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ABSTRACT 

Fault diagnosis of the cutting tool is very essential for improving the quality and 

maintaining the accurate dimension of the products during machining process. The milling 

is a multi-toothed metal removing process. In face milling, because of dynamic variation 

of cutting forces, thermo-mechanical shocks and vibration, which results in catastrophic 

tool failure along with gradual wear of the tool inserts. Wear development during 

machining can reach up to unacceptable level, resulting in inaccurate dimension and poor 

surface finish of the components. Monitoring the condition of the cutting tool during face 

milling operation is a vital role before the tool causes any damage on the machined surface 

which becomes highly valuable in order to avoid loss of products, damage to the machine 

tool and associated loss in productivity. Keeping in view of the automation, it is necessary 

to choose an effective and efficient method for monitoring the cutting tool condition 

without affecting the machining setup and the work material. 

This study mainly deals with the fault diagnosis of the face milling tool using vibration and 

sound signals through signal processing techniques and machine learning approach. The 

face milling is a machining process with an intermittent cutting action. The milling tool 

will undergo different types of faults such as flank wear, breakage and chipping which 

occurs predominantly during milling. The vibration and sound signals under these faulty 

and healthy milling tool conditions are acquired and these signals are further analyzed. 

Current research work is mainly categorized into two phases. 

The first phase is to detect/diagnose the face milling tool conditions by analyzing the 

vibration and sound signals using signal processing techniques. The signal processing 

techniques such as time-domain analysis, spectrum analysis, cepstrum analysis and 

continuous wavelet transform (CWT) method are applied to recognize the face milling tool 

conditions. The cepstrum analysis has been applied for the first time in fault detection of 

the face milling tool and has provided the sufficient information about the face milling tool 

condition using both vibration and sound signals. Generally conventional data processing 

is computed in time or frequency domain which is not suitable for analyzing non-stationary 

signals. In order to overcome the lack of a global view on how to develop machining 

monitoring systems based on artificial intelligent models, machine learning approach is one 

of the best methods for developing an effective tool condition monitoring (TCM) system. 



 

In the second phase, fault diagnosis studies of the face milling tool using vibration and 

sound signals based on artificial intelligence techniques are conducted. Fault diagnosis of 

the different tool conditions based on machine learning technique is basically comprised of 

three steps; feature extraction, feature selection and feature classification. Different features 

such as, statistical features, histogram features, discrete wavelet transform (DWT) features 

and empirical mode decomposition (EMD) features are extracted from the acquired 

vibration and sound signals. For example, features such as skewness, mode, standard error, 

maximum, minimum, range, sum, mean, standard deviation, median, sample variance and 

kurtosis are computed from each acquired vibration and sound signals will serve as 

statistical features. The important features out of all extracted features are to be selected 

using induction based on decision tree technique (ID3 algorithm or J48 algorithm). The 

artificial intelligence techniques such as support vector machine (SVM), Naïve Bayes 

algorithm, artificial neural network (ANN), decision tree algorithm and K-star algorithm 

are used to classify the data using selected features. Fault diagnosis analysis with acquired 

vibration and sound signals are carried out by making use of different combinations of 

feature extraction methods and different classifiers with selected features based on decision 

tree technique.  

Overall results have shown that the vibration signal based fault diagnosis has given better 

classification accuracy than the sound signal based fault diagnosis. The current research 

work has demonstrated that the statistical features served as best features among all other 

features extracted such as, EMD features, Histogram features and DWT features. It is also 

found that the Naïve Bayes algorithm provides best classification accuracy in comparison 

with other classifiers used such as SVM, ANN, decision tree and K-star algorithm. Based 

on research work, it is proposed that the combination of statistical features and the Naïve 

Bayes algorithm as classifier is the best feature-classifier pair using vibration signals in tool 

condition monitoring system for the face milling process. 

Keywords: Fault diagnosis; Face milling; Vibration signal; Sound signal; Signal 

processing technique; Artificial intelligence technique; Machine learning approach. 
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CHAPTER-1 

INTRODUCTION 

1.1 OVERVIEW 

Machining is the most common manufacturing process and widely used to manufacture 

components that require high accuracy in dimension and good surface quality. The 

present global market competition has attracted the manufacturer’s attention on 

automation of manufacturing systems via condition monitoring of machine tool and 

processes results in improving quality of the products, minimizing inspection and 

enhancing manufacturing productivity. Excessive tool wear and tool breakage are the 

main reasons for the machine tool downtime. The damaged cutting tool, which results 

in poor surface finish and inaccurate dimension of the product. Production rate 

increases significantly by reducing the machine tool downtime. Tool condition 

monitoring (TCM) is extremely viable in reduction of cutting tool downtime. 

In modern manufacturing industries, there is an increasing need for low cost with high 

quality products. The quality of a product is strongly associated with the condition of 

the cutting tool during machining. The machined products should have the desired 

shape with precise dimension and an acceptable surface finish. Besides these factors, 

tool life also plays a vital role in the manufacturing (Orhan et al. 2007). Uncontrolled 

variations in cutting conditions influence product quality, resulting in the decrease in 

productivity due to an increase in rejections based on quality standards, which in turn 

increases production cost. Therefore, most of the manufacturing industries are aiming 

to implement strategy based automated manufacturing systems with an effort to 

improve process control. Also the competitiveness in the global market has encouraged 

the manufacturers to produce high quality products at higher production rate, which has 

led to manufacturers demand for advanced methods for online TCM system. There is a 

constant need for a comprehensive research in developing real-time automated 

monitoring and diagnostic systems. These systems would continuously monitor the 
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process behaviour and apply corrective action in a timely manner, whenever changes 

in tool condition occur. 

1.2 SIGNIFICANCE OF TOOL WEAR PREDICTION 

Automated manufacturing systems provide good quality products at a higher rate of 

production and less cost in today’s competitive world. It becomes necessary to reduce 

production downtime. Tool wear and chatter are major factors affecting machining 

process in the form of surface finish and dimension of the products. Therefore it is 

necessary to assess tool wear regularly. Various techniques have been proposed for tool 

wear monitoring and chatter detection in the recent past. None of these techniques were 

universally successful due to the complex nature of tool wear occurrence during the 

machining process. Tool wear prediction has become an important component of the 

TCM system. The TCM system is one of the effective tools which will be helpful in 

sustaining the desired process functions, performance and reducing unscheduled 

shutdowns. 

In machining operations, the most common methods of cutting tool failures are 

progressive wear and fracture of the cutting edge, which will have detrimental effects 

on both the dimensions and the surface finish of the final product. Therefore, it is very 

essential that cutting tools are not permitted to degrade sufficiently to cause damage to 

the work materials. Hence, it is necessary to recognise/diagnose the tool condition 

during the process using TCM system. The following section will describe the methods 

for condition monitoring of the cutting tool. 

1.3 TOOL CONDITION MONITORING METHODS 

The monitoring of cutting tool wear is a more complex task than expected, because tool 

wear induces very small changes in a process with a very wide dynamic range. Some 

important methods for cutting tool monitoring are explained below. 

1.3.1 Mathematical model based condition monitoring  

Analytical models can be very useful to study the effects of tool geometry on the various 

machining parameters, but these models are too complex to be of any value in a real-
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time TCM system. The non-linear, stochastic and time invariant nature of machining 

processes make modelling very difficult. A transformation between the signal 

characteristics and the physical law representing the process is necessary to establish 

such a model. Because of the complexity of the process, modelling of the physical law 

cannot be performed analytically in most instances (Scheffer, 2006). Traditional 

assessment of tool life using Taylor’s tool life equation does not provide sufficient 

information about the complete life cycle of the tool. In some situations, it may lead to 

an overestimation of tool life and in some situations to underestimation of tool life and 

this will lead to excessive replacements of the tool. It was found from experiments that 

the Taylor’s tool life equation could estimate within ± 35 percent of the actual tool life. 

As a consequence, precious time and scarce resources will be wasted (Teti et al. 2010). 

1.3.2 Signal based condition monitoring 

TCM techniques include direct measurement and indirect measurement of tool wear. 

Direct measurements of cutting edge provides the most accurate information about 

physical deterioration of the cutting tool in certain conditions only. During machining 

the cutting fluid surrounds the tool, making online direct measurements difficult. Also 

the direct measurements have not yet proven to be very attractive either technically or 

economically. Currently, indirect measurements are more suitable for on-line in process 

applications. Indirect measurements are based on the relationship between the 

measuring data of the machining process and the tool conditions. The measuring 

process data, such as vibration signals, current signals, sound signals, cutting force 

signals, acoustic emission (AE) signals, etc. are acquired using suitable sensors such as 

accelerometer, AE sensor, cutting tool dynamometer, Hall effect sensor, etc. can be 

seen in indirect measurement technique.  

1.4 MEASURANDS FOR MACHINING PROCESS  

A sensor/transducer is a device which converts one form of energy into another form. 

It processes a physical quantity of the system to be analysed in such a way that it is 

generating the signal which can be read easily by an instrument or by an observer. Some 

energy forms related to machining processes contain radiant energy, thermal energy, 
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electrical energy and mechanical energy. The input quantities or properties that are to 

be measured by sensors are called measurands. The common measurands for machining 

process monitoring are as shown in Figure 1.1. 

 

Figure 1.1 Measurands commonly used for machining process monitoring  

Figure 1.1 illustrated the commonly used measurands in machining monitoring 

systems. Mainly, four types of sensor signals are most widely used to monitor the 

machining process such as vibration signals, cutting force analysis, motor 

power/current signals and AE signals.  

1.4.1 Cutting force analysis 

Cutting force is one of the variables, which can be measured during machining process. 

This variable has some desired characteristics like rapid response and high sensitivity 

to the changes in tool condition. Cutting force signals are used to investigate the cutting 

tool /process condition. The cutting force is measured using dynamometers. Strain 
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gauge type or piezoelectric type dynamometers are widely used for cutting force 

measurement. The analysis of cutting forces by using tool dynamometer in order to 

examine the cutting tool conditions or process condition can be seen in the literature 

explained in section 2.4.1. 

1.4.2 Acoustic emission (AE) signal analysis 

During machining, due to the rapid release of energy from the material surface or from 

the localised sources in a material, the transient elastic wave is created. This wave is 

acquired by the device called AE sensor. Chip breakage, impact of the chip at the 

workpiece, crack formation and propagation, plastic deformation in the shear zone, 

friction on the flank and the rake face are the major sources of AE in machining process. 

By using this AE technique, the condition of the cutting tool (wear, tool 

breakage/chipping) and/or machining process can be easily analysed. The usage of AE 

sensor in fault diagnosis of cutting tool condition and machine elements will be 

discussed in section 2.4.2. 

1.4.3 Vibration signal analysis 

Vibration occurs due to the interaction between the workpiece and the cutting tool 

during machining. Variation in cutting forces and spindle rotation could also be the 

reason for vibration. Vibration characteristics such as frequency and amplitude will be 

varied as the chatter or cutting tool wear occurs. Many failure modes of the machining 

process can be discovered in the vibration signals. The vibration signal can be easily 

measured by using accelerometer. The vibration analysis technique has been widely 

used in machining processes. The literature on machining process using vibration 

signals will be explained in section 2.4.5 and in the present study. 

1.4.4 Motor power/current signal analysis 

During machining, by analysing the spindle drive current the status of the cutting tool 

such as tool wear, breakage, collision, etc. can be detected. Some desired parameters 

such as, motor power, phase shift, line voltage and current can be assessed from the 

measurement. This technique has the ability to gain information about the actual power 
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required to drive the machine tool controller without additional sensors. The Hall 

sensors are used to measure the current during machining process (Li and Chen, 2015). 

In indirect measurement, signal processing deals with the analysis of acquired signals 

so that the information contained in signals can be extracted, displayed, analysed, 

interpreted or converted to another type of signal that may be of use. Specifically, the 

signal processing method is classified as the time domain, the frequency domain, and 

time-frequency domain analysis. Then the signal is further analysed by using artificial 

intelligence approaches and/or machine learning techniques to build a decision making 

system (Li and Chen, 2015). The details about signal processing techniques and 

machine learning methods will be explained in Chapter 3. In this thesis, an attempt is 

made to explain the fault diagnosis of the face milling tool using sound and vibration 

signals through machine learning technique and also based on conventional signal 

processing techniques. The following section will explain, briefly the process of face 

milling and different tool conditions which are considered for the analysis in the present 

study. 

1.5 FACE MILLING PROCESS 

Face milling involves the use of multi-toothed, rotating cutters to remove material from 

the surface of a workpiece. Face milling tool has multiple cutting edges that are 

unevenly loaded by cutting force despite being engaged in the workpiece at the same 

time. Figure 1.2 depicts the milling machine and the face milling operation. 

In milling, the primary motion (rotational) is provided by the cutting tool, wherein the 

face of the tool approaches the work material. Normally the primary motion absorbs a 

majority of the total power required for machining, which is easily seen by the harsh 

conditions (temperature and pressure). The primary motion is delivered to the work 

material via a multiple-tooth cutter which intermittently enters, removes a particular 

amount of the work material and exits. This action produces a helical-continuous chip 

or discontinuous chips in one revolution, depending on the properties of the material 

being cut and the condition of the inserts. Normally, face milling is performed with 
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indexable inserts that are mechanically fastened to the cutter body refer Figure 1.3. 

These inserts provide a deep axial cut and narrow radial cut to the work material. 

 

(a) Milling machine 

 

(b) Face milling tool with 

workpiece 

Figure 1.2 illustrates (a) Milling machine and (b) face milling process 

These inserts are normally made from carbide or ceramic materials with tungsten-

carbide coatings, depending on the wear resistance required. Such inserts can be used 

until a given cutting edge is blunt, at that time they are indexed (repositioned) in the 

cutter body to present a new, sharp cutting edge. Once all the edges of the indexable 

insert have been fully utilised, the insert is discarded and a new insert replaces the worn 

out one. 

Metal cutting operations such as drilling, planing and turning utilize equivalent material 

removal mechanisms to those applied in milling. However, the difference in tool 

geometry and the distinct metal removal features associated with rotating multi-point 

tools, generate significantly different forces of greater complexity. The forces generated 

during milling are characterised by four features; 
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 Rapidly changing forces as a result of interrupted cutting. 

 The force fluctuations have a periodicity and deterministic characters. 

 Presence of strong deterministic and stochastic components. 

 The signals from several inserts in the same cutting tool have great similarities. 

Although milling is a common machining operation, the interrupted cutting process is 

unusual when compared to other metal removal operations. The process of engaging 

and disengaging the work material is a sequential operation that produces a great 

variable force signal. The mean value of this force may differ greatly from the 

instantaneous values, as well; the mean and the maximum values have notably large 

differences between them. Basically it is found that the operation with minimum 

number of teeth, results in the greater the difference between the mean and maximum 

force values. 

Machining of metals is frequently accompanied by relative vibration in the machine 

tool-work material structure. Vibrations are intended to occur in metal cutting 

operations under certain operating conditions. The face milling process produces 

vibrations of deterministic character that propagate through the structure of the 

machine. In addition, there are vibrations generated by other factors inherent to face 

milling that contribute to the overall complexity of the vibration signals (Shridhar 

2012). Measurements are taken from the machine tool-work material structure with 

different tool conditions which can be seen in the following section. 

1.6 CUTTING TOOL FAULTS 

Cutting tool wear is the result of load, friction and high temperature between the cutting 

edge and work-piece. In the metal cutting process the cutting tools suffer different kinds 

of wear such as crater wear, flank wear, chipping and fracture and notch wear 

(Latifzada, 2013). Milling is one of the most versatile machining processes used for 

various metal cutting operation. It is highly effective in producing components with 

complex profiles with high surface integrity and geometrical accuracy. Milling is a 

machining process with intermittent cutting action which generates the transient impact 

force on the cutter. Tool ‘chipping’ and tip ‘breakage’ are predominantly occurred due 



9 
 

to these impact forces. Baek et al. (2000) investigated the chipping and breakage tool 

conditions in the milling process. Along with these faults, the ‘flank wear’ is also one 

of the faults arising during the process. A few researchers Vallejo et al. (2008) and Yan 

et al. (1999) examined the flank wear during milling operation for online monitoring of 

the milling tool. Figure 1.3 depicts the milling cutter and tool insert, generally that are 

used in the milling operation. 

 

(a) Milling cutter 

 

 

(b) Insert 

Figure 1.3 Milling cutter with insert 

1.6.1 Flank wear and crater wear 

 

Figure 1.4 Flank wear and crater wear on cutting tool insert 

Cutting tool wear on their rake face and clearance (or flank) face occur by the process 

of attrition. Attrition is defined as a rubbing process that takes away the material, while 

gradually weakening both the surfaces in contact. The two prominent wear on a cutting 
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tool are crater wear and flank wear. Both these wear decrease the tool life and will 

change work dimensions. Figure 1.4 shows the milling insert with crater wear and flank 

wear. The rubbing of the cutting tool along the new work material surface causes flank 

wear. As the flank wear increases, the dimension of the machined components drift 

away from acceptable tolerances. Crater wear results from the action of a chip flowing 

along the tool face. Most often the crater or cavity is formed close to the cutting edge. 

1.6.2 Tool chipping and breakage 

Figure 1.5 shows the chipping and breakage (or fracture) of the tool edge and they are 

also other types of common tool failure in milling operations and these faults are 

affecting the rake and clearance face to varying degrees. Chipping appears when a 

relatively small amount of tool material is removed, but the variations in geometry of 

the tool has little effect on the work material surface finish. When fracture occurs, a 

significant portion of the tool edge is broken off, which imparts substantial changes to 

the cutting conditions. Also, the tool edge is susceptible to fracture from transient 

thermal stresses that occur in discontinuous machining. 

 
 

(a) Chipping on rake face near 

cutting edge 
(b) Breakage of cutting edge 

Figure 1.5 Chipping and breakage inserts 

The flank wear, chipping and breakage conditions predominantly occur as fault 

conditions in milling process. Hence these three fault conditions are considered for the 

analysis. In contrast with turning, milling is a multi-point cutting process with increased 
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complexity, renders greater challenges in condition monitoring and fault diagnosis of 

the cutting tool. 

Byrne et al. (1995) made an in depth study on requirement of TCM system, which is to 

be used for optimizing the tool usage, reducing the non-productive time, tool breakage 

detection, improving the process stability, etc. The demands on TCM system in 

industrial applications and manufacturing research field are summarized as follows; 

 High robustness 

 Unmanned production 

 Little maintenance 

 Reduced response time 

 Low installation cost, etc. 

TCM system is very helpful to improve the quality of the component, production rate 

and reduction in downtime and to increase the system reliability. In addition, the TCM 

system is characterised by better performance due to the integration of most powerful 

hardware and software. It comprises of signal processing and artificial intelligent 

techniques software, microelectronic components, etc. which provide the relationship 

between the process and the sensor data. These will make the systems truly knowledge-

based, self-learning and adaptive. 

1.7 MACHINING PROCESS MONITORING 

Process monitoring is signifying the condition of the process with measuring process 

parameters such as sound signals, cutting force signals, vibration signals, current 

signals, etc. Process monitoring helps to decrease the cost of machining process by 

increasing the quality of products and reducing the tool breakage downtime and 

maintenance cost. 

The machine tool operators carry out the monitoring task primarily. They visually 

identify the broken tools and also chatter condition from the generated sound with the 

system. The contemporary monitoring methods are automated monitoring algorithms. 

These algorithms utilise sensor measurements for defining the state of the process. 
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Complex processes are monitored with the signal processing methods which investigate 

the acquired signals of the systems. Artificial intelligence methods are most commonly 

used techniques for process monitoring. They are mostly utilized for pattern recognition 

and for designing the process monitoring algorithm.  

In indirect measurement of cutting tool, an option for analysing the tool condition is to 

use signal monitoring of various process parameters including cutting force, sound, 

acoustic emission (AE) signal, current signal, temperature, vibrations, etc. Among this, 

vibration monitoring is extensively used as a successful technique in identification of 

fault in machining process. Sound monitoring is a cost effective method in the area of 

fault diagnosis and condition monitoring. In this research work, sound monitoring is 

also tried for fault diagnosis study. 

1.8 MONITORING METHODS USING VIBRATION AND SOUND SIGNALS 

The existing cutting tool monitor methods still cannot satisfy all the practical needs for 

quick response, reliability, robustness and some other performances. So it is necessary 

to find some other research techniques to improve the result. This study mainly 

discusses the analysis of vibration and sound signals to diagnose the face milling tool 

conditions. Here, there are two parts in the analysis of signals. The first part describes 

the analysis of sound and vibration signals to recognise the face milling tool conditions 

through the signal processing techniques. The second part reveals the fault diagnosis of 

the face milling tool using sound and vibration signals based on machine learning 

approach. 

1.8.1 Fault detection based on signal processing techniques 

In milling process, vibration of the machine tool-work material structure is based on 

the cutting forces. The cutting forces are varied due to tool wear/breakage and 

correspondingly the vibration pattern will be altered. These variations in the acquired 

signal can be analysed in such a way that the rate at which the change in dynamic force 

per unit time (acceleration) is measured and the characteristics of vibrations are derived 

from the vibration patterns obtained. Each component in the system has its own 

frequency which can be determined from its dimensions, rotating speed etc. The 
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condition of those components can be analysed through signal processing techniques 

such as time-domain, spectrum, cepstrum, etc. A brief introduction about the traditional 

signal processing techniques are as follows. 

1.8.1.1 Time-domain analysis 

The time-series plot is expressed in terms of amplitude and phase information of the 

acquired signal. In the present study, the acquired signals such as vibration and sound 

signals will be analysed through time series plots in order to identify the condition of 

the face milling tool. 

1.8.1.2 Spectrum analysis 

 Spectral analysis or Fourier transform is a most widely used technique in vibration 

signal analysis. It converts given signal from time domain to frequency domain by 

integrating the given function over the entire time period. With the help of components 

character frequency, faulty conditions can be identified. This type of vibration analysis 

is called as frequency domain or spectral analysis which relates frequency to its 

components and is widely used as basic approach. In milling, frequency components 

such as tooth passing frequency, spindle rotation frequency are considered as key terms 

in spectrum of acquired signal to recognise the milling tool condition. The detailed 

analysis of spectra in terms of TPF and spindle rotational frequency using vibration and 

sound signals will be discussed in Chapter 5. 

1.8.1.3 Cepstrum analysis 

The Cepsrtum analysis is another kind of signal processing method. The cepstrum was 

originally referred as the power spectrum of the logarithmic power spectrum. The 

cepstrum plots provide the information about the condition of the process/cutting tool 

by investigating the quefrency component in the acquired signal. The detailed study of 

vibration and sound signals of the face milling tool conditions will be explained in 

Chapter 5. 

But in milling, the generated signal from the process may be non-stationary and non-

linear in nature. These conventional methods such as time and frequency domain 
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techniques are not suitable to analyse the non-stationary signals. This leads to the next 

level of vibration analysis techniques which are highly machine specific. The wavelet 

transform methods are the advanced vibration analysis techniques which can be used 

to investigate the non-stationary signals.  

1.8.1.4 Wavelet analysis 

Conventional data processing is computed in time or frequency domain. Wavelet 

processing method combines both time and frequency information. Wavelet analysis 

provides the ‘time-frequency’ information in a single plot. The continuous wavelet 

transform method is one of the wavelet analyses and is used to investigate the milling 

tool condition in the present study. This technique is used to analyse the vibration and 

sound signals to identify the face milling tool conditions. 

1.8.2 Fault diagnosis based on machine learning techniques 

Machine learning is a technique which is used to train the model with the help of 

training dataset. Based on the information available in the training data, it creates some 

threshold values for classification. Then the trained model does analysis and classify 

the testing dataset by using these threshold values. In machine learning technique, the 

monitoring task is performed with classifying the given data. The data is investigated 

in several consecutive steps. These steps are feature extraction, feature selection and 

data classification respectively. Figure 1.6 illustrates the steps involved in monitoring 

algorithm.  

Machine learning methods address most of the problems and are proved to be a stronger 

method. Researchers have reported the capability of many machine learning techniques 

to perform fault diagnosis. Feature extraction and feature classification are the most 

important phases in machine learning techniques. The following subsections will give 

a brief introduction about feature extraction, feature selection and feature classification 

phases of machine learning approach. 
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Figure 1.6 Condition monitoring algorithm 

1.8.2.1 Feature extraction 

After acquiring the signal from the system, extracting the information from the acquired 

data and reducing the dimension of them, each data will be transformed into a reduced 

representation called feature vector. This transformation process is called feature 

extraction. Many features such as, histogram features, statistical features, empirical 

mode decomposition (EMD) features, etc. can be seen in the area of fault diagnosis and 
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condition monitoring. In the present study, for feature extraction various methods such 

as statistical, histogram, discrete wavelet transform (DWT) and EMD techniques are 

applied to vibration and sound signals. The detailed study of extracting the above 

mentioned features will be discussed in the Chapter 6. After feature extraction, the 

salient features will be selected using feature selection method. A brief note on feature 

selection phase is explained in the forthcoming section. 

1.8.2.2 Feature selection 

In the second step, if still redundant features are available in the feature vector which 

make the calculations complex and time consuming, the redundant features will be 

omitted from the feature vector with feature selection approach. Before classifying the 

conditions of the milling tool, feature selection method is applied to select the salient 

features. The decision tree, principal component analysis, etc. are the dimensionality 

reduction methods in fault diagnosis. The decision tree technique is used as a feature 

selection method in the present study, because the decision tree (J48 algorithm) is the 

best method for feature selection in the area of condition monitoring (Elangovan et al. 

2011). The following section reports a brief explanation on the process of feature 

classification. 

1.8.2.3 Feature classification 

Classification methods categorize feature vectors into the determined groups and 

complete the monitoring process. Artificial intelligence methods are often applied in 

the classification step and make the monitoring algorithm intelligent (Rooteh and Sadat 

2013). The classification of the face milling tool conditions is carried out based on 

selected features using artificial intelligent techniques such as support vector machine 

(SVM), artificial neural network (ANN), Naïve Bayes, decision tree and K-star 

algorithms as classifiers in the present research work. 

Very few researchers have reported the vibration and sound signals analyses for fault 

diagnosis of the face milling process using machine learning techniques. Hence, a 

detailed study is required in this field. Since sound signal based fault diagnosis can be 

a cost effective method, it will be very helpful for small and medium scale industries. 
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In the past decade, advanced signal processing methods are playing a vital role in the 

area of fault diagnosis and condition monitoring. Also in machine learning approach, 

the combination of an artificial intelligent technique and the feature extraction method 

has provided good results in some applications. However those combination cannot be 

guaranteed the same results to all other applications. So there is a need for identifying 

the best feature-classifier combination using vibration and sound signals in fault 

diagnosis of the face milling tool. Machine learning approach based automated fault 

diagnosis of the face milling process is very essential for automotive, aerospace and 

industrial applications etc. Hence, in the current research work, our focus is more on 

these techniques to monitor the health of the face milling tool.  

So it is considered worthwhile to investigate the nature of the signals and their 

dependency on tool wear, specifically for an intermittent machining process, like face 

milling. This study deals with the fault diagnosis of the face milling tool using signal 

processing techniques, machine learning techniques using vibration and sound signals. 

