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Abstract

Recently, the application of probabilistic methods for power system anal-

yses has become increasingly popular owing to their capability to instill

enough confidence in system planner and operator in making more real-

istic decisions. In the conventional deterministic methods, consideration

of a few typically stressed operating conditions are inadequate in solv-

ing the present uncertainty problems which are majorly confronted due

to the enormous integration of renewable generations along with the con-

ventional load powers. Probabilistic steady-state analysis (PSSA) refers

to the adaptation of probabilistic load flow (PLF) to address the afore-

mentioned uncertainties for characterizing the uncertainties in the power

system variables referred to as result variables.

Among the many renewable sources, photovoltaics (PVs) have experienced

a globally increasing significance as its cost per unit is decreasing day by

day. PV generation is intermittent and variable with a higher level of

uncertainty; their integration to power system greatly affects the power

system variables which is a significant concern in the power system studies.

Hence, a study focusing on the various aspects of power systems with

integration of such renewable resources is the need of the hour. Therefore,

this thesis is dedicated towards the PSSA of PV integrated power systems

to examine various uncertainty issues that are likely to be combated in

transmission systems.

The primary requirements for PSSA are mainly of threefold which include

uncertainty modeling, power system model development, and application

of an uncertainty handling method. This thesis aims at the improvement

of each of these facets through suitable modifications and eventually re-

sulting in an elegant PSSA.

For the uncertainty modeling, use of the historical record of inputs yields

realistic models. For power system expansion and operational planning,

such models use the daily time step data corresponding to the time of the

year concerning the study of interest. The span of the chosen time series

ranges from few months to few years depending on the study requirement

or data availability. The daily time series of PSSA inputs such as load
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power, PV generation, ambient temperature, etc. exhibit complex pat-

terns that are periodic, encompassing predictable components. It is vital

to separate such components from the raw data to characterize the unpre-

dictable residuals referred to as preprocessing. In this regard, methods for

preprocessing using multiple linear regression is proposed, and are com-

pared with state of the art methods using the data collected from various

places in India and USA. The rationale involved in the development of such

models is deliberated in detail. Finally, a scenario-based spatiotemporal

probabilistic model is developed by adopting the proposed preprocessing,

transformation techniques, principal component analysis, and a suitable

time series model capable of accurately modeling the trend in the variance

of uncertain inputs.

Risk-based power system studies considering PV generations facilitate

in delimiting the permissible penetration by executing essential steps to

hedge systems risks. On this line, a risk assessment of PV arrays inte-

grated to New England 39-bus transmission system is carried out. An

improved system model is developed by accounting for the effect of en-

vironmental conditions, predominantly, the ambient temperature on the

branch parameters by considering the electro-thermal coupling effect. The

PLF that embodies the above effect in system model is referred to as

temperature-augmented PLF (TPLF). It considers uncertainties in PV

generation, aggregate load power, and ambient temperature along with

their associated correlations for risk assessment. The effect of increased

PV penetrations and variation in TPLF model parameters on the statistics

of result variables is analyzed in detail. The expected system over-limit

risk indices are calculated and are analyzed for different PV penetrations

and input correlations.

In general, operational studies require a faster estimation of PSSA. One

of the ways to achieve this is through the use of an uncertainty handling

method that obtains accurate results in less time. On this line, efforts

are made to devise two hybrid methods for PLF and TPLF simulations.

Here, “hybrid” refers to the suitable amalgam of two uncertainty handling

methods in part or as a whole through suitable modifications. As the thesis

focuses on the larger transmission systems, cumulant method is chosen as
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one of the potential methods for hybridization. It is seen that, based

on a comprehensive result analysis, the proposed hybrid methods exhibit

improved performance in the approximation of multimodal probability

distributions of the result variables.

