2011)
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coil 1 coil 2 coil 3

coil 4 coil 5 coil 6

Figure 2.4 Brain MRI from BrainWeb, 17th slice with 3mm thickness, simulated as
multiple-coil with 6 coils. Above figure shows magnitude of image in k-space

• Model 3: non-local TV by Liu et al. (2015)

• Model 4: non-local means for Rician by Manjo et al. (2008)

• Model 5: LMMSE for multiple-coil MRI by Aja-Fernandez et al. (2013)

• Model 6: non-local filtering for multiple-coil MRI by Rajan et al. (2012)

Parameters used in each algorithm to get the optimum results in terms of visual percep-

tion are given in Table 2.1. Results of comparison for single coil MR images without

blur are given in Figure 2.8 and with the linear blur are given in Figure 2.9. For multiple-

coil MR images without blur, results of various methods are given in Figure 2.10 and

the results for both the noise and blurry images are given in Figure 2.11 . The results

shown in terms of figures highlight the restoration capability of the proposed model,

as evident from these figures, the model has restored the data with due respect to the

structures, edges, and details present in it. Moreover, the blurring effects are reduced

considerably in the proposed strategy.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 2.5 Images (a), (b), (c), (d) and (e) in their original form (magnitude image gen-
erated from 8 coils using Sum of Squares (SoS)) used for testing and (f), (g) highlighted
portions of the image (in red rectangular representation) enlarged after applying various
restoration methods

To show that the proposed model works efficiently compared to other models, a

quantification is necessary, so a statistical analysis is performed. Let us consider two

common image statistical metrics: SNR and SSIM (see Section 1.8 for more details).

Table 2.2 (for the noisy image) and Table 2.3 (for the image with noise and blur) shows

the SNR values calculated for various Rician restoration models considered and the

proposed one. In the similar way, Table 2.4 and 2.5 shows the SSIM values calculated

for different models with the proposed scheme.
Table 2.6 (for noisy image) , Table 2.7 (image with noise and blur) and Table 2.8

(image with non-central Chi distributed noise), Table 2.9 (image with non-central Chi

distributed noise and blur) shows the SNR and SSIM comparison of the proposed model

with Model 5 and Model 6 respectively. The performance of the proposed model is su-

perior to the other comparative ones in terms of SSIM values, therefore the model has

retained structures and details present in the data while performing the restoration. As

we can observe in Table 2.2, which shows the results of SNR evaluated for the degra-

dation model in case-1, the SNR for other methods are higher than the proposed model,

this is because the proposed model is designed to handle non-central Chi distribution,

whereas the noise distribution in single-coil MR images is Rician. Therefore, the mod-
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els designed for Rician distribution performs better noise elimination than the proposed

one. But the proposed scheme shows the better structural preserving capability, which

is evident in Table 2.4. However, for case-2 degradation model, the proposed model

gives better results for both SNR and SSIM irrespective of coil count.
An enlarged portion of the MR image from Figure 2.5 (f) (highlighted using a RED

rectangle) is shown in Figure 2.6 and 2.12 for Rician and Chi noise distributions (i.e,

single and multiple-coil MR data) respectively. The expanded portion of MR image

from Figure 2.5 (g) is shown in Figure 2.7 and 2.13 for Rician and Chi noise distribu-

tions with linear blur respectively. As all the resultant images are enlarged, the structural

and edge preservation capability of the proposed model is evident. The split-Bregman

solver employed here makes the iterative model to converge in 3 to 5 iterations, whereas

the other models take at least 15 to 20 iterations. The gradient descent approach takes

minimum 50 iterations to give the desired result. The fast converging capability of the

proposed model makes it suitable to employ for real-time imaging applications. The

uniqueness of the solution is analyzed in Appendix A.3, which completes the theoreti-

cal analysis.

2.6 Summary

A restoration model has been devised in this chapter to handle the data-dependent Chi

distributed noise, which is one of the pertinent needs in the field of medical MR imag-

ing. For the single coil case, average SNR of Model 1 and Model 4 are 23.17 and 24.3

respectively, which are higher than the other models. Model 1 uses a MAP estimation

of the Rice distribution for deriving the data fidelity term and a TV functional is used

as a regularizer. The higher SNR value (on an average) of the model is justified by the

magnitude of diffusion, which eventually results in smooth structures while penalizing

the details. Therefore, the average SSIM value (i.e, 0.54) is slightly on the lower side.

Model 4 uses NLM method which is efficient in both smoothing and edge preserving,

so results in a better value of SNR (average of 24.3) as well as SSIM (average of 0.61).

Since, the noise is considered as data independent, the average SSIM is less than the

proposed one. Model 2 stabilizes the variance of the data, making it independent of the

noise. Subsequently, a restoration model for additive white Gaussian noise is employed
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Table 2.1 The parameter values used for various methods.

Parameter Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Proposed
λ - 0.1 - - - - 70
δ - - - - - - 30
∆t - 0.25 0.25 - - - -
γ - - 0.02 - - - 0.02
β - - 0.5 - 17.5

Search patch size - - - 5 - 3 -
Search window size 7 - - 7 7 5 -

to retrieve the final data. This causes high smoothing effect and gives better average

SNR value of 22.36, but the fine edges and structures are penalized severely and thus

results in average SSIM of 0.55. Model 3 and the proposed model gives similar aver-

age SNR (21.51 and 21.59 respectively) as well as SSIM (0.8). This is due to the fact

that, Chi PDF becomes Rician PDF when the coil count is one, causing the restoration

models to perform similar. Model 5 uses LMMSE method which uses the mean of local

patches to minimize the mean square error which eventually reduces the noise, resulting

in the average SNR of 19.51 and better average SSIM of 0.71. Nevertheless, the noise

distribution is neglected in this model, thus results in inferior performance compared to

the proposed model. Meanwhile, Model 6 extends NLM method to multiple coil case,

resulting in better smoothing (average SNR of 20.17) but below average performance in

preserving fine details (average SSIM of 0.63). The proposed one uses the noise PDF to

derive the restoration model and uses the efficient NLTBV diffusion scheme that helps

in achieving a better approximation to the desired data. The average SNR of 20.12 and

average SSIM of 0.77 produced by the proposed model shows that it outperforms the

other models.

The next chapter deals with the restoration of data-correlated Rayleigh noise, which

commonly occurs in ultrasound and SAR imaging applications.
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(a) (b) (c) (d)

(e) (e) (f)

Figure 2.6 (a) Original PMRI Image (b) Image with Rician noise sigma=25, SNR=13.47
(c)Model 1, SNR=17.89 (d)Model 2, SNR=18.62 (e) Model 3, SNR=16.45 (f) Model 4,
SNR=20.57 (g) The proposed model, SNR=15.09

(a) (b) (c) (d)

(e) (f) (g)

Figure 2.7 (a) Original MRI test Image (b) Image with Rician noise of variance=18, blur
of sigma=2.0, SNR=15.10 (c)Model 1, SNR=17.13 (d)Model 2, SNR=16.97 (e) Model 3,
SNR=15.23 (f) Model 4, SNR=15.92 (g) The proposed model, SNR=17.23
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(a) (b) (c) (d)

Figure 2.8 Row 1:(a), (b) and (c) are noisy images corrupted by Rician noise and (d) Real
MRI image; Rows 2,3,4,5 and 6: show image restored using Model-1, Model-2, Model-3,
Model-4 and The proposed model
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(a) (b) (c) (d)

Figure 2.9 Row 1:(a), (b) and (c) are noisy images corrupted by Rician noise and linear
blur, and (d) Real MRI image; Rows 2,3,4,5 and 6: show image restored using Model-1,
Model-2, Model-3, Model-4 and The proposed one
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(a) (b) (c) (d)

Figure 2.10 Row 1:(a), (b) and (c) are noisy images corrupted by Non-central Chi distribu-
tion and (d) Real Multiple-coil Magnitude image of 6-coils. Rows 2,3 and 4: show image
restored using Model-5, Model-6 and The proposed model
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(a) (b) (c) (d)

Figure 2.11 Row 1:(a), (b) and (c) are noisy images corrupted by Non central Chi distribu-
tion with 8 coils and linear blur, (d) Real Multiple-coil Magnitude image of 8-coils. Rows
2,3 and 4: show image restored using Model-5, Model-6 and The proposed model
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(a) (b) (c)

(d) (e)

Figure 2.12 (a) Original PMRI Image (b)Image with multiple-coil Chi noise sigma=75,
coils=6, SNR=18.74 (c) Model 5, SNR=19.3 (d) Model 6, SNR=19.29 (e) The Proposed
model, SNR=20.3

(a) (b)

(c) (d) (e)

Figure 2.13 (a) Original PMRI Image (b)Image with multiple-coil-Chi noise sigma=45,
coils=8, blur of sigma=1.2 and SNR=16.8 (c) Model 5, SNR=26.26 (d) model 6,
SNR=25.01 and (e) Proposed model, SNR=25.45
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Table 2.6 SNR tabulated for the multiple-coil data (Chi-distributed noise) of different mod-
els considered in this chapter for noise variance (40,75), respectively

Image name Sigma No. of coils Noisy Model 5 Model 6 Proposed

Synthetic
40 6 13.47 18.99 16.87 15.44
75 2 13.54 17.59 15.37 17.15

Phantom MRI
40 6 20.72 18.27 23.14 21.5
75 2 18.74 19.15 20.21 20.3

MRI T1w
40 6 21.71 21.27 20.51 23.44
75 2 15.34 19.88 19.06 20.84

Table 2.7 SNR tabulated for the multiple-coil data (Chi-distributed noise and linear blur)
of different models considered in this chapter for noise variance (45,65) and Gaussian blur
with sigma (1.2,1.8) and 8 coils respectively

Image name Sigma Blur Noisy Model 5 Model 6 Proposed

Phantom MRI
45 1.2 14.89 28.17 23.35 24.61
65 1.8 15.66 24.98 24.36 25.91

Synthetic
45 1.2 14.74 23.32 26.53 25.97
65 1.8 15.59 18.06 25.59 24.45

MRI T1w
45 1.2 16.8 26.26 25.01 25.45
65 1.8 17.73 26.87 24.45 26.59

Table 2.8 SSIM tabulated for the multiple-coil data (Chi-distributed noise) of different
models considered in this chapter for noise variance (40,75), respectively

Image name Sigma No. of coils Noisy Model 5 Model 6 Proposed

Synthetic
40 6 0.14 0.72 0.46 0.67
75 2 0.1 0.79 0.36 0.78

Phantom MRI
40 6 0.65 0.65 0.66 0.82
75 2 0.49 0.57 0.63 0.79

MRI T1w
40 6 0.64 0.78 0.77 0.83
75 2 0.38 0.73 0.71 0.72

Table 2.9 SSIM tabulated for the multiple-coil data (Chi-distributed noise and linear blur)
of different models considered in this chapter for noise variance (45,65) and Gaussian blur
with sigma (1.2,1.8) and 8 coils respectively

Image name Sigma Blur Noisy Model 5 Model 6 Proposed

Phantom MRI
45 1.2 0.24 0.7 0.64 0.72
65 1.8 0.31 0.66 0.69 0.7

Synthetic
45 1.2 0.2 0.42 0.41 0.52
65 1.8 0.21 0.34 0.38 0.48

MRI T1w
45 1.2 0.28 0.72 0.7 0.75
65 1.8 0.34 0.68 0.65 0.74
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Chapter 3

NON LOCAL TOTAL VARIATION
REGULARIZATION MODELS FOR
RESTORING RAYLEIGH NOISE

3.1 INTRODUCTION

Restoration of images under data-correlated noise distribution is a challenging task.

To model an efficient method to restore such kind of distortion, one has to consider

the noise distribution that corrupts the image data (see Rudin et al. (1992); Weickert

(1997); Milanfar (2013) for more details). Most of the practical imaging modalities

produce data-correlated noise. This had been a matter for concern over the last cou-

ple of decades. For these kinds of noise models, Variance Stabilization Transformation

(VST) and MAP restoration models are more popular in the literature. VST stabilizes

the variance; subsequently, the data gets transformed to a domain where the samples

are uncorrelated. The MAP estimation techniques maximize the posterior probability

of the data and in the sequel, it gives an energy functional whose minimum is the de-

sired solution. VST methods have been proposed for Poisson and Poisson-Gaussian

noise distributions in Azzari and Foi (2016); Makitalo and Foi (2013a), respectively. A

similar analysis is done for data-dependent Rician distribution as well, see Foi (2011).

For Rayleigh distributed noise, VST combined with non-local TV is proposed by Mäk-

italo et al. (2010). MAP estimation methods are also proposed for Gaussian, Gamma,

Poisson and Rican distributions by Rudin et al. (2003); Aubert and Aujol (2008); Le

et al. (2007); Liu et al. (2015), respectively. In these works, an energy functional is
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being derived based on maximizing the posterior probability of the density function.

The total variation prior is being assumed in the aforementioned works. In this chapter,

an image restoration model has been introduced, which can remove the data-correlated

multiplicative noise whose PDF is Rayleigh distributed. Such kinds of high amplitude

multiplicative noise fluctuations are also known as speckles. In the next section, we

highlight some speckle reduction techniques cited in the recent literature.