1.9 ORGANISATION OF THE THESIS 

The thesis comprises of eight chapters, each paragraph will give a brief note on each 

chapter. 

Chapter 1 introduces the condition monitoring of the machining process, significance 

of the cutting tool wear, machining process monitoring techniques, measurands for 

machining process, face milling process, different tool faults and machining process 

monitoring. This chapter also brings out the brief introduction about monitoring 

methods used for vibration and sound signals of face milling process and the outline of 

the thesis can also be seen. 

Chapter 2 presents a detailed literature review on condition monitoring techniques 

specifically signal processing techniques and machine learning techniques in different 

fields of applications. It also defines the motivation of the present study, objectives and 

scope of the research work. 
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Chapter 3 describes the methodology deployed in fault detection and classification of 

the face milling tool condition. The detailed explanation about signal processing 

techniques and machine learning steps such as feature extraction, feature selection and 

classification methods can be seen in this chapter.  

Chapter 4 covers the details about the experimental setup, sensors used, data acquisition 

system and experimental procedures adopted. 

Chapter 5 reveals the results and discussion about fault detection of the face milling 

tool using signal processing techniques such as time-domain, spectrum analysis, 

cepstrum analysis and continuous wavelet transform analysis.  

Chapter 6 is dedicated for investigation of vibration signals through machine learning 

techniques i.e. (i) feature extraction methods such as statistical features, histogram 

features, EMD features and DWT features, (ii) feature selection using decision tree 

technique and (iii) feature classification using classifiers such as Naïve Bayes 

algorithm, ANN, SVM, K-star algorithm and decision tree algorithm. 

Chapter 7 reveals the results and discussion about the fault diagnosis of the face milling 

tool using sound signals through machine learning approach. 

Chapter 8 concludes the findings from the research work, presents the future scope of 

this study and provides the key contributions from the study. This section is followed 

by the references and the list of publications. 
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CHAPTER-2  

LITERATURE REVIEW 

2.1 INTRODUCTION 

In this chapter the most recent and significant contributions of the present state of the 

art related to fault detection and diagnostics of the system/cutting tool are discussed.  

The monitoring of machining processes can represent the economy of production by 

identifying tool wear, surface roughness and anomalies during metal cutting operation. 

Excessive wear and tool breakage are the main reasons for the cutting tool downtime. 

The damaged cutting tool can increase its strain level and result in poor surface finish 

of the product. Production rate increases significantly by reducing the machine tool 

downtime. Tool condition monitoring (TCM) is extremely viable in reduction of cutting 

tool downtime. In a TCM system, machining data, such as vibration signal, current 

signal, sound signal, cutting force signal, acoustic emission (AE) signal, surface finish, 

temperature, image processing, etc. are acquired with sensors such as accelerometer, 

AE sensor, charge coupled device (CCD) camera, cutting tool dynamometer, surface 

profilometer, current sensor, pyrometer, etc. (Teti et al. 2010). The measuring 

techniques for the monitoring of machining tool have been categorized into two main 

categories; 

 Direct measurement: where the actual value of the variable being 

measured gives a high degree of accuracy. This method has been employed 

extensively in research laboratories to support the investigations of 

fundamental measurable phenomena during machining processes. 

 Indirect measurement: where the actual value is subsequently 

determined using empirically determined correlations. It is less accurate 

than the direct method but is relatively simple and more suitable for 

practical applications. 
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2.2 DIRECT MEASUREMENT 

As the name indicates, these measurements directly assess the condition of the cutting 

tool. Although this measurement has the advantage of directly determining the states of 

the cutting tool, in most of the cases it is necessary to interrupt the cutting process to 

make the required measurements. To minimise the disruption of the machining process, 

these measurements are normally made between machining cycles. Therefore the 

advantage of continuous monitoring is removed and detrimental changes in tool 

condition cannot be recognised until the cycle is complete (Park and Ulsoy, 1993). 

Direct measurement of cutting edge provides the most accurate information about 

physical deterioration of the cutting tool. Park and Ulsoy (1993) adopted direct 

measurement method using optical sensing techniques with computer vision. LoCasto 

et al. (1990) used CCD camera for tool wear measurement. Prasad and Ramamoorthy 

(2001) carried out investigations to predict the tool wear such as crater wear and flank 

wear using stereo vision method in turning process. Ryabov et al. (1996) used laser 

displacement sensor for online measurement of tool geometry in the milling process. 

They evaluated tool geometry failure through intensity and displacement of laser beam 

simultaneously. Experimental results have shown that the system will not be able to 

measure the flank wear of dimension less than 40 micron. This is one of the limitations 

in direct measurement of TCM systems. During machining the cutting fluid surrounds 

the tool, making it difficult for online direct measurements. These direct measurements 

provide the advantage of high accuracy in certain conditions only, but they are not yet 

proven to be very attractive either technically or economically. Currently, indirect 

measurements are found more suitable for online process applications, while little 

interest has been shown for improving direct measurement. 

2.3 INDIRECT MEASUREMENT 

Indirect measurements are based on the relationship between the measured data of the 

cutting process and the tool condition. Machining process data such as cutting force 

signals, vibration signals, acoustic emission signals, current/power signals, etc. are 

acquired through the sensors. Considering a process data like cutting forces present 
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during a machining process are dependent upon the condition of the tool cutting edge. 

Generally, the tool edge worn out causes increasing in cutting force. Thus the cutting 

force measurement during machining provides an indication of the tool condition. 

Increasing cutting forces indicate the increase in tool wear. In reality, the relationship 

between cutting force and tool wear is more complex. The reason for this complexity 

lies within the number of unknown and immeasurable parameters (Shridhar 2012). 

In indirect tool condition monitoring system, basically there are three principal phases; 

sensor system, feature extraction and decision making (Prickett and Johns 1999). 

During machining operation there are a number of energy transfer mechanisms, which 

are independent upon changes in the condition of the cutting tool. They are manifested 

by measurable parameters such as sound pressure, vibration, temperature changes etc. 

in relation to these energy transfer related variables. There are other features of the 

machining process such as surface finish of the work material, speed fluctuations, etc. 

that could be used to assess the tool condition. Indirect methods are not limited to 

continuous machining processes, but can also be applied to discontinuous machining 

processes. The major advantage inherent to these methods is their non-intrusive feature. 

Compilation of the indirect methods, which have been highlighted in the literature is 

presented in Table 2.1. These methods have shown varying degree of success during 

application in manufacturing environments. 
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Table 2.1 Indirect sensing methods for tool deterioration (Shridhar 2012) 

Process parameters Measurement Transducer 

Vibration Vibration of machine tool-work 

material structure 

Accelerometer 

Sound radiation Acoustic waves Microphone 

Cutting force Changes of cutting forces Dynamometer 

Power input Power or current consumption of 

spindle or feed motor 

Ampere meter, Hall 

effect sensor 

Temperature Variation of cutting temperature 

on cutting tool 

Thermocouple, 

pyrometer 

Roughness of 

machined surface 

Changes in surface roughness of 

work material 

Mechanical stylus, 

optical transducer 

Acoustic emission Stress wave energy AE transducer 

Considerable research work has been conducted in the area of tool condition monitoring 

and control due to the fact that tool failure represents about 20% of machine tool down 

time. Tool wear negatively impacts the work quality in the context of dimensions and 

surface quality. 

2.4 RECORDED SIGNALS 

Since past decades, researchers have been working in developing an efficient tool 

condition monitoring system by acquiring various types of signals during machining. 

The prominent sensor signals are discussed below. 

2.4.1 Cutting force signal 

The analysis and prediction of cutting forces are very important in the research of metal 

cutting processes and the design of cutting tools. Cutting force measurement will also 
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be helpful in thermal analysis, chatter prediction, chip form categorization, surface 

roughness prediction, monitoring of tool condition, etc. Furthermore a large cutting 

force means more energy consumption. This has led to the study of the reduction of 

cutting force through appropriate choices of parameters and tools. During milling the 

cutting force signals in three different directions namely, Fr- radial cutting force, Ft- 

tangential cutting force and Fx- axial cutting force are measured using dynamometer as 

shown in Figure 2.1 (Kuljanic et al. 2009). 

  

Figure 2.1 Experimental setup using milling tool dynamometer (Kuljanic et al. 2009) 

The variations in the cutting forces represent the condition of the cutting tool and many 

researchers have studied these cutting forces using different techniques in order to 

diagnose the tool condition. Yan et al. (1999) investigated tool wear in milling process 

using cutting force signals with development of three kinds of tool wear indices based 

on statistical and time series techniques namely, maximum amplitude with statistical 

mean (mean-max), normalized difference of residual sum of square (RSS) standard 

Fr 

Fx 

Ft 
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deviation and first order auto-regression (AR). They reported that these techniques 

provide an efficient indication of flank wear during machining, however the RSS 

technique is not so feasible for real time processing. AR approach is computational 

intensive, but provides relatively missing or low pass alarms, requires suitable multi-

DSP (digital signal processing) and hardware implementation for online condition 

monitoring. Balazinski et al. (2002) estimated the tool wear in turning process using 

artificial intelligence techniques such as neural network method, fuzzy decision support 

system and neuro-fuzzy inference system based on cutting force components. Kuljanic 

and Sortino (2005) proposed tool wear indicators, namely torque force distance (TFD) 

indicator and normalized cutting force (NCF) indicator in face milling. They reported 

that the axial component of cutting forces is suitable for determining tool breakage. 

Further they concluded that TFD indicator is better than NCF, because there is no need 

to determine the unworn tool cutting force and it is enough to compute the mean cutting 

force and actual mean torque. Tansel et al. (2005) investigated the performance of a 

genetic tool monitor system with the measured cutting force in the micro end milling 

of POCO EDM-C3 soft electrode in order to identify faults during operation. This 

approach is very conservative to abolish fault alarms during the process and found very 

accurate within a framed time in the micro end milling process.  

Milfelner et al. (2005) optimized the cutting parameters of end milling process using 

genetic optimization technique. They examined the tool wear and breakage conditions 

of the milling tool based on cutting force signals. Huang et al. (2007) developed a model 

to predict the tool wear in CNC (computer numerical control) milling center based on 

cutting force analysis. They reported that the developed model is suitable for the given 

workpiece and the cutting tool. Zhu et al. (2008) examined the cutting force signal of 

micromilling in time and frequency domains using independent component analysis 

(ICA) method for denoising the acquired signal. They compared the results from ICA 

method with the wavelet method and observed that the ICA technique is the best 

method and capable to separate both the Gaussian and non-Gaussian noise sources from 

the signal than the wavelet method. Chen and Li (2009) correlated the flank wear tool 

condition to the cutting force signals in end milling of Inconel 817 workpiece material. 

They reported that the flank wear and edge chipping were two dominating fault 
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conditions and noticed the linear variations in z-direction cutting force with the increase 

in flank wear. Kaya et al. (2011) studied the development of an online TCM system to 

estimate tool flank wear by acquiring the three axes cutting forces and torque signals in 

milling of Inconel 718 superalloy using an artificial neural network (ANN). They have 

shown a high correlation and low error ratio between the computed and actual values 

of the flank wear. They observed that the torque is an important signal which is not 

considered in the literature of development of tool condition monitoring system. Torque 

signals are the most representative in progression of flank wear when compared with 

the tangential cutting forces. Subramanian et al. (2013) developed a mathematical 

model to optimize the machining parameters in order to obtain minimum cutting forces 

using genetic algorithm and response surface methodology in shoulder milling of 

Al7075-T6. They validated the predicted values with the experimental results and 

observed that cutting speed plays a vital role in the models, followed by the feed rate 

and depth of cut. This study also provided a guideline for researchers to assess cutting 

performance in design of high speed machining tool. Wang and Cui (2013) studied the 

tool wear condition in vertical milling machine using cutting force signals through auto 

associative neural network technique. Huang et al. (2015) developed a monitoring 

system for detecting the tool breakage condition during end milling process using 

probability neural network technique through cutting force signals. 

2.4.2 Acoustic emission (AE) signal 

Acoustic emission is defined as the transient elastic waves which are generated due to 

the rapid release of energy from localized sources within a material. This AE signal can 

be found in primary, secondary and tertiary cutting zones. AE signal due to chip 

formation is primary; due to friction between cutting tool and chip is secondary; due to 

friction between cutting tool flank and workpiece is tertiary cutting zones. Figure 2.2 

depicts the AE signal based fault diagnosis of end milling tool (Marinescu and Axinte 

2008). Pai and Rao (2002) used the AE sensor in face milling of En-8 steel material for 

monitoring the tool breakage, progressive tool wear and chip segmentation and reported 

that AE signals can be used to identify the tool wear effectively. The usage of AE 

sensors to monitor machining processes (turning, milling and grinding) is quite 
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effective and detecting malfunctions due to the sensor is very sensitive to the process 

and also reliable. 

 

Figure 2.2 Shows the AE sensor based experimental setup (Marinescu and Axinte 2008) 

One of the ways to take full advantage of high sensitivity is the fusion with other types 

of sensors. Jemielniak and Arrazola (2008) studied an application of the combination 

of AE signals and cutting force signals in micro milling operation. They observed that 

there was a stronger influence of tool wear on AE signals than on cutting force signals. 

They also revealed that the AE signal is free from resonance vibrations, which is very 

important in case of micro machining applications. Integrating these signals in tool 

condition monitoring minimizes the diagnosis uncertainty, reduction in randomness and 

provides more reliable tool wear estimation. Marinescu and Axinte (2008) carried out 
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an experiment on determining the malfunctions of both the tool and workpiece (Inconel 

718) using cutting force and AE signals in end milling. They reported that the 

possibility of predicting defects on workpiece surfaces by using AE sensors and also 

found efficient performance of the combined effects of AE and cutting force signals on 

tool wear measurement and workpiece surface integrity. Gowid et al. (2015) diagnosed 

the faults in high speed centrifugal air blower using AE signals. They found that spectral 

based features is the best tool and AE signals are very informative in fault diagnosis of 

high speed air blowers. 

2.4.3 Current signal 

Current signals are measured using Hall effect sensor and Figure 2.3 shows the Hall 

effect current sensors connected to the three phase line of spindle motor (Li and Guan 

2004). Spindle motor current monitoring features have similar characteristics as cutting 

force signals. This method estimates the cutting force by means of the motor current 

and then estimated cutting forces are used to predict the condition of the cutting tool.  

 

Figure 2.3 Hall effect current sensor for monitoring the cutting tool (Li and Guan 2004) 

Lee et al. (1997) identified the tool fracture condition by analysing the motor torque, 

which is related to induction motor current during end milling process and also carried 

out experiments with different cutting conditions to find out the effectiveness of the 

motor torque for recognising the tool condition. Li and Tso (1999) developed a 

relationship between cutting parameters and current signals under different tool wear 
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conditions using partial experimental design and regression analysis in the drilling 

process. They also carried out the fault diagnosis studies of drill bit using Fuzzy logic 

classifier. Li et al. (2000) used the feed motor current and neuro fuzzy technique to 

predict the feed cutting force and monitor the tool wear in the turning process. 

O’Donnell et al. (2001) used different sensors to detect tool wear and breakage in 

drilling, reaming and tapping. The torque signal has the most useful information to 

monitor the machining processes. However, the use of torque sensor is not always 

possible. Therefore, they have conducted experimental studies in drilling with multiple 

sensor types at different locations and acquired power signal, vibration signal and AE 

signal. They reported that the vibration signals and AE signals are having high levels 

of noise related to the manufacturing environment. The power signal presented the 

greatest sensitivity to variations in the tool performance and the least sensitivity to 

noise. 

Rene et al. (2003) estimated the cutting forces from the acquired current signal obtained 

from servo driver directly to predict sensorless tool breakage in CNC milling machines. 

Shao et al (2004) observed the inherent fluctuation in measured power signals and 

compared with the simulated power signals, also estimated tool wear during face 

milling process. They reported that the developed model is more robust and can be 

implemented in the applications such as milling process with different cutting 

conditions. Patra et al. (2007) analysed the motor current signals in drilling process 

using multi-layer ANN method to assess the flank wear of the drill bit. They compared 

the results obtained from ANN technique with the regression model. Satti et al. (2009) 

introduced a novel and practical concept for recognizing catastrophic failure in machine 

tool in case of large-scale milling machines using average spindle power signals of the 

machining process. They studied the inherent capacity of the proposed multi-layer 

detection strategy, which provides useful information about the process variation and 

failure-induced changes in the acquired power signals. They also reported that this 

strategy is a cost effective solution to avoid catastrophic failure in large-scale milling 

processes. Drouillet et al. (2016) employed ANN technique in remaining tool life 

prediction using machine spindle power in end milling process. They reported that the 

root mean square power value was very sensitive when tool wear occurs. 
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 2.4.4 Temperature 

The cutting zone temperature will change as the tool wear progresses resulting in 

change in the tool geometry. Therefore the use of temperature was suggested to monitor 

the tool condition. Figure 2.4 illustrates the temperature measurement test setup during 

machining (Lin, 1995). IR Pyrometer is used to measure the temperature. During 

milling the surface radiation is measured by this sensor and the temperature signal is 

accumulated in a recorder and personal computer. 

 

Figure 2.4 Experimental setup of temperature measurement during milling (Lin, 1995) 

Lin (1995) studied the tool-workpiece interface temperature using inverse finite 

element method and infrared pyrometer in end milling process. They reported that the 

numerical analysis provided a good agreement with experimental investigations in 

milling of steel and aluminium alloy. Ueda et al. (2001) examined the temperature of 

the flank face of the cutting tool using the pyrometers in high speed end milling process. 

They carried out the experiments with different cutting conditions and reported that the 

abrupt rise in temperature of about 770 0C occurred at cutting speed of 668 m/min. 

Choudhury and Bartarya (2003) experimentally correlated the relationship between the 

flank wear and cutting zone temperature in turning, where the temperature sensor was 

the natural formed thermocouple between the tool and the workpiece. In this case, only 

the average temperature in the cutting zone is measured. Another possibility is to 

measure the temperature by thermal images from the cutting zone. However, in this 

case the chip which carries out approximately 90% of the energy dissipated during 

Spindle

Workpiece

Milling tool

Charge 
amplifier

Recorder

IR Pyrometer



30 
 

machining will dominate the intensity of radiation. Ming et al. (2003) studied the 

temperature distribution in tool workpiece interface and heat generation during high 

speed milling process using Beck’s inverse heat conduction theory and infrared 

thermometer. They validated the numerically computed values of temperature with the 

experimental results. 

2.4.5 Vibration signal 

Vibrations are addressed due to the cyclic variations in the dynamic components of the 

cutting forces. Mechanical vibrations generally result from periodic wave motions. The 

vibration signal which is coming out during metal cutting process includes facets of 

free, forced, periodic and random types of vibration. Vibration mode is frequency 

dependent and it has determining characteristic feature. It is difficult to measure 

vibration directly. Hence related parameters such as rate at which dynamic forces 

change per unit time (acceleration) are measured and the characteristics of the vibration 

are derived from the patterns obtained. The vibration signal is acquired by the sensor 

called accelerometer. Figure 2.5 illustrates the vibration signal based condition 

monitoring of the milling tool test setup (Mhalsekar et al. 2010).  

 

Figure 2.5 Vibration based experimental setup for fault diagnosis of milling tool 

(Mhalsekar et al. 2010) 

Mehta et al. (1983) investigated the tool wear during face milling using vibration 

signals. They observed increase in the tool wear rate due to vibration which is governed 
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by the stiffness of the machine tool-work material structure. Rotberg et al. (1987) 

examined the vibration signals during milling for condition monitoring of face milling 

tool with the different cutting phases such as entry, exit and continuous machining. El-

Wardany et al. (1996) investigated the use of vibration signature characteristics in 

online drill wear monitoring and breakage. They found that the features of vibration 

signals are sensitive to the tool wear and observed in time and frequency domains. 

Experimental results showed that in time domain analysis, the kurtosis values increased 

drastically with drill breakage, while frequency analysis revealed sharp peaks 

indicating drill breakage. By combining both the techniques it was possible to devise 

an effective drill monitoring system. Kim and Klamecki (1997) monitored the milling 

cutter by acquiring the torsional spindle vibration using an optical system and predicted 

the tool wear by analysing the vibration signals in frequency domain. Dimla (1998) 

investigated the vibration and cutting force signals during turning of alloy steel using 

ANN technique to distinguish the different tool conditions such as severe flank wear, 

broken nose and chipping conditions. They reported that the classification of the turning 

tool conditions can be achieved in the range from 88% to 96% based on multivariate 

data analysis using ANN technique. Al-Habaibeh and Gindy (2000) considered 

combination of signals such as vibration signals, AE signals and cutting force signals 

to design the TCM system for end milling process using ANN and Fuzzy classifiers.  

Abouelatta and Madl (2001) correlated the surface profile of workpiece with the cutting 

parameters and cutting tool vibrations. Dimla (2002) analysed the vibration signals in 

time and frequency domains during turning process to correlate the acquired signals 

with the measured cutting tool wear. They reported that the time-domain characteristics 

were correlated well with the machining conditions, whereas the frequency domain 

characteristics were more sensitive to the tool wear. Abu-Mahfouz (2003) studied the 

drill tool fault diagnosis using vibration signals through the ANN technique. They 

extracted the features from both time and frequency domains vibration signals and 

reported that the frequency domain features are more efficient than time domain 

features in TCM of drilling process. Kuljanic et al. (2009) developed a system to 

identify the chatter condition of the face milling process using vibration and cutting 

force signals. Mhalsekar et al. (2010) investigated the vibration signals during face 
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milling using recurrence quantification analysis (RQA) method for monitoring the flank 

wear of tool insert. They concluded that RQA parameters such as entropy, percent 

laminarity, trapping time and percent recurrence are useful features for detecting the 

tool flank wear. Hsieh et al. (2012) studied the micro-milling tool condition monitoring 

using neural network technique through vibration signals in time and frequency 

domains. Yesilyurt (2006) found the variations in mean frequency of the scalogram of 

vibration signals with different feed rates in breakage detection of end milling tool. Fu 

et al. (2016) investigated the chatter condition of the end milling process using vibration 

signals based on Hilbert–Huang transform (HHT) method. They concluded that the 

proposed method is self-adaptive and robust. HHT can be used effectively to distinguish 

the chatter condition, stable condition of the milling process and also can be identified 

the transition stage of the process. 

2.4.6 Sound signal 

Like vibration, machining sound is also a non-stationary signal which carries the 

information of operating conditions of the process/machine. By hearing the sound of a 

machine during its running, an experienced operator can even identify and locate any 

faults in the machine. But the researchers have been giving a little attention to the sound 

signal analysis for fault diagnosis compared to vibration signal. This is due to the fact 

that the machine sound is complex with low signal to noise ratio and is contaminated 

with the industrial noise environment. So it is necessary to filter out the background 

noise from the raw sound signal with the help of technically advanced signal processing 

techniques to detect the machine tool faults. The sound based analyser is cheaper, 

simple to use and portable when compared to a vibration analyser. Microphone sensor 

is used to acquire the sound signals. Figure 2.6 depicts the experimental setup for 

condition monitoring of the bearings using sound signals (Kumar et al. 2012). 
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Figure 2.6 Sound signal based fault diagnosis of bearing condition in motor pump 

(Kumar et al. 2012) 

Lu and Asibu (2002; 2004) developed a model which gives relationship between tool 

wear and sound generation during turning process. They have shown that as the tool 

wear progresses resulting in variation of the sound pressure distributions. Ghosh et al. 

(2007) correlated the different signals such as cutting force signal, vibration signal, 

spindle current signal and sound signal with the tool wear during face milling operation 

using ANN technique. They validated the proposed method with the laboratory and the 

experimental results. Salgado and Alonso (2007) estimated tool wear during turning 

process using feed motor current signal and sound signal through least squares support 

vector machine and singular spectrum analysis methods. They concluded that the 

proposed method is fast and reliable for online TCM in turning. Rubio and Teti (2009) 

developed a monitoring system for analysing the cutting parameters in milling process 

using graphical analysis and parallel distributed data processing method through sound 

signals. Kumar et al. (2012) employed the SVM and statistical methods for fault 

diagnosis of antifriction bearing using sound signals. Lu and Wan (2013) studied the 

sound signals for micro tool wear monitoring using class mean scattering criteria and 

the hidden Markov model. They concluded that the signal of frequency above 20 kHz 
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is able to distinguish the healthy and fault conditions of the micro milling tool. 

Amarnath et al. (2013) extracted the statistical features from the sound signals of the 

motor pump to identify the condition of the bearing using the decision tree method. 

They achieved the classification efficiency of about 95% based on sound signals using 

the decision tree technique. 

2.5 SIGNAL PROCESSING TECHNIQUES 

In the early days vibration analysis was carried out with the help of time domain signal. 

The nature or type of the vibration signal is identified with the help of raw time 

waveform. It is better for analysing impulsive vibration signal to detect faults in 

components such as bearing, gear, cutting tool, etc. But it is very difficult to identify 

each of the frequency components which are the most important to identify the faulty 

component (Saimurugan 2013). Spectrum analysis, cepstrum analysis and wavelet 

analysis also belong to the signal processing techniques. Many research works using 

these techniques have been carried out, some of them are discussed in the following 

sections. 

2.5.1 Fault detection through spectrum analysis and cepstrum analysis 

Frequency domain analysis is the most widely used conventional technique for fault 

diagnosis of cutting tool/rotating machine components. The fast Fourier transform 

(FFT) converts the time domain data into frequency domain data. In case of machining 

operation, as the tool wear occurs the vibration patterns will change. Due to the tool 

wear/breakage, the vibration energy is increased at the corresponding rotational 

frequency. The faulty tool can be identified with the help of increase in amplitude 

energy level in the frequency plot. Noori-Khajavi and Komanduri (1995) studied the 

cutting force signals of healthy and faulty drill tool conditions in time and frequency 

domains. They observed that the frequency domain has provided a good understanding 

of the tool state than time domain analysis. Orhan et al. (2007) investigated the tool 

wear in time and frequency domain analyses during end milling of AISI D3 cold work 

tool steel using vibration signals. They reported that there was no considerable increase 

in the vibration amplitude until a flank wear reaches 160 µm, above which the vibration 
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amplitude increases significantly. Antonialli et al. (2010) analysed the variations in 

cutting force during milling of titanium alloy in time and frequency domain analyses. 

Sivasakthivel et al. (2011) developed a mathematical model with process parameters to 

analyse the vibration amplitude in high speed end milling of Al 6063 material using 

spectrum analysis. Huang et al. (2012) investigated the stable and chatter machining 

processes through spectrum plots of cutting force and vibration signals. Bisu et al. 

(2012) examined the dynamic behaviour of the milling process to monitor the condition 

of the cutting tool through spectrum analysis using vibration signals. Huang et al. 

(2013) analysed the cutting force signal in time-domain, frequency-domain and time-

frequency domain in order to find out the range of stability in machining of Titanium 

alloy. Chen et al. (2012) investigated the relationship between vibration of the tool and 

workpiece surface roughness in end milling using singular spectrum analysis.  