For all the above studies, PSSA is carried out on various transmission

systems such as New England 39-bus test system, IEEE 14-bus, 57-bus

118-bus test systems, and Indian utility 62-bus test system. MATLAB

7.10 is used to develop the corresponding programming codes for various

analyses. Finally, with the aid of the obtained results, the research work

in this thesis demonstrates that the proposed models and methods for

PSSA are potentially challenging candidates which facilitate in making

sensible decisions regarding the planning and operation of PV-integrated

power systems.
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Chapter 1

INTRODUCTION

This chapter provides a brief overview of the issues addressed in this thesis. The

research scopes stemming out of the critical review on probabilistic steady-state anal-

ysis (PSSA) using probabilistic load flow (PLF) followed by the contributions of the

thesis are presented.

1.1 Background

In recent years, integration of renewable generations with electric power systems has

gained much interest owing to the possible environmental and economic benefits.

Predominantly, photovoltaic (PV) generations are the most important renewable re-

sources to have experienced a globally increasing significance because of their ability to

generate power in varying capacities and different voltage levels (Fan, 2012). Further,

PV technology is cost-effective, and its commissioning is easy. However, PV output is

uncontrollable as it depends on the Sun’s position and other climatic factors. It is site

specific, has diurnal and seasonal patterns. In short-term time-horizon, PV genera-

tion is rich in daytimes than in nighttimes whereas, in long-term, it is rich in spring

than winter. It has the following major characterizing features: (i) predictability

(expected change), (ii) uncertainty/randomness (unexpected change), (iii) intermit-

tency (unplanned unavailability), (iv) uncontrollability (power output is not defined

by system management), and (v) non-dispatchable due to (ii) and (iii). An increase

in uncertainties under higher PV penetrations with their associated spatiotemporal

dependencies cause system variables to exceed their allowable limiting values. These

pose significant planning and operational challenges in the power systems.

1



(a) (b)

A
p
p
ro

xi
m

at
e 

C
u
m

u
la

ti
ve

 
R

es
ea

rc
h
 P

ap
er

s

Figure 1.1: Research on PLF.

A conventional deterministic steady state analysis ignores the aforesaid uncertain-

ties and dependencies, hence, leads to either overinvestment or insufficient system

reliability during planning and operation. Whereas, PSSA using PLF obtains the

uncertainties in the result variables as derived from the uncertainties of the input

random variables (Borkowska, 1974, Da Silva et al., 1990, Usaola, 2010). The vari-

ous result variables in a power system include bus voltage magnitudes, branch power

flows and losses, generator bus reactive powers, and slack bus powers. The primary

requirements to perform PLF include:

(i) Modeling of power system uncertainties and dependencies.

(ii) Establishment of a power system model.

(iii) Application of a method to solve PLF.

An accurate accomplishment of the above three PLF requisites helps in making

critical decisions during power system expansion planning, operation (operational

planning and real-time operation), and control. There exists vast literature addressing

various issues in PLF. Nevertheless, improvements are still possible to make PLF more

elegant. The ensuing sections unfold in detail about the state of the art PLF followed

by the derived problem formulation.
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1.2 State of the art in Probabilistic load flow

In this section, an overview of previous work on PLF is provided. A detailed review

on specific topics is included in the corresponding chapters.

Ever since the inception of PLF in 1974 (Borkowska, 1974), it has been a rigorous

research topic till date. Figure 1.1(a) and (b) respectively provide lustrum wise

and country wise approximate research contributions towards PLF in the past 45

years (1974-2018). The following subsections elucidate the PLF requirements and

applications in detail.

1.2.1 Modeling of input uncertainties and dependencies

One of the primary tasks in PLF is uncertainty modeling. Amongst several uncer-

tainty modeling methods, application of a probabilistic method is most appreciated

in the literature (Aien et al., 2016). Probabilistic uncertainty modeling defines the

possible distribution of an input random variable with a strict bound based on their

historical record. It can be broadly classified as, planning uncertainty and operational

uncertainty (Papaefthymiou and Kurowicka, 2009). The former corresponds to the

analysis of all possible combination of system inputs whereas; the latter corresponds

to the forecast errors. On the one hand, planning uncertainties are quantified to make

decisions regarding investments (and their economic merits) in locating adequate gen-

eration and transmission assets at suitable places and time; thereby ensuring reliable

and efficient delivery of real power when no remedial actions are executed (Zhang and

Lee, 2004). The quantification of operational uncertainties, on the other hand, is de-

cisive in recognizing whether system operating limits are within acceptable reliability

criteria. Then after, remedial actions are taken to decide on the change of system

operating mode which in turn ensures reliability through power balance at all the

time instants (Peng et al., 2015). The various remedial actions include load transfer,

switching actions, protection/control schemes, temporary reconfigurations, etc.

