
DEVELOPMENT OF A HYBRID 

RECURRENT NEURAL NETWORK 

BASED INTELLIGENT DECISION 

SUPPORT SYSTEM WITH REVERSE 

MAPPING FOR CNC MACHINING 

 

Thesis 

Submitted in partial fulfilment of the requirements for the 

degree of 

DOCTOR OF PHILOSOPHY 

by 

RASHMI LAXMIKANT MALGHAN 

 

 

 

DEPARTMENT OF MECHANICAL ENGINEERING 

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA, 

SURATHKAL, MANGALORE -575025 

December, 2017 



 
Dedicated to 

My Parents, Brother, 
Husband, In-Laws and 

Gurus 

 
 

 

 



 

 

DECLARATION 

 

By the Ph. D. Research Scholar 

 
I hereby declare that the Research Thesis entitled “DEVELOPMENT OF 

A HYBRID RECURRENT NEURAL NETWORK BASED 

INTELLIGENT DECISION SUPPORT SYSTEM WITH 

REVERSE MAPPING FOR CNC MACHINING" which is being 

submitted to National Institute of Technology Karnataka, Surathkal in 

partial fulfillment of the requirements of award of the degree Doctor of 

Philosophy in Department of Mechanical Engineering is a bonafide report 

of the research work carried out by me. The material contained in this 

Research Thesis has not been submitted to any University or Institution for 

the award of any degree.  

 

Register Number                                : 123026ME12F07 

Name of the Research Scholar        :  Rashmi L Malghan 

Signature of the Research Scholar : 

 

Department of Mechanical Engineering 

Place: NITK- Surathkal 

Date:  



 

CERTIFICATE 

This is to certify that the Research Thesis entitled 

"DEVELOPMENT OF A HYBRID RECURRENT NEURAL NETWORK 

BASED INTELLIGENT DECISION SUPPORT SYSTEM WITH 

REVERSE MAPPING FOR CNC MACHINING” submitted by Mrs. 

Rashmi L Malghan (Reg. No. 123026ME12F07) as the record 

of the research work carried out by her, is accepted as the 

Research Thesis submission in partial fulfillment of the 

requirements for the award of the degree of Doctor of 

Philosophy. 

 

 

 

Prof. Shrikantha S. Rao                               Prof. R J D’Souza                  

Research Guide                                               Research Guide                                               

Date:                                                               Date:                                                             

                                                           

 

Chairman DRPC 

Date:  
 

 

 



ACKNOWLEDGEMENT 

 

This thesis embodies the results of the last couple years' work whereby I have been 

accompanied and supported by many people. It is an honor and a very pleasant opportunity to 

be able to express my gratitude to all of them. 

It has been indeed a great honor for me to work under the guidance of my advisors Prof. 

Shrikantha S. Rao and Prof. R J D'Souza Department of Mechanical Engineering, 

Department of Mathematics and Computational Science NITK Surathkal. With deep sense of 

gratitude and humility, I express my sincere thanks to them for their valuable guidance, 

untiring perseverance and unending patience which made the research not merely educational 

but also enjoyable. I also take this opportunity to thank the Director, NITK Surathkal and 

Head of Mechanical Engineering Department, NITK Surathkal for allowing me to carry out 

my doctoral studies. 

I sincerely thank the Research Progress Assessment Committee consisting of                      

Dr.T. Laxminidhi (Electronics and Communication Engineering Department), Dr. Naveen 

Karanth P (Mechanical Engineering Department), and Dr. Shrikantha Rao, Dr. R J D'Souza 

and Dr. Mervin Herbert for their valuable comments and constructive criticism which have 

helped the enrichment of this doctoral work. I owe my deepest gratitude to Dr. Akshay 

Nigalye, Dr.Arunkumar Shettigar for their valuable suggestions and constant support during 

my research work. I am indeed extremely indebted to all of them. I extend my sincere thanks 

to Mr.karthik Rao M C for kind help in carrying out experiments and providing me 

continuous motivation and support.  

My sincere thanks to my co-research colleague Mr. Conel Rodrigues and Dr. Akshay Nigalye 

and Dr.Arunkumar for rendering their advice in coding for the ANN and RNN models.  I 

am immensely indebted to the unending help and support I received from my co-research 

colleagues Mr. Karthik Rao, Ms. Roopa Swamy, Ms. Charitha Rao, Mr. Subramanya, Mr. 

Shrivathsa T V, Mr. Venkatesh G, Mr.Shivaya, Dr. Vignesh, Dr. Manjunatha, Dr. Manjaihia, 

Dr. Murali , Dr. Nagraj Shetty and Dr. Mrunali Sona during the course of my research work. 

I also thank   Mr. Jaya Devadiga, Mr. Mahesh B.K and Mr. B Gangadhar, Assistant 

Executive Engineer, Department of Mechanical Engineering who provided me continuous 



support during my research work. My sincere thanks to Mr. Guruprasad, Mr. Pradeep and 

Sudhakar Naik R for extending their help while conducting the experiments.  

I am indebted to my parents Mr. Laxmikant Malaghan and Mrs. Maitra Malaghan for 

inculcating in me the right values and virtues. I am extremely grateful to my brother           

Mr. PavanKumar L Malaghan, Mrs. Sanvi Pavankumar Malaghan and My husband 

Mr. Karthik Rao M C, Mrs. Chinnamma Sonwalkar, Mr Veerana Hosur, Mrs. Sunitha 

Hosur, Mr. Shivu V Hosur, Ms. Shravani V Hosur, Mr. Chandarshekar Rao, Mrs. 

Surekha C Rao, Mrs. Rashmi Revenkar, Mr.Kiran Revenkar, and Mr. Aryan K R for 

providing continuous encouragement and financial support. I wish to express my special 

thanks Mrs. Saishyama V G, Mr.Vinayak Manoji, to all my family members and friends 

who were a constant source of motivation and encouragement during the entire course of my 

doctoral work.  

I am indebted to all my friends of Department of Mechanical Engineering NITK Surathkal 

for their constant help and encouragement during the entire this research work. The list goes 

on and there are many others I should mention. There are people who helped me all the way 

and provided me support when I didn't even realize i needed it, or needed it now, or needed it 

constantly. Listing all of them would fill a book itself, so I merely will have to limit myself to 

a few words: I THANK YOU ALL...! 

Praise to the Almighty who bestows success and guides our destiny. I fall to find words to 

express my thankfulness and gratitude for the blessings and for bestowing ever pervading 

illumination and perseverance in accomplishing the uphill task. 

 

Rashmi L Malghan 

 

 



ABSTRACT 

 

The growth of consumer demands for better quality metal cutting related products has 

motivated the metal cutting industry to continuously enhance quality control of metal cutting 

processes. Of the several processes, the face-milling is one of the most fundamental metal 

removal operations used. It is affected by machining process parameters like cutting force, 

ambient conditions, coolant type, tool parameters and material properties. Nowadays, diverse 

types of materials have been used based on the condition requirements like strength, weight, 

corrosion resistance, etc. Metal reinforced composites have tailorable properties which widen 

their applications. Machining of composite materials is difficult to carry out due to the 

anisotropic and non-homogeneous structure of composites and the high abrasiveness of their 

reinforcing constituents. In this study on milling of AA6061 and AA6061-4.5%Cu-5%SiCp 

composite, formation of unwanted scratches on the surface of the material were witnessed 

due to presence of hard particles, resulting in increased surface roughness. Design of 

experiment is used to analyse the machining process parameters. Taguchi orthogonal array 

design is used to analyse the levels of the experiment. The Analysis of Variance (ANOVA) is 

also used to evaluate the contribution of process parameters on milling process output 

variables for both alloys and composites. The mathematical models for cutting force, surface 

roughness and power consumption are developed using response surface methodology(RSM). 

 

Under utilization of machine capacity limits the efficient use of machines and is presently 

continually being run at sub-optimal conditions. In this study, a novel technique is introduced 

wherein the desired depth of cut is achieved with lesser number of passes, lesser time and 

also by consuming lesser power. Planning a strategy for better machine utilization based on 

power constraint in machining using PID logic. 

 

Further, prediction of responses of milling process are carried out using artificial neural 

network (ANN) with feed forward architecture using error back propagation learning 

algorithm. A reverse mapping neural network (NN) has been implemented as a novel 

architecture, which can derive the input responses, based on the desired system outputs. 

Reverse mapping approach can be treated as advisory system in absence of human experts, 

can predict the settings of various process parameters in a milling process to achieve the 

desired responses as per the requirements of end user. Further this model can be implemented 

to adjust the process parameters in on-line control of the milling quality. The validity of the 



models is established. The ANN models formulated for cutting force, surface roughness and 

power consumption are found to predict the corresponding responses quite accurately, within 

the acceptable limits of prediction errors.  

To explore the dynamic learning capacity of Elman Simple Recurrent Neural Network as 

advancement over ANN model, the corresponding RNN model was developed. The 

convergence problem of RNN model was overcome by an innovative way by using Hybrid 

Recurrent Neural Network (HRNN). The biases and weights are borrowed in a HRNN model 

with feedback connections, from a partially trained ANN model having similar architecture. 

The HRNN formulated using this methodology is able to predict the relationship between 

input and output data and a good correlation is achieved. With reduced learning time, it is 

observed that an HRNN modelled from a partially trained ANN has equivalent prediction 

capability and is superior to ANN in terms of computational time. 

It is noteworthy that, prediction helps the investigator to determine the outputs as well as 

inputs, but since it fails to estimate the global extreme values of the response responsible for 

the best product quality (minimum defects). Identifying the extreme values for the conflicting 

outputs poses difficulties. Traditional methods (DOE, RSM, Grey Relational Analysis and 

Classical engineering approach) might fail to determine the global optimum values as 

searches are carried out in single direction. Evolutionary algorithms (Particle Swarm 

Optimization(PSO)) through their heuristic search mechanisms determine the global solutions 

at many distinct locations in multi-dimensional space, simultaneously. The lower and upper 

levels of machining parameters were opted as constraints. The optimized results were cross 

verified with experiments and found to have good agreement with the experimental values. 

PSO outperforms Grey Relational Analysis and RSM thus can be utilized as a tool to 

optimize and predict results during machining of AA6061 and AA6061-4.5%CU-5%SiCp. 

 

Graphical user interface (GUI) has been designed using available API libraries which include 

two main modules, namely, Prediction (both forward and reverse mapping) and Optimization. 

Each model has the sub components for prediction of cutting force, surface roughness and 

power consumption. There is provision to obtain outputs by manually feeding the inputs as 

well for plotting bar graphs by varying one parameter at a time, keeping others constant.  

 

Keywords: Artificial Neural Network, Forward Mapping, Reverse Mapping, Hybrid  

Recurrent Neural Network, Particle Swarm Optimization. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 GENERAL BACKGROUND 

The challenge of modern machining industries is mainly focused on the achievement 

of high quality, in terms of work piece dimensional accuracy, surface finish, 

production rate, and lesser wear on the cutting tools, economy of machining and 

reduced environmental impact. Several mathematical models have been proposed to 

focus on this wider objective so far. 

 

Now days, Metal Matrix Composites (MMCs) play a vital and effective role in the 

field of aerospace, marine and automotive industries. For important applications, 

MMCs have functional properties such as higher strength to weight ratio, enhanced 

elastic modulus, improved strength at elevated  temperature, higher wear resistance, 

attractive electrical and thermal conductivity and low coefficient of thermal expansion 

compared to the conventional metals and alloys (Necat et al. 2006, Bayraktar et al. 

2008). The focus is mainly on discontinuously reinforced aluminium alloys  (DRA) 

based MMCs, due to their better strength to weight ratio, high stiffness, high modulus, 

better thermal stability and their isotropic nature. The demand for Al based 

composites for use as structural material is growing day by day due to its attractive 

light weight and high strength to weight ratio (Joardar et al.2014, Degischer et al. 

2001). The limitation in achieving excellent permutation of strength, toughness, 

density and stiffness in monolithic materials has led to the invention of new 

generation of material known as composite material. (Nair et al. 1985, Hashim et al 

1999, Bandyopadhyay et al. 2007) Composite materials are the most promising 

materials and are in boom due to their tailorable properties. (Previtali et al. 2008, 

Bandyopadhyay et al. 2007).In recent era, different types of composites have come in 

to being namely, fibre reinforced composite and particulate reinforced composite, etc. 

(ASTM, Composites). Such sort of composite are known as polymer matrix 

composite, metal matrix composite and ceramic matrix composites. (Karl 2006)Metal 
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Matrix Composites have emerged as futuristic material in the engineering field due to 

their superior mechanical properties, and alterable thermal and electrical properties 

(Ashok and Murugan 2014, Bayraktar et al. 2008). These materials possess significant 

advantages in terms of strength to weight ratio, stiffness and wear resistance.  

 

Under utilization of machine capacity limits the efficient use of machines and is 

continually being run at sub-optimal conditions. In this study, a novel technique is 

introduced wherein the desired depth of cut is achieved with lesser number of passes, 

lesser time  and also by consuming lesser power. Even though the total power for a 

specific pass is higher in the present approach, overall there is a 40 % decrease in the 

power consumption and that too in a shorter time interval.   

 

The present study explores to increase the machine capacity utilization and hence 

increasing the machine availability without affecting the quality performance of the 

machine, inturn increasing the productivity. Hence, to exploit the full capabilities, 

power consumption is the desirable metric which is used as maximum capacity 

utilization criterion of CNC (Computer Numerical Control) machine. With this 

approach, for the given depth of cut, the total power consumption and the time 

required to perform the entire job is reduced and hence enhancing the utilization 

capacity of the machine.  

 

Since it is difficult to identify the process parameters to obtain the desired responses 

by conducting individual experiments, statistical modelling approaches have been 

utilized like Taguchi Orthogonal array, Response Surface Method, Grey Relation 

Analysis. An attempt has been made to develop the forward and reverse process 

models for the milling process models using the neural network based approaches (i.e. 

ANN and RNN). In this study,  neural networks based approaches (i.e ANN and 

RNN) has been applied to milling process for  prediction of its three responses based 

on three machining parameters namely spindle speed, feed rate and depth of cut  

through forward mapping. Using a reverse mapping method, based on the end user’s 

requirements for the desired values of various responses, the optimal settings of 

milling process parameters were also predicted. It has been observed that the ANN 
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and RNN predicted results closely corroborate with the experimental and test case 

results which prove the capability of neural network based approaches as an effective 

tool for developing such prediction models to cater the needs of both the operators 

and the end users. It can also be extended further for modeling other complex 

machining processes with a large number of control parameters and responses.  It is to 

be noted that the results of the reverse modelling are considered to be more useful for 

the end user to achieve the desired output. In addition, the developed methodology 

can be implemented to adjust the process parameters in on-line control of the milling 

quality. This model for reverse mapping is also trained using the test cases and is 

subsequently used for prediction of the tentative settings of the milling process 

parameters based on a set of desired response characteristics.  It can also be treated as 

an advisory system in absence of human experts, can predict the settings of various 

process parameters in a milling process in order to achieve the desired responses 

according to the requirements of the end users. 

 

The ANN and RNN concepts are implemented to predict responses of AA6061 and 

AA6061-4.5%Cu-5%SiCp via forward and reverse mapping in milling process. Very 

few research has been done on the prediction of the process parameters by reverse 

mapping technique in casting process (Manjunath Patel et al. 2014). In this process, 

the desired response of the system is fed in to the system and input process parameters 

are generated. So far, this system is used only for predicting the best input parameters 

but very few research works are addressed towards reverse mapping to develop 

control logic of machining process. Further, this system can be used in the 

development of feedback system to control the machining process.  

One of the main objectives in any system is to optimize the multiple responses of the 

process parameters. The recent focus has been towards the multi-objective 

optimization of machined surfaces to reduce the cost of the machining operation. One 

of the techniques used in statistical tools is desirability approach. This approach gives 

satisfactory result but further minimization of error can be obtained by particle swarm 

optimisation.  Particle swarm optimization searches the minimum global optimization 

from the entire population. PSO is a computational method that optimizes the issues 
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by iteratively training to improve a candidate solution with regards to quality. Such 

methods are commonly known as metaheuristics as they make few or no assumptions 

about the issue being optimized and can search very large space. PSO can handle 

mixed integer nonlinear optimization problems with only concise program. But, 

hardly any work has been carried out regarding the development of a control strategy 

for improving the machine utilization and availability to increase productivity. So, the 

present study focuses on development of control strategy through an intelligent 

software system.  

This system utilizes empirical formulae (as discussed in chapter 4) to measure the 

cutting forces and each time these forces are compared with the machine working 

capacity. If the machine working capacity is below the maximum level of machine 

capacity, then it will increase the rotational speed or feed rate to maximize the power 

consumption. Such a novel strategy has been implemented here.  



1.2 PROPOSED STUDY OUTCOME 

This thesis is an effort to develop ANN models which can predict the responses of 

AA6061 alloy and AAT061-4.5%Cu-5%SiCp composite, and to establish a 

relationship between the input parameters and the desired responses. Further the 

predictions made by the ANN models are validated by conducting the validation 

experiment within the range of data used for training the ANN models. The 

predictions made by the models are then analysed with respect to the training as well 

as validation data to assess the suitability of the ANNs to model the AA6061alloy and 

AA6061-4.5%Cu-5%SiCp composite in milling process. 

Recurrent neural networks (RNN) are known for better convergence characteristics 

(Elman 1990). However, the use of Elman Simple recurrent network as well as 

extended Elman network (Kremer 1995, Song et al. 2008, Gruning 2006) using back 

propagation training algorithm led to network getting stuck in local minima. The 

problem of convergence has also been noticed while modelling the process of mushy 

state rolling using Elman and extended Elman recurrent neural networks, to predict 

the grain sizes, hardness, wear and tensile properties. Various strategies were tried out 
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to overcome the problem of Elman extended recurrent neural network which led to 

the formulation of a Hybrid Recurrent Neural Network (HRNN). The predictions of 

the HRNNs formulated are shown to be statistically equivalent to the predictions done 

by using ANN model. Further, the predictions made by HRNNs modelled for milling 

of AA6061 alloy and AA6061-4.5%Cu-5%SiCp composite are analysed with those 

obtained using ANN models. The assessment of the performance of HRNN models 

with the ANN models provides the decision to accept the HRNN model as an 

alternative tool for predictions and input - output mappings, with the added advantage 

of faster convergence. 

To introduce higher level of generality, two materials (AA6061 and AA6061-4.5% 

Cu-5% SiCp) have been taken in to consideration. Inorder to predict the process 

parameters of these materials usually different models need to be integrated. This 

issue has been overcome in the present study by developing a common prediction 

model. The developed model will identify and predict the common best process 

parameters that hold good for different types of materials.  

The present research delineates a new comprehensive approach for selecting optimal 

cutting parameters for machining. The approach is based on ideal optimization 

methods such as Response Surface Methodology (RSM) and Particle Swarm 

Optimization. Development of ANN and RNN models by Forward and Reverse 

Mapping simulate the relationship of milling process parameters and their influence 

on cutting force, surface roughness and power consumption.  

The developed models were tried out on the above mentioned materials so as to prove 

their generality. Secondly, the study was more concentrated in developing a model 

that behaves and performs in a better way by providing the desired output. A 

Graphical User Interface (GUI) environment is developed to enable the user in using 

the system more comfortably. 
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1.3 LAYOUT OF THE THESIS 

In the present work, a systematic study is carried out to elucidate the machining 

performance of AA6061 and AA6061-5%SiCp composite materials. The effect of the 

machining parameters involved in the milling of AA6061 and AA6061-5%SiCp have 

been studied. In addition, a detailed analysis of experiment is performed by using 

Orthogonal Array (OA) technique and later on the prediction of the model is carried 

by RSM, ANN and RNN techniques. Further on, the optimization was implemented 

by Desirability approach, Grey Relation Analysis and PSO. The various stages of the 

investigations were carried out and these investigations were divided into six chapters. 

The summary of discussions carried out chapter wise is detailed below. 

Chapter 1 presents the historical background and the challenges faced and motivation 

to take up the present work. An overview of proposed research work is enunciated in 

this chapter.  

Chapter 2 presents a comprehensive survey of literature on milling process, 

application and the influencing process variable. The chapter also makes a critical 

review of the current knowledge in the area of neural network techniques as a tool for 

mapping input and output relationships right from the historical inventions of artificial 

neuron till the current literature regarding convergence in recurrent neural networks. 

The aims and objectives of the present thesis have been set based on the gaps 

identified through a detailed literature survey. The application of Taguchi DOE, 

ANOVA, RSM, Grey Relational Analysis, Desirability approach, ANN, RNN and 

PSO, summary of literature review, problem statement, objectives of the study, scope 

and plan of work also have been addressed in this chapter.  

Chapter 3 elucidates the selection of raw materials for conducting the experiments 

for validation of the model and also it deals with description of the experimental 

procedures adopted for AA6061 and AA6061-5%SiCp machining. 

Chapter 4 deals with description of the methodology for calculating the cutting force 

via indirect approach. 
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Chapter 5 The Taguchi parameter design has been incorporated to identify the 

number of experiments need to be carried out and also deals with the investigation on 

the effect of machining parameters on the responses such as surface roughness, 

cutting force and power consumption. 

 

Chapter 6 illustrates the formulation of prediction model (both conventional and non-

conventional techniques, i.e RSM, ANN, RNN, HRNN) for the selection of major 

influencing factors affecting the responses, to develop mathematical model (response 

equation) for analysis and prediction of cutting parameters, for development of single 

response prediction model using RSM, and confirmation test (validation) was 

performed by conducting the experiments.  

 

The chapter deals with the formulation of ANN model for prediction of responses of 

AA6061 alloy and AA6061-4.5%Cu-5%SiCp composite in milling condition. The 

chapter presents the analysis of variation of responses with their respective responses 

in case of forward and reverse mapping to highlight on the development of multi 

objective prediction models using ANN for both forward and reverse Mapping.  

 

It presents the formulation of an RNN model as a tool that could be used as an 

improvement over the ANN model. The chapter highlights the problems encountered 

in formulation of an RNN model to map the input – output data and the strategies to 

overcome this problem. The formulation of HRNN models for prediction responses of 

cutting force and surface roughness and power consumption of milling of AA6061 

and AA6061-4.5% Cu-5%SiCp composite have also been included here.   

 

It deals with the performance (validation) of HRNN models with the corresponding 

ANN models has also been discussed, establishing the use of HRNN models as 

prediction tools having capabilities equivalent to ANN models in terms of predictions 

but being better than ANN models in terms of convergence characteristics.  

 

 Development of multi objective prediction models using ANN and RNN for 

both forward and reverse Mapping. 



8 
 

 Confirmation experimental verification was performed for various process 

combinations for forward and reverse mapping. 

 

The chapter also addresses the performance of RNN model with corresponding ANN 

model, establishing the use of RNN models as prediction tools having equivalent 

capabilities to ANN models in terms of predictions but being better than ANN models 

in terms of convergence characteristics.  

The chapter deals with development of Graphical User Interface (GUI), encompassing 

the above mentioned prediction/optimization functionalities and to enable the user in 

using the system more comfortably. 

Chapter 7 discusses the formulation of optimization models to identify the optimum 

parameters of the desired responses. 

 Development of multi objective optimization models (Grey Relational 

Analysis, Desirability approach) and particle swarm optimization approach. 

 Confirmation experimental verification was performed for optimized process 

combinations. 

The chapter also addresses the performance of PSO model with corresponding 

statistical methods. 

 

Chapter 8 discusses the development of control strategy. The section discusses the 

modeling and simulation of control strategies in process of milling using software tool 

(Labview). The feedback control logic using PID (Proportional, Integral and 

Derivative) to control the power utilization with comparative to power capacity of the 

machine. Based on the power error attained the spindle speed or feed rate is 

compensated. In the concept process parameter controls one or more of controlled 

parameters to achieve desired output/result. The foresaid concept is developed to 

minimize machining time.  

 

Chapter 9 presents the overall summary and the objective conclusions derived from 

the present research work. The further direction of research work is also stated in this 

chapter. 
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CHAPTER 2 

LITERATURE SURVEY 

 

2.1 INTRODUCTION 

During milling process, insert hits hard agglomerated particles which lead to 

breakages. If a system is developed with an adaptive control technique, it will identify 

the change in the response and based on the change in the response, necessary action 

will be taken to avoid the failure.  For example, the adaptive control system 

immediately senses difference in hardness and immediately sends the command signal 

to feed drive to slow down the feed rate until the tool is passed through the hard 

region. Even if there are no unexpected agglomerated particles in the metal, the 

hardness of cast component has variation upto 300 percent, and the adaptive control 

system will adjust feedrate to handle those variations. The application of adaptive 

control systems can be found in aerospace industries like— General Electric and Pratt 

& Whitney. They machine metals so hard that tools can get dull on a single cut. When 

that happens, the tool might break during machining, causing scrap or rework. 

Meanwhile, with adaptive control system, the feedrate slows down and allows the 

dulled tool to finish the machining process (Hariharan and Narayan 1974, (Volos et 

al. 2015), Yang sheng et al. 1994). The following section elucidates on effect of 

machining process parameters and prediction.  

 Cutting force measurements 

o Direct method 

o Indirect method 

 Cutting force prediction and optimization model 

o Statistical tool 

o Neural Network Methods 
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 Cutting force controller 

o Using Direct method of measuring cutting force 

o Using Indirect method of measuring cutting force 

 Surface roughness prediction and optimization model 

o Statistical model 

o AI based models 

 

2.2 CUTTING FORCE   

 

Cutting force is one of the important characteristic variables to be monitored during 

the machining process. Tool breakage, tool wear, and work piece deflection are 

mainly due to abnormal cutting force developed during the machining process (Zhang 

and Zheng 2005). Cutting forces of the tool point are measured by specially designed 

dynamometers. Early researchers used a variety of hydraulic, pneumatic and strain 

gage instruments. However, piezoelectric dynamometers employing quartz load 

measuring elements are most commonly used for cutting force measurement. The 

dynamometers are mounted between the tool or workpiece and non-rotating part of 

the machine tool structure. A coordinate system can be used to resolve the cutting 

forces into directional components. In the milling process, force components are 

related to the axes of motion of the machine tool. Three resolved components of the 

force are in-feed force, cross-feed force and thrust force. The in-feed force acts 

tangent to the rotating tool and acts in the x direction of the machine tool, cross-feed 

force acts normal to the rotating tool and acts in the y direction of the machine tool 

and thrust force acts parallel to the axis of the tool and acts in the z direction of the 

machine tool as shown in Figure 2.1. The literature survey pertaining to the work of 

other researchers is indicated below.  
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Figure 2.1: Cutting forces in end milling 

 

(Ding et al. 2010) (Y. Li and Liang 1999) (Li et al. 2004) displayed a generalized 

cutting force model in terms of material properties, tool geometry, cutting parameters 

and process configuration. The model indicates the association among the workpiece 

and numerous cutters, flutes by the convolution of front line geometry work with a 

prepare of motivations having the period comparable to tooth dividing. The creators 

led tests over different cutting conditions and acquired the outcomes to check the 

model loyalty. Lai (2000) clarified the impact of dynamic radii; feed rate, radial and 

axial depths of cut on cutting forces. The author clarified that when radial and axial 

depths of cut increment, the cutting forces likewise increment since the engaged flute 

lengths are expanded. Tandon (2001) employed neural system to foresee cutting force 

regarding  machining parameters for example tool diameter, spindle speed, feed rate, 

number of flutes, rake angle, clearance angle, axial and radial depth of cut. The 

creators presumed that this model can anticipate precisely the cutting forces in three 

ways. Lin et al. (2003) utilized neural system (radial basis function) and numerous 

relapse investigations to predict machining forces–tool wear relationship in machining 

of aluminium metal matrix composites. Other than process parameters, feed and 

cutting forces were utilized to estimate tool wear. The creators got better correlation 

of tool wear with feed force data than with cutting force.  

 

Kovacic et al. (2004) proposed demonstrating of cutting forces with genetic 

programming, which mirrors the standards of living creatures. Estimations were 

produced using two materials (aluminium alloy and steel) and two distinct sorts of 
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processing (conventional milling and STEP milling). For every material and sort of 

processing parameters, tensile strength and hardness of work piece, tool diameter, 

cutting depth, spindle speed, feeding and type of milling were monitored, and cutting 

forces were measured for every combination of milling parameters. On the premise of 

the test information,  distinctive models for cutting forces prediction were acquired by 

genetic programming (Palanisam et al. 2007) built up a cutting force model to 

anticipate the tangential and thrust cutting force in end milling of AISI 1020 steel.  Li 

et al. (2004) exhibited an exploratory investigation on cutting force variations at last 

processing of Inconel 718 with coated carbide inserts. The cutting force variation 

along with tool wear propagation was analyzed.  Haci et al. (2006) developed a model 

to ascertain the different segments of cutting forces and analyzed the impact of 

machining parameters and tool geometry on cutting force. Omar et al. (2007) 

acquainted a technique with all the while predict the conventional cutting forces 

alongside 3D surface topography amide side processing. The model joins the impacts 

of tool runout, tool deflection, system dynamics, flank face wear, and the tool tilting 

on the surface roughness.  

 

Astakhov et al. (2007) examined the influence of the cutting feed, depth of cut, and 

workpiece diameter on the tool wear rate. The outcome demonstrated that the impact 

of the cutting feed on the tool wear rate was distinctive at various cutting speeds and 

the depth of cut on the tool wear rate was irrelevantly little if the machining was 

completed at the ideal cutting regime. Ganesh et al. (2017) employed response surface 

strategy to build up a scientific model to foresee cutting forces in terms of depth of 

cut, feed, cutting speed and immersion angle by utilizing response surface 

methodology in end processing of composite material. The authors dissected direct 

and collaboration impacts of the machining parameter with cutting forces. Huang et 

al. (2007) examined a logical cutting force model for miniaturizd scale end milling. 

The cutting force model, which considered the edge radius of the smaller scale end 

mill, was reproduced. They found that the expanding of thrust force influences the 

feed direction cutting force in micro end milling with a very small feed per tooth. 

Patwari and Anayet (2011) examined the advancement of the first and second request 

models for predicting the tangential cutting force delivered in end-milling operation 
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of medium carbon steel. The author found that expansion in either the feed or the 

axial depth of cut expands the cutting force, while an expansion in the cutting speed 

diminishes the cutting force. Ozturk and Budak (2009) exhibited models for 5-axis 

milling process geometry, cutting force and stability. The use of the models in 

determination of essential parameters was additionally illustrated. A practical method, 

produced for the extraction of cutting geometry, was utilized as a part of recreation of 

a total 5-axis cycle. Ding et al. (2010) tentatively researched the impacts of machining 

parameters on cutting forces and surface roughness in hard milling of AISI H13 steel 

with coated carbide tools. In view of Taguchi’s technique, four-factor (cutting speed, 

feed, radial depth of cut, and axial depth of cut) four-level orthogonal tests were 

employed. Three cutting force components and roughness of machined surface were 

measured, and then range analysis and ANOVA are performed. It is discovered that 

the axial depth of cut and the feed are the two overwhelming elements influencing the 

cutting forces. The legitimacy of the model was demonstrated through cutting 

experiment, and model was used to predict the machined surface roughness from the 

data on the cutting parameters. Zhang et al. (2007) analyzed the tool wear and the 

cutting force amid high-speed end-milling Ti-6Al-4V alloy. The exploratory 

outcomes demonstrated the major tool wear mechanisms in high-speed end milling of 

Ti-6Al-4V alloy with uncoated cemented tungsten carbide tools are bond and 

diffusion at the crater wear along with adhesion and abrasion at the flank wear. Peng 

and Xu (2017) investigated the qualities of rapid speed machining dynamic milling 

forces of Titanium alloy by use of polycrystalline diamond tools. They found that 

amplitudes increment with the expansion of cutting velocity and tool wear level, 

which could be connected to the checking of the cutting process. Hector Siller et al. 

(2006) proposed a mechanistic approach to deal with cycle time prediction of high 

speed milling for sculptured surfaces with high feed rates. Errors amongst modified 

and actual feed rates were assessed. Looking at the two cases illustrated, the proposed 

display was fit for predicting process duration with a most extreme error of 5-22%.  

Abou-El-Hossein et al. (2007) examined the improvement of the first and second 

order models for predicting the cutting force produced in end milling using RSM to 

contemplate the impact of cutting parameters on cutting force. It was discovered that 

the collaboration feed with axial depth was extremely strong and the interaction of 
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feed with radial depth of cut was seen to be noteworthy. The predictive models 

delivered estimations of the machining force near to those readings recorded 

tentatively with 95% sure interim. Felho et al. (2015) presented the aftereffects of a 

progression of tests performed to analyze the legitimacy of a hypothetical model for 

assessment of cutting forces and machining error in ball end milling of curved 

surfaces. Cutting force diminished with an expansion in milling position angle, while 

two force components are not really influenced by processing position angle. The 

machining error for the most part diminished with an expansion in milling position 

angle. Hypothetical and test comes about demonstrated sensibly great efficiency. 

2.3 CUTTING FORCE MEASUREMENTS 

During cutting operation, cutting forces include lot of information on dependent 

variables in machining, which will help to decide how to improve or minimize the 

sudden change due to that specific process parameter. For example during cutting, if 

there is a sudden increase in the cutting force it tends to indicate possible tool wear 

condition or if cutting force suddenly drops to zero, indicates that the tool in air or the 

tool is broken. This information can be implemented to increase the production rate 

and optimization. The slight changes in the cutting force information can be used as 

an input to the adaptive control system to control the specific process parameters. 

2.3.1  Direct Method Of Cutting Force Measurement 

In their research, (Kim et al. 1999), focused on the cutting forces in face 

milling operation and procedure was presented for the simulation of static and 

dynamic cutting forces in face milling operation. For the static model, the initial 

position error of the inserts and eccentricity of the spindle were taken into 

consideration as the major factors affecting the variation of the chip cross section. The 

structural dynamic model for the multi tooth oblique cutting operation is assumed as a 

multi- degree of freedom spatial system. From the relative displacement of the 

system, based on the double modulation principle, the dynamic cutting force were 

derived and simulated. The simulated forces were subsequently compared to 

measured cutting force in the time and frequency domain.  
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Abou- El- Hossein et al. (2008), have presented Finite element (FEA) method and 

response surface method (RSM) to find the effect of milling parameters on cutting 

force when milling Hastelloy C-HS. Optimized cutting force values are subsequently 

obtained from model equations. FEA model showed distribution of cutting force. 

Seeman et al. (2010), dealt with the goal of concentrate the effects of cutting 

parameters on the variations of cutting forces during end milling operation of Al SiC 

metal matrix composite material. Cutting forces were measured for various feed rates. 

The average cutting forces were resolved at various feed rates in tangential, radial, 

and axial directions per tooth period by keeping immersion and axial depth of cut as 

constant. A correlation between response surface modeling and experiment was 

presented. In their research, (Fadhel et al. 2008), have observed that, Cutting forces 

produce deformations along cutting tool which is one of the mechanical machining 

errors. 

2.3.2 Indirect Method Of Cutting Force Measurement  

In their research, (X. Li 2001), discussed about the feed cutting force 

measurement using an inexpensive current sensor installed on the a.c. servo motor of 

a CNC turning centre. The factors that affect a feed drive system are analyzed in 

detail, and a neuro-fuzzy model of the feed drive system for estimating feed cutting 

force has been presented. Experimental results demonstrate that this method can 

accurately estimate feed cutting force within an error of 5%. 

2.4. CUTTING FORCE PREDICTION AND OPTIMIZATION MODEL 

Ogedengbe (2011) modified the feed rate or spindle speed to avoid chatter 

incorporating acoustic signals. Tsai et al. (2010), proposed an innovative control loop, 

in view of Spindle Speed Compensation Strategy (SSCS) by utilizing Acoustic 

Chatter Signal Index (ACSI), to counteract event of milling chatter. Acoustic Chatter 

Signal Index (ACSI) and Spindle Speed Compensation Strategy (SSCS) were used to 

measure the acoustic signal and effectively tune the spindle speed individually. By 

changing over the acoustic feedback signal into ACSI, a suitable Spindle Speed 
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Compensation Rate (SSCR) can be dictated by SSCS based in view of continuous 

chatter level or ACSI. In like manner, the pay summon, alluded to as to as Added-On 

Voltage (AOV), is connected to build/diminish the sindle motor speed.  

The milling force prediction model  was implemented and compared using  regression 

and ANN models (Radhakrishnan and Nandan 2005). Regression analysis is a 

statistical techinque used for developing a relationship between dependent and 

independent variables.The analysis was  carried out  to predict the  force  and the 

obtained result is (94.2 %) accurate. The back propogation neural network  algorithm 

was used to train and predict the cutting forces and  the obtained value is (95.3 %) 

acccurate and concluded that back progation model is better.In addition to the cutting 

force model, a neural network and fuzzy logic model was developed  to predict the 

material removal rate for composites (Pallavi et al. 2012). The fuzzy logic model has 

the ability of predict the future based on membership function of input and output 

variables From the developed , It has been concluded that BPN is better than fuzzy 

logic model, in their work.  

In their research, (T. Y. Kim et al. 1999) (T. Y. Kim and Kim 1996), exhibited the 

indirect cutting force estimation method in contour NC milling processes by using 

current signals of servo motors. They recommended a simulated neural system and 

Kalman filter unsettling influence spectator. A Kalman filter disturbance observer has 

actualized by utilizing the dynamic model of the feed drive servo system and each of 

the outer load torques to the x and y-axis servo motors of a horizontal machining 

centre are evaluated. An ANN framework has additionally been actualized with a 

training set of experimental cutting data to gauge cutting force indirectly. The input 

variables of the ANN framework are the motor currents and the feed rates of x and y-

axis servo motors, and output variable has the cutting force of each axis. A 

progression of experimental works on the circular interpolated contour milling 

process with the path of a complete circle has been performed. It is presumed that by 

looking at the Kalman filter disturbance observer and the ANN system with a 

dynamometer measuring cutting force directly, the ANN framework has superior 

execution. 
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Author Year 
Operation & 

Parameters 
Prediction Model Conclusion Future 

 

Chao Wang 

et al. 

 

2014 

Lathe Speed, 

Feedrate  DOC. 

Kistler 

dynamometer 

 

SAW-based smart 

cutting tool and the 

 

Machining the dual-material, hybrid 

dissimilar workpiece has provided 

an excellent method of triggering an 

adaptive control event during the 

machining process; emulating an 

abrupt change in material properties. 

 

SAW-based cutting 

tool for force 

measurement in 

adaptive machining 

Giuseppe 

Ingarao 

et al. 

2014 

Milling 

Feed rate step 

down 

CNC milling 

AMINO 

Six axes ROBOT 

Machine Tool Efficiency, 

considering Total energy demand 

Robot provides best solution. 

 

Hae-Sung 

Yoon 

et al. 

2014 

Milling 

Cutting force 

Current 

Power 

monitoring 

(Indirect) 

Response surface 

methodology  

(RSM) 

The power consumption of the 

machine tool increased with the 

cutting load. 

The material-removal power was 

found to consist of  ~7.6% of the 

total power consumption 

The material-removal power 

increased with the feed, spindle 

rotational speed, and depth of cut 

performed in 

measurement and 

standardization of 

energy 

consumption at 

various scales with 

various types of 

machine tools 

 

 

Ulrich 

Schneider et 

al. 

 

2014 

 

Milling 

Geometric 

parameters. 

 

Piezo-actuated 

compensation 

mechanism 

 

The system performance is evaluated in 

extensive machining experiments.  It is 

shown that the proposed approach to 

machining offers significantly higher 

accuracy , up to eight times 

improvement for milling in  steel 

 

 

 

Table 2.1: Papers Referred On Cutting Force 
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Author Year 
Operation & 

Parameters 
Prediction Model Conclusion Future 

 

X. Li 

et al. 

 

2014 

 

Turning 

Feed, cutting 

force, speed 

 

Neuro-Fuzzy 

Technique 

 

 

The error between the actual and the 

estimated force is within 5%, which 

validates the accuracy and 

feasibility of the suggested approach 

 

 

KiousMech

eriet al 

 

2014 

 

Milling 

Cutting force, 

vibrations 

 

Neural  network 

 

Estimate the flank wear from the 

cutting  Force measurement and the 

cutting conditions. 

Data base of many 

inserts 

Dohyun 

Kim 

et al. 

2011 
Milling 

Current ,feed 
FLC 

FLC was successful in maintaining 

a reference cutting force in real time 

in both numerical simulation, and 

experiments for two-flute end 

milling of aluminium work pieces 

when the tool dynamometer 

was used. 

The tool wear, 

another important 

variable in the 

process control, 

could be estimated 

intermittently using 

the Spindle motor 

current. 

 

Tunde Isaac 

Ogedengbe 

et al. 

 

2011 

 

Micro(Face) 

Milling 

DOC, Feed, 

Speed 

 

Fast Fourier 

Transform (FFT) 

spindle and feed 

motor current signals as to their 

ability for sensing and monitoring 

tool wear progression on a micro 

milling machine. 

Establish an 

effective tool 

condition 

monitoring 

system for micro 

milling using 

spindle and feed 

motor current 

signals 
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Author Year 
Operation & 

Parameters 
Prediction Model Conclusion Future 

 

Tzeng-Yih-

Fong 

 

2009 

 

Milling speed, 

feed, feed per 

tooth, rake 

angle and 

helix angle. 

 

GA, Hybrid GA, 

PSO, Simulated 

annealing and 

Threshold 

acceptance 

algorithm to 

compare the result 

between up milling 

and down milling 

 

A regression equation is developed 

involving tool wear for upward 

milling and downward milling. 

 

In case of down milling tool wear is 

minimum as compare to up milling 

so we can conclude that with down 

milling long tool life is possible. 

 

 

Tae-Yong 

Kim et al. 

 

1999 

 

Milling 

(Indirect) 

Current, 

Feed rate 

 

Kalman Filter 

disturbance and 

ANN method 

comparison. 

 

The ANN system has a better 

performance compared to kalman 

Filter. 
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2.5 CUTTING FORCE CONTROLLER 

Kim et al. (1996) presented an adaptive cutting force controller for the milling 

process, which can be embedded to commercial machining centres in a particular 

way. The cutting forces along x, y and z axes were measured indirectly from the use 

of current drawn by a.c. feed-drive servo motors. They have developed a typical 

model for feed drive control system of horizontal machining center to analyze cutting 

force measurement from the drive motor. The pulsating milling force can be measured 

indirectly within the bandwidth of the current feedback control loop of the feed drive 

system. From its study, the measured cutting force from the dynamometer and the 

measured cutting force from the current signal are same. This relation was used to 

develop adaptive controller for cutting force regulation. 

2.5.1 Cutting Force Controller Using ANN 

In the last few decades, neural networks are extensively used for prediction of 

nonlinear relation between the input and the output. It also has been applied 

successfully to speech recognition, image analysis and adaptive control, in order to 

construct software agents (in computer and video games) or autonomous robots. Most 

of the currently employed artificial neural network models are based on statistical 

estimation, optimization and control theory. Research has been carried out in 

implementing Artificial Neural Network models to control the cutting parameters 

.The main purpose of the constant cutting force controller is to increase the metal 

removal rate and avoid the tool breakage. In a similar way Shiuh-Jer et al., 1996 used 

adaptive resonance theory 2(ART) to control the feed rate system. The ART neural 

network structure was used to learn and sort the appropriate system parameters. The 

contour error in  multi-dimensional end milling operation was studied by (Luo et al. 

1999). The work consisted of two sets of neural networks for controling the avearge 

resultant cutting force of the feed axis in x and y direction. . In addition, the 

application of perception-type neural networks to tool-state classification during a 

metal-milling operation has been studied by (Dimla 2002). They investigated both 

single-layer networks and multi-layer networks and found that the multi-layer 

networks had better performance than the single-layer tool-state classification. The 
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milling force prediction model was implemented and compared using  Regression and 

ANN models (Radhakrishnan and Nandan 2005). The analysis was carried out to 

predict the force with an accuracy of 94.2 %. The back propagation neural network 

algorithm was used to train and predict the Fx to an accuracy of 95.3 %, better than 

the regression model. 

2.5.2 Controller For Machining Parameters 

Several researches have been done on the adaptive control system using cutting force 

as input parameters to override the feed rate of the control system. Cutting forces can 

be measured using direct (Fadhel et al. 2008)  and indirect method (Kaya et al. 2011,  

X. Li et al. 2000).  T Kim et al. (1996) , developed adaptive cutting force controller 

for a machining centre. The cutting forces along x, y and z axes were measured 

indirectly from the use of currents drawn by a.c. feed-drive servo motors. The 

pulsating milling forces can be measured indirectly within the bandwidth of the 

current feedback control loop of the feed-drive system. It is demonstrated that 

indirectly measured cutting force signals can be utilized as a part of the adaptive 

controller for cutting force regulation. 

2.6 SURFACE ROUGHNESS  

Surface roughness is a quantifiable trademark in light of the roughness deviations as 

characterized in the preceding. Surface finish is a more subjective term signifying 

smoothness and general nature of a surface. The most usually utilized measure of 

surface texture will be surface roughness. Concerning Figure 2.2, the surface 

roughness can be characterized as the average of the vertical deviations from the 

nominal surface over a predefined surface length. 

 

Figure 2.2: Deviations from the nominal surface used in the two definitions of 

surface roughness 
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An Arithmetic Average (AA) is generally used, based on the absolute values of the 

deviations, and this roughness value is referred by the name average roughness. In 

Equation form (2.1) . 

                                                            ∫
| |

  

  

 
          

 (2.1) 

 

where Ra = arithmetic mean value of roughness, m (µm); y = the vertical deviation 

from nominal surface (converted to absolute value),m(µm); and Lm=the specified 

distance over which the surface deviations are measured. The AA method is the most 

widely used averaging method for surface roughness today.  

 

Alauddin (1995) built up a surface-roughness model for the end milling of 190 BHN 

steel. They recognized that feed rate is an extremely overwhelming element in both 

first and second order model and an increment in either the feed rate or axial depth of 

cut increases the surface roughness, whilst an increase in cutting speed diminishes the 

surface roughness. Ma et al. (2016), Lou et al. (1999)  explored another approach for 

surface finish prediction in end-milling operations. Through experimentation, the 

framework demonstrated fit for predicting the surface roughness (Ra) with around 

90% accuracy. The author concluded feed rate was the most critical machining 

parameter used to anticipate the surface roughness in the various regression models.   