Cepstrum analysis is one of the signal processing techniques which clusters the 

different frequencies corresponding to components that exists in the rotating 

machine/system. The cepstrum plots are used to identify the conditions of the 

system/cutting tool with help of quefrency information in the acquired signals. Sghir et 

al. (2007) analysed the vibration signals of different condition of the milling tool by 

using cepstral techniques. They distinguished different tool conditions by computing 

the power spectral density from the acquired signal. Iturrospe et al. (2005) extracted 

relevant information for monitoring precision turning operation using AE signals 

through bicepstral method. Borghesani et al. (2013) carried out fault diagnostic analysis 

of rolling element bearings using cepstrum analysis. Different bearing damages in 

various operating conditions were considered in their study. Liang et al. (2013) used 

power spectrum analysis, cepstrum analysis, higher order spectrum analysis and neural 

network analysis for induction motor fault diagnosis. They revealed that cepstrum 

analysis is a very useful tool for detection families of harmonics with uniform spacing 

or the families of sidebands commonly found in gearbox, bearing and engine vibration 

fault spectra. Morsy and Achtenova (2014) studied the damage detection in a vehicle 

gearbox using cepstrum analysis. 

Spectrum analysis has its own limitations (Zhu et al., 2009) as it can only be used for 

stationary signals. Li et al. (2005) revealed that the fast algorithm of wavelet transform 
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is more reliable, sensitive and faster than spectrum analysis in prediction of tool wear 

condition during turning process. 

2.5.2 Wavelet analysis 

Wavelet analysis captures both frequency and location information (location in time). 

The concept of wavelet was first introduced by Morlet in 1982. There are various 

families of wavelet such as Haar, Morlet, Daubechies, biorthogonal, coifflets, etc. The 

two major types of wavelet transform are continuous wavelet transform (CWT) and 

discrete wavelet transform (DWT). Kasashima et al. (1995) conducted an experiment 

of on-line failure detection in face milling of stainless steel (SUS304) using DWT 

technique. DWT algorithm is used to predict tool failure such as small chipping and 

breakage of an insert tip. The result shows that the DWT can extract tool failures with 

much greater sensitivity than the fast Fourier transform (FFT) even when the amount 

of chipping is very small. Gong et al. (1997) compared the wavelet transform with the 

Fourier transform using cutting force signal for monitoring of tool flank wear during 

turning process and they found that the wavelet analysis is more reliable, sensitive and 

faster than Fourier analysis. Berger et al. (1998) studied the chatter and non-chatter 

machining process through wavelet analysis using cutting force signals in turning 

operation. Mori et al. (1999) analysed the transient responses in cutting force signals 

during drilling process using DWT. Lee and Tarng (1999) determined milling tool 

breakage using cutting force signals through DWT technique.  

Klocke et al. (2000) computed wavelet parameters for finding variations in cutting force 

signals of ball end milling under different tool conditions and reported that this 

technique is reliable for monitoring the ball end milling tool. Li and Guan (2004) 

analysed the feed motor current signals to predict cutting edge fracture through time-

frequency plots in end milling process. Wu and Chen (2006) carried out the fault 

diagnosis studies on internal combustion (IC) engine and its cooling fan blades using 

CWT technique through vibration and sound signals. Zarei and Poshtan (2007) applied 

CWT technique in fault detection of bearing in induction motor using current signals. 

Yao et al. (2010) applied wavelet transform method for chatter detection and support 

vector machine (SVM) technique for pattern classification during boring operation 
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using vibration signals. Shao et al. (2011) separated power signal from the mixed 

signals during milling process based on wavelet transform method and independent 

component analysis. They conducted experiments with different tool conditions and 

results showed that the separation strategy is robust and promising for machining 

process monitoring. Kankar et al. (2011) investigated the vibration signals using CWT 

technique for fault diagnosis of rolling element bearings and classified the different 

conditions of the bearing using SVM and ANN classifiers. Vernekar et al. (2014) 

studied the gear faults in IC engine gearbox using spectrum analysis, CWT analysis and 

reported that CWT technique is an effective tool for fault diagnosis of the gear.  

Lot of research work has been carried out on machinery fault diagnosis using CWT. 

But CWT takes more computation time, generates large amount of redundant 

information and requires more memory space. Since DWT does not have these 

disadvantages, it can be preferred over CWT (Saimurugan 2013). The application of 

the DWT features in fault diagnosis are discussed in section 2.6.1.3. 

2.6 MACHINE LEARNING TECHNIQUES 

The pattern recognition technique was first implemented in the year 1989 to automate 

the fault diagnosis process (Li and Wu 1989). The pattern recognition or machine 

learning technique classifies the group of objects on the basis of subjective similarity 

measures. The prominent steps which involved in machine learning approach are 

feature extraction, feature selection and feature classification. 

2.6.1 Feature extraction 

The acquired signal in the form of digitized data from the process/system cannot be 

directly used for machine learning. The required information is extracted from these 

huge data in the form of features such as statistical features, histogram features, wavelet 

features, etc. The following subsections will provide the usage of different features in 

fault diagnosis and condition monitoring. 
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2.6.1.1 Statistical features 

Statistical analysis of acquired signals yields different parameters. These statistical 

parameters extract the fault information from the large data. Numerous investigations 

have been carried out in different area of fault detection using a set of statistical 

parameters as a feature extraction method. The statistical parameters such as mean, 

standard error, median, mode, standard deviation, variance, kurtosis, skewness, range, 

minimum, maximum, etc. have been widely used by the researchers on their studies on 

intelligent fault diagnosis. Sugumaran et al. (2007) used the statistical features of 

vibration signals for fault diagnosis of roller bearings through decision tree and 

proximal SVM techniques. Alonso and Salgado (2008) applied the statistical features 

and some other techniques such as, ANN, singular spectrum analysis and cluster 

analysis in TCM system for detecting the tool wear in turning process. Elangovan et al. 

(2010) studied the performances of Naïve Bayes and Bayes net classifiers through 

histogram and statistical features in turning operation using vibration signals. They 

concluded that statistical features yield more classification accuracy than using 

histogram features.  

Wang et al. (2013) carried out the classification of different milling tool conditions 

using distributed Gaussian ARTMAP (adaptive resonance theory mapping) network by 

extracting the statistical parameters in time and frequency domains from the cutting 

force signals. Sakthivel et al. (2014) achieved good classification results using the 

combination of principle component analysis (PCA) and decision tree technique in fault 

diagnosis of mono block centrifugal pump through the statistical features of vibration 

signals. Painuli et al. (2014) investigated the different conditions of a single point 

cutting tool using statistical features of vibration signals. Gangadhar et al. (2015) used 

the statistical features and decision tree technique for classifying the tool conditions in 

turning process using vibration signals. Jegadeeshwaran and Sugumaran (2015) 

employed a clonal selection classification algorithm (CSCA) for condition monitoring 

of a hydraulic brake system using statistical features of vibration signals. 
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2.6.1.2 Histogram features 

A difference in the range of amplitude for different classes could be viewed when the 

magnitude of the signals were measured in time domain. Variation in the signal 

amplitude could be shown by using one of the best methods namely histogram plot. 

This histogram plot provides some valuable information for classification and this 

information would serve as histogram features for fault diagnosis of cutting tools and/or 

a machinery system. Sugumaran and Ramachandran (2011) employed a fuzzy based 

classifier to diagnose the roller bearing conditions using histogram features and 

decision tree technique. Sakthivel et al. (2011) investigated the different conditions of 

the centrifugal pump based on histogram features of vibration signals using decision 

tree and Naïve Bayes techniques. They reported that the decision tree technique 

provides the best classification accuracy than the Naïve Bayes technique. Sugumaran 

and Ramachandran (2011) examined the vibration signals of roller bearing system 

using SVM and proximal-SVM (PSVM) techniques. They extracted the statistical and 

histogram features from the vibration signals. They compared the performance of both 

the classifiers and concluded that histogram-PSVM was the best feature-classifier 

combination in roller bearing fault diagnosis. Guo and Mao (2015) investigated the 

cracks in aluminium alloy beam using histogram based technique and ultrasonic IR 

(infra-red) thermography. 

2.6.1.3 Discrete wavelet transform (DWT) features 

DWT decomposes the signal into two frequency sub bands such as low frequency band 

(approximate coefficients) and high frequency band (detailed coefficients) through high 

pass filters and low pass filters. Then the decomposed low frequency component of the 

signal will be again decomposed into approximate and detailed coefficients. This 

iteration will go on and at each step the approximate coefficient is considered as DWT 

feature. DWT analysis is much more efficient, less computation time and is reliable to 

identify small changes in AE and current signals of the drilling process for tool 

breakage detection (Li et al. 1999). Wu et al. (2001) implemented a real time tool 

condition monitoring in drilling operation based on DWT using current signal. Suh et 

al. (2002) investigated the milling process based on the DWT analysis to find the 
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stability in the machining process using cutting force signals. Mehrabi and Asibu (2002) 

found 97 % accuracy in tool state detection for TCM of the turning process based on 

hidden Markov models and DWT technique using vibration signals. Li and Guan (2004) 

proposed an algorithm which consisted of wavelet denoising, discrete wavelet analysis 

and FFT for detection of cutting edge fracture of end milling tool using feed motor 

current signals. They found that this algorithm is not applicable for light machining 

operations, because of difficulties in extracting the information from the current signal 

of low cuts for fault detection. Choi et al. (2004) used the DWT technique and linear 

regression method for estimating the tool wear in ramp cuts in end milling process. 

Franco-Gasca et al. (2006) applied the DWT method for tool condition monitoring in a 

drilling process using driver current signals. Kim et al. (2007) demonstrated that DWT 

is the most effective technique among various signal processing techniques such as fast 

Fourier transform, Wigner-Ville distribution and short time-frequency transform in 

damage detection of rotor system using vibration signals. Barakat et al. (2011) 

discussed the application of self-adaptive growing neural network (SAGNN) and DWT 

technique in fault diagnosis of the mechanical machinery system and a chemical plant. 

They reported that the SAGNN classifier optimizes the number of nodes, minimizes 

the computation time and creates hidden sub-space for every output class. Kumar and 

Singh (2013) used the Symlet wavelet (DWT family) and vibration signals for 

measuring the defect width on the outer race of the roller bearing.  

2.6.1.4 Empirical mode decomposition (EMD) features 

The assumption behind the development of empirical mode decomposition (EMD) 

algorithm is that any signal consists of different intrinsic modes of oscillations. EMD 

algorithm decomposes the signal into a number of IMFs, each resulting IMF component 

consists of the local characteristic of the signal. For example, an IC engine gearbox is 

operating with different mechanical faults, the amplitude energy of each IMF are 

obviously different. Therefore, the amplitude energy feature of each IMF component 

can be used to identify the different fault of mechanical components of an IC engine 

gear box. Lei et al. (2008) used an improved distance evaluation technique and adaptive 

neuro-fuzzy inference system technique in fault diagnosis of rolling element bearing 

using statistical characteristics and EMD features extracted from the vibration signals. 
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Kalvoda and Hwang (2010) investigated the performance of end milling of aluminium 

alloy in frequency and time-frequency domains using Hilbert-Huang transform method 

based on vibration and cutting force signals. They concluded that cutting force analysis 

provides a better result in tool state than vibration signals. Cao et al. (2013) used an 

independent component analysis, EMD and genetic algorithm B-spline network 

methods for fault diagnosis of cutting tool during turning operation using vibration 

signals. Shi et al. (2014) employed the EMD method and independent component 

analysis technique for tool breakage detection in the face milling process. Ali et al. 

(2015) examined the performance degradation of automatic bearing system based on 

statistical features using EMD and ANN techniques. Jedlinski and Jonak (2015) used 

the wavelet transform, ANN and SVM techniques for fault detection of the gear box. 

They reported that SVM and ANN techniques have provided 90% and 92% 

classification accuracy respectively. Bakker et al. (2015) analysed the fixture cassette 

deformation during linear friction weld process using EMD technique. Cao et al. (2015) 

studied the chatter occurrences during the end milling process through ensemble 

empirical mode decomposition technique and nonlinear dimensionless indicators using 

vibration signals. 

2.6.1.5 Other feature extraction method 

Some other features excluding the above said features (statistical features, histogram 

features, DWT features and EMD features) were used in the area of condition 

monitoring. Literature on those features are discussed in this section. Xia et al. (2012) 

applied the spectral regression based features extraction method to the vibration signals 

for monitoring the different conditions of the bearing. Aishwarya et al. (2013) used the 

auto regressive moving average (ARMA) features and electromyogram (EMG) 

histogram features for different hand movements classification based on EMG signals 

using ANN technique. Zhang et al. (2015) used the exponential weighted moving 

average method as a feature extraction technique in fault diagnosis of rolling bearing 

system using electrostatic signals. Ramalingam et al. (2016) extracted the ARMA 

features from the electroencephalaogram (EEG) signals for classification of prosthetic 

limb movements such as, finger open, finger close, wrist clockwise and wrist counter 

clockwise movements using decision tree technique.  
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 2.6.2 Feature selection 

All extracted features from measured data are not required to extract the diagnostic 

information. Dimensionality reduction techniques remove the redundant information to 

reduce the original higher dimension for the ease of processing and computation. 

Recently, the use of feature reduction and feature selection for data preparation before 

feeding into the classifier has received considerable attention (Cao et al. 2003). The 

details of the usage of feature selection technique are discussed as follows. 

2.6.2.1 Decision tree technique (J48 or C4.5 algorithm) 

The decision tree selects a subset of the existing features without any transformation by 

representing the signal information in the form of tree. The detailed explanation about 

decision tree method can be seen in the section 3.1.2. The decision tree can also be used 

as a classifier. Sugumaran et al. (2007) used the decision tree technique for feature 

selection and proximal SVM technique for classification of faults in roller bearing. 

Sugumaran and Ramachandran (2007) employed the decision tree technique as a salient 

feature selection method in fault diagnosis of roller bearing. They also used statistical 

method for feature extraction and fuzzy algorithm for classification in the study of 

condition monitoring of roller bearing system. Sugumaran et al. (2008) diagnosed the 

faults in roller bearing using multi-class SVM technique as a classifier and the decision 

tree algorithm as a feature selection method based on vibration signals. They also 

compared the performance of the proposed method to the performance of the binary 

SVM method. Yang et al. (2009) analysed the vibration and current signals of induction 

motor to detect the faults using decision tree method for pertinent feature selection and 

adaptive neuro-fuzzy inference system (ANFIS) method for classification. They 

achieved the classification accuracy of about 91% and 77% for the vibration and current 

signals respectively using the ANFIS method. Sakthivel et al. (2010) extracted the 

statistical features from the vibration signals acquired from the monoblock centrifugal 

pump under different conditions such as normal, bearing fault, impeller fault, seal fault, 

combined impeller and bearing fault to classify the different conditions using decision 

tree technique.  
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Sugumaran et al. (2013) applied the decision tree algorithm for both feature selection 

as well as classification to diagnose the faults in the helical gear box system using 

vibration signals. Muralidharan and Sugumaran (2013) analysed the vibration signals 

using CWT method and decision tree technique to find out the different conditions of 

the monoblock centrifugal pump such as, healthy condition, cavitation, bearing fault, 

impeller fault, combined impeller and bearing fault. Sakthivel et al. (2014) compared 

the performance of the decision tree technique with the Bayes net, Naïve Bayes and K-

nearest neighbour classifiers in fault diagnosis of monoblock centrifugal pump using 

vibration signals. They concluded that the decision tree has given the best classification 

efficiency in comparison with other classifiers. 

2.6.2.2 Principal component analysis (PCA) 

Principal component analysis (PCA) is one of the widely used multi-dimensional 

features reduction tool. PCA is the preferred choice because it is a simple and non-

parametric method of extracting relevant information from complex data sets. The goal 

of PCA is to reduce the dimensionality of the data while retaining as much as possible 

of the variation in the original data sets. Malhi and Gao (2004) studied the different 

bearing conditions using PCA and neural network method through vibration signals. 

Sun et al. (2007) carried out the fault diagnosis analysis in rotating machinery of Bently 

rotor kit RK4 based on C4.5 decision tree technique, ANN technique as classifiers and 

PCA as feature reduction technique. They achieved high classification accuracy using 

feature selection tool as PCA algorithm with C4.5 decision tree as classifier. Elangovan 

et al. (2011) used principal component analysis and C4.5 algorithm (decision tree) for 

tool wear classification. They concluded that the decision tree algorithm is a better 

method for feature selection than the principal component analysis method in turning 

process. Ahmed et al. (2012) used the PCA as feature selection method in fault 

diagnosis of reciprocating compressor using vibration signals. Wang et al. (2015) 

investigated the fault conditions of the rolling bearing using PCA as feature reduction 

method and Fuzzy C-means technique as classifier through vibration signals. 

There are many techniques available for feature selection. The commonly used 

technique for selection of feature is decision tree and it provides better results in 
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comparison with other feature selection methods in condition monitoring (Samanta and 

Al-Balushi 2003). 

2.6.3 Feature classification 

Feature classification is the last phase of the machine learning approach. In the 

classification process, the classification algorithm develops a model with the help of 

training data and the trained model is used to classify the data belonging to various 

classes of faults. There are various classification techniques to classify the cutting tool 

conditions. The following subsections provide the details about the use of classification 

algorithms for online tool wear monitoring. 

2.6.3.1 Artificial neural network (ANN) 

Artificial neural networks are modelled on the basis of biological neurons and nervous 

systems. They have the processing elements known as neurons, which perform their 

operations in parallel. ANN’s are characterized by their topology, weight vector and 

activation functions. The applications of ANN technique can be seen in condition 

monitoring and fault diagnosis area, some of them are discussed as follows. Ko et, al. 

(1995) carried out studies to monitor online tool breakage in face milling using an 

unsupervised neural network with a combination of adaptive time series modelling 

algorithm. They found that there is a strong relationship between tool conditions and 

model parameters which leads to an effective condition monitoring of tool states and 

this approach is also feasible to classify the various patterns. They suggested that this 

approach is an effective technique for on-line condition monitoring of milling tool. 

Tarng et al. (1996) used the unsupervised neural network for tool failure detection 

through resultant force spectrum analysis in end milling process. This method was able 

to distinguish the features of the resultant force spectrum with varying cutting 

conditions and also demonstrated the feasibility of the proposed detection system. Hong 

et al. (1996) used a neural network technique for condition monitoring of turning tool 

based on wavelet decomposition. They found that the wavelet features of cutting force 

signal had a low sensitivity to the changes in machining conditions. Dimla et al. (1998) 

recognised the tool wear condition of turning operation using multi-layer perceptron 
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(MLP) neural network through vibration and cutting force signals. Dimla (1999) 

continued his work with single layer perceptron and MLP, concluded that MLP is an 

effective tool for analysing the chaotic data and the best suitable for the TCM system 

of turning process. Dutta et al. (2000) investigated and compared the performance of 

fuzzy based neural network with the standard back propagation neural network for tool 

condition monitoring during face milling process using vibration and cutting force 

signals. They concluded that the proposed method is faster in computational steps and 

effectively applicable for on-line TCM system. Abu-Zahra and Yu (2003) carried out 

condition monitoring studies on gradual tool wear in cutting tool inserts during turning 

process based on DWT method and MLP technique using ultrasound waves. Yu and 

Junsheng (2006) proposed an algorithm based on EMD method and ANN technique for 

fault diagnosis of roller bearing system using vibration signals and compared the results 

of EMD technique to the wavelet analysis. They concluded that the EMD technique is 

applicable to both stationary and non-stationary signals. Aykut et al. (2007) used ANN 

for modelling of cutting forces in face milling of work material stallite 6 to investigate 

the effects of machinability on chip removal cutting parameters. Ghosh et al. (2007) 

correlated the different signals such as cutting force signal, vibration signal, current 

signal and sound signal with the tool wear during face milling process using ANN 

technique. They validated the proposed method with the laboratory and the industrial 

experiments. The methods using multiple sensors will improve online tool condition 

monitoring, wear prediction when compared with the single sensor counterparts, but 

cost effective. 

Hsieh et al. (2012) investigated the spindle vibration signals of micro tool under healthy 

and faulty tool conditions through back-propagation neural network classifier and 

spectral analysis. The results showed that proper feature extraction for classification 

gives a better solution than applying all features into the classifier and also reported that 

the improvement in tool condition monitoring by integrating the different axes of the 

vibrational signals. Bajic et al. (2012) examined the influence of machining parameters 

on surface roughness, tool wear and cutting force in face milling of steel as part of the 

off-line process control by using regression model and neural network model. The 

results obtained from both the models were compared and showed that both the models 
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were found to be capable of accurate predictions of surface roughness, tool wear and 

cutting force with a relative prediction error below 10%. Although neural network 

models gave better relative error 3.35% in comparison with the regression model. 

2.6.3.2 Support vector machine (SVM) 

SVM is a relatively new computational learning method based on the statistical learning 

theory (Vapnik 1995). SVM construct an optimal hyperplane which separates the data 

into two classes. Many researchers discussed the theoretical background of SVM, 

kernel functions in SVM and its applications. Hsueh and Yang (2008) used the SVM 

technique in prediction of breakage in face milling cutter using cutting force signals. 

Hsueh and Yang (2009) employed support vector machine (SVM) method for tool 

breakage monitoring system in face milling of 7075 aluminium through spindle 

displacement signals. They have shown that this approach is reliable, highly sensitive, 

and robust in signal processing and also tool breakage monitoring can be implemented 

successfully. Cho et al. (2005) used the SVM technique for tool breakage detection in 

a milling process using cutting force dynamometer and spindle displacement sensor. 

Widodo and Yang (2007) provided a review of various applications of the SVM 

technique on fault diagnosis and machine condition monitoring system.  

Saimurugan et al. (2011) used statistical features and SVM for fault diagnosis of 

rotational mechanical system using vibration signals. Kumar et al. (2012) used c-SVM 

and ν-SVM for fault detection in antifriction bearings under healthy and faulty 

conditions using sound signals. They found that c- SVM is the best classifier for fault 

diagnosis of bearings. Muralidharan et al. (2014) studied the different conditions of the 

centrifugal pump using SVM method, also different families of continuous wavelets 

and compared the results of different wavelets with SVM as classifier. Vernekar et al. 

(2014) diagnosed the faults in deep groove ball bearing using SVM technique and 

wavelet features. Dutta et al. (2016) employed the SVM regression method with 

Voronoi tessellation technique, gray level co-occurrence matrix technique and DWT 

technique in prediction of flank wear of cutting tool in turning process based on the 

machined surface texture. They reported that 4.9% was the maximum estimation error 

by SVM regression analysis in condition monitoring of the turning tool. 
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2.6.3.3 K-star algorithm 

K-star algorithm works based on “entropy as a distance measure” i.e. the approach is 

used to compute the distance between two instances is motivated by the information 

theory. The intuition is that the distance between instances be defined as the complexity 

of transforming one instance into another. The calculation of the complexity is done in 

two steps. First, a finite set of transformations, which map instances to instances is 

defined. A “program” to transform one instance ‘a’ to another ‘b’ is a finite sequence 

of transformations starting at ‘a’ and terminating at ‘b’. The detailed description about 

working principle of K-star algorithm is explained in section 3.1.3.4. Painuli et al. 

(2014) analysed the vibration signals for tool condition monitoring in turning of mild 

steel using K-star algorithm. They used descriptive statistical features like standard 

deviation, kurtosis and skewness as salient features from acquired vibration signals of 

good and faulty tool conditions. K-star algorithm was used to build a model to 

distinguish tool condition using these selected statistical features. They concluded that 

the K-star algorithm is able to achieve 78% classification accuracy in turning operation. 

K-star classifier has achieved appreciable results in some applications such as misfire 

detection of an IC engine (Bahri et al. 2013). 

2.6.3.4 Bayesian network 

Bayesian network has played a vital role as fault diagnostic tool in some applications. 

Abellán et al. (2006) investigated the surface roughness and tool wear condition in CNC 

milling process using Bayesian network through surface profile measurement system 

and accelerometer. They achieved 89% and 97% efficiency in surface roughness and 

tool wear predictions respectively. Addin et al. (2007) employed the Naïve Bayes 

technique as a classifier in the applications of damage detection of quasi isotopic 

laminated composites of the AS4/3501-6 graphite/epoxy system and ball bearing of the 

type 6204 with a steel cage. Chen et al. (2009) classified the multiclass text datasets 

using Naïve Bayes algorithm. Muralidharan and Sugumaran (2012) analysed the 

vibration signals obtained from the different conditions of the monoblock centrifugal 

pump such as, normal, cavitation, bearing fault, impeller fault, combined impeller and 

bearing fault using Naïve Bayes and Bayes net classifiers based on DWT features. They 
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reported that the Bayes net was the best technique for distinguishing these different 

states of the pump than the Naïve Bayes classifier. Tobon-Mejia et al. (2012) applied 

Bayesian networks in diagnosis of remaining useful life of CNC milling tool based on 

two phases namely, offline and online phases (Figure 2.7). Patil and Sherekar (2013) 

used Naive Bayes technique and J48 algorithm for classifying the bank dataset. They 

reported that the J48 technique is the best classifier in comparison with the Naïve Bayes 

technique. 

  

 

 

 

  

 

 

 

 

 

Figure 2.7 Two-phases of tool condition monitoring (Tobon-Mejia et al. (2012) 

Karandikar et al. (2013) applied Bayesian inference method to predict the remaining 

useful tool life in turning of MS309 steel through power signal. They reported that the 

root mean square time domain power signal is very sensitive for tool wear. Also they 

showed that, there is a good agreement between the empirically determined true 

remaining tool life and predicted tool life. Karandikar et al. (2014) used Bayesian 

inference technique to predict tool life in milling of 1018 steel work material using 

discrete grid method. They have proposed updated values of the Taylor tool life 
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constants n and C using experimental tool life results. Also they concluded that the 

predicted distributions agreed with the experimental values of tool life. Kumar et al. 

(2014) studied the different bearing conditions of the motor pump based on vibration 

signals using decision tree, Naïve Bayes and Bayes net algorithms. They reported that 

the Naïve Bayes provided a better classification accuracy of about 90% than the Bayes 

net classifier. 