3.1.1 Speckle reduction in brief

There are some models proposed for restoring images under data-correlated speckle

noise (following a Gamma distribution) Aubert and Aujol (2008); Yu and Acton (2002);

Krissian et al. (2007); Fernandez and Lopez (2006); Suna et al. (2004); Bini and Bhat

(2014). Similar studies are reported for Rayleigh noise removal as well in the liter-

ature. An NLTV model to restore Rayleigh data has been proposed in Shuai et al.

(2015). Thresholding in the transformed domain (such as wavelet, Fourier etc) reduces

the noise remarkably, which has been done in Sarode and Deshmukh (2011). Yahya

et al. (2014) derived a linear optimal estimator, which helps to reduce speckle noise

while preserving fine structures. Maximum likelihood bilateral filter to restore ultra-

sound images corrupted by Rayleigh noise was proposed by Li et al. (2017). However,

not much extensive analysis relating to the Rayleigh distribution has been done in the

literature. Besides, none of the models proposed so far for the Rayleigh noise distri-

bution (which use the fast solver such as split-Bregman scheme) consider the linear

blurring artefacts along with the noise. Further, as observed in some previous works,

the ultrasound (US) and Synthetic Aperture Radar (SAR) data are generally corrupted

by speckles (granule-like structures) and at a high scatter density these speckles are

found to follow a Rayleigh distribution Jin and Yang (2011b). This motivates us, to

propose an efficient model to overcome the Rayleigh distributed speckles commonly

found in US and SAR imagery.

3.1.2 Ultrasound image

Ultrasound is a sound wave with frequency higher than those audible to humans (>

20,000 Hz). In medical diagnosis, ultrasound imaging is one of the common and harm-
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less techniques. In this method, images of human internal body structures such as

tendons, muscles, joints, blood vessels, and internal organs are formed. Firstly, pulses

of ultrasound (using a transducer) are passed into internal body tissues. From these

different kinds of tissues, various echoes are recorded and displayed as an image to

the viewer. The transducer contains an array of individual ultrasound sources and the

frequency of sound waves is usually between 1 to 15 MHz (Smith and Webb (2010)).

During the acquisition process, these probes produce parallel beam of ultrasound waves

which are passed through the section of a human body. When the ultrasound is passed

through the boundary of a tissue, it reflects a small amount of sound energy, which is

further recorded by the transducer. Depending on the time gap between releasing and

capturing of the signal, the distance to each tissue boundary is calculated, hence the

methodology is similar to the radar techniques. Due to the constructive and destructive

interference of sound waves, the pattern of dark and white dots are seen in the resultant

image, which is speckle in nature (Abbott and Thurstone (1979)). Figure 3.1 shows the

mechanism of ultrasound imaging. The sound travels through a tissue with the speed of

1540 meters per second approximately, hence the acquisition of an entire image takes

place within the fractions of a second.

Applications

Among all the medical imaging techniques ultrasound is widely used and least ex-

pensive. It can be done with lower or no safety concerns. The applications include

morphology, blood flow measurements, to form structural informations etc. Due to

the technological improvements in both software and hardware, the ultrasound image

quality has been improved drastically in past decade. However, the images formed by

ultrasound system are still speckled.

3.1.3 Synthetic Aperture Radar image

Normal digital cameras use light sensors to form the image of an object placed at a

small distance from the camera. But in case of satellite imaging the object is far away

from the camera, hence the sensors should be strong enough to capture remote objects.

Such imaging methodology is called as the remote sensing (Lillesand et al. (2014)),
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Figure 3.1 Ultrasound imaging mechanism (image courtesy: Smith and Webb (2010))

which uses Light Detection and Ranging (LiDAR) to form an image of the earth sur-

face. There are mainly two types of LiDAR systems: active and passive. Radio signals

are transmitted to the target object/area to form an image using the reflected response

waves in case of an active LiDAR, whereas a passive LiDAR records the echoes of

the sunlight, hence it works only during the daytime. Synthetic Aperture Radar (SAR)

imaging uses a RADAR (RAdio Detection And Ranging) to form an image of the earth

surface. Between the two types of LiDAR systems, SAR falls in the category of active

LiDAR system. In the SAR system, successive pulses of radio waves are transmitted

to the target land and echoes are recorded, which will vary depending on the particles

which the rays are hit (Chan and Koo (2008)). These recorded waves are converted into

the desired image. Hence, in SAR imagery the image can be formed at any time and

any weather conditions. A basic radar system contains a switch, antenna, transmitter,

receiver and recorder as shown in Figure 3.2. Switch is connected to both the antenna

and the receiver, helps in sending a pulse through the antenna as well as receiving an

echo by the receiver. An electromagnetic wave is sent to the target land and the reflected

waves are collected back by the antenna which is transmitted to the receiver. As the size

of the antenna is bigger, more data can be collected in one capture. Further, these re-

sponse waves are converted into a digital form and recorded by the recorder. These

stored data are further processed to form a digital image. The electromagnetic signals

transmitted from the antenna have the least effect of surroundings, but the received

signals vary due to scattering of waves on the hitting object, varying depth of earth’s
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Figure 3.2 Block diagram of SAR imaging system (image courtesy: Chan and Koo (2008)).

surface and movement of the antenna. Random fluctuations in the returned signal due

to these reasons cause noise in the formed image which is speckled in nature(Porcello

et al. (1976)).

Applications of SAR

SAR is the widely used imaging system in satellite imagery. Tracking of movement of

ships on the ocean can be done using SAR imaging. Also, illegal or accidental oil spills

in an ocean by the ships or industries can be detected by the radars. At the high latitudes,

SAR imaging helps to determine the ice formation which helps in navigation. weather

forecasting such as cloud movements can be well determined by SAR imaging. On the

land, SAR imaging helps in finding suitable land for forestry and agriculture purposes.

Due to the wide variety of applications, the image enhancement is crucial for proper

analysis in SAR imaging. From the next section onwards the formulated speckle reduc-

tion method is explained.

3.2 RESEARCH WORK

In this section, three models are being introduced for restoring images corrupted by

data-correlated Rayleigh noise and linear blurring artefacts. The first one is based on

the variance stabilization transform, which transforms the data to a domain where the

noise variance is constant. The second and third models are based on the variational

framework whose energy functional is designed based on the MAP estimator of the
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noise PDF. The first among them uses a non-local total variational regularization prior

whereas the second one uses a non-local total bounded variational regularization prior.

Fast numerical solver using the well-known split-Bregman iterative scheme is proposed

for the implementation. The condition for the existence of a unique minimizer is an-

alyzed in Appendix A.4. A detailed experimental analysis is carried out using various

statistical metrics.

3.2.1 Variance stabilizing transform for Rayleigh distribution

Stabilization of the variance makes the noise uncorrelated with the data. Subsequently,

the distribution approaches an additive Gaussian. The main idea behind stabilizing

the variance is, defining a transform function that makes the variance a constant in

the transformed domain. This function is assumed to be monotonic. Here a variance

stabilization transform for Rayleigh noise has been derived as in Mäkitalo et al. (2010).

Model I

Let us assume Y be a random sample selected from a Rayleigh distribution having the

probability density function (PDF)

p(x;σ) =
x

σ2 e−
x2

2σ2 , (3.1)

where σ > 0 is the scale parameter and x ∈ [0,∞). The mean of the PDF is

µ = σ

√
π

2
(3.2)

and variance

var(Y ) = g(µ) =
(

4−π

2

)
σ

2. (3.3)

Let h(Y ) be a monotonic function which transforms the data to a domain in which the

variance is constant. By using Taylor expansion, one can write

h(Y ) = h(µ)+h′(µ)(Y −µ), (3.4)

(h(Y )−h(µ))2 = (h′(µ))2(Y −µ)2, (3.5)

var(h(Y )) = (h′(µ))2var(Y ). (3.6)

Since the variance is one in the transformed domain i.e. var(h(Y )) = 1, from the above

expression we have,

h′(µ) = 1/
√

g(µ). (3.7)
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In case of a Rayleigh distribution, the mean and variance are given in (3.2) and (3.3),

respectively. So

g(µ) = 2σ
2−µ

2, (3.8)

substituting σ2 = (2/π)µ2 in the above expression we get

g(µ) =
(

4−π

π

)
µ

2. (3.9)

Let us define C = 4−π

π
, so we have

h′(µ) =
1√
Cµ

, (3.10)

therefore

h(µ) =
1√
C

log(µ). (3.11)

In general the forward VST is

h(u) =
1√
C

log(u), (3.12)

where u denotes the input data. Let us define h(u) = D, the transformed input, in which

the variance is stabilized. Now the noise is un-correlated with data, in the sequel the

distribution resembles an additive Gaussian distribution. Therefore, we can apply the

models proposed for additive Gaussian noise to remove the data-independent noise from

the image. Here, a non-local TV model by Gilboa and Osher (2008) is used along with

split-Bregman iteration scheme for restoring images while preserving the local gradient

variations in the image. Now the restoration is performed in the transformed domain,

therefore the data has to be transformed back to the original domain by the inverse

variance stabilizing transform. An algebraic inverse for the VST can be written as

û = eh(u)
√

C, (3.13)

where û is the restored version of the data.

3.2.2 The formulated variational models for Rayleigh distributed
noise

Variational methods, non-local regularizers, and their features have already been dis-

cussed in the Section 1.5. The variational approaches for data independent noise models

have been already discussed in previous chapters. Moreover, non-local TV based meth-

ods using split Bergman formulation are proposed for additive as well as multiplica-

tive noise set-ups, see Getreuer (2012b); Dong et al. (2012), respectively. Precisely,

in Dong et al. (2012) the authors consider a multiplicative Gamma noise distributed
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image from ultrasound and radar applications. In this section, models to handle data-

dependent multiplicative Rayleigh noise distribution along with linear blurring artifact

that are commonly found in ultrasound medical images and radar images (due to the

image averaging process) are introduced. Two non-local variational frameworks have

been designed for restoring images from Rayleigh distributed noise and linear blurring

defects. The PDF for a Rayleigh distribution was given in (3.1).

Model II

The energy formulation for a Rayleigh distribution from the MAP estimate can be writ-

ten as: (see Appendix B.2 for the derivation of the MAP estimate)

min
u

{∫
Ω

(
u2

0
2u2 +2logu

)
dxdy+

λ

2

∫
Ω

φ(u)dxdy
}
. (3.14)

Assuming regularization as JNLTV (u) (see Seciton 1.5.3), we can rewrite the above ex-

pression as

min
u

{∫
Ω

(
u2

0
2(u)2 +2log(u)

)
dxdy+

λ

2
JNLTV (u)

}
. (3.15)

Let us define H(u)= u2
0

2(u)2 +log(u), for denoising problem and H(u)= u2
0

2(Ku)2 +log(Ku),

for denoising and deblurring problem. Here Ku denotes a linear convolution of Gaus-

sian kernel K with image u, as linearity and shift invariance is assumed for the operator

K under the Fredholm’s first kind integral equation. The gradient descent equation for

(3.15) is:

un+1 = un +∆t(−λ∇NL(∇NLuφ
′(|∇NLu|2(x)))+H ′(u)), (3.16)

where H ′(u) = K∗
(
− u2

0
(Ku)3 +

1
Ku

)
. Here we note that the regularization parameter λ

generally appears in the data-fidelity term (though it has been attached to the regular-

ization term in the above expression), in later part, it will be attached to the data-fidelity

term. However, the position of this parameter does not affect the evaluation process. A

close observation of the above model reveals the fact that the fidelity term(first term in

the functional (3.15)) is conditionally convex which leads to a suboptimal solution or

we may get stuck in a local minima eventually. The proposed model is analyzed for the

existence of a unique solution in Appendix A.4.

Model III

The total BV norm was used for image restoration with split Bergman iteration scheme

for additive noise in Liu and Huang (2011). Here, let us borrow the concepts to redefine
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the regularization term for restoring multiplicative Rayleigh distributed noisy data. The

revised formulation under the non-local TBV norm appears as

min
u∈BV (Ω)

{∫
Ω

(
u2

0
2(Ku)2 +2log(Ku)

)
dxdy+

λ

2
‖∇NLu‖1 +

θ

2
‖u‖2

2

}
. (3.17)

Assume z = log(u) and consider the image in the log domain (also attach the regu-

larization parameter λ to the fidelity term as usually done) and further define H(z) =

λ ∑i e2(z0i−Kzi)+2Kzi, (for a discrete image), for a discrete image let us drop the integra-

tion and assume a summation (without loosing the generality we are further dropping

the summation sign to avoid abuse in the notation). So we have

min
z

{
H(z)+‖∇NLz‖1 +

θ

2
‖z‖2

2

}
. (3.18)

The steepest descent/artificial time-marching scheme used for providing the solution to

the minimization problem converges slowly and further the convergence depends heav-

ily on the parameter λ in (3.16) and (3.17). In the following section, to overcome these

drawbacks, split-Bregman numerical approach (for convex minimization problems) has

been introduced.