 

Ming and Changyun (2012) investigated the influence of machining parameters such 

as the cutting speed, feed, depth of cut, concavity and axial relief angles of the cutting 

edge of the end mill on surface roughness in the slot end milling of aluminium alloy. 

Predictive surface roughness models were worked by applying response surface 

methodology for both dry and coolant cutting conditions. They reasoned that the 

significant factors affecting the dry-cut model were the cutting speed, feed, concavity 

and axial relief angles and for the coolant model, the feed and concavity angle.  

 

Ghani et al. (2004) applied Taguchi optimization method to optimize cutting 

parameters in end milling when machining hardened steel AISI H13 with TiN Coated 
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P10 carbide insert tool under semi-finishing and finishing conditions of high-speed 

cutting. The milling parameters assessed was cutting speed, feed rate and depth of cut. 

An orthogonal array, signal-to noise ratio and Pareto analysis of variance were 

utilized to analyze the effect of these milling parameters. The investigation of the  

outcome demonstrated that the ideal blend for low resultant cutting force and good 

surface finish were high cutting speed, low feed rate and low depth of cut.   

 

Selaimia et al. (2017) , Ficko et al. (2004) proposed genetic programming way to deal 

with predict the surface roughness in end milling. Cutting parameters for example 

spindle speed, feed, and depth of cut and also vibration amongst tool and work piece, 

were utilized to predict surface roughness. The authors found that the proposed model 

that involves all these variables predict the surface roughness precisely. 

 

Gupta et al. (2015), Ozcelik et al. (2005)  set up a first and second order statistical 

model to predict surface roughness for high-speed flat end milling process under wet 

cutting conditions by utilizing rotatable central composite design.  

 

Bagci et al. (2006) used Taguchi strategy for examining the impacts of cutting 

parameters on the surface roughness value in the face milling. The milling parameters 

assessed were feed rate, cutting speed and depth of cut.   

 

Erzurumlu et al. (2007)focused on the advancement of a powerful strategy to decide 

the ideal machining conditions prompting least surface roughness in the milling of 

mold surfaces by coupling response surface methodology (RSM) with a developed 

genetic algorithm. Ramanujam et al. (2014), Jenarthanan and Jeyapaul (2013), Nee et 

al. (2012), Zhang et al. (2007) a connected the Taguchi strategy to optimize the 

machining parameters such as spindle speed, feed rate and depth of cut for surface 

roughness. They reasoned that the impact of spindle speed and feed rate on the 

surface were larger than the depth of cut for milling operation. Sadasiva et al. (2012), 

Haque and Sudhakar (2002) developed a multiple regression model to predict surface 

roughness in end milling process by relating with spindle speed, cutting feed rate and 
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depth of cut. The impacts of spindle speed, feed rate and depth of cut on surface 

roughness were examined.  

 

Michalik et al. (2014), Kadirgama et al. (2007) built up the surface roughness 

prediction models, with the guide of statistical methods, for Hastelloy C-22HS .These 

forecast models were then contrasted and the outcomes acquired tentatively. By 

utilizing RSM, first order models were created with 95% confidence level.The surface 

roughness models were produced regarding cutting speed, feed rate and axial depth 

utilizing RSM as a tool of DoE. In general, the outcomes acquired from mathematical 

models were in great concurrence with those obtained from the machining 

experiments.   

 

Ramesh et al. (2013) employed both Taguchi and response surface methodologies for 

minimizing the surface roughness in machining glass fiber reinforced plastics with a 

polycrystalline diamond tool. The cutting parameters used were cutting speed, feed 

and depth of cut. The impact of cutting parameters on surface roughness was 

evaluated and the optimum cutting condition for minimizing the surface roughness 

was determined.  

 

Yusup et al. (2012), Prakasvudhisarn et al. (2009) process parameters of CNC end 

milling were chosen for example, feed rate, spindle speed, and depth of cut to find the 

minimum surface roughness. Support vector machine was proposed to capture 

qualities of roughness and its factors. PSO system is then utilized to discover 

combination of optimal process parameters The outcomes demonstrated that 

cooperation between the two strategies can accomplish the desired surface roughness 

and furthermore maximize productivity simultaneously  (Shunmugam 2015).  

 

Turnad et al. (2009) employed central composite response surface methodology to 

build up an analytical model for surface roughness in terms of cutting parameters such 

as cutting speed, axial depth of cut, and feed per tooth. Software tool (Design Expert) 

was used to build up the first order and the second order mathematical model. The 

sufficiency of the predictive model was verified using analysis of variance.  
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Routara et al. (2009) led tests for three distinctive work piece materials to see the 

influence of work piece material variation in this respect. Five parameters, viz., center 

line average roughness, root mean square roughness, skewness, kurtosis and mean 

line peak spacing were considered. The second-order mathematical models, as far as 

the cutting parameters, were created for each of these five roughness parameters 

prediction using RSM on the premise of experimental results. The roughness models 

and additionally the significance of the machining parameters were approved with 

ANOVA. It was discovered that the response surface models for various roughness 

parameters were particular to work piece materials. An endeavour was additionally 

made to acquire optimum cutting conditions as for each of the five roughness 

parameters using a response optimization technique. 

 

In the examination by (Zain et al. 2010) the three parameters of end milling were 

considered for minimizing surface roughness. From the analyses, it was prescribed 

that prcedure parameters should be set at the highest cutting speed, lowest feed and 

highest radial rake angle in order to accomplish the minimum surface roughness. 

Demir and Gündüz (2009) built up numerical model of the surface roughness to 

research the impacts of cutting tool geometry parameters and found the ideal 

estimation of geometry parameters, the quadratic model of response surface 

methodology was utilized. The creator has indicated that the tool nose radius was the 

dominant factor on the surface roughness. Kadirgama et al. (2012) developed a 

surface roughness model to optimize machining conditions of aluminium alloys with 

carbide coated inserts by design of experiments method and response surface 

methodology. Patel (2012) investigated the influence of various machining parameters 

like tool speed, tool feed, depth of cut and tool diameter. In their study, experiments 

were conducted on AL 6351 –T6 material with four factors and five levels. Ahmet 

(2013) determined the effects of process parameter on surface roughness and the 

factor levels with minimum surface roughness in pocket machining.  The author 

found that that surface roughness correlates negatively with cutting speed and 

positively with feed rate and cutting depth. Moshat et al. (2010) indicated 

optimization of CNC milling process parameters utilizing PCA- based Taguchi 
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method that had filled the need of advancement however not synchronous 

enhancement of surface roughness and the material removal rate in the investigation. 

Routara et al. (2010) had given the blueprint of the soft material milling parameters in 

their examinations on advancement of CNC end-milling of UNS C34000 medium- 

leaded brass with various-surface roughness characteristics. A single-response study 

provided base in deciding the parameters that were considered. The contextual 

analyse led at the research center have prompted for the real-time studies and to 

discover the answer for the manufacturing firms around the place. Mustafa and Ali 

(2006) analyzed the effect of the length and diameter of work piece, depth-of-cut and 

feed while the cutting speed, which is an imperative machining parameter, was kept 

consistent. Taguchi strategy was utilized as part of this work with a specific end goal 

to obtain more reliable and ideal outcomes. 

2.6.1 Prediction Of Surface Roughness 

Nimase and Khodke (2015) discused on joining of Taguchi and the impact of 

paremeters on surface roughness of Al-7075 in end milling. From the outcomes, it 

was inferred that spindle speed and feed rate are the most noteworthy elements. 

Sukumar et al. (2014), Saurav Datta et al. (2010) covered on optimization of CNC end 

milling process parameters to give good surface finish and in addition as high material 

removal rate (MRR). The surface finish and material removal rate have been 

distinguished as quality ascribes and are thought to be straight forwardly identified 

with profitability. An endeavour has been made to optimize previously mentioned 

quality traits in a way that these multi-rules could be satisfied all the while up to 

desired level. This invites a multi-target optimization issue which has been settled by 

PCA based Taguchi method. To meet the essential supposition Taguchi method; in 

their work, singular response correlations have been disposed of first by methods for 

Principal Component Analysis (PCA). Associated responses have been changed in to 

uncorrelated or autonomous quality indices called vital segments. The vital segments, 

imposing most noteworthy responsibility extent, have been dealt with as single target 

work for streamlining (multi-response execution list). Finally Taguchi method has 

been adjusted tot ake care of this optimization problem. The aforementioned approach 

has been discovered productive in the situations where concurrent streamlining of 
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immense number of reactions is required. Yu-Hsuan et al. (1999) developed an in-

process surface acknowledgement framework utilizing accelerometer, proximity 

sensor and ANN model to predict surface roughness of machined parts in end milling. 

It was observed that ANN surface recognition model is sparing, proficient and able to 

produce a high accuracy rate of 96-99% predicting accuracy for assortment of blends 

of machining conditions. 

In their exploration, D. Baji et al. (2010), exhibited an investigation on the influence 

of cutting parameters on surface roughness of steel work-piece in face milling 

operation. The response surface method (RSM) in view of the rotatable central 

composite design (RCCD) has been utilized together with an analysis of variance 

(ANOVA) and regression analysis (RA). To get the minimal value of surface 

roughness, the surface roughness equation has been optimized by finding the partial 

derivations and solving the system of equations. A comparison of results obtained by 

means of the Taguchi method with the regression model was carried out. The Taguchi 

method, in view of orthogonal arrays, has utilized likewise to determine the impact 

specific machining parameters. 

In their research, Ab. Rashid M et al. (2009), displayed the improvement of numerical 

model for surface roughness prediction before milling process in keeping in mind the 

end goal to assess the fitness of machining parameters; spindle speed, feed rate and 

depth of cut. 84 samples were run in this study by using CNC Milling machine. The 

specimens were arbitrarily separated in to two data sets- the training sets (m=60) and 

testing sets (m=24). ANOVA analysis showed that at least one of the population 

regression coefficients was not zero. Multiple Regression Method is used to determine 

the correlation between a criterion variable and a combination of predictor variables. 

It was established that the surface roughness is most influenced by the feed rate. By 

using Multiple Regression Method equation, the average percentage deviation of the 

testing set was 9.8% and 9.7% for training data set. This showed that the statistical 

model could predict the surface roughness with about 90.2% accuracy of the testing 

data set and 90.3% accuracy of the training data set. 
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In their research Nurul Amin et al. (2007), H.C.D. Mohd Radzi et al. (2009), have 

focused on developing an effective methodology to determine the performance of 

uncoated WC-Co inserts in predicting minimum surface roughness in end milling of 

titanium alloys Ti-6Al-4V under dry conditions. Central composite design of response 

surface methodology is employed to create an efficient analytical model for surface 

roughness in terms of cutting parameters: cutting speed, axial depth of cut, and feed 

per tooth. Design of expert package was applied to establish the first order and the 

second order model and develop the contours. The adequacy of the predictive model 

was verified using analysis of variance. 

In their research, Kareem Saad et.al (2007) reported on statistical package for social 

sciences (SPSS), to predict surface roughness. Two independent data sets were 

obtained on the basis of measurement such as training data set and testing data set. 

Spindle speed, feed rate, and depth of cut are used as independent input variables 

(parameters) while surface roughness as dependent output variable. The multiple 

regression models by using SPSS could predict the surface roughness (Ra) with 

average percentage deviation of 7.8%, or 92.2%, accuracy from training data, and 

from testing data set that was not included in the multiple regression analysis with 

average percentage deviation of 11.95%, or accuracy of 88%, for 4-Flute end mill.  

In their research, Zhang et al. (2007), reported on the Taguchi design application to 

optimize surface quality in a CNC face milling operation. The Taguchi design is an 

efficient and effective experimental method in which a response variable can be 

optimized, given various control and noise factors, using fewer resources than a 

factorial design. Confirmation tests verified that the Taguchi design was successful in 

optimizing milling parameters for surface roughness. Paulo Davim and 

Muthukrishnana (2009) studied the influence of cutting conditions on tool wear while 

turning metal matrix composites. Taguchi’s design of experiment was followed and 

an orthogonal array and ANOVA were used to investigate the cutting parameters. 

These correlations were obtained by multiple linear regressions and finally 

confirmation tests were performed to compare the results of experiments and 

correlations. Janez Kopac et al. (2002) determined optimal cutting conditions for 
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achieving desired surface roughness with a minimal number of experimental runs. 

The results revealed the fact that the majority of machining processes are performed 

outside the optimal cutting conditions, which has an essential impact on the process 

efficiency and the direct costs of machining. 

Baji et al. (2009) presented a study on the influence of cutting parameters on surface 

roughness of steel work-piece in face milling operation. The RSM based on the 

rotatable central composite design (RCCD) has been used together with an analysis of 

variance (ANOVA) and regression analysis. To obtain the minimal value of surface 

roughness, the surface roughness equation has been optimized by finding the partial 

derivatives and solving the system of equations. A comparison of results obtained by 

means of the Taguchi method with the regression model was carried out.  Hae-Sung 

Yoon et al. (2014)  used RSM technique in face milling operation and  concluded that 

material-removal power increased with the feed rate, spindle  speed, and depth of cut. 

The material-removal power was found to consist of  ~7.6% of the total power 

consumption. A model for surface roughness prediction using the RSM by combining 

its methodology with factorial design of experiments has been developed  by 

(Choudhury et al.1997). 

Asif Iqbal et al. (2007) focused on the enhancement of tool life and surface finish 

using ANOVA, optimization module and prediction module. The proposed expert 

system could able to recommend helix angle of the tool, milling orientation and also 

could predict tool life, surface roughness and cutting force for a high speed milling 

operation. Optimization module provided the selection of milling parameters 

according to the desired objective while the prediction module provided the prediction 

of performance measures for the combination of parameters finalized by the 

optimization module.  Julie et al. (2007) presented Taguchi design to optimize surface 

quality in a CNC face milling operation. The authors conducted experiments based on 

orthogonal array design and analyzed using ANOVA and finally verified by 

conducting the confirmation tests that the Taguchi design was successful in 

optimization for surface roughness. Oguz Colak et al. (2007) used Gene Expression 

Programming (GEP) method for predicting surface roughness of milling surface with 
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cutting parameters. The author claimed 91 % predicting accuracy level of the 

proposed GEP method over the method of experimental data. Omar et al. (2007) 

introduced a generic and improved model to simultaneously predict the cutting force 

and the surface quality during side milling operation. The authors incorporate the 

effects of tool run out, tool deflection, system dynamics, flank wear and the tool 

tilting on the surface roughness. They also presented a technique to calculate the 

instantaneous chip thickness and finally found that the prediction model agreed well 

with the experimental results.  

 

Hun-Keun Chang et al. (2007) proposed a real time surface roughness prediction 

method using a sensor system. Surface roughness was measured based on the relative 

motion between tool and work piece using Cylindrical Capacitive Displacement 

Sensor (CCDS). A simple linear regression model was developed to predict surface 

roughness using the measured signals. The close relation between the machined 

surface and the roughness predicted was found to be about 95%.  Ghassan et al. 

(2007) proposed machine vision-based topography for surface roughness 

measurement and compared the same with the stylus-based measurements. Results 

showed that intensity-topography compatible model gives more superior results 

compared to the light-diffuse model with close values to the traditional stylus-based 

data. 

 

Babur Ozcelik et al. (2005) developed a statistical model based on RSM for surface 

roughness estimation in a high-speed flat end milling process. The author found that 

the estimation capability of the first and second order models developed using 

experimental results were observed to be in good fit with the actual measured values. 

Suresh Kumar et al. (2005) investigated the role of solid lubricant assisted machining 

on surface quality and cutting forces. ANOVA has been performed to find the 

influence of different factors on surface finish. The results indicated that there is a 

considerable improvement in the process performance with solid lubricant to that of 

machining with cutting fluids.  Palani Kumar et al. (2013) assessed the influence of 

machining parameters on the machining of glass-reinforced polymer composite 

material. Full factorial design was used for experimentation and assessed using 
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response table, response graph, normal probability plot, interaction graphs and 

ANOVA technique.  Cheng et al. (2008) presented a theoretical and experimental 

analysis of nano-surface generation in ultra-precision raster milling. An optimization 

system was established for optimizing the cutting conditions and a series of 

experiments were also conducted. The results show that the theoretical model has 

predicted well the trend of variation of surface roughness under various cutting 

condition and cutting strategies. Sahoo et al. (2008) developed fractal dimension 

models for the surface topography in CNC end milling of three different material 

using RSM. The investigation indicated that the cutting parameters and their 

interactions influence the surface topography. The other attempt was to estimate 

optimum machining conditions for producing best possible surface with minimum 

fractal dimension which greatly depends on specific tool-work piece material 

combination.  

 

Paulo Davim et al. (2004) studied the influence of cutting parameters on surface 

roughness in Medium Density Fibreboard (MDF) milling. The milling tests showed 

the importance of cutting speed on the evolution of the surface roughness as a 

function of Material Removal Rate (MRR).  Yung-Kuang et al. (2007) applied design 

of experiments to optimize parameters in end milling high-purity graphite under dry 

machining. Dimensional accuracy and surface roughness were studied. Mathematical 

predictive model was developed using regression analysis. The feed rate was found to 

be the most significant factor and for a low feed rate, it increased the flank wear of the 

tool but improved surface quality.  

 

Ghani et al. (2004) used orthogonal array, signal-to-noise ratio and Pareto ANOVA to 

analyze the effect of milling parameters on surface finish and cutting force. The study 

proved that the Taguchi method is suitable to solve the stated problem with minimum 

number of trails as compared to full factorial design. Lamikiz et al. (2004) proposed a 

model to estimate the cutting forces in inclined surfaces machined both up milling and 

down milling on aluminium alloy and tool steel. Validation tests were carried out on 

different slopes and machining conditions. The results provided errors below 10% and 

both the value and shape of the predicted forces matched with the measured cutting 
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force.  Ming-Yung Wang et al. (2004) analyzed the influence of cutting condition and 

tool geometry on surface roughness in slot end milling. Surface roughness models for 

both dry and coolant cutting were built using RSM and experiments. Surface 

roughness generally increases with increase in feed, concavity and axial relief angles, 

while concavity angle is more than 2.5.  

 

Tongchao et al. (2010) established empirical models for cutting force and surface 

roughness in milling using four factor-four level orthogonal experiments. The results 

of ANOVA indicated that the linear model best fits the variation of cutting force 

while the quadratic model best described the variation of surface roughness. Surface 

roughness under some cutting parameters is less than 0.25 µm which showed that 

finish milling is an alternative to grinding process in die and mold industry. Franco et 

al. (2008) studied the influence of back cutting on the surface finish obtained by face 

milling operations. The surface roughness was modeled from the perspective of tool 

run outs and height deviations which affects the surface marks provoked by back 

cutting. The author claimed to obtain good results when experimental observations 

were compared with the theoretical model predictions. 

2.6.2 Prediction Of Surface Roughness Using Artificial Neural Network 

Patricia et al. (2009), implemented different artificial neural network models (ANN) 

for the prediction of surface roughness (Ra) values in Al alloy 7075-T7351 for face 

milling machining process. The radial base (RBNN), feed forward (FFNN), and 

generalized regression (GRNN) networks were selected, and the data used for training 

these networks were derived from experiments conducted using a high-speed milling 

machine. From this study, the performance of each ANN used in this research was 

measured with the mean square error percentage and it was observed that FFNN 

achieved the best results. Also the Pearson correlation coefficient was calculated to 

analyze the correlation between the five inputs (cutting speed, feed per tooth, axial 

depth of cut, chip width, and chip thickness) selected for the network with the selected 

output (surface roughness). Results showed a strong correlation between the chip 

thickness and the surface roughness followed by the cutting speed. In Alam et al. 

(2010), machining process parameters of NC milling such as speed, feed rate, and 
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depth of cut were used to predict surface roughness. In the paper, the quadratic 

prediction model was coupled with GA to optimize the machining process parameters 

for minimum surface roughness. Chandrasekaran et al (2010). reviewed the 

application of soft computing tools such as neural networks, fuzzy sets, genetic 

algorithms, simulated annealing, ant colony optimization, and PSO to various 

machining processes like turning, milling, drilling, and grinding. The authors 

highlighted the progress made in this area and discussed the issues that need to be 

addressed. Del Prete et al. (2010) developed a prediction model for surface roughness 

in flat end mill operation using RSM. ANN was used to predict surface roughness and 

GA was employed to optimize the surface roughness model. By coupling developed 

an RS model with GA, the optimization methodology is effective and can be effective 

if the developed RS model is accurate. (Benardos et al. 2010) presented NN modeling 

approach for the prediction of surface roughness in CNC face milling. ANN based 

procedure predicted the surface roughness with a mean error of 1.86% and was found 

to be consistent throughout the entire range of values. Kadirgama and Noor et. al. 

(2008) highlighted the optimization of the surface roughness when milling aluminium 

alloys (AA6061-T6) with carbide coated inserts using response surface method 

(RSM) and Radian Basis Function Network (RBFN) to predict thrust force and 

surface roughness. Kechagias (2011) brought out the influence of cutter geometry and 

cutting parameters during end-milling on the surface texture of aluminium alloy.  

 

Baji et al.(2008), presented influence of cutting parameters on surface roughness in 

face milling. Cutting speed, feed rate and depth of cut have been taken into 

consideration as the influential factors. In order to obtain mathematical models that 

are able to predict surface roughness two different modelling approaches, namely 

regression analysis and neural networks, have been applied to experimentally 

determined data. Obtained results have been compared and neural network model 

gives better explanation of the observed physical system. GA optimization technique 

was used by Palanisamy et al. (2007) to find the most optimal process parameters of 

end milling machining such as cutting speed, depth of cut and feed rate. The objective 

function considered in this study was machining time.  
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In their research, H. S. Lu et al. (2008), focused on optimal cutting in side milling. 

The fuzzy logics tools were applied to perform the optimization procedure with 

complicated multiple performance characteristics. Using this approach combined with 

the grey-relational analysis, the design algorithm is transformed into optimization of a 

single and simple grey-fuzzy reasoning grade rather than multiple performance 

characteristics. The Taguchi method was also adopted to search for an optimal 

combination of cutting parameters for this rough cutting process in side milling.  The 

improvement of tool life and metal removal rate from the initial cutting parameters to 

the optimal cutting parameters were 54% and 9.7%.  

 

Oktem et al. (2005) focused on the development of an effective methodology to 

determine the optimum cutting conditions leading to minimum surface roughness in 

the milling of mold surfaces by coupling Response Surface Methodology (RSM) with 

a developed Genetic Algorithm (GA). An effective fourth order Response Surface 

(RS) model is developed involving parameters namely feed, cutting speed, axial depth 

of cut, radial depth of cut and machining tolerance. RS model is further interfaced 

with the GA to optimize the cutting conditions for desired surface roughness.   

In their research, Ship-Peng Lo et al. (2003), presented an adaptive-network based 

fuzzy inference system (ANFIS) used to predict the workpiece surface roughness after 

the end milling process. Three milling parameters that have a major impact on the 

surface roughness, including spindle speed, feed rate and depth of cut, were analyzed. 

The predicted surface roughness values derived from ANFIS were compared with 

experimental data. The comparison indicates that the adoption of both triangular and 

trapezoidal membership functions in ANFIS achieved very satisfactory accuracy. Yu 

Hsuan et al. (1999) developed an in-process based surface recognition system to 

predict the surface roughness in the end milling process. A back propagation artificial 

neural network model was developed by using spindle speed, feed rate, depth of cut, 

and the vibration average per revolution as four input neurons to predict surface 

roughness. Babur et al. (2005) employed feed forward artificial neural network to 

predict surface roughness in terms of cutting parameters such as cutting speed, feed 
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rate, depth of cut and material removal rate and further optimized to obtain minimum 

surface roughness by genetic algorithm.  

In their research, P.G. Benardos and G.C. Vosniakosa, et al. (2002), presented a 

neural network model approach for the prediction of surface roughness (Ra) in CNC 

face milling. The factors considered in the experiment were the depth of cut, the feed 

rate per tooth, the cutting speed, the engagement and wear of the cutting tool, the use 

of cutting fluid and the three components of the cutting force. Using feed forward 

artificial neural networks (ANNs) trained with the Levenberg Marquardt algorithm, 

the most influential of the factors were determined.  

In their research, Lee and Chen (2003), highlighted on artificial neural networks 

(OSRR-ANN) using a sensing technique to monitor the effect of vibration produced 

by the motions of the cutting tool and work piece during the cutting process. It was an 

on-line surface recognition system. In their research, Choudhury and Bartarya (2003) 

focused on design of experiments and the neural network for prediction of tool wear. 

The input parameters were cutting speed, feed and depth of cut; flank wear, surface 

finish and cutting zone temperature were selected as outputs.  

Yongjin et al. (2002) used fuzzy adaptive modeling technique to predict surface 

roughness. The approach completely eliminated the expensive and time consuming 

experimental data and also avoided empirical equations, as they are sensitive to 

specific domain applications. Shinn-Ying et al. (2005) proposed ANFIS to establish 

the relationship between the surface image and the actual surface roughness. Based on 

this approach, surface roughness can be predicted using the optimal cutting 

parameters. Experimental results showed that the proposed ANFIS-based method 

outperforms the existing polynomial network-based method in terms of modeling and 

prediction accuracy. Risbood et al. (2003) explored the possibility of predicting 

surface finish and dimensional deviation by measuring forces and vibration using 

neural networks. Benardos et al. (2003) presented the various methodologies and 

practices employed for the prediction surface roughness. Each approach with its 

merits and demerits were outlined. The present and the future trends were also 

discussed. The approaches were discussed based on machining theory, experimental 
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investigations, design of experiments and AI. In this study, surprisingly, a combined 

effort of both AI and analytical modeling to validate the theoretical models was not 

found in the literature. Tandon et al. (2002) implemented PSO to optimize machining 

parameters of milling accompanied by ANN for predicting cutting forces. Both feed 

and speed were considered during optimization but depth of cut was not considered in 

the optimization problem. Jorge et al. (2002) estimated the forces developed during 

milling using two supervised neural networks. Verification experiments were 

conducted to evaluate these two models. Radial basis network is shown to be superior 

than back propagation networks. Ship-Peng Lo (2003) presented an Adaptive 

Network based Fuzzy Inference System (ANFIS) for predicting surface roughness in 

end milling process. While comparing with the experimental data, the author found 

that the prediction accuracy reached as high as 96%.  

 

Brezoenik et al. (2004) proposed Genetic programming to predict surface roughness 

in end milling. Prediction accuracy of surface roughness by the developed model was 

very good for both the training and tested data set.  Hasan Oktem et al. (2005) coupled 

RSM with GA to determine the optimum cutting conditions to get minimum surface 

roughness in milling of mold surfaces. The proposed GA was able to reduce the 

roughness value in the mold cavity from 0.412 µm to 0.375 µm. Hasan Oktem et al. 

(2005) determined best cutting parameters to minimize surface roughness in end 

milling by coupling design of experiments, NN and GA. Erzurumlu et al. (2007) 

developed RSM and ANN model to predict surface roughness on mold surfaces. The 

RSM model and ANN are compared based on computational cost, cutting forces, tool 

life and dimensional accuracy and it is found that the maximum test errors were 

2.05% and 1.48% respectively.  El-Sonbaty et al. (2008) developed an ANN model 

for the analysis and prediction of cutting conditions for achieving specific surface 

roughness profile. The input parameters are the rotational speed, feed, depth of cut, 

pre-tool flank wear and vibration level.  The predicted profiles exhibited more details 

than the actual measured roughness profiles.  Vedat Savas and Cetin et al. (2008), 

presented GA for optimization of cutting parameters leading to minimum surface 

roughness in the milling process. It is concluded that GA prediction has errors in the 

measurement regions between 2-7%.  Vimal et al. [79] realized the need for 
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personalized products in satisfying the ever-growing needs of the consumer. This 

research provided a predictive model using design of experiments strategy to obtain 

optimized machining parameters using GA for a specific surface roughness in ball-

end machining of polypropylene, with an accuracy of 91.57%. Chen Lu (2008) 

reviewed the advantages and disadvantages of various methodologies that were 

employed to predict surface roughness. The author revealed that the main advantages 

of AI approaches were that the models created seem to be the most realistic and 

accurate and further added the dominance of ANN as a powerful tool, easy to use and 

have a good prospect for the future application.   

 

Zain et al. (2010) applied GA to find optimal cutting conditions for obtaining 

minimum surface roughness. The analysis of the study proved that GA technique 

performed better than experimental sample data, regression modeling and RSM. Wen-

Hsien et al. (2009) used ANFIS with GA to predict the surface roughness in end 

milling process. The authors have also used Hybrid Taguchi-Genetic Learning 

Algorithm (HTGLA) in ANFIS to determine optimal parameters to minimize error. 

Experimental results showed that the prediction error of the HTGLA based ANFIS 

approach is 4.06%, which outperformed the prediction error 4.17% from ANFIS 

method given in the Matlab toolbox.  Eyup Sabri [87] discovered the role of step over 

ratio in surface roughness prediction studies of end milling operations. Experiments 

were conducted and two ANN structures were constructed; one with considering step 

over ratio and the other without considering step over ratio. Average RMS error of the 

ANN model considering step over ratio is 0.04 and without considering is 0.26. Devi 

Kalla et al. (2010) studied the machining of carbon fiber reinforced polymers in a 

helical end mill and developed a methodology for predicting the cutting forces by 

transforming specific cutting energies from orthogonal to oblique cutting. Predictions 

were in good agreement with the experimental data in unidirectional laminate but 

lesser agreement in multidirectional laminate. Ilhan Asilturk (2011) implemented full 

factorial design of experiment to increase the confidence limit and reliability of the 

experimental data during turning. The authors compared the multiple regressions and 

neural network based models with the statistical methods and found that ANN model 

could estimate with higher accuracy when compared to the other methods. Azlan Zain 
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et al. (2010) discussed the utilization of ANN for predicting the surface roughness in 

the milling process. Based on the experiments conducted, the author concluded that 

the use of high speed and low feed and rake angle is highly recommended for better 

surface finish. The authors have suggested that AI approaches have the potential to be 

applied for optimization problems.  Lou and Chen (1999) developed an in-process 

surface recognition system that measures surface roughness during end-milling. The 

framework of the system is based on an intelligent hybrid software-fuzzy-nets as well 

as an hardware components consisting of a sensor tested, which assesses the real-time 

surface of a work piece with which information on the achievement of quality 

standard could be met.  

 

Oktem et al. (2006) reported an approach to determining the best cutting parameters, 

leading to minimum surface roughness in end-milling mould surfaces of an Ortiz part, 

which is commonly used in biomedical applications by coupling neural network and 

genetic algorithm. These two artificial intelligence techniques were then fused to 

design of experiments for optimization purposes. Experimental data and more 

extensive data were utilized to validate the work. It was concluded by the authors that 

experimental data predicted values agreed. 

 

2.6.3 Neural Networks V/S Statistical Techniques  

As a forecasting tool, ANN can be compared to Autoregressive moving Average 

(ARMA) class of models. ARMA methods, since ages have been used to model time 

series. In general, similarities do exist between the ANN and statistical techniques. An 

FFNN can be termed as a form of non-liner regression (Ripley 1994, Potzinger et al. 

2000). A multiple linear regression scheme, a standard statistical tool, can be thought 

of as a simple ANN node. For example, for a linear equation of the type, y = w0 + 

w1x1 + w2x2 + . . . . . . . . + wnxn, the xi can be taken to represent the inputs to the node, 

wi can be taken as the corresponding weights and w0 can be the threshold function.  

 

While fitting the ARMA type of model to a time series, the data has to be stationary 

and must exhibit normal distribution. If indeed, that is not the case, then techniques 

have to be used to induce stationary data and normally distribute the data. In case of 
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ANN, the statistical variation of data is immaterial, as the hidden neurons account for 

non stationarities in the data (Reddy 2004). An ANN also possesses another 

advantage over ARMA type models as it is a non-linear model, though some non-

linear ARMA type models are witnessed in literature in statistics. ANNs are most 

ideally suited for mapping complex relationships between input-output and where the 

relationships are not clearly understood, either due to no proper relationship being 

there or inadequate data. Furthermore, ANN can make an n-step ahead forecast 

directly without any recursive procedure. Due to its inherent robustness in design 

which can be attributed to massive parallel processing, the ANNs are good modelling 

tools for real life problems, in which data may be inadequate, may be available with a 

lot of noise, and there could be distortions in data.  

 

The ANNs have been rigorously compared with statistical methods for applications 

pertaining to classification and prediction (Ripley 1994). Effectiveness of ANN in 

time series forecasting have been examined. Lapedes and Farber (1988) have shown 

that in two time series prediction problems, neural networks are clearly superior to 

statistical methods.  

 

Sharada and Patil (1994) analysed 75 different time series problems and inferred that 

the ANN and Box-Jekins forecasting system performed equally. Interestingly, it has 

been observed that the memory of a time series has some bearing on the performance. 

ANN performs slightly better than Box_Jekins model for time series with short 

memory while reverse is true for time series with long memory.  

 

One of the major demerits of the artificial neural network is that unlike the statistical 

methods wherein the entire functioning of the model is transparent, the working of an 

ANN is opaque. What exactly happens inside the hidden layers is not visible although 

the output of the model is obviously useful. In artificial neural nets the functioning of 

the hidden neurons once they are trained is not clearly understood (Fraser 2000). 

Which of the neuron fires or why it fires is as mysterious as it was in the early days of 

research in neural computations. Moreover, a trained ANN serves a model for a 

particular problem, while there are set procedures or frameworks for selection of a 
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fitment model in statistical techniques. Some disadvantages of ANN have been 

highlighted by Maier and Dandy (1999). First of all, the architecture, learning rate 

parameter (η) and momentum factor (α), which are functional parameters of an ANN 

are dependent on the problem at hand. There are no guidelines as to what architecture 

or what learning rate and momentum factor should be used for a particular problem. 

Each problem attempted by ANN is unique and all the function parameters are likely 

to be unique for that problem. The entire training process is a trial and error process 

with different combinations of number of hidden layers, number of neurons in each 

hidden layer, learning rate parameter and momentum factor. Another problem with 

ANN is that many a times, the data available to train the network isn’t sufficient 

enough to be able to bring the generalisation of the model. Also in a system which is 

quite responsive to changes in the environment, ANN modelling may not be 

appropriate as the network may not be able to cope up to the changes taking place. 

For example, the networks when trained on static (past data) data may not be able to 

lend results for future, unless the weight matrices are updated or adjusted with 

suitable learning, to understand the new changes in the system.  

 

A lot of study has been done on artificial neural networks and the regression methods 

to determine the suitability of these models for pattern mappings (Kim et al. 1993, 

Patuwo et al. 1993, Subramanian et al. 1993, Yoon et al. 1993 and Potts 2000). 

   

Thus it can be summarised that  

 ANN can learn the relationship between input-output patterns and can 

generalise the    relationship.  

 They can handle a wide variety of data.  

 They are universal approximators.  

 No assumptions are required to be made in understanding relationships.  

 The type or in general, the details of the process need not be known to frame 

an ANN model.  

 Rigorous mathematical treatment is not required  

All things put together, in actual practical situations, a trained ANN model has proved 

to be a success, complementing human brain decision making. 
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2.6.4 Optimization Of Parameters Based On AI  

Abellan et al. (2008) have proposed new methodology based on AI techniques. The 

overall desirability function has increased up to 0.520. He mentioned the 

improvement is due to two effects: (1) the ANN process models deal with non-

linearity so these models are more accurate than response surface models for 

modelling high quality machining operations; (2) the on-line nature of the 

methodology lets adapt the cutting parameters every cutting pass so the system is 

more flexible to adapt any change in the objective function during the cutting-tool 

life-cycle. Rodolfo et al. (1996) presented an intelligent supervisory system from a 

model-based approach. They applied their system as a case study for predicting tool 

wear in machining processes. Rodolfo et al. (2007) represented Fuzzy logic-based 

torque control system for milling process optimization. Shaw Wong et al. (2003) 

investigated the feasibility of using a neural network to represent machinability data. 

In order to predict optimum machining parameters under different cutting conditions, 

they used the feed forward neural network. They developed and implemented an 

object-oriented neural network-handling library in the milling process. 

 García-Plaza et al. (2013) studied the contribution of cutting force, mechanical 

vibration and emission acoustic signals for the on-line monitoring and diagnosis of the 

surface finish (Ra) in automated taper turning operations. Systems design was based 

on predictive models obtained from regression analysis and artificial neural networks, 

involving numerical parameters that characterize cutting force signals, mechanical 

vibration, and acoustic emission. Cutting force (Fx, Fy, Fz) signals were the most 

significant, and were the primary means for estimating the arithmetic mean roughness 

(Ra). The models based on these signals provided the best fit and highest predictions, 

with the lowest mean relative prediction errors. In comparison, the machine vibration 

signals, and the acoustic emission signal had little influence on the Ra roughness 

parameter, and failed to provide relevant data on their own; notwithstanding, these 

signals can slightly improve the performance of predictive models when combined 

with cutting force signals.  
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2.7 SELECTION OF OPTIMAL MACHINING PARAMETERS 

 

Baskar et al. (2005) implemented various operations research techniques such as GA, 

Tabu search (TS) algorithm, ACO and PSO for optimizing machining parameters of 

multi-milling operation. The authors concluded that PSO algorithm always yields best 

result when compared to other algorithms and handbook recommendations. Wang et 

al. [26] presented a hybrid of SA and GA optimization technique to select the optimal 

machining parameter for multi-pass milling operations. This approach used the 

strengths of SA and GA and overcame their weakness. It is evident from the results 

that this hybrid approach was more effective than conventional methods.  Indrajit 

Mukherjee et al. (2006) appraised the application potential of several modeling such 

as statistical regression technique, ANN, Response Surface Methodology (RSM) etc., 

and optimization techniques such as SA, GA and TS algorithm in metal cutting 

processes. Ramon et al. (2006) used GA for optimizing cutting parameters and made a 

remark on the advantages of multi-objective optimization approach over single 

objective function. An application sample was developed and its results were 

analyzed for different machining conditions. Tansel et al. (2006) proposed Genetically 

Optimized Neural Network System (GONNS) for the selection of optimal cutting 

condition in machining. Optimal operating conditions were calculated to obtain the 

best possible compromise between roughness of machined surface and the duration. 

Baskar et al. (2006) developed GA, Hill Climbing Algorithm (HCA) and Memetic 

Algorithm (MA) to find optimum cutting parameters for multi-tool milling operations 

like face milling, corner milling, pocket milling and slot milling. Significant 

improvement was observed in using these techniques when compared to handbook 

recommendations and method of feasible direction.   

 

Franci Cus et al. (2003) proposed ANN to optimize cutting parameters for machining 

operation. The objective was to increase the productivity and reduce the production 

cost. Raid Al-Aomar et al. (2006) used GA to determine near optimal settings to both 

machining and production process parameters so that the overall per order production 

cost is minimized. The experimental results and the sensitivity analysis showed the 

robustness of the proposed GA. Suresh et al. (2002) dealt with the study and 
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development of surface roughness prediction model for machining mild steel using 

RSM. GA was used to give minimum and maximum values of surface roughness and 

their respective optimal machining conditions.   

 

Zarei et al. (2009) presented a Harmony Search (HS) algorithm to determine optimum 

cutting parameter for multi-pass face milling. GA was used to solve the same 

problem. Comparison of results revealed that the HS algorithm could obtain optimum 

solution with higher accuracy when compared to GA.  Venkata Rao et al. (2010) 

applied Artificial Bee Colony (ABC), PSO and SA algorithm for parameter 

optimization of a multi pass milling process. Minimization of production time was the 

objective considered subjected to various constraints. The accuracy and quick 

convergence to global optimum solution of ABC and PSO were very high as 

compared to SA algorithm. 

 

Zain et al. (2009) have incorporated Genetic Algorithm (GA) to find the optimal 

cutting conditions for acquiring better surface finish in milling process and concluded 

that good surface finish can be obtained at high speed, high rake angle and low feed 

rate. Benardos et al. (2002) have included the ANN technique in the study to predict 

surface roughness value. The authors concluded that the mean error of 1.86% 

obtained by using ANN seemed to be consistent throughout the range of values. In 

their research, Ab. Rashid et al. (2009), presented the development of mathematical 

model for surface roughness prediction for the milling process in order to evaluate the 

fitness of machining parameters namely spindle speed, feed rate and depth of cut.  

2.8 PARTICLE SWARM OPTIMIZATION 

This approach is a meta-heuristic method and evolutionary computational algorithm. 

PSO has been adopted by many researchers in different engineering problems all 

around the world.  The main advantage of this technique is very simple.  Easy to 

apply, less time consuming compared to other computational algorithms with high 

efficiency. PSO was first introduced by Eberhart and Kennedy in the year 1995 (Yu et 

al. 2004).  PSO is applied to optimize the thermally assisted machining process 

parameters.  Sarah et al. (2010) used PSO technique in the pulp industry to get 
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optimal solution in terms of resource utilization and wastage of the finished paper. 

The experimental results were compared with both genetic algorithm (GA) and PSO.   

PSO gave the better computational efficiency with less time than GA.  Lee and 

Ponnambalam (2012) performed PSO and GA multi objective optimization of turning 

process. These two techniques show similar trend in pareto optimal fronts but PSO 

produced optimal solution with less time compared to GA. Ciurana et al. (2009) 

performed the experiments on Nd: YAG laser system on AISI H13 hardened tool steel 

for making mould cavities and implemented a model for volume error, machining 

time and surface roughness by using ANN and PSO techniques and concluded that 

PSO is suitable to identify the optimum process parameters.  

Zuperl et al. (2007) employed PSO to optimize process parameters of milling 

machining. A predictive model was developed using ANN to predict the cutting 

forces during machining and PSO was used later to obtain optimal process parameters 

of milling machining such as cutting speed and feed rates. The results were compared 

with other evolutionary techniques such as GA and SA and proved that the proposed 

technique improved the quality of the solution while speeding up the convergence 

process. A new technique has been proposed by Huang et al. (2002) by using the 

combination of wavelet neural network (WNN) algorithm and modified PSO for 

solving tool wear detection and estimation. By using the Daubechies-wavelet, the 

cutting power signal is decomposed into approximation and details. The energy and 

square-error of the signals in the detail levels is used as characters which indicate tool 

wear. The characters are input to the trained WNN to estimate the tool wear. The 

results of the experiments were compared with BP neutral network, conventional 

WNN and GA-based WNN. The results showed a faster convergence and more 

accurate estimation of tool wear. The process parameters of milling operation such as 

spindle speed and feed rate were considered to be optimized in the study (Li et al. 

2008). The considered machining performances were cutting force, tool-life, surface 

roughness and cutting power. An algorithm for process parameters optimization 

known as cutting parameters optimization (CPO) was introduced and PSO technique 

was employed to optimize the process parameters. From the experimental results, the 

authors concluded that PSO in optimizing process parameters can converge quickly to 
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a consistent combination of spindle speed and feed rate. The optimization of process 

parameters for constant cutting force was discussed based-on virtual machining (Zhao 

et al. 2008). PSO was employed to find the optimal process parameters (spindle speed 

and feed rate). The framework of virtual machining based cutting parameters 

optimization was established.  

Prakasvudhisarn et al. (2009) illustrated with process parameters of CNC end milling 

namely feed rate, spindle speed, and depth of cut to find the minimum surface 

roughness. Support vector machine (SVM) was proposed to capture characteristics of 

roughness and its factors. PSO technique is then employed to find the combination of 

optimal process parameters. The results showed that cooperation between both the 

techniques can achieve the desired surface roughness and also maximize productivity 

simultaneously. Razfar et al. (2010) proposed a PSO-based neural network to create a 

predictive model for the surface roughness level that is based on experimental data 

collected on face milling X20Cr13 stainless steel. The optimization problem is then 

solved using a PSO-based neural network for optimization system (PSONNOS). A 

good agreement is observed between the predicted surface roughness values and those 

obtained in experimental measurements performed using the predicted optimal 

machine settings. The PSONNOS is compared to the GA optimized neural network 

system (GONNS). Farahnakian et al. (2011) considered the effect of process 

parameters of high speed steel end mill such as spindle speed and feed rate. Nanoclay 

(NC) content on machinability properties of polyamide-6/nanoclay (PA-6/NC) 

nanocomposites was studied for modeling cutting forces and surface roughness by 

using PSO-based neural network (PSONN). The obtained results for modeling cutting 

forces and surface roughness also showed a remarkable training capacity of the 

proposed algorithm compared to the conventional neural network. Yang et.al (2011a) 

proposed a methodology called fuzzy PSO (FPSO) algorithm to distribute the total 

stock removal in each of the rough passes and the final finish pass based on fuzzy 

velocity updating strategy to optimize the machining parameters implemented for 

multi-pass face milling. The optimum value of machining parameters including 

number of passes, depth of cut in each pass, speed, and feed are obtained to achieve 

minimum production cost. The proposed methodology for distribution of the total 
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stock removal in each of the passes is effective, and the proposed FPSO algorithm 

does not have any difficulty in converging towards the true optimum. From the given 

results, the proposed schemes may be a promising tool for the optimization of 

machining process parameters. Also in Yang et al. (2011b) the researchers proposed 

fuzzy global and personal best-mechanism-based multi-objective PSO (F-MOPSO) to 

optimize the machining parameters in multipass face milling. It was found that the F-

MOPSO does not have any difficulty in achieving well-spread Pareto optimal 

solutions with good convergence Chandrasekaran et al. (2011) have given the overall 

history and the application of soft computing technique in machining performance 

prediction and optimization. 
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SL. 

NO 

Authors Input Parameters Operation Output 

Parameters 

Remarks/ Conclusion 

1 Farahnakian et 

al. (2011) 

Cutting speed, feed 

depth of cut  

 

End milling Cutting forces and 

surface 

roughness 

A very good training capacity of the 

proposed PSONN algorithm 

2 Yang et 

al.(2011a) 

Number of passes, 

depth of cut in each 

pass, speed, and 

feed 

Multi-face 

milling 

Production cost The proposed schemes may be a promising 

tool for the optimization of machining 

process parameters. 