2.6.3.5 Other classifiers 

Some other artificial intelligence techniques which are not highlighted above played a 

vital role in condition monitoring and the details about the performances of those 

techniques are reported in the section. Devillez and Dudzinski (2007) developed tool 

condition monitoring method in turning operation using Fuzzy classifier based on 

current signals. Liao et al. (2008) investigated the grinding wheel conditions based on 

AE signals using minimum distance classifier and reported better results in identifying 

the grinding wheel conditions. Li et al. (2009) used the Fuzzy neural network (FNN) in 

prediction of tool wear in milling process and compared the performance of the FNN 

with the different algorithms of ANN technique. They concluded that the FNN 

technique was superior to the other techniques. Su et al. (2014) diagnosed the fault 

condition of the gearbox using an adaptive nearest neighbour classifier through 

vibration signals and achieved a good classification accuracy in condition monitoring 

of gearbox. Brkovic et al. (2016) carried out the experiments on early fault detection 

and diagnosis of bearing condition in induction motor using DWT technique and 

quadratic classifiers based on vibration signals. Patel and Giri (2016) evaluated the 

performance of the random forest classifier in fault detection of the bearing conditions 

of the induction motor using statistical features of vibration signals. They compared the 

results obtained from the random forest classifier with the ANN classifier and reported 

the best classification efficiency by the random forest technique in condition monitoring 

of mechanical fault in induction motor. Ramalingam et al. (2016) used the clonal 

selection classification algorithm as classifier in prosthetic arm condition monitoring 

using EEG signals based on statistical features and decision tree technique and achieved 

80% classification accuracy. 
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2.7 OTHER METHODS 

Other varieties of sensors or techniques have also been employed in various attempts 

in fault diagnosis and condition monitoring of system/ cutting tool. Baek et al. (2000) 

developed the digital signal processor board using autoregressive (AR) method and 

band energy based method for monitoring the breakage and chipping conditions of the 

face milling tool. They concluded that the developed processor is highly reliable in 

monitoring the machining process and AR based model is more accurate in fault 

diagnosis than the band energy based model. Jantunen (2002) presented signal analysis, 

diagnostic techniques and summary of monitoring methods for tool wear in the drilling 

process. Cus et al. (2006) developed an intelligent system for on-line monitoring and 

optimization of cutting conditions based on genetic algorithms (GA) in CNC ball end-

milling process. This approach can be used for complex machined parts, which require 

many machining constraints. They revealed that for the optimization of machining 

conditions, the proposed genetic algorithm based technique is effective and efficient, 

and can be implemented for real time intelligent manufacturing system. It lead to 

reduction in production cost, improvement of product quality and flexibility of 

machining parameters selection. One drawback of this method was it takes a long time 

to optimize cutting parameters because of its slow convergence speed. Ritou et al. 

(2006) presented a study of three-process based TCM indicators which are verified 

whether they are unaffected by changes in cutting conditions in order to evaluate their 

relevancy for condition monitoring of small batch manufacturing of industrial parts. 

They carried out some experiments under various real industrial machining settings and 

reported that the criteria is unreliable because of misinterpretation of sudden changes 

in cutting conditions. Therefore they proposed a versatile in process monitoring system 

to tackle the problem of reliability and to predict the relative radial eccentricity of the 

cutter. Rubio et al. (2013) developed a system consisting of expert rule based modules 

for cutting parameter selection to the purpose of multi objectives such as tool life, 

material removal rate, surface roughness of the workpiece and stability in milling 

process. Rubio et al. (2013) carried out the analysis of milling force control using 

fractional order holds method. Researchers have often used the diagnostic tools such as 

fuzzy logic (Dominik et al. 2013) neural networks (Chiu 2014; Tahmasebi et al. 2013) 
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adaptive neuro fuzzy inference system (Watany 2015) etc. However Sokolowski (2004) 

noticed a poor classification of tool wear by fuzzy logic. Lauro et al. (2014) provided a 

review of different monitoring methods and signal processing techniques in machining 

processes. Teti et al. (2010) reported that the types of sensors used, signal processing 

methods, decision making techniques and some of the industrial problems raised in the 

field of machining processes. The main challenge during machining process is to 

recognise the tool wear/catastrophic failure of the cutting tool without intervention of a 

human/operator. 

Rendering to the above literature review, though many research works have been 

carried out in the area of condition monitoring/fault diagnosis. Different approaches are 

identified as being key to the industrial application of operational tool monitoring 

systems and there are still many unresolved problems in this field of study. Considering 

these shortages and at the same time by increasing the demand for having reliable, 

robust, accurate, practical and inexpensive monitoring methods from the industry, the 

need for doing more research in this field is obvious. This research is going to choose 

a process monitoring algorithm which comprises of feature extraction method and 

classifier. Such an objective is to be achieved by investigating and analysing the 

performance of different combination of monitoring algorithms with using signal 

processing method and artificial intelligence technique, based on the pattern 

recognition. The effect of signals acquired from the sensors, the ability of the signal 

processing methods for working under normal process conditions and for detecting the 

faulty tool condition during operation will be investigated throughout the rest of the 

thesis. 

2.8 RESEARCH GAP 

TCM is essential as to maiantain the surface quality and dimensional accuracy of the 

workpiece which affect by inevitable tool wear development in addition to that 

collisions or tool breakage. Abellan and Subiron (2010) reported that the types of 

sensors used, signal processing methods, decision making techniques and some of the 

industrial problems raised in the field of machining processes. Many machining 

monitoring systems based on artificial intelligent process models have been developed 
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in the past for optimising, predicting or controlling machining processes. Many 

research works present different methodologies without showing clear guidelines or 

key issues for the development of intelligent machining systems. In order to overcome 

the lack of a global view on how to develop machining monitoring systems based on 

artificial intelligent models, this study illustrates a generic methodology which reveals 

the main parts of a face milling monitoring system through machine learning approach. 

The principal approach is the vibration analysis which enables to recognize healthy and 

faulty cutting tool. Conventional vibration analysis has been done in time domain or 

frequency domain, which can only be able to provide information about the past 

damage of the cutting tool. This concept can be further extended with a machine 

learning approach and advanced signal processing techniques for on-line tool condition 

monitoring studies to identify different tool conditions. Better performance of TCM 

system depends on the classifier used for diagnosis. Still many investigations are 

possible in finding the best classifier. Many research works are possible in building on-

line fault diagnosis system using combined vibration signal and sound signal with data 

mining approach. Among the signal processing methods, cepstrum technique has 

received poor attention in the field of tool condition monitoring. In this thesis fault 

detection of milling tool by cepstrum method will be examined by analysing the 

quefrency components in cepstrum plots of acquired signals and the accuracy of the 

method for recognising the tool states will be analysed. The performance of this method 

will be compared with the performance of other conventional signal processing 

methods. Continuous wavelet transform (CWT) is one of the advanced signal 

processing techniques in fault diagnosis. This study tries to attempt in fault detection 

of the face milling tool using time-frequency information of the signals. 
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2.9 OBJECTIVES OF THE RESEARCH WORK 

The aim of the study is to develop model-based tool condition monitoring methods for 

face milling. The methods will combine the feature extraction technique and model-

based classifiers to monitor the tool wear in face milling process. The specific 

objectives are: 

1) Fault diagnosis of the face milling tool based on vibration and sound signals 

using signal processing techniques such as spectrum analysis, cepstrum 

analysis, empirical mode decomposition (EMD) method and continuous 

wavelet transform (CWT) method. 

2) Fault diagnosis of the face milling tool using vibration and sound signals 

under healthy and different faulty conditions of the milling tool based on the 

machine learning approach. 

3) To investigate the performances of the different artificial intelligence 

techniques and to select the best one among them for fault diagnosis of the 

face milling tool. 

2.10 SCOPE OF THE RESEARCH WORK 

Manufacturing industries are aiming to produce products in larger volumes with 

improved quality at a competitive price. Also, the competitiveness within the 

manufacturing industry compels most companies to search for the most practical 

solution. These demands are being met with the assistance of automated production 

centers that include condition monitoring systems. The trend is progressing towards 

fully-automated manufacturing systems that require little, if any human intervention. 

Further development of existing monitoring and diagnostic systems will continue as a 

result of these competitive pressures. The scope of the current research work is drawn 

as follows; 

 This research work concerns with fault diagnosis of the face milling tool using 

online and offline condition monitoring techniques in conjunction with 

advanced signal processing techniques. 
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 To explore the possibilities of using vibration signal analysis and sound signal 

analysis to improve the fault detection of the face milling tool. The fault 

information is extracted from the acquired signals in the form of statistical 

features, histogram features, DWT features and EMD features. 

 The signals associated to the face milling process are non-stationary in nature 

due to its intermittent cutting action. This study utilized wavelet transform and 

decomposition techniques to analyse the non-stationary signals. 

 The main purpose of the study is to select the best tool condition monitoring 

(TCM) technique that streamlines the machining process by reducing the 

number of process interruptions created by tool wear. This technique utilizes 

indirect measurement of signals in a face milling machine. 

 By utilizing the developed in-process tool condition monitoring technique, 

manufacturers can expect a dramatic reduction of machine downtime related 

with tool changes in milling operations. 

2.11 SUMMARY 

This chapter reported enlarged review of existing tool condition monitoring techniques. 

Literature was basically categorized based on direct and indirect measurements for tool 

condition monitoring, recorded signals, signal processing techniques and machine 

learning technique. Along with the above, an overview of applications of each method 

is also discussed citing various researchers who have successfully implemented these 

techniques for their applications of interest. Also the objectives and scope of the present 

research work were discussed in this chapter. The methodology involved in this 

research work and experimental approach are described in Chapter 3. 
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CHAPTER-3  

METHODOLOGY OF THE RESEARCH WORK 

This chapter discusses about the methodology for achieving the objectives of the 

proposed research work. For performing the face milling operation, universal milling 

machine has been selected. While milling operation under healthy tool and tool with 

different fault conditions, vibration and sound signals will be acquired. The 

methodology consists of two stages, namely; (a) On-line monitoring and (b) Off-line 

monitoring. On-line monitoring is based on machine learning approach and off-line 

monitoring through signal processing techniques. 

3.1 ON-LINE MONITORING 

Schematic representation of an online monitoring of the face milling tool is shown in 

Figure 3.1. The collected signals such as acceleration signals and sound signals will be 

processed and analysed to diagnose the condition of the face milling tool through 

machine learning technique. 

 

Figure 3.1 Schematic representation of on-line monitoring of the face milling tool 
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Machine learning technique is a scientific method to examine diagnostically the 

construction and the study of algorithms that can learn from the data. These algorithms 

build a model based on inputs and use them to make decisions or predictions, rather 

than following only explicitly programmed instructions. Machine learning method is 

used to recognise the signal pattern or the corresponding fault using classification 

process. Automatic fault diagnosis system can be achieved by the machine learning 

process. The fault identification using machine learning techniques has three phases. 

They are feature extraction, feature selection and feature classification. 

3.1.1 Feature extraction 

The acquired signals are assessed in terms of signal parameters called features which 

convey useful information about the acquired signal. For example, statistical features, 

wavelet features, histogram features, etc. can be extracted from the acquired signals. 

Feature extraction is a process of extracting a set of new features from the acquired 

signal through some functional mapping (Wyse et al. 1980). In the present study, 

statistical features, histogram features, DWT features and EMD features extraction 

methods have been considered for analysis and the details about the methods used for 

feature extraction are explained in the forthcoming sections. 

3.1.1.1 Statistical features 

 The parameters computed directly from the acquired time domain signals are called 

time domain features. Statistical features are one set of time domain features and 

significant ones in fault diagnosis of machine components/cutting tools. Here statistical 

features will be extracted for fault classification of face milling tool. Statistical features 

such as skewness, mode, standard error, maximum, minimum, range, sum, mean, 

standard deviation, median, sample variance and kurtosis are computed to serve as 

features. Brief descriptions about statistical parameters are displayed as follows. 

Standard Error: Standard error is for an individual x in the regression, a measure of the 

amount of error in the estimation of y, ‘n’ is the sample size, x and y are the sample 

means. It can be expressed as, 
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𝑌 = √
1

(𝑛 − 2)
[∑(𝑦 − �̅�)2 −

[∑(𝑥 − �̅�)(𝑦 − �̅�)]2

(𝑥 − �̅�)2
]                            (3.1) 

Standard Deviation: This is a measure of power content or effective energy of the 

signal. The standard deviation (σ) can be expressed as, 

𝜎 = √
∑𝑥2 − (∑𝑥)2

𝑛(𝑛 − 1)
                                                              (3.2) 

Sample Variance: It is variance of the signal points and the following formula is used 

to compute sample variance. 

𝑆𝑎𝑚𝑝𝑙𝑒 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜎2 =
∑𝑥2 − (∑𝑥)2

𝑛(𝑛 − 1)
                                 (3.3) 

Kurtosis: Kurtosis represents the spikiness or the flatness of the signal. Its value varies 

with the condition of the tool in such a way that kurtosis value is very low for the unused 

cutting tool and higher for the fault tool due to the spiky nature of the signal. 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = {
𝑛(𝑛 + 1)

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)
∑(

𝑥𝑖 − �̅�

𝑠
)
4

} −
3(𝑛 − 1)2

(𝑛 − 2)(𝑛 − 3)
    (3.4) 

where ‘s’ is the sample standard deviation. 

Skewness: Skewness characterizes the degree of asymmetry of a distribution around its 

mean. The following expression can be used to compute skewness. 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
𝑛

(𝑛 − 1)
∑(

𝑥𝑖 − �̅�

𝑠
)
3

                                   (3.5) 

Minimum Value: For a given signal, minimum value refers to the minimum signal point 

value. As the tool gets worn out, the vibration level increases. Therefore, it can be used 

to predict tool wear condition. 

Maximum Value: It refers to the maximum signal point value in a given signal. 
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Range: It refers to the difference between maximum and minimum signal point values 

for a given signal. 

Sum: It is the totality of all feature values for each sample. 

3.1.1.2 Histogram features 

Histogram features are another set of time domain features. Histogram is a bar chart, 

which plots the number of data points that fall within a bin value. The bin range is 

obtained from the acquired signals pertaining to all conditions of the system/cutting 

tool being analysed. The amplitude range (maximum value to minimum value of the 

signals) is divided into a number of sub ranges that are called bins which represent the 

x-axis of the histogram plot. The number of data points of the signals lie on the 

corresponding bins are counted and represent the y-axis of the histogram plot. The 

objective here is to investigate the bins whose data points are the same for a particular 

class but different from other classes. These values may be very small for a particular 

class of the cutting tool but may be very large for another class of the cutting tool. 

The width of the bin should be fixed such that the height of the bins is varied for 

different class of the milling tool. It need not be true for all width of bins, but at least a 

few of them should follow this criteria so that it can be used as a feature for classifying 

the various conditions (classes). Bin width is a set of limiting values that should be in 

the ascending order so that the program counts the number of data points between the 

current bin number and the adjoining higher bin, if any. The bin width need not be 

constant always; however, in this study a constant bin width is used. Figure 3.2 illustrate 

the details of bin width and number of bins which can extract the information from the 

acquired signals. The detailed explanation about the fault diagnosis using bins 

(histogram features) can be seen in Chapter 6. 
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Figure 3.2 Sample histogram of a rectangular distribution 

3.1.1.3 Empirical mode decomposition (EMD) features 

The acquired signal may contain the different modes of oscillations at a time (nonlinear 

and/or non-stationary in nature). In order to analyse these coexisting modes, there is a 

need of an effective approach which pre-processes the given signal. EMD is an adaptive 

technique which decomposes the arbitrary time series and expresses as a number of 

intrinsic mode functions (IMF). IMFs represent the each oscillation mode of the signal. 

Each IMF must satisfy the criteria to define; 

 In the whole data set, the number of extremes and the number of zero-

crossings must either equal or differ at most by one. 

 At any point, the mean value of the envelope defined by the local maxima 

and the envelope defined by the local minima is zero. 

Let x(t) is the acquired signal decomposed into n empirical modes and a residue rn, it 

can be expressed as, 

𝑥 (𝑡) =∑𝑐𝑖(𝑡)

𝑛

𝑖=1

+ 𝑟𝑛                                                     (3.6) 
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Where ci(t) = c1(t), c2(t),…., cn(t) are IMFs which include different frequency bands 

ranging from high to low. Each band contains a number of frequency components and 

they change with the variation of a signal x(t). rn represent the central tendency of the 

signal x(t) (Peng, 2006). 

EMD decomposes the given signal into a number of IMFs, each resulting IMF 

represents the local characteristic of that signal. While the system operates with 

variations in the signal, the amplitude energy of each IMF is different. These variations 

in the amplitude energy of the IMF can be considered as a feature vector for condition 

monitoring of the respected system. Based on the principle of EMD, the original signal 

is a configuration of n number of IMFs and a residue rn. The total energy 𝐸𝑖
′ of the pre-

n IMFs is computed as; 

𝐸𝑖
′ =∑|𝑐𝑖(𝑡𝑘)|

2

𝑁

𝑘=1

                                                        (3.7) 

Where 𝐸𝑖
′ is the amplitude energy of the ith IMFs, k = 1 to N represents the discrete data 

length of the ith IMFs. A feature vector T with the amplitude energy is expressed as; 

𝑇 = [𝐸1
′ , 𝐸2

′ , …… . , 𝐸𝑛
′ ]                                                    (3.8) 

Where n is the number of IMFs. 

Considering that some IMF energy may be very large or low, in order to avoid attributes 

in greater numeric ranges which dominates in smaller numeric ranges and to reduce 

numerical difficulties during the calculation, T is regulated by normalizing the feature. 

For the convenience, the following analysis and processing are considered as, 

𝐸 = (∑|𝐸𝑖
′|2

𝑛

𝑖=1

)

1
2

                                                    (3.9) 

Then ‘T’ becomes, 

𝑇′ = [
𝐸1
′

𝐸
,
𝐸2
′

𝐸
,……… ,

𝐸𝑛
′

𝐸
] = [𝐸1, 𝐸2, ……… , 𝐸𝑛]                      (3.10) 
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Where T’ is the normalised vector (Chen et al. 2013). This normalised vector is treated 

as an input vector to the classifier for the fault diagnosis of the face milling tool. 

3.1.1.4 Discrete wavelet transform (DWT) features 

The acquired signal can be represented in another form of a signal using basic function, 

this is called transformation of a signal. It does not change the information which exists 

in the signal. The wavelet transform is a mathematical tool that transforms a signal into 

a different form (in the time-scale domain, a series of wavelet coefficients, etc.) using 

a wavelet function. A wavelet function is a short wave with finite energy characteristics 

(Yan et al., 2014). Wavelet transform represents the signal in time-frequency domain. 

Applications of wavelet transform can be seen in various fields such as mathematics, 

science and engineering as watermarking, image registration, signal denoising, 

compression, feature extraction, time-frequency analysis, etc. (Zhu et al.,2009).  DWT 

is one of the wavelet transforms and it was evolved by Mallat (1989) with fast algorithm 

based on the conjugate quadratic filters. The DWT in the mathematical form of a signal 

x(t) is expressed as (Yan et al., 2014); 

𝑑𝑤𝑡 (𝑗. 𝑘) =
1

√2𝑗
∫𝑥(𝑡)𝜓∗ (

𝑡 − 𝑘2𝑗

2𝑗
)𝑑𝑡                       (3.11) 

Using the low-pass and high-pass filters, the signal is decomposed into two 

components. One is low frequency component and another one is high frequency 

component as, 

𝑎𝑗,𝑘 =∑ℎ(2𝑘 −𝑚)𝑎𝑗−1,𝑚
𝑚

𝑑𝑗,𝑘 =∑g(2𝑘 −𝑚)𝑎𝑗−1,𝑚
𝑚 }

 
 

 
 

                                                (3.12) 

Where aj,k is ‘approximation’ coefficient and dj,k is ‘detail’ coefficient. Approximation 

and detail coefficients represent low frequency components and high frequency 

components of the signal respectively. Approximation and detail coefficients are 

produced at multiple scales by iterating the process on the approximation coefficients 

of each scale. The entire process is represented as tree-structure as shown in Figure 3.3. 
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Figure 3.3 Wavelet decomposition tree 

These coefficients represent a set of features. Based on the scale and position of the 

wavelet, the wavelet coefficients represent the characteristics of a signal. The set of 

such features obtained using DWT termed as feature vector and it is given by (Vernekar 

et al., 2014). 

𝑣𝑖
𝑑𝑤𝑡 = {𝑣1

𝑑𝑤𝑡, 𝑣2
𝑑𝑤𝑡 , … 𝑣12

𝑑𝑤𝑡}𝑇                                 (3.13) 

Where 𝑣𝑖
𝑑𝑤𝑡  component is related to the individual resolutions and can be computed as 

follows, 

𝑣𝑖
𝑑𝑤𝑡 =

1

𝑛𝑖
∑ Wi,j   

2 ;   i = 1,2, … . 12

ni

j=1

                      (3.14) 

Where n1=212, n2=211,.…. n12=20, 

𝑣𝑖
𝑑𝑤𝑡 is the ith feature element in a DWT feature vector, ni is the number of samples in 

an individual sub-band.  𝑊𝑖,𝑗   
2 is the jth coefficient of the ith sub-band. vi gives the mean 

square value of the decomposed signal at different levels. 
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3.1.2 Feature selection 

The process of feature selection is a difficult task as compared to feature extraction; in 

this section no new features are generated. It is a process of choosing a subset of ‘M’ 

features from the existing set of ‘N’ features (M<N), so that feature space is optimally 

decreased based on certain criterion (Blum and Langley, 1997). The features can be any 

measure of data points or the signal, but the relevance of them will depend on how well 

they help in the process of classification. The process of selecting the good features 

from a pool of features is called ‘feature selection’. The good feature will have feature 

values with minimum variation within a class and maximum variation between the 

classes. In machine learning system the roles of the feature selection are as follows; 

 to decrease the feature space dimensionality, 

 to accelerate a learning algorithm, 

 to enhance the predictive accuracy of a classification algorithm and  

 to improve the understandability of the learning results. 

Many techniques are used for feature selection; among them decision tree method is 

widely used and the best one for feature selection in the area of fault diagnosis 

(Sugumaran and Ramachandran, 2007; Elangovan et al. 2011). 

3.1.2.1 Feature selection using decision tree (J48 algorithm or C4.5 algorithm) 

The decision tree technique is used to classify data into discrete ones using tree 

structured algorithms (Breiman et al., 1984). J48 technique has found immense 

applications such as medical, engineering, market research statistics, etc. The main 

purpose of the decision tree is to illustrate the structural information contained in the 

data. A standard tree represented with J48 algorithm consists of a root node, a number 

of leaves, nodes and a number of branches. Each branch of a tree represents a chain of 

nodes from the root to a leaf and each node represents an attribute (or feature). The 

presence of a feature in a tree gives the information about the prominence of the 

associated feature. The procedure for making the decision tree and using the same for 

feature selection is explained below. 
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 The set of features is treated as an input to the algorithm and the 

corresponding output is a decision tree. 

 It consists of leaf nodes, which indicate class labels and the rest of the nodes 

related to the classes are being classified.  

 The branches of the tree exhibit each predictive value of the generated 

feature node. 

 Feature vectors are classified using decision tree, starting from the root of 

the tree to the node of the leaf. 

 In each decision node in the tree, the most useful feature based on the 

estimation criteria can be chosen. The useful feature identified based on the 

criteria which invoke the concepts of information gain and entropy 

reduction are explained below. 

Information Gain and entropy reduction 

Information Gain is defined as an expected reduction in entropy by partitioning the 

samples based on the feature. Entropy is defined as a measure of disorder present in the 

set of instances. By adding information, it reduces uncertainty. Information Gain 

compares the entropies of the original system and the system after information added. 

The Information Gain (S, A) of a feature ‘A’ to a set of examples ‘S’ can be expressed 

as, 

𝐺𝑎𝑖𝑛 (𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) − ∑
|𝑆𝑣|

|𝑆|
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆𝑣)

𝑣∈𝑉𝑎𝑙𝑢𝑒 (𝐴)

          (3.15) 

Where, ‘Values (A)’ is the set of all possible values for attribute ‘A’, ‘Sv‘ is the subset 

of ‘S’ of which feature ‘A’ has a value ‘v’ (i.e., Sv= {𝑠 ∈ 𝑆| A(s)=v}). 

Note the first term in the equation (3.15) is the entropy of the original collection ‘S’ and 

the second term is the expected value of the entropy after ‘S’ is partitioned using feature 

‘A’. The expected entropy described by the second term is the direct sum of the 

entropies of each subset ‘Sv‘ weighted by the fraction of samples |Sv|/|S| that belong to 

‘Sv‘. Gain (S, A) is therefore the expected reduction in entropy caused by knowing the 

value of a feature ‘A’. Entropy is given by, 
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𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) =  ∑−𝑃𝑖𝑙𝑜𝑔2𝑃𝑖

𝑐

𝑖−1

                                    (3.16) 

Where, ‘c’ is the number of classes. ‘Pi’ is the proportion of ‘S’ belonging to the class 

‘i’ (Gangadhar et al., 2014). 

3.1.3 Feature classification 

In machine learning, classification is considered an instance of supervised learning, it 

means learning where a training set of correctly identified observations is available. In 

classification, a feature extraction provides a feature vector to assign the data points to 

a category (Soman et al. 2006). This research work made used of some of the classifiers 

such as, support vector machine (SVM), artificial neural network (ANN), K-star 

algorithm, Bayes algorithm and decision tree algorithm to distinguish the face milling 

tool condition using selected features from the signals. The details about each classifier 

is explained in the forthcoming sections. 

3.1.3.1 Support vector machine (SVM) 

Support vector machine is one of the supervised learning methods used for 

classification. SVM is based on concept of decision planes that defines decision 

boundaries and it works based on statistical learning method. It classifies the data points 

by creating a hyper plane or classification plane between the classes. Figure 3.4 shows 

the classification of two different classes which represent triangles for positive class 

and circles for negative class. SVM tries to classify these data points (positive and 

negative classes) by creating an optimal separable hyper-plane. The distance between 

the two dotted lines (bounding planes) is called margin. The main objective of SVM is 

to maximize the margin and minimize the generalization error. The data points which 

are nearer to the bounding planes are called support vectors. These support vectors help 

to define the margin and contain all the information about classification (Widodo and 

Yang 2007). 
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Figure 3.4 Classification of two classes using SVM 

Consider a training data set {(xi, yi)}; i=1 to L, xi ∈ Rn, yi ∈ (1,-1) where L indicates 

total number of data points. xi is the input vector and yi is the indicator vector. It is 

required to determine the hyper plane which separates the data points linearly into two 

classes (triangles and circles).  yi ∈ (1,-1) is concerned with the two types of classes 

namely triangles and circles. For the hyper plane f(x) = 0 which separates the given data 

is obtained as a solution to the following optimization problem. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒      
1

2
 ||𝑤||2 +  𝐶∑𝜉𝑖

𝐿

𝑖=1

                                        (3.17) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜       {
𝑦𝑖 (𝑤

𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖

𝜉𝑖 ≥ 0 ;         𝑖 = 1 𝑡𝑜 𝐿
                               (3.18) 

Where, ‘ξ’ is a slack variable which measures the distance between the margin and the 

examples xi, ‘b’ is the bias, C > 0 is the constant representing penalty parameter and 

‘w’ is weight vector. 

Optimal separable 
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Margin 
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After training, for any new set of features prediction of its class is possible using the 

decision function. The decision function is a function of ‘w’ and ‘γ’, which is given 

below. 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (𝑤𝑇𝑥 − 𝛾)                                            (3.19) 

If the value of f(x) is positive, then a new set of features belongs to class triangles; 

otherwise it belongs to class circles (Saimurugan et al. 2011). C-SVC and ν-SVC 

models (Vernekar et al. 2015) of SVM are used for fault diagnosis of the face milling 

tool. 