3.2.3 Split-Bregman iteration scheme for the proposed models

As discussed earlier, one of the major issues with gradient descent/time marching scheme

is its slow convergence rate and the dependency of the solution on the regularization pa-

rameter λ . The optimal choice of λ is crucial in getting the desired output. These issues

were addressed to a considerable extent in subsequent works. Faster numerical solvers

are being analyzed over the last few years to solve TV optimization model, which have

already been discussed in Section 2.4.2, Chapter 2. Split-Bregman method neutralizes

the effect of the regularization parameter and provides a faster convergence (Goldstein

et al. (2010)). These properties make it a good choice. In this section, the split-Bregman

scheme is formulated for the Rayleigh noise under two different regularization priors,

the details of split-Bregman formulation is found in Goldstein et al. (2010). Split-

Bregman scheme for the additive Gaussian noise model has been used in Model I.

Model II

The MAP estimation for Rayleigh noise has already been derived in the previous sec-

tion, to ensure continuity we recall the expression in case of a non-local TV regulariza-
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tion:

min
u∈BV (Ω)

{∫
Ω

(
u2

0
2(Ku)2 +2log(Ku)

)
dxdy+

λ

2
JNLTV (u)

}
. (3.19)

Now to make the fidelity term in the above expression convex, let us define Kz =

logKu,. As we know that the Rayleigh distribution is multiplicative, we have u0 =

(Ku)n, therefore log(u0) = log(Ku)+ log(n) which implies z0 = Kz+ n, this leads to

the following formulation

min
u

{∫
Ω

λe2(z0−Kz)+2Kzdxdy+‖∇NLz‖1

}
. (3.20)

Since we deal with discrete images zi let us define H(z) = λ ∑i e2(z0i−Kzi)+2Kzi, (here

the regularization parameter λ is attached with the data-fidelity term), so we have

min
z

{
H(z)+‖∇NLz‖1

}
. (3.21)

Proceeding further with the Bregman iteration scheme formulation as mentioned above,

we get the unconstrained minimization problem:

min
p,z

{
H(z)+‖∇NL p‖1 +

γ

2
‖p− z‖2

2

}
, (3.22)

(here we note that the constraint p = z was added to the above functional, as it is tedious

to derive the split-Bregman process for the non-linear function “logu”). It follows that

(pk+1,zk+1) = min
p,d

{
H(z)+‖∇NL p‖1 +

γ

2
‖p− z‖2

2

}
, (3.23)

where γ ∈ (0,∞). Now by splitting the above problem into two subproblems p−subproblem

and z− subproblem, respectively we have

pk+1 = min
p
‖∇NL p‖1 +

γ

2
‖p− z‖2

2, (3.24)

zk+1 = min
z

H(z)+
γ

2
‖p− z‖2

2. (3.25)

Now further adding one more constraint to the p− subproblem i.e. ∇NL p = d, we get

(pk+1,dk+1) = min
d,p

{
‖d‖1 +

γ

2
‖p− z‖2

2 +
β

2
‖d−∇NL p−bk‖2

2

}
, (3.26)

where bk+1 = bk + (∇NL p− dk+1) and β is a positive scalar parameter. By further

splitting the above problem into p− subproblem and d− subproblem we have

pk+1 = min
p

{
γ

2
‖p− z‖2

2 +
β

2
‖d−∇NL p−bk‖2

2

}
, (3.27)

dk+1 = min
d

{
‖d‖1 +

β

2
‖d−∇NL p−bk‖2

2

}
. (3.28)

The minimizer for p− subproblem can be found by taking the first variation of the

expression with reference to p i.e

0 = β∇NL(d−∇NL p−bk)+ γ(p− z), (3.29)
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where ∇NL. denotes the non-local divergence, therefore we have

pk+1 =
1

γI−β∆NL
(γzk+1−β

√
wi, j(di. j−d j,i−bk

i, j +bk
j,i)). (3.30)

Since the matrix in the denominator of the above expression is diagonally dominant

it can be solved using Gauss-Seidel iteration scheme. On the other-hand the d −

subproblem is solved using the shrinkage operator

dk+1 = shrink(∇NL p+bk,1/β ), (3.31)

where shrink operator is

shrink(x,y) =
x
|x|

max(|x|− y,0). (3.32)

Now the z− subproblem can be solved by taking the first variation of the subproblem

in (3.25) with reference to z i.e,

0 = H ′(z)− γ(p− z). (3.33)

Now one can use the Newton method (zn+1 = zn− f (z)/ f ′(z), for a function f (z)) to

find the solution for the above problem i.e.

zk+1 = zk− H ′(z)− γ(p− z)
H ′′(z)+ γ

. (3.34)

Model III

A split-Bregman formulation for the total bounded variation expression (given in (3.18))

is designed here. To this end let us introduce an auxiliary constraint that is p = z.

Adding the constraint as a L2 penalty term in (3.18) gives

(zk+1, pk+1) = min
z,p

{
H(z)+‖∇NL p‖1 +

θ

2
‖p‖2

2 +
γ

2
‖p− z‖2

2

}
. (3.35)

Now splitting this into two sub-problems we get z− subproblem and p− subproblem:

min
z

{
H(z)+‖p− z‖2

2

}
. (3.36)

min
p

{
‖∇NL p‖1 +

θ

2
‖p‖2

2 +
γ

2
‖p− z‖2

2

}
, (3.37)

further adding the constraint d = ∇NL p in the above p− subproblem we get

min
p,d

{
‖d‖1 +

θ

2
‖p‖2

2 +
γ

2
‖p− z‖2

2 +
β

2
‖d−∇NL p−bk‖2

2

}
, (3.38)

where bk+1 = bk+(∇NL p−dk+1). By splitting the above problem into two subproblems

we have

min
d

{
‖d‖1 +

β

2
‖d−∇NL p−bk‖2

2

}
, (3.39)

and

min
p

{
θ

2
‖p‖2

2 +
γ

2
‖p− z‖2

2 +
β

2
‖d−∇NL p−bk‖2

2

}
. (3.40)
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Now taking the first variation of the above functional with respect to p gives,

θ p+ γ p− γz+β∇NL(d−b)−β∆NL p = 0, (3.41)

i.e.

pn+1 =
1

(θ I + γI−β∆NL)
(γz−β∇NL(d−bk+1)), (3.42)

and using Gauss-Seidel method we get a solution for p−subproblem. The d−subproblem

can be solved using the shrinkage operator (in (3.32)) and z− subproblem is solved us-

ing the Newtons method as done in (3.34). With these formulations we can solve the

optimization problem in (3.17) with split-Bregman scheme in an efficient manner.

3.2.4 Algorithm to implement the methods

The algorithms for both the methods (Variance stabilization and MAP estimation) in-

troduced in this work are described below. Let us describe three algorithms to design

the three proposed models (Model I, Model II and Model III)

Algorithm 4 Algorithm to implement VST method (Model I)
Input u0← Image corrupted by Rayleigh noise
Output Restored image u

1: Initialize parameters λ ,µ (scalar positive values)
2: ε ← small scalar positive value (ε is assigned a value 0.004, empirically).
3: Initialize u0, d0, f 0 and b0

4: Perform variance stabilization using (3.12)
5: while do‖uk−uk−1‖/‖uk‖< ε

6: vk+1 = uk−δK∗(Kuk− f k)

7: uk+1 = λvk+1−µ∇NL(dk−bk)
λ I−µ∆NL

8: f k+1 = f k +u0−Kuk+1

9: dk+1 = shrink(∇NLu+bk, 1
µ
)

10: bk+1 = bk +(∇NLu−dk+1)
11: uk+1 = uk

12: end while
13: Perform an inverse variance stabilization technique in (3.13).
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Algorithm 5 Split-Bregman iteration algorithm for NLTV (Model II)
Input u0← Image corrupted by Rayleigh noise
Output Restored image u

1: Initialize p0, z0, d0 b0

2: Initialize the constants γ,β ,λ
3: while do not converged
4: pk+1 = 1

γI−β∆NL
(γzk+1−β∇NL(dk−bk).

5: zk+1 = zk− H ′(z)−γ(p−z)
H ′′(z)+γ

.

6: dk+1 = shrink(∇NL p+bk, 1
µ
)

7: bk+1 = bk +(∇NL p−dk+1).
8: end while

Algorithm 6 Split-Bregman iteration algorithm for NLTBV (Model III)
Input u0← Image corrupted by Rayleigh noise
Output Restored image u

1: Initialize p0, z0, d0 b0

2: Initialize the constants γ,β ,λ and θ

3: while do not converged
4: pn+1 = 1

(θ I+γI−β∆NL)
(γz−β∇NL(d−bk+1))

5: zk+1 = zk− H ′(z)−γ(p−z)
H ′′(z)+γ

.

6: dk+1 = shrink(∇NL p+bk, 1
µ
)

7: bk+1 = bk +(∇NL p−dk+1).
8: end while
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3.3 EXPERIMENTAL RESULTS

The models introduced in this work are being numerically tested with a large volume

of input images belonging to various categories. A detailed experimental evaluation is

performed on this input data both quantitatively and qualitatively. The visual compari-

son is done for a selected set of input images corrupted with Rayleigh noise and linear

blur. Furthermore, statistical analysis is performed in terms of SNR and SSIM (see Sec-

tion 1.8 for details). The Rayleigh noise was incorporated (using multiplicative model)

in some synthetic images to quantify the performance of various methods and for their

cross comparisons. Before making the image noisy, a linear shift-invariant Gaussian

blurring was performed with a preset Gaussian kernel spread. The test results are veri-

fied using a large set of images however, the results have been shown for seven different

images in this work explicitly to make the explanation precise. The test images used are

shown in Figure 3.3 in their original form. Different images have shown to represent

different characteristics like, texture, finer details, constant intensity regions etc. An

original ultrasound medical image and a SAR images are also included in the test re-

sults to verify the restoration capacity of the models with respect to the real noisy input

data.

We use the following models for comparative purpose:

• Model A: The method for restoring images corrupted with Rayleigh Noise using

MAP estimator and TV ( modified Aubert Ajol Model Aubert and Aujol (2008))

• Model B : The method for restoring images corrupted with Rayleigh noise using

MAP estimator with NLTV and Split Bergman Shuai et al. (2015)

• Model C : The method for restoring images using MAP, Bounded-TV, Split-

Bregman Liu and Huang (2011)

• Model D : Block Matching 3D filtering Dabov et al. (2007)

• Model I : The method based on Variance Stabilization, NLTV (Additive noise)

and split-Bregman as in Algorithm 4
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• Model II : The method for restoring Rayleigh noise using MAP Estimator, NLTV,

Split-Bregman with log computation as in Algorithm 5.

• Model III : The method for restoring Rayleigh noise using MAP Estimator, Total

Bounded NLTV, split-Bregman with log computation as in Algorithm 6.

The seven test images belonging to different categories i.e. “Barbara” and “peppers”

(natural gray and color images), two synthetic images (artificial cartoon type images), a

real ultrasound image and a real SAR image (obtained from “Sandia National Labora-

tories, Airborne ISR” http://www.sandia.gov/RADAR/imagery/) are used for the com-

parative study. In all these test images (except the original ultrasound/SAR images)

multiplicative Rayleigh noise and Gaussian linear blur 1 are artificially incorporated

to study the behavior of these models with reference to their response to these input

images. In Figure 3.4 the restored version of the image using the proposed variance

stabilization transform is provided. The PDF of the noisy and transformed images are

shown in the sub-figures. As evident from these distribution functions, the variance

transformed data follows an additive Gaussian distribution. The performance of vari-

ous methods are demonstrated using visual representations in Figures 3.5, 3.6, 3.7 and

3.8 for images “Barbera”, “peppers” (gray-level) and two artificial images, respectively.

The Barbara image has more fine structures and edges compared to other images. In

Figure 3.5 we can see the restoration results of Barbara image corrupted with Rayleigh

noise. The enlarged version (to show the edge and fine structure preservation) of Bar-

bara image is shown in Figure 3.13. From these figures it is evident that all the three

proposed models are successful in preserving the fine details and edges in the image.