3 Yang et 

al.(2011b) 

Number of passes, 

depth of cut in each  

pass, speed, and  

feed 

Multi-pass 

face 

milling 

Production cost The F-MOPSO does not have any 

difficulty in achieving well-spread Pareto 

optimal solutions with good convergence 

to true Pareto optimal front for 

multiobjective optimization problems. 

4 Razfar et 

al.(2010) 

Cutting speed, 

feeddepth of cut, 

engagement 

Face 

milling 

Surface roughness A good agreement is observed between the 

values predicted by the PSONNOS 

algorithm and experimental measurements. 

5 Rao and Pawar 

(2010b) 

Number of passes, 

depth of cut, cutting 

speed and feed 

Multi-pass 

milling 

Production time The results are compared with the 

previously published results obtained by 

using other optimization techniques. 

Table 2.2: Papers Referred On PSO Techniques 
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SL. 

NO 

Authors Input Parameters Operation Output 

Parameters 

Remarks/ Conclusion 

6 Escamilla et al. 

(2009) 

 

Speed, feed and 

depth of cut 

End milling Surface roughness PSO optimization it can be successfully 

applied to multiobjective optimization of 

titanium’s machining process. 

7 Prakasvudhisar

n et al. (2009) 

Speed, feed and depth 

of cut 

CNC end 

millling 

Surface roughness Both techniques can achieve the desired 

surface roughness and also maximize 

productivity simultaneously. 

8 Li et al. (2008) Spindle speed, feed  

rate 

Milling Cutting force, tool-

life, surface 

roughness and 

cutting power.    

PSO in optimizing process parameters can 

converge quickly to a consistent 

combination of spindle speed and feed rate. 

9 Zhao et al. 

(2008) 

 

Spindle speed and 

feed rate. 

Milling Cutting forces The machining process with constant 

cutting force can be achieved via process 

parameters optimization based on virtual 

machining. 

10 Zuperl et al. 

(2007) 

 

Cutting speeds and 

feed rates 

Milling Cutting forces Compared with GA and SA the proposed 

algorithm can improve the quality of the 

solution while speeding up the 

convergence process. 
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SL. 

NO 

Authors Input Parameters Operation Output 

Parameters 

Remarks/ Conclusion 

11 Huang et al. 

(2007) 

 

Spindle, Feed rate, 

width 

End milling Tool wear Tool wear 

12 Rashmi et al. 

(2016) 

Spindle speed, Feed 

rate and Depth of cut 

Face 

Milling 

Cutting force, 

surface roughness  

and power 

consumption 

Compared with RSM, Desirability 

approach and the proposed PSO algorithm 

attained the effective results. PSO 

optimization it can be successfully applied 

to multiobjective optimization of AA6061-

4.5%Cu-5%SiCp machining process. 

13 Z.G. Wang et 

al. 

Cutting speed (m/min) 

Feed rate (mm/rev) 

machining time (min) 

multi-pass 

milling. 

Four typical runs at 

different depth of 

cut 

PGSA is shown to be more suitable and 

efficient for optimizing the cutting 

parameters for milling operation than 

GPCDP and PGA. 

14 S.Bharathi 

Raja et al. 

(2010) 

Cutting speed 

(rev/min), 

Feed (mm/min), Depth 

of cut(mm), 

Machining time 

Face 

Milling 

Desired Surface 

Roughness in 

minimum 

machining time  

It has been found that the predicted 

roughness using PSO is in good agreement 

with the actual roughness. 
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SL. 

NO 

Authors Input Parameters Operation Output 

Parameters 

Remarks/ Conclusion 

15 F. Cus et al. 

(2008) 

Cutting Speed and Fee 

Rate 

End 

Milling 

Optimum Cutting 

Speed and Feed 

Rate and Cutting 

Force 

The simulation results show that compared 

with genetic algorithms (GA) and 

simulated annealing (SA), the proposed 

algorithm can improve the quality of the 

solution while speeding up the 

convergence process. PSO is proved to be 

an efficient optimization algorithm. 

16 F. Cus et al. 

(2003) 

Cutting Speed and Fee 

Rate 

End 

Milling 

Surface Roughness 

and MRR 

PSO is proved to be an efficient 

optimization algorithm. The  experimental 

results show that the MRR is improved by 

28%. Machining time reductions of up to 

20% are observed. 

 

17 Prakasvudhisar

n et al. (2009) 

 

Cutting speed, Feed 

Rate, Depth of cut 

End 

Milling 

Surface Roughness SVMs and PSO techniques were 

implemented. The cooperation between 

both techniques can achieve the desired 

surface roughness and also maximize 

productivity simultaneously. 
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SL. 

NO 

Authors Input Parameters Operation Output 

Parameters 

Remarks/ Conclusion 

18 Tandon, V et 

al. 

(2008) 

Cutting Speed and Fee 

Rate 

End 

Milling 

Optimum Cutting 

Speed and Feed 

Rate and Cutting 

Force 

ANN was implemented to predict cutting 

force and PSO to identify optimum speed 

and feed rate. Machining time reductions 

of up to 35% are observed. In addition, the 

new technique is found to be efficient and 

robust. 

19 R. Venkata 

Rao et al. 

(2010b) 

Number of passes, 

depth of cut for each 

pass, cutting speed, 

and feed. 

Milling Minimization of 

Production Time 

ABC, PSO and SA are implemented.  

The comparison between these 3 

techniques have been made and concluded 

that ABC and PSO perform better 

compared to SA. 

20 M.Chandraseka

ran  et al. 

(2010) 

N/A Milling, 

Turning, 

Grinding. 

Machining 

Performance 

prediction and 

optimization 

Discussed the overall history of  the 

application of soft computing technique in 

machining performance prediction and 

optimization. 
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Table 2.3: Papers Referred On Surface Roughness 

Author Year Operation and parameter Prediction model % Of Prediction 

Dong-Hyeon 2014 Laser assisted milling of Inconel 

718 and AISI 1045 Steel. Speed, 

feed and depth of cut. 

Box-Behnken (RSM) 6% error 

AntoniWibowo 2012 End mill with 3 type of tool. Speed, 

feed and radial rake angle 

KPCA based regression 43 % improve in the surface 

roughness 

Luis Rubio 2013 Milling operation, 7 modules are 

used to select optimum cutting 

parameters. 

Modular expert rule-based 

system in order to automatically 

select cutting parameters in 

milling operations. 

Optimization 

S. Ramesh 2012 Milling, material Ti–6Al–4V 

(grade-5) 

Taguchi’s orthogonal array to 

design the experiment and RSM 

is used to analyse the 

experiment and prediction. 

The most influencing 

parameter was identified as the 

feed. 

ZahiaHessainia 2013 Cutting speed, Feed rate, Depth of 

cut and tool vibration in radial and 

in main cutting force directions. 

RSM Only a small number of 

experiments are required to 

generate helpful information 

exploited for predicting 

roughness equations. 

EtoryMadrilles

Arruda 

2014 The input parameters were the 

radial depth of cut, feed rate, and 

contact angle. 

Taguchi method feed rate can have a significant 

influence on the finishing. 
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Author Year Operation and parameter Prediction model % Of Prediction 

TurgayKıvak 2014 The cutting tool, cutting speed and 

feed rate were selected as 

machining parameters 

Linear and quadratic regression 

analyses were applied to predict 

the outcomes of the experiment 

The feed rate was the most 

significant parameter for 

surface roughness with a 

percentage contribution 

of 82.38% and that the cutting 

speed was the most significant 

parameter for flank wear with 

a percentage Contribution of 

49.33%. 

K. Venkata Rao 2014 Milling operation, Speed feed doc 

and vibration signals 

Feed forward 4 layered NN 4.59% error and The neural 

network can help in selection 

of proper cutting parameters to 

reduce tool vibration and tool 

wear and reduce Surface 

roughness. 

NilrudraMandal 2013 Milling, Cutting speed, Feed, DoC RSM design called central 

composite design (CCD). 

Direct effect of cutting speed, 

depth of cut & cutting speed2 

has maximum influence on the 

surface roughness. 

P.G. Benardos 2002 depth of cut, the feed rate per tooth, 

the cutting speed, the engagement 

and wear of the cutting tool, the use 

of cutting fluid and the three 

components of the cutting force 

Feedforward artificial neural 

networks (ANNs) trained with 

the Levenberg 

Marquardt algorithm 

predict the surface roughness 

with a mean squared error 

equal to 1.86% and to be 

consistent throughout the 

entire range of values. 
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Author Year Operation and parameter Prediction model % Of Prediction 

S. Bharathi Raja 2012 Face milling, cutting speed, feed, 

and depth of cut 

ParticleSwarm Optimization 

(PSO) 

In milling, use of higher 

cutting speed, lower feed rate 

and lower depth of cut are 

recommended to obtain better 

surface roughness for the given 

material. 

Feed rate has greater influence 

on surface roughness when 

compared 

to speed and depth of cut. 

Fabrício José 

Pontes 

2012 Turning Radial Basis Function neural 

network 

Results obtained show that 

RBF ANNs trained with only 

30 examples can present mean 

value S. D. Ratio equal to 

0.016409, for the worst case 

corresponding to a training set. 
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2.9 SUMMARY OF THE LITERATURE REVIEW AND RESEARCH GAP 

 

The survey of literature on neural networks reveals the use of artificial neural 

networks in various applications ranging from speech recognition and image 

processing to robotics and material science. Moreover, the author has come across 

very few applications of recurrent neural networks and their variations in machining 

process.  The FFNN presents a powerful tool for generalisation of relationships 

between inputs and outputs of a metallurgical process without a need to understand 

the intricacies of the process. A dedicated approach therefore needs to be undertaken 

to improve the usefulness of the research work carried out in milling (processing of 

composites). Further, the possibility of use of recurrent neural networks in processing 

of composites needs to be explored. In the present study neural network approach, 

inclusive of FFNN modelling and RNN modelling, towards process/system 

generalisation has been demonstrated. Moreover, the author has not come across the 

concept of reverse mapping in machining process for prediction of responses using 

neural network based approaches i.e (ANN and RNN). 

 

From the literature review it can be inferred that   

1. Numerous works have been carried out on modeling, considering cutting 

force, surface roughness and power consumption in CNC end milling process 

for various Aluminium alloys. But no work has been reported for the 

prediction and optimization of cutting force, surface roughness and power 

consumption in the case of AA6061 and AA6061-4.5%Cu-5%SiCp.  

2. The model for predicting cutting force, surface roughness and power 

consumption has been evolved by most researchers based on machining 

parameters But fetching of cutting force via indirect approach and 

development of combination of both prediction and optimization models has 

not been addressed so far. The present study focuses on the development of 

ANN and RNN model by Forward and Reverse Mapping to simulate the 

relationship of milling process parameters and their influence on cutting force, 

surface roughness and power consumption. Even the optimization techniques 
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namely PSO, Grey relation analysis and Desirability approach have been 

incorporated in the study, for comparative study.  

3. Applications of intelligent optimization technique like PSO to optimize 

process parameters namely, cutting force, surface roughness and power 

consumption have been tried out, as very little work is available. In the present 

work the comparison study has been made on the intelligent optimization 

technique and statistical techniques namely grey relation analysis and RSM 

techniques.  

 

A lot of research articles are available on determining the optimal machining 

parameters using the evolutionary techniques such as GA, Fuzzy Logic  and ANN. 

But most of the researchers concentrated on ANN to predict surface roughness by 

using different algorithms. But, very limited work has been carried out to predict the 

multi objectives (responses or output), comprising of cutting force, surface roughness, 

power consumption, material removal rate etc. In the present work, the PSO technique 

has been included to overcome the issues of the performance measures based on the 

multi-objective optimization in face milling or end milling operation.  

The selected machining parameters play an imperative role in determining the product 

quality, reducing machining cost and increasing productivity. However, many of the 

techniques are not proficient in determining the global optimum solution. Inorder to 

overcome the issue of determining the global optimum solution the PSO optimization 

technique has been developed. Hence the PSO technique has been incorporated in the 

present study for optimizing the machining parameters.  

Thus, in this study the PSO and Desirability approach are used to identify the 

machining parameters to obtain desired responses such as cutting force (FX), surface 

roughness (Ra) and power consumption. At the end of the study, the comprised model 

is validated with the help of the confirmatory experimental results. 

Hence, in the present work both regression ,RSM, ANN and RNN  models were 

developed to predict cutting force, surface roughness and power consumption in CNC 

face milling of AA6061 and AA6061-4.5%Cu-5%SiCp. A comparison has been made 
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between them to identify the best model for prediction. Using regression model, 

optimization of process parameters was carried out by applying optimization 

techniques like PSO. The results obtained from this PSO technique were compared 

with statistical techniques (Grey Relation and Desirability approach) and the best 

algorithm that can be used to get accurate result was identified. In the current work, 

surface topography AA6061 and AA6061-4.5%Cu-5%SiCp studies were carried out 

on  the specimens to study the effects of process parameters like spindle speed , fee 

rate and depth of cut when they are kept at the minimum and maximum levels. 

Implementation of control strategy (Power and Force Control System by PID logic) 

for decreasing machining time and increasing productivity was achieved using 

software tool (LABVIEW). The idea behind selecting the different materials is to 

identify whether the developed model and the developed strategy work well with 

different materials thus enabling the decision support system to be more generic in 

application. 

2.10 OBJECTIVES 

Following objectives have been identified, as part of the development of an intelligent 

decision support system: 

1. Comparative Study of various soft computing techniques for optimized 

prediction in CNC machining application, to identify the best suited technique. 

2. Development of Hybrid Recurrent Neural Network model from an extended 

RNN (SRN) model for mimicking the process of milling of AA6061 and 

AA6061-4.5%Cu-5%SiCp composite to predict the responses and comparing 

the performance of HRNN model with reference to ANN models for its 

effectiveness. 

3. Development of Reverse mapped neural network system for prediction of 

input parameters for CNC machining based on desired output measure using 

ANN and RNN. 

4. Development of a GUI for integrated platform of task management, like 

prediction, material library, optimization etc…  

5. Planning a strategy for better machine utilization based on power constraint in 

machining. 
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CHAPTER 3 

EXPERIMENTAL METHODOLOGY 

3.1 CONCEPT OF MACHINE UTILIZATION  

The main concept in the present study is to increase the utilization of machine 

capacity. In the present scenario, even though machine has higher capacity to perform 

the machining operations, due to operator‟s lack of knowledge, the machines are run 

at sub-optimal conditions. Hence, it is desired to know the optimal machine capacity 

utilization based on the power consumption. For example, 5mm depth of cut can be 

achieved by removing material at spindle speed of 1000 rpm, feed rate of 300 

mm/min and depth of cut 1 mm. The power consumed for each 1mm per pass is 0.6 

kW and time required is 1minute.  Therefore, 5 passes are required to achieve the 

desired depth of cut (5mm). Hence, the total power consumption required by all the 5 

passes is 3 kW and the time required is 5minutes as depicted in Figure 3.1 (a-b). 

Proposed research concept is, rather than removing 1 mm per (single) pass, 5mm 

material can be removed at each single pass as depicted in Figure 3.2. By using this 

concept the number of passes and the time required to remove the desired depth of cut 

(5mm) will be reduced with the power consumption being 1.8 kW. The total power 

consumption required to remove 5mm is 1.8 kW. The number of passes required is 1 

pass and the time required is 1 minute to achieve the desired depth of cut of 5mm.  

Thus the total power consumed for specific pass might be more,  but the total power 

consumption and the time required to perform the entire job is reduced  i.e. 1.8kW(  1 

pass, 1minute, 5mm) in contrast to 3kW (5 passes, 5 minutes, 5mm). Thus the power 

consumed is 1.8 kW (For 1 pass) is lesser in contrast to 1mm depth of cut (For 10 

passes, i.e. 3 kW). 

In the present study, power consumption response is used as maximum capacity 

utilization criterion of CNC (Computer Numerical Control) machine (Fig 1(a-b)). The 

main objective of using this strategy is to minimize the machining time without 

affecting the quality performance of the machine, inturn bringing down the machining 
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cost. Few researchers concentrated only on the optimal process parameters without 

considering the maximum capacity utilization of the CNC machine. The power 

consumption relates to cutting forces required to remove the material and forces 

required to move the component against the tool for each pass.  The power required to 

move the component against the tool for each pass remains constant without the effect 

of depth of cut. 

 

Steps: (No of passes) 

 

Figure 3.1 (a): Present Concept of Power Utilization (For Initial/Single Pass)   

(Without Cut):   Power utilization for 1 pass = 0.3 kW 

(With Cut): Power utilization for 1 pass = Cutting Power + Power Required to move 

the bed  

                                                                   = 0.6 kW 

For first pass:  Total Power Consumption  = 0.6 kW,    Time Required: 1 min       

 

                                       

       
        

Figure 3.1 (b) Present Concept of Power Utilization (For Multiple/Next passes)     

For second pass:  Total Power Consumption  = 1.2 kW,    Time Required: 2 min. 

For third pass:     Total Power Consumption  = 1.8 kW,    Time Required: 3 min. 

For forth pass:      Total Power Consumption  = 2.4 kW,    Time Required: 4 min. 

For fifth pass:       Total Power Consumption  = 3.0kW,    Time Required: 5 min. 

1) 

2)   3) 

Conditions:   (Present Scenario) 

 Rough cut  

 Required depth of cut is 5 mm 

 Removing 1mm material per pass  

 Machining Rated Capacity = 3.5 kW 

4) 

5) 
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Steps: (No of passes) 

 

Figure 3.2: Proposed Research Concept for Maximum Machine Utilization  

(Without Cut):   Power utilization for 1 pass = 0.3 KW, 

(With Cut): Power utilization for 1 pass = Cutting Power + Power Required to move 

the bed  

                                                                   = 0.3 + 1.5 KW 

For single pass:  Total Power Consumption = 1.8 kW,    Time Required: 1 min   

 

 

From this we can conclude that the total power required to remove the material for 

single pass in research concept might be more (i.e 1.8kW) compared to present 

scenario (i.e. 0.6kW), but the number of passes and the time required to remove the 

desired (5mm) material is less. So this concept is effective compared to the present 

scenario concept. The research concept is implemented using nueral network based 

techniques (ANN, HRNN) using both forward and reverse mapping approaches. 

Reverse mapping approach can also be treated as an advisory system in the absence of 

human experts, can predict the settings of various process parameters in a milling 

process parameters in order to achieve the desired responses according to the 

requirements of the end users. One of the main objectives in any system is to optimize 

the multiple responses of the process parameters, so  the mutli objective optimization 

technique like desirability and particel swarm optimization (PSO) has been 

implemented.            



The aim of this work is to develop an offline prediction model using neural network 

architectures via both forward and reverse mapping concept. The experiments were 

designed and conducted based on the design and analysis of experiment. In Design of 

Experiment (DOE), Response Surface Method (RSM) with three factors of cutting 

parameters and three levels have been considered. The cutting force of each axis is 

measured indirectly through measuring the current drawn by the feed motors. There 

Conditions:(Proposed Research Concept) 

 Rough cut  

 Required depth of cut is 5 mm 

 Removing 5mm material per pass  

 Machining Rated Capacity = 3.5 kW 

1) 
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are two sets of experiment conducted such as without cutting and with cutting for two 

different hard materials (AA6061 and AA6061 4.5%Cu SiCp).  

3.1.1 Experimental Setup 

The machining experiments have been carried out on a CNC Milling Machine (Spark 

DTC 250) as shown in Figure 3.3(a). It is having drum type tool changer. The 

maximum number of tools that can be accommodated in this machine is 12. 

Proximate sensors are provided to sense the tool position. The movement of the axis 

are achieved by the servo motor. The Servo motor of the Z axis is selected in such a 

manner that it supports the power required for clamping and de-clamping of the tool 

also. During the tool change the Z axis servo motor draws 160% of current. 

Servomotor supplies the torque required to move the table in each direction. 

Therefore the cutting force of each axis is calculated by current drawn by the each 

axis servo motor. Tool holder type is BT 30. The total power required is 15KW.  24 

volts is required for machine control box. 

In this experimental study, the structural parameters for the machine tool are constant 

for every experiment in as much as all of the experiments have been completed on the 

same machine tool. Similarly, cutting tool parameters are constant because all of the 

cutting tools used have the same characteristics, and, in order to minimize the effect 

of tool wear, which could affect surface quality, the inserts were changed fairly often. 

Also the cutting parameters have been reduced to three to simplify matters. In this 

context, 61 different cutting conditions have been considered and for more accurate 

results, every experiment has been repeated two times. For this purpose, 122 samples 

have been prepared. The specimen used was 100 mm×60 mm in size as shown in 

Figure 3.3(b). All of the parts have been machined for dry run under the same cutting 

conditions as represented in Table 1. The cutting force was fetched through Ethernet 

cable via indirect approach (the details of calculating cutting force are discussed in 

chapter 4). Every specimen machined was subsequently kept protected so that their 

surfaces were not damaged.   
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Figure 3.3 (a): Experimental Setup CNC Vertical Milling Machine (Spark DTC 

250)  

 

Figure 3.3 (b): Workpiece Tool Interface 

 

 

 

 

Spindle 

Tool 

Holder 

Manual 

Control 
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Automatic 
Tool 
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hold 
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X-Axis 
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3.2 MACHINE SPECIFICATION 

DTC- 250/Spark [Drill Tap Machining Center, Vertical] 

 Max working Stroke (Z Axis): 250 mm. 

 Max working Stroke (Y axis): 300 mm. 

 Max working Stroke (X axis): 250 mm. 

 Speed Range               : 60 to 6000rpm as std, 80 to 8000 rpm as optional 

 Constant Power Range   : 5.5 kW max at 30 min. of Continuous Running, 3.7         

                                             kW Continuous Running.               

 

3.3 WORK MATERIAL 

In the present study two materials were used. The two opted materials are of different 

categories, The first one is Aluminium material AA6061which falls in to a category of 

soft material. The second material is Metal Matrix Composite AA6061-4.5%Cu-

5%SiCp. The chemical composition of AA6061 and AA6061-4.5%Cu-5%SiCp were 

obtained using an optical emission vacuum spectrometer. The attained chemical 

composition is listed in Table 3.1. 

The aluminium material AA6061 was opted as it is structural material, having high 

strength to weight ratio and hence used widely in aircraft industries. 

The Metal Matrix Composite material AA6061 4.5%Cu 5%SiCp was selected. Now 

a days, Metal Matrix Composites (MMCs) play a vital and effective role in the field 

of aerospace, marine and automotive industries. For important applications, MMCs 

have functional properties such as higher strength to weight ratio, enhanced elastic 

modulus, improved strength at elevated  temperature, higher wear resistance, 

attractive electrical and thermal conductivity and low coefficient of thermal expansion 

compared to the conventional metals and alloys (Necat et al. 2006, Bayraktar et al. 

2008). The focus is mainly on discontinuously reinforced aluminium alloys  (DRA) 

based MMCs, due to their better strength to weight ratio, high stiffness, high modulus, 

better thermal stability and their isotropic nature.   

The idea behind selecting different materials is to test the generic nature of the 

decision support system proposed here in this study. Secondly, the study was more 
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concentrated in developing a model that behaves and performs in a better way by 

providing the desired output. 

Table 3.1 : Composition of AA6061 

Element Al Si Cu Mg Cr 

Weight % 97.9 0.60 4.5 

 

1.0 

 

0.20 

 

3.4 CUTTING TOOL 

The machining parameters are selected based on the recommended range supplied by 

the tool manufacturer and maximum spindle speed and feed rate of machine. Several 

experiments had been conducted within the a foresaid range to identify the desired 

range of process parameters which leads to end up with feasible machining 

parameters as depicted in Table 3.4. 

Carbide tooling is used for the operation ISCAR Supplied tool holder as depicted in 

Figure 3.4 (a) and inserts for the operation. We are analysing the cutting force and 

surface roughness of the AA6061 and AA6061-4.5%Cu-5%SiCP material during the 

face milling operation. The tool holder selected is having the BT 30 taper type. 

Square type insert as depicted in Figure 3.4 (b) with following specifications side 

clearance angle 15°, tolerance 0.08 mm, type T, cutting edge length 12 mm, thickness 

5 mm, type of mount 90°,  lead 15°,  radius of  nose 0.4 mm, direction of cutting 

Right rotation, machining condition is medium , and IC 910 grade is used.   

The Tool Specifications are as follows: 

1)  Cutting Speed (Vc) = 100 - 600 m/min.    2)  Feed Per Tooth (fz) = 0.080 - 0.15 

mm/tooth. 

http://www.efunda.com/materials/elements/element_info.cfm?Element_ID=Al
http://www.efunda.com/materials/elements/element_info.cfm?Element_ID=Si
http://www.efunda.com/materials/elements/element_info.cfm?Element_ID=Cu
http://www.efunda.com/materials/elements/element_info.cfm?Element_ID=Mg
http://www.efunda.com/materials/elements/element_info.cfm?Element_ID=Cr
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Figure 3.4 (a): Tool holder F90SD D50 ,22,12 

                  

Figure 3.4 (b): Insert Nomenclature 

3.5 EXPERIMENTAL DESIGN AND METHODOLOGY 

 

Figure 3.5 (a): Flow of work 
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Figure 3.5(b): Detail ANN and PSO algorithm 

Design of experiments (DOE) is essential to minimize and to perform the experiments 

productively. Generally, most of the problems in research observation of the system at 

work require experimentation to elucidate information regarding why and how it 

works. However, experimental procedures are generally expensive and time 

consuming. So it is necessary to carry out the work with minimum number of 

experiments, as it is a precise way to satisfy the desired objectives. Generally well 

designed experiments lead to a model of system performance and the experimentally 

determined models are named as empirical model (Montogomery). In the late 1920‟s 

R.A. Fisher in England addressed the design of experiments. It is a statistical tool to 

study the effect of multiple factors at the same instance (Ranjith Roy 2001).  This 

technique has been more utilized and incorporated in academic field to provide a 

solution for engineering applications in the production floor.  Dr. Genechi Taguchi in 

the year 1940 carried out a remarkable research with DOE techniques. The effort was 
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put forth to present the experimental technique in simple and uncomplicated way. The 

same was applied in the manufacturing field to improve the product quality.  Dr. 

Taguchi‟s standard version of DOE, widely known as Taguchi approach or Taguchi 

method is applied to determine the optimum settings of the design parameters for 

performance and cost. The designer can easily adopt this systematic and efficient 

approach for experimentation.  For Engineering analysis, Taguchi technique is 

popularly used. The experimental plan and analysis of results flow chart is shown in 

Figure 3.5 (a-b) 

3.6 TAGUCHI EXPERIMENTAL DESIGN   

Taguchi approach consists of set of experimental plans for obtaining experimental 

results in a controlled manner. This technique involves laying out the experimental 

conditions using specially designed tables known as „orthogonal arrays‟. By using 

orthogonal arrays considerably decreases the number of experimental configuration to 

be studied. In the current study, in order to determine the influence of process 

parameters and their effects on the machining characteristics of AA6061 and 

AA6061-4.5%Cu-5%SiCp, Taguchi technique for three parameters at three different 

levels are determined. The orthogonal array criteria was selected based on the degrees 

of freedom for the orthogonal array, which must be greater than or equal to sum of 

process parameters. From the list of experimental designs Taguchi L 27 orthogonal 

array was selected. The design consists of 13 columns and 27 rows is shown in Table 

3.6 . From the considered orthogonal array, the individual and interaction effects of 

the input parameters on the output parameters can be studied. Thus it is utilized for 

investigation of 3 factors at 3 levels. The effect of noise were tried to reduce by 

performing the specific experiment. By using this orthogonal array the individual as 

well as interaction effects of the process parameters on the responses can be studied.  

Therefore, it is best suitable for the conditions being investigated, 4 parameters each 

at 3 levels (3
4
) along with the interaction effects. Taguchi method is basically 

incorporated to identify the most significant and influencing process parameters to 

attain the desired response (Ross, 1996 and Phadke, 1989). The main motive to carry 

out orthogonal experiments is to find out the optimum levels for all the involved 

parameters by analysis of means (ANOM). To find out the comparative significance 
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of individual parameter on the proposed performance characteristics, analysis of 

variance (ANOVA) was used. Taguchi address signal to noise ratio (S/N) as the 

objective function for matrix experiments (Ross, 1996 and Phadke,1989). Objective 

function categorized in to three sectors namely smaller the better, nominal the best 

and larger the better. In the present study, the cutting forces, power consumption 

responses need to be maximized. So larger is better option was opted. Similarly, 

surface roughness need to be minimized thus smaller the better is selected. 

3.7 PARAMETERS AND THEIR LEVELS   

The process parameters and their levels for milling operation considered in the study 

are shown in Table.3.2 for Taguchi L27 orthogonal array experiments. The parameter 

ranges were set based on the trial experiments and cutting tool specifications. 

Table 3.2: The Machining Parameters and their levels 

Spindle Speed (rpm) Feed Rate (mm/min) Depth of Cut  (mm) 

1000 300 1 

2000 400 2 

3000 500 3 

 

3.8 RESPONSE SURFACE METHODOLOGY   

Response surface methodology (RSM) is a collection of both statistical and 

mathematical techniques utilized for modeling, analysis and design of experiments, in 

which a response of interest is influenced by several variables and the objective, is to 

optimize this response.  This technique is helpful for modeling and analysis of 

parameters, in which response of interest is affected by several variables and the 

purpose is to optimize this response. In this study, RSM based central composite 

rotatable design experiments of all possible combination of levels of the spindle 

speed, feed rate and depth of cut were investigated.  It is a dynamic and foremost 

important tool of design of experiment, wherein the relationship between responses of 

a process with its input decision variables is mapped to achieve the objective of 

maximization or minimization of the response properties (Raymond & Douglas 

2002).  
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The multiplicative model for the predicted surface roughness (response surface) in 

end milling in terms of the independent variable investigated can be expressed as, 

        
    

                                                      (3.1) 

Where Ra is the predicted surface roughness (μm), Vo is the cutting speed (m/min), fz 

is the feed per tooth (mm/tooth), and a is the axial depth of cut (mm). Co, k, l, and m 

are model parameters to be estimated from experimental results. To determine the 

constants and exponents, this mathematical model can be linearized by employing a 

logarithmic transformation and equation (3.1) can be re-expressed as, 

                                                                     (3.2) 

The linear model of equation (3.2) is, 

                                                                 (3.3) 

Where y is the true response of surface roughness on a logarithmic scale x0 = 1 

(dummy variable), x1, x2, x3 are logarithmic transformations of speed, feed, and depth 

of cut, respectively, while β0, β1, β2, and β3 are the parameters to be estimated. 

Equation (3.3) can be expressed as, 

         ̂                                                             (3.4) 

Where   ̂ is the estimated response and y the measured surface roughness on a 

logarithmic scale, ε the experimental error and the b values are estimates of the β 

parameters. 

 

The second-order model can be extended from the first-order model‟s equation as: 

  ̂                                 
 
      

 
      

 
  

                                                                                                        (3.5) 

Where    ̂ is the estimated response based on the second order model. 

 

It is also called multiple regressions. In this, three-way interaction is carried out. 
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3.9 MEASUREMENT OF PERFORMANCE CHARACTERSTICS  

In the present study, the considered responses are cutting force, surface roughness and 

power consumption. So, the upcoming section deals with the measurement of the 

response characteristics through various devices. 

 

3.9.1 Cutting Force: Indirect method of measuring the Cutting forces  

Measuring the cutting forces during machining is a very complicated task. The direct 

method of measuring the cutting force is having a lot of disadvantages like cost, 

mounting of sensors, constrains of cutting parameters and machine, and cutting 

condition. Therefore indirect method of measuring cutting forces is used. There are 

several techniques used to measure the cutting forces in indirect method. One 

technique is to tap the current signals of the feed servo motor from the MCU as shown 

in Figure 3.6. The current drawn by each axis is measured with and without cutting. 

The current drawn by the servomotor is nothing but the force required to move the 

table from the initial stage to the cutting stage.  The current drawn during without 

cutting includes contributing factors like the friction force, preload torque, weight of 

the table and component, motor inertia, disturbance in the electrical and mechanical 

system. The current drawn during cutting includes these effects and cutting force 

required to remove the material during cutting. To calculate the cutting force, we have 

to subtract the without cutting current from cutting current. The torque can be 

calculated by multiplying the current with torque constant.  

Torque of the motor Tm, = current drawn by the motor * RMS Torque constant.   (3.6) 

Each motor has its own torque constant which is specified in the motor specification 

table. We have                                 
  

      

    

                 (3.7) 

Where F= cutting force in N, L = lead in mm,   = efficiency of power transmission. 
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Figure 3.6: Data acquiring from SERVOGUIDE software 

3.9.2 Surface Roughness Measurement 

The surface roughness was measured by using „MITUTOYO SURFTEST SJ-301 

surface roughness tester as shown in Figure 3.7. The roughness tester uses a 

differential inductance method as direct technique.  The tester consists of a hard 

needle shape stylus made of diamond. The stylus includes a tip radius of 2 µm and 

applies a force of 0.75 mN with a stylus speed of 0.25 mm/s to measure the surface 

roughness. Basically, the surface roughness (Ra) was measured at three different 

locations. Further on, the average was calculated and the average was considered as 

the response.  While carrying out the measurement, the cut off length evaluation 

length was fixed as 0.8 mm and 4mm respectively. The Ra and Rz values of AA6061 

and AA6061-4.5%Cu-5%SiCp machined surface were directly fetched using 

roughness tester.  

 

Figure 3.7: Surface roughness tester 
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3.9.3 Surface Topography  

The topography of the AA6061 and AA6061-4.5%Cu-5%SiCp machined surface was 

examined using a 3D laser microscope by using Olympus LEST OLS4000 laser 

confocal microscope available at CMTI, Bangalore as shown in Figure 3.8. The 

microscope uses a laser scanning to measure the surface profile of the machined 

components. The microscope can measure surface texture more accurately due to low 

laser spot diameter of 0.4 µm 

 

Figure 3.8: Laser optical confocal microscope 

3.10 OPTIMIZATION OF PARAMETERS 

3.10.1 Parametric Optimization Using Desirability Function 

Desirability Function approach is a multiple-response optimization method. This 

approach was first introduced in 1980 by Suich and Deringer. The method finds 

operating conditions “targeted” which are the most desirable response value. The 

general approach is first converting each response x1 into an individual desirability 

function di that varies over the range 0 < di < 1 (Deringer and Suich 1980, Baji et 

al.2010). The desirability functions are categorized into three sectors based on the 

response characteristics. 

1. If the target for the response is a maximum value / "Higher is better". 

 {

 

  
      

       

 

  a    

    

ri ≤ ri*
 

ri*<  ri< ri'
 

ri ≥  ri'
 

Where : ri* is the minimum adequate value of ri, ri' is the maximum adequate   

 value of ri and a describes the shape function for desirability. 
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2. If the target for the response is a minimum value / "Lower is better". 

 {

 

[
      

       
]

 

b 
  

     
 

 

      
 

3. If the target for the response is between lower and higher value / "Nominal is  

better". 

{

[
      

      
]

[
      

      
]  

 

a 

Where: Oi is the objective value, c and a describe the exponential parameters which 

verify the shape of the desirability function. 

 

3.10.2 Hybrid Taguchi-Grey Relation Analysis 

Taguchi design undertakes orthogonal arrays to reduce the number of experiments 

required to determine the optimal setting of process parameters. The effectiveness of 

the Taguchi method for improving quality in industry has extensively been verified. 

However, most of the Taguchi applications are concerned with the optimization of 

only one response, while most of the industrial problems are concerned with multiple 

responses (Deng 1989).Whereas, grey relational analysis (GRA), based on grey 

system theory is the solution for solving the problem of complicated interrelationships 

among the multi-responses. The term „Grey‟ lies between „Black‟ (symbols no 

information) and „White‟ (symbols full information), and it symbolizes that the 

information is partially available. It is suitable to unascertained problems with poor 

and incomplete information. This method transforms multiple quality characteristics 

into single grey relational grades (Chen et al. 2000, Balasubramanian et al. 2011, Lin 

et al. 2004). By comparing the computed grey relational grades, the arrays of 

respective quality characteristics are obtained in accordance with response grades to 

select an optimal set of process parameters.  

   ri ≤ ri
"
 

   ri
" 
<  ri<  ri

*
 

   ri ≥  ri
*
 

ri*< ri< Oi 

Oi<  ri< ri
* 
 

ri> ri* or ri*> ri 

Where : ri
"
 is the minimum value of ri, ri* is the maximum adequate value of ri and  

              b describes the shape function for desirability. 
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3.10.3 Optimal Machining Parameters: Particle Swarm Optimization (PSO)  

The optimal process parameters are achieved by employing the PSO and desirability 

approach. The PSO was implemented using MATLAB and the Desirability approach 

was carried out using Minitab software. The working conditions for the PSO model 

are illustrated in the algorithm. The projected model and the parameters that play a 

vital role in obtaining finer convergence characteristics of PSO are discussed in 

(Optimization Chapter 7). If the number of parameters increases, the learning rate 

increases in turn the number of iteration increases in the search space. The outcome 

leads to probability of getting global optimum solution and leading the convergence to 

be accomplished in a smaller number of iterations. Therefore there is a boundary on 

maximum velocity to be attained by the particles.  

The above criterion indicates the abandoned increase in velocity of particles, so it is 

necessary to make the search algorithm to be limited boundary range. The direction of 

the velocity gets altered in opposite direction if the velocity of the particles surpasses 

ahead of the specified range. This results in converging quickly towards its global 

optimum solution.  

A)  Proposed Methodology: PSO 

Based on the literature survey, the PSO technique yields good result as 

compared to the rest of the techniques. So the PSO technique is incorporated in this 

present study. PSO is stochastic optimization technique which is a population based 

optimization technique, PSO technique was implemented ( Eberhart et al.in 1995). 

The PSO technique was implemented by taking an inspiration of birds flocking. In the 

PSO algorithm the particles are estimated by the fitness function to be optimized and 

have velocities for the particles. The PSO has two important values which are termed 

as pbest and gbest. The pbest value is the best solution achieved so far among the 

particle, gbest value is the best solution obtained so far in the population. Once these 

two values i.e pbest and gbest are acquired, the particles are upgraded with their 

velocity and positions using the equation (3.8). PSO incorporates various parameters 

such as number of particles, range of particles, global vs local values, dimension of 

particles, learning factor. The information mechanism sharing in PSO is entirely 
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diverse as compared to the rest of the techniques. The information sharing in PSO is 

one way sharing mechanism. In PSO, the gbest has the right to share the information 

with others. As the evolution glances only for the best solution, all the particles 

present intend to converge towards the best solution as quickly as possible in most of 

the cases. The PSO algorithm mainly consists of three different factors as follows: 1) 

Social 2) Cognitive 3) Inertia (Eberhart et al.in 1995, Munish et al.2015). All these 

three constraints concentrate mainly on accelerating the particle towards the best 

position. The best position is the one which is so far followed by all the neighbouring 

swarm; this position is considered to be the global best (gbest) position. The 

Cognitive constraint concentrates on accelerating the individual particle towards its 

best position (pbest), the position (pbest) which is accomplished by the individual 

particles so far. The inertia constraint plays an vital role in maintaining the stability 

between the gbest and pbest investigation competence among the search space. If the 

fitness values of gbest and pbest values are compared among each other, if the pbest 

value is found to be better than the gbest value, then the value of the gbest changes 

The equations (3.8 - 3.10) are incorporated to vary the position of the individual 

particles to reach global optimum solution in search space. 

          
        

        (         
 )         (        

 )         (3.8) 

Where   
  = „ i

th‟ 
particle momentum at „r

th‟ 
iteration; w = inertia weight; 

c1,c2=learning factors which varies in the range of 1 to 4; Q1,Q2= random numbers 

between 0 to 1;       = pbest location of „ i
th‟ 

particle or pbest value is the best 

solution achieved so far among the particle; gbest=gbest location of swarm;   
  = 

[   
     

      
            

 ], “i
th

” particle current position at “r
th”  

iteration in N- 

dimensional search space or gbest value is the best solution obtained so far in the 

population.  

After calculating the momentum, the next position of the r
th

 particle is calculated as 

follows: 

                                                              
       

    
                (3.9) 
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Inertia weight can be determined by using the equation (3.10) or the Inertia weight 

can be chosen to be any random value. This determined inertia weight can be 

substituted in equation (3.9) 

   W =      
 (         

)          

         
    (3.10) 

Where Wmax = maximum inertia weight; Wmin = minimum inertia weight; itercurr= 

current iteration; itertotal=total number of iteration. 

B) PSO OPTIMIZATION OF PROCESS PARAMETERS 

PSO coding structure is to be defined and the initial population is distinct. The 

computation with particle swarm with particle swam intelligent operators is used to 

evaluate fitness with respect to the objective function. General flow chart of PSO 

algorithm is shown in Figure 3.9. 

Terminologies used in PSO algorithm: 

 Particle: Individual in the group of swarms. A potential solution is 

represented each swarm in the problem. 

 

 Swarm: Population of the algorithm. 

 

 Personal best (pbest): Personal best position of a given particle, so far. That 

is, the position of the particle that has provided the greatest success, pbest in 

equation (3.8) represents best position (pbest) individual until iteration k. 

 

 Global best (gbest): Position of the best particle of the entire swarm, gbest 

in equation (3.8) represents best position of the group until iteration k. 

 

 Leader: Particle that is used to guide another particle towards better regions 

of the search space. 
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 Velocity (vector): This vector drives the optimization process, that is, it 

determines the direction in which a particle needs to “fly” (move), in order to 

improve its current position. 

 

 Inertia weight (w): It is employed to control the impact of the previous 

history of velocities on the current velocity of a given particle and denoted by 

w. 

 

 Learning factor: Represents the attraction that a particle has towards either 

its own success or that of its neighbours. Two learning factors used: C1 and 

C2, where C1 is the cognitive learning factor and it represents the attraction 

that a particle has towards its own success and C2 is the social learning factor 

and represents the attraction that a particle has toward the success of its 

neighbours. Both, C1 and C2 are constants (Malghan et al. 2016, González et 

al. 2012). 

 

 

C)  PSO Algorithm : (Malghan 2016, Eberhart et al.in 1995) 

1. Initialize the population of n particles randomly. 

2. For each particle, the fitness value is calculated. 

3. If the obtained fitness value of the particle is better than the best fitness value 

(Pbest) in history, than the present value is assigned as new best fitness value 

(new Pbest). 

4. Choose the particle with the best fitness value of all the particles which are 

considered so far as the global best (gbest). 

5. The velocity and position of each particle need to be calculated. 

6. Each particle velocities are secured to a maximum velocity. If the sum of the 

acceleration will cause the velocity on that dimension to surpass ahead of the 

specified range set by the user, then the velocity need to be limited.  

7. Terminate if minimum error condition is reached or when the maximum 

iteration is reached else go to step 2. 



78 
 

 

Figure 3.9: Illustrates the PSO flow chart to optimize the process parameters: 

cutting force, surface roughness and power consumption as objective functions.  

 

3.11 PREDICTION TECHNIQUE: NEURAL NETWORK MODEL 

The goal of the work is to construct a neural network model in order to predict the 

surface roughness, cutting force and power consumption during milling operation. 

Two models were developed for prediction, namely, Recurrent Multilayer Perceptron 

(RMLP) and Multilayer Perceptron (MLP). The learning algorithm incorporated in 

both the models RMLP and MLP is Error back propagated Gradient Decent method. 

The following section will focus on the architecture and training methods used in the 

present work. 

3.11.1 Architecture Of Multi-Layer Perceptron Model- ANN 

The intricate and disruptive engineering problems have been effectively solved by 

using the Multilayer perceptron (MLP) models.Error back propagation method has 

been adopted to consecutively solve these problem. In order to resolve the errors 

occurring during learning process various learning algorithms exist such as the 
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Gradient Decent learning rule, Adaptive Filtering or Least Mean Square algorithm. 

The architecture encompasses three different types of layers namely input layer, 

hidden layer, and output layer. The flow of signal is named as Feed Forward Neural 

Network as the signal moves in a forward direction, from input layer to hidden layer 

and then from hidden layer to the output layer. The data being processed in the 

network will bypass several layers without any existence of feedback connections. 

Figure 3.13 shows schematic representation of input and output parameters in Multi-

Layer Perceptron feed forward neural network. The neural network has to behave in a 

way that the set of inputs should determine anticipated result.  The weights are 

assigned primarily in two ways. One way is to use the learning rule to learn the output 

pattern by providing the trained data. Another way is to assign the weights based on 

the prior knowledge. The back propagation algorithm for given epoch of training data 

executes in two different ways namely the sequential mode or batch mode. Basically 

the disparity among these two ways is that in sequential mode, the weights of neurons 

are entirely dependent on the pattern basis. While in the case of batch mode, the 

weights and the bias of neurons are entirely on the epoch basis. Generally, the 

sequential mode is widely used in back-propagation learning. Usually, the network 

needs to be trained in a way that it leads to minimal error. The error is calculated 

based on the difference between the desired error and actual error. Basically there are 

two methods to specify the error, either by specifying the number of epochs or by 

specifying the error value. The variation among these two ways is that if number of 

epochs is specified, then the training data will execute until it reaches the specified 

epoch number; later on the testing of the data is carried out.   In epoch specification, 

the training data will run up to the specified number of epoch and once it reaches the 

specified value; the testing of the data is carried out.  In the other way, the training 

will iterate till the specified value of error is reached. In the present study, Multi-

Layer Feed Forward Neural Network (MLFFNN) architecture is adopted for training 

and predicting the mechanical properties of the AA6061 and AA6061 4.5%Cu SiCp 

material. The input parameters are rotational speed, feed rate, and depth of cut. The 

predicted response parameters are surface roughness (Ra) and cutting force (FX). 
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3.11.2 Architecture Of Recurrent Multi-Layer Perceptron Model  

The elementary feature of Recurrent neural networks (RNN) is that the network at 

least includes one feedback connection and is used to perform the sequential 

processing. The presence of feedback connection indicates that activations can flow 

around in the loop, thus leading the network to perform temporal processing and even 

to learn the sequences. The feedback may be identity-feedback or it may be from one 

layer to another layer. The dynamic properties of the network play a key role and acts 

contrary to feed-forward networks. The stable state is achieved by the network when 

the activated values do not illustrate any diverging results as the activated values 

reach to relaxation mode.  