3.1.3.2 Bayes algorithm 

Bayesian decision making refers to choosing the most likely class given the value of a 

feature or features. Consider the classification problem with two classes C1 and C2 

based on a single feature x. from the training sets of the two classes, histograms can be 

prepared and the respective priori probabilities determined. Information extracted from 

there can be used to carry out classification based on the feature x. Figure 3.5 shows a 

hypothetical case. Class C1 can be assigned for values of x small enough and the 

alternate class C2 assigned for sufficiently large values of x. This leads to the 

probability of deciding a classification boundary and a rationale for it. Consider a 

sample with feature value x = xb such that, 

𝑃𝑐1(𝑥𝑏)𝑑𝑥 = 𝑃𝑐2(𝑥𝑏)𝑑𝑥                                       (3.20) 

 

Figure 3.5 Histogram of a hypothetical two-class problem 
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A sample with feature value x < xb has Pc1(xb) dx > Pc2(xb) dx. It can be classified as 

belonging to class C1. On the other hand, a sample with feature value x > xb has Pc1(xb) 

dx < Pc2(xb) dx. It can be classified as belonging to class C2. Thus x = xb constitutes the 

classification boundary (Muralidharan, 2012). The procedure has been directly 

extended to multiple classes and features of Bayes classifier by Hemantha et al. (2014). 

3.1.3.3 Artificial neural network (ANN) 

An artificial neural network is a paradigm which is built from a number of processing 

elements called neurons and these neurons are interconnected to each other. The 

connection between the neurons possesses the associated weight which is being 

multiplied to the incoming data/signal. ANN uses mathematical formulations to form a 

model and a neural network is used to learn patterns and relationships in data. Data may 

be the results of a market research effort or a different operating conditions of a 

manufacturing process or a set of loan applications given by the loan officer. Regardless 

of the specifics involved, applying a neural network is substantially different from 

traditional approaches. 

An ANN is denoted by three elements, one is architecture which depicts the connection 

between neurons. Second is training or learning which determines the weights on the 

connections and the third one is activation function which is used to compute the output 

response of a neuron. A typical ANN consists of an input layer, hidden layer and output 

layer of neurons as shown in Figure 3.6. The Activity of neurons in the input layer 

represents the raw signal/data, this signal is processed at neurons of hidden layer with 

the help of weights associated with the connections between input and hidden layers. 

Similarly the output response of the neurons of the output layer depends on the activity 

of hidden layer neurons and weights of connection between hidden and output layers 

(Sivanandam and Deepa, 2006). 
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Figure 3.6 Architecture of ANN 

In this study, multilayer perceptron (MLP) neural network is used to distinguish the 

face milling tool conditions, because the single layer perceptron network is only used 

for linearly separable classification of patterns. The milling tool in fault condition 

possesses a non-linear/non stationary signals. Hence, the single layer perceptron 

network is not applicable for this study. MLP is an eminent class of neural networks 

and it is a unidirectional network with supervised learning and having back propagation 

algorithm which can be used to update the weights. This comprises of an input layer, 

one or more hidden layer and an output layer. In MLP networks, there exists a non-

linear activation function called logistic sigmoid function which is widely used to 

perform highly complex tasks. 

3.1.3.4 K-star algorithm 

The K-star algorithm uses entropic measure based on probability of transforming 

instance into another by randomly choosing between all possible transformations. 

Using entropy as appraise of distance has numerous utility. A consistency of approach 

in real, symbolic, missing value attributes makes it important. An instance based 

algorithm made for symbolic attributes fail in features of real value thus lacking in 

incorporated theoretical base. Approaches successful in feature of real values are thus 

in an ad – hoc fashion are made to handle symbolic attributes. Handling of missing 
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values by classifiers poses similar problems. Usually missing values treated as a 

separate value, thought as maximally different and substitute for average value. Entropy 

based classifier is a solution for these issues. 

Entropy as a distance measure 

Information theory helps in computing distance between instances. The complexity of 

a transformation of one instance into another is actually the distance between instances. 

This is achieved in two steps. First define a finite set of transformations they will map 

one instances to another. Then transform one instance ‘a’ to another ‘b’ with the help 

of ‘program’ in a finite sequence of transformations starting at ‘a’ and terminating at 

‘b’. 

Specification of K* 

Given a set of infinite points and set of transformations predefined T. Let t be a value 

of set T. This t will map t: I I. To map instances with itself  is used in T ( (a) = a). 

 terminates all prefix codes from T*. Set T* consists members which define 

transformation one to one (uniquely) on I. 

𝑡(𝑎) = 𝑡𝑛(𝑡𝑛−1(… 𝑡1(𝑎)… )) 𝑤ℎ𝑒𝑟𝑒 𝑡 = 𝑡1, … , 𝑡𝑛                       (3.21) 

p is a probability function on T*. Hence properties below are observed: 

Step 1: Calculation of total probability of all paths from instance ‘a’ to an instance b. 

P* in accordance with definition as the probability of all paths from instance ‘a’ to 

instance b: 

𝑃 ∗ (
𝑏

𝑎
) =∑ 𝑃(𝑡)

𝑡∈𝑝:𝑡(𝑎)=𝑏
                                          (3.22) 

The K*function is: 

𝐾 ∗ (
𝑏

𝑎
) = − log2 𝑃 ∗ (

𝑏

𝑎
)                                            (3.23) 
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Please note that K* is not exactly a distance function. Point to be underscore K* (a|a) 

is usually non-zero also is not symmetric function (as emphasized by the notation). 

Real numbers 

For real number it is found that the probability is given by 𝑃∗(𝑥) =
1

2𝑥0
𝑒
−
𝑥

𝑥0
𝑑𝑥.𝑥0

 is a 

scale length. The mean expected value for x over the distribution 𝑃∗.  

Step 2: Category prediction 

Category prediction is done by adding probabilities from ‘a’ to every instance which 

constitutes C. The probability of each individual instance is calculated and relative 

probabilities are used as an estimate. Selection of the set exhibiting the largest 

probability is taken as the classification of the new instance (Painuli et al. 2014). 

𝑃 ∗ (𝐶|𝑎) =∑𝑃

𝑏∈𝐶

∗ (𝑏|𝑎)                                       (3.24) 

3.2 OFF-LINE MONITORING 

Figure 3.7 illustrates the offline monitoring of the face milling tool condition. Analysis 

of the milling tool will be carried out using vibration and sound signals from the set of 

experiments. Ultimately, interpret the results obtained from the experiments under 

different tool conditions will be carried out through signal processing techniques such 

as spectrum technique, cepstrum technique and continuous wavelet transform (CWT) 

technique. The brief description about the signal processing techniques are explained 

in the forthcoming subsections. 
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Figure 3.7 Methodology- off-line monitoring of the face milling tool 

3.2.1 Time-domain and spectrum analyses 

Time domain plot helps to examine the amplitude and phase information of the 

vibration signal to determine the failure/defect of any rotating machinery system or the 

process condition. Fault detection using time series response is a difficult task. Fourier 

transform (FT) is the most widely used technique in vibration signal analysis. It 

converts the given signal from time domain to frequency domain by integrating the 

given function over the entire time period. Fourier’s approach is based on the 
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assumption that any waveform can be represented as the superposition of a series of 

sine and cosine waves at different frequencies. A Fourier series is used for 

representation of continuous-time periodic signals. Fourier transform for the angular 

frequency ω=2πf and time ‘t’ is given by, 

𝑋(⍵) =  ∫  𝑥(𝑡)
+∞

−∞

𝑒−𝑗⍵𝑡 𝑑𝑡                                                     (3.25) 

Where X(ω) is the Fourier transform of the signal x(t). FT technique earned much of its 

importance in processing stationary signal (Vernekar et al., 2015). 

3.2.2 Cepstrum analysis 

A cepstrum is considered as forward Fourier transformation of the logarithm of a 

spectrum. It is therefore defined as the spectrum of a spectrum. The cepstrum was 

originally referred as the power spectrum of the logarithmic power spectrum. Thus, the 

calculation of cepstrum involves the inverse Fourier transform of the natural logarithm 

of a spectrum (Randall, 1982). Given a real signal x(n), cepstrum form can be expressed 

as follows. 

The real cepstrum of a signal x(n) (Hasegawa, 2000): 

𝑐(𝑛) =
1

2𝜋
∫ 𝑙𝑜𝑔

𝜋

−𝜋

|𝑋(𝑒𝑗𝜔)|𝑒𝑗𝜔𝑛𝑑𝜔                                        (3.26) 

Where n is cepstral ‘lag’, if x(n) is real, then log|𝑋(𝑒𝑗𝜔)| is even. Cepstrum reveals the 

periodicity in frequency domain usually as results of modulation. Figure 3.8 depicts the 

relationship between spectrum and cepstrum. 

 

 

 

Figure 3.8 The relationship between a spectrum and a cepstrum 

FFT log(FFT)    FFT 
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3.2.3 Wavelet analysis 

The Fourier transform is not suitable for analysing non-stationary signals since it fails 

to reveal the frequency content of a signal at a particular time. In signal processing, the 

limitation of FT led to the introduction of new time-frequency analysis called wavelet 

transform (WT). 

Generally, conventional data processing is computed in time or frequency domain. 

Wavelet processing method combines both time and frequency information. Wavelet 

analysis is one of the ‘time-frequency’ analysis. A wavelet is a basis function 

characterized by two aspects; first is its shape and amplitude, which is chosen by the 

user, second is its scale (frequency) and time (location) relative to the signal. 

The continuous wavelet transform (CWT) can be used to generate spectrograms which 

show the frequency content of signals as a function of time. A continuous-time wavelet 

transform of x(t) is defined as, 

𝐶𝑊𝑇 𝑋𝜓(𝑎, 𝑏) =
1

√|𝑎|
∫ 𝑥(𝑡)𝜓∗ (

𝑡 − 𝑏

𝑎
)𝑑𝑡,

∞

−∞

 {𝑎, 𝑏 𝜖 𝑅, 𝑎 ≠ 0}             (3.27) 

In the above equation (3.27), ψ(t) is a continuous wavelet function in time domain as 

well as the frequency domain called the mother wavelet and ψ*(t) indicates complex 

conjugate of the analysing wavelet ψ(t). The parameter ‘a’ is termed as scaling 

parameter and ‘b’ is the translation parameter. The transformed signal Xψ(a, b) is a 

function of the translation parameter ‘b’ and the scale parameter ‘a’. In WT, signal 

energy is normalized by dividing the wavelet coefficients by 
1

√|𝑎|
 at each scale. 

Morlet wavelet 

The Morlet wavelet transform belongs to CWT family. It is one of the most popular 

wavelet used in practice and its mother wavelet is given by, 

𝜓(𝑡) =
1

√𝜋
4 (𝑒𝑗𝑤0𝑡 − 𝑒−

𝑤0
2

2 ) 𝑒−
𝑡2

2                                           (3.28) 
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In the above equation (3.28), wo refers to central frequency of the mother wavelet. The 

term 𝑒−
𝑤0
2

2  involved in the equation is specifically used for correcting the non-zero mean 

of the complex sinusoid and in most cases, it can be negligible when wo>5. Therefore, 

when the central frequency wo >5, the mother wavelet can be redefined as follows 

(Vernekar et al., 2014); 

𝜓(𝑡) =
1

√𝜋
4 𝑒𝑗𝑤0𝑡 ∗ 𝑒−

𝑡2

2                                                  (3.29) 

3.3 SUMMARY 

This chapter has discussed about the conceptual overview methodology which 

comprises of on-line and offline monitoring techniques. The theory portions of the 

machine learning techniques and signal processing techniques are described. In the 

subsequent chapter, the experimental outfit required for fault diagnosis of the face 

milling tool are explained in detail. 
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CHAPTER-4  

EXPERIMENTAL SETUP 

4.1 INTRODUCTION 

The importance of condition monitoring and methodology involved in fault diagnosis 

of the milling tool are discussed in the previous chapters. Different faults of the milling 

tool are considered to select the best signal processing technique and best feature-

classifier combination for machine learning based fault prediction. This chapter 

presents the details of experimental setup and the procedure for conducting the 

experiments on fault diagnosis of the face milling tool.  

4.2 CONDITION MONITORING OF FACE MILLING TOOL TEST RIG 

Figure 4.1 shows the experimental setup and instrumentation for vibration and sound 

signals acquisition during machining. A triaxial accelerometer which is used to acquire 

the vibration signals is fixed to the spindle housing and the microphone to acquire the 

sound signals is suspended near the face milling zone. These two sensors are connected 

to a data acquisition (DAQ) system for processing and analysing the data subsequently. 

Details of data acquisition system that is the process of sampling sensor signals and 

converts the resulting samples into digital numeric values that can be stored and 

retained by a computer is provided in Section 4.5. The accelerometer measures 

acceleration during machining in x, y and z directions. Only ‘x’ direction i.e. feed 

direction of acceleration signal is considered for the analysis. The corresponding sound 

signals during milling under healthy tool and different faulty tool conditions are 

acquired. 

The present research work is based on the analysis of vibration and sound signals 

acquired from the milling machine while performing a face milling operation on the 

workpiece. All the experiments were conducted under dry milling conditions. A 
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Universal Milling machine [3M (AU) G all feed automatic] was used with a 3.37 kW 

motor for the spindle and a 2.24 kW motor for the feed. 

 

(a) Face milling machine with DAQ 

system 

 

(b) Machine tool – work material 

structure 

Figure 4.1 Experimental setup for condition monitoring of the face milling tool 

4.2.1 Test specimen 

The commercially available workpiece material of steel alloy 42CrMo4 was used for 

the current research work. This steel is used for large size parts such as gear, square 

shaft, sprocket, valve housing, etc. that can be seen in automobile and aerospace 

applications. They require a good surface finish and therefore one needs to know the 

state of milling insert at all times. The dimension of machining surface of the workpiece 

is 100x200 mm2. The chemical composition of the work material is shown in Table 4.1. 

DAQ System 
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Table 4.1 Chemical composition of the workpiece steel alloy 42CrMo4 

C (%) Si (%) Mn (%) P (%) S (%) Cr (%) Mo (%) Fe (%) 

0.38 - 

0.45 

Max 

0.4 

0.6 – 0.9 Max 

0.025 

Max 

0.035 

0.9 – 1.2 0.15 – 0.3 96.6 

The work material was machined on a face milling machine. The dimensions of the 

workpiece is 200 x 100 x 25 mm3. The work material was horizontally positioned in 

the middle of the clamping fixture. This was accomplished by aligning a scribe mark 

on each end of the work material to the scribe mark of the clamping fixture. Along with 

vertical positioning of the work material, accurate horizontal positioning was necessary 

in order to prevent changes in the dynamic structure of the tool-work material. 

4.2.2 Specification of milling cutter 

The inserts were mounted on a commercially available face milling tool (6 Carbide 

inserts, Mitsubishi make). The experiments were conducted using six carbide inserts. 

The specification and dimensions of the face milling tool are given in Table 4.2, 

Table4.3 and Figure 4.2. 

 

 

Figure 4.2 Geometry of the face milling tool 
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Table 4.2 Insert and cutter specification 

Face milling tool SEMT13T3AGSN 

Mill Insert VP15TF 

Milling diameter 80 mm 

Table 4.3 Dimension of the face milling tool (all dimensions are in ‘mm’) 

D1 D2 L1 D9 L7 D8 D12 W1 L8 ap 

80 93.2 50 27 23 13 56 12.4 7 6 

4.3 SENSORS USED 

The sensors such as accelerometer and microphone are used in the present study. The 

details about each sensor and specifications are described in the following sections. 

4.3.1 Accelerometer 

For acquiring the vibration signals, a triaxial piezoelectric accelerometer 

(YMC145A100) with response frequency is greater than 15 kHz, measurement range ± 

50 g and sensitivity 106.3 mV/g was mounted on bearing housing of the spindle. Figure 

4.3 shows the triaxial accelerometer and the specifications of the accelerometer is as 

shown in Table 4.4.  

 

Figure 4.3 Triaxial accelerometer for measuring the vibration 
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Table 4.4 Specification of the accelerometer 

Make Integrated electronic piezoelectric 

Model YMC145A100 

Sensitivity X axis 97.90 mV/g  

Sensitivity Y axis 95.65 mV/g 

Sensitivity Z axis 104.6 mV/g 

Measuring range ±50 g 

Test environment temperature 220 C 

Temperature range  -41 to 1210 C 

Size 25.4 x 25.4 x 14 mm3 

4.3.2 Microphone 

Corresponding sound signals are acquired using microphone (G.R.A.S. 40PH) was 

fixed near face milling zone. Figure 4.4 shows the microphone and the specifications 

of the microphone is as shown in Table 4.5. 

 

Figure 4.4 Microphone for measuring the sound signal 

Table 4.5 Specification of the microphone 

Microphone Type 40PH 

Model G.R.A.S 

Test frequency 250 Hz  

Measured level 50.13 mV/Pa 

Uncertainty ± 0.06 dB 
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4.4 OPERATING CONDITIONS 

During the milling operation, the work material was fed into the cutting tool, while the 

tool performed an interrupted, bilateral cut. The feed of the mill table was 

unidirectional. All experiments were carried out under dry conditions and no coolant 

was used. The selected machining parameters were recommended by the tool producer 

(M/s Mitsubishi) as to provide optimum cutting performance. The selected machining 

parameters were used to acquire the signals are as shown in Table 4.6. 

Table 4.6 Milling process parameters 

Parameter Value 

Feed 0.12 mm/tooth 

Cutting speed 128 m/min 

Depth of cut 0.5 mm 

Lubrication Dry 

4.5 HARDWARE-SOFTWARE SETUP USED FOR DATA ACQUISITION 

Hardware setup used in the experiments is chosen in a way to have an efficient data 

acquisition of vibration and sound signals sensed by accelerometer and microphone 

respectively placed near the machining zone. The following components are used in the 

hardware setup. 

4.5.1 NI USB-9234 DAQ 

The NI USB-9234 is shown in Figure 4.5, along with high speed USB carrier (NI USB 

9162) is used for acquiring vibration and sound signals. Characteristics of NI USB-

9234 are given in Table 4.7. The output of accelerometer and microphone is connected 

to NI USB-9234 via BNC (Bayonet Neill–Concelman) cables and from here it is 

connected to the computer. The acquired signals were analysed using LabVIEW 

software from National Instruments (NI). 
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Figure 4.5 NI USB-9234 with NI USB carrier 

Table 4.7 Specification of NI USB-9234 

Parameter Specification 

Number of channels 4 analog input channels 

ADC resolution 24 bits 

Types of ADC Delta-Sigma 

Sampling mode Simulations 

Sampling frequency 51.2 kS/s/Ch 

Input voltage ±5 V 

Temperature Range -400 C to 700 C 

To prevent aliasing, the signals are sampled at sampling frequency of 25.6 kHz with 

25600 data points per 1 sec time interval under controlled testing conditions. 
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4.6 SOFTWARE INTERFACE 

A virtual instrument (VI) program was developed to acquire and analyse the vibration 

and sound signals for the present research work. Figure 4.6 and Figure 4.7 depict the 

block diagram for data acquisition and analysis. 

 

Figure 4.6 VI Block diagram for the data acquisition 

 

Figure 4.7 Front panel to represent the acquired data 



84 
 

Figure 4.6 shows the graphical block diagram of the VI program. The acquired data are 

converted into frequency domain by fast Fourier transforms (FFT) in LabVIEW. Figure 

4.7 shows the front panel of the VI program. In order to avoid inconsistency in data 

acquisition, three trials are performed at the set machining parameters and then 

vibration and sound signals are stored in the data file. 

4.7 EXPERIMENTAL PROCEDURE 

The following methodology is adopted during face milling operation. The procedure is 

unchanged during our entire research work. The repeatability of the experiments is also 

taken care of. 

1. Face milling operation will be carried out using universal milling machine [3M 

(AU) G ALL FEED AUTOMATIC] with commercially available carbide insert 

(Mitsubishi make: SEMT13T3AGSN-JM VP15TF) and workpiece of steel alloy 

42CrMo4. 

2. The four different face milling tool conditions considered in the present study are 

as follows: 

a) Healthy 

b) Flank wear (0.3 mm) 

c) Tip breakage (breakage) and 

d) Chipping on the rake face (chipping). 

3. Machining will be carried out with selected machining parameters. They are 

cutting speed of 128 m/min, feed of 0.12 mm/tooth and depth of cut of 0.5 mm. 

4. Acquiring the acceleration and sound signals for healthy and faulty conditions of 

the face milling tool. 

In the healthy condition of the tool, all six inserts are new/unworn inserts (Figure 

4.8(a)), whereas in faulty condition, among six inserts one is either flank wear (Figure 

4.8 (b)) or breakage (Figure 4.8 (c)) or chipping (Figure 4.8 (d)) and the remaining five 

are healthy inserts and have been considered for analysis. 
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a) Healthy 

 

b) Flank wear 

 

c) Breakage 

 

d) Chipping 

Figure 4.8 Different conditions of face milling tool insert 

Different face milling tool insert conditions used in this experiment are as shown in 

Figure 4.8. Different types of tool wear specified in the research work predominantly 

appears during milling process. Hence these fault conditions have been considered for 

current investigation. Fault diagnosis/detection of the milling tool condition will be 

carried out using signal processing techniques and machine learning technique 

4.8 SUMMARY 

This chapter has discussed about the experimental setup used for research work which 

includes the details of the sensors used, data acquisition systems, virtual 

instrumentation and experimental procedure involved in undertaking the required tests. 

The subsequent chapter discusses the usage of signal processing techniques based on 

acquired vibration and sound signals in fault detection of the face milling tool. 
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CHAPTER-5  

FAULT DETECTION USING SIGNAL PROCESSING 

TECHNIQUES 

5.1 INTRODUCTION 

In signal processing techniques, the acquired signals are analysed in terms of frequency 

component, quefrency component and time-frequency components by using spectrum 

analysis, cepstrum analysis and wavelet analysis respectively. These process 

parameters are very useful to predict tool condition. In this chapter, some of the signal 

processing techniques such as time-domain analysis, spectrum analysis, cepstrum 

analysis and continuous wavelet transform (CWT) analysis are used to investigate the 

condition of the face milling tool based on the acquired vibration and sound signals 

during machining.  

5.2 MODAL ANALYSIS 

Experimental modal analysis deals with the determination of modal parameters such as 

natural frequencies, damping properties and mode shapes of a structure through 

experiments. In the experimental modal analysis procedure, modal parameters are to be 

estimated from the measured frequency response functions (FRFs) i.e. from the output 

response and the input force data (Sujatha, 2010). The quality of an experimental modal 

model is only as good as the quality of the FRFs. In the present work, care has been 

taken in the selection of appropriate transducers and their positioning/mounting as well 

as aspects related to signal processing. Though the entire process of obtaining the 

required data is experimental in nature, many mathematical techniques are involved in 

the computation of FRFs and modal parameters extraction. Figure 5.1 shows the 

experimental setup for impact test on face milling tool. Figures 5.2-5.4 illustrate the 

FRF plots of spindle, face milling tool and workpiece. Table 5.1 depicts the frequency 

response for workpiece-tool system. 
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Figure 5.1 Experimental setup for impact test on face milling tool 

 

Figure 5.2 FRF of milling setup, accelerometer on the spindle 
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Figure 5.3 FRF of milling setup, accelerometer on the milling cutter 

 

Figure 5.4 FRF of milling setup, accelerometer on the workpiece 
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Table 5.1 Frequency response for workpiece-tool system 

Component/Equipment Natural frequencies (Hz) 

Spindle 672, 995, 1118, 1242, 1825 

Workpiece and fixture 645, 1117, 1310, 1870, 2265, 2448 

Milling tool 665, 974, 1115, 1210 

Vibration signals of machine elements always provide the dynamic information about 

the operating conditions. Vibration monitoring can help fault detection before the 

significant damage occurs. Changes in the condition of the components of mechanical 

systems often produce changes in the vibration signature which the system generates. 

Vibration signals contain information on the natural frequencies of the work piece, 

fixture, machine tool and spindle which are transformable into various domains to 

determine signatures of uneven tool wear or possible chipping. The most basic vibration 

analysis technique transforms the time domain signals to the frequency domain using 

the fast Fourier transform (FFT) in order to detect the unusual changes in vibration 

frequencies possibly due to tool wear or breakage (Ramakrishna 2016). Fourier 

transform (FT) is the most widely used technique in vibration signal analysis. Fast 

Fourier transform (FFT) is one of the extension of FT (Vernekar et al., 2014). 

Impact testing was conducted and the natural frequencies of the milling tool, workpiece 

and spindle housing were noted and is shown in the aforementioned Table 5.1. The 

acquired vibration signals for all conditions of the milling tool were analysed using 

spectrum technique. Figure 5.5 (a-d) illustrate the frequency spectra of vibration signals 

for all milling tool conditions such as healthy, flank wear, breakage and chipping 

conditions. 
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Figure 5.5 Spectrum plots of vibration signals (modal analysis) (a) healthy, (b) flank 

wear, (c) breakage and (d) chipping 
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From Figure 5.5 (a-d), it can be clearly observed that for all faulty conditions of the 

face milling tool, the magnitude of the vibration signals in the frequency ranges of 

750Hz to 900 Hz and 1250 Hz to 1350 Hz were varied progressively. The frequency 

range of 1240 Hz to 1350 Hz depicts the high frequency components of the vibration 

signals that correspond to one or more of the natural frequencies of the workpiece and 

spindle housing. Also this information about tool condition is insufficient for fault 

diagnosis. But in other frequency band of 750 Hz to 900 Hz, none of the natural 

frequencies correspond to either milling tool or spindle or workpiece were highlighted 

in the spectra. This shows that other frequency component of the machine tool work 

material structure has been varied as faults occurred in the milling tool. In order to 

identify the milling tool condition, further analysis will be carried out by computing the 

tooth passing frequency (TPF) of the milling tool (section 5.3.1.1). 

5.3. TIME AND FREQUENCY DOMAIN (SPECTRUM) ANALYSES 

5.3.1 Vibration signals 

Time domain plot helps to examine the amplitude and phase information of the acquired 

signal to determine the failure/defect of any rotating machinery system. The 

acceleration signals were acquired for healthy and different fault conditions of the face 

milling tool. Figure 5.6 shows the time-series plots in feed direction for different 

conditions of the face milling tool such as healthy, flank wear, breakage and chipping 

tool conditions. 
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(a) (b) 

  

(c) (d) 

Figure 5.6 Time-series plots of (a) healthy, (b) flank wear, (c) breakage and (d) 

chipping face milling tool conditions 

From Figure 5.6, the acceleration amplitude corresponding to fault condition shows 

slightly varied as compared to the acceleration of the healthy condition of the milling 

tool. It is quite difficult to diagnose the faults with the help of time-series plots. Fault 

diagnosis using time series response is a difficult task. FFT technique is used to detect 

the face milling tool condition through vibration and sound signals. The following 

subsection will give the details about fault detection of the face milling tool based on 

tooth passing frequency analysis. 
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5.3.1.1 Tooth passing frequency (TPF) analysis of milling tool 

In milling process, one of the reasons for vibration of the cutting tool is due to variation 

in the cutting force. This cutting force signal is periodic and its variation frequency is 

TPF which depends on spindle rotating frequency (fs) and number of teeth in the milling 

tool. Spindle rotating frequency ‘fs’ is defined as, 

𝑓𝑠 =
𝑁

60
=

1000𝑣

60𝜋𝐷
                                                                    (5.1) 

Where D is the diameter of the mill, N is the spindle speed (in revolutions per minute) 

and v is linear speed (in meters per minute). TPF is defined as, 

𝑇𝑃𝐹 = 𝑁𝑇 ∗ 𝑓𝑠 =
1000𝑣𝑁𝑇

60𝜋𝐷
                                                      (5.2) 

Where NT is the teeth numbers of the cutting tool, while the presence of peaks at 

additional frequencies represents the chatter. This TPF of milling dynamics is often 

used for detection of the chatter (Huang et al., 2013). 