Peppers image has different levels of uniform intensity regions, in figure 3.6 results

of peppers image corrupted by Rayleigh noise are shown. An enlarged portion of the

image peppers is shown in Figure 3.12. The edge and structure preservation capability

of various models are shown explicitly in this figure. The proposed Models II and III

perform better edge and structure preservation compared to the other models as evi-

dent in these enlarged portions. To show the edge preservation two synthetic images

1In case of the multi-channel (color) image, the noise and blur are incorporated in each color channel
separately before combining them to form the final degraded image.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 3.3 (a),(b),(c), (d) and (e) : Test images in their original form, (f) Highlighted
peppers image, (g)Highlighted Barbara image

are used, results of these images are shown in 3.7 and 3.8. For these images, all the

proposed models give better results in terms of edge-preserving and sharpening. In the

same manner the responses of different models to a real ultrasound image and a real

SAR image are shown in Figures 3.9 and 3.10, respectively. These (real) images are

found to be corrupted by Rayleigh distributed noise. For the ultrasound image in Figure

3.9, result of Model I seems to be sharper compared to others. Model II and model

III successfully removed the noise in both foreground and background. In Figure 3.10,

results of Lynx Synthetic Aperture Radar (SAR) image (of a railroad bridge over the

Rio Grande River near Belen, NM) are shown. The rail bridge and the river are more

clearly restored in all the proposed models. We note that the results shown in Figure

3.11 (“peppers”) is a RGB color/vector image (i.e u ∈ R3) and the sub-figures show the

performance of various filters with reference to this multi-channel image. In similar

lines we can apply these methods for the other multi-channel or multi-spectral images

(from medical/satellite imaginary) as well. From these visual representations it is pretty

evident that proposed strategies outperform the other models in terms of noise reduction

70



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 3.4 Variance Stabilization Transform (Multiplicative Rayleigh noise variance 0.15
and blur with sigma 1.2 are incorporated to the input data): (a),(b) Input (noisy and blurry)
Images (e),(f) Histograms of (a) and (b), respectively; (c),(d) Images after Variance stabi-
lization, (g),(h) Histograms of images in (c) and (d), respectively; (i),(j) Restored images
after stabilizing the variance and using NLTV
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.5 Image “Barbara” restored using various methods (multiplicative Rayleigh noise
variance of input image is 0.15 and standard deviation of blurring kernel is 1.2): (a): Noisy
image; images restored using (b) Model A; (c) Model B ;(d) Model C ;(e) Model D (f)
Model I (g) Model II and (h) Model III

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.6 Image “Pepper” (gray-level) restored using various methods (multiplicative
Rayleigh noise variance of input image is 0.15 and standard deviation of blurring kernel
is 1.2): (a): Noisy image; images restored using (b) Model A; (c) Model B ;(d) Model C
;(e) Model D (f) Model I (g) Model II and (h) Model III
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.7 Image “Synthetic Image 1” restored using various methods (multiplicative
Rayleigh noise variance of input image is 0.15 and standard deviation of blurring kernel
is 1.2): (a): Noisy image; images restored using (b) Model A; (c) Model B ;(d) Model C
;(e) Model D (f) Model I (g) Model II and (h) Model III

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.8 Image “Synthetic Image 2” restored using various methods (multiplicative
Rayleigh noise variance of input image is 0.15 and standard deviation of blurring kernel
is 1.2): (a): Noisy image; images restored using (b) Model A; (c) Model B ;(d) Model C
;(e) Model D (f) Model I (g) Model II and (h) Model III
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.9 Image “Real ultrasound image” restored using various methods: (a): Noisy
image ; Images restored using (b) Model A; (c) Model B ;(d) Model C ;(e) Model D (f)
Model I (g) Model II and (h) Model III

and detail preservation.

Further, a statistical analysis is performed with regards to the statistical measure

(SNR) described in Section 1.8. The response of various methods for the statistical

measure SNR (in dB) is shown in Table 3.1. The SNR values corresponding to the

proposed methods (Model I, Model II and Model III) are higher than the comparative

models (Model A, B and C). Among the proposed ones, Model I has slightly better SNR

value (in an average case) because stabilization of the variance makes the noise data un-

correlated before the regularization process, eventually leading to a higher smoothing.

Similarly the mean-SSIM values ([0-1]) give a notion of structure, contrast and edge

preservation capability of the model under consideration (here the value 1 stands for an

ideal preservation). The SSIM values are tabulated in Table 3.2. From these values one

can infer that the proposed models (Model I, II and III) illustrate a good performance

in terms of structure preservation along with the denoising. Though the Models II and

III performs slightly on the lower side in terms of SNR, they perform better in terms
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.10 Image “Real SAR image-2” (Lynx Synthetic Aperture Radar (SAR): Courtesy
of Sandia National Laboratories, Airborne ISR ) restored using various methods: (a): Noisy
image ; images restored using (b) Model A; (c) Model B ;(d) Model C ;(e) Model D (f)
Model I (g) Model II and (h) Model III

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.11 Vector Image “color image” restored using various methods: (a): Noisy image
; image restored using (b) Model A; (c) Model B ;(d) Model C ;(e) Model D (f) Model I (g)
Model II and (h) Model III
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.12 Enlarged portion of the image peppers highlighted in Figure 3.3, (a)Input im-
age corrupted with noise variance of 0.15, linear blur of sigma=1.2, restored using (b)
Model A; (c) Model B ;(d) Model C ;(e) Model D (f) Model I (g) Model II and (h) Model
III

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.13 Enlarged portion of the image ’Barbara’: (a)Input image corrupted with noise
variance of 0.15, linear blur of sigma=1.2, restored using (b) Model A; (c) Model B ;(d)
Model C ;(e) Model D (f) Model I (g) Model II and (h) Model III
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Figure 3.14 Absolute Error verses iterations

of structure preservation. So the overall performance of the Model III is better than the

other models considered for the comparative study.

The convergence analysis of various models are shown in Figure 3.14. The plot

shows the variations of absolute error against each iteration of various methods for

“Synthetic image 1”. The proposed Models 5 and 6 converges faster compared to the

other models and the decay in error or increase in energy are found to be stable along

the iterative process. The plot for models 5 and 6 almost overlays on one another (as the

process is almost similar except the regularization term) so it is not explicitly visible in

the plot. Further a box plot of various methods for SNR is shown in Figure 3.15. Here,

100 different test images (falling in different image categories) are used to perform

the box-plot analysis. All these images are corrupted by a Rayleigh noise with noise

variance 0.2. The red lines in the plot indicate the median values and the red crosses

indicate the outliers. The parameters (interquartile range (IQR), whisker value etc.)

are set by default in the MATLAB box-plot function. The IQR gives an indication of

the dispersion of the data. From the plots shown in these figures, it is evident that the

proposed models (Model II and III) give a compact plot with a median value higher than

the other models (Model A-C) as mentioned earlier. The outliers are relatively less in

the plots corresponding to the proposed Models II and III. Similarly, the average SNR is

77



Table
3.1

SN
R

(in
dB

)evaluated
forvarious

restoration
m

ethods
fordifferentim

ages.
(T

he
R

ayleigh
noise

variances
ofthe

inputim
ages

are
{0.2,

0.1}
w

ith
blurofsigm

a
{0.8,1.5})

Im
age

N
am

e
N

oisy
D

ata
M

odelA
M

odelB
M

odelC
M

odelD
M

odelI
M

odelII(V
ST

)
M

odelIII
B

arbara
{13.25,15.90}

{16.55,16.90}
{18.07,17.04}

{17.75,17.21}
{20.34,21.04}

{17.59,17.29}
{17.55,17.39}

{17.66,17.37}
Peppers

(G
ray-level)

{12.73,15.09
}

{15.8,17.1}
{17.48,19.56}

{17.92,19.75}
{17.48,16.93}

{19.27,20.58}
{19.21,20.06}

{19.81,20.31}
Synthetic

1
{13.65,17.64}

{18.95,20.69}
{19.94,18.18}

{19.75,19.46}
{22.08,20.39}

{21.22,21.10}
{20.85,20.51}

{20.86,20.64}
Synthetic

2
{13.74,18.20}

{17.95,21.36}
{21.26,19.26}

{21.10,21.29}
{22.26,22.2}

{21.88,21.67}
{21.31,22.28}

{21.65,21.36}
M

an
{13.44,16.41}

{16.87,17.75}
{18.55,19.96}

{18.67,19.98}
{20.11,22.57}

{18.21,19.98}
{18.89,20.02}

{19.22,20.34}
G

irlface
{13.9,19.06}

{21.22,22.34}
{21.5,22.55}

{21.5,22.43}
{19.51,19.81}

{19.86,20.21}
{22.37,22.61}

{22.41,22.8}
B

ridge
{13.25,15.37}

{15.56,16.23}
{15.53,18.67}

{16.85,19.98}
{17.26,20.76}

{17.67,18.75}
{16.32,19.27}

{16.21,19}
B

aboon
{12.21,13.6}

{14.69,14.8}
{18.55,20.12}

{18.63,19.42}
{18.13,22.03}

{18.22,21.22}
{18.38,19.12}

{18.02,19.11}

Table
3.2

SSIM
evaluated

for
various

restoration
m

ethods
for

differentim
ages.

(T
he

R
ayleigh

noise
variances

of
the

inputim
ages

are
{0.2,0.3})

w
ith

blurofsigm
a

{0.8,1.5}

Im
age

N
am

e
N

oisy
M

odelA
M

odelB
M

odelC
M

odelD
M

odelI
M

odelII
M

odelIII
B

arbara
{0.40,0.29}

{0.29,0.28}
{0.51,0.50}

{0.51,0.5}
{0.65,0.6}

{0.49,0.43}
{0.52,0.50}

{0.53,0.50}
Peppers

(G
ray-level)

{0.51
,0.41}

{0.52
,0.39}

{0.58
,0.48}

{0.61
,0.5}

{0.74,0.72}
{0.64

,0.58}
{0.68

,0.53}
{0.71

,0.58}
Synthetic

1
{0.16,0.13}

{0.20,0.18}
{0.22,0.21}

{0.24,0.22}
{0.75,0.71}

{0.23,0.22}
{0.25,0.22}

{0.26,0.23}
Synthetic

2
{0.13,0.10}

{0.14,0.10}
{0.21,0.14}

{0.27,0.22}
{0.72,0.69}

{0.2,0.19}
{0.28,0.24}

{0.29,0.24}
M

an
{0.32,0.34}

{0.35,0.3}
{0.5,0.54}

{0.41,0.46}
{0.45,0.54}

{0.48,0.52}
{0.55,0.6}

{0.56,0.6}
G

irlface
{0.2,0.3}

{0.34,0.41}
{0.53,0.68}

{0.55,0.63}
{0.63,0.72}

{0.67,0.74}
{0.62,0.7}

{0.65,0.69}
B

ridge
{0.41,0.38}

{0.46,0.42}
{0.43,0.45}

{0.44,0.45}
{0.48,0.43}

{0.51,0.43}
{0.41,0.48}

{0.45,0.48}
B

aboon
{0.3,0.21}

{0.4,0.32}
{0.55,0.53}

{0.55,0.56}
{0.56,0.53}

{0.62,0.63}
{0.64,0.68}

{0.62,0.7}
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Figure 3.15 Box-plot for various methods using SNR

high for the proposed Model I but dispersion is more compared to Models II and III. In

other words, the proposed Models II and III are more stable and robust in performance

when compared with the other models and Model I gives a better smoothing (higher

SNR) compared to all other methods.

All the parameters used for various algorithms considered in this work are described

in Table 3.3. For non-local numerical implementation, we need to set window and

patch size carefully in order to get perform better performance. Usually, patch size

should be nearly half of the window size. As the search window size increases, the

algorithm needs more time to select similar patches in a search window. The patch size

should be at least 3× 3, smaller the patch size, better will be the structure preserving.

Regularization parameters λ and γ controls the diffusion by adding back lost details in

each iteration. Larger the lambda less will be the diffusion. But the very high value

of λ and γ leads to less denoising. µ controls the smoothing process. A larger value

of µ leads to over-smoothing, hence the selection of µ should be optimal in order to

get better results. The algorithm is performed with several values of λ , γ , and µ , the

selected values given in Table 3.3 gives better performance in case of smoothing and

structure preserving. For the total bounded variation algorithm, the parameter θ is used,

which also controls the smoothing by preserving fine edges and details in the image.
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Table 3.3 Parameter values used for different methods considered in this work.

Parameter Model A Model B Model C Model D Model I Model II Model III
λ 0.05 0.09 0.09 2.7 0.5 20.5 16.5
∆t 0.5 - - - - - -
µ - 0.9 1 - 0.05 4 4
γ - - - - - 10 8
θ - - 0.07 - - - 0.02
δ - - - - 1.9 - -

Patch size - 3 3 8 3 3 3
(for non-local TV)

Window size - 5 5 - 5 5 5
(for non-local TV)

Increasing the value of θ gives better edge preserving but makes denoising poor.

3.4 Summary

Three variational restoration models have been proposed in this chapter for restoring

ultrasound and SAR images corrupted by Rayleigh noise and linear shift-invariant blur.

The Model I uses VST, which yields better smoothing thus results in high SNR values,

however, due the assumption that the noise is independent of data, the structure preser-

vation ability is limited. For an efficient smoothing, NLTV is being used in Model I,

which uses a non-local scheme instead of a local scheme, thereby resulting in better

structure preservation. Model II and III use NLTV and NLTBV respectively for reg-

ularizing the solution. From the literature, it may be noted that the NLTBV performs

comparatively better in terms of smoothing of the noise while preserving fine details

(as discussed in Section 2.4), which makes it an appropriate choice for the restora-

tion model. Also, Model II and III are derived using the MAP estimation of the noise

distribution, therefore they perform better in terms of approximation of the data. Log

transformation in Model II and III make them more robust in terms of implementation.

Split-Bregman iterative scheme is being used in all the proposed models, as the faster

numerical schemes are relevant when handling large datasets.

Most popular imaging systems (covering both medical and satellite imagery) and

two of the most common data-dependent noise contaminations (Chi and Rayleigh) have

been discussed in previous and this chapter. Yet another common noise distortion is

Poisson, which is common in some medical (X-ray , Computed Tomography(CT) and
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Positron Emission Tomography(PET)), microscopic (fluorescence and confocal) and

telescopic images where the images are formed as a result of a Poisson process. The

next chapter is oriented towards the designing of variational model to restore Poissonian

images.
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Chapter 4

NONLOCAL VARIATIONAL APPROACH
TO RESTORE POISSONIAN IMAGES

4.1 INTRODUCTION

In some of the important imaging applications such as fluorescence and confocal mi-

croscopy, computed tomography and optical astronomy, the camera sensors detect the

incident photons in a particular interval of time. All these sensed data are converted into

raw data, eventually yielding the images. However, under poor illumination and insuffi-

cient information, the sensed images are found to be contaminated by signal-dependent

noise, which is normally Poisson distributed ( see Hsieh et al. (2009) for more details).