Recurrent neural network architecture can be of different forms. One common form 

consists of Multi-Layer perceptron (MLP) with appended loops. There are abundant 

other neural network architectures available such as Elman networks, adaptive 

resonance theory (ART), Competitive network etc. RNN has various training 

approaches such as the Back propagation through time (BPTT), Extended Kalman 

Filter, Real time recurrent learning etc. Figure 3.15 shows the schematic 

representation of Recurrent Multi-Layer Perceptron Model. In the present study, RNN 

architecture is used to train and predict the responses of the AA6061 and 

AA60614.5%-Cu5%-SiCp material. The input parameters are rotational speed, feed 

rate, and depth of cut. The predicted response parameters are surface roughness (Ra) 

and cutting force (FX). 

3.12 PROCEDURE INVOLVED IN ANN MODEL DEVELOPMENT   

The development of an ANN model involves various processes and functions. To 

develop an ANN model one needs to know the best representative input parameters 

for the given output(s). The preparation of the model would require sufficient amount 

of training data so that network can learn. The selection of the type and amount of 

data is often a matter of in depth knowledge and experience about the process 

considered for modelling. The model developer should be in a position to determine 

the data which is most representative of the input-output population. Thus data 

generation becomes an important task in model development. Next, the input as well 
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as output data needs to be scaled so that data is grouped in a pre-decided range. Also, 

the methods for weight initialisation to be used, determination of biases, deciding on 

the architecture etc. are not readily available and require good amount of attention 

during model development. The model developer should be aware that a neural 

network does not have any information about the metallurgical process that is being 

modelled. In order that the network understands the underlying relationships for the 

process, the network needs to be trained. Hence, neural network training is the heart 

of the entire ANN model development. The model developer should be sure that the 

data that is being used for training is authentic, devoid of any significant measurement 

errors. Any erroneous data used for training can lead to a situation similar to teaching 

wrong things thereby, resulting in wrong learning. Wrong learning will automatically 

lead to erroneous outputs from the model. 

3.13 VARIOUS STEPS IN DEVELOPING A NEURAL NETWORK 

3.13.1 Data Preparation  

Generally the data for an NN model arrives from a variety of sources. The NN is able 

to process the data in a certain structured form. The network learning is affected by 

the form in which the data is presented to the network. Hence the right coding scheme 

for the data needs to be decided before hand, so that the network can learn and can 

perform the given task. Therefore, the coding scheme for the data has to be in place 

before the data collection task is taken up. Design of data coding system should be 

decided before data collection as one should be aware as to what he is going to do 

with that data. The process of data preparation involves the following steps.  

3.13.2 Data Collection and Generation  

The primary step in the ANN model development is deciding on the input and output 

data required. After these have been identified, the metallurgical system/process data 

needs to be generated. There are usually, two sources available for data 

generation/collection. One can get data from the hand books or data books in 

metallurgy and secondly from experiments. Actually, data generation means use of a 

data generator which will give an output for each chosen sample. The total numbers 

of samples are so chosen that the final model represents the actual metallurgical 
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problem on hand accurately.  The type of data generator selected, generally depends 

upon the type of problem being modelled.  

3.13.3 Identification of input variable 

The input variables are significant for modelling output variable(s) under study and 

are selected by suitable variable selection procedures. The most important parameters 

are spindle speed, feedrate, depth of cut for predicting the cutting force, surface 

roughness and power consumption. 

3.13.4 Range and Distribution of Samples [Formation of training and validation 

sets] 

The data set is classified in to three distinct set such as training set, testing set, 

validation set. Training data is used for training the network, that is, to update the 

weights as the network learns from the test samples being presented to it during 

training. The validation data performs the function of monitoring the quality of 

training and helps in decision making as regards to terminating the training process. 

The test data is used to check the final performance of the trained model.  

The neural network applies the training set successively to gain knowledge of the 

patterns and the training set is deemed to be the prime set. In order to assess the 

generalisation ability of the trained network, a testing set is functional to the trained 

network. The performance of the network is verified by applying the validation 

dataset to the trained network. In total, 27 sets of experiments were conducted for 

AA6061 material and 27 sets of experiment were conducted for AA6061 4.5%Cu 

SiCp. Out of that, 22 data sets from each of the AA6061 and AA6061 4.5%Cu SiCp 

materials were used for the training the networks, 3 data sets are used for testing the 

network and finally for validation 2 data sets are utilized.  

3.13.5 Pre-Processing and Post-Processing of Data 

The pre-processing of data is carried out to convert the data and the specific signals in 

to data representation which indeed is suitable to an application through the series of 

operations. The main aim behind using the data pre-processing is to attain a smoother 

relationship, size reduction of the input space, feature extraction, noise reduction and 

data normalization.  
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The brief description of the terms mentioned in pre-processing data sections are 

defined as follows: 

 Smoother Relationships: The problem transformation is the commonly used 

type of Pre-Processing. It implies that the problem is basically transformed in 

to simple problem. After implying this type of pre-processing, the associated 

mappings become quite smoother.  Usually the transformations can be 

obtained from instinct about the problem. 

 Feature Extraction: The feature extractions are usually contingent on the 

domain-specific knowledge. The input data is a pattern itself. From the data, if 

the key attributes are extracted then the encountered problem is solved 

automatically. 

 Noise Reduction: The series of data may involve inconsistent data, useful 

data and noisy data. So inorder to filter out the inconsistent and noisy data 

from data, the Pre-Processing is carried out. Thus Pre-Processing helps in 

recovering of the corrupted data and helps in reducing the unwanted data from 

the data. 

 Normalization: In most of the problems, the units incorporated to measure 

each of the input variables can skew the data, inturn making the range of 

values along some axes much larger than others. Hence resulting in 

unnecessarily complex relationships by making the nature of mapping along 

some dimensions much different from others. Such issues can be overcome by 

scaling (normalization) each of the input effect, thus increasing the accuracy 

and performance of the neural network model or neural network system.  

 

The last step to be performed in the Pre-Processing is the Normalization of data. 

Usually the Normalisation is applied to both the input and the output values. The main 

aim of the Normalization is to uniformly distribute across the data range. The 

Normalization of data must be carried out, in such the values of input and output 

range should not cross the range of the summing of the neuron or the device. 

However, for the current study the scaling is within the range of 0.1 to 0.9.The 

following Normalization function is used in the study. 
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(      )    

(         )
                 (3.11) 

 

Where xn refers to the normalised value, xmin is the minimum and xmax is the 

maximum value in the range (Negalye et al. 2012).  

 

The training of the network is carried out until it attains the required degree of 

performance. Once the degree of performance is attained, the network provides the 

expected output values that are understood by the end user. Inorder to achieve the 

desired outputs, the Post-processing of data is carried out as it assesses the network 

performance. In this step, the outputs of the network in the normalised form are de-

normalised using the following equation (Negalye et al. 2012). 

 

     
(         ) (      )

   
                       (3.12) 

 

There are several algorithms for data Pre-Processing such as data normalization(Min-

Max Normalization, Zscore Normalization, Sigmoidal Normalization) data values 

averaging, input space reduction ( Principal Component Analysis (PCA)). The input 

space consists of more than one variable. Each of the input for the data collected may 

have different range.  Similarly, the number of outputs may be more than one and 

each may have a different range. Hence each of the inputs and the outputs needs to be 

normalised by its own normalising factors. Hence there is a need for pre-processing of 

the raw input and output data or else the network will not perform satisfactorily. This 

is a critical phase in the overall model design and development. Pre-Processing 

improves the efficiency of neural network training. The Post-Processing enables 

assessing and detailed analysis of the network performance. 
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3.13.6 Hidden layers  

The hidden layer has the capability to generalize the network. Hidden layers consist of 

the neurons or they may be called as the inter-neurons that neither seen or act upon 

the outside world directly, these inter-neurons communicate only with the other 

neurons. The sufficient amount of the hidden neurons in the single hidden layer will 

enable approximation of the continuous function. In the present study, two hidden 

layers were opted for the networks.  

3.13.7 Hidden nodes  

The network attains the desired output only when the optimal number of hidden 

layers, as well as nodes in each hidden layer is incorporated in the network. The 

integration of the optimal hidden layers will make the trained network generalize well 

and minimize the error. If too few nodes are opted in the hidden layer, then it leads to 

high training and high generalization error for the system as the predictive factors 

might be too complex for a small number of nodes to capture. In either way if too 

many nodes are opted in the hidden layer, then it leads to overfit of the training data 

and trained network will not generalize well as there is high variance. So to overcome 

this issue to some extent, few thumb rules are adopted. Some of few thumb rules 

anticipated by the experts are as follows, a) The hidden layer size is selected 

somewhere between the input and output layer size (Blum, 1992). b) The general rule 

to calculate the number of hidden nodes is [(number of inputs + number of outputs) * 

2/3]. c) The hidden layer should never be more than the twice as large as the input 

layer (Berry etc, 1997). d) Hidden nodes are considered as the principal components, 

which are needed to capture about 70-90% of the variance of the input data set (Boger 

etc ,1997). The number of hidden neurons with n inputs and m output neurons for the 

three layer neural network   is obtained by the minimum square root of (n*m) 

neurons. Therefore, at first hidden layer stared from 4 neurons and best results were 

obtained at 7 neurons. Similarly, the second hidden layer showed best results at 4 

neurons. From the graph, it is observed that the mean square error increases as the 

number of neurons increases. Figure 3.10 represents the mean square error versus 

number of neurons . 
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Figure 3.10: Number of neurons in hidden layer 1 and 2 verses mean square 

error 

3.13.8 Output nodes  

The network performance drops down due to the broad spacing of the outputs with 

multiple outputs in the network as when compared to a network with single output. 

The output parameters are surface roughness and cutting force.  

3.13.9 Concept of Activation function 

Activation functions it is a decision making function that helps in determining the 

presence of particular feature. Generally activation functions are needed for 

transforming the input to different domain where they may be easily separable or 

bound a model. Inorder to make the incoming data non-linear we use non-linear 

mapping called as the activation functions. Activation functions are mathematical 

formulae that decide the output of a processing node. The process of an ANN is to 

sum up the product of the associated weight and the input signal and produce an 

output or activation function. Neural network uses various kinds of activation 

functions such as the binary step function, binary sigmoid functions and bipolar 

sigmoid functions.  

In the present study the sigmoidal activation function is used due to its nature of 

reducing the saddle of the complication present in the training phase. The selection of 

sigmoidal activation function is due to its features of nonlinearity and being 
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continuously differentiable, which is unipolar continuous. The sigmoid function is 

given below (Negalye et al. 2012). 

    ( )  
 

                     (3.13) 

Based on the suitability of the distribution of the target values, the activation functions 

are integrated for the outputs. In the study the logistic function is incorporated, which 

is a sigmoid function between 0 and 1. It indicates that the output values vary from 0 

to 1 or binary.  

3.13.10  Initial Weights 

Typically the weights of the network are initialised at small random values. The 

weight initialisation has a strong bearing on the way the network learns.  If the 

network is trained even after reaching the area of stability then it results in drifting of 

the assigned weights thus leading to poor performance of the network. Even it 

increases the error value, in turn leading the network to suffer with poor mapping 

quality of network. To conquer this, it is advisable to commence with a new set of 

random weights. 

3.13.11  Learning Rate 

The Learning rate (η)  factor usually identifies at which rate the network needs to be 

converged and even it helps in determining the quantum of weight needed to be 

adjusted at each step. Learning rate parameter decides the quantum of weight 

adjustment done at each step and is responsible for the rate at which the convergence 

of the network takes place. A poor choice of this parameter can lead to convergence 

problems. The selection of proper value of learning rate coefficient determines the 

effectiveness of the use of back propagation algorithm. There is no proper or exact 

method to select the learning rate value since as the learning rate solely depends on 

the relation that exists in the data sets (Reddy et al. 2005).Thus, there is no unique 

learning rate available which can hold good for all of the models, so the learning rate 

always decided based on the trial and error. The learning rate and the rate of 

convergence both are directly proportional to each other. The use of high learning rate 

parameter will lead to higher non convergence or the network starts oscillating. 

Similarly the too low learning rate parameter value leads the network to converge at 
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very slower rate. Rumelhart and McClelland 1986, reported that a value of η = 0.25 

and α = 0.9 give good results for most of the computations. Usually η being the 

quantum of weight adjustment for each step or iteration, its value always lies down 

between 0.1 and 0.9. Here, it is found that for the current study the learning rate of 0.3 

yields better results.   

3.13.12 Momentum Factor 

The core of back propagation algorithm is the assessment of the contribution of each 

weight to the error output. The objective function in NN training is a incessantly 

differentiable function of the weights. There is always a possibility that the training 

may get trapped in local minimum and might not shift out this plane. In order to 

overcome these issues, the momentum factor is introduced. It accelerates the network 

convergence in an FFNN method. The enhancement of the present weight adjustments 

are done basically with a fraction of the weight adjustment in the previous time step. 

The current weight adjustment then takes the form shown below (Negalye et al. 

2012). 

    ( )      ( )     (   )                 (3.14) 

The parameters  w is curre t weight  ∇E is error, t and (t-1) in the above equation 

specify the existing and the most recent preceding training step. The variable α is 

described as the momentum factor. The basic role of the momentum factor is that it 

gives an added momentum to the descending descent movement. The process indeed 

helps the network to ascend beyond local minima and travel further downwards 

towards the slope of error profile. The momentum term is proportional to the 

proportion of divergence. Hence it can be stated that, larger the momentum factor, the 

faster will be the convergence. Usually α is in the extremities of 0.1 to 0.9. During the 

training process, in most of the cases α value will be significantly varied between the 

range of 0.1 to 0.9. In the current study, it is found that in case of Feed Forward 

Neural Network, the momentum factor of 0.2 and 0.5 for AA6061 and AA6061 

4.5%Cu SiCp materials yield satisfactory results. 
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In the present study, the two materials have been taken in to consideration, such as 

AA6061 and AA6061 4.5% Cu SiCp. Two different materials are chosen to ascertain 

the generality of the NN model developed.  The developed ANN and RNN model will 

identify and predict the common best process parameters that hold good for two 

different types of materials. 

3.14  FORWARD AND REVERSE MAPPING MODEL 

An attempt has been made to develop the forward and reverse process models for the 

milling process models using the neural network based approaches (i.e. ANN and 

RNN). In this study,  neural networks based approaches (i.e ANN and RNN) has been 

applied to milling process for  prediction of its three responses based on three 

machining parameters namely spindle speed, feed rate and depth of cut  through 

forward mapping as shown in Figure 3.12. Using a reverse mapping method, based on 

the end user‟s requirements for the desired values of various responses, the optimal 

settings of milling process parameters were also predicted. It has been observed that 

the ANN and RNN predicted results closely corroborate with the experimental and 

test case results which prove the capability of neural network based approaches as an 

effective tool for developing such prediction models to cater the needs of both the 

operators and the end users. It can also be extended further for modeling other 

complex machining processes with a large number of control parameters and 

responses.  It is to be noted that the results of the reverse modelling are considered to 

be more useful for the end user to achieve the desired output. In addition, the 

developed methodology can be implemented to adjust the process parameters in on-

line control of the milling quality. This model for reverse mapping is also trained 

using the test cases and is subsequently used for prediction of the tentative settings of 

the milling process parameters based on a set of desired response characteristics.  It 

can also be treated as an advisory system in absence of human experts, can predict the 

settings of various process parameters in a milling process parameters in a milling set 

up in order to achieve the desired responses according to the requirements of the end 

users. 
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Figure 3.11: Steps in Developing Neural Network 

The working and procedure involved in ANN Model Development are discussed in 

section 3.12 and Figure 3.11.The prediction carried out by the Reverse Mapping can 

be compared with the Neural Network based approaches such as Genetic Algorithm 

Neural Network (GA-NN) ,Back Propagation Neural Network (BPNN)  . Reverse 

Mapping was used in order to predict the process parameters for the desired 

responses. Figure 3.13 shows the structure of a neural network used in reverse 

mapping. The responses namely: surface roughness(Ra), cutting force (Fx) and power 

consumption were treated as an input to NN, whereas process parameters such as 

spindle speed, feed rate and depth of cut were considered as output in reverse 

mapping.  Hence, the NN structure in reverse mapping consists of two neurons for the 

input layer and three neurons in output layer. 
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Since ANN can represent the relationship between the input and output, the reverse 

mapping can be used as one of the strategies for controlling the output parameters of 

CNC machine. This can be carried out by simulating the dynamic nature of the CNC 

machine.  This can mimic or behave similar to that of the CNC machine. This will 

help in establishing an intelligent decision support system for any manufacturing 

industry.  

3.14.1 Artificial Neural Network (ANN) Modeling: Forward And Reverse 

Mapping  For AA6061 and AA6061-4.5%Cu- 5%SiCp 

 

The prediction carried out by the Reverse Mapping can be compared with the Neural 

Network based approach: BPNN. Reverse Mapping was used in order to predict the 

process parameters for the desired responses. The vital goal of Reverse Mapping is to 

identify the set of input process parameters, corresponding to a set of desired output 

parameters. The statistical methods fail to achieve the condition of reverse mapping 

because of invertible nature of the matrix transformation. Thus to overcome the 

issues, the ANN and RNN techniques are incorporated as these techniques handle the 

reverse mapping method in an significant manner.   

 

Figure 3.12 :  ANN - Neural Network Structure used in case of Forward 

Mapping  
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Figure 3.13:  ANN - Neural Network Structure used in case of Reverse Mapping. 

 

The neural network architecture in case of forward mapping and reverse mapping of 

ANN technique are shown in Figure 3.12  and 3.13 respectively. Figure 3.13 presents 

the structure of a neural network used in reverse mapping. The responses namely 

surface roughness, cutting force in X direction ( X axis) are treated as input to NN, 

whereas process parameters such as spindle speed, feed rate and depth of cut are 

considered as output in reverse mapping.  Hence, the NN structure in reverse mapping 

consists of three neurons for the input layer and three neurons in output layer. 

3.14.2 Recurrent Neural Network (RNN) Modeling: Forward And Reverse 

Mapping 

 

The Elman Network (Elman 1990) is used as the ANN model for prediction of Fx , 

SR and power Consumption. The Elman RNN network has 3 input neurons, 7 neurons 

for hidden layer 1, 4 neurons for hidden layer 2 and 3 neurons for output layer, The 

hunt for these number of hidden layer neurons is to be continued till one obtains 

minimum generalization error. Generally in the RNN technique, the feedback 

connections may be inter linked either from layer to other layer or the feedback 

connections may be self-feedback (Negalye 2013).  Figures 3.14 and 3.15 represent 

the schematic representation of RNN technique opted to train and predict the 
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responses. The input parameters assigned for training process in case of forward 

mapping are spindle speed, feed rate and depth of cut. The predicted responses are Fx 

, SR and power consumption. Similarly in the case of reverse mapping, the input 

parameters considered are Fx , SR and power consumption, and the predicted 

responses are spindle speed, feed rate and depth of cut. The neural network 

architecture in the case of forward mapping and reverse mapping of RNN technique 

are shown in Figure 3.14 and 3.15 respectively. 

 

Figure 3.14: RNN - Neural Network Structure used in case of Forward Mapping  

 

Figure 3.15:  RNN - Neural Network Structure used in case of Reverse Mapping . 
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3.15 GRAPHICAL USER INTERFACE DESIGN  

The medium of graphics has revolutionised the user interface design. If used 

appropriately, it can harness the information assimilation, processing and 

dissemination capabilities of the user and allow for faster interaction with computer 

system. Graphical User Interface (GUI) has brought about a marked change in the 

world of computing in terms of use of computer systems across professions. A well 

designed GUI will help the user to interact with the system comfortably, in the sense, 

that it is easier to learn, more effective to use and does not cause vision fatigue when 

used for long periods. The fact that they are easy to use does not imply that they are 

easy to design. In fact the designing medium for GUIs in modern days is so rich with 

so many different options of architectures, colour combinations, facilities, metaphors, 

patterns available that one can create an excellent GUI for a given application. 

However, with so much flexibility available in terms of choices in design, there is 

every possibility of the designer going overboard and coming out with a mediocre, 

lacklustre design of GUI. Therefore designing a good GUI is a challenging task. 

 

3.15.1 Objectives Of Graphical User Interface Design  

The user interface is a part of the computer system which connects the user with the 

internal system of the computer. While the user operates on a GUI, has no access to 

what is happening inside the computer system. The system will work in the 

background based on the information provided by the user in the input section and 

provide him/her with the processed outputs. Therefore the user is more concerned 

with the interface, rather than what is happening in the background. Hence the 

objective of the GUI design is to make it as user friendly as possible, by increasing its 

usability.  
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3.16 INTRODUCTION FOR DEVELOPING CONTROL STRATEGY USING 

SOFTWARE TOOL (LABVIEW). 

Adaptive control system is an appendage of a machine's control that enables the 

machine to cope with the variables that software cannot tackle. Adaptive control (AC) 

is designed specifically to handle conditions safely such as variations in material 

hardness, uneven dimensions and surfaces of the workpiece, tool wear, and 

temperature variations during cutting and fixture instability while maximizing metal 

removal (Mathias 1968, Bedini et al. 1976, Huber et al.1968). The use of computer 

numerical control (CNC) machining centres has expanded rapidly through the years. 

A great advantage of the CNC machining center is that it reduces the skill 

requirements of machine operators. However, a common drawback of CNC end 

milling is that its operating parameter such as spindle speed or feedrate is prescribed 

conservatively either by a part programmer or by a relatively static database in order 

to preserve the tool. As a result, many CNC systems run under inefficient operating 

conditions sometimes. For this reason, a CNC machine tool control system, which 

provides on-line adjustment of the operating parameters, is being studied with 

interest.  

These systems can be classified into three types: a geometric adaptive compensation 

(GAC) system; an adaptive control optimization (ACO) system; and an adaptive 

control constraints (ACC) system. GAC systems enhance part precision by applying 

real time geometric error compensation for imprecision caused by varying machine 

temperature, imprecise machine geometry, tool wear and other factors (Yoram Koren 

1989). However, due to the difficulty in on-line measurement of tool wear and 

machine tool temperature, there are no commercial GAC systems available. ACO 

systems and ACC systems enhance productivity by applying an adaptive control 

technique to vary then machining variables in real time (Porter et al.1969, Peklenik 

1970). ACO systems set up the most effective cutting condition for the present cutting 

environment. For this purpose, ACO systems require on-line measurement of tool 

wear unfortunately; adaptive control alone cannot effectively control cutting forces. 

There is no controller that can respond quickly enough to sudden changes in the cut 

geometry to eliminate large spikes in cutting forces. Therefore, an on-line adaptive 
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control in conjunction with off-line optimization is attempted here. In our AC system, 

the feedrate and spindle speed is adjusted on-line and off-line based on the power 

constraint using PID logic in milling to increase machine utilization and to maintain a 

constant cutting force in spite of variations in cutting conditions. 
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CHAPTER 4 

CONCEPT OF MEASURING CUTTING FORCE: 

INDIRECT METHOD 

 

4.1 INDIRECT METHOD OF MEASURING THE CUTTING FORCES 

Measuring the cutting forces during machining is a very complicated task. The 

direct method of measuring the cutting force is having a lot of disadvantages like cost, 

mounting of sensors, constrains of cutting parameters and machine and cutting 

condition.  Therefore indirect method of measuring cutting forces is used. There are 

several techniques used to measure the cutting forces in indirect method. One method 

is to mount the current sensor at the place where the power goes to the servo motor 

and other technique is to take the current signals of the feed servo motor from the 

MCU as depicted in Figure 3.5 (Chapter 3, In section 3.9). The current drawn by each 

axis is measured with and without cutting. The current drawn by the servomotor is 

nothing but the force required to move the table from the initial stage to the cutting 

stage.  The current drawn during without cutting includes contributing factors like the 

friction force, preload torque, weight of the table and component, motor inertia, 

disturbance in the electrical and mechanical system. The current drawn during cutting 

includes these effects and cutting force required to remove the material during cutting. 

To calculate the cutting force, we have to subtract the cutting without current from 

cutting current. The torque can be calculated by multiplying the current with torque 

constant as in equation (4.1). 

Torque of the motor Tm, = current drawn by the motor * RMS Torque constant. 

Each motor has its own torque constant which is specified in the motor specification 

table. We have  

                                                                  
      

    
                                                   (4.1) 

Where F= cutting force in N, L = lead in mm,   = efficiency of power transmission 
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4.2 SERVOGUIDE (SG) 

SERVOGUIDE software from FANUC system is used for tuning and performance 

check of the CNC machine. It provides communication interface between the CNC 

machine and personal computer. This software is developed by FANUC motor tuning, 

program upload and download feed and speed commands, measurements of  power 

consumed by the spindle motor, torque and current drawn by the each axis of the 

servomotor, spindle motor etc. The connection between Servoguide and the CNC 

system is established through Ethernet cable. 

4.3TESTING METHODS FOR THE CUTTING FORCE 

Machining process is dynamic, nonlinear, random and coupling. The cutting force 

mainly varies with these factors, including work piece materials, cutter materials, 

cutter geometric shapes, cutting angle, cutting speed, cutting depth, cutting fluids, 

feed at which work piece advances, type of chip and so on. Therefore the accurate 

measurement of cutting force has been a difficult problem in the manufacturing 

industry for a long time. 

 

The traditional measurement of cutting force can be classified into two groups. One 

of them is using formulae. There are usually versatile formulae corresponding to 

different machining operations. The formulae are simple and convenient to be used 

and are widely used in manufacturing. But there are many factors, such as work piece 

materials, cutter materials, cutter geometric shapes and other factors, which are not 

given enough consideration in these formulae. So the result from this method is 

imprecise and can only be used as reference. 

 

In the other method, force measuring sensors and control signal have been used to 

measure the forces induced during cutting. The accuracy of force sensor mainly 

depends upon accuracy of the sensor and the testing methodology adapted to measure 

the forces. There are different types of force measuring sensors, especially the 

resistance strain measurement system and the piezoelectric crystal measurement 

system which are commonly used in measuring cutting forces. The resistance strain 
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measure system is also divided into two types, static and dynamic measurement. They 

differ mainly in the core element. The cutting force is typically random and changes 

with the machining time and cutting conditions. Thus we can only adopt the dynamic 

resistance strain measurement to measure the cutting force. 

 

The dynamic resistance strain measurement is quite common to measure the cutting 

force. In the machining, the strain area and magnitude are varied with the different 

cutting edges and directions. According to this, the strain element should be 

differently placed. Currently, the dynamic resistance strain measurement is 

successfully used to measure the cutting force of milling, grinding and lathe 

operations. When testing the cutting force of the milling machines in face milling 

processing, it is difficult to fix the sensor on the cutter, so it is fixed on the work 

piece. In the process, because of the shape and size of workpiece keeps changing, the 

stress distribution caused by the cutting force is changing over time. Therefore, it is 

difficult to attain the value of cutting force simply by measuring the response in 

milling process. And the resistance strain measure system has lower precision to 

measure the cutting force. In the control system, the controller sends the current 

signal to the servo driver, where this signal gets amplified to drive the servo motor at 

a specified feed rate. A tacho generator generates a signal according to the feed of the 

table. This signal is sent back to the machine control unit(MCU) for comparison 

between the actual feed of the servo motor and the desired feed, if there is an any 

error, it is corrected by MCU and adjusted feed rate signal is sent to the servo driver. 

The comparison of the dynamometer measured cutting force and the indirect method 

of measuring the current signal of the controller has been done by (Kim  et al. 1995, 

and Wang et al. 2006). 

 

Several current measuring sensors have been developed to measure the current 

consumed during the process. A system controlled current signal was used, which is 

sent to driver during the cutting. The drives then amplify this signal according to the 

servo motor requirements. For communication purpose, Servoguide diagnostic 

software which is developed by the FANUC was used. 
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4.4 MATHEMATICAL METHOD TO MEASURE THE CURRENT IN THE 

CONTROL SYSTEM  

 

The linear transfer function between the variation of the feed rate command Vco and 

the variation of the actual feed rate Vao , for the x-axis feed-drive system is 

determined as: 

 

 

   

   
 

   

   
 

                      
    

        
      (          )  

     (             )              
     (4.2) 

 

 

 

 

Figure 4.1: Control system diagram of CNC machine (courtesy Tae-Yong Kim et 

al. 1995) 

 

As shown in the Figure 4.1 the motor drive torque    is exerted in accelerating the 

equivalent feed-drive inertia   , and in overcoming the disturbance torque   . The 

disturbance torque    consists of the friction torque in the drive    and the cutting 

torque    reflected on the motor shaft. 
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VCo Feedrate command [mm/min] Ω Actual ang. Vel. [rad/min] 

Ω Ang.vel command [rad/min] KF Angular Velocity gain 

[(rad/sec)/(mm/min)] 

Kf Velocity integral gain [V/(Rad/sec)] V1e Feedback current [V] 

Kp Velocity propotional gain 

[V/(rad/sec)] 

Ki1p1 Current proportional gain [-] 

V1c Current command [V] Lao Armature coil inductance [mH] 

KH Current feedback gain [V/A] Iq Actual current [A] 

Ra Armature coil resistance [ohms] Kb1 Back EMF constant [V/(rad/sec)] 

Kt Torque constant  [kgf.m/A] Td Disturbance torque [kgf.m] 

Tm Motor drive torque [kgf.m] Ω Angular velocity of motor shaft 

[rad/sec] 

Je Equivalent feed drive inertia 

[kgf.m.sec
2
] 

  

 

Mechanical equation for torque is given by; 

                                                                         
  

  
                       (4.3) 

                                                     Td =sign( )    +                                           (4.4) 

 

Electrical equation for torque 

                                                                                                                             (4.5) 

 

4.5 THE RELATIONS BETWEEN THE CURRENT OF THE SERVOMOTOR 

AND THE CUTTING FORCE 

4.5.1 The Servo Drive System of the CNC Machine Tool 

The servomotor is widely used in NC machine tools, processing centres, 

industrial robots, printing machinery and other high-performance electromechanical 

equipment’s, because of the characteristics of good control performance, the simple 

structure, the smooth low-speed operation and the high precision positioning. A 



 

102 
 

servomechanism is a closed-loop control system in which the mechanism position or 

motion will be precisely controlled. So in the NC machine tool, the servomechanism 

is usually adopted to the feed control. Figure 4.2 shows the sketch of a 

servomechanism of NC machine tools. In Figure 4.2, the servomotor generates 

electromagnetic torque Tm and drives precision ball screw assembly which serves to 

transform rotary motion into linear motion to move the workbench. Thus, the 

machining process can be approximately divided into three sequential processes: the 

formation of cutting force, the transfer of cutting force and the conversion from 

mechanism to electricity. When the servomotor works in the stable state, the 

electromagnetic torque of the servomotor should be equal to the load torque which 

consists of the friction torque   , the additional friction torques    and the cutting 

torque   . So the torque balance equation of the servo drive system is: 

                                                                  (4.6) 

Where,  

  —electromagnetic torque; 

   —equivalent friction torque; 

  —cutting torque; 

  —equivalent additional friction torque with the preload. 

   
      
   

 

   
         (    

 )

   
  

   
     
   

 

   ―the friction force of guides; 

   ―the ball screw pitch; [length/rotation]  

η ―the overall efficiency of the transmission chains; 

    ―the pro-load of the ball screw; 

   ―the efficiency of the ball screw without the pro-load; 



 

103 
 

  ―the feed cutting force. 

Substituting the above term in equation in 4.6; 

    
  

   
[       (    

 )    ]                                     (4.7) 

Equation (4.7) is the mathematical model relating the cutting force to the 

electromagnetic torque of the servomotor. When the cutting force increases, the 

electromagnetic torque of the servomotor should show a follow-up increase. 

According to the control theory of the electromagnetic torque of the motor, the current 

of the servomotor will also augment. So, relation can be established between the 

current and the milling force. Therefore, the indirect measurement of the cutting force 

is feasible through measuring the current signal of the servomotor. 

 

Figure 4.2:The sketch of a servomechanism of the CNC machine tools (Na Wang 

2006) 

 

4.5.2 Characteristics Of The Drive motor 

In the CNC machine, permanent magnetism synchronous motor (PMSM) is 

widely used to drive the machine tool. Next, we use vector conversion technology to 

illustrate the relation between the testing current and the electromagnetic torque of the 

PMSM. The vector conversion technology is used to analyze the motor current in the 

rule of forming the same rotary magnetic field. According to this, the three-phase 

electrical current of the servomotor can be equalled to two-phase electrical current to 

establish the d-q coordinate system as shown in Figure 4.3. Thus we can control the 

servomotor just like controlling the DC motor through the vector conversion control. 

Three-phase stator currents of the PMSM generate the rotary magnetic field, but the 

permanent magnetism poles of the rotor generate sinusoid magnetic field which is 

located on the rotor. So the rotor magnetic potential is attracted to rotate by the stator 
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magnetic potential. In the coordinate rotation system, we take the rotor magnetic field 

as axis d, thus the three-phase stator currents of the PMSM ( iu, iv, iw) can be 

decoupled as Fig. 4.3 In the d-q coordinate system, the three-phase alternating current 

can be expressed as shown in equations (4.8), (4.9) and (4.10). 

                             (4.8) 

        (
      

 
)                         (4.9) 

        (
      

 
)                     (4.10) 

Where, 

 I – the amplitude of the stator current; 

  – the Phase angle of the armature current 

The u and v phase stator currents, iu and iv, respectively cane be measured with Hall 

sensors. 

The w phase stator current can be calculated from the following relationship: 

           

 

Figure 4.3: The vector conversion technology 

Through the vector conversion, the two-phase electrical current on the d-q coordinate 

system can be denoted as: 
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Apparently, the current id and iq can be calculated using two phase current of the 

servomotor stator current in actual control. The equation (4.11) of the 

electromagnetism torque of the PMSM can be expressed as follows, 

 

   
 

 
 [          (     )]           (4.12) 

Where  

  = the pole of the motor 

   = the amplitude of the rotor magnetic chain, 

   ,    = the stator equivalent inductance of axis d and q. 

On the principle of the maximum of the ratio of the torque and current equation 

above, we often adopt   =0. Then the electromagnetism torque can be simplified as,  

   
 

 
                  (4.13) 

When the gas magnetic field of the motor is distributed as sine wave, the     is 

constant, so    is proportional to the armature current   . Therefore, the current 

measurement of the PMSM can reflect the variety of the electromagnetic torque of the 

motor. Each motor has its own torque constant. Then equation 4.13 can be simplified 

as                            

                           (4.14) 

Where,        = torque constant in Nm/A. 

 

4.6 CNC PART PROGRAMING FOR MACHINING 

The following program is used to run the machine. The description of the each code is 

given in the appendix.   

O2701/* Program Name 

N001 G21 G94 G54;   /*Metric system, Feed rate in mm/min and Work Zero 

N002 G91 G28 Z0;   /* Incremental Dimension and go to Z Home Position 

N003 G28 X0 Y0;   /* Go to X and Y Home Position 
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N004 M06 T08;    /*Tool Change and Select Tool Number 8 

N005  M03 S1000;  /* Spindle Rotation in Clockwise Direction and Speed is 

1000 rpm 

N006 G90 G00 X-50 Y+50 Z5; /* Linear Interpolation, Absolute Dimension and Go to Work 

Position         Dimensions 

N007 G01 X-50 Y50 F300;  /*Feed Rate 

N008 G01 Z-1;    /*Z-axis Depth of Cut 1mm 

N009 G01 X110;   /*X-axis Traverse 

N0010 G01 Z5;   /*Z-axis Movement 5mm Above the Surface 

N0011 G28 Z0;   /*Go to Z Home Position 

N0012 G28 X0 Y0;              /* Go to X and Y Home Position 

N0013 M05;               /*Spindle Stop 

N0014 M30;              /* Machine Stop 

4.7 INSTANTANEOUS CURRENT DRAWN BY EACH AXIS 

 

 

 

 

 

 

 

 

 

 

FIGURE 4.4: Instantaneous Current Drawn by (a) X-axis (b) Y-axis (c) Z-axis 

(a) (b) 

(c) 



 

107 
 

The Figure 4.4 (a) shows the instantaneous current drawn by the feed servo motor in 

the X direction during the execution of the program. Initially, it draws some current to 

hold the table in position. It is nothing but holding current. This region marked as 1. 

Sudden rise and sudden fall in the current marked as 2 is the current required for 

moving the table from undetermined position to home position. Region designated 3 

corresponds to tool change and moving the table to work position. Region 4 

corresponds to tool movement from X 0 to up to tool and material engages.  Region 5 

corresponds to cutting action. During this time the current is suddenly raised in the 

beginning and falls suddenly, when the cutter moves away from the workpiece.  

 

The Figure 4.4 (b) shows the instantaneous current drawn by the Y axis feed table 

during the execution of the program. In Y axis of the table there is no movement at 

all. Therefore it requires force to remain in the position. Hence, holding current before 

and after the cutting execution is required. This is named as number 1 and 5 in the 

figure 4.4 (b). The number 2 corresponds to the tool movement from home position to 

work position. The number 3 is cutting region. From the Figure 4.4(b) it ca be 

observed that at region 3 there is a sudden raise and sudden fall in the graph. It 

indicates that entry and exit of the tool, cutting and exit of the tool. The number 4 

corresponds to without cut region. 

 

The Figure 4.4 (c) shows the instantaneous current drawn by the servo motor in the Z 

axis direction of the feed table during the program execution. Initially it requires a 

high amount of current (5 Amps). It means that the Z axis in vertical direction and 

requires the power to hold the spindle assembly in position to perform machining 

process which is indicated as number 1in Figure 4.4 (c). After that there is a sudden 

rise and fall in the current on the both sides. It corresponds to the tool movement in 

the vertical direction at rapid traverse marked as number 2. In between this peak 

somewhat constant current is required to hold the cutter in position during the 

execution of cutting process which is numbered as 4. The number 3 region represents 

the tool movement in the z direction from 5 mm to -0.5 mm. 
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4.8 CALCULATION OF CUTTING FORCE 

The calculations were performed using formulas as discussed in upcoming section 

(4.10) inorder to find out the maximum and minimum range of the spindle speed and 

feed rate. Thus with the help of the tool specifications, literature and preliminary 

experiments the operating ranges of the rotational speed and feed rate were derived. 

During machining, the data acquisition was carried out using FANUC LAN cable. 

The data related to the current drawn by each axis was captured under two varying 

cases one "With Cut" and "Without Cut". Later the surface roughness values of (Ra) 

have been measured with a Mitutoyo Surface Roughness Tester.  

In "without cutting" method, the tool was in air and the program was executed. The 

current drawn by the each axis is measured. This current is nothing but the current 

required to move the table at specified feed rate to overcome the friction, electrical 

disturbances and mechanical disturbances. 

In "with cutting‖ method, the tool is engaged with the material by a specified depth of 

cut and current drawn by the servomotor is measured. This current includes the 

current required to remove the material and also the current required to move the 

table, overcome the friction, electrical and mechanical disturbances. 

Now by separating the ―with cut current‖ with "without cut current" results in the 

current required to remove material from the surface of the specimen. This current 

value, when multiplied by the torque constant gives the cutting force required to cut 

the material. 

The current drawn by the servomotor was measured through a diagnostic system 

(Ethernet cable) which was interfaced to the CNC system. It has a feature of direct 

interface between the CNC machine and computer system through the LAN cable. 

Thus the experiments have been carried out to cover the face milling on CNC milling 

machine, with AA6061 and AA6061 4.5%Cu 5%SiCp as work materials. 
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4.8.1 Indirect Method for Calculating Cutting Force 

For the experimental instance of : spindle speed = 2000 rpm, feedrate = 400 mm/min 

and depth of cut = 1mm. 

Instantaneous current drawn by the servo motor while with cutting IXW = 0.74199 

Instantaneous current drawn by the servo motor while without cutting IXO = 0.540392 

Current required for cutting  

IX = IXW - IXO =  0.2015978 A 

Torque constant TCC = 1.16 Nm/A 

Torque = Torque constant * Instantaneous current. 

TXW  =  TCC * IXW                                TXO  =  TCC *  IXO  

             =   1.16 * 0.74199                      =   1.16 * 0.540392 

TXW  =   0.860708  N-m            TXO  =  0.6268548  N-m 

Instantaneous torque produced while with cutting         TXW   =   0.860708      N-m  

Instantaneous torque produced while without cutting  TXO  =  0.6268548      N-m 

FX = T*2*π* ᶯ / L                 Where  ᶯ  is efficiency of power transmission = 90 %, L= Lead 

of the ball screw = 12mm for X and Y axis, 10mm for Z axis. 

 

Instantaneous cutting force with cutting  FXW =  0.860708 * 2 * π *0.9 *1000  N                                                                           

                          12   

                   FXW  =  405.6518 N 

Instantaneous cutting force without cutting FXO  =0.6268548 * 2 * π *0.9 *1000 N     

                                     12   

                      FXO  =    295.437 N 

Cutting force required to remove the material is Fx is obtained by,  
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FX  =  Instantaneous cutting force with cutting  -  Instantaneous cutting force without 

cutting.      

FX   =  405.6518 - 295.437  =  110.22 N,  Similarly, 

The FY , FZ  are calculated ,  FY =  56.03444 N;     FZ =  32.642 N. 

The vertical (Z-direction) force component was negligible and hence it was not 

recorded. In Y axis of the table there is no movement at all. Hence inorder to retain 

the table in position some amount of power is required, it is negligible and hence it 

was not recorded. It was seen that the milling force component transverse to the feed 

direction (along X-axis) was consistently significant and changed appreciably with 

change in cutting conditions. This force component was therefore focused upon for 

analysis and the mean value of this X-direction force (henceforth referred to as force) 

was used for this study (T.Radhakrishnan et.al). So in this study the Fy and Fz forces 

are negligible. 

4.9 ANALYSIS OF VARIATION IN FEED DRIVE CURRENT TO RELATE 

RESULTING CUTTING FORCE VARIATION 

 

Attempt has been done to analyze the variation in surface finish with the cutting force 

variation, because it has been proved that the variation in cutting force affects the 

dynamic stiffness of the machine tool which is responsible for the variation in surface 

finish. For effective automation, where the process takes place without human 

interference, continuous monitoring of the milling process is necessary. Most 

frequently, this has been made possible by measuring the cutting force characteristics 

by which it is possible to assess the changes of the quality of the surface finish.  

The adaptive system of control, which controls the cutting force and maintains 

constant roughness of the machined surface during milling by continuous dynamic 

adjustment of the cutting parameters, is an important development in the field of 

machining. The model based on forces measured using Kistler or similar 

dynamometers have rigidity, loading capacity and economic limitations as the actual 

forces developed during machining of component mounted directly on the fixture is 
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much more as compared to the forces measured by, mounting the force sensor on the 

workpiece. 

The objective of the proposed system is to relate the cutting force variation with 

surface roughness, on similar lines as been attempted by using the current measured 

online though servo guide software, on FANUC - OM controlled ACE machining 

centre model - Spark DTC 250. The data of instantaneous current drawn by the 

servomotor of the axes have been converted by using the physical equations to 

determine the torque developed by each motor and the cutting forces have been 

calculated using the servo guide software. The plot of the cutting force variation is 

compared with plot of current variation of servomotors and observed that there is lot 

of similarity and hence calculated cutting force plot can be directly used to reflect 

variation in surface roughness of the machined work piece, on similar trend. 

4.10 SUMMARY 

In this chapter, indirect method of calculating cutting force using current consumed 

by each axis of the motor is discussed. The measured cutting forces are used to infer 

the knowledge of the machine to correlate the surface roughness and power 

consumption. 

 The data of instantaneous current drawn by the servomotor of the axes have 

been converted by using the empirical equations to determine the torque 

developed by each motor and the cutting forces have been calculated using the 

servo guide software. 

 The plot of the cutting force variation is compared with plot of current 

variation of servomotors and observed that there is lot of similarity and hence 

calculated cutting force plot can be directly compared with variation in surface 

roughness of the machined work piece. 

 

Related Article:  Rashmi Malghan, Karthik Rao, Arun Shettigar, Shrikantha  Rao 

and D’Souza (2017).‖ Investigation of Cutting Force via Indirect Approach and 

Evaluation of machining characteristics of AA6061‖, Materials and 

Manufacturing Processes, https://doi.org/10.1080/10426914.2017.1388520  
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CHAPTER 5 

RESULTS AND DISCUSSION (PART 1) 

DESIGN OF EXPERIMENT: TAGUCHI METHOD 

5.1 INTRODUCTION 

The influence of machining parameters on performance measures, namely cutting 

force (FX), surface roughness (Ra) and Power consumption are discussed in the 

subsequent section. The input parameters and their respective levels used for the 

current study are listed in Table 5.1. The selections of these parameters are based on 

the survey of literature and by preliminary investigations. L27 Taguchi orthogonal 

array (OA) of experiments was opted to further carry out the experiments and to 

analyze the involved process parameters, 

5.2 EXPERIMENTAL RESULTS 

The machining experiments were carried out on the CNC milling machine to identify 

and to study the effect of process parameters on the output characteristics such as FX, 

Ra and Power consumption with their respective S/N ratio values, as exhibited in 

Table 5.2, 5.3 and 5.4 for AA6061 & AA6061-4.5%Cu-5%SiCp materials. 