The spectrum of experimental results for different conditions of the milling tool are 

shown in Figure 5.7. From spectrum plot, under normal cutting condition in a milling 

process, the dominant frequency components in the spectrum graph are around the 

spindle rotating frequency (fs), tooth passing frequency (TPF) and their harmonics 

(Orhan et al., 2007). 
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Figure 5.7 Spectrum plots of vibration signals (TPF analysis) (a) healthy, (b) flank 

wear, (c) chipping and (d) breakage 
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Table 5.2 Characteristic vibration frequency of spindle speed running at 510 rpm 

Parameters Value 

Spindle rotating frequency (fs) 8.5 Hz 

Tooth pass frequency (TPF) 51 Hz 

Total number of inserts in milling tool  6 

Table 5.2 shows the characteristic vibration frequency of milling process with spindle 

speed running at 510 rpm. TPF for the given spindle speed and the number of tool 

inserts is about 51 Hz. It can be noticed from spectrum plot that along with tooth pass 

frequency and its harmonics (1x, 2x, 3x,….etc.), few peaks corresponding to chatter are 

also present. Figure 5.7 (a) and (b) show the spectra of healthy and flank wear 

conditions of the face milling tool respectively, 16th multiple of TPF (816 Hz) shows 

the dominancy among all other harmonics. The corresponding acceleration amplitude 

of 16th multiple of TPF for the flank wear condition is about 0.1 m/s2. This signifies the 

presence of fault in the face milling tool. The increase in the amplitude level of the same 

frequency (16th multiple of TPF) with increase in severity of fault such as chipping 

condition can be visualized in spectrum as illustrated in Figure 5.7 (c). The magnitude 

of acceleration is increased from 0.1 to 0.125 m/s2, which signifies the increase of fault 

level in the milling tool. Also for breakage condition, 16th TPF is the dominant 

frequency among all TPF harmonics. From the overall spectra of vibration signals, it 

might be evident that 16th multiple of TPF coincides with one of the natural frequencies 

(816 Hz) of the tool-workpiece material structure.  

5.3.2 Sound signals 

The sound signal is also another kind of process parameter which has measured during 

face milling. The sound signals under different tool conditions were acquired. Analysis 

of sound signals under different face milling tool conditions has been carried out using 

time-domain analysis, spectrum analysis, cepsrtum analysis and wavelet analysis. 

Figure 5.8 depicts the time domain sound signals of the face milling tool under different 

conditions. 
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Figure 5.8 Time-series plots of sound signals for different tool conditions (a) 

healthy, (b) flank wear, (c) breakage and (d) chipping 

Figure 5.8 showed the time-series plots of sound signals for different conditions of the 

face milling tool such as (a) healthy, (b) flank wear, (c) breakage and (d) chipping. It is 

quite difficult to diagnose the faults with the help of time-series plots. However, as the 

tool wear/breakage occurs the machining sound becomes tedious and the analysis of 

healthy tool or broken tool can be detected by identifying the frequency components of 

the sound signal (Shi et al., 2014). Figure 5.9 illustrates the spectrum plots of sound 

signal for all conditions (healthy, flank wear, breakage and chipping) of the face milling 

tool. 
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Figure 5.9 Spectrum plots of sound signals for different tool conditions (a) 

healthy, (b) flank wear, (c) breakage and (d) chipping 
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From Figure 5.9 (a-d), observation shows that the peak frequencies corresponding to 

187 Hz and 374 Hz are the dominant frequencies among all spindle rotating frequency 

(fs) and their harmonics. When the milling tool is working under fault conditions (flank 

wear, breakage and chipping), the sound pressure value of these dominant frequencies 

(187 Hz and 374 Hz) are found to be different in comparison with the healthy condition 

of the tool. 

Further analyses of sound signal has been carried out using cepstrum and CWT 

techniques in the forthcoming sections. The cepstrum analysis will be carried out in 

order to recognize the tool conditions and also to validate the results of spectrum 

analysis. 

5.4 CEPSTRUM ANALYSIS 

5.4.1 Vibration signals 

The cepstrum plots of the face milling tool under different conditions (healthy, flank 

wear, breakage and chipping) using vibration signals are as shown in Figure 5.10. As 

discussed in spectrum analysis, the dominant peak corresponding to 816 Hz (16th 

multiple of TPF) is the defect frequency. In cepstrum analysis, the defect frequency is 

called as defect quefrency of about 0.0012s (1/816Hz) which shows the variation in 

amplitude of acceleration for different conditions of the tool. Figure 5.10 (a) shows the 

cepstrum plot of vibration signal under healthy face milling tool condition, where the 

acceleration of dominant peak at quefrency (0.0012s) is about 0.015 m/s2, which is 

considered as a reference for fault detection. With the faulty tool conditions such as 

flank wear, chipping and breakage, the magnitude of the acceleration signal is found to 

be increased at defect quefrency (0.0012s). In case of flank wear condition, 16th 

multiple of tooth passing quefrency (0.0012s) has the acceleration of about 0.031 m/s2, 

which implies the presence of faults in the milling tool. For breakage and chipping 

conditions, the acceleration value at quefrency 0.0012s is about 0.035 m/s2 and 0.04 

m/s2 respectively, which signifies the increase in the level of faults during milling 

process.  
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Figure 5.10 Cepstrum plots of vibration signals (a) healthy, (b) flank wear, (c) 

breakage and (d) chipping conditions 
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5.4.2 Sound signals 

The cepstrum plots of the face milling tool under different conditions  such as, healthy, 

flank wear, breakage and chipping conditions using sound signals are as shown in 

Figure 5.11.  

 

 

 

 

Figure 5.11 Cepstrum plots of sound signals (a) healthy, (b) flank wear, (c) 

breakage and (d) chipping 
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The fundamental spindle rotating frequency is about 8.5 Hz (510 rpm) and the 

corresponding quefrency is about 0.118 sec. In the present study, the fundamental 

rotational quefrency (0.118 sec) is the defect quefrency of the sound signal. Figure 

5.11(a) shows the cepstrum plot of a healthy tool where there is no dominant peak at 

any quefrency of cepstrum plot. As the faults (flank wear, breakage and chipping) are 

introduced into the milling tool, the sound pressure at defect quefrency (0.118sec) is 

found to be increased. In cases of flank wear condition, breakage condition and 

chipping condition, the corresponding fundamental rotational quefrencies (0.118sec) of 

the milling tool have the sound pressure values of about 0.048 Pa, 0.025 Pa and 0.054Pa 

respectively, which implies the presence of faults in the milling tool. 

From the above discussion of spectrum and cepstrum analyses of the face milling tool 

using vibration and sound signals, it can be visualized that even with the presence of 

defect in the tool, it is quite difficult to identify the particular time at which the defect 

frequency/quefrency occurred. Wavelet analysis will provide both time and frequency 

information of a healthy and faulty conditions of the tool. 

5.5 WAVELET ANALYSIS 

5.5.1 Vibration signals 

The acquired vibration signals under different milling tool conditions are analysed 

using CWT technique. The CWT is one of the wavelet transform techniques which 

represents the given signal in time-frequency domain. Figure 5.12 illustrates the CWT 

plots of the milling machine spindle vibration with healthy and fault conditions of the 

face milling tool. 
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Figure 5.12 CWT plots of vibration signals (a) healthy, (b) flank wear, (c) 

breakage and (d) chipping 
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Figure 5.12 depicts variation in intensity of high frequency band at 816 Hz, as the faults 

occur in the milling tool. The presence of high-frequency component at 816 Hz (16th 

multiple of TPF) which is one of the harmonics of TPF. Figure 5.12 (a) depicts the 

CWT plot of healthy tool condition. Occurrence of different faults such as flank wear, 

chipping and breakage in the milling tool increases the intensity of the high frequency 

(816 Hz) band as shown in Figure 5.12 (b), (c) and (d). This variations in intensity of 

high frequency band indicates the existence of fault in the milling tool. 

5.5.2 Sound signals 

The acquired sound signals from the set of experiments are analysed using CWT 

technique to identify the face milling tool condition. Figure 5.13 illustrates CWT plots 

of sound signals during face milling operation with healthy and fault conditions of the 

milling tool. Observation shows that there is some high intensity of frequency of 127Hz 

(15th multiple of spindle rotation frequency) for all conditions of the face milling tool. 

Figure 5.13 (a) depicts the CWT plot of healthy face milling tool condition. Whereas, 

Figure 5.13 (d) illustrates the CWT plot of chipping tool condition, wherein the 

intensity of the high frequency (127 Hz) band has been increased, when it is compared 

with the CWT plot of healthy tool condition. Small variation in acceleration 

corresponding to frequency of 127 Hz has been observed due to the presence of faults 

such as flank wear and breakage (Figure 5.13 (b) and (c)). But it is very difficult to 

identify the exact time and frequency for each condition of milling tool. Hence CWT 

plots are very difficult to analyse the condition of tool using sound signals. 
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Figure 5.13 CWT plots of sound signals (a) healthy, (b) flank wear, (c) breakage and 

(d) chipping  
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Generally, conventional data processing is computed in time or frequency domain and 

is not suitable for analysing non-stationary signals. However, spectrum analysis has 

provided an information about the face milling tool condition in terms of TPF in case 

of vibration signals, and the harmonics of spindle rotation frequency in case of sound 

signals. Also cepstrum technique can be used as validation to spectrum analysis which 

provides the information about corresponding fault occurrences in terms of variation of 

defect quefrencies. Wavelet analysis is appropriate for characterizing machine vibration 

signatures with narrow band-width frequencies lasting for a short time period. Wavelets 

have limited bandwidth in the frequency domain and compact bandwidth in the time 

domain (Loutridis 2004; Bianchini et al. 2011). Though the advanced signal processing 

technique such as CWT has been used, it has not provided sufficient information about 

the milling tool conditions using both vibration and sound signals. The detection of 

fault using these techniques is difficult and it needs a highly skilled and experienced 

technician who has clear understanding of the techniques used and also thorough 

knowledge about the machine in which the fault is detected.  

5.6 SUMMARY 

This chapter has illustrated the analysis of vibration and sound signals acquired for 

healthy and different faulty face milling tool conditions using the time domain plots, 

modal analysis, frequency domain plots, cepstrum plots and wavelet transform plots for 

detecting the faults. It was found that the time domain signals analysis gives overall 

vibration level but do not provide any fault diagnostic information. Spectrum analysis 

is the most widely used signal processing technique, but sometimes quite difficult to 

identify the defect frequency and it requires domain knowledge. Cepstrum analysis is a 

suitable technique to identify and distinguish the fault quefrencies. Wavelet analysis is 

three dimensional representation of a signal which is inherently suited to indicate 

transient events in the signals. Since face milling process generates non-stationary 

signals and complex signals, fault diagnosis of cutting tool can be effectively monitored 

using advanced signal processing technique rather than traditional approaches. Machine 

learning approach is one of the promising tools which can be easily applied for fault 

diagnosis. Chapter 6 presents the techniques used for fault diagnosis of the face milling 

tool using machine learning approach for online tool condition monitoring. 



106 
 

CHAPTER-6  

FAULT DIAGNOSIS USING MACHINE LEARNING 

TECHNIQUES BASED ON VIBRATION SIGNAL  

6.1 INTRODUCTION 

Machine learning is an area of artificial intelligence involving developing techniques 

to allow computers to learn. More specifically, machine learning is a method for 

creating computer programs by the analysis of data sets. Many of the machine learning 

methods is iterative in nature and they require high speed processors. The aforesaid 

developments accelerate the application of machine learning methods for solving 

problems in real time. Fault diagnosis is one of the application areas, where machine 

learning methods are widely used. This chapter describes the investigation of the 

vibration signals of the face milling tool based on machine learning methods used for 

fault diagnosis.  

6.2 MACHINE LEARNING APPROACH 

Machine learning technique has three phases, they are feature extraction, feature 

selection and feature classification. In feature extraction, statistical features, histogram 

features, discrete wavelet features and empirical mode decomposition features will be 

extracted from the collected sound and vibration signals. In the feature selection 

technique, a subset of the existing features is selected without any transformation. The 

decision tree algorithm is a feature selection technique in the present study. Machine 

learning process has two stages in the third phase. In the first stage, the classification 

algorithms are trained with the help of selected features from the training data of various 

fault signals. In the second stage, the trained algorithm is tested with the help of selected 

features from the test data. The classification phase identifies the faulty component. 

The support vector machine (SVM), artificial neural network (ANN), Naïve Bayes, 

decision tree and K-star algorithms are used as classifiers in the present research work. 
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The flow chart of machine learning system for fault diagnosis of the face milling tool 

is as shown in Figure 6.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Flowchart of machine learning technique 
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components or fault classes on the capability of machine learning methods in face 

milling for fault diagnosis. Because, the increase in number of fault classes increases 

the possibility of resemblance in signal pattern and it causes difficulty in classification 

process. Very few researchers have reported the sound and vibration signals analyses 

for fault diagnosis process using machine learning techniques. Hence, a detailed study 

is required in this field. Since sound signal based fault diagnosis can be a cost effective 

method, it will be very helpful for small and medium scale industries. The following 

section will provide the detailed analysis and discussion of fault diagnosis of the face 

milling tool based on machine learning technique using vibration signals. 

6.3 FAULT DIAGNOSIS USING VIBRATION SIGNALS BASED ON 

MACHINE LEARNING APPROACH 

The acquired acceleration signals are analysed and diagnosed the tool conditions 

through machine learning techniques. The present study deals with the feature 

extraction using statistical, histogram, EMD and DWT methods. Then feature selection 

using decision tree method and classification process using artificial intelligent 

techniques such as SVM, ANN, J48, Naïve Bayes and K-star models. Each step is 

explained with analysing the experimental results which can be referred in the 

forthcoming sections. 

6.3.1 Fault diagnosis using statistical features 

From the acceleration data, descriptive statistical features like skewness, mode, 

standard error, maximum, minimum, range, sum, mean, standard deviation, median, 

sample variance and kurtosis are assessed to serve as features. These parameters are 

called as statistical features. The computed statistical parameters (only two signals 

samples per each class) are tabulated in Table 6.1. These parameters will be treated as 

an input to the J48 algorithm for feature selection.
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Table 6.1 Extracted statistical features from the vibration signals 

 

Class Sample 

No. 

Values 

Mean 
Standard 

Error 
Median Mode 

Standard 

Deviation 

Sample 

Variance 
Kurtosis Skewness Range Minimum Maximum Sum 

Healthy 
1 0.0243 0.0245 -0.0497 0.8807 3.9219 15.3818 0.6351 0.1250 41.4618 -23.1508 18.3110 622.2670 

2 0.0212 0.0245 -0.0570 0.8105 3.9116 15.3005 0.4934 0.1098 41.2557 -22.1705 19.0850 542.7800 

Flank 

wear 
1 0.0284 0.0224 -0.0177 -1.3340 3.5770 12.7952 0.4355 0.0444 32.3080 -17.6541 14.6540 726.3192 

2 0.0250 0.0220 -0.0022 -1.1067 3.5125 12.3374 0.3725 0.0581 30.7936 -16.0741 14.7196 640.4023 

Breakage 
1 0.0232 0.0175 0.0355 -1.0110 2.7991 7.8350 0.7033 -0.0176 29.6810 -15.8492 13.8318 594.2592 

2 0.0220 0.0175 0.0162 -0.1877 2.7974 7.8253 0.7437 -0.0195 25.3959 -13.2222 12.1737 563.8599 

Chipping 
1 0.0130 0.0176 0.0151 1.5416 2.8112 7.9028 0.4217 -0.0035 22.9801 -11.6243 11.3558 333.9146 

2 0.0156 0.0175 0.0322 0.7588 2.7993 7.8362 0.4478 -0.0119 25.7421 -13.4494 12.2927 400.2567 



110 
 

6.3.1.1 Feature selection using decision tree 

The J48 algorithm used the data set for making the decision tree as a result of feature 

selection. The given data set of 200 samples fed to the algorithm and decision tree is 

illustrated in Figure 6.2. The rectangular blocks indicate classes (condition of the face 

milling tool). Within the parenthesis there are two numbers separated by a slash in 

rectangular blocks. The first number (in case of two numbers) or only the number 

represents the number of data points (samples) which helps in making the decision. 

 

Figure 6.2 Decision tree of statistical features of vibration signal 
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Standard Error

Standard Error

> 0.018736

Flank wear 

(50.0)

Healthy 

(50.0)

> 0.022357
<= 0.022357

Kurtosis

<= 0.018736

Median Mode

<= 0.567362 > 0.567362

Breakage 

(37.0)

> -0.506408

Range

<= -0.506408

Breakage 

(10.0)

Chipping 

(5.0)

> 26.232513<= 26.232513

Chipping 

(40.0)
Mean

> 0.012172<= 0.012172

Breakage 

(3.0)

Chipping 

(5.0)

> 0.018868<= 0.018868



111 
 

of 12 features, six features are selected by decision tree such as mean, kurtosis, range, 

median, mode and standard error are the significant features. These selected features 

are treated as an input to the classifiers such as SVM, ANN, Naïve Bayes, decision tree 

and K-star models.  

6.3.1.2 Classification  

Obtained results from the classifiers are mapped based on 10-fold cross validation test 

mode. Cross validation is a resampling approach which enables to obtain a more honest 

error rate estimate of the results computed on the whole dataset. The standard way of 

predicting the error rate of a learning technique given a single, fixed sample of data is 

to use stratified 10 fold cross validation (Witten and Frank 2005). The output of the 

classifier is a confusion matrix. Table 6.2 shows the confusion matrix of the classifier 

and diagonal elements represent the correctly classified instances. 

 Naïve Bayes algorithm 

Naive Bayes classifier makes use of condition probability for its classification. The six 

statistical features discussed earlier such as mean, kurtosis, range, median, mode and 

standard error which form the input to the classifier. The conditions of the face milling 

tool namely, healthy, flank wear, breakage and chipping are the possible outputs of the 

Naïve Bayes classifier. Table 6.2 shows the confusion matrix by the Naïve Bayes 

model.  

Table 6.2 Naïve Bayes confusion matrix for statistical features of vibration signal 

a b c d Class 

50 0 0 0 a-Healthy 

0 50 0 0 b-Flank wear 

0 0 46 4 c-Breakage 

0 0 2 48 d- Chipping  

From the confusion matrix, out of 200 instances only six instances were misclassified 

by a Naïve Bayes algorithm with the overall classification accuracy 97% for the given 

set of statistical features of the vibration signals. 
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 Decision tree algorithm 

Decision tree algorithm (J48 algorithm) performs both feature selection and 

classification simultaneously. Table 6.3 depicts the confusion matrix of decision tree 

for statistical features. 

Table 6.3 Decision tree confusion matrix for statistical features of vibration signal 

a b c d Class 

50 0 0 0 a-Healthy 

1 49 0 0 b-Flank wear 

0 1 46 3 c-Breakage 

0 0 8 42 d- Chipping  

From Table 6.3, thirteen out of two hundred instances were misclassified and the overall 

classification accuracy from the decision tree was about 93.5%, which is less than the 

classification accuracy of the Naïve Bayes model. Hence, J48 with statistical features 

for fault diagnosis of the face milling tool is not considered. 

 Artificial neural network  

The classification accuracy of ANN with statistical features for milling tool fault 

diagnosis application is investigated. The ANN results are presented in Table 6.4. 

Table 6.4 ANN confusion matrix for statistical features of vibration signal 

a b c d Class 

50 0 0 0 a-Healthy 

0 50 0 0 b-Flank wear 

0 0 46 4 c-Breakage 

0 0 5 45 d- Chipping  

From the confusion matrix, one can notice that nine samples were misclassified. The 

overall classification accuracy is found to be 95.5% and the performance of the 

classifier can be accepted in the fault diagnosis area. However, the combination of ANN 

and statistical features for the fault diagnosis of the face milling tool is not preferable. 
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 Support vector machine 

The confusion matrix of the SVM model for statistical features of vibration signals are 

presented in Table 6.5.  

Table 6.5 SVM confusion matrix for statistical features of vibration signal 

a b c d Class 

50 0 0 0 a-Healthy 

0 50 0 0 b-Flank wear 

0 0 45 5 c-Breakage 

0 0 5 45 d- Chipping  

From the confusion matrix, out of 200 instances only 10 instances were misclassified 

with classification efficiency of 95%. As the classification efficiency is considerably 

less as compared to Naïve Bayes model’s performance (96.5%), SVM with statistical 

features for fault diagnosis of cutting tool is not superior. 

 K-star algorithm 

The six statistical features of vibration signals were given as an input to the K-star 

algorithm. The identified classification of the face milling tool conditions are presented 

in the Table 6.6. 

Table 6.6 K-star algorithm confusion matrix for statistical features of vibration signal 

a b c d Class 

50 0 0 0 a-Healthy 

0 50 0 0 b-Flank wear 

0 0 43 7 c-Breakage 

0 0 2 48 d- Chipping  

Table 6.6 illustrated the confusion matrix with K-star algorithm as the classifier. Here, 

only nine instances were misclassified and K-star algorithm provided the classification 

efficiency of about 95.5% for the given vibration signals. 
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 Summary 

The statistical features were extracted from the acquired vibration signals and feature 

selection was performed using decision tree (J48 algorithm) technique. The 

performances of the selected features set in fault classification was presented. The 

summary of classification efficiencies of different classifiers with statistical features is 

as shown in Table 6.7.   

Table 6.7 Summary of classification efficiencies of different classifiers for statistical 

features of vibration signals 

Classification 

accuracy (%) 

Naïve Bayes J48 ANN SVM K-star 

96.5 93.5 95.5 95 95.5 

Table 6.7 depicted the Naive Bayes classifier has provided a highest classification 

efficiency of about 96.5% with statistical features as compared to the performances of 

other classifiers. 

6.3.2 Fault diagnosis using histogram features 

Observing the time domain plots pertaining to all classes of the milling tool, one can 

notice that the variation in acceleration amplitude from class to class. The histogram 

plot is a better graph to show the range of variation in the plots. These variations are 

analysed by using bins of the signal which can be used as set features. Figure 6.3 shows 

the histogram plots of the vibration signals of face milling tool under different 

conditions (healthy, flank wear, breakage and chipping). 
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Figure 6.3 Histogram plots of vibration signals for different conditions of the face 

milling tool 

Following the criteria for extracting the histogram features as mentioned in section 

3.1.1.2, the bin width and bin range are selected based on the maximum and minimum 

values of the signals pertaining to all conditions and each bin was considered as a 

feature. Twenty different sets of histogram features were extracted from the vibration 

signals. Each set of features were treated as an input to the classifier and the results 

from the classifier were analysed. Twenty different sets of histogram features were 

analysed using different classifiers such as, SVM, ANN, Decision tree, K-star and 

Naïve Bayes models. Out of which, K-star model has given the better classification 

accuracy. Figure 6.4 shows the classification accuracies of K-star model for different 

sets of histogram features. 
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Figure 6.4 K-star classification accuracy for different sets of histogram features 

From Figure 6.4, K-star model yielded a maximum classification accuracy of about 

96.5% for both the thirty set and the forty set of histogram features. After this, the 

classification accuracy of the model attained was in the range between 94% and 

96% for different sets of features (for 50, 60, …, 100 features). Table 6.8 depicts 

the set of thirty histogram features (f1 to f30) and out of 200 samples of vibration 

signals, only two samples pertaining to each condition of the milling tool are shown 

in the table. In this table, the features f1, f2, f3, f4, f27, f28, f29 and f30 are set to 

zero value for all conditions of the milling tool. 
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Table 6.8 Thirty set of histogram features extracted from the vibration signals 

Face 

milling 

tool 

condition 

Sample 

No. 

Histogram features 

f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 

Healthy  
1 2 4 1

5 

42 12

0 

32

3 

83

3 

1734 2915 4126 4820 4159 2881 1775 99

0 

49

0 

23

6 

92 25 14 4 0 

2 1 5 2

5 

47 14

8 

39

3 

88

9 

1593 2792 4081 4956 4174 2829 1731 97

7 

50

8 

26

3 

12

0 

42 16 7 3 

Flank wear 
1 2 2 1

1 

33 78 23

7 

69

3 

1423 2863 4383 5146 4566 3047 1753 81

9 

33

5 

14

3 

51 13 2 0 0 

2 0 1 8 22 67 24

6 

62

9 

1482 2780 4436 5215 4688 3009 1686 82

4 

33

7 

12

4 

33 12 1 0 0 

Breakage  
1 0 0 1 10 37 11

4 

35

7 

1011 2414 4755 6727 5404 2842 1260 47

4 

14

2 

44 6 2 0 0 0 

2 0 1 4 10 32 14

5 

39

4 

988 2446 4898 6469 5379 2795 1259 53

1 

17

8 

55 15 1 0 0 0 

Chipping  
1 0 0 1 4 19 77 34

9 

1047 2389 4849 6613 5422 2984 1236 44

5 

13

9 

18 7 1 0 0 0 

2 0 0 0 2 19 94 31

7 

1032 2450 4856 6609 5416 2929 1260 47

0 

12

3 

19 4 0 0 0 0 
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Some of the extracted feature values are having significant differences for different 

conditions of the milling tool. Selecting those features is an important task for effective 

classification and doing it manually demands more expertise; however, the 

effectiveness of the features is not guaranteed. By using a suitable algorithm, the best 

features are selected and also can yield better classification accuracy. The decision tree 

technique is a popular method for feature selection in the area of fault diagnosis. 

6.3.2.1 Feature selection using decision tree 

All extracted features are treated as an input to the decision tree for selecting the best 

features which helps to improve the classification accuracy of the diagnostic tool. The 

output of the decision tree is formed as a tree like structure as shown in Figure 6.5.  

 

Figure 6.5 Decision tree for a set of thirty histogram features of vibration signal 

The decision tree has been constructed for the set of thirty histogram features in such a 

way that when the feature f21 is greater than 69 and f23 is greater than 13, it is classified 

as ‘healthy’ face milling condition. When the feature f21 is greater than 69 and f23 is 
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> 2847<= 2847



119 
 

less than or equal to 13, then it is classified as ‘flank wear’ condition, and the remaining 

classes (breakage and chipping) have been organised in the tree when the feature f21 is 

attain less than or equal to 69. The features f6, f8, f9, f17, f21, f22 and f23 are selected 

as significant features from the tree and these features are used as an input to the 

classifier. 

6.3.2.2 Classification  

Classifications using histogram features with different classifiers were studied. The 

classifiers such as SVM, ANN, Naïve Bayes, decision tree and K-star models were used 

and their performances on histogram features are reported as follows. 

 K-star algorithm 

In this study, K-star algorithm is used as a classifier to distinguish the face milling tool 

conditions. The selected features are fed to the model and the output of the classifier is 

the confusion matrix which illustrate the classification of different conditions of the 

face milling tool. The confusion matrix for the given set of histogram features (30 

features) of vibration signals is as shown in Table 6.9. 