Being data-dependent, the restoration becomes challenging in such scenarios. Recently

many researches have been undertaken for Poisson image restoration, see Giryes and

Elad (2014); Feng and Chen (2015); Li et al. (2015); Zhang and Hirakawa (2017). It has

been observed from the imaging literature that, the image formation in microscopic or

astronomical imaging applications resembles a Poisson process, and therefore the noise

in such images are observed to follow a Poisson distribution. This chapter is focused

on such image data to experimentally verify the restoration capacity of the model. Mi-

croscopic imaging applications are quite common in diverse fields, such as medicine,

biological research, drug applications and metallurgical applications. Therefore, ac-

quiring clean images is the need-of-the-hour in these applications for proper diagnosis

and analysis of the data. This chapter introduces a non-local variational framework for

image restoration under a Poisson degradation using an adaptive p−norm data fidelity

term and its split-Bregman formulation is detailed.
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4.1.1 Computed Tomography

Among the most broadly used imaging techniques, Computed Tomography(CT) is the

one of the technologies which use X-ray radiation to scan internal organs of the human

body. The technology was first coined by Hounsfield (1973). The basic idea of CT

can be drawn as in Figure 4.1. Mainly, a CT scanner has collimators, X-ray source

and detectors which are placed opposite to each other. X-ray beam emitted from the

source are narrowed using the collimator and passes through the target (as shown in the

Figure 4.1). Some parts of the beam are absorbed or scattered after passing through

the target and the rest are detected by the detectors. Next, the scanner moves across

the human body and performs the reading continuously to complete one scan, which

produces a slice. Further, the scanner is rotated 1 degree and the procedure repeats, and

this continues till 180 degree. All the resultant images are then processed and stored in

a computer for the diagnosis purpose. One slice of the CT image of a human kidney is

shown in Figure 4.2. To obtain the accurate scan, the intensity of the X-ray radiation

should be high. But, X-ray is harmful for human body if the dose is more (De Gonzalez

et al. (2009)). Hence, the amount of radiation should be less enough to keep the scan

safe. Less amount of radiation causes more noise in the raw data collected by the

detectors. The number of photons collected by the detectors (under the monoenergic

and non-scattering conditions) follows the Poisson distribution (Hsieh et al. (2009)). So

the noise in CT images usually follows a Poisson PDF.

Applications of CT

Being an advanced technology of X-ray radiography, CT imaging helps in differentiat-

ing soft tissue structures in the human body such as lung nodules, fat, liver tissues etc.

CT also helps in detection of cancer as well as the size and spatial location of a tumor.

Defects in a blood vessel, damage of nervous system and also bone fractures can be

detected in CT imaging. Due to these applications, image restoration and enhancement

has a wide scope in the field of CT imaging.

84



Figure 4.1 CT imaging technique (image courtesy: Hounsfield (1973))

Figure 4.2 A sample CT image slice of a human kidney (Downloaded from htt ps :
//public.cancerimagingarchive.net)
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4.1.2 Fluorescence and confocal microscopy

There has been an intense growth of fluorescence spectroscopy in the field of micro-

scopic imaging in the last few decades. Most of the researches in biophysics and bio-

chemistry use this technology. Any substance in the electronically excited state emits

the luminescence light (Lakowicz (2006)). Depending on the type of electron excite-

ment, luminescence is subcategorized into two, namely fluorescence and phosphores-

cence. Usually, in one second, 108 fluorescence are emitted during the excitement.

Substances which emit the fluorescence are called as the fluorophores. The block di-

agram of a typical fluorescence microscope is given in Figure 4.3, which contains a

light source (to illuminate the substance), objective lenses (to focus or spread the light)

and a detector (to receive the fluorescence light emitted by the substance) which is usu-

ally a CCD camera (expanded as Charge Coupled Device) (Kempen (1999)). A light

wave of suitable wavelength is emitted from the source and focused on the target ob-

ject using the objective lens. The Illuminated fluorophore/object emits the fluorescence

light which is less intensive than that of the source light. These reflected waves are

detected by the CCD camera and converted into a two dimensional image. Due to the

low intensity, the output image is usually disturbed by the noise, which is normally

Poisson distributed. The wide-field illumination in the fluorescence microscopy helps

in capturing the whole sample simultaneously, but since the substance need not to have

homogeneous regions, some portions goes out of focus (Kempen (1999)), which leads

to blurring in the captured image.

To overcome this drawback of wide-field illumination in fluorescence imaging, the

illumination is made into pinpoint by placing a pinhole in front of the detector, which

is known as the confocal microscopy. In this methodology, single point of a target

substance is scanned at a time, leading to a sharp image in the output. Though the

resultant image is sharp in case of confocal microscopy, the axial resolution is less

compared to the fluorescence microscope.
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Figure 4.3 Block diagram of a fluorescence microscope (Kempen (1999))

Applications

The present technology enhanced the use of fluorescence microscopy to the field of

biotechnology, medical diagnostics, DNA sequencing, genetic analysis etc. Since the

fluorescence detection is very sensitive, it can replace the radioactive detectors which

are much expensive and needs more precautions against the radiation (Mondal and Di-

aspro (2013)). Microscopy is also commonly used in the field of molecular and cellular

imaging. Image restoration in the field of fluorescence/confocal microscopy is a chal-

lenging task because the data of interest in these images are very tiny and sensitive. So

the scope for image restoration is increasing day by day. Figure 4.4 shows the still image

from the collection in which the amoeba is trying to eat yeast cell (image downloaded

from htt p : //www.cellimagelibrary.org/images/12654).

4.1.3 Variational methods for Poisson restoration

As already discussed in the first chapter, data uncorrelated and correlated noise allevi-

ations have been well studied in the image restoration literature under the variational
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Figure 4.4 Fluorescence image of an amoeba

framework. Poisson noise reduction is a major subject of interest in studies reported in

the works: Le et al. (2007); Wang and He (2017). A TV minimization using a MAP

estimation process is being employed in these works to restore the data. An elaborate

review of image restoration under Poisson corrupted noise can be seen in Bertero et al.

(2009). Yet another TV regularization combined with Richardson-Lucy algorithm for

deblurring 3D confocal images has been introduced in Dey et al. (2006). In the similar

lines, an iterative reconstruction algorithm by using maximum likelihood estimator is

reported in Benvenuto et al. (2008) for mixed Poisson-Gaussian noise and a deconvo-

lution iterative model using variable splitting is introduced in Chakrabarti and Zick-

ler (2012). The other notable models include the PURE-LET(Poisson-Gaussian Unbi-

ased Risk Estimate - Linear Expansion of Thresholds methodology designed generally

for transform-domain thresholding) based denoising model in Luisier et al. (2011), a

variance stabilization model by Makitalo and Foi in Makitalo and Foi (2013b) and a

variational framework with TV and Kullback-Leibler divergence (for Poisson noise) in

Lanza et al. (2014). Furthermore, a comparative study of a combined TV and wavelet

restoration for the Poisson noise has been performed in Kais et al. (2016). Another

study regarding Poisson noise reduction in low dose CT images using modified ROF
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model is provided in Zhu et al. (2012). Similarly, Ferdinand et al. (Deger et al. (2015))

worked on denoising of hyperspectral images corrupted by Poisson noise which occurs

due to the photon correction after the acquisition phase.

The state-of-the-art image restoration models are based on the non-local averaging

framework introduced in Buades et al. (2005) and its variants Dabov et al. (2007). The

non-local variational frameworks for Poisson data include Non-Local Principal Compo-

nent Analysis (NLPCA) method proposed in Salmon et al. (2014) and the non-local TV

restoration model proposed in Zhang et al. (2014). The model in Zhang et al. (2014)

uses a L2 constraint, which results in over-smoothing of the data. Moreover, in Liu

et al. (2017) the authors propose a Euler-Elastica based variance stabilization approach

for Poisson distribution. This model works reasonably well in low peak noise, but some-

times fails to preserve fine structures in case of high peak noise (a higher peak-value

denotes a lower degradation and vice-versa).

Motivated by some of these drawbacks, a non-local p−norm regularization model

to handle Poisson noise for both low and high peak distributions has been derived in this

chapter. The diffusion in this model is driven by a p−norm regularizer which controls

the behavior of diffusion, in other words, the diffusion magnitude is characterized by

the p−norm value of the filter.

4.1.4 Non-local p−norm filter

The regularizer considered in this chapter is adapted from the anisotropic non-local

p− norm filter (see Ta et al. (2007) for details). The functional of this model is given

by,

E(u,u0,λ , p) = Jw(u, p)+
λ

2
(‖u−u0‖2

L2−|Ω|σ2), (4.1)

where

Jw(u, p) =
1

2p

∫
Ω×Ω

(wxy)
p
2 |u(y)−u(x)|pdxdy. (4.2)

When p = 1, above functional approaches to a non-local TV proposed in Gilboa and

Osher (2008) i.e

Jw(u,1) =
1
2

∫
Ω×Ω

√
wxy|u(y)−u(x)|dxdy. (4.3)

The diffusion approaches a TV when p = 1 and over-smooth the structure when p = 2.

The behavior is studied for p values less than one and between the open range
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(1, 2). The details about the analysis are provided in the subsequent sections. In the

next section, we reformulate the above scheme for Poisson noise distribution and seek a

solution using fast numerical solver which is devoid of the time step and regularization

parameter.

4.2 RESEARCH WORK

This section introduces a non-local variational model using the MAP estimator of the

Poisson PDF (see Appendix B.3). The solution to the minimization problem in (4.3)

is sought under the explicit time marching scheme. This model is derived for a data-

dependent Poisson noise, where we try to minimize the L2 error under the assumption

that the noise is random and its spectrum is constant (the noise such as average white

noise). Furthermore, the solution is sought using an explicit scheme which results in

slow convergence and moreover, the convergence depends on the regularization param-

eter and the time-step chosen for the model.

4.2.1 Non-local variational model for Poisson noise reduction

In this study, we propose to fine-tune the model in (4.1) for Poisson noise distribution

and intents to solve the model using fast numerical solver i.e. split-Bregman iteration

scheme. The tuning of the model for Poisson noise distribution is performed using the

MAP estimator derived using Poisson PDF, please refer Appendix B.2 for the details

of the derivation. Now the proposed functional for a Poisson noise process under a

non-local framework takes the form

min
u∈BV (Ω)

{
λ

2

∫
Ω

(u−u0 logu)dxdy+ Jw(u, p)dxdy
}
. (4.4)

The E-L equation for above functional is given by,

J′w(u, p)+λ
u−u0

u
= 0, (4.5)

where

J′w(u, p) = ∑
x∼y

w
p
2
xy(|u(y)−u(x)|+ ε)p−2(u(y)−u(x)).

The diffusion term J′w(u, p) eventually performs the smoothing in noisy regions, whereas

the data-fidelity term is responsible for the minimal deviation from the original data.

Here we can notice that, when 0 < p < 1, the resultant images are sharper, whereas for
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p > 1 they are smoother. The effect of p on the output is experimentally verified in the

next section. As known from the literature, as p value increases the model tries to ap-

proximate images with smoother functions, eventually yielding smoother images. The

regularization parameter λ controls the noise reduction and data-preservation behavior

of the model. Therefore, the selection of λ is crucial in getting the desired output. Here

we chose the split-Bregman iteration scheme, for solving the model, due to its fast con-

verging nature. Moreover, the convergence doesn’t dependent on the time step and the

regularization parameter. Now following the split-Bregman scheme, let us define the

constraint d = ∇
p
NLu, and rewrite the proposed minimization problem (by additionally

employing an auxiliary parameter b):

(uk+1 ,dk+1) = min
u,d

{
||d||pp +

λ

2
||u−u0 logu||22

+
β

2
||d−∇

p
NLu−b||22

}
. (4.6)

Further, splitting above equation into u,d and b subproblems, we get,

uk+1 = min
u

{
λ

2
||u−u0 logu||22 +

β

2
||dk−∇

p
NLu−bk||22

}
,

dk+1 = min
d

{
||d||pp +

β

2
||dk−∇

p
NLu−bk||22

}
, (4.7)

bk+1 = bk +∇
p
NLu−dk+1. (4.8)

Using Euler-Lagrangian derivative to solve the above minimization problem, we get,

u-subproblem

λ (1− u0

u
)+β∇

p
NL.(d

k−∇
p
NLu−bk) = 0, (4.9)

λ −β∆
p
NLu = λ

u0

u
−β∇

p
NL.(d

k−bk), (4.10)

uk+1 =
λ

u0
uk −β∇

p
NL.(d

k−bk)

λ

uk I−β∆
p
NL

. (4.11)

Since λ

uk I−β∆
p
NL is diagonally dominant, Gauss-Seidel method is applied to solve the

above subproblem.

d-subproblem

dk+1 = shrink(∇NLu+bk,1/β ), (4.12)

the shrink function is defined as,

shrink(x,y) =
x

|xp|
1
p

max(|xp|
1
p − y,0). (4.13)
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b-subproblem

bk+1 = bk +∇
p
NLu−dk+1. (4.14)

Combining the above formulations, one can define the detailed algorithm for the pro-

posed method as in Algorithm 7.