 In the present study all the plots, designs and analysis have been incorporated using 

Design Expert software. The main criteria to use S/N ratio is to measure responses to 

identify, develop products and processes insensitive to noise factor (Cochran and Cox 

1962). Usually from this the predictable outputs of either product or processes in the 

existence of noise factor can be identified. The process parameter with greater S/N 

ratio will yield optimum value with minimum variance. The S/N ratio values used in 

the present study are as follows, for FX larger the better characteristic, for Ra smaller 

the better characteristic, and for Power consumption larger the better characteristic. 
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Table 5.1: Experimental Design using L27 orthogonal array for AA6061, 

AA6061-4.5%Cu-5%SiCp 

 

 

 

 

 

Trial 

. No 

Levels of Process Parameters Settings  

AA6061  ,   AA6061-4.5%Cu-5%SiCp 

Coded Form Un Coded Form 

Spindle 

Speed 

(rpm) 

Feed Rate 

(mm/min) 

Depth of 

Cut 

(mm) 

Spindle 

Speed 

(rpm) 

Feed Rate 

(mm/min) 

Depth of 

Cut (mm) 

1 1 1 1 1000 300 1 

2 1 1 2 1000 300 2 

3 1 1 3 1000 300 3 

4 1 2 1 1000 400 1 

5 1 2 2 1000 400 2 

6 1 2 3 1000 400 3 

7 1 3 1 1000 500 1 

8 1 3 2 1000 500 2 

9 1 3 3 1000 500 3 

10 2 1 1 2000 300 1 

11 2 1 2 2000 300 2 

12 2 1 3 2000 300 3 

13 2 2 1 2000 400 1 

14 2 2 2 2000 400 2 

15 2 2 3 2000 400 3 

16 2 3 1 2000 500 1 

17 2 3 2 2000 500 2 

18 2 3 3 2000 500 3 

19 3 1 1 3000 300 1 

20 3 1 2 3000 300 2 

21 3 1 3 3000 300 3 

22 3 2 1 3000 400 1 

23 3 2 2 3000 400 2 

24 3 2 3 3000 400 3 

25 3 3 1 3000 500 1 

26 3 3 2 3000 500 2 

27 3 3 3 3000 500 3 
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Table 5.2: Experimental results of FX for AA6061 & AA6061-4.5%Cu-5%SiCp
  

Trial. No 

Cutting Force FX (N) 

AA6061 AA6061- 4.5%Cu-5% SiCp 

FX S/N ratio FX S/N ratio 

1 45.50 33.16 71.28 37.06 

2 50.31 34.03 78.03 37.85 

3 56.69 35.07 87.64 38.85 

4 58.72 35.38 90.37 39.12 

5 63.42 36.05 109.45 40.78 

6 72.60 37.22 115.33 41.24 

7 73.27 37.30 120.39 41.61 

8 79.05 37.96 134.79 42.59 

9 83.56 38.44 139.53 42.89 

10 93.58 39.42 144.91 43.22 

11 100.01 40.00 155.12 43.81 

12 107.23 40.61 176.66 44.94 

13 110.22 40.84 179.40 45.08 

14 115.02 41.22 182.50 45.23 

15 119.84 41.57 185.55 45.37 

16 126.74 42.06 187.34 45.45 

17 134.22 42.56 190.09 45.58 

18 141.48 43.01 194.46 45.78 

19 143.30 43.12 232.49 47.33 

20 148.55 43.44 241.82 47.67 

21 150.52 43.55 245.12 47.79 

22 152.58 43.67 247.98 47.89 

23 153.29 43.71 249.63 47.95 

24 155.15 43.82 250.16 47.96 

25 158.30 43.99 254.03 48.10 

26 159.82 44.07 257.86 48.23 

27 164.21 44.31 259.00 48.27 
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Table 5.3: Experimental results of  Ra for AA6061 & AA6061-4.5%Cu-5%SiCp 

Trial. No 

Surface Roughness Ra (µm) 

AA6061 AA6061- 4.5%Cu-5% SiCp 

Ra S/N ratio Ra S/N ratio 

1 0.70 3.10 3.24 -10.21 

2 0.64 3.88 2.99 -9.51 

3 0.63 4.01 2.35 -7.42 

4 0.86 1.31 3.81 -11.62 

5 0.76 2.38 3.39 -10.60 

6 0.67 3.48 2.70 -8.63 

7 0.96 0.35 4.35 -12.77 

8 0.86 1.31 3.99 -12.02 

9 0.68 3.35 3.06 -9.71 

10 0.63 4.01 2.00 -6.02 

11 0.61 4.29 2.07 -6.32 

12 0.62 4.15 1.77 -4.96 

13 0.73 2.73 2.44 -7.75 

14 0.66 3.61 2.29 -7.20 

15 0.62 4.15 1.74 -4.81 

16 0.85 1.41 2.82 -9.00 

17 0.71 2.97 2.58 -8.23 

18 0.60 4.44 1.94 -5.76 

19 0.52 5.68 1.20 -1.58 

20 0.55 5.19 1.40 -2.92 

21 0.56 5.04 1.30 -2.28 

22 0.66 3.61 1.21 -1.66 

23 0.58 4.73 1.34 -2.54 

24 0.55 5.19 1.14 -1.14 

25 0.71 2.97 1.45 -3.23 

26 0.56 5.04 1.35 -2.61 

27 0.48 6.38 1.00 0.00 
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Table 5.4: Experimental results of Power Consumption for AA6061 & AA6061-

4.5%Cu-5%SiCp 

Trial . No 

Power Consumption (kW) 

AA6061 AA6061- 4.5%Cu-5% SiCp 

Power S/N ratio Power S/N ratio 

1 0.04 -28.53 0.06 -24.50 

2 0.04 -27.48 0.07 -23.17 

3 0.05 -26.33 0.08 -22.06 

4 0.07 -23.42 0.11 -19.25 

5 0.07 -22.65 0.13 -17.74 

6 0.08 -21.47 0.14 -17.07 

7 0.11 -19.32 0.18 -14.81 

8 0.12 -18.64 0.20 -13.84 

9 0.13 -18.03 0.21 -13.45 

10 0.08 -21.61 0.15 -16.67 

11 0.09 -20.90 0.15 -16.20 

12 0.10 -20.29 0.17 -15.37 

13 0.13 -17.46 0.23 -12.73 

14 0.14 -17.03 0.24 -12.48 

15 0.15 -16.62 0.24 -12.22 

16 0.19 -14.26 0.31 -10.07 

17 0.20 -13.78 0.32 -9.87 

18 0.22 -13.31 0.33 -9.56 

19 0.13 -17.59 0.24 -12.40 

20 0.14 -17.29 0.25 -12.10 

21 0.14 -17.16 0.25 -11.89 

22 0.19 -14.56 0.33 -9.61 

23 0.19 -14.39 0.34 -9.42 

24 0.20 -14.20 0.35 -9.24 

25 0.25 -12.06 0.44 -7.20 

26 0.25 -11.88 0.44 -7.05 

27 0.26 -11.64 0.45 -6.95 
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5.3 EFFECT OF PROCESS PARAMETERS ON FX, RA AND POWER 

CONSUMPTION -ANOVA 

 5.3.1 Effect of Process Parameters on FX, Ra and Power Consumption AA6061 

The effect of process parameters on the responses FX, Ra, and Power Consumption 

were analysed using the L27 OA as represented in Table 5.1.The implication, 

significance of the process parameters on the responses and even the contribution 

percentage on the responses were identified by implementing the Analysis of variance 

(ANOVA) computational technique (Phadke, 1989 and Ross, 1996).  ANOVA 

complies of sum of squares, degrees of freedom, mean square, F-value and P value. 

Table 5.5 - 5.7 shows the Analysis of variance for AA6061material. From the Table 

5.5 - 5.7 it can be observed that the Speed, Feed Rate and Depth of cut are significant 

parameters and have significance on the Ra, FX and Power Consumption responses. 

The significance of the parameter is concluded based on the P value, if the P value 

attained is less than 0.05 then the parameters are assigned to be significant 

parameters. The percentage of contribution for individual process parameter along 

with the interaction of the process parameter percentage contribution is calculated to 

identify the major contribution complied by the process parameters on the responses.  

From the Table 5.5, it can be observed that Speed has major contribution of 90.76 % 

on FX, followed by Feed Rate 7.08 % and Depth of cut 1.11 %. The interaction of 

Speed * Feed Rate 0.85 %, Speed * Depth of cut 0.12 % and Feed Rate * Depth of cut 

0.01 % have lesser contribution on FX.  

From the Table 5.6, it can be observed that Speed has major contribution of 41.22 % 

on Ra, followed by Depth of cut 23.97% and The Feed Rate 15.20 %. The interaction 

of  Feed Rate * Depth of cut 12.69%, Speed * Feed Rate 4.44 % and Speed * Depth 

of cut 1.63 % have minor contribution on Ra. 

From the Table 5.7, it can be observed that Speed has major contribution of 54.59 % 

on Power Consumption, followed by Feed Rate 42.90%. Similarly the interaction of, 

Speed * Feed Rate 1.68 %, Depth of cut 0.74 %, Speed * Depth of cut 0.04 % and 

Feed Rate * Depth of cut 0.04% have minor contribution on Power Consumption. 
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From Table 5.5 - 5.7, it can be concluded that Speed has major contribution on all 

responses Ra, FX and Power Consumption. 

Table 5.5: Analysis of Variance for FX of AA6061 

Source DF Seq SS Adj MS F P Remarks P (%) 

Speed 2 36089 18044.5 8001.49 0.000 Significant 90.76 

Feed Rate 2 2815.3 1407.7 624.2 0.000 Significant 7.08 

DOC 2 441.5 220.7 97.89 0.000 Significant 1.11 

Speed*Feed Rate 4 340.4 85.1 37.74 0.000 Significant 0.85 

Speed*DOC 4 50.2 12.5 5.56 0.019 Significant 0.12 

Feed Rate*DOC 4 4.6 1.2 0.51 0.73 Insignificant 0.01 

Residual Error 8 18 2.3         

Total 26 39759.1           

F - Ftest, P- Percentage of contribution, 95% of confidence 
 

Table 5.6: Analysis of Variance for Ra of AA6061 

Source DF Seq SS Adj MS F P Remarks P (%) 

Speed 2 0.141 0.070 200.56 0.000 Significant 41.22 

Feed Rate 2 0.052 0.026 73.97 0.000 Significant 15.20 

DOC 2 0.082 0.041 116.65 0.000 Significant 23.97 

Speed*Feed Rate 4 0.015 0.004 10.82 0.003 Significant 4.44 

Speed*DOC 4 0.006 0.001 3.97 0.046 Significant 1.63 

Feed Rate*DOC 4 0.043 0.011 30.88 0.000 Significant 12.69 

Residual Error 8 0.003 0.000         

Total 26 0.341           

F- Ftest, P - Percentage of contribution, 95% of confidence 

 

Table 5.7: Analysis of Variance for Power Consumption of AA6061 

Source DF Seq SS Adj MS F P Remarks 

P 

(%) 

Speed 2 0.061 0.030 19236.72 0.000 Significant 54.59 

Feed Rate 2 0.048 0.024 15115.49 0.000 Significant 42.90 

DOC 2 0.001 0.000 261.59 0.000 Significant 0.74 

Speed*Feed Rate 4 0.002 0.000 296.07 0.000 Significant 1.68 

Speed*DOC 4 0.000 0.000 7.57 0.008 Significant 0.04 

Feed Rate*DOC 4 0.000 0.000 6.4 0.013 Significant 0.04 

Residual Error 8 0.000 0.000         

Total 26 0.111           

F - Ftest, P- Percentage of contribution, 95% of confidence 
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Main Effects Plot for Means for FX, Ra and Power Consumption of AA6061 

 

Figure 5.1: Effect of process Parameters on Cutting Force (FX) of AA6061 

 

 

Figure 5.2: Effect of process Parameters on Surface Roughness (Ra) of AA6061 
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Figure 5.3: Effect of process Parameters on Power Consumption of AA6061 

The Figure 5.1 - 5.3 represents the main effect plots for Ra, FX and Power 

Consumption of AA6061 material. Figure 5.2 exhibits that as the spindle rotational 

speed increases the value of the Ra decreases due to the built up edge which is formed 

at the tip of the cutting edges vanishing and hence resulting in better surface finish. As 

the feed rate increases the Ra value increases. This is due to the axial movement of 

the cutting tool being larger which results in shifting of the tool to new position on the 

workpiece surface without completely removing the material .As the depth of cut 

increases Ra decreases. This is due to increase in the rigidity of the machine during 

machining process. Further, increases in depth of cut will detroit the surface finish 

due to the chattering and vibration effect of the machine. The cutting force and the 

power consumption have shown direct proportional relationship, Figures 5.1 and 5.3 

exhibits that as the spindle speed, feed rate and depth of cut increase, the cutting force 

(FX) indeed increases due to increased area of the chip-tool contact. 
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5.3.2 Effect of Process Parameters on FX, Ra and Power Consumption -ANOVA 

for AA6061-4.5%cu-5%SiCp 

Similar trend like that for AA6061 materials in terms of the effect of process 

parameters on FX, Ra and power consumption is observed here also, as can be seen 

from tables 5.8-5.10. 

 

Table 5.8: Analysis of Variance for FX of AA6061-4.5%cu-5%SiCp 

 

Source DF Seq SS Adj MS F P Remarks P (%) 

Speed 2 92635 46317.7 1942.04 0.000 Significant 92.447 

Feed Rate 2 5195 2597.6 108.91 0.000 Significant 5.184 

DOC 2 877 438.5 18.38 0.001 Significant 0.875 

Speed*Feed 

Rate 4 1026 256.4 10.75 0.003 Significant 1.024 

Speed*DOC 4 172 43 1.8 0.221 Insignificant 0.172 

Feed 

Rate*DOC 4 107 26.7 1.12 0.412 Insignificant 0.107 

Residual 

Error 8 191 23.8         

Total 26 100203           

F - Ftest, P- Percentage of contribution, 95% of confidence 

 

Table 5.9: Analysis of Variance for Ra of AA6061-4.5%cu-5%SiCp 

 

Source DF 

Seq 

SS Adj MS F P Remarks P (%) 

Speed 2 19.065 9.533 3033.360 0.000 Significant 80.782 

Feed Rate 2 1.000 0.500 159.020 0.000 Significant 4.235 

DOC 2 1.892 0.946 301.030 0.000 Significant 8.017 

Speed*Feed 

Rate 4 0.713 0.178 56.740 0.000 Significant 3.022 

Speed*DOC 4 0.691 0.173 54.930 0.000 Significant 2.926 

Feed 

Rate*DOC 4 0.215 0.054 17.120 0.001 significant 0.912 

Residual 

Error 8 0.025 0.003         

Total 26 23.601           

F - Ftest, P- Percentage of contribution, 95% of confidence 
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Table 5.10: Analysis of Variance for Power Consumption of AA6061-4.5%Cu-

5%SiCp 
 

F - Ftest, P- Percentage of contribution, 95% of confidence 

Main Effects Plot for Means for FX, Ra and Power Consumption of AA6061-

4.5%cu-5%SiCp  

 

Figure 5.4: Effect of process Parameters on Cutting Force (FX) of AA6061-

4.5%cu-5%SiCp 

Source DF Seq SS 

Adj 

MS F P Remarks P (%) 

Speed 2 0.201 0.100 10165.98 0.000 Significant 61.471 

Feed Rate 2 0.121 0.060 6101.92 0.000 Significant 36.897 

DOC 2 0.002 0.001 90.31 0.000 Significant 0.546 

Speed*Feed 

Rate 4 0.003 0.001 83.29 0.000 Significant 1.007 

Speed*DOC 4 0.000 0.000 4.27 0.039 Significant 0.052 

Feed 

Rate*DOC 4 0.000 0.000 0.24 0.908 Insignificant 0.003 

Residual 

Error 8 0.000 0.000         

Total 26 0.327           
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Figure 5.5: Effect of process Parameters on Surface Roughness (Ra) of AA6061-

4.5%cu-5%SiCp 

 

Figure 5.6: Effect of process Parameters on Power Consumption of AA6061-

4.5%cu-5%SiCp 

Figure 5.4 - 5.6 represents the variation of cutting force, surface roughness and power 

consumption respectively w.r.t spindle speed, feed rate and depth of cut. There trends 

are similar to those observed in the section 5.3.  
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5.4 SUMMARY  

The Taguchi parameter design has been incorporated to identify the number of 

experiments need to be carried out and also deals with the investigation on the effect 

of machining parameters on the responses such as surface roughness, cutting force 

and power consumption. The main effect plot of Taguchi for Signal-to-Noise (S/N) 

ratio is employed to evaluate the effect of process parameters on milling process 

output variables. The Analysis of Variance (ANOVA) is also used to evaluate the 

contribution of process parameters on milling process output variables. To identify the 

interaction between the process parameters, contribution of each parameter and 

significance of the parameters Response Surface Methodology (RSM) is incorporated 

in the next chapter. The interaction effect of process parameters on milling process 

output variables is analyzed using perturbation plots of RSM.  
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CHAPTER 6 

RESULTS AND DISCUSSION (PART 2) 

  RSM MODELLING FOR PREDICTION 

6.1 RSM FOR AA6061 

The Central Composite Design (CCD) was used to implement the response prediction 

using RSM. A total of 20 experiments were performed, which incorporates of 8 cube 

points, 6 center points in cube, 6 Axial points and alpha value is 1. The range of the 

process parameters were set by taking into consideration the tool or insert 

specification and even by performing the trial experiments inorder to achieve the 

desired responses. In the present work, CCFCD is used for establishing the 

relationship between the empirical process parameters and the milling process output 

variables of three different materials i.e. AA6061, AA6061-4.5%Cu-5%SiCp. The 

final obtained mathematical regression equations are listed in Table 6.4.  

 

Later on the model performance was validated with the help of analysis of variance 

(ANOVA) (Tables 6.1- 6.3). The significance of the model is identified by this 

method. If the model satisfies the condition of Prob>f is less than 0.0500 then the 

model is significant. Since all the proposed models satisfies the condition of Prob>f is 

less than 0.0500, hence it can be concluded that all the proposed models are 

significant. The adequacy of the fitted regression model was identified using the 

R
2
correlation coefficient, the value of R

2
 need to be close to unity. For all the 

responses the “Pre R-squared” are in reasonable accidence with the “Adj R-Squared” 

values. The precision ratio of all the developed models (ratio >4 is desirable) shows 

the adequacy of incorporating the proposed model.   

 

From the Table 6.1 it can be observed that Speed has major contribution of 91.18 % 

on FX, followed by Feed Rate 6.29 %. The Depth of cut 0.89 %, Speed * Speed 0.79 

% , Speed * Feed Rate 0.38 %  have lesser contribution on FX.  
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From the Table 6.2 it can be observed that Speed has major contribution of 40.52 % 

on Ra, followed by Depth of cut 22.10%, Feed Rate * Depth of cut 15.2%, Feed Rate 

14.21 % contribution respectively. The Speed * Feed Rate 2.63 % and Speed * Depth 

of cut 1.68 % has minor contribution on Ra. 

From the Table 6.3 it can be observed that Speed has major contribution of 55.73 % 

on Power Consumption, followed by Feed Rate 40.93%. Similarly the, Speed * Feed 

Rate 1.77 %, Depth of cut 0.61 %, Speed * Speed 0.41 % and Feed Rate * Feed Rate 

0.21 % have minor contribution on Power Consumption. From Table 6.1 – 6.3 it can 

be concluded that Speed has major contribution on all responses Ra, FX and Power 

Consumption. 

Table 6.1: Analysis of Variance for FX of AA6061 using RSM Method 

 

 

 

 

 

 

 

 

Sum of Mean F p-value

Source Squares DF Square Value Prob> F

Model 21831.5 5 4366.3 630.33 < 0.0001 significant

Speed 19995.2 1 19995.2 2886.5 < 0.0001 91.18% significant

Feed Rate 1381.45 1 1381.45 199.43 < 0.0001 6.29% significant

DOC 195.75 1 195.75 28.26 0.0001 0.89% significant

0.38%

0.79%

Residual 96.98 14 6.93

Lack of Fit 93.64 9 10.4 15.61 0.0037 significant

Pure Error 3.33 5 0.67

Cor Total 21928.5 19

significantSpeed * Speed 174.95 1 174.95 25.26 0.0002

Percentage 

Contribution
Remarks

Speed * Feed Rate 84.2 1 84.2 12.16 0.0036 significant
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Table 6.2: Analysis of Variance for Ra of AA6061 using RSM Method 

 

Table 6.3: Analysis of Variance for Power Consumption of AA6061 using RSM 

Method  

 

 

 

6.1.1 Regression Analysis For AA6061 

The regression analysis is opted to obtain the correlation between the process 

parameters and the responses. In the current study the quadratic method is used in 

order to fit the model and to further carry out the analysis of the experimental data. 

The regression was implemented for responses FX, Ra and Power Consumption for 2 

different materials. The regression equations obtained for AA6061 are listed in Table 

6.4 

Sum of Mean F p-value

Source Squares DF Square Value Prob> F

Model 0.18 6 0.031 225.54 < 0.0001 significant

Speed 0.077 1 0.077 570.38 < 0.0001 40.52% significant

Feed Rate 0.027 1 0.027 199.16 < 0.0001 14.21% significant

DOC 0.042 1 0.042 311.19 < 0.0001 22.10% significant

Speed * Feed Rate 5.00E-03 1 5.00E-03 36.83 < 0.0001 2.63% significant

Speed * DOC 3.20E-03 1 3.20E-03 23.57 0.0003 1.68% significant

Feed Rate * DOC 0.029 1 0.029 212.12 < 0.0001 15.20% significant

Residual 1.77E-03 13 1.36E-04

Lack of Fit 1.57E-03 8 1.96E-04 4.89 0.0485 significant

Pure Error 2.00E-04 5 4.00E-05

Total 0.19 19

Percentage 

Contribution
Remarks

Sum of Mean F p-value

Source Squares DF Square Value Prob> F

Model 0.061 6 0.01 749.4 < 0.0001 significant

Speed 0.034 1 0.034 2492.41 < 0.0001 55.73% significant

Feed Rate 0.025 1 0.025 1877.39 < 0.0001 40.93% significant

DOC 3.72E-04 1 3.72E-04 27.6 0.0002 0.61% significant

Speed * Feed Rate 1.08E-03 1 1.08E-03 79.78 < 0.0001 1.77% significant

Speed * Speed 2.55E-04 1 2.55E-04 18.88 0.0008 0.41% significant

Feed Rate * Feed Rate 1.28E-04 1 1.28E-04 9.46 0.0088 0.21% significant

Residual 1.75E-04 13 1.35E-05

Lack of Fit 1.55E-04 8 1.94E-05 4.87 0.0489 significant

Pure Error 1.99E-05 5 3.99E-06

Cor Total 0.061 19

Percentage 

Contribution
Remarks
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Table 6.4: Regression Equations of FX, Ra and Power Consumption. 

SL.No Responses Regression equation 

1 FX  -79.78776  +  0.081353*Vc +  0.18242*f  +  4.42441*d  

-  3.24420E-005*Vc*f  -  5.91517E-006*Vc*Vc 

2 Ra 
 0.15850  - 2.80000E-005*Vc  +  2.22000E-003*f  +  

0.13500*d - 2.50000E-007*Vc*f  + 2.00000E-

005*Vc*d  - 6.00000E-004*f*d 

3 Power 
 -0.030842  +  4.72657E-005*Vc - 2.33913E-004*f  +  

6.10045E-003*d  +  1.15949E-007*Vc*f  -  8.91940E-

009*Vc*Vc  + 6.31394E-007*f*f  

 

Table 6.5 exhibits Comparison of FX, Ra and Power Consumption predicted by RSM 

Model, with the experimentally obtained FX, Ra and Power Consumption of 

AA6061material. From the data presented in Table 6.5, the maximum error obtained 

for surface roughness is 3.95 % at rotational speed of 2000 rpm, feed rate of 400 

mm/min and depth of cut of 3 mm which indicates good prediction is possible by the 

quadratic terms and interaction terms. Similarly the minimum percentage of relative 

error is -3.02 % at rotational speed of 3000 rpm, feed rate of 500 mm/min and depth 

of cut 3 mm. Similarly, the maximum error obtained for cutting force is 5.47 % at 

rotational speed of 2000 rpm, feed rate of 500 mm/min and depth of cut of 2 mm 

which indicates good prediction is possible by the quadratic terms and interaction 

terms. Similarly the minimum percentage of relative error is -3.35 % at rotational 

speed of 2000 rpm, feed rate of 300 mm/min and depth of cut 2 mm. The maximum 

error obtained for power consumption response is 6.44 % at rotational speed of 1000 

rpm, feed rate of 300 mm/min and depth of cut of 1 mm which indicates good 

prediction is possible by the quadratic terms and interaction terms. Similarly the 

minimum percentage of relative error is -6.92 % at rotational speed of 2000 rpm, feed 

rate of 300 mm/min and depth of cut 2 mm. 
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Table 6.5: Comparison of FX, Ra and Power Consumption predicted by RSM 

Model, with the experimentally obtained FX, Ra and Power Consumption of 

AA6061 

 

Experimental RSM - Prediction Error (%) 

Expt. 

No 

FX 

(N) 

Ra 

(µm) 

Power 

(kW) 

FX  

(N) 

Ra  

(µm) 

Power 

(kW) 

FX 

(N) 

Ra 

(µm) 

Power 

(kW)  

1 45.5 0.7 0.04 45.07 0.7 0.04 0.94 0.5 6.44 

2 143.3 0.52 0.13 140.99 0.53 0.13 1.61 -2.02 3.18 

3 73.27 0.96 0.11 75.06 0.97 0.11 -2.45 -1.09 -4.04 

4 158.3 0.71 0.25 158.01 0.7 0.25 0.18 0.77 -0.9 

5 56.69 0.63 0.05 53.92 0.65 0.05 4.9 -2.62 2.04 

6 150.52 0.56 0.14 149.84 0.56 0.14 0.45 -0.09 -0.98 

7 83.56 0.68 0.13 83.91 0.68 0.12 -0.42 -0.07 0.65 

8 164.21 0.48 0.26 166.85 0.49 0.26 -1.61 -3.02 -0.7 

9 63.42 0.76 0.07 64.49 0.75 0.07 -1.68 1.51 0.22 

10 153.29 0.58 0.19 153.92 0.57 0.19 -0.41 1.29 0.65 

11 100.01 0.61 0.09 103.37 0.61 0.1 -3.35 0.25 -6.92 

12 134.22 0.71 0.2 126.87 0.71 0.2 5.47 -0.35 3.74 

13 110.22 0.73 0.13 110.7 0.73 0.13 -0.44 0.62 -0.3 

14 119.84 0.62 0.15 119.55 0.6 0.15 0.25 3.95 0.69 

15 115.02 0.66 0.14 115.12 0.66 0.14 -0.09 -0.08 0.22 

16 115.02 0.66 0.14 115.12 0.66 0.14 -0.09 -0.08 0.22 

17 114.82 0.65 0.14 115.12 0.66 0.14 -0.26 -1.62 -1.39 

18 113.02 0.66 0.14 115.12 0.66 0.14 -1.86 -0.08 1.62 

19 115.02 0.67 0.14 115.12 0.66 0.14 -0.09 1.42 0.22 

20 114.02 0.66 0.14 115.12 0.66 0.14 -0.97 -0.08 -2.45 
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Figure 6.1: Effect of cutting parameters on (a) Cutting Force (b) Surface 

roughness (c) Power Consumption. 

Figure 6.1 (a), (b) and (c) depict the variation of cutting force, surface roughness and 

power consumption respectively, w.r.t spindle speed, feed rate and depth of cut. These 

trends are similar to those observed by the ANOVA analysis in section 5.3.2.  

 

 

 

a) b) 

c) 
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6.1.2  RSM For AA6061 4.5%Cu-5%SiCp 

Tables 6.6 – 6.8 show the Analysis of variance (ANOVA) for AA6061-4.5%cu-

5%SiCp material. From the Table 6.6 it can be observed that Speed has major 

contribution of 92.45 % on FX, followed by Feed Rate 5.35 %. The interactions of 

Speed * Feed Rate 0.98 %, Depth of cut 0.64 %, Feed Rate * Feed Rate 0.35% and 

Speed * Depth of cut 0.07 %, have lesser contribution on FX.  

Table 6.7 it can be observed that Speed has major contribution of 79.43 % on Ra, 

followed by Depth of cut 8.09 %.  The Feed Rate 4.04 %, Speed * Feed Rate 3.42 % 

and Speed * Depth of cut 3.27, Feed Rate * Depth of cut 0.85 %, Speed * Speed 0.20 

%, Depth of cut * Depth of cut 0.67 % Feed Rate * Feed Rate 0.07 % has minor 

contribution on Ra. 

Similarly from the Table 6.8 it can be observed that Speed has major contribution of 

61.11 % on Power Consumption, followed by Feed Rate 36.66 %. Similarly the, 

Speed * Feed Rate 1.28 %, Depth of cut 0.46 % have minor contribution on Power 

Consumption. From Table 6.6 – 6.8 it can be concluded that Speed has major 

contribution on all responses Ra, FX and Power Consumption. 

Table 6.6: Analysis of Variance for FX of AA6061-4.5%cu-5%SiCp using RSM 

Method  

 
 

Sum of  

Square
DF

Mean       

Square
F Value

p-value 

Prob> F

Percentage 

contribution
Remarks

Model 54750.09 6 9125.02 1519.36 < 0.0001 Significant

Speed 50690.95 1 50690.95 8440.3 < 0.0001 92.45% Significant

Feed Rate 2937.52 1 2937.52 489.11 < 0.0001 5.35% Significant

 DOC 350.98 1 350.98 58.44 < 0.0001 0.64% Significant

Speed * Feed Rate 537.53 1 537.53 89.5 < 0.0001 0.98% Significant

Speed * DOC 40.05 1 40.05 6.67 0.0228 0.07% Significant

Feed Rate * Feed Rate 193.07 1 193.07 32.15 < 0.0001 0.35% Significant

Residual 78.08 13 6.01

Lack of Fit 72.44 8 9.06 8.04 0.0172 Significant

Pure Error 5.63 5 1.13

Cor Total 54828.17 19

Source
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Table 6.7: Analysis of Variance for Ra of AA6061-4.5%cu-5%SiCp using RSM 

Method  

 

 

Table 6.8: Analysis of Variance for Power Consumption of AA6061-4.5%cu-

5%SiCp using RSM Method  

 

6.1.3 Regression Analysis for AA6061-4.5%Cu-5%SiCp 

The regression equations obtained for AA6061-4.5%Cu-5%SiCp are listed in Table 

5.19 

 

 

Model 12.82 9 1.42 927.76 < 0.0001

Speed 10.2 1 10.2 6642.55 < 0.0001 79.43% Significant

Feed Rate 0.52 1 0.52 338.5 < 0.0001 4.04% Significant

DOC 1.04 1 1.04 679.36 < 0.0001 8.09% Significant

Speed * Feed Rate 0.44 1 0.44 284.63 < 0.0001 3.42% Significant

Speed * DOC 0.42 1 0.42 272.59 < 0.0001 3.27% Significant

Feed Rate * DOC 0.11 1 0.11 73.46 < 0.0001 0.85% Significant

Speed * Speed 0.026 1 0.026 16.94 0.0021 0.20% Significant

Feed Rate * Feed Rate 9.02E-03 1 9.02E-03 5.87 0.0358 0.07% Significant

DOC * DOC 0.087 1 0.087 56.56 < 0.0001 0.67% Significant

Residual 0.015 10 1.54E-03

Lack of Fit 7.02E-03 5 1.41E-03 0.84 0.5721

Pure Error 8.33E-03 5 1.67E-03

Cor Total 12.84 19

Source DF
Percentage 

Contribution
Remarks

Sum of 

Squares

Mean 

Square
F Value

p-value 

Prob> F

Model 0.18 4 0.045 1578.72 < 0.0001

Speed 0.11 1 0.11 3891.85 < 0.0001 61.11% Significant

Feed Rate 0.066 1 0.066 2313.52 < 0.0001 36.66% Significant

DOC 8.29E-04 1 8.29E-04 28.97 < 0.0001 0.46% Significant

Speed * Feed Rate 2.31E-03 1 2.31E-03 80.56 < 0.0001 1.28% Significant

Residual 4.29E-04 15 2.86E-05

Lack of Fit 1.77E-04 10 1.77E-05 0.35 0.9249

Pure Error 2.52E-04 5 5.04E-05

Cor Total 0.18 19

Source DF
Percentage 

contribution
Remarks

P-Value 

Prob>F

Sum of 

Squares

Mean 

Square
F Value
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Table 6.9 Regression Equations of FX, Ra and Power Consumption  

SL. 

No 
Responses Regression equation 

1 FX 

 -215.06991+  0.10846*Vc +  0.83246*f  +  10.39903*d  -  

8.19703E-005*Vc*f  - 2.23735E-003*Vc*d - 6.21407E-

004*f*f 

2 Ra 

2.71064 - 9.21591E-004*Vc  +  4.74818E-003*f  +  

0.40541*d - 2.33750E-006*Vc*f  + 2.28750E-004*Vc*d  - 

1.18750E-003*f*d + 9.72727E-008*Vc*Vc + 5.72727E-

006*f*f - 0.17773*d*d 

3 Power 
 -0.18139+ 3.7262467E-005*Vc + 4.74091E-004*f + 

9.10346E-003*d+ 1.69738E-007*Vc*f 

 

Table 6.10:  Comparison of FX, Ra and Power Consumption predicted by RSM Model, 

with the experimentally obtained FX, Ra and Power Consumption of AA6061-4.5%Cu-

5%SiCp 

Experimental RSM - Prediction Error (%) 

Expt

. No 

FX 

(N) 

Ra 

(µm) 

Power 

(kW) 

 FX 

(N) 

Ra 

(µm) 

Power 

(kW) 

FX 

(N) 

Ra 

(µm) 

Power 

(kW) 

1 71.2

8 

3.24 0.06 70.8 3.2 0.1 0.71 0.46 0.02 

2 232.

49 

1.20 0.24 234.

0 

1.2 0.2 -0.67 -1.26 0.02 

3 120.

39 

4.35 0.18 121.

4 

4.4 0.2 -0.87 -0.83 -0.03 

4 254.

03 

1.45 0.44 251.

9 

1.4 0.4 0.83 0.61 0.01 

5 87.6

4 

2.35 0.08 87.1 2.4 0.1 0.62 -0.39 0.03 

6 245.

12 

1.30 0.25 241.

4 

1.3 0.3 1.51 2.76 0.01 

7 139.

53 

3.06 0.21 137.

8 

3.0 0.2 1.26 0.49 0.03 

8 259.

00 

1.00 0.45 259.

3 

1.0 0.4 -0.11 -1.51 0.00 

9 109.

45 

3.39 0.13 110.

5 

3.4 0.1 -0.95 0.46 -0.01 

10 249.

63 

1.34 0.34 252.

9 

1.4 0.3 -1.30 -1.07 -0.01 

11 155.

12 

2.07 0.15 158.

3 

2.1 0.1 -2.07 -1.27 0.65 

12 190.

09 

2.58 0.32 192.

6 

2.6 0.3 -1.33 1.07 0.01 

13 179.

40 

2.44 0.23 175.

8 

2.4 0.2 2.03 1.13 0.01 

14 185.

55 

1.74 0.24 187.

6 

1.8 0.2 -1.11 -1.51 0.00 

15 182.

50 

2.29 0.24 181.

7 

2.3 0.2 0.45 1.00 0.00 

16 183.

50 

2.29 0.23 181.

7 

2.3 0.2 0.99 1.00 -0.03 

17 182.

50 

2.29 0.24 181.

7 

2.3 0.2 0.45 1.00 0.00 

18 180.

50 

2.29 0.24 181.

7 

2.3 0.2 -0.65 1.00 0.00 

19 182.

5 

2.25 0.25 181.

7 

2.3 0.2 0.45 -0.76 0.04 

20 181.

30 

2.19 0.23 181.

7 

2.3 0.2 -0.21 -3.52 -0.04 
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The Table 6.10 exhibits the ability of RSM in predicting the responses of required 

surface roughness (Ra), cutting force (FX), Power (Power) for the given input process 

parameters. Table 6.10 exhibits Comparison of FX, Ra and Power Consumption 

predicted by RSM Model, with the experimentally obtained FX, Ra and Power 

Consumption of AA6061material. From the data presented in Table 6.10, the 

maximum error obtained for surface roughness is 2.76 % at rotational speed of 2000 

rpm, feed rate of 400 mm/min and depth of cut of 3 mm which indicates good 

prediction is possible by the quadratic terms and interaction terms. Similarly the 

minimum percentage of relative error is -3.52 % at rotational speed of 3000 rpm, feed 

rate of 500 mm/min and depth of cut 3 mm.  

Similarly, the maximum error obtained for cutting force is 2.03% at rotational speed 

of 2000 rpm, feed rate of 500 mm/min and depth of cut of 2 mm which indicates good 

prediction is possible by the quadratic terms and interaction terms. Similarly the 

minimum percentage of relative error is -2.07 % at rotational speed of 2000 rpm, feed 

rate of 300 mm/min and depth of cut 2 mm.  

The maximum error obtained for power consumption response is 6.44 % at rotational 

speed of 1000 rpm, feed rate of 300 mm/min and depth of cut of 1 mm which 

indicates good prediction is possible by the quadratic terms and interaction terms. 

Similarly the minimum percentage of relative error is -6.92 % at rotational speed of 

2000 rpm, feed rate of 300 mm/min and depth of cut 2 mm. 
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6.1.4 Validation Experiments Considered For AA6061 And AA6061-4.5%Cu-

5%SiCp 

Table 6.11: Validation Experiments 

 

 Table 6.12: RSM Experimented V/S Predicted (Validation of Experiments) 

 

Table 6.11 depicts the experimented conditions for validation of the RSM technique. 

Table 6.12 shows the deviation among the experiments conducted and predicted using 

RSM technique.  

 

 

Expt. No Spindle Speed (rpm) Feed Rate (mm/min) Depth of Cut (mm)

1 1200 340 1.2

2 1800 340 1.8

3 2400 340 2.6

4 1200 390 1.2

5 1800 390 1.8

6 2400 390 2.6

7 1200 460 1.2

8 1800 460 1.8

9 2400 460 2.6

10 2800 340 1.2

11 2800 390 1.8

12 2800 460 2.6

Expt. Ra Power FX Ra Power FX Ra Power

No (µm) (kW)  (N) (µm) (kW)  (N) (µm) (kW)

1 101.04 3.16 0.106 102.1 3.14 0.1 -1.0461 0.537 0.896

2 153.26 2.35 0.17 152.66 2.38 0.17 0.3894 -1.325 1.798

3 204.09 1.7 0.229 202.62 1.66 0.23 0.7181 2.445 -1.055

4 114.86 3.4 0.14 116.12 3.38 0.14 -1.0974 0.648 1.02

5 168.62 2.47 0.211 164.23 2.51 0.21 2.6049 -1.633 2.316

6 208.91 1.69 0.27 211.73 1.67 0.28 -1.3497 1.183 -2.029

7 132.23 3.85 0.19 130.53 3.76 0.19 1.2831 2.467 2.143

8 175.77 2.69 0.26 175.2 2.74 0.26 0.3255 -1.834 -0.263

9 217.86 1.77 0.35 219.26 1.73 0.34 -0.6413 2.015 3.663

10 228.64 1.44 0.26 226.75 1.46 0.26 0.8286 -1.293 1.288

11 232.76 1.52 0.31 236.69 1.54 0.31 -1.6893 -1.074 0.171

12 248.89 1.4 0.39 245.23 1.38 0.38 1.4698 1.727 1.713

Experimental RSM Predicted Error (%)

FX (N)
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6.1.5 Summary 

The effect of process parameters  of AA6061 and AA6061-4.5% Cu- 5% SiCp on 

cutting force, surface roughness and Power consumption of machined components for 

milling have been investigated experimentally. The experiments were carried out as 

per L27 OA inorder to identify the effects of input parameters such as Spindle speed, 

Feed Rate and Depth of cut on the performance attributes.  

 RSM modeling developed has produced quite satisfactory predictions for the 

output of milling operation, which is indicated again by the validation 

experiments. 

 RSM technique leads in predicting the single response individually thus 

reducing the importance of the other responses. Hence a multi objective 

optimization is advisable in case of more than one response. 

Further, the same data is used for prediction of the responses using artificial neural 

network (ANN) and recurrent neural network (RNN). These neural network based 

approaches have been incorporated in the study, as few literatures suggest that neural 

network (NN) techniques are well suited to predict the non-linear behaviour of the 

system.  
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ANN MODELLING FOR PREDICTION 

6.2 ANN MODEL DEVELOPMENT TO PREDICT RESPONSES OF AA6061, 

A6061-4.5%Cu-5%SiCp 

Intelligent methods of a prediction system for the face milling operation using Neural 

Network technology are in this section. Machining is carried out at different rotational 

speed, feed rate and depth of cut. The model is trained with 82% of data collected 

from experimentation and remaining data are used to test and validate the model. The 

mean square error was fixed as 6 x 10
-6

. The network converged to the specified error 

upon reaching 10000000 epochs. The formulation of ANN and HRNN model for 

prediction of cutting force, surface roughness and power consumption of AA6061 and 

AA6061-4.5%Cu-5%SiCp has been discussed in this chapter.  The study also presents 

the results of the experiments on AA6061 alloy and AA6061-4.5%Cu-5%SiCp 

composite performed to validate the ANN model for cutting force, surface roughness 

and power consumption and compares them with the cutting force, surface roughness 

and power consumption predicted by the model.   The values of the responses 

predicted by ANN are compared with the corresponding experimentally obtained 

values as represented in Table 6.1 and 6.2, to check the suitability of the model within 

the purview of experimentation. Further, the model is checked for its capability to 

extrapolate and interpolate the responses with the outcome of validation experiments.   

A. Scope 

In this section, it is proposed to formulate a Neural Network based approaches 

(ANN and RNN) with Feed Forward architecture to predict the responses of 

AA6061 and AA6061-4.5%Cu-5%SiCp with the input parameters being spindle 

speed, feed rate and depth of cut. 

B. Data Collection 

The data for training the ANN and RNN network proposed for response 

prediction in AA6061 and AA6061-4.5%Cu-5%SiCp is collected from the 

experiments carried out on milling. This data is listed in Table 6.1. 
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C. Neural Network Training 
 

In any FFNN application even today, the exact architecture to be used needs to 

be found (Reddy et al. 2005). More often than not, this is a trial and error 

exercise, as regards to the selection of a number of hidden layers and neurons 

in each of these layers. In this application, training was started with two 

hidden layers from 2 to 12 neurons in each hidden layer. The minimum mean 

squared error (MSE) was set as 0.00001 and the number of iterations to be 

executed as 1500000. Initially, during training, the learning rate parameter and 

momentum factor were preferred as 0.5 each. The number of hidden neurons 

was fixed based on MSE and the mean error in prediction of training data 

(Etr). Single and two hidden layers were tried out to obtain the minimum 

MSE. It was observed that the network fails to converge with a single hidden 

layer when tried with a different number of nodes varying from 2 to 12 in the 

hidden layer. This probably happens due to the fact that the input-output 

relationship is quite complex and nonlinear. Therefore, training with single 

hidden layer was terminated and training was started with two hidden layers. 

Here the training was started with varying learning rates from 0.1 to 0.9 in 

steps of 0.05.  The learning rate and the momentum parameters were initially 

taken as 0.3 and 0.9 respectiely for training. For all patterns, p, the global error 

function is expressed in terms of MSE (Yagnanarayana 2008) and is given by  

                                                   (  ⁄ )             
      2

                  (6.1) 

Where,    is the actual output and    
0 

is the network output for the K
th 

output neuron for the p
th

 pattern. 

The mean error in the output prediction is (Reddy et al. 2005) 

     Etr(x) = 1/N S |(bk(x) – Pk(x))|           (6.2) 

Where, Etr(x) is the mean error in prediction of training data set for output 

parameter x,  N is the number of the data sets, bk(x) is the actual output and 

Pk(x) is the predicted output.   

The following sigmoid function was used as the activation function (Reddy et 

al. 2008, Mandal et al. 2009, Reddy et al. 2005, Li, Liu and Xiong 2002, 

Mousavi et al.2007, Haque and Sudhakar 2002).   
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                                      F(x) = 1/ (1+exp (-x))                                       (6.3)  

Back propagation algorithm was used for training the network. It was found 

after a lot of trial and error that convergence of the network was obtained with 

2 hidden layers with 7 neurons in the first and 4 neurons in the second hidden 

layer. Figure 3.13 from chapter 3 shows the schematic diagram of the FFNN 

used for aforesaid response predictions. The learning rate parameter was 

increased from 0.1 to 0.9 in steps of 0.05 and the momentum term was 

decreased from 0.9 in steps of 0.05 to observe the network behavior with 

respect to MSE and number of epochs. Finally, the optimized architecture 

obtained with learning parameter η = 0.85 and momentum factor α =0.65 was 

found to converge excellently after 15 lakh epochs giving an MSE of 0.00023, 

to predict the responses. 

 

As discussed in section 6.5, the ANN was modeled with FFNN architecture. 

Both single, as well as two hidden layers, were tried out. Before training the 

network, both the inputs as well as the output variables were normalized 

between values 0.1 to 0.9 using the normalizing function given in equation 

(3.11) of chapter 3. Once the network is trained, all the values acquire their 

original values provided by the de-normalising function stated at equation 

(3.12) in chapter 3. Back propagation algorithm was used for training the 

network. With single hidden layered network (i.e. three layered perceptron 

network), the network was trained with different values of learning rate 

parameter (η) and momentum factor (a). The learning was started with 5 

hidden nodes, with an initial value of η as 0.1 and with a=0.9. The value of η 

was increased while that of a was decreased in steps of 0.05 in each 

subsequent iteration. The MSE which is an indicator of network convergence 

given by equation (6.1) was set at 0.0001 while the number of epochs 

(iterations) was fixed at 5 lakhs. With repeated trials involving different values 

of hidden nodes ranging from 2 to 9, different values of η and an as well as by 

changing the order of the input vector presentation to the network, the network 

failed to converge towards the set MSE. This probably is due to the nonlinear 

correlation between the input output relationships of data (Reddy et al. 2005). 
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The network was then tried with two hidden layers following the same 

procedure used for three layered perceptrons. The network converged 

satisfactorily with 5 nodes in the first hidden layer and 3 nodes in the second 

hidden layer with η=0.5 and a=0.5, with an MSE of 9.76 x 10
-5 

after 3.25 lakh 

iterations. The sigmoid function in equation (3.13) of chapter 3 used to train 

the ANN model for response predictions is reproduced below as the activation 

function for training the network. 