Table 6.9 K-star confusion matrix for histogram features of vibration signal 

a b c d Class 

50 0 0 0 a-Healthy 

0 50 0 0 b-Flank wear 

0 0 43 7 c-Breakage 

0 0 0 50 d- Chipping  

As seen from the confusion matrix, out of 200 instances, 7 instances were misclassified 

by a K-star algorithm with the overall classification accuracy 96.5% for the set of thirty 

histogram features. The classification efficiency of K-star model is considerably good 

and K-star with histogram features for fault diagnosis of the face milling tool is 

attractive. 
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 Naïve Bayes algorithm 

The confusion matrix of the Naïve Bayes model for the given set of histogram features 

(30 features) of vibration signals is as shown in Table 6.10. From the confusion matrix, 

189 instances are correctly classified with classification efficiency of 94.5%. As the 

classification efficiency is considerably less as compared to the classification efficiency 

of the K-star model. The Naive Bayes algorithm with histogram features for fault 

diagnosis of the face milling tool is not very preferable. 

Table 6.10 Naïve Bayes confusion matrix for histogram features of vibration signal 

a b c d Class 

50 0 0 0 a-Healthy 

0 50 0 0 b-Flank wear 

0 1 41 8 c-Breakage 

0 0 2 48 d- Chipping  

 Artificial neural network 

The seven selected histogram features of vibration signals were set as an input to the 

ANN model. Table 6.11 depicts the confusion matrix of ANN.  

Table 6.11 ANN confusion matrix for histogram features of vibration signal 

a b c d Class 

50 0 0 0 a-Healthy 

0 50 0 0 b-Flank wear 

0 0 47 3 c-Breakage 

0 0 6 44 d- Chipping  

From the confusion matrix, it is observed that only nine instances were misclassified 

and the classification efficiency (about 95.5%) is considerably good, but still the 

accuracy of the classification by ANN is lesser than the K-star model (96.5%). Hence, 

the ANN classifier with histogram features for fault diagnosis of face milling tool is not 

considered. 
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 Support vector machine 

Table 6.12 depicts the confusion matrix of the SVM model with histogram features of 

30 set. The confusion matrix which shows that the nine instances were misclassified. 

The classification efficiency of the SVM classifier is 95.5%, which indicates that the 

performance of the SVM classifier is lesser than the performance (96.5%) of the K-star 

classifier. 

Table 6.12 SVM confusion matrix for histogram features of vibration signal 

a b c d Class 

50 0 0 0 a-Healthy 

0 50 0 0 b-Flank wear 

0 0 44 6 c-Breakage 

0 0 3 47 d- Chipping  

 Decision tree algorithm 

J48 algorithm makes use of information gain and entropy for its classification. Its 

classification/confusion matrix is presented in Table 6.13. 

Table 6.13 Decision tree confusion matrix for histogram features of vibration signal 

a b c d Class 

50 0 0 0 a-Healthy 

1 47 2 0 b-Flank wear 

0 1 39 10 c-Breakage 

0 0 4 46 d- Chipping  

From the confusion matrix, one can observe that there are only eighteen 

misclassifications. The overall classification efficiency is found to be 91%. As the 

classification efficiency is considerably low when compared to K-star algorithm, 

decision tree technique (J48 algorithm) with histogram features for fault diagnosis of 

cutting tool is not preferable. 
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 Summary 

The histogram features were extracted from the acquired vibration signals and feature 

selection was performed using the decision tree (J48 algorithm) technique. The 

performances of the selected features set in fault classification has been presented. The 

summary of classification efficiencies of different classifiers with histogram features is 

as shown in Table 6.14. From the table, one can notice that the K-star model has 

performed well (96.5% classification efficiency) as compared to the performances of 

other classifiers mentioned in Table 6.14 in case of histogram features of vibration 

signals. Thus, K-star model with histogram feature extraction method can be preferred 

for fault diagnosis of the face milling tool. 

Table 6.14 Summary of classification efficiencies of different classifiers for histogram 

features of vibration signals 

Classification 

accuracy (%) 

Naïve Bayes J48 ANN SVM K-star 

94.5 91 95.5 95.5 96.5 

6.3.3 Fault diagnosis using EMD features 

Fifty samples of vibration signals pertaining to four different conditions of the face 

milling tool were acquired. These samples were analysed through the amplitude energy 

of IMFs using EMD technique. Sampling length of about 0.2 seconds were taken to 

plot IMFs. Figure 6.6 and Figure 6.7 illustrate the eight IMFs of different face milling 

tool conditions. 
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Healthy condition Flank wear condition 

  

  

  

  

  

  

  

  

Figure 6.6 Eight IMFs of healthy and flank wear tool conditions 
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Breakage condition Chipping condition 

  

  

  

  

  

  

  

  

Figure 6.7 Eight IMFs of breakage and chipping tool conditions 
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In order to quantify these IMFs, amplitude energy is computed by using equation (3.10) 

and considered as an EMD feature. These EMD features of vibration signals pertaining 

to each class (two samples of each class) are tabulated in Table 6.15. 

Table 6.15 EMD features of vibration signals 

Face 

milling tool 

condition 

Sample 

No. 

EMD features 

E1 E2 E3 E4 E5 E6 E7 E8 

Healthy 
1 0.9834 0.1409 0.0810 0.0611 0.0298 0.0183 0.0275 0.0275 

2 0.9733 0.1787 0.0983 0.0741 0.0437 0.0285 0.0382 0.0382 

Flank wear 
1 0.9365 0.2625 0.1847 0.1037 0.0711 0.0372 0.0373 0.0373 

2 0.9287 0.2852 0.1740 0.1258 0.0908 0.0353 0.0174 0.0174 

Breakage 
1 0.8457 0.3352 0.2909 0.2225 0.1673 0.0883 0.0359 0.0359 

2 0.7504 0.4302 0.3044 0.3024 0.2240 0.1011 0.0606 0.0606 

Chipping 
1 0.6980 0.3530 0.4284 0.2916 0.2629 0.1739 0.1004 0.1004 

2 0.7739 0.2920 0.4012 0.2378 0.1108 0.1129 0.1913 0.1913 

6.3.3.1 Feature selection by decision tree 

All EMD features represent the characteristics of a signal, out of which some features 

provide enough information than others. Hence, all EMD features are fed to the decision 

tree (J48 algorithm) for the selection of the best features. Figure 6.8 depicts the decision 

tree for EMD features of vibration signals. It has formed a tree like structure such that 

when E3 is less than or equal to 0.135002, then it classified as healthy condition. Also, 

if E3 lies in between 0.135002 and 0.221872, then it is classified as flank wear condition 

and so on. The decision tree for EMD features is as shown in Figure 6.8 and it provided 

E1, E3, E6 and E7 as salient features. The classification will be carried out using these 

selected features. 
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Figure 6.8 Decision tree for EMD features of vibration signal 

5.3.3.2 Classification  

The analysis of EMD features of vibration signals using classifiers such as SVM, ANN, 

Naïve Bayes, decision tree and K-star models has been carried out. The selected 

features such as E1, E3, E6 and E7 of all conditions of a face milling tool are the input 

to the classifiers. The test mode of the classifier is 10-fold cross validation, which has 

been considered for the analysis. The results in the form of confusion matrix from each 

classifiers are reported as follows. 

 Artificial neural network 

The confusion matrix for vibration signals of the face milling tool is as shown in Table 

6.16. A data set of 200 samples consists of 50 samples from each class. From Table 

6.16, out of 200 instances, 23 instances were misclassified by ANN model with 

classification accuracy about 88.5% for the given vibration signals. 
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(2.0)

>0.404965

E6
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Table 6.16 ANN confusion matrix for EMD features of vibration signals 

a b c d Class 

48 1 0 1 a-Healthy 

1 47 2 0 b-Flank wear 

0 1 39 10 c-Breakage 

0 0 7 43 d- Chipping  

 Decision tree algorithm 

The decision tree (J48 algorithm) confusion matrix is as shown in Table 6.17. From the 

confusion matrix, 175 instances were correctly classified with classification efficiency 

of 87.5%. As the classification efficiency is considerably good, but it is lesser than the 

ANN model. Hence, the decision tree with EMD features for fault diagnosis of milling 

tool is not attractive. 

Table 6.17 J48 confusion matrix for EMD features of vibration signals 

a b c d Class 

49 1 0 0 a-Healthy 

0 49 1 0 b-Flank wear 

0 0 40 10 c-Breakage 

0 1 12 37 d- Chipping  

 Naïve Bayes algorithm 

The selected four EMD features were the input to the Niave Bayes model. Table 6.18 

depicts the Naïve Bayes classification.  

Table 6.18 Naïve Bayes confusion matrix for EMD features of vibration signals 

a b c d Class 

48 1 0 1 a-Healthy 

0 49 0 1 b-Flank wear 

0 2 42 6 c-Breakage 

0 1 14 35 d- Chipping  
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From the confusion matrix, 28 instances were misclassified out of 200 instances. The 

overall classification efficiency is found to be 87%. As the classification efficiency is 

considerably low as compared to ANN classifier, thus Naïve Bayes classifier with EMD 

features for fault diagnosis of milling tool is not preferable. 

 K-star algorithm 

The K-star results are presented in the form of confusion matrix as shown in the Table 

6.19.  

Table 6.19 K-star confusion matrix for EMD features of vibration signals 

a b c d Class 

49 1 0 0 a-Healthy 

0 49 1 0 b-Flank wear 

0 0 38 12 c-Breakage 

0 0 13 37 d- Chipping  

From the confusion matrix, 27 instances were misclassified out of 200 instances. The 

overall classification efficiency is found to be 86.5%, which is lesser than all classifiers. 

Hence, the K-star model with EMD features for fault diagnosis of the face milling tool 

is not considered. 

 Support vector machine 

The four selected EMD features of vibration signals are given as an input to the SVM 

model. The identified classification efficiency as confusion matrix is presented in 

Table6.20. 

Table 6.20 SVM confusion matrix for EMD features of vibration signals 

a b c d Class 

49 1 0 0 a-Healthy 

1 48 1 0 b-Flank wear 

0 2 41 7 c-Breakage 

0 0 12 38 d- Chipping  
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From the confusion matrix of SVM classifier with EMD features, it is found that only 

24 instances were misclassified and the classification efficiency is about 88%. The 

classification efficiency of SVM is good for fault diagnosis, but lesser than ANN model. 

Thus SVM model with EMD features are not preferred. 

 Summary 

The EMD features were extracted from the acquired vibration signals and feature 

selection was performed using decision tree (J48 algorithm) technique. The 

performances of the selected features set in fault classification was presented. The 

summary of classification efficiencies of different classifiers with EMD features is as 

shown in Table 6.21. From the table, one can notice that the ANN model has performed 

well (88.5% classification efficiency) as compared to the performances of other 

classifiers mentioned in Table 6.21 in case of EMD features of vibration signals.  

Table 6.21 Summary of classification efficiencies of different classifiers for EMD 

features of vibration signals 

Classification 

accuracy (%) 

Naïve Bayes J48 ANN SVM K-star 

87 87.5 88.5 88 86.5 

6.3.4 Fault diagnosis using DWT features 

Discrete wavelet transform method is used to analyse the vibration signals. It 

decomposes the given signal into two components; high frequency component and low 

frequency component. The low frequency component will be discretised further. The 

high frequency component at every step of discretisation is treated as a feature in DWT 

method.   From the acquired vibration signals, eight discrete wavelet features (V1, V2… 

V8) were extracted for each class of the face milling tool. Table 6.22 shows the discrete 

wavelet features using the DWT, out of 50 samples only two samples relating to each 

condition of the tool are tabulated. These features were treated as an input to the 

decision tree for the selection of the salient features which provide best classification 

accuracy. 
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Table 6.22 Discrete wavelet features of vibration signals  

Face 

milling 

tool 

condition 

Sample 

No. 

Wavelet coefficient 

V1 V2 V3 V4 V5 V6 V7 V8 

Healthy  
1 6.12 27.8 30.3 17.1 13.7 5.52 2.14 1.24 

2 6.34 29.0 31.7 19.0 13.7 5.96 2.67 1.35 

Flank 

wear 

1 4.58 21.6 26.5 20.4 13.0 5.67 2.44 1.36 

2 4.47 20.8 25.1 20.2 12.7 6.03 1.81 1.36 

Breakage  
1 2.63 12.0 18.7 21.7 15.1 5.52 2.49 1.31 

2 2.67 12.4 19.7 22.4 13.2 5.67 2.80 1.46 

Chipping  
1 2.26 10.6 16.8 20.5 12.6 5.48 2.17 1.37 

2 2.20 10.2 17.0 19.4 11.9 5.37 2.71 1.27 

6.3.4.1 Feature selection by decision tree 

Decision tree technique (J48 algorithm) was used for feature selection, all extracted 

wavelet features pertaining to four classes were fed to the algorithm and formed 

decision tree as depicted in Figure 6.9. The rectangular blocks indicate classes 

(condition of the tool). With reference to Figure 6.9, V2 feature is a root node of the 

tree, based on this feature (V2) the tree structure was carried out. When V2 value is 

greater than 21.6, it is classified as a healthy condition, while the V2 value is greater 

than 12.7 and less than or equal to 21.6 it is classified as a flank wear and so on. The 

five features such as V1, V2, V3, V5 and V6 were selected out of eight wavelet features 

from the decision tree. The detailed accuracy classification is discussed in the following 

section. 
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Figure 6.9 Decision tree of DWT features of vibration signal 
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Table 6.23 SVM confusion matrix for DWT features of vibration signal  

a b c d Class 

50 0 0 0 a-Healthy 

0 50 0 0 b-Flank wear 

0 0 42 8 c-Breakage 

0 0 9 41 d- Chipping  

Table 6.23 shows the classification of face milling tool conditions by the SVM classifier 

with 183 out of 200 instances were correctly classified and the classifier provided a 

classification accuracy of about 91.5 %.  The classification accuracy obtained by the 

SVM model can be considered for fault diagnosis. 

 Naïve Bayes algorithm 

The Naïve Bayes model is used to classify the different conditions of the milling tool 

using selected DWT features of vibration signals. The confusion matrix from the model 

represents the classification as shown in Table 6.24. From the confusion matrix, only 

18 instances, out of 200 instances were misclassified and the classification efficiency 

is found to be 91%. Obtained classification efficiency can be accepted for fault 

diagnosis, but it is lesser than the classification efficiency (91.5%) of the SVM 

classifier. Thus, the combination of the Naïve Bayes model and DWT features for fault 

diagnosis of the face milling tool is not preferable. 

Table 6.24 Naïve Bayes confusion matrix for DWT features of vibration signal 

a b c d Class 

50 0 0 0 a-Healthy 

0 50 0 0 b-Flank wear 

0 0 40 10 c-Breakage 

0 0 8 42 d- Chipping  

 Decision tree algorithm 

Table 6.25 depicts the confusion matrix by the decision tree algorithm using selected 

DWT features of the vibration signals. 



133 
 

Table 6.25 Decision tree confusion matrix for DWT features of vibration signal 

a b c d Class 

50 0 0 0 a-Healthy 

1 49 0 0 b-Flank wear 

0 1 36 13 c-Breakage 

0 0 11 39 d- Chipping  

From the confusion matrix, one can observe that there are 174 out of 200 instances 

correctly classified. The overall classification efficiency is found to be 87%. As the 

classification efficiency is considerably low when compared to SVM and Naïve Bayes 

algorithms, decision tree technique (J48 algorithm) with DWT features for fault 

diagnosis of cutting tool is not preferable. 

 Artificial neural network 

Table 6.26 illustrates confusion matrix of the ANN classifier. From the confusion 

matrix, 182 instances were correctly classified with classification efficiency of 91%. 

As the classification efficiency is considerably low when compared to SVM classifier, 

the ANN algorithm with DWT features for fault diagnosis of milling tool is not 

appropriate. 

Table 6.26 ANN confusion matrix for DWT features of vibration signal 

a b c d Class 

50 0 0 0 a-Healthy 

0 50 0 0 b-Flank wear 

0 0 43 7 c-Breakage 

0 0 11 39 d- Chipping  

 K-star algorithm 

The confusion matrix which represents the classification of the face milling tool 

conditions using DWT features is as shown in Table 6.27. From the confusion matrix, 

only twenty three instances were misclassified. As the classification efficiency is about 
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88.5% which is lesser than the classification efficiency (91.5%) of SVM model. Hence, 

the K-star with DWT features for fault diagnosis of milling tool is not preferable. 

Table 6.27 K-star confusion matrix for DWT features of vibration signal 

a b c d Class 

50 0 0 0 a-Healthy 

0 50 0 0 b-Flank wear 

0 0 35 15 c-Breakage 

0 0 8 42 d- Chipping  

 Summary 

The DWT features were extracted from the acquired vibration signals and feature 

selection was performed using decision tree (J48 algorithm) technique. The 

performances of the selected features set in fault classification was presented. The 

summary of classification efficiencies of different classifiers with DWT features is as 

shown in Table 6.28. From the table, one can notice that the SVM model has performed 

well with 91.5% classification efficiency when compared to the performances of other 

classifiers.  

Table 6.28 Summary of classification efficiencies of different classifiers for DWT 

features of vibration signals 

Classification 

accuracy (%) 

Naïve Bayes J48 ANN SVM K-star 

91 87 91 91.5 88.5 

6.3.5 Overall conclusion from the vibration signal analysis based on machine 

learning approach 

The comparison of performances of classifiers and different features extraction 

methods which are used in the study of fault diagnosis of the face milling tool using 

vibration signals is as shown in Table 6.29. 
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Table 6.29 Comparison of classification accuracies of the classifiers with different 

features 

Feature Feature 

selection 

Classifier Correctly 

classified 

instances 

Incorrectly 

classified 

instances 

Classification 

accuracy 

Statistical  

 

 

 

 

Decision 

tree 

Naïve 

Bayes 
194 06 97.0% 

SVM 190 11 95.0% 

ANN 191 09 95.5% 

K-star 191 12 95.5% 

J48 187 13 93.5% 

 

 

 

Histogram 

Naïve 

Bayes 
189 11 94.5% 

SVM 191 09 95.5% 

ANN 191 09 95.5% 

K-star 193 07 96.5% 

J48 182 18 91.0% 

Empirical 

mode 

decomposition 

Naïve 

Bayes 

174 26 87.0% 

SVM 176 24 88.0% 

ANN 177 23 88.5% 

K-star 173 27 86.5% 

J48 175 25 87.5% 

Discrete 

wavelet 

transform 

Naïve 

Bayes 
182 18 91.0% 

SVM 183 11 91.5% 

ANN 182 18 91.0% 

K-star 177 23 88.5% 

J48 174 26 87.0% 

From Table 6.29, one can say that the Naïve Bayes model has employed a maximum 

classification accuracy of about 97% with statistical features as compared to other 
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classifiers with any features extraction techniques listed in the table. Also the 

combination of K-star model with histogram feature technique has provided a good 

classification accuracy of about 96.5%, which is nearer to the highest classification 

accuracy 97% (obtained by the Naïve Bayes model with the statistical features). 

However, the performance (96.5% classification accuracy) by the K-star model with 

histogram features can also be considered for fault diagnosis, but this combination takes 

more time to compute the histogram features when compared to the combination of the 

Naïve Bayes classifier and statistical features. Hence, the Naïve Bayes technique can 

be chosen as a best classifier with statistical features method and can be suggested for 

fault diagnosis of the face milling tool using vibration signals. 

6.4 SUMMARY 

This chapter has mainly presented the details of the machine learning techniques which 

are used in the present study. Feature extraction method such as statistical, histogram, 

DWT and EMD methods were elaborated, then followed by the explanation about 

features selection method such as decision tree technique. Further classifiers such as 

ANN, SVM, Naïve Bayes, decision tree and K-star models were used for classification. 

Also the analysis of vibration signals using machine learning techniques in fault 

diagnosis of the face milling tool was explained thoroughly with the usage of statistical, 

histogram, EMD and DWT features and concluded with best classifier-feature 

combination. 
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CHAPTER-7  

FAULT DIAGNOSIS USING MACHINE LEARNING 

TECHNIQUES BASED ON SOUND SIGNAL  

7.1 OVERVIEW 

In this chapter, an investigation of sound signals of the face milling process in fault 

detection and classification of the face milling tool conditions has been carried out using 

machine learning technique. Obtained results from the experiments are analysed and 

discussed using different features and different artificial intelligence techniques. Each 

section will give the detailed description of the fault diagnosis of the face milling tool 

based on different features. 

7.2 FAULT DIAGNOSIS USING SOUND SIGNALS BASED ON MACHINE 

LEARNING APPROACH 

Fault diagnosis of the face milling tool using sound signal based on machine learning 

approach was carried out. The acquired sound signals under different face milling tool 

conditions were used to extract some features such as, statistical features, histogram 

features, EMD features and DWT features. Then feature selection was carried out using 

decision tree technique. Classification of the face milling tool was carried out based on 

selected features using classifiers such as Naïve Bayes, SVM, ANN, K-star and J48 

(decision tree) algorithms. 

7.2.1 Fault diagnosis using statistical features 

A set of descriptive statistical features are extracted from the sound signals. Table 7.1 

illustrates the statistical features of two signal samples per each condition of the face 

milling tool.
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Table 7.1 Extracted statistical features from the sound signals 

 

Class Sample 

No. 

Values 

Mean 
Standard 

Error 
Median Mode 

Standard 

Deviation 

Sample 

Variance 
Kurtosis Skewness Range Minimum Maximum Sum 

Healthy 
1 0.0047 0.0021 -0.0008 -0.1173 0.3380 0.1142 0.2875 0.0509 3.1001 -1.3385 1.7617 119.8537 

2 0.0045 0.0021 0.0014 0.1332 0.3396 0.1153 0.1079 0.0848 2.9797 -1.4425 1.5372 115.9749 

Flank 

wear 
1 0.0031 0.0023 0.0044 0.4839 0.3695 0.1365 0.1911 0.0012 3.0104 -1.5726 1.4379 79.4889 

2 0.0030 0.0023 0.0048 0.0045 0.3726 0.1388 -0.0072 0.0144 2.7904 -1.4182 1.3722 77.5929 

Breakage 
1 0.0033 0.0022 0.0031 0.3900 0.3506 0.1229 0.2305 0.0064 3.3660 -1.8440 1.5220 85.4592 

2 0.0036 0.0021 0.0005 0.1677 0.3425 0.1173 0.1100 0.0426 2.9428 -1.3021 1.6407 92.2724 

Chipping 
1 0.0029 0.0025 0.0059 0.0532 0.3921 0.1538 0.1172 -0.0359 3.4112 -1.6874 1.7238 74.1537 

2 0.0024 0.0024 0.0015 0.0996 0.3867 0.1496 0.2311 0.0195 3.4268 -1.7139 1.7129 61.7769 
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7.2.1.1 Feature selection using decision tree 

The given data set of 200 samples fed to the J48 algorithm (decision tree) and the output 

of the decision tree is a set of significant features as illustrated in Figure 7.1. 

Observation shows that out of 12 features, nine features are selected by J48 algorithm 

such as mean, kurtosis, median, mode, standard deviation, skewness, maximum, 

minimum and standard error which are the significant features. These selected features 

are treated as an input to the classifier. The detailed classification of the tool conditions 

using different classifiers is illustrated in the following section. 
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Figure 7.1 Decision tree for statistical features of sound signal
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7.2.1.2 Classification  

The classification of the face milling tool conditions have been carried out using 

selected features. The different classifiers such as ANN, SVM, Naïve Bayes, decision 

tree and K-star algorithms are used to distinguish the different milling tool conditions. 

The performance of each classifier are reported as follows. 

 Support vector machine 

SVM is an emerging classifier in fault diagnosis. Table 7.2 shows the confusion matrix 

of the SVM classifier and the diagonal elements represent the correctly classified 

instances.  

Table 7.2 SVM confusion matrix for statistical features of sound signals 

a b c d  

33 0 17 0 a-Healthy 

0 42 6 2 b-Flank wear 

15 10 25 0 c-Breakage 

0 10 0 40 d- Chipping  

From the confusion matrix, out of 200 instances, 60 instances were misclassified by a 

SVM algorithm with the overall classification accuracy of about 70% for the given 

sound signals. The classification accuracy is very low, thus the SVM classifier with 

statistical features is not preferred for fault diagnosis of the face milling tool. 

 Artificial neural network 

ANN is one of the classifiers in the area of fault diagnosis/condition monitoring. The 

salient statistical features were fed to the ANN classifier and classification of the 

milling tool is represented as a confusion matrix as shown in Table 7.3. From the 

confusion matrix, out of 200 instances, 140 instances were correctly classified and the 

classification accuracy was found to be 70% which is quite low for fault diagnosis. 

Hence, the ANN with statistical features combination based on sound signals is not 

preferable for condition monitoring of the face milling tool. 
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Table 7.3 ANN confusion matrix for statistical features of sound signals 

a b c d  

37 0 13 0 a-Healthy 

0 32 10 8 b-Flank wear 

16 10 24 0 c-Breakage 

0 3 0 47 d- Chipping  

 Naïve Bayes algorithm 

The selected features of sound signals were used to classify the face milling tool 

conditions using the Naïve Bayes model. Table 7.4 depicts the confusion matrix by the 

model which illustrate the classification of the tool conditions. 

Table 7.4 Naïve Bayes confusion matrix for statistical features of sound signals 

a b c d  

36 0 14 0 a-Healthy 

0 37 7 6 b-Flank wear 

17 10 23 0 c-Breakage 

0 9 0 41 d- Chipping  

From the confusion matrix, 63 out of 200 instances were misclassified by the classifier 

and the overall classification accuracy was about 68.5% which is very less for fault 

diagnosis. Thus, the combination of Naïve Bayes and statistical features of sound signal 

is not attractive in fault diagnosis of the face milling tool. 

 Decision tree algorithm 

The decision tree (J48 algorithm) confusion matrix is as shown in Table 7.5. From the 

confusion matrix, 141 instances were correctly classified with classification efficiency 

of 70.5%. Since the classification efficiency is considerably low, the decision tree with 

statistical features is not considered for fault diagnosis of the face milling tool. 
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Table 7.5 J48 confusion matrix for statistical features of sound signal 

a b c d Class 

34 2 14 0 a-Healthy 

0 36 9 5 b-Flank wear 

16 9 25 0 c-Breakage 

0 4 0 46 d- Chipping  

 K-star algorithm 

K-star algorithm has performed the classification of the face milling tool conditions 

using selected statistical features of the sound signals. Table 7.6 illustrates the 

confusion matrix of the K-star model for statistical features. 

Table 7.6 K-star confusion matrix for statistical features of sound signal 

a b c d Class 

28 3 19 0 a-Healthy 

1 34 6 9 b-Flank wear 

14 8 27 1 c-Breakage 

0 13 1 36 d- Chipping  

From Table 7.6, 125 out of 200 instances were correctly classified and the classification 

accuracy was found to be 62.5% which is very less for fault diagnosis. Hence, the K-

star model with statistical features is not preferable for fault diagnosis. 