In PLF, an input random variable X is expressed as, X = µX + εX where µX and

εX respectively are the expected value and uncertainty component of X. Accurate

uncertainty modeling can be developed based on the adequate historical data with

acceptable accuracy. In general, the data inadequacy is due to the irregular source

database update (missing values), whereas, the data inaccuracy is mainly due to the

abnormal data (outliers).
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Figure 1.2: Time information for uncertainty modeling.

1.2.1.1 Time-horizons, time-scales and time-steps

The time-horizons (long-term, mid-term, and short-term), and time-scales (minutes,

hours, days, weeks, months, years, several years, decades, etc.) that a study of interest

focuses on, plays a significant role in uncertainty modeling. The degree of uncertainty

increases significantly from a short time-scale in system operation to a larger time-

scale in expansion planning. For example, based on the current operating conditions,

a system operator has more confidence in forecasting for the next hour than the

next month. The resolution of data in a time series has a significant effect on the

uncertainty model. The historical data collected at an interval of one hour or more

(e.g., daily, monthly, yearly, etc.) is referred to as a low-resolution data whereas, an

ideal time series of one minute time step or less (e.g., half a minute, few seconds, etc.)

is referred to as the highest resolution data. Figure 1.2 provides an overall knowledge

about the time information for modeling uncertainty in various power system studies.
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1.2.1.2 Review of uncertainty modeling and dependencies

The modeling of power system uncertainties in conventional and PV-integrated power

systems is detailed as under.

(i) Bus power uncertainties: The uncertainty modeling in conventional as well as

PV-integrated power systems is as follows. The uncertainties in conventional

power systems are due to load powers. Typically, PLF considers historical time

series of inputs to describe the uncertainty components. Either, stationarity of

the time series is ensured (Da Silva et al., 1987, 1990, 1991, Coutto Filho et al.,

1991) or the expected value and the corresponding confidence interval of the

future values are forecasted (Da Silva et al., 1990, 1991, Coutto Filho et al.,

1991). The former is generally considered for operational planning whereas; the

latter is for expansion planning. The daily peak loads of substations (each day

at the same time) for a period of few months (typically, one to three months)

corresponding to the period of annual peak are considered for uncertainty mod-

eling. In (Da Silva et al., 1987), restriction on the length of time series to one

month is to preserve data stationarity. Whereas, in (Da Silva et al., 1990, 1991,

Coutto Filho et al., 1991) the daily peak loads collected for a period of two

months have evident trend effects. The stationarity is attained through curve

fitting using a set of mathematical functions (Coutto Filho et al., 1991). Since,

the data corresponds to a relatively shorter period, the nonlinearities in the load

patterns in relation to seasonal change of weather variables is not accounted for;

efforts were made only to remove the trend effect from data. The expected value

of load power raises by 8% in case of a year ahead operational planning (Da Silva

et al., 1987). The short-term (operational) uncertainties are related to short-

term factors such as, environmental conditions, social effects, etc. (Coutto Filho

et al., 1991). In (Da Silva et al., 1990, Coutto Filho et al., 1991), the uncer-

tainties are due to long-term factors such as demographic growth, economic

activities, etc. The annual substation peak loads for several past decades are

considered for modeling. The load probability distribution for the time horizon

is forecasted using the method of linear regression (Da Silva et al., 1990). In all

the above cases, the data pertaining to holidays and weekends are removed as

they cause a significant reduction in the peak load values. The obtained station-

ary samples can reasonably be approximated to a continuous density function
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within a certain range if samples are very close to each other (i.e., to have small

variance) (Da Silva et al., 1987). This procedure greatly abates computational

efforts while applying an analytical method for PLF. In case of samples not

very close together (i.e., to have large variance), a possible approximated dis-

crete distribution with definite number of impulses is constructed where the

individual probability values sum to unity (Da Silva et al., 1987, Coutto Filho

et al., 1991). The dependencies among load powers usually being linear, prod-

uct moment correlation coefficient (PMCC) is used to measure the strength of

linear dependencies (Da Silva et al., 1990). The PMCC values can be directly

obtained from the stationary samples in operational planning studies and from

the annual peak load series in long-term expansion planning.