Table 6.13: Comparison of FX, Ra, and Power Consumption predicted by ANN 

Model, with the experimentally obtained FX, Ra and Power Consumption of 

AA6061

 

 

FX Ra Power Power FX Ra Power

(N) (µm) (kW) (kW) (N) (µm) (kW)

1 45.5 0.7 0.04 46.22 0.71 0.04 -1.59 -1.44 -1.84

2 50.31 0.64 0.04 51.28 0.62 0.04 -1.93 3.12 -1.46

3 56.69 0.63 0.05 57.82 0.62 0.05 -1.99 1.74 2.05

4 58.72 0.86 0.07 58.43 0.84 0.07 0.49 2.1 -1.07

5 63.42 0.76 0.07 64.22 0.76 0.07 -1.25 -0.16 -0.95

6 72.6 0.67 0.08 71.49 0.68 0.08 1.53 -1.64 2.89

7 73.27 0.96 0.11 72.37 0.93 0.11 1.23 3.17 -2.36

8 79.05 0.86 0.12 77.11 0.85 0.12 2.45 1.25 -1.7

9 83.56 0.68 0.13 83.34 0.67 0.13 0.27 0.9 -1.67

10 93.58 0.63 0.08 97.67 0.62 0.09 -4.36 1.26 -3.34

11 100.01 0.61 0.09 103.29 0.6 0.09 -3.27 2.38 -1.94

12 107.23 0.62 0.1 108.9 0.63 0.1 -1.55 -1.58 -1.63

13 110.22 0.73 0.13 110.29 0.75 0.13 -0.07 -2.12 0.36

14 115.02 0.66 0.14 116.1 0.67 0.14 -0.94 -1.83 -0.3

15 119.84 0.62 0.15 121.88 0.61 0.15 -1.7 1.98 -1.02

16 126.74 0.85 0.19 124.57 0.87 0.19 1.71 -2.4 -0.09

17 134.22 0.71 0.2 130.56 0.72 0.2 2.73 -1.16 0.61

18 141.48 0.6 0.22 139.51 0.58 0.21 1.39 2.55 1.36

19 143.3 0.52 0.13 141.18 0.53 0.13 1.48 -1.4 -0.02

20 148.55 0.55 0.14 144.71 0.54 0.14 2.58 2.29 -0.03

21 150.52 0.56 0.14 149.15 0.54 0.14 0.91 3.27 -1.98

22 152.58 0.66 0.19 148.89 0.67 0.18 2.42 -2.11 1.24

23 153.29 0.58 0.19 153.39 0.59 0.19 -0.07 -2.2 0.32

24 155.15 0.55 0.2 157.8 0.54 0.2 -1.71 2.34 -0.18

25 158.3 0.71 0.25 160.94 0.72 0.25 -1.67 -1.64 0.07

26 159.82 0.56 0.25 160.41 0.55 0.26 -0.37 2.57 -0.24

27 164.21 0.48 0.26 163.78 0.49 0.26 0.26 -1.93 0.32

Experimental ANN – Prediction Error (%)

Expt. No FX (N) Ra (µm)
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From the Table 6.13 it can be observed that, The maximum percentage of relative 

error of FX obtained for trained data is 2.73% at a rotational speed of 2000 rpm feed 

rate of 500mm/min and depth of cut 2 mm. The minimum percentage of relative error 

obtained for trained data is -4.36 % of FX at a rotational speed of 2000 rpm feed rate 

of 300mm/min and depth of cut 1 mm for FX. The maximum percentage of relative 

error obtained for trained data is 3.27 %  of Ra at a rotational speed of 3000 rpm feed 

rate of 300mm/min and depth of cut 3 mm. The minimum percentage of relative error 

obtained for trained data is -2.40 % of Ra at a rotational speed of 2000 rpm feed rate 

of 500mm/min and depth of cut 1 mm for Ra. The maximum percentage of relative 

error obtained for trained data is 2.89 % of power consumption at a rotational speed of 

1000 rpm feed rate of 400mm/min and depth of cut 3 mm. The minimum percentage 

of relative error obtained for trained data is -3.34 % of power consumption at a 

rotational speed of 2000 rpm feed rate of 300mm/min and depth of cut 1 mm for 

Power Consumption.  The error obtained using ANN model is much lesser than that 

of the RSM prediction. Hence, this model gives better results as compared to RSM. 

The reason to attain better results through ANN is, In general, similarities do exist 

between the ANN and statistical techniques. An FFNN can be termed as a form of 

nonlinear regression (Ripley 1994, Potzinger et al. 2000) ANN can make an n-step 

ahead forecast directly without any recursive procedure. Due to its inherent robustness 

in design which can be attributed to massively parallel processing, the ANNs are good 

modeling tools for real life problems, in which data may be inadequate, may be 

available with a lot of noise, and there could be distortions in data. (Lapedes et 

al.1988) have shown that in two-time series prediction problems, neural networks are 

clearly superior to statistical methods. 
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Table 6.14: Comparison of FX, Ra, and Power Consumption predicted by ANN Model, 

with the experimentally obtained FX, Ra and Power Consumption of AA6061-4.5%Cu-

5%SiCp 

 

The responses are predicted using ANN model for AA6061-4.5%Cu-5%SiCp as 

tabulated in Table 6.14 using the ANN model.The maximum percentage of relative 

error attained for trained data is 3.38% of FX at a rotational speed of 2000 rpm feed 

rate of 500mm/min and depth of cut 1 mm. The minimum percentage of relative error 

obtained for trained data is -2.53 % of FX at a rotational speed of 1000 rpm feed rate 

of 300mm/min and depth of cut 2 mm for FX. The maximum percentage of relative 

error obtained for trained data is 2.44 % of Ra at a rotational speed of 2000 rpm feed 

rate of 300mm/min and depth of cut 3 mm. The minimum percentage of relative error 

obtained for trained data is -2.47 % of Ra at a rotational speed of 2000 rpm feed rate 

FX Ra Power Ra FX 

(N) (µm) (kW)  (µm) (N)

1 71.28 3.24 0.06 69.88 3.19 0.06 1.96 1.5 -0.9

2 78.03 2.99 0.07 80.01 3.04 0.07 -2.53 -1.58 -0.58

3 87.64 2.35 0.08 89.02 2.33 0.08 -1.58 0.87 -0.42

4 90.37 3.81 0.11 91.13 3.87 0.11 -0.85 -1.7 -3.81

5 109.45 3.39 0.13 107.3 3.36 0.13 1.96 1.02 0.34

6 115.33 2.7 0.14 116.88 2.75 0.14 -1.34 -1.94 -1.18

7 120.39 4.35 0.18 117.5 4.28 0.19 2.4 1.64 -2.43

8 134.79 3.99 0.2 131.86 3.96 0.2 2.18 0.66 1.96

9 139.53 3.06 0.21 139.57 3.07 0.21 -0.03 -0.18 0.39

10 144.91 2 0.15 147.25 2.01 0.15 -1.62 -0.63 -1.18

11 155.12 2.07 0.15 158.35 2.06 0.16 -2.09 0.39 -2.77

12 176.66 1.77 0.17 170.7 1.73 0.17 3.38 2.44 0.88

13 179.4 2.44 0.23 174.68 2.43 0.23 2.63 0.32 1.93

14 182.5 2.29 0.24 177.74 2.24 0.24 2.61 2.13 0.42

15 185.55 1.74 0.24 185.05 1.71 0.25 0.27 1.45 -0.54

16 187.34 2.82 0.31 187.86 2.77 0.31 -0.27 1.86 0.29

17 190.09 2.58 0.32 194.86 2.63 0.32 -2.51 -1.75 -0.5

18 194.46 1.94 0.33 198.14 1.98 0.33 -1.9 -1.86 0.39

19 232.49 1.2 0.24 235.83 1.21 0.24 -1.44 -1.03 0.49

20 241.82 1.4 0.25 240.3 1.37 0.25 0.63 2.04 0.76

21 245.12 1.3 0.25 244.05 1.33 0.25 0.44 -2.47 0.23

22 247.98 1.21 0.33 245.33 1.21 0.33 1.07 -0.35 -0.6

23 249.63 1.34 0.34 248.86 1.32 0.34 0.31 1.32 -0.67

24 250.16 1.14 0.35 251.74 1.13 0.35 -0.63 0.94 -0.45

25 254.03 1.45 0.44 254.93 1.49 0.44 -0.35 -2.44 0.06

26 257.86 1.35 0.44 257.59 1.38 0.44 0.11 -2.23 0.27

27 259 1 0.45 259.68 1.02 0.45 -0.26 -1.64 0.17

Experimental ANN - Prediction Error (%)

Expt. No FX  (N) Power  (kW) Ra (µm)
Power 

(kW) 
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of 300mm/min and depth of cut 3 mm for Ra. The maximum percentage of relative 

error obtained for trained data is 1.96 % of power consumption at a rotational speed of 

1000 rpm feed rate of 500mm/min and depth of cut 2 mm. The minimum percentage 

of relative error obtained for trained data is -3.81 % of power consumption at a 

rotational speed of 1000 rpm feed rate of 400mm/min and depth of cut 1 mm for 

Power Consumption.  The error obtained using ANN model is much lesser than that 

of the RSM prediction. Hence, this model gives better results as compared to RSM.  

6.2.1 Summary 

1. ANN modeling developed has produced quite satisfactory predictions for the 

output of milling operation, which is indicated again by the validation 

experiments. 

2. ANN model has been successfully designed and validated to predict the 

responses namely cutting force , surface roughness and power consumption in 

cas of forward mapping with the experimental data carried out on face milling  

of AA6061 alloy  and  AA6061-45%Cu-5%SiCp being used for training. 

3. ANN model has been successfully designed and validated to predict the 

responses namely spindle speed, feed rate and depth of cut in cas of forward 

mapping with the experimental data carried out on face milling  of AA6061 

alloy  and  AA6061-45%Cu-5%SiCp being used for training. 

The upcoming section deals with another evolutionay prediction technique, i.e. 

development of hybrid recurrent neural network (HRNN) in case of forward mapping 

and reverse mapping. 
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RNN MODELLING FOR PREDICTION 

6.3 INTRODUCTION  

ANN as a prediction tool has been vastly discussed in chapters 6 in terms of 

formulation, training as well as predictions done by these trained networks to provide 

outputs like cutting force, surface roughness and power consumption respectively. An 

attempt has been made here to develop an improvised neural network solution over 

the feed forward neural networks (FFNN). The objective here may mean either better 

predictions with equal training time for the model or at least comparable predictions 

with a decrease in the time required for training the model. It is well known (Reddy et 

al. 2005, Selvakumar et al. 2007) that a major issue in use of multilayered perceptron 

or FFNN to be used as a mapping tool is the problem of the model getting stuck while 

training, on the gradient descent curve of MSE v/s weight planes, in areas of local 

minima. The momentum factor (α) helps the model to jump over the local cliffs and 

the training proceeds further, and disturbances are encountered and overcome, till the 

training has reached a stage where the neural network reaches the bottom of the bowl. 

At this point, the training is stopped and the MSE of the network is checked with the 

set error. If the set error is significantly smaller as compared to the FFNN mean 

squared error (MSE), the parameters of the network (η and α) are changed and the 

training is started all over again. The FFNN model is trained with various 

combinations of η and α and also with different architectures (i.e. number of hidden 

layers and number of nodes per hidden layer), till the near about of the set MSE is 

achieved. As seen in the case of FFNN training for cutting force prediction, the 

number of epochs required to obtain the set MSE were 500000. It would be therefore 

viable to attempt a reduction in this training time and make the prediction more 

efficient. Recurrent Neural Networks (RNN) has been proposed in the recent past as a 

mathematical tool to map the inputs with outputs. The underlying principle which 

differentiates it from FFNN is that unlike in case of FFNN, the outputs in case of 

RNN are fed back to itself as well as other neurons of the same and/or other layer. It 

is believed that corrected weights which had provided output at time (t-1) if fed to the 

neurons during the subsequent epoch along with the current output from neurons of 

previous layer at time t, would result in a better output and it would make the training 
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faster. A lot of research is going on in the field of convergence characteristics of 

Elman Simple NN known as Simple Recurrent Network (SRN) and it is being 

actively studied for varying conditions of input-output data relationships (Lang et 

al.1990, Narendra and Parthasarathy 1990, Guler et al. 2005). In this chapter, it is 

proposed to formulate RNN model for the various cases for which ANN was 

formulated in Chapters 4 through 7 considering the difficulties in convergence spotted 

in Elman’s SRN for these applications and overcoming them. These problems related 

to Elman SRN for the applications under study are presented in section8.4.  

A. SCOPE  

It is proposed to model recurrent neural networks to predict cutting force, 

surface roughness and power consumption for which ANN models have been 

presented in Chapter 6. The inputs for the models are kept same as that for the 

corresponding ANN models. The current chapter is written with the following 

objectives:  

1. To formulate Elman Simple Recurrent Network for cutting force prediction, 

surface roughness prediction and power consumption prediction from same 

data from which ANN models were formulated. 

2. To highlight the problems faced by SRN model in mapping the input-output 

relationship for the applications under study. 

3. To propose Hybrid Recurrent Neural Network (HRNN) as an improvement 

over SRN overcoming the convergence related problems faced by SRN.  

4. Application of HRNN models to predict cutting force, surface roughness and 

power consumption. 

5. Analysis of predictions done by HRNN and its comparison with FFNN and 

establishing the usefulness of HRNN as a prediction system. 

 

6.3.1 ELMAN SIMPLE NEURAL NETWORK  

In the recent past quite a few Recurrent Neural Network (RNN) architectures have 

been studied (Elman 1990, Lang et al. 1990, Frasconi et al. 1992, Giles et al. 1992, 

Tesauro et al. 1995). Recurrent networks are neural networks with one or more 
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feedback loops, in which the loops may be local or global. RNN can be divided into 

two broad categories depending on whether the states of the network are guaranteed 

and observable or not. Observable state is one in which the state of the network can be 

derived by observing only the inputs and outputs (Giles et al. 1992). A model which 

falls into this class was proposed by Narendra and Parthasarathy (1990) and had time 

delayed outputs as well as inputs fed to a Multi-Layer Perceptron (MLP) which 

computed the output using the recent state dynamics.  However, network having 

hidden dynamic states are not observable (Giles et al. 1992).  Single layered and multi 

layered recurrent networks are being extensively studied in recent times. A typical 

single layered RNN was the one proposed by Elman in 1990 (Elman 1990). In this 

network, the hidden layer is copied in a virtual or context layer and the feedback is 

given back to the same layer along with the next set of inputs in the next time step as 

seen in Figure 6.2. 

 

 Figure 6.2 : A simple RNN proposed by Elman (1990) 

The Elman network can be extended for a multilayered network with the temporal 

context layer providing feedback at each subsequent time step. Such a network is 

shown in Figure 6.3. The convergence of a Simple Elman Recurrent Neural Network 

(SRN) has been established. The computational power of Elman networks is as good 

as that of finite state machines (FSM) (Kremer 1995). In addition, it is reported that 

any network having additional layers between input and output layer than that of 

Elman network, possesses the same computational power exhibited by FSM (Kremer 

1995). The convergence of RNN has been active subject of research in machine 

learning. An extended back propagation algorithm for Elman networks reported a 
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better convergence, faster training and better generalization (Song et al. 2009). In this 

algorithm, use is made of adaptive learning scheme coupled with adaptive dead zone 

to improve convergence speed.  

 

In this study we try to develop a novel way of improving the convergence of Elman 

network (SRN) using the borrowed weights of a partially trained FFNN into an Elman 

network with single hidden layer or an extended Elman network having more than 

one hidden and context layer. The study further highlights the fact that the recurrent 

neural network so formulated performs the task of predictions comparable to that 

performed by the fully trained FFNN, from which the weights were borrowed to 

formulate the RNN, with better convergence.   

 

                                          Figure 6.3: An extended simple RNN 

 

6.3.2 RNN MODELLING  

 

In this section, it is proposed to model the Elman Simple neural Network (SRN) to 

predict the cutting force, surface roughness and power consumption of AA6061 alloy 

and AA6061-4.5%Cu-5%SiCp composite for the data used for training the FFNN for 

cutting force, surface roughness and power consumption prediction shown at Table 

6.13 and 6.14 respectively.  

 

Elman Simple Recurrent Network (SRN) was modelled for cutting force as well as 

surface roughness predictions. The SRN with two context layers were tried with two 

hidden layer and with different combinations of number of neurons in each layer for 
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different combinations of η and a. The networks failed to converge for a variety of 

combinations mentioned above. The SRN with Elman architecture uses a context 

layer that contains the same number of neurons as that in the hidden layer. The output 

of each hidden neuron which is being copied in the context layer will contain neurons 

with exciting as well as inhibiting signals. These neurons then pass on the signals 

through weighted connections to each neuron in the current hidden layer in the next 

time step. Also these neurons receive signals from the neurons in the previous layer 

during this time step. Due to this, the previously excited neuron or the neuron which 

otherwise would have received a consistent excited signal from previous layer 

neurons may get inhibiting signals from the context layer neurons or vice versa. This 

probably, does not allow the network to move progressively along the path of 

negative gradient on the MSE weight plane. Such a phenomenon is likely to cause an 

oscillatory profile on the MSE synaptic weight plane, as witnessed while training the 

simple Elman recurrent network. 

 

 

In order to overcome this shortcoming, various strategies discussed hereunder were 

tried:  

a. The networks with single hidden layer were trained for the same architectures 

mentioned earlier with different combinations of η and a. During training, it 

was observed that the network does not converge. The system learns smoothly 

during initial phase. But as the training progresses, the network starts 

oscillating randomly. Further it is observed that the oscillations decrease and 

the network stops learning and MSE reaches a value much higher than the pre-

set value which in our case is selected as 0.0001, thus indicating that the 

network has not been able to map the input output pattern. 

b. In the next instance, the neural network model was modified with each neuron 

in the hidden layer giving feedback only to itself. The networks were modelled 

for each of the case with similar architectures discussed at (a) above with 

different combinations of η and a. It was observed that the networks still 

oscillate during training and fail to converge to the pre-set value, but a better 

convergence is seen as indicated by slightly lower MSE indicating that 
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learning capability of the network has slightly improved. But the convergence 

obtained is nowhere near the pre-set value of MSE. Hence, this strategy, 

though could not be discarded totally, was found to be ineffective. 

c. In the modified model stated at (b) above, the weight vectors of a partially 

trained ANN with similar architecture were borrowed. The ANN network is 

partially trained till a steep negative gradient is identified on the MSE weights 

plane indicating the downward movement of MSE. The SNN with single 

context layer for second hidden layer, with each neuron giving feedback to 

itself in layer 2 is modeled with similar architecture as that of partially trained 

ANN. The weight vectors of the SNN from input layer to hidden layer 1, 

hidden layer1 to hidden layer 2 and from hidden layer 2 to output layer are 

replaced by the corresponding weight vectors of partially trained ANN. The 

biases for different layers except the context layers of the SNN are also 

replaced by the corresponding biases from the partially trained ANN. The 

weight vector from the context layer neurons to hidden layer neurons (each 

neuron to itself) is taken as a zero vector (unbiased). Once the architecture is 

finalized this way, the network is trained. Upon training with the same values 

of η and a as that used for partially trained ANN, the SNN so formulated is 

found to converge excellently. The convergence of SNNs so modeled is found 

to be better as compared to the parent ANNs from which these have been 

modelled. The performance of the SNNs modelled from the parent ANNs is 

demonstrated using the following cases. The SNN so developed has been 

named as Hybrid RNN (HRNN), since the RNN incorporates the weights from 

the partially trained FFNN for its processing. Figure 6.4 shows the block 

diagram for such an HRNN model formulation. 
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Figure 6.4: Formulation of HRNN model 

 

6.3.3 FORMULATION OF HRNN 

 

The formulation of a Hybrid Recurrent Neural Network (HRNN) is demonstrated in 

the following subsection by taking the example of a partially trained FFNN for 

AA6061 prediction of responses in milling condition. For this purpose, two Elman 

SRN architectures have been selected: 

a) Elman SRN with 3 input neurons corresponding to Spindle speed, Feed rate, and 

Depth of Cut, 7 and 5 neurons in the first and second hidden layers, and 3 output 

neurons corresponding to  cutting force, surface roughness and power consumption 

respectively. This architecture is denoted as 3-7-5-2 architecture. 

b )  The second architecture considered for demonstration of HRNN is the one 

containing 3 neurons in the input layer, 9 neurons in the first and 6 neurons second 

hidden layer and 5 neurons in the output layer. This architecture is denoted as 3-9-5-2 

architecture. 

 

 

 

 



151 
 

6.3.4 HRNN With 3-7-5-2 Architecture: 

 

The Elman RNN network opted involves 3 input neurons, 7 neurons in hidden layer1, 

5 neurons in hidden layer 2 and 2 neurons in output layer and the sample data used for 

training is represented in Table 6.15. The network was trained with learning rate and 

momentum factor parameters with 0.82 and 0.62 values respectively.   Initially the 

network is trained as an ANN network. Table 6.16, it delivers the information of the 

error in prediction in terms of MSE existing at various stages of network while 

carrying out the network training. The ANN network results in convergence to a MSE 

of 0.00029976 after 16 lakh epochs .Further to carry on and to attain the HRNN, the 

ANN will be trained until it reaches 50000 epochs. Later on, after training the ANN to 

50000 epochs, the weights of the trained ANN are then borrowed and assigned in the 

input weights file for performing RNN training. After the transformation of weights 

the network is found to oscillate after it arrives at a MSE of 0.00217. This 

phenomenon is observed due to the fact that the ANN training up to 50000 epochs has 

not provided sufficient gradient descent on the MSE weights plane for the Hybrid 

RNN to further travel in the path of negative gradient. Later on, the ANN was trained 

up to100000 epochs and same foresaid process was carried, similarly at this stage the 

weights were again borrowed in the input weights file for RNN training. The results 

attained in this case were better than the first case, but the rate of convergence was 

found to be slow. Similarly the training was carried out for 150000 epochs, the MSE 

is found to be 0.0029. Hence in the next step the ANN is trained for 500000 epochs 

and subsequently, the weights are borrowed in the input file for RNN training. It was 

found that after training for around 235000 epochs, the network converged 

satisfactorily. 
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6.3.5 HRNN With 3-9-6-2 Architecture: 

In this, the network is selected with 4 input neurons, 9 neurons in hidden layer1, 6 

neurons in hidden layer 2 and 2 output neurons. Here the number of input patterns is 

taken as 270, just to emphasize that the number of input vectors has no great 

bearing on the convergence of Hybrid RNN. The ANN network is firs trained until 

50000 epochs and then hybrid RNN is constructed by borrowing weights of trained 

ANN. The network is further trained for 85000 epochs as it gave the same MSE as 

that of parent ANN when trained to 325208 epochs. 

Table 6.15: Experimental Data of AA6061-4.5%Cu-5%SiCp 

 

 

 

Table 6.16: MSE Variation Based On Number Of Epochs 

 

 

 

 

 

 

 

 

 

 

SL.

No 

Spindle  

Speed 

(rpm) 

Feed  

Rate 

(mm/min) 

Depth  

of Cut 

(mm) 

Cutting  

Force 

(N) 

Surface 

Roughness 

(µm) 

1 1000 300 1 71.27 3.24 

2 1000 400 2 109.44 3.39 

3 1000 500 3 139.52 3.06 

4 2000 300 1 144.9 2.00 

5 2000 400 2 182.49 2.29 

6 2000 500 3 194.45 1.94 

7 3000 300 1 232.48 1.20 

8 3000 400 2 249.62 1.34 

9 3000 500 3 258.99 1.00 

SL. No Number of Epochs MSE 

1 1 0.478623 

2 100000 0.00376582 

3 200000 0.00263014 

4 400000 0.0017198 

5 600000 0.0013906 

6 800000 0.00110638 

7 1000000 0.00078334 

8 1200000 0.00059087 

9 1400000 0.00035691 

10 1600000 0.00029976 
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6.3.6 Results And Discussion 

A)  HRNN with 3-7-5-2 architecture: Cutting Force and Surface Roughness 

Predictions 

         This section deals with a prediction comparison between the ANN and the 

HRNN network models. The prediction results attained after training ANN and 

HRNN model the results of the predictions attained between the ANN and HRNN 

network after 16 lakh and 2.58 lakh epochs respectively is represented in Table 6.17. 

The maximum error attained for AA6061-4.5%Cu-%SiCp in case of ANN is |0.59| % 

at spindle speed of rpm, feed rate of mm/min and depth of cut for the responses cutting 

force and surface roughness. However in the majority of the cases, the error attained 

by using hybrid RNN model is within |0.5|%.As discussed in prior sections, the HRNN 

is   modelled after   borrowing   the   weights   from partially trained ANN after 5 lakh 

epochs. Further, the HRNN   converged   nicely   to   a   MSE   of 0.00029976. While 

in case of HRNN to attain the same convergence the HRNN consumed 776000 lesser 

epochs as compared to that of ANN. By this it can be concluded that the same degree 

of convergence was achieved by saving more than 50% of computational time. In 

other way, the better convergence can be achieved with lesser computational time. 

Furthermore, the error in predictions too is quite insignificant in comparison with the 

parent ANN predictions for the same data. 

B)  HRNN with 3-9-6-2 architecture: Cutting Force and Surface Roughness Predictions 

        The comparison of predictions between the parent ANN and Hybrid RNN is 

given in Table 6.18 below for a MSE of 0.00019 achieved by parent ANN after being 

trained using 325208 epochs. The total number of epochs of HRNN coupled with 

partially trained ANN works out to 128000 epochs, thus giving a saving in 

computation time in excess of 50%.It can be seen that the error in estimation with 

hybrid RNN with respect to Parent ANN falls within 6%, while in majority of the 

cases the error is within1%. Graphs represented in Figure 6.5 and Figure 6.6 depicts 

the comparison of predicted results attained through the ANN and HRNN for Al-

4.5Cu-5%SiCp  composite with various architectures Viz..(3-7-5-2, 3-9-6-2). From the 

Figure 6.5 and Figure 6.6, it can be concluded that ANN and HRNN not notably 

different in behavior and they follow each other very closely. Maximum deviation is 

observed in case of Ra prediction through ANN with 3-7-5-2 architecture. Similarly in 
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case of Figure 6.6 lighter deviation is observed for Ra with 3-9-6-2 as compared to 3-

7-5-2 architecture. From the attained results it can be derived that, both the ANN and 

HRNN have comparable performance capabilities and both are almost identical 

notifying that the learning has been adequate and indicating that both the networks 

have generalized in a quite good way. But HRNN outperforms ANN as the involved 

computational time is lesser in HRNN to attain the desired responses. 

 

C) Comparison of FX and Ra Prediction by ANN and HRNN with 3-7-5-2 architecture 

                       

 Figure 6.5: (a) FX (b) Ra Prediction by ANN and HRNN with 3-7-5-2 

architectures  

D) Comparison of FX and Ra Prediction by ANN and HRNN with 3-9-6-2 

architecture 

 

     

   

         Figure 6.6: (a) FX (b) Ra Prediction by ANN and HRNN with 3-9-6-2 

architectures  

 

  (a)   (b) 

   (a)    (b) 
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Table 6.17: Comparison of FX and Ra Predicted by ANN, HRNN after  2.58  lakh 

epochs of HRNN and 16 lakh epochs of ANN 

 

 
 

Table 6.18: Comparison of FX and Ra Predicted by ANN Hybrid RNN after MSE = 

0.00019 

 

 

 

6.3.7 Summary 

 Elman simple neural network (SRN) was found to have issues relating to 

convergence when trained for prediction of responses for application relating 

to face milling of AA6061 alloy and AA6061-4.5%Cu-5%SiCp composite. 

Three layered as well as four layered extended Elman recurrent networks were 

tried out with different  combinations of neurons per hidden layer and learning 

rate parameter (η) and momentum term (a). The network was found to 

oscillate in local minimums and subsequently stopped learning with three 

ANN RNN ANN RNN

1 1000 300 1 65.33 66.94 -1.61 3.13 3.17 -0.04

2 1000 400 2 105.38 106.12 -0.74 3.52 3.44 0.08

3 1000 500 3 135.02 134.48 0.54 3.31 2.72 0.59

4 2000 300 1 140.66 140.71 -0.05 2.26 2.2 0.06

5 2000 400 2 175.22 175.54 -0.32 2.39 2.31 0.08

6 2000 500 3 202.13 202.16 -0.03 2.01 2.08 -0.07

7 3000 300 1 234.51 234.28 0.23 1.12 1.19 -0.07

8 3000 400 2 250.75 251.29 -0.54 1.53 1.49 0.04

9 3000 500 3 256.17 257.37 -1.2 1.09 1.16 -0.07

Feed Rate 

(mm/min)

Spindle 

Speed   (rpm)

SL. 

NO

Output Parameters

FX

(N)

%  

Difference 

Over ANN

Ra

(µm)

% 

Difference 

Over ANN

Input Parameters

Depth of  Cut 

(mm)

% %

Difference 

Over ANN

Difference 

Over ANN

ANN RNN ANN RNN

1 1000 300 1 59.22 60.09 -0.87 3.09 3.12 -0.03

2 1000 400 2 101.41 100.64 0.77 3.49 3.47 0.02

3 1000 500 3 129.13 129.14 -0.01 3.11 3.12 -0.01

4 2000 300 1 143.89 143.32 0.57 2.19 2.17 0.02

5 2000 400 2 169.36 170.09 -0.73 2.51 2.46 0.05

6 2000 500 3 204.17 202.94 1.23 2.07 2.08 -0.01

7 3000 300 1 228.08 228.18 -0.1 1.18 1.12 0.06

8 3000 400 2 246.75 246.29 0.46 1.53 1.34 0.19

9 3000 500 3 257.17 257.37 -0.2 1.07 1.09 -0.02

SL. 

NO

Feed Rate 

(mm/min)

Depth of  

Cut 

(mm)

Input Parameters Output Parameters

FX

(N)

Ra

(µm)

Spindle 

Speed 

(rpm)
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layered SRN. The four layered extended Elman recurrent neural network fared 

slightly better, but was unable to map the input output relationships, as there 

was no learning possible beyond a certain stage of training. 

 The problem of convergence of extended Elman recurrent neural network was 

overcome by constructing a hybrid recurrent neural network (HRNN) by 

borrowing weights from a partially trained FFNN having same architecture as 

that of extended Elman recurrent neural network (minus context or temporal 

layers), when steep downward gradient is observed on the MSE v/s. Weights 

plane.  Further training of such HRNN resulted in fast learning. The overall 

training time was found to reduce significantly.  

 HRNN modeling developed has produced satisfactory predictions for the 

output of milling operation. The predictions of HRNN modelled for prediction 

of responses of AA6061 alloy and AA6061-4.5%Cu-5%SiCp composite 

matched the predictions done by ANN model and  predicted results of the of 

ANN and HRNN are in good agreement desired results. 

 The predicted responses of AA6061 alloy and AA6061-4.5%Cu-5%SiCp 

composite of face through HRNN and ANN were within an error of 5%  in 

case of forward mapping and error within 10% in case of reverse mapping. 

 This leads to an inference that HRNN models, being similar in performance to 

the ANN models in terms of prediction capabilities and the time required for 

training of HRNN being significantly reduced, they are superior to ANN 

models. 

 

The further chapter deals with comparision study of statistical and evolutionary 

predition techniques for AA6061 alloy and AA6061-4.5%Cu-5%SiCp in case of 

forward and reverse mapping. 

 

Related Airtcle: Rashmi L Malghan, Karthik Rao, Arun Shettigar, Shrikantha S Rao 

and R J D’Souza (2015). “Development of a Prediction Model for Optimized Surface 

Roughness in Face Milling Operation Using Recurrent Neural Network  Technique.” 

International Journal of Applied Engineering Research, 10(11),  ISSN 0973-4562  
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COMPARISION OF PREDICTION RESULTS : FORWARD AND REVERSE 

MODELS 

 

In this segment, the predicted results attained through the RSM (CCD), ANN and 

RNN methods have been discussed and compared. 

 

6.4 FORWARD MAPPING OF AA6061 

The BPNN and Elman network is developed to predict the responses for the 

respective process parameters namely spindle speed, feed rate and depth of cut of the 

milling process. 

 

6.4.1 Selection Network Parameters for Forward Mapping – Back Propagation 

Neural Network (BPNN) Specification in AA6061 and AA6061-4.5%Cu-5%SiCp 

In this segment, the parametric study was conducted to optimize the parameters of the 

network. The results of the considered parametric study are depicted in Figure 6.7 (a), 

(b), (c) and (d). The neural network consists of three input neurons corresponding to 

spindle speed, feed rate,  and depth of cut, three response neurons corresponding to 

FX, Ra and power consumption. The training is carried out using normalized input 

values to obtain normalized output values. The optimal values attained for parameters 

such as a number of neurons in the hidden layer 1 and 2, learning rate factor value and 

the momentum factor value is mentioned below. Generally, there is no definite rule to 

identify the exact number of neurons to be fixed in specific layer [4-12,19]. Always 

trial and error method is incorporated. In order to compare the ANN and RNN 

models, the same architecture was considered in both neural network approaches. The 

minimum MSE is selected as the criteria to attain optimal neural network parameters. 

For example, in the case of Figure 6.7 (a), MSE has obtained 7 neurons in hidden 

layer 1. Thus the following parameters remain constant for both the neural network 

models.   

 Number of  neurons in hidden layer 1: 7 

 Number of  neurons in hidden layer 2: 4 

 Learning rate factor value: 0.2 

 Momentum factor value :  0.5  
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 Transfer Function used:  Sigmoid  

 Number of data used for training: 20 

 Number of data used for testing: 15 

 

 

 

 

Figure 6.7: (a-d) Parametric studies to recognize optimal neural network 

parameters in case of forward mapping: a) Error v/s number of neurons in 

hidden layer 1. b) Error v/s learning rate in hidden layer 1 and 2 c) Error v/s 

momentum factor in hidden layer 1 and 2 d) Error v/s numbers of neurons in 

hidden layer 2. 

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 
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6.4.2. Comparison of Statistical Model, ANN, and RNN for responses in Forward 

Mapping 

Table 6.19: Summary of the Test Cases Results for the Response: FX 

 
 

Table 6.20: Summary of the Test Cases Results for the Response: Ra 

 

 

Predicted Predicted Predicted

1 47.62 48.52 -1.89 48.01 -0.819 47.64 -0.04

2 103.28 102.66 0.6 101.26 1.956 102.49 0.76

3 108.44 110.58 -1.97 108.59 -0.138 110.87 -2.24

4 59.96 57.82 3.57 58.04 3.202 60.01 -0.08

5 114.38 116.39 -1.76 115.12 -0.647 114.39 -0.01

6 120.23 118.88 1.12 119.95 0.233 119.34 0.74

7 74.26 76.32 -2.77 73.28 1.32 74.28 -0.03

8 136.32 136.51 -0.14 135.44 0.646 137.99 -1.23

9 140.87 141.21 -0.24 140.92 -0.035 140.89 -0.01

10 144.22 151.86 -5.3 140.94 2.274 144.26 -0.03

11 152.93 151.36 1.03 153.01 -0.052 149.77 2.07

12 163.96 162.76 0.73 163.92 0.024 164.98 -0.62

13 52.27 53.04 -1.47 52.29 -0.038 52.28 -0.02

14 57.86 57.82 0.07 56.34 2.627 57.82 0.07

15 160.02 161.2 -0.74 159.76 0.162 160.08 -0.04

Test. No
Measured 

Fx (N)

RSM (CCD) ANN RNN

%     

Deviation

%        

Deviatio

%     

Deviation

% % %

Predicted Deviation Predicted Deviation Predicted Deviation

1 0.69 0.67 2.9 0.7 -1.45 0.71 -2.9

2 0.57 0.56 1.75 0.59 -3.51 0.58 -1.75

3 0.59 0.61 -3.39 0.6 -1.69 0.6 -1.69

4 0.88 0.9 -2.27 0.87 1.14 0.86 2.27

5 0.67 0.66 1.49 0.69 -2.99 0.66 1.49

6 0.63 0.64 -1.59 0.62 1.59 0.62 1.59

7 0.97 1 -3.09 0.98 -1.03 0.99 -2.06

8 0.72 0.71 1.39 0.71 1.39 0.73 -1.39

9 0.61 0.6 1.64 0.62 -1.64 0.61 0.33

10 0.51 0.49 3.92 0.5 1.96 0.51 -0.78

11 0.6 0.59 1.67 0.62 -3.33 0.6 -3.33

12 0.49 0.46 6.12 0.51 -4.08 0.5 -2.04

13 0.65 0.66 -1.54 0.66 -1.54 0.67 -3.08

14 0.87 0.82 5.75 0.86 1.15 0.9 -3.45

15 0.58 0.56 3.45 0.57 1.72 0.59 -1.72

Test . 

No

Measured 

Ra (µm)

RSM (CCD) ANN RNN
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Table 6.21: Summary of the Test Cases Results for the Response: Power 

Consumption

 

 

 

The performance of the statistical model and the neural based approaches i.e. ANN 

and RNN were compared for the twenty test cases. The comparison carried out for all 

three techniques are summarized in Table 6.19-6.21. The results attained are 

represented in Figure 6.8 (a), (b), (c). Figure 6.8 (a), (b), (c) illustrates that the neural 

based approaches ANN and RNN techniques accomplished greater accuracy in 

prediction of responses FX, Ra, and Power Consumption. The values of % deviation 

for the response FX lie in the range of -5.3 to 3.57 for CCD, for ANN -0.819 to 3.202 

and for RNN -2.24 to 2.07 as depicted in Table 6.19. Similarly, the values of % 

deviation for the response SR lie in the range of -3.39 to 6.12 for CCD, for ANN -

4.08 to 1.96 and for RNN -3.45 to 2.27 as depicted in Table 6.20. Further on, the 

values of % deviation for the response Power consumption fall in the range of -5.26 to 

7.14 for CCD, for ANN -3.66 to 3.70 and for RNN -2.86 to 2.56 as depicted in Table 

6.21.   

 

Predicted Predicted Predicted

1 0.04 0.04 -5.26 0.039 -2.63 0.04 0.26

2 0.09 0.09 1.1 0.094 -3.3 0.09 -2.2

3 0.1 0.1 -0.97 0.106 -2.91 0.11 -1.94

4 0.08 0.09 -3.66 0.085 -3.66 0.08 -2.44

5 0.14 0.13 7.14 0.139 0.71 0.14 0.71

6 0.15 0.15 -1.35 0.149 -0.68 0.15 -1.35

7 0.11 0.11 -0.92 0.106 2.75 0.11 -0.92

8 0.21 0.22 -4.76 0.214 -1.9 0.21 0.95

9 0.23 0.22 4.35 0.229 0.43 0.23 1.3

10 0.14 0.14 0.71 0.138 1.43 0.14 -2.86

11 0.18 0.18 0.56 0.181 -0.56 0.18 1.11

12 0.28 0.27 3.57 0.29 -3.57 0.27 2.14

13 0.04 0.04 -2.56 0.04 -2.56 0.04 2.56

14 0.07 0.07 -1.45 0.07 -1.45 0.07 -1.45

15 0.27 0.26 3.7 0.26 3.7 0.28 -2.22

Test . 

No

Measured 

Power (kW) 

RSM (CCD) ANN RNN

%    

Deviation

%   

Deviation

%      

Deviation
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6.4.3 Test cases result in a comparison of CCD, ANN, and RNN techniques: 

Forward mapping for responses FX, Ra, and Power Consumption in terms of % 

deviation. 

 
 
 

 
 
 
 
 
 

(a) 

(b) 
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Figure 6.8: (a-c) Comparison of three models CCD, ANN, and RNN in the mode 

of % deviation in the prediction of responses to the test cases in case of forward 

mapping. (a) Prediction of response FX, (b) prediction of response Ra and (c) 

Prediction of response power consumption. 

 

6.4.4 RESULTS OF REVERSE MAPPING 

 

Reverse mapping has been implemented to predict process parameters such as the 

spindle speed, feed rate and depth of cut from the responses such as the Fx, Ra and 

Power Consumption. In the present study, the neural network architecture is 

maintained same as that of the forward mapping. However, while comparing to 

forward mapping the data provided in reverse mapping for training process changes 

i.e. in reverse mapping the training data considers the responses of the forward 

mapping data set as its input set of data and the process parameters of the forward 

mapping data sets as the output set of data. The parametric study similarly carried out 

as that of the forward mapping. The results attained by the parametric study of reverse 

mapping are same to that of the forward mapping as mention in Figure 6.7 (a), (b), (c) 

and (d).  

 

(c) 
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In the case of the reverse mapping, twenty test cases were used and the further 

optimized network was used to pass these test cases through it. The percentage 

deviation was calculated for each of the predicted outcomes. The performance of the 

neural network based approaches i.e. ANN and RNN were compared for the twenty 

test cases. The comparison carried out for two techniques are summarized in Table 

6.22-6.24. The results attained represented in Figure 6.9 (a), (b), (c). Figure 6.9 

(a),(b),(c) illustrate that the neural based approaches ANN and RNN techniques 

accomplished greater accuracy in prediction of responses spindle speed, feed rate and 

depth of cut.  

 

The values of % deviation for the response spindle speed lie in the range of -5.32 to 

9.06, and RNN in the range of -4.14 to 7.23 as depicted in Table 6.22. Similarly, The 

values of % deviation for the response feed rate lie in the range of -2.12 to 9.37 in the 

case of ANN, for RNN lie in the range of -4.62 to 6.44 as shown in Table 6.23. 

Further on, the values of % deviation for the response depth of cut fall in the range of 

-1.82 to 10.0 in ANN, for RNN it is -1.90 to 8.33 as presented in Table 6.24.     

6.4.5  Comparison of ANN, RNN for responses in Reverse Mapping for AA6061 

 

Table 6.22: Summary of the Test Cases Results for the Response: Spindle Speed 

 

Spindle Speed

(rpm) Predicted % Deviation Predicted % Deviation 

1 1050 1006.63 4.13 1022.41 2.63

2 1100 1158.47 -5.32 1123.69 -2.15

3 1200 1189.26 0.9 1249.72 -4.14

4 1300 1322.3 -1.72 1290.02 0.77

5 1400 1337.52 4.46 1440.33 -2.88

6 1500 1364.08 9.06 1467.15 2.19

7 1600 1457.14 8.93 1484.37 7.23

8 1700 1620.52 4.68 1644.06 3.29

9 1800 1845.98 -2.55 1872.64 -4.04

10 1900 1879.36 1.09 1924.27 -1.28

11 2050 1917.18 6.48 2079.36 -1.43

12 2100 1976.05 5.9 2096.11 0.19

13 2200 2119.37 3.67 2235.12 -1.6

14 2300 2182.24 5.12 2387.68 -3.81

15 2400 2322.85 3.21 2396.31 0.15

16 2500 2465.47 1.38 2528.44 -1.14

17 2600 2578.06 0.84 2661.69 -2.37

18 2700 2743.57 -1.61 2697.51 0.09

19 2800 2761.82 1.36 2899.36 -3.55

20 2900 2856.35 1.51 2926.34 -0.91

Test 

Cases

ANN RNN
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Table 6.23: Summary of the Test Cases Results for the Response: Feed Rate 

 

 
 

Feed Rate

(mm/min) Predicted % Deviation Predicted % Deviation

1 305 276.41 9.37 285.36 6.44

2 310 294.65 4.95 312.57 -0.83

3 320 312.73 2.27 317.08 0.91

4 330 334.68 -1.42 345.26 -4.62

5 340 339.09 0.27 347.66 -2.25

6 350 357.42 -2.12 354.37 -1.25

7 360 363.55 -0.99 357.96 0.57

8 370 369.42 0.16 368.96 0.28

9 380 383.86 -1.02 370.03 2.62

10 390 387.35 0.68 392.44 -0.63

11 405 396.09 2.2 403.97 0.25

12 410 400.67 2.28 410.89 -0.22

13 420 422.39 -0.57 419.14 0.2

14 430 426.81 0.74 421.01 2.09

15 440 441.36 -0.31 423.26 3.8

16 450 443.92 1.35 428.11 4.86

17 460 445.23 3.21 446.36 2.97

18 470 449.67 4.33 474.98 -1.06

19 480 476.28 0.78 477.36 0.55

20 490 494.07 -0.83 496.36 -1.3

Test 

Cases

ANN RNN
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Table 6.24: Summary of the Test Cases Results for the Response: Depth of Cut

 
 
  

6.4.6 Test cases results in comparison of ANN and RNN techniques: Reverse 

mappingfor responses spindle speed, feed rate  and depth of cut in terms of % 

deviation. 

 

Predicted % Deviation Predicted % Deviation

1 1.05 1.01 3.81 1.03 1.9

2 1.1 1.07 2.73 1.06 3.64

3 1.2 1.08 10 1.1 8.33

4 1.3 1.32 -1.54 1.2 7.69

5 1.4 1.36 2.86 1.41 -0.71

6 1.5 1.42 5.33 1.46 2.67

7 1.6 1.53 4.38 1.62 -1.25

8 1.7 1.68 1.18 1.69 0.59

9 1.8 1.71 5 1.74 3.33

10 1.9 1.79 5.79 1.82 4.21

11 2.05 1.93 5.85 1.99 2.93

12 2.1 2 4.76 2.14 -1.9

13 2.2 2.24 -1.82 2.22 -0.91

14 2.3 2.28 0.87 2.27 1.3

15 2.4 2.31 3.75 2.42 -0.83

16 2.5 2.53 -1.2 2.48 0.8

17 2.6 2.58 0.77 2.63 -1.15

18 2.7 2.66 1.48 2.68 0.74

19 2.8 2.71 3.21 2.82 -0.71

20 2.9 2.79 3.79 2.86 1.38

Test 

Cases

Depth of Cut              

(mm)    

ANN RNN

(a) 
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Figure 6.9: (a-c) Comparison of two models ANN and RNN in the mode of % 

deviation in the prediction of responses to the test cases in case of reverse 

mapping. (a) Prediction of response spindle speed, (b) prediction of response feed 

rate and (c) Prediction of response depth of cut. 