 Summary 

The statistical features were extracted from the acquired sound signals and feature 

selection was performed using decision tree technique. The performances of the 

different classifiers were analysed using selected features and the summary of 

classification efficiencies of different classifiers is as shown in Table 7.7. From the 

table, one can notice that, all the classification accuracies are found to be low which 

cannot be acceptable for fault diagnosis. Hence, none of the classifiers with statistical 

feature of sound signals is preferred for fault diagnosis of the face milling tool.  
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Table 7.7 Summary of classification efficiencies of different classifiers for statistical 

features of sound signals 

Classification 

accuracy (%) 

Naïve Bayes J48 ANN SVM K-star 

68.5 70.5 70 70 62.5 

7.2.2 Fault diagnosis using histogram features 

Histogram features are another set of time domain signal features and the extracted 

histogram features are used to diagnose the faults in machine tool/process. In the 

present study, the histogram features were extracted from the acquired sound signals 

and the analysis was carried out based on the machine learning approach. Figure 7.2 

shows the histogram plots of the sound signals of face milling tool under different 

conditions (healthy, flank wear, breakage and chipping). 

  

  
Figure 7.2 Histogram plots of sound signals for different conditions of the face 

milling tool 
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Twenty different sets (2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90 and 

100) of histogram features were extracted from the sound signals. Each set of features 

were treated as an input to the classifier and the results from the classifier were 

analysed. The set of 50 features has provided better results for classifying the face 

milling tool when compared with other sets of histogram features. The performances of 

the classifiers for the 50 set of histogram features with decision tree as a feature 

selection method are explained in the following sections. 

7.2.2.1 Feature selection using decision tree 

The extracted fifty set of histogram features were used as input to the decision tree 

algorithm. The output from the algorithm is tree based structure as shown in Figure 7.3. 

 

Figure 7.3 Decision tree for the 50 set of histogram features of sound signal 
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From Figure 7.3, f24 feature is the root node, based on the value of f24, the tree has 

been formed and the output from the tree are the salient features such as f8, f14, f17, 

f19, f22, f24, f26, f32 and f36. These selected features will be used as input to the 

classifiers. 

7.2.2.2 Classification 

Fault classification using histogram features of sound signals with different classifiers 

were studied. The performances of the classifiers such as Naïve Bayes, decision tree, 

SVM, ANN, and K-star models on histogram features in face milling tool condition 

monitoring are reported as follows. 

 Decision tree algorithm 

The selected features were used as input to the J48 algorithm for fault classification of 

the face milling tool. The confusion matrix of the decision tree with histogram features 

is depicted in Table 7.8. From the confusion matrix, out of 200 instances, only 28 

instances were misclassified and the classification efficiency was found to be 86%. The 

decision tree algorithm has provided a good classification efficiency which can be 

acceptable for fault diagnosis. 

Table 7.8 Decision tree confusion matrix for histogram features of sound signal 

a b c d Class 

34 0 16 0 a-Healthy 

0 49 1 0 b-Flank wear 

7 0 40 3 c-Breakage 

0 0 1 49 d- Chipping  

 Naïve Bayes algorithm 

The confusion matrix with Naïve Bayes algorithm as classifier is given in Table 7.9. 

Observation shows that the Naïve Bayes algorithm has provided a misclassification of 

about 29 out of 200 instances and classification accuracy of about 85.5% for the given 

sound signals. The classification efficiency is less when compared with the decision 
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tree technique, thus the Naïve Bayes algorithm with histogram features is not preferable 

for fault diagnosis of the face milling tool. 

Table 7.9 Naïve Bayes confusion matrix for histogram features of sound signal 

a b c d Class 

38 0 12 0 a-Healthy 

0 49 0 1 b-Flank wear 

15 0 34 1 c-Breakage 

0 0 0 50 d- Chipping  

 Artificial neural network 

The nine selected histogram features of sound signals were used as input to the ANN 

algorithm. Table 7.10 illustrates the confusion matrix by ANN classifier with histogram 

features.  

Table 7.10 ANN confusion matrix for histogram features of sound signal 

a b c d Class 

30 0 20 0 a-Healthy 

0 50 0 0 b-Flank wear 

15 0 35 0 c-Breakage 

0 0 0 50 d- Chipping  

From the confusion matrix, it can be noticed that only 35 instances were misclassified 

and the classification efficiency of about 82.5% is considerably good, but still the 

accuracy of the classification by ANN is lesser than the K-star algorithm (86%). Hence, 

the ANN classifier with histogram features for fault diagnosis of face milling tool is not 

considered. 

 Support vector machine 

Nine selected histogram features are used as input to the SVM classifier and the output 

of the classifier is the confusion matrix representing the classification of the face milling 

tool as shown in Table 7.11. The confusion matrix shows that the 28 instances were 

misclassified. The classification efficiency of the SVM classifier is 86%, which 
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indicates that the SVM classifier has provided the same result as decision tree classifier, 

but more number of instances (16 instances) of breakage condition were misclassified 

as healthy condition when compared with the performance of decision tree classifier. 

Hence, the SVM model with histogram features is not preferred for fault diagnosis of 

the face milling tool. 

Table 7.11 SVM confusion matrix for histogram features of sound signal 

a b c d Class 

39 0 11 0 a-Healthy 

0 50 0 0 b-Flank wear 

16 0 33 1 c-Breakage 

0 0 0 50 d- Chipping  

 K-star algorithm 

The selected features are fed to the K-star algorithm. The confusion matrix obtained by 

the classifier for the given set of histogram features (50 features) of sound signals is as 

shown in Table 7.12. 

Table 7.12 K-star confusion matrix for histogram features of sound signal 

a b c d Class 

36 0 14 0 a-Healthy 

0 50 0 0 b-Flank wear 

19 0 31 0 c-Breakage 

0 0 1 49 d- Chipping  

As seen from the confusion matrix, out of 200 instances, 34 instances were 

misclassified by a K-star algorithm with the overall classification accuracy of about 

83%. The classification efficiency of K-star algorithm is considerably low as compared 

to the decision tree model. Thus, the K-star classifier with histogram features for fault 

diagnosis of the face milling tool is not preferable. 
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 Summary 

The sound signals were used by extracting the histogram features and feature selection 

was carried out using decision tree technique. The performances of the different 

classifiers with selected features were compared and presented. The summary of 

classification efficiencies of different classifiers with histogram features is as shown in 

Table 7.13.  

Table 7.13 Summary of classification efficiencies of different classifiers for histogram 

features of sound signals 

Classification 

accuracy (%) 

Naïve Bayes J48 ANN SVM K-star 

85.5 86 82.5 86 83 

From Table 7.13, the decision tree classifier has performed well (86% classification 

efficiency) when compared to the performances of other classifiers in the case of 

histogram features of sound signals. Thus, the decision tree algorithm with histogram 

feature extraction method using sound signals can be preferred for fault diagnosis of 

the face milling tool. 

7.2.3 Fault diagnosis using EMD features 

EMD features of sound signals pertaining to four different conditions of the milling 

tool were extracted. First eight IMFs of sound signals for each condition of the face 

milling tool are plotted as shown in Figure 7.4 and Figure 7.5. 
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Healthy condition Flank wear condition 

  

  

  

  

  

  

  

  
Figure 7.4 Eight IMFs of healthy and flank wear tool conditions of sound signal 
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Breakage condition Chipping condition 

  

  

  

  

  

  

  

  

Figure 7.5 Eight IMFs of breakage and chipping tool conditions of sound signal 
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In order to quantify these IMFs, amplitude energy is computed by using equation 3.10 

and considered as EMD features. These EMD features of sound signals pertaining to 

each class (two samples of each class) are presented in Table 7.14. 

Table 7.14 EMD features of sound signals 

Face 

milling tool 

condition 

Sample 

No. 

EMD features 

E1 E2 E3 E4 E5 E6 E7 E8 

Healthy 
1 0.2192 0.2404 0.3689 0.3133 0.5901 0.4251 0.2559 0.2559 

2 0.1677 0.3284 0.4339 0.4582 0.5047 0.3261 0.2289 0.2289 

Flank wear 
1 0.1138 0.1958 0.2446 0.4217 0.6933 0.2880 0.2715 0.2715 

2 0.1134 0.1712 0.2819 0.2872 0.6322 0.3903 0.3492 0.3492 

Breakage 
1 0.1651 0.2343 0.3013 0.3631 0.4881 0.4769 0.3388 0.3388 

2 0.1514 0.2687 0.3573 0.4689 0.5827 0.4239 0.1378 0.1378 

Chipping 
1 0.1212 0.1841 0.2841 0.2955 0.6336 0.5225 0.2334 0.2334 

2 0.1206 0.1443 0.2043 0.3622 0.4971 0.5773 0.3250 0.3250 

7.2.3.1 Feature selection by decision tree 

All extracted EMD features are fed to the decision tree (J48 algorithm) for the selection 

of the best features. The decision tree provided the significant EMD features such as 

E1, E2, E3, E4, E5, E6 and E7. These selected features are used for classification of the 

face milling tool in the following section. 

7.2.3.2 Classification  

The selected features of all conditions of a face milling tool are used as input to the 

classifiers such as decision tree algorithm, K-star algorithm, ANN, SVM, and Naïve 

Bayes algorithm. 

 Naïve Bayes algorithm 

The confusion matrix obtained by the Naïve Bayes classifier for sound signals of the 

face milling tool is as shown in Table 7.15.  
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Table 7.15 Naïve Bayes confusion matrix for EMD features of sound signal 

a b c d  

27 6 13 4 a-Healthy 

1 24 6 19 b-Flank wear 

17 6 22 5 c-Breakage 

4 16 4 26 d- Chipping  

Out of 200 instances, 101 instances were misclassified by Naïve Bayes with 

classification accuracy of about 49.5% for the given sound signals which cannot be 

accepted for condition monitoring. 

 Decision tree algorithm 

The selected EMD features were used as input to the decision tree classifier and 

Table7.16 depicts the confusion matrix by decision tree which represents the 

classification of the face milling tool conditions. 

Table 7.16 Decision tree confusion matrix for EMD features of sound signal 

a b c d  

23 9 16 2 a-Healthy 

4 21 7 18 b-Flank wear 

19 10 15 6 c-Breakage 

7 18 3 22 d- Chipping  

From the confusion matrix, out of 200 instances only 81 instances were correctly 

classified and the classification accuracy of the decision tree classifier was about 

40.5%. Since the classification efficiency of the classifier is very less and it cannot be 

accepted for fault diagnosis. 

 Artificial neural network 

The confusion matrix produced by the ANN classifier with EMD features of the sound 

signal is illustrated in Table 7.17. From the confusion matrix, only 94 instances out of 

200 instances were correctly classified with the overall classification accuracy was 
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about 47% for the given sound signals. The classification efficiency of ANN algorithm 

is quite low and cannot considered for fault diagnosis. 

Table 7.17 ANN confusion matrix for EMD features of sound signal 

a b c d  

29 8 12 1 a-Healthy 

6 24 5 15 b-Flank wear 

23 8 18 1 c-Breakage 

3 16 8 23 d- Chipping  

 Support vector machine 

The selected features are fed to the SVM classifier. The confusion matrix represents the 

classification of the face milling tool conditions obtained by the SVM classifier with 

EMD features of sound signals is as shown in Table 7.18. Here, out of 200 instances, 

only 93 instances were correctly classified by SVM with classification accuracy of 

about 46.5% for the given sound signals. The results obtained from the classifier was 

found to be very less and not suitable for fault diagnosis. 

Table 7.18 SVM confusion matrix for EMD features sound signal 

a b c d  

22 7 16 5 a-Healthy 

1 20 5 24 b-Flank wear 

16 2 26 6 c-Breakage 

3 16 6 25 d- Chipping  

 K-star algorithm 

The K-star algorithm is used as a classifier to distinguish the conditions of the face 

milling tool and Table 7.19 shows the confusion matrix with the K-star classifier. From 

the confusion matrix, only 83 out of 200 instances were correctly classified and the 

overall efficiency was found to be 41.5% which is very less and cannot be preferred for 

the classification/fault diagnosis. 
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Table 7.19 K-star confusion matrix for EMD features sound signal 

a b c d  

19 8 19 4 a-Healthy 

8 20 5 17 b-Flank wear 

13 7 24 6 c-Breakage 

7 19 4 20 d- Chipping  

 Summary 

The EMD features were extracted from the acquired sound signals and feature selection 

was performed using decision tree technique. The performances of the selected features 

set in fault classification was presented. The summary of classification efficiencies of 

different classifiers with EMD features of sound signals is as shown in Table 7.20.  

Table 7.20 Summary of classification efficiencies of different classifiers for EMD 

features of sound signals 

Classification 

accuracy (%) 

Naïve Bayes J48 ANN SVM K-star 

49.5 40.5 47 46.5 41.5 

The observation shows that all the classifiers provided less classification accuracy 

which cannot be considered for fault diagnosis/condition monitoring using EMD 

features of sound signals. Thus, the EMD feature extraction method with any of the 

classifiers is not preferable for fault diagnosis of the face milling tool. 

7.2.4 Fault diagnosis using DWT features 

From sound signals, eight discrete wavelet features (V1, V2… V8) were extracted for 

each class of the face milling tool. Table 7.21 illustrates the discrete wavelet features, 

out of 50 samples only two samples pertaining to each condition of the tool are 

tabulated. These features were treated as input to the decision tree for the selection of 

the prominent features which helps in better classification. 
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Table 7.21 Discrete wavelet features of sound signals  

Face 

milling tool 

condition 

Sample 

No. 

Wavelet coefficient 

V1 V2 V3 V4 V5 V6 V7 V8 

Healthy  
1 0.01 0.06 0.19 0.42 0.87 0.86 1.00 0.17 

2 0.02 0.07 0.19 0.40 0.78 0.79 1.12 0.20 

Flank wear 
1 0.02 0.06 0.20 0.45 1.01 0.98 1.18 0.21 

2 0.02 0.06 0.18 0.48 1.06 1.01 1.19 0.19 

Breakage  
1 0.02 0.06 0.18 0.42 0.84 0.84 1.18 0.14 

2 0.02 0.07 0.19 0.35 0.69 0.70 0.62 0.09 

Chipping  
1 0.02 0.07 0.21 0.52 1.22 0.94 1.17 0.24 

2 0.02 0.07 0.21 0.51 1.22 1.10 1.22 0.24 

7.2.4.1 Feature selection by decision tree 

All extracted wavelet features pertaining to four classes were fed to the decision tree 

algorithm and the output of the model is tree like structure as shown in Figure 7.6. The 

observation shows that V5 is the root node which has provided maximum information 

about the face milling tool condition when compared with the other remaining features. 

Based on the feature V5, the decision tree was formed in such a way that when V5 and 

V4 are greater than 0.94 and 0.498 respectively and also V5 is greater than 1.1, it is 

classified as ‘chipping’ condition and so on.  The observation also shows that all 

extracted DWT features (V1-V8) have given thorough information about the tool 

condition. All extracted DWT features are used as input to the classifier. The 

classification performances by the different classifiers are discussed in the following 

section. 
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Figure 7.6 Decision tree of DWT features of sound signal 

7.2.4.2 Classification  

Classifications using DWT features of sound signals with different classifiers were 

studied. The classifiers such as, K-star, ANN, SVM, Naïve Bayes and decision tree 

algorithms were used and their performances on DWT features are reported. 

 Support vector machine 

The extracted DWT features (V1 – V8) are used as input to the SVM classifier. The 

results obtained from the classifier is the confusion matrix as shown in Table 7.22. From 

the confusion matrix, 166 out of 200 samples were correctly classified and the overall 

classification efficiency of about 83% by the SVM classifier. This classifier can be 

considered for the study of fault diagnosis in the face milling process. 
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Table 7.22 SVM confusion matrix for DWT features of sound signal 

a b c d Class 

40 0 10 0 a-Healthy 

0 42 5 3 b-Flank wear 

8 4 38 0 c-Breakage 

0 4 0 46 d- Chipping  

 Decision tree algorithm 

The confusion matrix of the decision tree classifier represented as classification of the 

face milling tool conditions as shown in Table 7.23. 

Table 7.23 Decision tree confusion matrix for DWT features of sound signal 

a b c d Class 

41 0 9 0 a-Healthy 

0 42 3 5 b-Flank wear 

12 5 32 1 c-Breakage 

0 3 0 47 d- Chipping  

Table 7.23 shows that only 38 out 200 instances were misclassified and the overall 

classification efficiency by the classifier was found to be 81% which can be considered 

for fault diagnosis, but the classification efficiency by the decision tree classifier is 

lesser than the SVM classifier. Thus the combination of the decision tree and DWT 

techniques is not preferred for the fault diagnosis of the face milling tool. 

 Naïve Bayes algorithm 

The eight DWT features were used as input to the Niave Bayes algorithm. Table 7.24 

depicts the confusion matrix obtained by the Naïve Bayes classifier. From the confusion 

matrix, 157 out of 200 instances were correctly classified. The overall classification 

efficiency is found to be 78.5%. As the classification efficiency of the Naïve Bayes 

classifier is considerably low when compared to the SVM classifier. Thus the Naïve 

Bayes classifier with DWT features for fault diagnosis of milling tool is not preferable. 
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Table 7.24 Naïve Bayes confusion matrix for DWT features of sound signal 

a b c d Class 

41 0 9 0 a-Healthy 

0 42 4 4 b-Flank wear 

13 7 30 0 c-Breakage 

0 6 0 44 d- Chipping  

 K-star algorithm 

The result obtained from the K-star model is presented in the form of confusion matrix 

as shown in Table 7.25. From the confusion matrix, 47 instances out of 200 instances 

were misclassified. The overall classification efficiency is found to be 76.5%, which is 

lesser than all classifiers. Hence, the K-star algorithm with DWT features is not 

considered for fault diagnosis of the face milling tool. 

Table 7.25 K-star confusion matrix for DWT features of sound signal 

a b c d Class 

32 0 18 0 a-Healthy 

0 43 6 1 b-Flank wear 

13 4 33 0 c-Breakage 

0 4 1 45 d- Chipping  

 Artificial neural network 

The selected DWT features of sound signals are given as input to the ANN classifier. 

The identified classification efficiency in the form of confusion matrix is presented in 

Table 7.26. 

Table 7.26 ANN confusion matrix for DWT features of sound signal 

a b c d Class 

39 0 11 0 a-Healthy 

0 42 4 4 b-Flank wear 

14 2 34 0 c-Breakage 

0 5 0 45 d- Chipping  
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From the confusion matrix, it is noticed that only forty instances were misclassified and 

the classification efficiency is about 80%. The classification efficiency of ANN is good 

for fault diagnosis, but lesser than the SVM classifier. Thus the ANN algorithm with 

DWT features is not preferred for fault diagnosis of the face milling tool. 

 Summary 

The DWT features of sound signals were used to diagnose the faults in the face milling 

tool and feature selection was performed using decision tree technique. The 

performance of the selected features set in fault classification was presented using 

different artificial intelligence techniques. The summary of classification efficiencies 

of different classifiers with DWT features is as shown in Table 7.27.  

Table 7.27 Summary of classification efficiencies of different classifiers for DWT 

features of sound signals 

Classification 

accuracy (%) 

Naïve Bayes J48 ANN SVM K-star 

78.5 81 80 83 76.5 

From Table 7.27, the SVM classifier has performed well with 83% classification 

efficiency when compared with the performances of other classifiers using DWT 

features of sound signals. Hence, the combination of SVM classifier and DWT features 

of sound signal can be referred for fault diagnosis of the face milling tool.  

7.2.5 Overall conclusion from the sound signal analysis based on machine learning 

approach 

The comparison of performances of artificial intelligence techniques with different 

features extraction methods for fault diagnosis of the face milling tool is as shown in 

the Table 7.28. 
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Table 7.28 Comparison of classification accuracies of the classifiers with different 

features 

Feature Feature 

selection 

Classifier Correctly 

classified 

instances 

Incorrectly 

classified 

instances 

Classification 

accuracy 

Statistical  

 

 

 

 

Decision 

tree 

Naïve 

Bayes 
137 63 68.5% 

SVM 140 60 70.0% 

ANN 140 60 70.0% 

K-star 125 75 62.5% 

J48 141 59 70.5% 

 

 

 

Histogram 

Naïve 

Bayes 
171 29 85.5% 

SVM 172 28 86.0% 

ANN 165 35 82.5% 

K-star 166 34 83.0% 

J48 172 28 86.0% 

Empirical 

mode 

decomposition 

Naïve 

Bayes 
99 101 49.5% 

SVM 93 107 46.5% 

ANN 94 106 47.0% 

K-star 83 117 41.5% 

J48 81 119 40.5% 

Discrete 

wavelet 

transform 

Naïve 

Bayes 
157 43 78.5% 

SVM 166 34 83.0% 

ANN 160 40 80.0% 

K-star 153 47 76.5% 

J48 162 38 81.0% 

Table 7.28 shows the classification accuracies of different classifiers with different type 

of extracted features from the acquired sound signals. The observation shows that the 
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decision tree technique provided maximum classification accuracy of about 86% with 

histogram features when compared with any other combination of type of feature and 

type of classifier. Hence, the decision tree technique can be preferred as a best classifier 

when compared with any other techniques listed in Table 7.28 with histogram features 

extracted from the acquired sound signals. 

7.3 SUMMARY 

This chapter has revealed the results of investigations undertaken to find suitability of 

sound signals to detect and diagnose the face milling tool condition. Experimental tests 

were carried out while face milling of steel alloy 42CrMo4 using carbide inserts type 

face milling cutter for regular intervals of time with different tool conditions such as 

healthy, flank wear, chipping and breakage conditions. Sound signals were acquired, 

while machining under different tool conditions. Acquired signals were analysed using 

machine learning techniques. From the acquired signals, statistical features, histogram 

features, DWT features and EMD features were extracted. The J48 algorithm (decision 

tree) was used for important feature selection. ANN algorithm, J48 algorithm, Naïve 

Bayes algorithm, SVM algorithm and K-star algorithm was used to classify the different 

face milling tool conditions. Based on the results obtained, the proposed methodology 

with machine learning techniques can be suggested for developing an on-line TCM 

system for the face milling process. 
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CHAPTER-8  

CONCLUSIONS 

8.1 SUMMARY 

Machining processes are among the most common industrial operations used in every 

day in industries. Therefore, process monitoring and fault diagnosis of machining 

operations are very important and useful to the industry. Although considerable 

research has been conducted in this field, there is still lack of monitoring algorithm 

which is reliable, robust, accurate, inexpensive, automatic, practical and independent 

from the operating conditions. This research has been planned to reach this goal and 

select the best diagnostic method by applying and combining conventional signal 

processing and artificial intelligence methods in the field of machining monitoring. 

Condition monitoring of the milling tool using vibration signal and sound signal is one 

of the cost effective methods when compared with other signals such as cutting force 

signal, AE signal, current signal, etc. The research work is concerned with fault the 

diagnosis of the face milling tool by analysing two different types of signals: sound and 

vibration signals and also with the aid of the new signal processing methods such as 

continuous wavelet transform and empirical mode decomposition techniques.  

This thesis has provided an easy overview of different tasks involved in monitoring the 

condition of the face milling tool. The main tasks are state of the art and different types 

of signal processing. The second and important task was to collect the vibration and 

sound signals under different types of face milling tool conditions such as, healthy 

condition, flank wear condition, cutting tip breakage condition and chipping on rake 

face near cutting edge condition. The processing and analysis of acquired signals have 

two modules, they are (i) fault detection of the face milling tool based on signal 

processing techniques and (ii) fault diagnosis of the face milling tool based on machine 

learning techniques. In the first module, the acquired vibration and sound signals were 

analysed and identified the face milling tool conditions using signal processing 
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techniques such as time-domain analysis, spectrum analysis, cepstrum analysis and 

continuous wavelet transform analysis. The next module was to classify the signals into 

different categories depending on their similar properties based on machine learning 

approach. It includes three steps: feature extraction, feature selection and classification. 

The information about the various faults of face milling tool was extracted as features 

from the signals. Statistical features, histogram features, EMD features and DWT 

features were extracted from vibration and sound signals. In the second phase of 

machine learning method, decision tree algorithm was used for selecting the prominent 

features from the extracted features. The feature classification algorithms were 

employed to identify the faults by classification of features. Five classifying algorithms 

such as ANN algorithm, SVM algorithm, Naïve Bayes algorithm, decision tree 

algorithm and K-star algorithm were trained and used for diagnosing the faults in the 

face milling tool. The performances of the classifiers were analysed and compared 

based on different features extracted from the vibration and sound signals to select the 

best feature-classifier combination in condition monitoring of the face milling tool. 

8.2 KEY CONTRIBUTIONS 

The main contributions of this study are as follows, 

1. In this present work, attempt has been made to explore the new artificial 

intelligence technique such as K-star algorithm to classify the different face 

milling tool conditions. 

2. Combination of vibration and sound signals in face milling tool monitoring 

using data mining approach through machine learning techniques has been 

studied and carried out comparative studies. 

3. EMD and histogram features extraction methods are applied for both vibration 

and sound signals in TCM of face milling process. 
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8.3 CONCLUSIONS 

In this study, signal processing techniques and machine learning technique were used 

to analyse the vibration and sound signals under healthy and fault conditions for 

diagnosing the faults in face milling tool. Based on the experimental results and 

discussions, the following conclusions are drawn. 

 Time-series plots provide insufficient diagnostic information in both 

vibration and sound signals of different face milling tool conditions. 

 Spectrum plots are used to detect faults in the milling tool. Though the 

information about faulty tool condition as a frequency component of the 

vibration and sound signals can be predicted, but they do not provide any 

time information about faults. 

 In cepstrum plots, it is very useful to assess defect quefrency namely 

fundamental rotating quefrency of milling tool in both vibration and sound 

signals and observation shows that the amplitude of this quefrency varies 

with the increase in fault level. 

 CWT plots of vibration and sound signals have provided insufficient 

information about conditions of the face milling tool in time-frequency 

domain. 

 The Navie Bayes classifier has provided a better classification efficiency of 

about 97% and found to be effective, when compared to other classifiers in 

fault diagnosis of the face milling tool using vibration signals. 

 The decision tree classifier has provided a better classification efficiency of 

about 86% and found to be effective in comparison with other types of 

classifiers in fault diagnosis of the face milling tool using sound signals. 

 Current studies on fault diagnosis of the face milling tool reveals that, 

statistical features have provided better classification efficiency in 

comparison with all other feature types and Naïve Bayes classifier is the best 
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among all other classifiers in combined analysis of vibration and sound 

signals during face milling for the given process condition and work 

material of steel alloy 42CrMo4 and this combination can be recommended 

for the applications of TCM of the face milling process. 

8.4 FUTURE WORK 

The following suggestions are recommended for improving the accuracy in existing 

methods for diagnosing the faults in milling tool during the process in future studies: 

 Microcontroller based portable hardware kit can be fabricated with the suitable 

machine learning approach for the automated fault diagnosis. 

 Unlike vibration and sound signals, some other signals such as, motor current 

signal, acoustic emission (AE) signal, etc. can be used to predict the tool 

condition. 

 Cutting fluids and tribological studies can be carried out to explore the 

additional information for developing efficient tool condition monitoring 

systems. 
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