For power systems integrated with PV generation, it is very much essential to

evaluate the permissible PV penetration using a probability method which is

mainly affected by PV generation distribution, seasonal patterns, fluctuation

characteristics, and the associated dependencies among nearby PV generations.

In system planning, uncertainty associated with PV generations should be quan-

tified for the determination of the variability of the system power flow, which

is essential for system dimensioning. In case of an operational study, uncer-

tainty quantification of PV generation is central in the system management,

e.g. optimal operation under high penetration (Papaefthymiou and Kurowicka,

2009).

In recent days, a majority of the rooftop installed PV generations located closer

to the loads are integrated to the transmission systems. However, such instal-

lations are suggested not to provide voltage control as per IEEE standard 1547

(Eftekharnejad et al., 2013), and thus they act as active power sources alone.

This leads to an immediate increased concern towards the bus voltage magni-

tude violations under higher penetrations (Fan, 2012). Further, uncertainties

arising from multiple PV generations and other input random variables, as well

as their multiple dependencies can cause the result variables to exceed their

limiting values. On this line, PLF is carried out to analyze the influence of PV

generation uncertainty on the result variables at noon as PV generation has

maximum coefficient of variation (calculated as the ratio of standard deviation

to mean value) at noon (Fan et al., 2012). PV generation and load power histor-

ical data collected each day at noon for two years are considered for uncertainty
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modeling. Such a study can be used for planning-based applications like power

balance, peak regulation, etc. Unlike, the conventional model where only peak

load powers are considered as the worst case condition, the load power uncer-

tainty model as adopted in (Fan et al., 2012) can better assess the possible state

of a power system. While peak load values cause low voltage and generation

deficiency, light loads give rise to overvoltage conditions (Fan, 2012). The study

carried out in (Fan et al., 2012) is an example case to evaluate the influence of

PV generation and other input uncertainties at a particular time instant. The

risk of steady-state bus voltage violation and branch power flow exceedance

under various PV penetrations and correlations are quantified using over-limit

probability indices.

In an operational framework, probabilistic forecasting of expected PV genera-

tion and other input random variables are required to be accomplished through

strategic decisions (Papaefthymiou and Kurowicka, 2009). When such uncer-

tainties at multiple sites are considered in the analysis, spatial and temporal

dependencies are required to be modeled for efficient extraction of critical in-

formation for reliable system planning and operation (Le et al., 2015).

(ii) Network uncertainties: The uncertainties in power system network arise either

from the outage of any of its components or branch power variations due to

environmental factors. Such type of uncertainties is reviewed underneath.

(a) Topology uncertainties: Generally, the probability of network element out-

ages are neglected and the probability of basic network topology is assumed

to be unity. However, the steady state contingency analysis accounts for

the network uncertainties (Da Silva et al., 1987) which are generally charac-

terized by a discrete distribution. A widely used approach to model branch

outage uncertainty is to consider an outage being replicated by injecting

fictional powers at the connecting buses (Hu and Wang, 2006). Formula-

tions of component outages using optimization methods are deliberated in

(Ozdemir et al., 2003, Ceylan et al., 2015).

(b) Branch parameter uncertainties: The transmission branch impedance (es-

timated at a specific temperature) is assumed as constant in most of the

PLF studies. However, branch impedance varies with respect to the con-

ductor temperature which in turn is influenced by few probabilistic factors
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such as, branch current, ambient temperature, and other environmental

aspects (Frank et al., 2013). The branch parameter uncertainty in PLF

was first considered in (Su, 2005b). The series and shunt parameters of

the branch are assumed to follow uniform and binary distributions re-

spectively. In (Kang et al., 2003), authors have presented a PLF analysis

considering the variation of power consumption due to temperature effect.