 

 

 

 

(a) 

(b) 

(c) 
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6.4.7 Summarized results of Forward and Reverse Mapping techniques in terms 

of  Deviation and Average absolute deviation % for AA6061 

 

 
 

                                                                

Figure 6.10: Forward Mapping: Comparison of RSM V/S ANN V/S RNN for 

AA6061 

 

 

 
Figure 6.11: Reverse Mapping: Comparison of ANN V/S RNN for  AA6061. 
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Figure 6.10  represents the comparision between the prediction models i.e. statistical 

method (RSM) with evolutionary prediction techniques (ANN, HRNN) for AA6061. 

From the Figure 6.10  it can be observed that the percentage of deviation attained 

through the RNN and ANN are within the range of ±5%. Thus indicate that the 

prediction accuracy is better compared to that of the RSM method. 

 

From the Figure 6.11 represents the comparision between  the ANN and RNN 

techniques in case of reverse mapping. From the Figure 6.11, it can be observed that 

the attained results through ANN and RNN are in well agreement with each other, the 

percentage of deviation lies within the acceptable range of ±10%. Thus indicate that 

the prediction accuracy is better compared to that of the RSM method. 

 

Table 6.25, 6.26 summarizes the range of deviation % attained for CCD, ANN and 

RNN techniques in the mode of forward mapping. Similarly, in the mode of reverse 

mapping, the deviation % is achieved only through the neural network based 

approaches are indicated. 

 

Further, Table 6.27, 6.28 infers the average absolute deviation % in neural network 

based approaches i.e. ANN and RNN. The results obtained from ANN and RNN 

infers that both the techniques show comparable results. 

 

 Table 6.25: Summary Results of Forward Mapping in terms of deviation %  

 

SL. 

No Responses 

Methods - (Deviation %) 

CCD ANN RNN 

Min Max Min Max Min Max 

1 Fx  -5.30 3.57 -0.819 3.202 -2.24 2.07 

2 Ra -3.39 6.12 -4.08 1.96 -3.45 2.27 

3 Power 

Consumption 

-5.26 7.14 -3.66 3.70 -2.86 2.56 
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Table 6.26: Summary Results of Reverse Mapping in terms of  deviation % 
 

SL. 

No Responses 

Methods - (Deviation %) 

ANN RNN 

Min Max Min Max 

1 Spindle Speed -5.32 9.06 -4.14 7.23 

2 Feed Rate -2.12 9.37 -4.62 6.44 

3 Depth of cut -1.82 10.0 -1.90 8.33 

 
 

Table 6.27: Summary Results of  Forward Mapping in terms of  Average 

absolute deviation % 

 

SL. 

No 
Responses 

Methods - ( Average Absolute Deviation %) 

ANN RNN 

1 FX 0.94 0.53 

2 Ra 2.01 1.99 

3 Power 

Consumption 

2.15 1.63 

 

 Summation of  Average deviation % in ANN = 5.105 

 Summation of  Average deviation % in RNN = 4.15 

 Mean absolute deviation % in ANN = 1.70 

 Mean absolute deviation % in RNN = 1.38 

 

 

Table 6.28 Summary Results of Reverse Mapping in terms of Average absolute 

deviation % 
 

SL. 

No Responses 
Methods - ( Average absolute Deviation %) 

ANN RNN 

1 Spindle speed 2.57 0.63 

2 Feed Rate 1.27 0.67 

3 Depth of cut 3.05 1.60 
 

 Summation of  Average deviation % in ANN = 6.89 

 Summation of  Average deviation % in RNN = 2.9 

 Mean absolute deviation % in ANN = 2.29 

 Mean absolute deviation % in RNN = 0.96 
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6.4.8 Comparison Of Statistical Model, ANN, And RNN For Responses In 

Forward Mapping Of AA6061-4.5%Cu-5%SiCp 
 

  Table 6.29: Summary of the Test Cases Results for the Response: FX  
 

 
 

  Table 6.30: Summary of the Test Cases Results for the Response: Ra 

 

 
 

% % %

Predicted Deviation Predicted Deviation Predicted Deviation

1 75.19 77.32 -2.83 75.12 0.09 75.17 0.03

2 104.63 103.72 0.87 106.58 -1.86 104.6 0.03

3 126.44 125.46 0.78 126.46 -0.02 128.43 -1.57

4 142.58 138.97 2.53 139.29 2.31 142.47 0.08

5 157.16 158.89 -1.1 157.11 0.03 157.17 -0.01

6 166.03 165.74 0.17 166.12 -0.05 166.06 -0.02

7 174.29 173.89 0.23 174.16 0.07 174.28 0.01

8 186.41 186.43 -0.01 184.39 1.08 186.72 -0.17

9 199.67 202.08 -1.21 199.58 0.05 199.68 -0.01

10 208.33 209.12 -0.38 208.35 -0.01 205.34 1.44

11 220.17 212.01 3.71 216.15 1.83 216.78 1.54

12 228.54 216.45 5.29 223.11 2.38 229.55 -0.44

13 236.03 236.09 -0.03 236.04 0.004 236.01 0.01

14 248.11 247.96 0.06 248.16 -0.02 248.14 -0.01

15 255.88 255.38 0.2 253.82 0.81 258.89 -1.18

Test .No
Measured 

FX (N)

RSM (CCD) ANN RNN

% % %

Predicted Deviation Predicted Deviation Predicted Deviation

1 3.07 3.12 -1.63 3.09 -0.65 3.06 0.33

2 3.52 3.49 0.85 3.6 -2.27 3.56 -1.14

3 4.03 3.98 1.24 3.98 1.24 4.01 0.5

4 1.96 1.94 1.02 1.95 0.51 1.94 1.02

5 2.12 2.07 2.36 2.13 -0.47 2.15 -1.42

6 1.68 1.7 -1.19 1.69 -0.6 1.67 0.6

7 2.36 2.33 1.27 2.37 -0.42 2.35 0.42

8 3.57 3.38 5.32 3.55 0.56 3.58 -0.28

9 2.09 2.1 -0.48 2.06 1.44 2.08 0.48

10 1.22 1.24 -1.64 1.21 0.82 1.23 -0.82

11 1.38 1.36 1.45 1.39 -0.72 1.37 0.72

12 1.41 1.42 -0.71 1.43 -1.42 1.39 1.42

13 1.66 1.64 1.2 1.64 1.2 1.68 -1.2

14 2.87 2.89 -0.7 2.86 0.35 2.88 -0.35

15 1.54 1.55 -0.65 1.53 0.65 1.53 0.65

Test . 

No

Measured 

Ra (µm)

RSM (CCD) ANN RNN
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Table 6.31: Summary of the Test Cases Results for the Response: Power 

Consumption 
 

 

 

The performance of the aforesaid models for considered fifteen test cases is 

summarized in Table 6.29 - 6.31. The results attained illustrates that the neural 

network based techniques predict the responses in greater accuracy compared to that 

of the statistical model, the achieved results are depicted in Figure 6.12 (a),(b),(c). 

The values of % deviation for the response FX lie in the range of -2.83 to 5.29 for 

CCD, for ANN  -1.864 to 2.376 and for RNN -1.57 to 1.54  as depicted in Table 6.29. 

Similarly, The values of % deviation for the response Ra lie in the range of -1.64 to 

5.32 for CCD, for ANN -2.27 to 1.44 and for RNN as -1.42 to 1.42 depicted in Table 

6.30. Further on, the values of % deviation for the response Power consumption fall in 

the range of -4.29 to 5.83 for CCD, for ANN  -1.43 to 2.38 and for RNN -2.14  to 

1.43 as depicted in Table 6.31.   

 

 

 

 

 

1 0.07 0.073 -4.29 0.069 1.43 0.069 1.43

2 0.12 0.113 5.83 0.119 0.83 0.121 -0.83

3 0.19 0.191 -0.53 0.188 1.05 0.192 -1.05

4 0.14 0.139 0.71 0.142 -1.43 0.143 -2.14

5 0.16 0.157 1.88 0.159 0.63 0.161 -0.63

6 0.17 0.168 1.18 0.171 -0.59 0.172 -1.18

7 0.21 0.209 0.48 0.205 2.38 0.211 -0.48

8 0.22 0.218 0.91 0.223 -1.36 0.222 -0.91

9 0.34 0.349 -2.65 0.338 0.59 0.342 -0.59

10 0.26 0.257 1.15 0.261 -0.38 0.259 0.38

11 0.28 0.276 1.43 0.282 -0.71 0.278 0.71

12 0.3 0.312 -4 0.304 -1.33 0.302 -0.67

13 0.32 0.323 -0.94 0.321 -0.31 0.319 0.31

14 0.36 0.355 1.39 0.359 0.28 0.361 -0.28

15 0.43 0.427 0.7 0.432 -0.47 0.431 -0.23

Predicted

Test . 

No

Measured 

Power 

(kW) 

RSM (CCD) ANN RNN

% Deviation % Deviation % DeviationPredicted Predicted
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6.4.9 Test cases results in comparison of CCD, ANN, and RNN techniques: 

Forward mapping for responses FX, Ra, and Power Consumption in terms of % 

deviation for AA6061-4.5%Cu-5%SiCp 
 

 
 

 

 

          

                    
      

 

(a) 

(b) 
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Figure 6.12 (a-c): Comparison of two models ANN and RNN in the mode of % 

deviation in the prediction of responses to the test cases in case of forward 

mapping. (a) Prediction of response cutting force (b) prediction of response 

surface roughness  and (c) Prediction of response power consumption. 

 

6.4.10 Results Of Reverse Mapping: AA6061-4.5%Cu-5%SiCp 

In the case of the reverse mapping, twenty test cases were used. The percentage 

deviation was calculated for each of the predicted outcomes. The performance of the 

neural network based approaches i.e. ANN and RNN were compared for the twenty 

test cases. The comparison carried out for two techniques are summarized in Table 

6.32 – 6.34. The results attained are represented in Figure 6.13 (a),(b),(c). Figure 6.13 

(a),(b),(c) illustrates that the neural based approaches ANN and RNN techniques 

accomplished greater accuracy in prediction of responses spindle speed, feed rate and 

depth of cut. The values of % deviation for the response spindle speed lie in the range 

of -8.112 to 6.580, and RNN in the range of  -7.44 to 5.39 as depicted in Table 6.32. 

Similarly, The values of % deviation for the response feed rate lie in the range of -

2.067 to 8.125 in the case of ANN, for RNN lie in the range of -1.85 to 6.675 as 

shown in Table 6.33. Further on, the values of % deviation for the response depth of 

cut fall in the range of -3.333 to 9.231 in ANN, for RNN it is -3.913 to 8.667 as 

presented in Table 6.34.     

 

(c) 
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6.4.11 Comparison of ANN, RNN for responses in Reverse Mapping for AA6061-

4.5%Cu-5%SiCp 

 

Table 6.32: Summary of the Test Cases Results for the Response: Spindle Speed 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Predicted % Deviation Predicted % Deviation

1 1050 1046.38 0.345 1128.12 -7.44

2 1100 1189.23 -8.112 1150.74 -4.613

3 1200 1234.17 -2.848 1211.36 -0.947

4 1300 1302.04 -0.157 1258.18 3.217

5 1400 1375.12 1.777 1397.89 0.151

6 1500 1474.33 1.711 1483.06 1.129

7 1600 1502.45 6.097 1566.27 2.108

8 1700 1740.52 -2.384 1648.36 3.038

9 1800 1827.69 -1.538 1702.98 5.39

10 1900 1912.01 -0.632 1902.51 -0.132

11 2050 2038.24 0.574 2024.28 1.255

12 2100 2085.33 0.699 2095.33 0.222

13 2200 2169.76 1.375 2114.47 3.888

14 2300 2151.58 6.453 2267.09 1.431

15 2400 2373.22 1.116 2349.83 2.09

16 2500 2351.07 5.957 2498.96 0.042

17 2600 2428.93 6.58 2607.25 -0.279

18 2700 2714.75 -0.546 2699.08 0.034

19 2800 2728.42 2.556 2708.43 3.27

20 2900 2916.28 1.51 2832.11 2.341

Test 

Cases

Spindle Speed                  

(rpm)

ANN RNN
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Table 6.33: Summary of the Test Cases Results for the Response: Feed Rate 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Predicted Predicted

1 305 280.22 8.125 294.36 3.489

2 310 296.13 4.474 296.07 4.494

3 320 310.22 3.056 298.64 6.675

4 330 323.48 1.976 318.19 3.579

5 340 330.61 2.762 345.28 -1.553

6 350 332.07 5.123 349.35 0.186

7 360 358.35 0.458 361.11 -0.308

8 370 363.24 1.827 362.23 2.1

9 380 384.86 -1.279 369.49 2.766

10 390 387.54 0.631 370.71 4.946

11 405 393.12 2.933 400.36 1.146

12 410 394.07 3.885 404.15 1.427

13 420 395.26 5.89 423.37 -0.802

14 430 432.35 -0.547 428.26 0.405

15 440 444.81 -1.093 430.74 2.105

16 450 447.13 0.638 449.82 0.04

17 460 448.39 2.524 468.51 -1.85

18 470 449.22 4.421 473.76 -0.8

19 480 473.86 1.279 484.23 -0.881

20 490 500.13 -2.067 495.57 -1.137

Test 

Cases

Feed Rate 

(mm/min)

ANN RNN

% Deviation % Deviation
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Table 6.34: Summary of the Test Cases Results for the Response: Depth of Cut 

 
 

 

6.4.12 Test cases result in a comparison of ANN and RNN techniques: Reverse 

mapping for responses spindle speed, feed rate and depth of cut in terms of % 

deviation. 

    

Predicted % Deviation Predicted % Deviation

1 1.05 1.03 1.905 1.02 2.857

2 1.1 1.04 5.455 1.05 4.545

3 1.2 1.11 7.5 1.21 -0.833

4 1.3 1.18 9.231 1.23 5.385

5 1.4 1.36 2.857 1.28 8.571

6 1.5 1.39 7.333 1.37 8.667

7 1.6 1.61 -0.625 1.47 8.125

8 1.7 1.63 4.118 1.59 6.471

9 1.8 1.65 8.333 1.83 -1.667

10 1.9 1.84 3.158 1.89 0.526

11 2.05 2.01 1.951 2.07 -0.976

12 2.1 2.07 1.429 2.09 0.476

13 2.2 2.22 -0.909 2.14 2.727

14 2.3 2.24 2.609 2.39 -3.913

15 2.4 2.48 -3.333 2.42 -0.833

16 2.5 2.49 0.4 2.46 1.6

17 2.6 2.62 -0.769 2.67 -2.692

18 2.7 2.66 1.481 2.68 0.741

19 2.8 2.83 -1.071 2.77 1.071

20 2.9 2.85 1.724 2.88 0.69

Test 

Cases

Depth of Cut 

(mm)

ANN RNN

  (a) 
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Figure  6.13 (a-c): Comparison of two models ANN and RNN in the mode of % 

deviation in the prediction of responses to the test cases in case of reverse 

mapping. (a) Prediction of response spindle speed, (b) prediction of response feed 

rate and (c) Prediction of response depth of cut. 

 

 

 

 

 

   (c) 

  (b) 
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6.4.13 Summarized results of forward and Reverse Mapping techniques in terms 

of  Deviation and Average absolute deviation % for AA6061-4.5%Cu-5%SiCp 

 
 

Figure 6.14: Forward Mapping: Comparison of RSM V/S ANN V/S RNN for 

AA6061-4.5%Cu-5%SiCp 

 

 
Figure 6.15: Reverse Mapping: Comparison of ANN V/S RNN for AA6061. 
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Figure 6.14 represents the comparision between the prediction models i.e. statistical 

method (RSM) with evolutionary prediction techniques (ANN, HRNN) for AA6061-

4.5%Cu-5%SiCp. From the Figure 6.14 (a-b) it can be observed that the percentage of 

deviation attained through the RNN and ANN are within the range of ±5%. Thus 

indicate that the prediction accuracy is better compared to that of the RSM method. 

 

From the Figure 6.15 represents the comparision between  the ANN and RNN 

techniques in case of reverse mapping. From the Figure 6.15, it can be observed that 

the attained results through ANN and RNN are in well agreement with each other, the 

percentage of deviation lies within the acceptable range of ±10%. Thus indicate that 

the prediction accuracy is better compared to that of the RSM method.  

 

Table 6.35, 6.36 summarizes the range of deviation % attained for CCD, ANN and 

RNN techniques in the mode of forward mapping. Similarly, in the mode of reverse 

mapping, the deviation % is achieved only through the neural network based 

approaches are indicated.The results tabulated in Table 6.37, 6.38 infer the average 

absolute deviation % in neural network based approaches i.e. ANN and RNN. The 

results obtained from ANN and RNN infers that both the techniques show comparable 

results. 

 

Table 6.35: Summary Results of Forward Mapping in terms of deviation % 

  

SL. 

No Responses 

Methods - (Deviation %) 

CCD ANN RNN 

Min Max Min Max Min Max 

1 Fx  -2.83 5.29 -1.864 2.376 -1.57 1.54 

2 Ra -1.64 5.32 -2.27 1.44 -1.42 1.42 

3 Power 

Consumption 

-4.29 5.83 -1.43 2.38 -2.14 1.43 
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 Table 6.36: Summary Results of Reverse Mapping in terms of  deviation % 
 

SL. 

No Responses 

Methods - (Deviation %) 

ANN RNN 

Min Max Min Max 

1 Spindle Speed -8.112 6.58 -7.44 5.39 

2 Feed Rate -2.067 8.125 -1.85 6.675 

3 Depth of cut -3.333 9.231 -3.913 8.667 

  

Table 6.37: Summary Results of  Forward Mapping in terms of  Average 

absolute deviation % 
 

SL. 

No 
Responses 

Methods - ( Average Absolute Deviation %) 

ANN RNN 

1 FX 0.71 0.43 

2 Ra 0.89 0.76 

3 Power 

Consumption 

0.92 0.79 

 

 Summation of  Average deviation % in ANN = 2.52 

 Summation of  Average deviation % in RNN = 1.98 

 Mean absolute deviation % in ANN = 0.84 

 Mean absolute deviation % in RNN = 0.66 
 
 

Table 6.38: Summary Results of Reverse Mapping in terms of Average absolute 

deviation  % 
 

SL. 

No Responses 
Methods - ( Average absolute Deviation %) 

ANN RNN 

1 Spindle speed 2.648 2.151 

2 Feed Rate 2.749 2.034 

3 Depth of cut 3.310 3.168 
 

 Summation of  Average deviation % in ANN = 8.707 

 Summation of  Average deviation % in RNN = 7.353 

 Mean absolute deviation % in ANN = 2.902 

 Mean absolute deviation % in RNN = 2.451 
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DEVELOPMENT OF AN INTEGRATED PLATFORM FOR PROCESS 

MODELING 

6.5 GRAPHICAL USER INTERFACE DESIGN  

The medium of graphics has revolutionised the user interface design. If used 

appropriately, it can harness the information assimilation, processing and 

dissemination capabilities of the user and allow for faster interaction with computer 

system. Graphical User Interface (GUI) has brought about a marked change in the 

world of computing in terms of use of computer systems across professions. A well 

designed GUI will help the user to interact with the system comfortably, in the sense, 

that it is easier to learn, more effective to use and does not cause vision fatigue when 

used for long periods. The fact that they are easy to use does not imply that they are 

easy to design. In fact the designing medium for GUIs in modern days is so rich with 

so many different options of architectures, colour combinations, facilities, metaphors, 

patterns available that one can create an excellent GUI for a given application. 

However, with so much flexibility available in terms of choices in design, there is 

every possibility of the designer going overboard and coming out with a mediocre, 

lacklustre design of GUI. Therefore designing a good GUI is a challenging task. 

 

6.5.1 Objectives of Graphical User Interface Design  

The user interface is a part of the computer system which connects the user with the 

internal system of the computer. In a typical information system or the systems used 

in offices, the user interface may include following. 

 The components of the computer hardware with which the user can interact 

with the system such as, screen, mouse, keyboard, toggle switch, on/off switch 

etc.  

 The images within the computer application software such as windows, task 

bars, pull down menus, pop ups, messages, help screens, etc.  

 User documentations such as manuals, catalogues, reference cards  

 

While the user operates on a GUI, he/she has no access to what is happening inside 

the computer system. The system will work in the background based on the 
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information provided by the user in the input section and provide him/her with the 

processed outputs. Therefore the user is more concerned with the interface, rather than 

what is happening in the background. Hence the objective of the GUI design is to 

make it as user friendly as possible, by increasing its usability. Usability here means, 

making the computer system adaptable to human beings who are going to use it, and 

has a lot of bearing on the psychological issues relating to human memory, 

perception, comprehension and conceptualization.  

 

A good interface design is important as it is the only medium that allows the user to 

interact with the computer internals. A lacklustre design may not be attractive to the 

user and he may not use it. Further a wrongly designed GUI may confuse the user and 

there is every possibility that one may use it wrongly or stop using it. Actually, the 

interface is the front end of the computer system by which the designer represents the 

system to the user. A good user interface can result in increase of productivity while a 

poorly designed one may cause stress followed by fatigue and discomfort to the user. 

The flow of working of GUI is represented in Figures 6.16 – 6.21. 

 

6.5.2 Development Of GUI 

GUI has been designed using available API libraries which include three main 

modules, namely, material, method and test option. Each module has related sub 

modules.  

 In material model there is a drop down list of materials used in the study 

(AA6061, AA6061-4.5%C-5%SiCp). In method module there is a choice of 

selecting offline (Prediction and Optimization sub modules)  and online 

method (optimization module). In test option module for prediction (Forward 

and Reverse Sub Modules) there is list of approaches such as RSM, 

ANN,RNN  and similarly  for optimization (RSM and PSO).   

 Prediction model has the sub components for prediction of cutting force, 

surface roughness and power consumption by forward mapping. Similarly in 

case of reverse mapping   it predicts the spindle speed, feed rate and depth of 

cut.  
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 There is provision to obtain outputs by manually feeding the input values as 

well for plotting bar graphs by varying one parameter at a time, keeping other 

parameters constant.  

 The GUI is also designed to generate bar plots by varying each input 

parameter at a time. Use of GUI is made in optimising the  processing 

parameters for obtaining the best possible outcome for AA6061 alloy and Al-

4.5%Cu-5%SiCp composite. 

 The proposed ANN and RNN model along with the user friendly GUI 

designed for the purpose will serve as a useful tool for optimization of 

responses namely, cutting force, surface roughness and power consumption 

based on the parameters specified by the user.  

 Graphical user interface (GUI) has been created for prediction and 

optimization models formulated, so that it creates a friendly environment for 

the user to obtain property predictions for different combinations of inputs, 

understand the variation of input – output relationship and achieve optimized 

process settings.  

 

 

Figure 6.16: Login page 
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Figure 6.17: Selection of Method, Material and parameters. 

 

Figure 6.18: Output Graph of responses 

 

Figure 6.19: Warning Message 
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Figure 6.20: Selection of Reverse Mapping Approach 

 

 

 

Figure 6.21: Reverse Mapping Approach Result 
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6.5.3 Concluding Remarks 

 

 The ANN and RNN model successfully predict the values within an overall 

error of |5| percent for responses in case of forward mapping. However for 

majority of the predictions, the error is between ±3.6 percent. The proposed 

model is validated within a prediction error of |5.5 |percent within the bounds 

of data used for training the model. 

 The ANN and RNN model successfully predict the values within an overall 

error of |10| percent for responses in case of reverse mapping. However for 

majority of the predictions, the error is between ±10 percent. The proposed 

model is validated within a prediction error of |8.5 |percent within the bounds 

of data used for training the model. 

 The idea behind selecting various prediction techniques is to provide generic 

nature of the decision support system through development of GUI. 

 Developed GUI utilizes both forward and reverse mapping approaches via 

ANN and RNN method to predict the responses. 

 

IN Case of AA6061 

 The statistical model CCD was shown to be a valuable approach, attains 

higher deviation % in case of forward mapping i.e. the range of responses 

deviation %  lie -3.39 to 7.14. The accuracy of prediction attained by the 

statistical model is lesser as compared to ANN and RNN. 

 The results attained in the case of forward mapping indicate that the neural 

network based approaches i.e. ANN and RNN attain greater predicting 

accuracy as compared to CCD statistical model. 

 In the case of both forward and reverse mapping, the results attained from 

ANN and RNN infer that both technique results are comparable. 

 In the case of forward mapping, it can be observed that the mean absolute 

deviation % in ANN is 1.7 which fall within the acceptable range. 

 In the case of forward mapping, it can be observed that the mean absolute 

deviation % in RNN is 1.38 found to be within the range. 

 In the case of reverse mapping, it can be observed that the mean absolute 

deviation % in ANN is 2.29 found to be within the acceptable range. 
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 In the case of reverse mapping, it can be observed that the mean absolute 

deviation % in RNN is 0.96 which is found to be within the range. 

 In the case of reverse mapping, the results attained through ANN and RNN 

indicate that the RNN is better as compared to that of the ANN because due to 

the capability of the faster convergence of RNN compared to ANN. 

 

IN Case of AA6061-4.5%Cu-5%SiCp 

 The statistical model CCD was shown to be a valuable approach, attains 

higher deviation % in case of forward mapping i.e. the range of responses 

deviation % lie -3.39 to 7.14. The accuracy of prediction attained by the 

statistical model is lesser as compared to ANN and RNN. 

 The results attained in the case of forward mapping indicate that the neural 

network based approaches i.e. ANN and RNN attain greater predicting 

accuracy as compared to CCD statistical model. 

 In the case of both forward and reverse mapping, the results attained from 

ANN and RNN infer that both technique results are comparable.  

 

So far, the prediction of process parameters and responses has been discussed, In 

industry, most of the concentration is towards minimizing the cost incurred during the 

process. Hence the optimization technique is a better approach to suggest the input 

parameters based on the desired responses. So, further chapter deals with 

incorporation of optimization techniques.  

 

Related Airtcle: Rashmi L Malghan, Karthik Rao, Arun Shettigar, Shrikantha S 

Rao and R J D’Souza (2018) Forward and Reverse Mapping in Milling process 

using ANN, Data in Brief, Elsevier, 16, 114–121.  Doi: 10.1016/j.dib.2017.10.069. 
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CHAPTER 7 

RESULTS AND DISCUSSION (PART 3) 

OPTIMIZATION 

Finding an optimal solution for more than one objective functions is called multi-

objective optimization (deals with more than one objective function). In most of the 

optimization problems, it involves multi objectives. A multiobjective function 

problem has number of objective functions which are to be minimized or maximized. 

All the objectives are important; a solution is may be extreme for one objective, in 

that situation compromise of other objective is required. Optimization is the technique 

to obtain best results for the given problems under given constraints. An investigation 

is done here to compare and arrive at the best optimization technique from among 

GRA, Desirability Approach and PSO. 

7.1 EVOLUTIONARY ALGORITHM 

Evolution algorithms (EAs) are imitative of natural evolutionary principles to 

constitute search and optimization procedure. Genetic algorithm (GA) is evolutionary 

algorithm and was introduced by John Holland (1975). These algorithm functions are 

to selection of the fittest to produce better approximation to solutions. 

Particle swarm optimization algorithm (PSO) is a relatively new approach in modern 

heuristics for optimization, is one of the evolutionary protocol methods. PSO was first 

developed by Eberhart and Kennedy (1995) for continues function optimization. 

There are several stochastic algorithms such as genetic algorithms, differential 

evolution, Tabu search, simulated annealing, ant colony optimization and particle 

swarm optimization. These algorithms are used to find optimal solution for different 

objective function. The basic concept of PSO originated from the food hunting 

behaviour of birds. It was found that through the intelligent swarming behaviour, 

flocks of birds would always suddenly change the direction, scatter and gather. 

Behaviour of birds is also unpredictable but always consistent as whole, with 

individuals keeping the most suitable distance. Every swarm of PSO is a solution in 
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the solution space. It adjusts the fight according to its own and its companion flying 

experience.The goal of optimization is to minimize or maximize certain quantities 

such as life, mass, etc. In mathematical models, these goals are expressed as functions 

of certain variables. There are various methods available for solving these models 

towards minimization or maximization. The response equations attained through RSM 

model are further utilized as fitness function in implementation of PSO algorithm. 

The chapter deals with the implementation and comparison of both statistical and 

evolutionary optimization techniques and background of these optimization 

techniques are explained in chapter 3 (section 3.10). The foresaid optimization 

techniques are carried out to predict the optimum combinations of process parameters 

for the desired responses 

7.2 GREY RELATIONAL ANALYSIS  

The Grey relational analysis proposed by (Deng 1989), it is extensively used to 

estimate the degree of connection between sequences by grey relational grade. The 

Grey relational analysis technique is used by several researchers to optimize the 

process parameters comprising of multi-responses through grey relational grade 

grades (Chen et al. 2000, Balasubramanian et al. 2011, Lin et al. 2004).. Grey relation 

analysis is considered as black box technique which is generally used to identify the 

interior lacking information. In this technique, the consideration of information falls 

into two ways, the one with lack of information is considered to be black, whereas the 

other with full of information is considered as white. The grey is nothing but the one 

which is in between of these two black and white information. In other words, the 

information which is wavering and partial is regarded as Grey. Thus the system with 

partial information is considered as Grey system. In the Grey phenomenon Grey 

element, Grey number and Grey system are the three terms which are very important. 

Grey element is the element with partial information. The Grey number is one with 

incomplete information in the Grey system. Similarly the Grey relation is related with 

partial information. The black box is used to indicate a system lacking interior 

information. Generally the Grey relation technique is incorporated to determine and 

analyze the relational grade in the case of discrete sequences. Generally, the Grey 
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relation analysis requires less data, but it analyzes many factors, thus proving to be 

more advantageous as compared to that of the statistical method. 

 

The algorithm of grey relational analysis coupled with principal analysis to determine 

the optimal combinations of the cutting parameters in milling operation is described 

step by step as follows: 

(1)  Convert the experimental data into respective S/N ratio values. 

(2)  Normalize the S/N ratio, i.e. the data pre - processing step is carried out. 

(3) Next the Grey deviation sequence is computed. 

(3)  Further the corresponding Grey relational coefficients are computed. 

(4)  Determine the Grey relational grade using principal component analysis. 

(5)  Select the optimal levels of cutting parameters. 

(6)  Conduct confirmation experiments. 

 

The explanation of the above steps mentioned in the algorithm is as follows: 

 

Step 1: In the 1
st
 step, the transformation of original or experimental values of S/N 

ratio values is performed.  The transformation to S/N ratio is done to identify the 

desirable result through the smallest variance and finest performance. In order to 

transform to the S/N ratio values, the following equations are incorporated: 

1) For smaller the better 

  
 

 
          

 

 
 ∑                    (7.1) 

 

2) For Larger the better  

 
 

 
          ∑

    

 
                    (7.2) 

3) For Nominal is better 

 
 

 
        

 

                       (7.3) 

 

Where : Rij is the response value j in the i
th

 experiment condition, where i=1, 2, 3....n; 

j=1, 2, 3...k,   and pm
2
 are the sample mean and variance. 

 

In the present study the equations (7.1)  is considered for surface roughness and 

equation (7.2) for Cutting Force (FX) and Power Consumption.  
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Step 2: In this step data pre - processing is carried out. The data pre - processing is 

performed for normalizing the data for the purpose of analysis. Rij is normalized as 

Lij (0 ≤  Lij ≤ 1) by using the equation (7.4). This is for larger the better normalized 

response such as FX and Power Consumption in the current study. Similarly for the 

smaller the better response such as Ra the equation (7.5) holds good. 

        
                        

                                          
               (7.4) 

 

         
                        

                                          
             (7.5) 

 

Step 3: The Grey Deviation sequence is computed as per the equation (7.7), later on 

the Grey relation coefficient is determined based on the equation (7.6) . The Grey 

coefficient helps in identifying the relationship between the actual and ideal 

normalized values. 

                                                          
          

            
                      (7.6)         

 

                                                                                                         (7.7) 

                                  

                                  

 

Where         represents the Grey deviation sequence for the responses, rj (k) 

represents the comparability sequence,    denotes the discriminate. 

 

Step 4 : The Grey relation grade (GRG) is useful in evaluating the multiple 

performance characteristics. Average of all obtained grey relation coefficient gives 

the grey relation grade. Equation (7.8) is used to compute the GRG Yi(p) and 

obtained results and GRG ranks were tabulated in Tables 7.1 and 7.6 respectively for 

AA6061 and AA6061-4.5%Cu-5%SiCp. The attained values of all the steps from 1 - 

4 are depicted in Tables 7.1- 7.2.  

 

                                  
 

 
    

            
 

 
    

                     (7.8) 

 

Where, N = No. of performance characteristics,    = Weightage or importance of 

each performance characteristics, in this work it is assumed that all the performance 
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characteristics have equal importance, generally this value should be in between 0 and 

1 (0 < ωi < 1). The larger GRG represents how closer the corresponding experimental 

response to the ideal value. From the Table 7.2 and 7.7, first experiment with 

A1B1C1D1 combination has the highest grade among all the orthogonal experiments. 

 

Table 7.1: Grey Relation Analysis for AA6061 

 

  

 

 

 

 

Related Airtcle: Karthik Rao, Rashmi L Malghan, Arun Shettigar, Shrikantha S 

Rao and R J D’Souza (2015). “Multiple Response Optimizations in Milling Using 

Taguchi and Grey Relational Analysis .” International Journal of Applied 

Engineering Research, 10(1) ISSN 0973-4562. 
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Table 7.2: Performance characteristics GRG, S/N ratio and its orders for 

AA6061 

 

Table 7.3: Response table for GRG for AA6061 

 

 

 

 

 

Expt. NO Grey Relational Grade S/N Ratio Orders

1 0.841 -1.5034 1

2 0.738 -2.634 2

3 0.663 -3.5664 5

4 0.699 -3.108 3

5 0.615 -4.2185 6

6 0.538 -5.3836 8

7 0.684 -3.2974 4

8 0.586 -4.6461 7

9 0.487 -6.2521 11

10 0.491 -6.1837 10

11 0.469 -6.5738 13

12 0.459 -6.7663 14

13 0.471 -6.5468 12

14 0.438 -7.1773 15

15 0.419 -7.5647 17

16 0.499 -6.0377 9

17 0.424 -7.459 16

18 0.381 -8.3847 23

19 0.385 -8.2868 22

20 0.388 -8.2222 21

21 0.389 -8.2026 20

22 0.401 -7.9307 19

23 0.376 -8.5024 24

24 0.366 -8.7317 25

25 0.405 -7.8616 18

26 0.355 -8.9869 26

27 0.333 -9.5424 27

Level Spindle Speed 

(rpm) 

Feed Rate 

(mm/min) 

Depth of Cut 

(mm) 

1 -3.846 -5.771 -5.64 

2 -6.966 -6.574 -6.491 

3 -8.474 -6.941 -7.155 

Delta 4.629 1.17 1.515 

Rank 1 3 2 
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From the methodology it has been observed that, the multiple responses are converted 

to single response. So, now it will be treated as a single objective optimization 

problem. Further on, Taguchi method was utilized to optimize the attained GRG. 

Thus, Higher-the -better [as presented in equation (7.2)] option quality characteristic 

was involved in acquiring the S/N ratio for GRG. The attained S/N ratio values of RG 

for AA6061 and AA6061-4.5%Cu-5%SiCp are tabulated in Table 7.2 and 7.7. These 

attained values are computed from the equation (7.2). Later on, the means of GRG for 

individual level of the machining parameters of AA6061 and AA6061-4.5%Cu-

5%SiCp were computed using software tool (Minitab 17.0) and are presented in Table 

7.3 and 7.8 respectively. The results of GRG for each level of machining parameters, 

namely spindle speed, feed rate and depth of cut for AA6061 and AA6061-4.5%Cu-

5%SiCp have been summarized and depicted in Table 7.3 and 7.8 respectively.  

 

From the means analysis, the predicted optimum machining parameter combination is 

A1B1C1. Therefore the optimum machining parameter levels are spindle speed at 1000 

rpm, feed rate at 300mm/min and depth of cut 1 mm for both AA6061 and AA6061-

4.5%Cu-5%SiCp. Generally the GRG for optimum machining parameters AA6061 

and AA6061-4.5%Cu-5%SiCp is calculated as per the equation (7.9) and the achieved 

results are depicted in Table 7.4 and 7.9. The confirmatory results were compared 

with the data of the highest ranking orthogonal array No.1 (A1B1C1). From the Table 

7.4 for AA6061 and Table 7.9 for AA6061-4.5%Cu-5%SiCp it can be observed that 

improvement of the grey relation grade is by 16.2 % and 12.11% respectively. The 

results attained are well in agreement with the results of Ranganathan and senthivelan 

2011, Tang et al. 2014, Senthilkumar et al 2014). Thus, from the results, it may be 

concluded that the improvement in the machining performance characteristics was 

obtained during machining of AA6061 and AA6061-4.5%Cu-5%SiCp with TGRA. 

The GRG is further analyzed with ANOVA for AA6061 and AA6061-4.5%Cu-

5%SiCp as tabulated in Table 7.5 and 7.10 respectively to attain the effect of 

machining parameter on grey relation grade value. From the ANOVA as represented 

in Table 7.5 and 7.10, it can be concluded spindle speed (80.936, 77.578 %) has major 

contribution compared to the rest of the parameters. The attained R-Sq and R-Sq(adj) 
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for AA6061 are  99.8%,  99.3%  respectively. Similarly the attained R-Sq and R-

Sq(adj) for  AA6061-4.5%Cu-5%SiCP  is 99.7%,  99.1% respectively. 

                                                        ∑         
       (7.9) 

Where:       Average of total GRG,       The mean of the GRG at the optimal levels,  

   k      Total number of the machining parameters. 

Means of S/N rations of grey relation grades for AA6061 

 

Figure 7.1: Means of S/N rations of grey relation grades for 

AA6061 

 

Table 7.4 Results of cutting performance at conformation test for AA6061 

 Orthogonal array 

No.1 process 

parameters 

Optimal process parameters 

using Taguchi-based grey 

relational analysis 

 Prediction 

Level A1B1C1 A1B1C1 

Cutting Force 45.50  

Surface Roughness 0.70  

Power Consumption 0.04  

Grey Relation Grade 0.841 0.978 

The improvement in GRG 0.137  

The % improvement in 

GRG 

16.2%  

 

Table 7.5 ANOVA of grey relational grade for AA6061 
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R-Sq = 99.8%   R-Sq(adj) = 99.3%        

 

Table 7.6: Grey Relation Analysis for AA6061-4.5%Cu-5%SiCp 

 

 

 

 

 

Source DF Seq SS Adj MS F P % Contribution

Spindle Speed 2 100.31 50.155 1883.91 0 80.936

Feed Rate 2 6.443 3.222 121.01 0 5.199

DOC 2 10.386 5.193 195.07 0 8.38

Spindle Speed*Feed Rate 4 2.775 0.694 26.06 0 2.239

Spindle Speed*DOC 4 2.125 0.531 19.96 0 1.715

Feed Rate* DOC 4 1.686 0.421 15.83 0.001 1.36

Residual Error 8 0.213 0.027

Total 26 123.938
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Table 7.7: Performance characteristics GRG, S/N ratio and its orders for 

AA6061-4.5%Cu-5%SiCP

 

Table 7.8: Response table for GRG for AA6061-4.5%Cu-5%SiCp 

Level 
Spindle Speed    

        (rpm) 

Feed Rate   

 (mm/min) 

Depth of Cut   

        (mm) 

1 -5.699 -7.135 -7.898 

2 -8.684 -8.377 -8.158 

3 -10.211 -9.082 -8.539 

Delta 4.512 1.947 0.641 

Rank 1 2 3 

                            

Expt. No Grey Relation Grade S/N Ratio Orders

1 0.68 -3.35265 1

2 0.677 -3.39045 2

3 0.6 -4.43434 3

4 0.557 -5.0812 4

5 0.488 -6.22572 5

6 0.463 -6.69278 6

7 0.453 -6.87029 7

8 0.425 -7.43014 8

9 0.407 -7.81433 10

10 0.417 -7.59654 9

11 0.406 -7.83763 11

12 0.381 -8.38707 12

13 0.368 -8.69338 13

14 0.362 -8.81657 14

15 0.352 -9.07689 16

16 0.352 -9.061 15

17 0.347 -9.19196 17

18 0.335 -9.49663 18

19 0.328 -9.68361 19

20 0.327 -9.71703 20

21 0.323 -9.81705 21

22 0.308 -10.2416 23

23 0.308 -10.2195 22

24 0.304 -10.3438 24

25 0.299 -10.4991 25

26 0.296 -10.5886 26

27 0.289 -10.7854 27
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Table 7.9: Results of cutting performance at conformation test for AA6061-

4.5%Cu-5%SiCp 

 Orthogonal array 

No.1 process 

parameters 

Optimal process 

parameters using Taguchi-

based grey relational 

analysis 

 Prediction 

Level A1B1C1 A1B1C1 

Cutting Force 71.28  

Surface Roughness 3.10  

Power Consumption 0.06  

Grey Relation Grade 0.680 0.824 

The improvement in GRG 0.147  

The % improvement in GRG 12.11%  

 

Means of S/N rations of grey relation grades for AA6061-4.5%Cu-5%SiCp 

 

Figure 7.2: Means of S/N rations of grey relation grades AA6061-4.5%Cu-

5%SiCp 

 

Table 7.10: ANOVA of grey relational grade for AA6061-4.5%Cu-5%SiCp 

 

R-Sq = 99.7%   R-Sq(adj) = 99.1% 

Source DF Seq SS Adj MS F P % Contribution

Spindle Speed 2 94.785 47.392 1166.79 0 77.578

Feed Rate 2 17.487 8.743 215.26 0 14.312

DOC 2 1.871 0.936 23.03 0 1.531

Spindle Speed*Feed Rate 4 6.763 1.691 41.62 0 5.535

Spindle Speed* DOC 4 0.84 0.21 5.17 0.024 0.688

Feed Rate* DOC 4 0.11 0.028 0.68 0.626 0.09

Residual Error 8 0.325 0.041

Total 26 122.18
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7.3 DESIRABILITY APPROACH FOR OPTIMIZATION 

The main purpose of optimization is to minimize the surface roughness. In the current 

study, it is observed that as the feed rate increases the cutting force indirectly 

increases due to the power consumed by the servo motor increases. Hence the power 

is considered as the major factor for optimization. The desirability was conducted for 

2 materials. AA6061 and AA6061-4.5%Cu-5%SiCp. 

In case 1: 

The surface roughness value in the range from 0.48 to 0.96 microns with maximum 

cutting force 45.49 to 164.20 N was selected. The optimized surface roughness value 

(Ra) of 0.4906 microns is achieved with maximum cutting force (FX) of 165.8610 N  

and Maximum power consumption of 0.2642 at a spindle speed of 300rpm, feed rate 

of 500 mm/min and depth of cut of 3mm as depicted in Figure 7.3. 

 

Figure 7.3: Desirability optimization for AA6061 

In case 2: 

The surface roughness value in the range from 1 to 4.35 microns with maximum 

cutting force 71.27 to 258.99 N was selected. The optimized surface roughness value 

(Ra) of 1.0141 microns is achieved with maximum cutting force (FX) of 259.0721 N  

and Maximum power consumption of 0.4512 at a spindle speed of 300rpm, feed rate 

of 500 mm/min and depth of cut of 3mm as depicted in Figure 7.4.   
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Figure 7.4: Desirability optimization for AA6061-4.5%Cu-5%SiCp 

7.4 RESULTS OF PSO   

The present study considers simultaneously multi objective optimization of cutting 

force, surface roughness and power consumption which are conflicting in nature. The 

mathematical models developed by RSM were used as a fitness function in PSO 

algorithm. The objective functions used for evaluation of fitness values are given 

(Garg et al. 2012). The objectives are as follows:   

Objective   (1) = cutting force (FX) 

Objective   (2) = Surface roughness 

(Ra)  

Objective   (3) = Power consumption 

 

The second order regression models for cutting force, surface roughness and power 

consumption are obtained by using equations (3.3) and (3.5) (as represented in the 

earlier RSM Chapter)  respectively. These regression models are used for 

multiobjective optimization using the PSO as fitness functions.  

 

Table 7.11 clearly indicates projected model and signifies the parameters that play 
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a vital role in obtaining finer convergence characteristics of PSO and indicates the 

best operating parameters recommended for milling process of AA6061 and 

AA6061-4.5%Cu-5%SiCp. These parameters play a significant role in obtaining 

good convergence characteristics of PSO as depicted in Figure 7.5 and 7.6 for 

AA6061 and AA6061-4.5%Cu-5%SiCp respectively. If the number of parameters 

increases, the learning rate increases. In turn, the number of iterations increases in 

the search space. The outcome leads to a probability of getting a global optimum 

solution and leading the convergence to be accomplished in a smaller number of 

iterations. The PSO algorithm was implemented using software tool (MATLAB), 

and the maximum and minimum range of  process parameters, which were employed 

as constraints inorder to evaluate the objective functions for AA6061 and AA6061-

4.5%Cu-5%SiCp are as follows : Spindle speed (Min) = 1000rpm, Max = 3000 rpm, 

feed rate Min = 300mm/min, Max=500mm/min, depth of cut Min = 1mm, 

Max=3mm. 

 

Table 7.11: Numerical elucidation of PSO 

Number of parameters 3 

Number of particles 100 

Number of iterations 100 

Learning rate 

C1 max = C2 max 1.4 

C1 min = C2 min 1.8 

C1=C2=Cmin+R*(Cmax-Cmin) Where R = total iterations 

Xulim [1000, 300, 1] 

Xllim [3000, 500, 3] 

 

 

Related Airtcle: Rashmi L Malghan, Karthik Rao, Arun Shettigar, 

Shrikantha S Rao and Mervin A Herbert (2018). “Machining Parameters 

Optimization of AA6061 using Response Surface Methodology and Particle 

Swarm Optimization.” International Journal of  precision Engineering and 

Manufacturing, Springer 
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7.4.1 PSO Optimization for AA6061 

 

Table 7.12:  PSO Optimization for AA6061  

 

 
 

 

 

 

Related Article:  Rashmi Malghan, Karthik Rao, Arun Shettigar, 

Shrikantha  Rao and  D’Souza (2016). “ Application  Of  Particle Swarm 

Optimization And Response Surface Methodology For Machining Parameters 

Optimization Of Aluminium Matrix Composites In Milling Operation.” Journal 

of the Brazilian Society of Mechanical Sciences and Engineering, Springer,  

39(9), 3541–3553. 