Algorithm 7 Split-Bregman Algorithm for Poisson denoising
Input: Noisy image u0.
Output: Restored Image u.

1: Initialize k = 1,u1 = u0,u0 = 0, f 1 = u0,ε = 0.0001.
2: while |u

k−uk−1|
|uk| ≥ ε do.

3: uk+1 =
λ

u0
uk−β∇

p
NL.(d−bk)

λ

uk I−β∆
p
NL

4: dk+1 = shrink(∇p
NLu+bk,1/β )

5: bk+1 = bk +(∇p
NLu−dk+1)

6: uk = uk+1, k← k+1
7: end while

4.3 EXPERIMENTAL RESULTS

For experimental study, three test images (natural images) are selected and they are

shown in their original forms in Figure 4.5. These images are synthetically corrupted

with the Poisson noise to study the performance in terms of the well known statistical

measures. We apply Poisson process to these images with three peak values, 2, 30 and

70, respectively. A further analysis is performed using original Poisson images from

CT, confocal and fluorescent imaging applications. The experimental study of these

(original) test images are limited to their visual comparison due to non-availability of

the ground truth data. Comparative analysis is performed using the recent and relevant

Poisson denoising models from the literature along with the proposed one i.e.:

MODEL 1: Fast TV algorithm Wang and He (2017).

MODEL 2: Variance Stabilization Transform(VST) model Azzari and Foi (2016).

MODEL 3: PDE based poisson restoration Srivastava and Srivastava (2013).

MODEL 4: Poisson restoration using non-local PCA Salmon et al. (2014).

MODEL 5: Non-local TV regularization model for Poisson noise. Zhang et al. (2014)

MODEL 6: Poisson Inverse Problems by the Plug-and-Play scheme. Rond et al. (2016)
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The proposed scheme is implemented, following the steps given in Algorithm 7. Pa-

rameter values used for various methods are given in Table 4.2. In the proposed model,

λ controls the diffusion by putting back the lost details. Hence for a low peak noise,

value of λ should be slightly higher than that of a high peak noise. Another parameter

β controls the smoothing characteristics of the filter, which should be comparatively

more for low peak noise than the higher peak one. The value of p (generally called as

smoothness degree) is chosen between 0 and 2 (i.e, 0 < p < 2) (because image gets over

smoothed beyond the value p = 2). All these parameters are set empirically analyzing

their results for various values. The statistical analysis performed for the comparative

study includes three quality metrics: PSNR, SSIM and MSE (refer Section 1.8 for the

details).

Table 4.1 shows the results of statistical analysis for all the test images. PSNR

gives the noise removal capability whereas SSIM measures the structure and contrast

preserving ability of a model. The error between the restored version and the reference

image is evaluated using MSE. It is evident that the proposed model gives better PSNR

value while preserving fine details (which results in high SSIM values). Also, the mean

squared error is less compared to other techniques.

The Figures 4.6, 4.7 and 4.8 show the results obtained (using various models) for

images corrupted with Poisson noise of peak value 70. Whereas Figure 4.9 shows the

results of various models in the presence of low peak noise i.e, peak = 2. The proposed

model performs better in terms of denoising and edge-preserving as evident from these

figures. Since we used p− norm instead of 2− norm, the algorithm is much more

flexible in terms of denoising and sharpening. When 0 < p < 1, the proposed model

produces sharper edges, whereas, for the values of p close to 2, the edges are found to

be more smoothened. However, setting 1 < p < 2 will help in removing more noise

in the presence of low peak noise. Figure 4.13 shows outputs of 1-Dimensional data

(150th row of the synthetic image given in Figure 4.5 (c)) for different values of p. The

cropped portion of “Girlface” in Figure 4.5(a) corrupted with Poisson noise (of peak

70) and Gaussian blur (of standard deviation σ = 1) is tested using different values of

p, and the results are shown in Figure 4.14.

In order to show the effectiveness of the proposed model some images from real-
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world applications (such as CT, confocal and fluorescent spectroscopy) were selected

and tested. These images are found to be usually corrupted with Poisson noise. The

CT image used for testing is obtained from htt ps : //public.cancerimagingarchive.net.

The output results (of various models considered in this paper) for the CT image are

shown in Figure 4.10. In Figure 4.11 the results of a real confocal image of zebrafish

embryo mitosis (for more details see: htt p : //cellimagelibrary.org/images/36594) are

shown. Comparative results of fluorescence microscopic image (obtained from the web-

site: htt p : //cbia. f i.muni.cz/pro jects/cytopacq− a− simulation− toolbox_6.html,

for more details, see Svoboda et al. (2016)) are shown in Figure 4.12. The proposed

model performs well in all cases as evident from these results. Moreover, the perfor-

mance of the model in terms of denoising and sharpening, is also evident from all these

test results.

4.4 Summary

A detailed analysis of restoration of images corrupted by Poisson noise was performed

in this chapter. To this end, a non-local total variational framework with Lp norm has

been proposed to restore the images corrupted by a Poisson process. Image data from

some of the important imaging applications such as fluorescence, confocal microscopy,

and computed tomography were tested and compared using the proposed framework

and the other state-of-the-art Poisson denoising algorithms. As observed from the re-

sults, the proposed model is found to perform well in terms of the visual and statistical

results. The value of p can be tuned according to the noise peak value and nature of

the desired output data. Model 1 uses the TV norm for the diffusion. this results in

over-smoothing and staircase effects. Model 2 uses a VST to stabilize the variance

and subsequently performs a BM3D restoration, which results in better smoothing and

structure preservation. Since, the restoration is done in the transformed domain, the

restored version slightly deviates from the original one. Model 3 uses a PDE in place of

TV diffusion in Model 1, which considerably reduces the staircase effect, but edges and

fine-details are smoothed-out. Non-local PCA based restoration has been considered in

Model 4. This yields a better restoration capability under a low peak noise, but smooths

out some important details in case of a high peak noise. The Model 5 uses non-local
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scheme with L2 norm, which causes over-smoothing in case of a low peak noise and

thereby results in data loss and blurriness. Restoration in the transformed domain has

been employed in Model 6, which uses Anscombe transform to make the noise indepen-

dent of the data (similar to additive white Gaussian noise), which is yet again inefficient

in case of a low peak noise. Whereas, the proposed model uses the non-local p−norm

regularization for the diffusion, which is flexible in terms of smoothing and edge pre-

serving. The values of p less than one result in sharpening of the data and the values

between 1 and 2 performs a diffusion. The use of Lp norm and NLTV results in effi-

cient restoration in low as well as high peak noise. Also, the proposed model is derived

by the noise PDF using the MAP estimator, which gives a close approximation of the

desired data (results in low MSE values as evident from Table 4.1). The convergence

rate is improved using the split-Bregman scheme, which is crucial while handling huge

amount of data in real-time systems. All these features of the proposed scheme make it

better than the other schemes.
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Table
4.1

Q
uality
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forPoisson
noise

w
ith

peak
(2,30,70).

Im
agenam

e
M

etric
Noisy

M
odel1

M
odel2

M
odel3

M
odel4

M
odel5

M
odel6

Proposed

Girlface
PSNR

(20.56,21.43,23.75)
(21.25,28.8,30.98)

(22.5,27.69,30)
(22,21.41,24.43)

(22.87,23.94,24.82)
(23.03,29.03,29.67)

(22.15,26.45,28.63)
(23.7,30.05,30.66)

SSIM
(0.06,0.17,0.26)

(0.24,0.51,0.57)
(0.35,0.46,0.56)

(0.23,0.35,0.42)
(0.47,0.52,0.58)

(0.48,0.49,0.55)
(0.42,0.47,0.62)

(0.5,0.51,0.71)
M

SE
(0.87,17.25,39.71)

(0.74,1.23,3.99)
(0.24,1.53,4.91)

(0.22,2.4,8.21)
(0.08,2.24,8.41)

(0.07,1.23,5.28)
(0.07,1.63,6.23)

(0.08,1.29,4.41)

Bridge
PSNR

(18.5,22.50,23.24)
(19.04,23.43,24.86)

(21.2,23.1,25.9)
(21.6,23.4,26.45)

(21.9,22.6,25.05)
(22.45,24.17,26.36)

(20.34,25.69,27.45)
(21.62,25,26.09)

SSIM
(0.07,0.45,0.62)

(0.1,0.48,0.55)
(0.26,0.48,0.65)

(0.17,0.46,0.64)
(0.46,0.57,0.64)

(0.52,0.56,0.58)
(0.4,0.41,0.6)

(0.52,0.53,0.67)
M

SE
(0.9,13.5,31.11)

(0.8,4.09,16.42)
(0.65,4.39,15.53)

(0.5,4.09,17.86)
(0.48,4.9,14.93)

(0.41,3.51,13.95)
(0.49,3.25,13.27)

(0.46,3.37,13.95)

Synthetic
PSNR

(19.08,22.34,25.05)
(19.63,28.05,31.24)

(20.05,28,32.34)
(21.03,21.33,24.23)

(20.04,22.73,26.01)
(20.36,29.63,31)

(20.25,26.46,29.77)
(22.45,30.43,34.61)

SSIM
(0.19,0.39,0.44)

(0.29,0.54,0.57)
(0.43,0.54,0.59)

(0.22,0.49,0.51)
(0.42,0.49,0.51)

(0.4,0.54,0.56)
(0.51,0.61,0.68)

(0.53,0.66,0.78)
M

SE
(1.08,15.18,35.15)

(0.88,1.61,4.11)
(0.67,1.56,3.41)

(0.6,2.38,6.65)
(0.18,2.17,6.06)

(0.15,1.2,4.23)
(0.21,1.8,5.2)

(0.1,0.96,2.52)

Table
4.2

Param
etervalues

fordifferentm
ethods

forpeak
(30,70)

Param
eter

M
odel1

M
odel3

M
odel4

M
odel5

Proposed
λ

-
-

-
(7,6)

(5,5)
β

(0.5,0.5)
-

-
(0.7,0.4)

(0.85,0.5)
Tim

e
step

(0.5,0.25)
(0.15,0.15)

-
-

-
Patch

size
-

-
(8,5)

(11,11)
(21,21)

(forN
on-localT

V
)

W
indow

size
-

-
-

(16,16)
(9,9)

(forN
on-localT

V
)

N
o.ofsim

ilarw
indow

s
-

-
(14,8)

(14,11)
(8,5)

(ForN
on-localT

V
)
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(a) (b) (c)

Figure 4.5 Test images in their original form

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.6 (a) Image “Girlface” corrupted with Poisson noise, peak=70, Restored using (b)
Model 1, (c) Model 2, (d) Model 3, (e) Model 4, (f) Model 5, (g) Model 6 and (h) Proposed
one with p = 0.5.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.7 (a) Image “Bridge” corrupted with Poisson noise, peak=70, Restored using (b)
Model 1, (c) Model 2, (d) Model 3, (e) Model 4, (f) Model 5, (g) Model 6 and (h) Proposed
one with p = 0.5.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.8 (a) Synthetic image corrupted with Poisson noise, peak=70, Restored using (b)
Model 1, (c) Model 2, (d) Model 3, (e) Model 4, (f) Model 5, (g) Model 6 and (h) Proposed
one with p = 0.5.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.9 (a) Synthetic image corrupted with Poisson noise of peak=2, Restored using (b)
Model 1, (c) Model 2, (d) Model 3, (e) Model 4, (f) Model 5, (g) Model 6 and (h) Proposed
one with p = 0.5.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.10 (a) Real CT image corrupted with Poisson noise, Restored using (b) Model 1,
(c) Model 2, (d) Model 3, (e) Model 4, (f) Model 5, (g) Model 6 and (h) Proposed one with
p = 0.5.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.11 (a) Real confocal image corrupted with Poisson noise, Restored using (b)
Model 1, (c) Model 2, (d) Model 3, (e) Model 4, (f) Model 5, (g) Model 6 and (h) Pro-
posed one with p = 0.5.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.12 (a) Real fluorescence image corrupted with Poisson noise, Restored using (b)
Model 1, (c) Model 2, (d) Model 3, (e) Model 4, (f) Model 5, (g) Model 6 and (h) Proposed
one with p = 0.5.
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Figure 4.13 (a) Original 1-D data, (b) Corrupted with Poisson noise of peak 70 and Gaus-
sian blur of sigma=1, restored using proposed model with (c) p = 0.25 , (d) p = 0.5, (e)
p = 1 and (f) p = 2.

(a) (b) (c)

(d) (e) (f)

Figure 4.14 (a) Original cropped portion of “Girlface” image, (b) Corrupted with Poisson
noise of peak 70 and Gaussian blur of sigma=1, restored using proposed model with (c)
p = 0.25 , (d) p = 0.5, (e) p = 1 and (f) p = 2.
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Chapter 5

CONCLUSIONS AND FUTURE SCOPES

5.1 CONCLUDING REMARKS

Three variational frameworks have been proposed as a part of the thesis. The first

among them is for restoring data-correlated Chi distributed noise commonly found in

multiple-coil MR data, the proposed strategy devises the model, solves the same and

seeks for the conditions for the existence of a unique solution. The second approach

deals with data-correlated multiplicative noise following a Rayleigh distribution. Such

degradations are common in ultrasound and SAR imagery. The proposed framework

designs a variational approach to accommodate the model and solving the same. Fi-

nally, a model to handle Poisson degraded image is being proposed. The model uses an

adaptive p−norm based regularizer to restore the data. All these proposed models thus

designed are solved using split-Bregman scheme in-order to improve the convergence

rate.