 

 

SL. Spindle FX Ra 

NO Speed (rpm) (N) (µ)

1 2.6294 0.3324 0.0023 185.767 0.4283 0.2596

2 1.6563 0.3359 0.0018 172.087 0.5221 0.2364

3 1.7763 0.4153 0.0017 174.956 0.5111 0.2462

4 2.9653 0.3082 0.002 187.411 0.3965 0.2616

5 2.7755 0.3604 0.0024 186.774 0.4138 0.2691

6 1.9713 0.3725 0.0025 198.148 0.4918 0.2487

7 1.7455 0.4473 0.003 174.57 0.5143 0.2477

8 1.6353 0.3359 0.0018 172.087 0.5221 0.2364

9 2.8408 0.3114 0.001 186.966 0.4084 0.2608

10 2.2042 0.4891 0.0014 182.105 0.4688 0.2641

11 2.5901 0.3427 0.0029 185.305 0.432 0.2598

12 2.3628 0.3121 0.001 183.225 0.4542 0.2531

13 2.8152 0.3099 0.0019 186.838 0.4109 0.2602

14 2.0347 0.4335 0.0028 149.87 0.4857 0.2552

15 1.6725 0.3313 0.001 172.39 0.5205 0.2366

16 1.8789 0.3873 0.0025 176.665 0.5008 0.2472

17 2.7923 0.3121 0.0021 186.729 0.413 0.2601

18 2.4352 0.3624 0.0027 184.192 0.4967 0.2584

19 1.1804 0.3118 0.0025 160.448 0.5674 0.2172

20 1.8408 0.3277 0.0029 175.644 0.5042 0.2415

21 2.7145 0.4294 0.0014 186.627 0.4186 0.2692

22 2.643 0.3246 0.0025 180.813 0.4731 0.2498

23 2.793 0.3752 0.0027 186.901 0.4118 0.2656

24 2.4899 0.4437 0.003 185.013 0.4406 0.2666

25 2.8674 0.3725 0.0026 187.23 0.4046 0.2663

Depth of Cut         

(mm)

Power Consumption              

(kW)

Feed Rate 

(mm/min) 
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7.4.2 PSO Optimization for AA6061-4.5%Cu-5%SiCp 

 

Table 7.13: PSO Optimization for AA6061-4.5%Cu-5%SiCp 

 

 
 

Twenty Five solutions each for AA6061 and AA6061-4.5%Cu-5%SiCp out of 100 

sets of iterations along with the subsequent parameter setting is represented in the  

Table  7.11 respectively.  The optimal points for AA6061 and AA6061-4.5%Cu-

5%SiCp are represented in 3D plot as shown in Figure 7.6 and 7.7 respectively. Even 

the considered twenty Five optimal points for both AA6061 and AA6061-4.5%Cu-

5%SiCp have been reported in the Table 7.12 and 7.13 respectively. Based on the 

surface component requirements, the best solution can be selected. PSO optimal 

process parameters can be used as handy technology guidelines for optimal 

machining of AA6061 and AA6061-4.5%Cu-5%SiCp. Fitness evaluation function for 

AA6061 and AA6061-4.5%Cu-5%SiCp are represented in the Figures 7.5 (a-b).   

SL. FX 

NO (N)

1 2.6294 0.3324 0.0023 215.655 2.71 0.1817

2 1.6563 0.3359 0.0018 180.24 2.09 0.18

3 1.7763 0.4153 0.0017 185.62 2.24 0.2

4 2.9653 0.3082 0.002 258.93 1.45 0.45

5 2.7755 0.3604 0.0024 254.61 1.32 0.36

6 1.9713 0.3725 0.0025 194.06 2.21 0.31

7 1.7455 0.4473 0.003 183.32 2.36 0.29

8 1.6353 0.3359 0.0018 176.14 2.58 0.24

9 2.8408 0.3114 0.001 243.98 1.4 0.42

10 2.2042 0.4891 0.0014 198.06 2.18 0.33

11 2.5901 0.3427 0.0029 214.53 1.42 0.3

12 2.3628 0.3121 0.001 209.28 1.38 0.37

13 2.8152 0.3099 0.0019 257.3 1.42 0.41

14 2.0347 0.4335 0.0028 187.11 2.28 0.21

15 1.6725 0.3313 0.001 170.84 2.46 0.19

16 1.8789 0.3873 0.0025 173.02 2.15 0.17

17 2.7923 0.3121 0.0021 253.26 1.2 0.43

18 2.4352 0.3624 0.0027 227.31 1.38 0.34

19 1.1804 0.3118 0.0025 74.06 3.12 0.08

20 1.8408 0.3277 0.0029 126.23 1.38 0.26

21 2.7145 0.4294 0.0014 252.89 0.94 0.39

22 2.643 0.3246 0.0025 191.73 1.39 0.4

23 2.793 0.3752 0.0027 255.46 0.98 0.42

24 2.4899 0.4437 0.003 246.17 0.91 0.41

25 2.8674 0.3725 0.0026 258.09 1.68 0.44

Spindle Speed 

(rpm)

Depth of Cut            

(mm)

 Ra    

(µm)

Power Consumption       

(kW)

Feed Rate 

(mm/min) 
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Figure 7.5:  Convergence characteristics of PSO for (a) AA6061 (b) AA6061-

4.5%Cu-5%SiCp 

 

7.4.3 Graphical Display of optimal points for AA6061  and AA6061-4.5%Cu-

5%SiCp   

 
 

Figure 7.6: Optimal points for AA6061             Figure 7.7: Optimal points for     

                                                                   A6061-4.5%Cu-5%SiCp 
 

7.4.4 Validation Of PSO Results 

 

The PSO optimized values were experimentally evaluated for process parameter 

combination as confirmation experimentation. The responses precisely FX, Ra 

and Power consumption comparison of experimental and predicted values of 

AA6061 and AA6061-4.5%Cu-5%SiCp are  depicted in  Figure 7.8 (a-c)and 

 (a)  (b) 

   (a)  (b) 
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Figure 7.9 (a-c). From the Figures 7.8 (a-c) , 7.9 (a-c) it can be observed that, the 

predicted values are closely following the experimental values. The % of error 

attained is calculated based on the equation (7.10): 

    % Error = [
                 

       
                        (7.10) 

 

Where, Ei, expt is the experimental value for i
th

 trial and Yi, pred is the predicted 

by PSO for i
th

 trial. The error was calculated between the experimental and 

predicted value which is < 3% for FX, <2.8% for Ra and < 2.6% for power 

concumption for machining of AA6061. The error for FX is <2.5%, for Ra is 

<2.1% and for power consumption is <1.8% for machining of AA6061-4.5%Cu-

5%SiCp. The Figures 7.8 (a-c) and 7.9 (a-c) clearly indicate that the PSO 

predicted values are having good agreement with the experimental values. 

Hence PSO can be applied as a tool to predict the machining parameters for 

AA6061-4.5%Cu-5%SiCp in milling effectively.  

 

The RSM technique inorder to predict individual response it needs individual 

equation, thus at a single go only one response from its respective equation can 

be predicted. So, the multi objective optimization technique is suitable if more 

than one response is opted. Table 7.14 and 7.15 summarizes the optimal 

parameters attained through adopting different techniques for AA6061 and 

AA6061-4.5%Cu-5%SiCp respectively. Table 7.14 and 7.15 indicates the 

achieved optimized process parameters to attain the desired values of the 

respective responses and gives an indication that PSO technique gives accurate 

values as compared to that of the desirability approach and thus PSO has a better 

computational efficiency. PSO optimal process parameters can be used as handy 

technology guidelines for optimal machining of AA6061 and AA6061-4.5%Cu-

5%SiCp material. 
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7.4.5 AA6061- Experimental V/S PSO Predicted 

    

  

 

 

Figure 7.8 (a-c): Shows AA6061- Experimental V/S PSO Predicted 

(a) Cutting Force (b) Surface Roughness and (c) Power Consumption 

 

7.4.6 AA6061-4.5%Cu-5%SiCp - Experimental V/S PSO Predicted 

     

 

  (a)  (b) 

 (c) 

   (b)    (a) 
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Figures 7.9 (a-c): Shows AA6061-4.5%Cu-5%SiCp- Experimental V/S PSO 

Predicted (a) Cutting Force (b) Surface Roughness and (c) Power 

Consumption 

 Table 7.14: Optimal process parameters for AA6061 

Parameters Spindle 

speed 

(rpm) 

Feed rate 

 

(mm/min) 

Depth of 

cut 

(mm) 

Ra 

 

(μm) 

FX 

 

(N) 

Power 

Consumption 

(kW) 

Desirability 3000 500 3 0.51 165.

86 

0.264 

PSO 3000 500 3 0.489 166.

85 

0.263 

Experiment

al 

3000 500 3 0.48 164.

20 

0.262 

 

Table 7.15: Optimal process parameters for AA6061-4.5%Cu-5%SiCp 

Parameters Spindle 

speed 

(rpm) 

Feed rate 

 

(mm/min) 

Depth of 

cut 

(mm) 

Ra 

 

(μm) 

FX 

 

(N) 

Power 

Consumption 

(kW) 

Desirability 3000 500 3 1.14 257.

07 

0.43 

PSO 3000 500 3 1.03 259.

12 

0.45 

Experiment

al 

3000 500 3 1.0 259.

07 

0.45 

 

7.5 SUMMARY 

This section dealt with both traditional and non-traditional optimization algorithm, 

namely grey relational analysis, desirability approach and PSO technique. The 

working principle of grey relation and PSO technique were narrated. The 

mathematical models developed by RSM technique were utilized as a fitness function 

in PSO algorithm. In this chapter, cutting force (FX), surface roughness (Ra) and 

power consumption for AA6061 and AA6061-4.5%Cu-5%SiCp were analyzed 

through experiments. The quadratic regression model has been developed inorder to 

correlate the relation between input and the output machining parameters. The 

   (c) 
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developed models are utilized in PSO objective functions inorder to optimize the 

machining parameters. Based on the experimental analysis, the following conclusions 

are drawn: 

 Optimized process parameters were developed based on the Desirability, GRA 

and PSO optimization technique. 

 From the statistical (Desirability and GRA) and evolutionary (PSO) 

optimization techniques, it can be derived that PSO yields better results. PSO 

technique gives accurate values as compared to that of the desirability 

approach and thus PSO has a better computational efficiency. 

 The computational results reveal that the PSO algorithm is competitive with or 

superior to the other optimization algorithms for the considered problem. 

 The outcomes acquired through PSO are likewise compared with the 

customary desirability approach and it was found that PSO gives closer values 

compared to the results obtained with the desirability approach. 

 The error was calculated between the experimental and predicted value which 

is < 3% for FX, <2.8% for Ra and < 2.6% for power consumption for 

machining of AA6061.  

 The error for FX is <2.5%, for Ra is <2.1% and for power consumption is 

<1.8% for machining of AA6061-4.5%Cu-5%SiCp. The attained error 

percentage of predicted and experimental values was minimum for FX, Ra and 

power consumption. Hence it can be concluded that PSO technique is quite 

efficient and effective in optimization. 

 The result of confirmation experiments shows the effectiveness of PSO in 

surface roughness, cutting force and power consumption prediction . 

 Since PSO could able to obtain a global optimum solution within a reasonable 

execution time on a personal computer due to its faster convergence 

characteristic, the algorithms can be used on on-line systems for the selection 

of optimal cutting parameters. 

 The method is completely generalized and problem independent, so that it can 

be easily modified to other machining operations such as drilling, grinding, 

non-traditional machining operations, etc. 
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CHAPTER 8 

RESULTS AND DISCUSSION (PART 4) 

DEVELOPMENT OF CONTROL STRATEGY 

The proposed Adaptive controller is meant to minimize machining time during rough 

machining of raw material. The section discusses the modeling and simulation of 

control strategies in process of face milling using Software platform (Labview). The 

basic control design is based on the principle of „Adaptive Control‟, where a process 

parameter controls one or more of control parameters to achieve desired output/result. 

Here, the system measures the cutting force by measuring spindle power during 

machining and controls the feed rate as (Control parameter). By this technique the 

power utilization of the spindle power is improved and machining time reduced thus 

increasing production. The proposed concept is used for on-line determination of 

optimal cutting conditions in face milling operation, but it is obvious that the system 

can be extended to other machines to improve cutting efficiency. 

 

8.1 FLOW OF WORK 

 

The planning of strategy (both online and offline) for milling is implemented using 

Proportional,  Integral and Derivative logic (PID). PID is a control loop feedback 

mechanism. The flow of strategy is explained through flow chart as shown in Figure 

8.1. Initially the input parameters are assigned in frame 1. In frame 2, based on input 

parameters the specific cutting force is calculated (i.e. by online or offline method). If 

it is offline than we need to provide manually the attained cutting force (X-axis, Y-

xis, Z-axis) in order to calculate the specific cutting force. If it is online then suitable 

data acquisition component need to added so that it fetches the current signal and 

through these current signals the cutting force need to be calculated (as discussed in 

chapter 4). Now, the torque calculation needs to be done. In frame 3, based on the 

torque and specific cutting force the power utilization is calculated and compared with 

the rated machine capacity. So inorder to compensate the parameters (Speed and feed) 

based on the power utilization a PID logic is incorporated. Based on the PID logic the 

compensation of the parameters is set inorder to get the desired responses. Further on, 
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the same logic can be implemented using reverse mapping approach. Where the 

attained values from frame 3 can be fetched in excel sheet using C++ program. These 

fetched values can be further given for training. As the reverse mapping acts as 

advisory approach, the experimentation work can be reduced. 
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Figure 8.1 : Planning of Control Strategy 
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Figure 8.2 : Control Strategy Code 

 

Figure 8.2 represents the control strategy code (LABVIEW code). Figure 8.3(a-b) 

shows the simulation diagram for maximization of power capacity of CNC milling 

machine by considering the input parameters. The working and controlling logics 

have been discussed below; 

 

A.  Frame 1: 

In the frame 1 the user provides the input parameters, at initial stage the user has 

to provide the total power capacity of the machine (7.5Kw, Spark DTC 250) .The 

user can vary this in such a way that he can apply the same concept for other 

machines. 

The Rotational Speed of Spindle: It is selected based on the characteristics of 

the spindle capacity similarly Feedrate also selected. 

Dimension: In this part the user has to provide the Length, Width and Total Depth 

of Cut. 

Depth of Cut: where the user has to provide the DOC for each pass. 

Diameter of the Tool: Diameter of the tool has to be specified (Considered for 

50mm). 

Inserts: The number of Inserts has to be mentioned (5) 

 

B. Frame2: 

In this section each cutting force obtained from X, Y and Z axis are fed in to the 

frame 2, in order to calculate the specific cutting force. This specific cutting force 

further calculates the Torque of the spindle. In case of automatic control system 
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the data‟s (FX, FY and FZ) are directly fetched from the CNC system by using 

data acquisition system. 

 

C. Frame 3: 

In order to calculate the power the control logic has to be in run mode in order to 

achieve the desired value. The data‟s from the frame 1 and 2 are fed to the control 

system to calculate the power consumption of CNC machine during machining 

operation. The current power consumption during operation is compared with 

power capacity of CNC machine. In order to make use of the rated power 

utilization the following control logic has been adapted. 

 

 Selection of process parameters for maximization of the power 

consumption. 

From the Taguchi analysis technique the most significant factors are DOC, 

Feed rate, Spindle Speed. Since DOC remains constant during machining 

operation therefore in the controlling algorithm we considered Feedrate and 

Spindle speed to achieve the maximum power consumption. 

 The Adaption of selecting the control variables : Based on PID Logic 

The PID logic has been incorporated for the study to suggest a online and 

offline (feedback) strategy to compensate the spindle speed and feed rate.  

 

           Condition 1: 

If error in the power is less than 1, speed and feed has to be compensated. This 

compensated speed and feed are calculated by PID control logic. 

            dfeed= fp+fi+fd; 

            dspeed=sp+si+sd; 

 

           Condition 2: 

If error in the power is more than 1, only the feed has to be compensated to 

achieve the maximum power.  dfeed= fp+fi+fd;   
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8.2 Simulation Performance using Software Tool  

 

 
Figure 8.3 (a): Power and cutting force. 

 

 
Figure 8.3 (b): Power and cutting force 

The accuracy of simulation results clearly indicates the usefulness of the tool in 

facilitating a decision making system various combination of input parameters and the 

resulting system response in terms of measurable output can be tried to arrive at 

suitable recommendations to be adopted for the process. Simulated result for the 
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speed of 500 rpm, feed of 200 mm/min, depth of cut of 1 mm, cutting force in X 

direction as 350, Y direction as 260 and z direction as 85 N is shown in Figure 8.3(a). 

Result obtained from simulator was cutting force as 458 and Power raised to 7.5 

indicating for the need of compensation. Similarly the Simulated result for the speed 

of 2000 rpm, feed of 400 mm/min, depth of cut of 0.5 mm, cutting force in X 

direction as 380, Y direction as 220 and z direction as 100 N is shown in Figure 8.3 

(b). Result obtained from simulator was cutting force as 458 and Power raised to 7.5 

indicating Feed rate is more and needs compensation. The built simulation model can 

be tried for different combinations of Spindle Speed, Feed Rate, and DOC. 

 

8.3 CONCLUSION 

The accuracy of simulation results clearly indicate the usefulness of tool in facilitating 

a decision making system for various combination of input parameters and the 

resulting system responses in terms of measurable output can be tried to attain a 

suitable recommendations to be adopted for the process. 

 

 PID logic efficiently facilitates proper compensation of input parameters 

(speed and feed) based on the power constraint to attain desired response. 

 Simulated result for the spindle speed of 500 rpm, feed rate of 200 mm/min, 

depth of cut of 1 mm, cutting force in X direction as 350N, Y direction as 

260N and Z direction as 85 N, is shown in Figure 8.3(a). Attained simulator 

result for cutting force is 458N, Power raised to 7.5KW. Thus, indicating 

compensation need. 

 Similarly the Simulated result for the speed of 2000 rpm, feed of 400 mm/min,    

      depth of cut of 0.5 mm, cutting force in X direction as 380N, Y direction as    

      220N and Z direction as 100 N is shown in Figure 8.3(b). 

 

 

Related Airtcle : Rashmi L Malghan, Karthik Rao, Arun Shettigar, Shrikantha 

S Rao and R J D’Souza (2015). “Adaptive Control System for CNC Machine.” 

International Engineering Symposium - IES 2015 , Kumamoto University, Japan. 
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CHAPTER 9 

CONCLUSIONS AND SCOPE FOR FUTURE WORK 

 

1. Comparative study of various soft computing techniques namely (RSM, ANN, 

RNN, Desirability and PSO were successfully formulated for optimized 

prediction of the responses of AA6061 alloy and AA6061-4.5%Cu-5%SiCp in 

CNC machining. PSO technique is effective in optimization and yields better 

results compared to that of Desirability approach.  

2. The statistical study of errors indicates that the means of the errors in 

prediction of both the HRNN and ANN models calculated over target values 

are comparable and the statistical distribution of the two errors is equivalent.  

Thus the ANN and HRNN models are equivalent in terms of prediction 

capability, provided that the HRNN model is constructed from the parent 

ANN model having similar architecture as that of HRNN. The overall training 

time for an HRNN constructed by borrowing weights from a partially trained 

ANN is found to reduce significantly as compared to a fully trained ANN 

having the same prediction capability.  The results attained in case of forward 

mapping indicate that the neural network based approaches i.e. ANN and 

RNN (HRNN) attain greater predicting accuracy as compared to RSM 

statistical model, In case forward mapping, the results attained from ANN and 

RNN (HRNN) infer that both technique results are comparable and error lies 

within |5%|. 

3. In case of reverse mapping the results attained through ANN and RNN 

(HRNN) indicate that the RNN (HRNN) is better as compared to that of the 

ANN because due to the capability of the faster convergence of RNN 

compared to ANN and the error for ANN and HRNN lies within |10%|. 

4. The prediction of the input and output responses using Forward and Reverse 

Mapping approach have been successfully obtained by incorporating the RSM, 

ANN and HRNN models with available API libraries as part of the developed 

Graphical user interface (GUI). The GUI comprises of modules for task 

management namely, material, method and test option, it also includes sub 
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components for prediction of cutting force, surface roughness and power 

consumption. The developed GUI will serve as a generic platform to predict 

responses based on the parameters specified by the user.  

5. A control strategy has been developed by using PID logic with power as the 

constraint in software tool (Labview) for better machine utilization in milling 

operation.  

 

The unique feature of the current research is the development of an HRNN model 

(Case: Forward and Reverse mapping) which performs faster predictions than 

corresponding FFNNs with same levels of accuracy. This HRNN model has been 

developed through a novel approach of borrowing weights from a partially trained 

FFNN model, to be fed into an extended Elman Simple Recurrent Neural Network.  

 

9.1  Results and Purpose Of Incorporating Various Soft Computing Techniques  
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9.2 DIRECTIONS FOR FUTURE WORK 

The basic purpose of this thesis has been fulfilled by the contributions presented in the 

preceding chapters of this dissertation. However, there is still scope for further 

research which facilitates the enhancement of the performance of . Among them few 

possible future research topics have been outlined as follows: 

1. The developed HRNN model can be tired for other materials to study the 

prediction accuracy in other machining process. 

2. Reverse Mapping approach can be further extended to predict the responses 

and can be utilized as an advisory system in online feedback system. 

3. Comparative study of various soft computing techniques can be formulated for 

optimized prediction of responses for other materials in different machining 

process.  

4. Control strategy can be developed by using PID logic with other software tool 

for enhancement of productivity other machining process. 
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APPENDIX I 
PREDICTION PROGRAM 

main() 
{ 
  

cout << "       Prediction of responses of Milling of AA6061 andAA6061-
4.5%Cu-5%SiCp " << endl; 

  
cout << "       Forward and Reverse Mapping technique through Artificial 

Neural    
                        Network and Recuurent Neural Networks " << endl;          
  

cout << "                                  by" << endl;  
     

cout << "        Rashmi L Malghan [ME12F07]" << endl;  
  

cout << "        National Institute of Technology Karnataka, Surathkal" 
<<endl; 
 
cout << endl; 
  

cout << endl << "Enter your Network preference" << endl;  
  

cout << "1. Feed Forward Neural Network" << endl;  
  

cout << "2. Recurrent Neural Network" << endl;  
  

fchoise = getch();  
  

if (fchoise != '1' && fchoise != '2' ) { return 0; }  
  

else  for(;;) {  
 

char choice;  
 

cout << endl << "Enter the Training or Prediction preference" << 
endl;  

   
cout << "1. load data" << endl;   

  
cout << "2. learn from data" << endl;  

   
cout << "3. compute output pattern" << endl; 

cout << "4. make new data file" << endl;  
 

cout << "5. save data" << endl;  
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cout << "6. print data" << endl;  

 
cout << "7. change learning rate and momentum factor" << endl;  

 
cout << "8. exit" << endl << endl;  

 
cout << "Enter your choice (1-8)";  

   
 
// HIDDEN1 -> HIDDEN2 
  
for(y=0; y<hidden_array_2_size; y++) {  
  

for(x=0; x<hidden_array_1_size; x++)   
  

{   
  

temp += (hidden1[x] * weight_h_h[x][y]);  
 

}  
hidden2[y] = (1.0 / (1.0 + exp(-1.0 * (temp + bias[y 

+hidden_array_1_size])))); 
 

temp = 0;  
 }  
 
// HIDDEN2 -> OUTPUT 
  

for(y=0; y<output_array_size; y++) {  
   

for(x=0; x<hidden_array_2_size; x++)   
 {  

temp += (hidden2[x] * weight_h_o[x][y]);  
}  
output[pattern][y] = (1.0 / (1.0 + exp(-1.0 * (temp + bias[y +  
hidden_array_1_size + hidden_array_2_size])))); 

 
temp = 0;  

 }  
 

return;  
} 
 
void backward_pass(int pattern) 
{ 
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 register int x, y;  
  

register double dweight_h_o = 0.0 , dweight_h_h = 0.0, dweight_i_h = 0.0, 
temp = 0.0; 

 

// COMPUTE ERRORSIGNAL FOR OUTPUT UNITS 

for(x=0; x<output_array_size; x++)   
  
{  
   

errorsignal_output[x] = ((target[pattern][x] - output[pattern][x]) * 
output[pattern][x] * (1- output[pattern][x])) ; }  

 
// ADJUST WEIGHTS OF CONNECTIONS FROM HIDDEN LAYER 2 TO 
OUTPUT UNITS  
  
for(x=0; x<hidden_array_2_size; x++) {  
   

for(y=0; y<output_array_size; y++) {  
  

dweight_h_o = weight_h_o[x][y] - oldweight_h_o[x][y];  
 

weight_h_o[x][y] += ((learning_rate * errorsignal_output[y] * 
hidden2[x]) + (momentum * dweight_h_o));  

  
}  

  
}  
  

for(x=0; x<hidden_array_2_size; x++)   
   

for(y=0; y<output_array_size; y++)   
   

oldweight_h_o[x][y] = weight_h_o[x][y];  
   
 
// ADJUST BIASES FOR OUTPUT UNITS  
  

for(x=(hidden_array_1_size+hidden_array_2_size); x<bias_array_size; 
x++) {  

 
bias[x] += (learning_rate * errorsignal_output[x]);  
 }  

 
 



246 
 

// COMPUTE ERRORSIGNAL FOR HIDDEN LAYER 2 UNITS 
  
for(x=0; x<hidden_array_2_size; x++) {  
  

for(y=0; y<output_array_size; y++) {  
   

temp += (errorsignal_output[y] * weight_h_o[x][y]);  
}  
 
errorsignal_hidden2[x] = hidden2[x] * (1-hidden2[x]) * temp;  
 

temp = 0.0; 

}  
 
// ADJUST WEIGHTS OF CONNECTIONS FROM HIDDEN LAYER 2 TO 
HIDDEN LAYER 1  
  

for(x=0; x<hidden_array_1_size; x++) {  
   

for(y=0; y<hidden_array_2_size; y++) {  
   

dweight_h_h = weight_h_h[x][y] - oldweight_h_h[x][y];  
  

weight_h_h[x][y] += ((learning_rate * 
errorsignal_hidden2[y] * hidden1[x]) + (momentum * 
dweight_h_h)); 

   }  
  

}  
  

for(x=0; x<hidden_array_1_size; x++)   
   

for(y=0; y<hidden_array_2_size; y++)   
  

oldweight_h_h[x][y] = weight_h_h[x][y];  
 
 
// ADJUST BIASES OF HIDDEN LAYER 2 UNITS 
  

for(x=hidden_array_1_size; x<(bias_array_size-hidden_array_2_size); x++) 
{  
   

bias[x] += (learning_rate * errorsignal_hidden2[x]);  
  
}  
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 // COMPUTE ERRORSIGNAL FOR HIDDEN LAYER 1 UNITS 
  

for(x=0; x<hidden_array_1_size; x++) {   
  

for(y=0; y<hidden_array_2_size; y++) {   
  

temp += (errorsignal_hidden2[y] * weight_h_h[x][y]);   
}  

  
errorsignal_hidden1[x] = hidden1[x] * (1-hidden1[x]) * temp;  

  
temp = 0.0;  

  
}  
 

Development of GUI 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Web; 

using System.Web.UI; 

using System.Web.UI.WebControls; 

using iBL; 

using System.Data; 

using System.Web.UI.DataVisualization.Charting; 

 

namespace PandO 

{ 

    public partial class HomePage : System.Web.UI.Page 

    { 

        DataTable dtMethods; 

        DataTable dtMaterial; 

        DataTable dtTestType; 
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        Methods objMethods = new Methods(); 

        CMaterial objMaterial = new CMaterial(); 

        CValidationcs objValidate = new CValidationcs(); 

        protected void Page_Load(object sender, EventArgs e) 

        { 

            ScriptManager.RegisterStartupScript(this, this.GetType(), "ddlMet", 
"$('#ddlMethods').chosen();", true); 

            ScriptManager.RegisterStartupScript(this, this.GetType(), "ddlType", 
"$('#ddlType').chosen();", true); 

            ScriptManager.RegisterStartupScript(this, this.GetType(), "ddlMaterial", 
"$('#ddlMaterial').chosen();", true); 

            ScriptManager.RegisterStartupScript(this, this.GetType(), "ddlTestType", 
"$('#ddlTestType').chosen();", true); 

            lblHeader.Text = "Prediction and Optimization"; 

            if (!IsPostBack) 

            { 

                fillMethodList(); 

                fillMaterialList(); 

                fillTestType(); 

            } 

        } 

        public void fillMethodList() 

        { 

            dtMethods = objMethods.getMethodListforCombo(); 

            if (dtMethods != null) 

            { 

                foreach (DataRow _objRow in dtMethods.Rows) 

                { 



249 
 

                    ddlMethods.Items.Add(new 
ListItem(_objRow.Field<string>("MethodName"), 
Convert.ToString(_objRow.Field<Int32>("MethodId")))); 

                } 

                ddlMethods.Items.Add(new ListItem("--Select Methods--", "0")); 

                ddlMethods.SelectedValue = "0"; 

            } 

            else 

            { 

                ddlMethods.Items.Add(new ListItem("--Select Methods--", "0")); 

                ddlMethods.SelectedValue = "0"; 

            } 

             ddlType.Items.Clear(); 

            ddlType.Items.Add(new ListItem("--Select Type--", "0")); 

            ddlType.SelectedValue = "0"; 

        } 

        public void fillTestType() 

        { 

            dtTestType = objMaterial.getTestTypeListforCombo(); 

            if (dtTestType != null) 

            { 

                foreach (DataRow _objRow in dtTestType.Rows) 

                { 

                    ddlTestType.Items.Add(new 
ListItem(_objRow.Field<string>("TypeNM"), 
Convert.ToString(_objRow.Field<Int32>("TypeId")))); 

                } 

                ddlTestType.Items.Add(new ListItem("--Select Test Type--", "0")); 

                ddlTestType.SelectedValue = "0"; 



250 
 

            } 

            else 

            { 

                ddlTestType.Items.Add(new ListItem("--Select Test Type--", "0")); 

                ddlTestType.SelectedValue = "0"; 

            } 

        } 

        public void fillMaterialList() 

        { 

 

            dtMaterial = objMaterial.getMaterialListforCombo(); 

            if (dtMaterial != null) 

            { 

                foreach (DataRow _objRow in dtMaterial.Rows) 

                { 

                    ddlMaterial.Items.Add(new     

ListItem(_objRow.Field<string>("MaterialName"), 
Convert.ToString(_objRow.Field<Int32>("MaterialId")))); 

                } 

                ddlMaterial.Items.Add(new ListItem("--Select Material--", "0")); 

                ddlMaterial.SelectedValue = "0"; 

            } 

            else 

            { 

                ddlMaterial.Items.Add(new ListItem("--Select Material--", "0")); 

                ddlMaterial.SelectedValue = "0"; 

            } 

            //ddlType.Items.Clear(); 
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            //ddlType.Items.Add(new ListItem("--Select Type--", "0")); 

            //ddlType.SelectedValue = "0"; 

        } 

        protected void ddlMethods_SelectedIndexChanged(object sender, EventArgs 
e) 

        { 

            MethodType objMethodType = new MethodType(); 

            objMethodType.MethodId = int.Parse(ddlMethods.SelectedValue); 

            string ID = Convert.ToString(objMethodType.MethodId); 

            DataTable dt = objMethodType.getListofMethodType(ID); 

            //if (ddlMethods.SelectedValue != "0") 

            //{ 

 

DEVELOPMENT OF GUI (Home Page): FORWARD & REVERSE 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Web; 

using System.Web.UI; 

using System.Web.UI.WebControls; 

using iBL; 

using System.Data; 

using System.Web.UI.DataVisualization.Charting; 

namespace PandO 

{ 

    public partial class HomePage : System.Web.UI.Page 

    { 
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        DataTable dtMethods; 

        DataTable dtMaterial; 

        DataTable dtTestType; 

        Methods objMethods = new Methods(); 

        CMaterial objMaterial = new CMaterial(); 

        CValidationcs objValidate = new CValidationcs(); 

        protected void Page_Load(object sender, EventArgs e) 

        { 

            ScriptManager.RegisterStartupScript(this, this.GetType(), "ddlMet", 
"$('#ddlMethods').chosen();", true); 

            ScriptManager.RegisterStartupScript(this, this.GetType(), "ddlType", 
"$('#ddlType').chosen();", true); 

            ScriptManager.RegisterStartupScript(this, this.GetType(), "ddlMaterial", 
"$('#ddlMaterial').chosen();", true); 

 

            ScriptManager.RegisterStartupScript(this, this.GetType(), "ddlTestType", 
"$('#ddlTestType').chosen();", true); 

 

            lblHeader.Text = "Prediction and Optimization"; 

            if (!IsPostBack) 

            { 

                fillMethodList(); 

                fillMaterialList(); 

                fillTestType(); 

            } 

        } 

 

        public void fillMethodList() 

        { 
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            dtMethods = objMethods.getMethodListforCombo(); 

            if (dtMethods != null) 

            { 

                foreach (DataRow _objRow in dtMethods.Rows) 

                { 

                    ddlMethods.Items.Add(new 
ListItem(_objRow.Field<string>("MethodName"), 
Convert.ToString(_objRow.Field<Int32>("MethodId")))); 

                } 

                ddlMethods.Items.Add(new ListItem("--Select Methods--", "0")); 

                ddlMethods.SelectedValue = "0"; 

            } 

            else 

            { 

                ddlMethods.Items.Add(new ListItem("--Select Methods--", "0")); 

                ddlMethods.SelectedValue = "0"; 

            } 

 

            ddlType.Items.Clear(); 

            ddlType.Items.Add(new ListItem("--Select Type--", "0")); 

            ddlType.SelectedValue = "0"; 

        } 

      public void fillTestType() 

        { 

            dtTestType = objMaterial.getTestTypeListforCombo(); 

            if (dtTestType != null) 

            { 

                foreach (DataRow _objRow in dtTestType.Rows) 
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                { 

                    ddlTestType.Items.Add(new 
ListItem(_objRow.Field<string>("TypeNM"), 
Convert.ToString(_objRow.Field<Int32>("TypeId")))); 

                } 

                ddlTestType.Items.Add(new ListItem("--Select Test Type--", "0")); 

                ddlTestType.SelectedValue = "0"; 

            } 

            else 

            { 

                ddlTestType.Items.Add(new ListItem("--Select Test Type--", "0")); 

                ddlTestType.SelectedValue = "0"; 

            } 

        } 

        private void SplineChartExample_AISH11() 

        { 

            this.Chart1.Series.Clear(); 

            this.Chart1.Titles.Add("Reading"); 

 

            Series series = this.Chart1.Series.Add("Reading"); 

            series.ChartType = SeriesChartType.Column; 

 

            //series.Points.AddY(objMaterial.FX_Cutting_Force); 

            //series.Points.AddY(objMaterial.Ra_Surface_Roughness); 

            //series.Points.AddY(objMaterial.Power_Consmption); 

 

            series.Points.AddXY("FX", objMaterial.FX_Cutting_Force_AISH11); 

            series.Points.AddXY("RA", objMaterial.Ra_Surface_Roughness_AISH11); 
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            series.Points.AddXY("PC", objMaterial.Power_Consmption_AISH11); 

        } 

        protected void RadioForward_SelectedIndexChanged(object sender, 
EventArgs e) 

        { 

            if (RadioForward.SelectedItem.Text == "Forward") 

            { 

                objMaterial.MaterialId = int.Parse(ddlMaterial.SelectedValue); 

                if (objMaterial.GetMaterialDetails()) 

                { 

                    lblSpindleSpeed.Text = "Spindle Speed : <B> <font color='blue'> " + 
objMaterial.SpindleSpeed_low.ToString() + " - " + 
objMaterial.SpindleSpeed_High.ToString() + "</font></B>"; 

                    lblFeedRate.Text = "Feed Rate : <B> <font color='blue'> " + 
objMaterial.FeedRate_Low.ToString() + " - " + 
objMaterial.FeedRate_High.ToString() + "</font></B>"; 

                    lblDepthOfCut.Text = "Depth of Cut : <B> <font color='blue'> " + 
objMaterial.Depth_of_Cut_Low.ToString() + " - " + 
objMaterial.Depth_of_Cut_High.ToString() + "</font></B>"; 

 

                    lblFXR.Text = "FX-Cutting Force"; 

                    lblRAR.Text = "RA-Surface Roughness"; 

                    lblPC.Text = "Power Consumption"; 

                } 

                else 

                { 

                } 

            if (RadioForward.SelectedItem.Text == "Reverse") 

            { 

                objMaterial.MaterialId = int.Parse(ddlMaterial.SelectedValue); 
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                if (objMaterial.GetMaterialDetailsReverse()) 

                { 

                    lblSpindleSpeed.Text = "Cutting Force : <B> <font color='blue'> " + 
objMaterial.SpindleSpeed_low.ToString() + " - " + 
objMaterial.SpindleSpeed_High.ToString() + "</font></B>"; 

                    lblFeedRate.Text = "Surface Roughness : <B> <font color='blue'> " + 
objMaterial.FeedRate_Low.ToString() + " - " + 
objMaterial.FeedRate_High.ToString() + "</font></B>"; 

                    lblDepthOfCut.Text = "Power Consumption : <B> <font color='blue'> " 
+ objMaterial.Depth_of_Cut_Low.ToString() + " - " + 
objMaterial.Depth_of_Cut_High.ToString() + "</font></B>"; 

                    lblFXR.Text = "Spindle Speed"; 

                    lblRAR.Text = "Feed Rate"; 

                    lblPC.Text = "Depth of Cut"; 

                } 

                else 

                { 

} 
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RESPONSE EQUATIONS : (CMaterial) 

     public DataTable getMaterialListforCombo() 
        { 
            DataTable dtTeams = null; 
            string strSql = string.Format("SELECT MaterialId,MaterialName  FROM 
MaterialMaster"); 
            if (objDB.selQueryDataset(strSql)) 
            { 
                dtTeams = objDB.resultDataset.Tables[0]; 
            } 
            return dtTeams; 
        } 
 
        public DataTable getMaterialList(string MeterialId) 
        { 
            DataTable dtTeams = null; 
            string strSql = string.Format("SELECT MaterialId,MaterialName, from 
MaterialMaster Where MethodId=" + MeterialId); 
            if (objDB.selQueryDataset(strSql)) 
            { 
                dtTeams = objDB.resultDataset.Tables[0]; 
            } 
            return dtTeams; 
        } 
 
        public DataTable getTestTypeListforCombo() 
        { 
            DataTable dtTeams = null; 
            string strSql = string.Format("SELECT TYpeId,TypeNM FROM 
TypeMaster"); 
            if (objDB.selQueryDataset(strSql)) 
            { 
                dtTeams = objDB.resultDataset.Tables[0]; 
            } 
            return dtTeams;        } 
public bool Get_RSM_FX_Cutting_Force_AA6061_45() 
        { 
            try  { 
                decimal Var1 = Convert.ToDecimal(-215.06991); 
                decimal Var2 = Convert.ToDecimal(0.10846); 
                decimal Var3 = Convert.ToDecimal(0.83246); 
                decimal Var4 = Convert.ToDecimal(10.39903); 
                decimal Var5 = Convert.ToDecimal(8.19703E-005); 
                decimal Var6 = Convert.ToDecimal(2.23735E-003); 
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           decimal Var7 = Convert.ToDecimal(6.21407E-004);                
_FX_Cutting_Force_AA6061_45 = Var1 + (Var2 * _SpindleSpeed_Input) + (Var3 * 
_FeedRate_Input) 
                    + (Var4 * _Depth_of_Cut_Input ) - (Var5 * _SpindleSpeed_Input * 
_FeedRate_Input) 
                    - (Var6 * _SpindleSpeed_Input * _Depth_of_Cut_Input) - (Var7 * 
_FeedRate_Input * _FeedRate_Input); 
                return true; 
            } 
            catch (Exception e) 
            { 
                _errorMessage = e.Message; 
                return false; 
            } 
  } 

public bool Get_RSM_FX_Cutting_Force_AA6061_45()   {          

 try            { 

                decimal Var1 = Convert.ToDecimal(-215.06991); 

                decimal Var2 = Convert.ToDecimal(0.10846); 

                decimal Var3 = Convert.ToDecimal(0.83246); 

                decimal Var4 = Convert.ToDecimal(10.39903); 

                decimal Var5 = Convert.ToDecimal(8.19703E-005); 

                decimal Var6 = Convert.ToDecimal(2.23735E-003); 

                decimal Var7 = Convert.ToDecimal(6.21407E-004); 

                _FX_Cutting_Force_AA6061_45 = Var1 + (Var2 * _SpindleSpeed_Input) + 
(Var3 * _FeedRate_Input) 

                    + (Var4 * _Depth_of_Cut_Input ) - (Var5 * _SpindleSpeed_Input * 
_FeedRate_Input) 

                    - (Var6 * _SpindleSpeed_Input * _Depth_of_Cut_Input) - (Var7 * 
_FeedRate_Input * _FeedRate_Input); 

                return true;            } 

            catch (Exception e)         {   _errorMessage = e.Message;   return false;         }      
} 

 

******************************** The End *********************************** 
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APPENDIX II  - Machine Specifications 

DTC- 250/Spark [Drill Tap Machining Center, Vertical]  

I. Feed Slide - Z Axis (Vertical) 

a. Type of Feed   : A. C. Servo drive with ball screw and pre-loaded nut. 

b. Feed range   : 1 mm/min. to 10,000 mm/min. 

c. Rapid Traverse  :15000 mm/min. 

d. Motor torque   : 7 Nm. 

e. Max working Stroke : 250 mm. 

f. Axial Thrust  : 350 kg. 

 

 II. Feed Slide - X Axis (Horizontal) 

a. Type of Feed   : A. C. Servo drive with ball screw and pre-loaded nut. 

b. Feed range   : 1 mm/min. to 10,000 mm/min. 

c. Rapid Traverse  : 20000 mm/min. 

d. Motor torque   : 3.5 Nm. 

e. Max working Stroke : 300 mm. 

f. Axial Thrust  : 180 kg. 

 

III. Feed Slide - Y Axis (Horizontal) 

a. Type of Feed   : A. C. Servo drive with ball screw and pre-loaded nut. 

b. Feed range   : 1 mm/min. to 10,000 mm/min. 

c. Rapid Traverse  : 20000 mm/min. 

d. Motor torque   : 3.5 Nm. 

e. Max working Stroke : 250 mm. 

f. Axial Thrust  : 180 kg. 

 

IV. Spindle Drive 

a. No. of Spindles  :  1. 

b. Speed Range   : 60 to 6000rpm as std, 80 to 8000 rpm as optional. 

c. Type of Motor   : A.C. Motor with Transistor (PWM) Control. 
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d. Constant Power range    : 5.5 kw max at 30 min. of Continuous Running, 3.7 

kw  

                                        Continuous Running.                                                           

                                        

e. Tool Holder Taper : BT 30. 

 

V. Electrical Supply Condition 

a. Machine  : 415V+ 5%, 5o Cycle/Minute, 3Phase, 4 wire. 

b. Controls  : 24 Volts, DC. Necessary Transformer for Conversion 

is       provided. 

c. Tool Connected Load : 15 KVA Std. 

 

VI. Automated Tool Changer 

a. Tool Storage   : 6Nos. 

Capacity 

b. Max Tool Weight : 2.5 kg. 

c. Max Tool Length : 200mm. 

d. Max Tool Dia : 80mm. 

 

APPENDIX III 

G codes   

G00 - Positioning at rapid speed   

G01 - Linear interpolation (machining a straight line) 

G02 - Circular interpolation clockwise (machining arcs) 

G03 - Circular interpolation, counter clockwise 

G04 - Dwell   

G09 - Exact stop   

G10 - Setting offsets in the program   

G12 - Circular pocket milling, clockwise   
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G13 - Circular pocket milling, counter-clockwise 

G17 - X-Y plane for arc machining 

G18 - Z-X plane for arc machining 

G19 - Z-Y plane for arc machining 

G20 - Inch units   

G21 - Metric units  

G27 - Reference return check   

G28 - Automatic return through reference point 

G29 - Move to location through reference point 

G31 - Skip function   

G32 - Thread cutting   

G33 - Thread cutting   

G40 - Cancel diameter offset 

G41 - Cutter compensation left 

G42 - Cutter compensation right 

G43 - Tool length compensation   

G44 - Tool length compensation cancel 

G50 - Set coordinate system and maximum RPM 

G52 - Local coordinate system setting 

G53 - Machine coordinate system setting 

G54~G59 - Workpiece coordinate system settings 

G61 - Exact stop check  

G65 - Custom macro call   

G70 - Finish cycle   

G71 - Rough turning cycle   

G72 - Rough facing cycle   
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G73 - Irregular rough turning cycle   

G73 - Chip break drilling cycle   

G74 - Left hand tapping   

G74 - Face grooving or chip break drilling   

G75 - OD groove pecking   

G76 - Fine boring cycle   

G76 - Threading cycle  

G80 - Cancel cycles   

G81 - Drill cycle   

G82 - Drill cycle with dwell   

G83 - Peck drilling cycle   

G84 - Tapping cycle   

G85 - Bore in, bore out   

G86 - Bore in, rapid out   

G87 - Back boring cycle   

G90 - Absolute programming   

G91 - Incremental programming   

G92 - Reposition origin point   

G92 - Thread cutting cycle   

G94 - Per minute feed   

G95 - Per revolution feed   

G96 - Constant surface speed control   

G97 - Constant surface speed cancel   

G98 - Per minute feed   

G99 - Per revolution feed 



263 
 

M codes  

M00 - Program stop  

M01 - Optional program stop  

M02 - Program end  

M03 - Spindle on clockwise  

M04 - Spindle on counter-clockwise  

M05 - Spindle off  

M06 – Tool change  

M08 - Coolant on  

M09 - Coolant off  

M10 - Chuck or rotary table clamp  

M11 - Chuck or rotary table clamp off 

M19 - Orient spindle  

M30 - Program end, return to start  

M97 - Local sub-routine call  

M98 - Sub-program call  

M99 - End of sub program 
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