A non-local total bounded variation driven multiple-coil MRI restoration is intro-

duced in Chapter 2. The data-dependent Chi distributed noise present in multiple-coil

MR images gets effectively erased by the model in the course of its iteration. The

model also works well for single-coil MRI as well by setting the coil count to one. The

proposed method is tested on both real and synthetic MR images along with other test

images (like natural and synthetic images). The model is compared with the state of the

art MRI denoising algorithms both visually and statistically (using well known statis-

tical measures). The proposed strategy is found to perform well in view of the results

presented in the work. This model convergences fast due to its reformulation under
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split-Bregman iteration scheme. The test results under various parameter adjustments

are duly in favor of the robust restoration ability of the proposed model.

In Chapter 3, a thorough study was performed for the restoration of images cor-

rupted by Rayleigh distributed noise and linear blurring artefacts. As a result, three new

restoration models were introduced and analyzed in this work. The first model is based

on a variance stabilization transform and the other two are based on the maximum a

posteriori estimator. The maximum a posteriori estimation based models proposed in

this chapter derive convex energy functionals, therefore they eventually converge to

unique solutions (in each case separately). A fast numeral approach based on the split-

Bregman formulation is employed for solving these models. The proposed methods

were compared visually and quantitatively with the state-of-the-art models proposed for

Rayleigh distribution in the literature. As observed from the experimental outcomes, the

proposed models are found to restore images pretty well compared to the other state-of-

the-art models (considered in this work). The maximum a posteriori estimation based

models perform better (in terms of preserving the structures present in images) than

the variance stabilization models, as the stabilization transform cannot make data com-

pletely uncorrelated with the noise. This fact is clearly visible from the tables shown

in favor of the statistical measures detailed in the chapter. Furthermore, these models

are derived directly from the probability density function of the noise distribution, thus

they are more effective in denoising data-correlated noise. Among the proposed maxi-

mum a posteriori estimation based models, the model based on non-local total bounded

variation performs better than the non-local total variational model as evident from the

results. This scenario may be explained with reference to the capability of total bounded

variation to restore images pretty well compared to the usual total variation, due to an

additional parameter controlled L2 penalty term. All methods are tested and statistically

verified using a large set of images.

A detailed analysis of restoration of images corrupted by Poisson noise was per-

formed in Chapter 4. To this end, a non-local total variational framework with Lp

norm has been proposed to restore the images corrupted by a Poisson process. Image

data from some of the important imaging applications such as fluorescence, confocal
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microscopy and computed tomography were tested and compared using the proposed

framework and the other state-of-the-art Poisson denoising algorithms. The variational

energy formulation was designed using the MAP estimate of the noise PDF. A split-

Bregman iteration scheme is employed to solve this optimization problem for obtaining

a faster converge rate in place of the usual explicit schemes. This study provides a

demonstration of the results in terms of both visual and statistical measures. The effec-

tiveness of Lp norm in a non-local regularization scheme is analyzed in this work. The

implementation details maybe provided like software and hardware

5.2 FUTURE SCOPE OF THE RESEARCH

Various restoration models have been highlighted as a part of this thesis. The major

focus is laid on variational formulations and their properties. A further theoretical and

experimental improvisation is envisaged in futures research endeavors. In terms of

theoretical framework, a further study can be conducted that includes properties like

convexity, coercivity, regularity, Lipschitz continuity of the gradient of the functional

that is being minimized. The behavior of the implemented algorithm depends on such

properties. Understanding and implementing them in the construction of algorithm

makes the algorithm robust and makes it flexible to work in any circumstance.

Further, to improve the convergence aspects, projection based models are apt candi-

dates for further exploration. An effective projection based model can further catalyze

the convergence rate by reducing the computational complexity. Their features and

properties are to be studied in depth to analyze their suitability in such variational opti-

mization problems.

Finally, the computational efficiency of the models can further be improved us-

ing hardware accelerators (such as parallel processing and graphical processing units.),

which is one of the most crucial requirements in most of the real-time imaging applica-

tions. Hence, the future work involves employing advancements at the hardware level

for the smooth and fast performance of the variational image restoration models.
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Appendix A

This section gives the mathematical derivations, examples, and condition for exis-

tence of unique solutions relevant for the proposed schemes. Some sample MATLAB

codes used for the implementation are also shown in this section.

A.1 EXAMPLE FOR AN ILL-POSED PROBLEM

Consider the system (Hansen (2010)),1

2

x =

 1

2.2

 . (A.1)

For this problem, there is no solution (there is no x such that x = 1 and 2x = 2.2) hence

it is an ill-posed problem. To solve the problem given in (A.1), we can reformulate the

same as the least squares (or minimization) problem:

min
x

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1

2

x−

 1

2.2


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

= min
x

(
(x−1)2 +(2x−2.2)2) , (A.2)

has a unique and approximated solution, x = 1.08 (where, ||.|| represents the Euclidean

norm).

A.2 EULER-LAGRANGIAN DERIVATIVE

Let y(x) be a curve in a two dimensional Euclidean space and η(x) be another curve

such that η(x1) = η(x2) = 0. Let us consider another function

Y (x) = y(x)+ εη(x),

where ε is a constant scalar which scales the curve η(x). Now,

Y ′(x) = y′(x)+ εη
′(x),
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where y′(x) denotes dy
dx . Similarly

∂Y ′

∂ε
= η

′(x), (A.3)

and
∂Y
∂ε

= η(x). (A.4)

Now consider the functional J

J(ε) =
∫ x2

x1

F(x,Y,Y ′)dt, (A.5)

where F is a functional that depends on x, Y and Y ′.

To find the minimum of J(ε), we let
∂J
∂ε

∣∣∣∣
ε=0

= 0.

When ε = 0 , we get Y ′(x) = y(x) which is exactly the curve y(x). Now we have,
∂

∂ε

∫ x2

x1

F(x,Y,Y ′)dx = 0. (A.6)

Now applying chain rule for integration, we get∫ x2

x1

[
∂ f
∂Y

∂Y
∂ε

+
∂ f
∂Y ′

∂Y ′

∂ε

]
dx = 0. (A.7)

By the substitution of A.3 and A.4 in A.7 we get,∫ x2

x1

[
∂ f
∂y

η(x)+
∂ f
∂y′

η
′(x)
]

dx = 0. (A.8)

Next, we distribute the integration over the equation and apply integration by parts rule

to the second term of the equation. And we apply the limit η(x1) = η(x2) = 0, we get

the equation as ∫ x2

x1

[
∂ f
∂y′

dx+
∫ x2

x1

d
dx

∂ f
∂y′

dx
]

η(x) = 0. (A.9)

Since η(x) cannot be zero, the only possibility is
∂ f
∂y

+
d
dx

∂ f
∂y′

= 0. (A.10)

Above equation is called as the Euler-Lagrangian (E-L) equation (see Gelfand and

Fomin (1963) for more details).

A.3 CONDITION FOR EXISTENCE OF A UNIQUE SOLUTION
FOR Chi DISTRIBUTED RESTORATION MODEL

Here we analyze the uniqueness property of the solution of (2.9) since the convexity

of the TV is known the regularization term need not require any further explanation.

Consider the reactive or fidelity term and define it as Φ(u) (the Gaussian blurring kernel

K is taken as identity as the presence of this linear operator does not make any effect on
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the analysis)

Φ(u) = (L−1) log(u)+(u2)/(2σ
2)− log IL−1

(u0u
σ2

)
, (A.11)

let us take the first variation of Φ(u) with respect to u, we get

Φ
′(u) = (L−1)/u+

1
σ2

u−
I′l−1

(
u0u
σ2

)
Il−1

(
u0u
σ2

)u0

 , (A.12)

where I′(.) is the first derivative of the Bessel function I(.). Now let us take the second

derivative of the function Φ(u)

Φ
′′(u) =

1−L
u2 +

1
σ2

1−
u2

0
σ2

I′′L−1

(
u0u
σ2

)
IL−1

(
u0u
σ2

) −
I′L−1

(
u0u
σ2

)
IL−1

(
u0u
σ2

)
2

 , (A.13)

where

IL(u) =
∞

∑
k=0

(−1)k (u
2

)2L+1

(k+L)!k!
,

I′L(u) =
1
2
[IL−1(u)+ IL+1(u)] ,

and

I′′L(u) =
1
4
[IL−2(u)+2IL(u)+ IL+2(u)] .

Now the condition for convexity of the functional Φ(u) is that Φ′′(u)> 0, therefore,

u2
0

σ2

I′′L−1

(
u0u
σ2

)
IL−1

(
u0u
σ2

) −
I′L−1

(
u0u
σ2

)
IL−1

(
u0u
σ2

)
2< 1 (A.14)

I′′L−1

(
u0u
σ2

)
IL−1

(
u0u
σ2

) −
I′L−1

(
u0u
σ2

)
IL−1

(
u0u
σ2

)
2<

σ2

u2 ,

it implies

I′′L−1

(
u0u
σ2

)
IL−1

(
u0u
σ2

) <

 I′L−1

(
u0u
σ2

)
IL−1

(
u0u
σ2

)
2

+
σ2

u2 ,

Substituting the expressions of I′(.) and I′′(u) in the above expression we get
1
4

[
IL−3

(
u0u
σ2

)
+2IL−1

(
u0u
σ2

)
+ IL+1

(
u0u
σ2

)]
IL−1

(
u0u
σ2

) <

 1
2

[
IL−2

(
u0u
σ2

)
+ IL

(
u0u
σ2

)]
IL−1

(
u0u
σ2

)
2

+
σ2

u2

(A.15)
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A.4 UNIQUENESS OF THE SOLUTIONS OF RAYLEIGH MOD-
ELS

Here the condition for the existence of a unique solution for the proposed functional in

(3.15) is derived. Let us recall the functional,

min
u

{∫
Ω

(
u2

0
2(u)2 +2log(u)

)
dxdy+

∫
Ω

λ

2
JNLTV (u)dxdy

}
. (A.16)

The first term in the functional (A.16) ensures the fidelity of the solution. This term is

conditionally convex i.e. its second derivative is conditionally non-negative. The first

derivative of the fidelity term is

K∗
(
−u2

0/(Ku)3 +2/(Ku)
)

(A.17)

and the second derivative is

K∗
(
K∗
(
3u2

0/(Ku)4−2/(Ku)2)) . (A.18)

Therefore the fidelity term is non-negative only if u2
0 > (2/3)(Ku)2. However, it is

practically not feasible to make such assumptions, therefore we perform a variable sub-

stitution to make the problem un-conditionally convex. Let us consider Kz = log(Ku)

or Ku = eKz. Now substituting this in the main functional gives the modified functional

min
u

{∫
Ω

(
u2

0
2e2z +2z

)
dxdy+λ

∫
Ω

φ(ez)dxdy
}
. (A.19)

and for deblurring case, the modified functional will be,

min
u

{∫
Ω

(
u2

0
2e2Kz +2Kz

)
dxdy+λ

∫
Ω

φ(eKz)dxdy
}
. (A.20)

The second derivative of the new fidelity term is 2u2
0

e2z , since u ≥ 0 (z = logu or ez = u)

and u0 ≥ 0 (since both u and u0 represent the image pixels which are generally positive)

the fidelity term is invariably convex. Now the second term or the regularization term

is chosen as convex i.e. φ(u) = ‖∇NLu‖p and this term is convex for all values of

p ≥ 1. Therefore, the energy functional is convex and a unique solution is guaranteed,

subsequently, the iterative procedure converges in finite amount of time.
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Appendix B

This section contains the derivations of MAP estimators for all the discussed models

in this thesis. The derivations are provided to ensure the completeness of the thesis.

Further details can be found in Afonso and Sanches (2015) and Le et al. (2007), respec-

tively for Rayleigh and Poisson distributions.

B.1 MAP ESTIMATOR FOR THE NON-CENTRAL Chi DISTRI-
BUTION

The posterior probability function of a Chi distribution is given in terms of Bayesian

conditional probability as in Fernandez and Vega (2013),

P(u0|u,σ ,L) =
uL−1

σ2 uL
0e

(
−(u2

0+u2)

2σ2

)
IL−1

(u0u
σ2

)
H(u0). (B.1)

Let us recall the Bayes rule,

P(U |F) =
P(F |U)P(U)

P(F)
, (B.2)

where F and U are events, P(F) 6= 0, P(F |U) a likelihood estimate of the distribu-

tion, P(U |F) is a posteriory estimate and P(F) and P(U) are probabilities of U and

F respectively. In our case F = u0 and U = u (will be the observed and the original

images respectively). So we need to maximize P(u|u0). This leads to maximization of

log-likelihood:

log(P(u|u0)) = log(P(u0|u))+ log(P(u))− log(P(u0)). (B.3)

Since P(u0) is constant and does not affect the optimization process, let us omit this

term without losing generality of the expression, therefore we have,

P(u|u0), P(u0|u,σ ,L) =
uL−1

σ2 uL
0e

(
−(u2

0+u2)

2σ2

)
IL−1

(u0u
σ2

)
H(u0) P(u). (B.4)
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Now maximizing this conditional probability gives,

max
u
{P(u|u0)}= max

u

uL−1

σ2 uL
0e

(
−(u2

0+u2)

2σ2

)
IL−1

(u0u
σ2

)
H(u0) P(u)

 , (B.5)

since the image is pixellated (represented in terms of discrete pixel values) the above

expression gets modified as:

max
u
{P(u(x)|u0(x))}= max

u

{
∏

x

u(x)L−1

σ2 u0(x)Le

(
−(u0(x)

2+u(x)2)
2σ2

)

IL−1

(
u0(x)u(x)

σ2

)
H(u0(x))∏

x
P(u)

}
,

(B.6)

modifying above equation according to Equation B.3 gives,

max
u
{logP(u(x)|u0(x))}=max

u

{
log∏

x

u(x)L−1

σ2 u0(x)Le

(
−(u0(x)

2+u(x)2)
2σ2

)

IL−1

(
u0(x)u(x)

σ2

)
H(u0(x))+ log∏

x
P(u(x))

}
, (B.7)

since the multiplication gets transformed to addition in the log domain, let us replace

the product symbols with summation symbols i.e.,

max
u
{logP(u(x)|u0(x))}=max

u

{
∑
x

log
u(x)1−L

σ2 u0(x)Le

(
−(u0(x)

2+u(x)2)
2σ2

)

IL−1

(
u0(x)u(x)

σ2

)
H(u0(x))+∑

i
logP(u(x))

}
, (B.8)

since maximizing the log-likelihood is equivalent to minimizing the − log likelihood,

we have

min
u
{− logP(u(x)|u0(x))}=min

u

{
∑
x
− log

u(x)1−L

σ2 u0(x)Le

(
−(u0(x)

2+u(x)2)
2σ2

)

IL−1

(
u0(x)u(x)

σ2

)
H(u0(x))+∑

i
− logP(u(x))

}
, (B.9)

which implies

min
u
{− logP(u(x)|u0(x))}=min

u

{
∑
x
−(1−L) log(u(x))+ log(σ2)−L logu0(x)

− (−(u0(x)2 +u(x)2)/(2σ
2))− log

(
IL−1

(
u0(x)u(x)

σ2

))
− logH(u0(x))−∑

x
log(P(u(x)))

}
.

(B.10)
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Now discarding the constant terms as they do not contribute towards the optimization

procedure, we have

min
u
{− logP(u(x)|u0(x))}= min

u

{
∑
x
(L−1) log(u(x))+

u(x)2

2σ2

− log
(

IL−1

(
u0(x)u(x)

σ2

))
−∑

x
log(P(u(x)))

}
, (B.11)

further, without losing the generality lets drop the index terms and the sum symbol in

the above expression, i.e.

min
u
{− logP(u|u0)}=min

u

{
(L−1) log(u)+

u2

2σ2 − log
(

IL−1

(u0u
σ2

))
− log(e−γJ(u))

}
,

where P(u), eγJ(u) and J(u) (already defined in (1.25)) is a function of prior probabil-

ity ( using non-local TV prior in place of J(.)) and γ is a scalar regularization parameter.

With this assumption we have

min
u
{− logP(u|u0)}= min

u

{
(L−1) log(u)+

u2

2σ2 − log
(

IL−1

(u0u
σ2

))
+ γJ(u)

}
.

(B.12)

B.2 MAP ESTIMATE FOR THE RAYLEIGH DISTRIBUTION

Considering the Rayleigh distribution with PDF P(x;σ) , x
σ2 e−

x2

2σ2 , we need to max-

imize the probability of the random variable u (the original image pixels) given the

observed noisy image u0. The conditional probability P(u0|u) is defined as

P(u0|u) = pu(u0) =
u0

u2 e−
u2
0

2u2 . (B.13)

We obtained P(u0|u) from the definition of the PDF of the Rayleigh distribution by

replacing the variables appropriately. Now the Bayesian formulation takes the form

max
u

P(u|u0) = max
u

P(u0|u)P(u). (B.14)

Here P(u0|u) denotes the conditional probability (likelihood estimate of the distribu-

tion), P(u|u0) is a posteriori probability and P(u) is the prior probability. Considering

the image (u and u0) as a set of independent pixels at xi (the joint probability becomes

the product of marginal probabilities of each random variable u(xi)), we can modify the

above expression as:

max
u

P(u(xi)|u0(xi)) =

{
max

u

N

∏
i=0

(P(u(xi)|u0(xi))P(u(xx)))

}
, (B.15)
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where N denotes the total number of pixels in the image. Substituting the expression

for P(.) in the above equation and omitting the LHS of the equation for the time being,

we have

max
u

{ N

∏
i=0

(
u0(xi)

u(xi)2 e
− u0(xi)

2

2u(xi)2 P(u(xi))

)}
. (B.16)

In order to simplify the maximization problem, we consider its analogous log likelihood

maximization problem i.e

max
u

{
log

(
N

∏
i=0

u0(xi)

u(xi)2 e
− u0(xi)

2

2u(xi)2

)
+

N

∑
i=0

log(P(u(xi)))

}
. (B.17)

(Since u0 is a constant it does not affect the minimization process, therefore, log(u0)

is omitted from further steps.) The above maximization problem can be designed as a

minimization problem by considering the − log likelihood of the function i.e.

min
u

{ N

∑
i=0

2logu(xi)+
u0(xi)

2

2u(xi)2 −
N

∑
i=0

log(P(u(xi)))

}
. (B.18)

Without loss of generality let us drop the indices for the images, therefore we have

min
u

{
2logu+

u2
0

2u2 − log(P(u))
}
. (B.19)

Assuming Gibbs prior P(u) = e(−
λ

2 J(u)), the above equation becomes

min
u

{
2logu+

u2
0

2u2 +
λ

2
J(u))

}
. (B.20)

Here J(.) denotes the regularization functional and λ > 0 the regularization parameter,

which are already defined earlier.

B.3 MAP ESTIMATOR FOR POISSON DISTRIBUTION

The Probability Density Function(PDF) of Poisson distribution is given by,

P(z;λ ) =
e−λ λ z

z!
, (B.21)

where λ is both mean and standard deviation for a sample z. Our goal is to maximize

the probability of the random variable u (the original image) given the observed noisy

image u0.

P(u0|u) = Pu(u0) =
e−uuu0

u0!
, (B.22)

we got Pu(u0) (B.21), now the Bayesian formulation takes the form as in (B.14).

Considering the image (u and u0) as a set of independent pixels at xi (the joint prob-

ability becomes the product of marginal probabilities of each random variable u(xi)),

we can modify the above expression using a log maximization procedure as: (Since u0
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is a constant it does not affect the minimization process, therefore, log(u0) is omitted

from further steps.) Following similar steps as in the previous section and let us modify

the above expression using a log maximization procedure as

max
u

{ N

∑
i=0
−u(xi)+u0(xi) logu(xi)+

N

∑
i=0

log(P(u(xi)))

}
. (B.23)

The above maximization problem can be designed as a minimization problem by con-

sidering the -log likelihood of the function i.e.

min
u

{ N

∑
i=0

u(xi)−u0(xi) logu(xi)−
N

∑
i=0

log(P(u(xi)))

}
. (B.24)

Generally, we can write the above equation as follows

min
u

{
u−u0 logu− log(P(u))

}
. (B.25)

Assuming Gibbs prior P(u) = e(−
λ

2 J(u)), the above equation becomes

min
u

{
u−u0 logu+

λ

2
J(u)

}
. (B.26)

The energy formulation for the above equation is

min
u

{∫
Ω

(u−u0 logu)dxdy+
∫

Ω

λ

2
J(u)dxdy

}
. (B.27)

Assuming J(u) as Jw(u, p) as defined in (4.2), we can rewrite the above expression as

min
u

{∫
Ω

(u−u0 logu)dxdy+
∫

Ω

λ

2
Jw(u, p)dxdy

}
. (B.28)

Let us define H(u) = u−u0 log(u). The steepest descent equation for (B.28) is:

un+1 = un +∆t(−λ ∑
x∼y

w
p
2
xy(|u(y)−u(x)|+ ε)p−2(u(y)−u(x))+H ′(u)), (B.29)

where H ′(u) = u−u0
u .
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Appendix C

In this section, a sample MATLAB code used for the implementation of NLTV and

split Bregman iterative scheme for additive Gaussian noise is shown. Codes for non-

local gradient, non-local divergence and non-local weights are implemented according

to Zosso et al. (2013).

C.1 SAMPLE CODE FOR THE NLTV FILTER USING SPLIT
BREGMAN ITERATIVE SCHEME

1 function split_breg_Nonlocal
2 % Read image
3 img=imread('barbara.png');
4

5 [n,m]=size(img);
6 N=n*m;
7 img=double(img);
8 figure(1), imshow(img,[]),title('original image');
9 img=img/max(img(:));

10

11 % Add Gaussian noise to the original image
12 nv=15/255;
13 noise=randn(size(img))*nv;
14 img=double(img)+noise;
15

16 figure(2), imshow(img,[]),title('Noisy image');
17 u=img(:); f=img(:);
18 % Set variuos parameters
19 ws=5;ps=3;ms=10;binary=false;h=15;sigma2=3.0;weight_thres=0;
20 W=weights_nonlocal(img,ws,ps,ms,binary,sigma2,h,weight_thres);
21

22 b=sparse(N,N);
23 v=sparse(N,N);
24 beta=.05; lam=0.4;
25 iter=0;
26 while iter<3
27 u=(lam*f+beta*W*u-beta*nonlocal_divergence(W,v-b) ) ./ ...

(lam + beta*sum(W,2));
28 del_u=nonlocal_gradient(W,u);
29 v=shrink2(del_u+b, beta);
30 b=b+del_u-v;
31 iter=iter+1;
32 end
33 x=reshape(u,n,m);
34 figure, imshow(x,[]);

117



35 end
36

37

38 function x=shrink2(del_ub,beta)
39 st=sign(del_ub);
40 ft=abs(del_ub);
41 ft(ft>0)=ft(ft>0)-beta;
42 ft(ft<0)=0;
43 x=ft.*st;
44 end
45

46

47 function W = ...
weights_nonlocal(f,ws,ps,ms,binary,sigma,h,weight_thres)

48 % Helper function to construct non-local weight matrix between ...
image pixels

49 % as introduced by Buades, Coll and Morel.
50

51 if (nargin==1)
52 binary = false;
53 sigma = 3.0;
54 ws = 10;
55 ps = 5;
56 ms = 8;
57 end
58

59 [m, n] = size(f);
60 r = m*n;
61 G = fspecial('gaussian', [40, 40], sigma);
62

63 % Computing distance
64 dist = zeros((2*ws+1)*(2*ws+1), r);
65

66 padu = padarray(f,[ws ws],'symmetric','both');
67

68 for i = -ws:ws
69 for j = -ws:ws
70 shiftpadu = padarray(f,[ws-i ws-j],'symmetric','pre');
71 shiftpadu = padarray(shiftpadu,[ws+i ...

ws+j],'symmetric','post');
72

73 tempu = (padu-shiftpadu);
74 tempu = tempu(1+ws:m+ws, 1+ws:n+ws);% tempu(r,c) = ...

f(r,c) - f(r+i,c+j);
75

76 padtempu = padarray(tempu,[ps,ps],'symmetric','both');
77

78 uu = conv2(padtempu.^2, G, 'same');
79 uu = uu(1+ps:m+ps, 1+ps:n+ps);
80

81 k=(j+ws)*(2*ws+1)+i+ws+1;
82 dist(k, :) = reshape(uu, 1, []);
83 end
84 end
85 % Computing the weight
86 W = sparse(r,r);
87

88 idx = (0:r-1)';
89 idx = idx*(2*ws+1)^2;
90

91 dist(dist==0) = 1e+5; % Assign a large value -> don't count ...
that pixel itself

92 for i = 1 : ms
93 [y, minindex] = min(dist);% choose the ms smallest distance
94

95 % position in the vector image f
96 ind1 = [1:r]';
97 minindex = minindex';
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98 ind2 = floor((minindex-1)/(2*ws+1))*(m-2*ws-1) + minindex ...
+ind1 -ws-1-ws*m;

99

100 tmpindex = find(ind2>0 &ind2≤r);
101

102 if (binary)
103 W = W + sparse(ind1(tmpindex), ind2(tmpindex), 1, r, r);
104 else
105 values = max(exp(-y(tmpindex)/h^2),weight_thres);
106 W = W + sparse(ind1(tmpindex),ind2(tmpindex),values,r,r);
107 end
108 idx2 = idx + minindex; % position in the matrix dist
109 dist(idx2) = inf; % assign inf so that we can come to the ...

next smallest distance
110 end
111

112 end
113

114

115 function grad=nonlocal_gradient(W,I)
116 N = length(I(:));
117 [row,col,¬] = find(W);
118 z = sparse(row,col, I(col)-I(row),N,N);
119 % fgrad = f(z,tau);
120 grad = z.*sqrt(W);
121 end
122

123

124 function div = nonlocal_divergence( W, v )
125 % Helper function that computes the non-local divergence of ...

vector v on
126 % graph weights W.
127

128 N = size( W, 1 );
129 in = sqrt(W).*v;
130 in = in - in';
131 div = in*ones(N,1);
132 end
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