Branch temperature variation due to the variability of branch power flow

is presented in (Schlapfer and Mancarella, 2011).

1.2.2 Power system models for probabilistic load flow

PLF uses either the actual algebraic nonlinear equations (non-linear model) or sen-

sitivity matrix-based models (a simplified version of the actual model) for better

computational efficiency. Depending on the system type, i.e., transmission or distri-

bution, the modeling formulations differ. PLF was first implemented on a DC model

(Borkowska, 1974, Allan et al., 1974). Soon after, four complex linearized formula-

tions were deliberated (Allan and Al-Shakarchi, 1976, 1977). Erroneous estimations of

expected values and computational inefficiency are the main pitfalls of these formula-

tions. To preserve both accuracy and computational efficiency, a sensitivity coefficient

based linearized formulation using Taylor’s series expansion is developed (Allan et al.,

1981). The authors in (Yuan et al., 2011) have analyzed that accuracy of the PLF

solution is sensitive to the choice of linearization point, and the linearization corre-

sponding to the expected values of input random variables yields comparatively better

results. For a higher level of input uncertainties, such a model results in an inaccurate

estimation of the tail of distributions of result variables. A linear model accounting

non-linear effects with the help of multiple linearization points is also focused (Allan

and Da Silva, 1981). In (Brucoli et al., 1985), a second order term of Taylor series

expansion is used for improved accuracy of results. The authors in (Frank et al.,

2013) have introduced a temperature-augmented power system model by exploiting

the electro-thermal coupling effect of transmission branches.

1.2.3 Methods to solve probabilistic load flow

The PLF obtains the probability distribution of the result variables using an un-

certainty handling method. For this, there are numerous methods proposed in the
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literature. For a quick reference, various PLF evaluation methods are classified in

Figure 1.3. Apart from those in the classification, hybrid methods combining more

than one of the above methods have gained additional interest.

1.2.3.1 Numerical method

A numerical method such as Monte-Carlo simulation is generally used when the model

describing input random variables and the result variables are complex. It relies on

repetitive random sampling and statistical analysis to compute the probability dis-

tributions of the result variables without requiring any simplifications of the original

non-linear load flow equations (Aien et al., 2016). It is broadly accepted that Monte-

Carlo simulation with simple random sampling is the most accurate method and is

used as the benchmark to validate analytical methods and approximate methods. The

tremendous computational cost is its main setback. Further, Monte-Carlo simulation

results depend on the number of simulations which is independent of the system size

(Allan and Da Silva, 1981). Any random selection of sample number may either be

large or insufficient for the accuracy of the obtained results. Hence, it is appropriate

to evaluate a coefficient of uncertainty to determine the convergence of Monte-Carlo

simulation (Fan, 2012). The use of sampling methods such as Latin hypercube (Yu

et al., 2009), importance sampling (Huang et al., 2011), Latin supercube (Hajian et al.,

2013), uniform design (Cai et al., 2014), and Quasi-Monte-Carlo simulation (Cui and

Franchetti, 2013) reduces the computational burden of simple random sampling based

Monte-Carlo simulation to some extent. The use of smoothing properties of the lin-

ear diffusion process in (Soleimanpour and Mohammadi, 2013) reduces the number

of trials required to obtain reasonable results. A graphics processing unit-accelerated

Monte-Carlo simulation, by offloading the computational burden to graphic processor,

suffices for real-time applications (Zhou et al., 2018).

Depending on whether the associated dependencies are linear or nonlinear, the

methods implemented to generate random samples in Monte-Carlo simulation are also

different. In the presence of only Gaussian input random variables, Cholesky decom-

position based technique is employed to obtain the correlated random samples. For a

mixture of Gaussian and non-Gaussian input random variables, two well-established

techniques such as, Nataf transformation, polynomial normal transformation are suit-

able (Cai et al., 2015). Copula function based techniques are appropriate for modeling

non-linear dependencies among input random variables. Finally, the underlying dis-
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tributions of the result variables can be obtained using Kernel or Parzen window

function based nonparametric density estimation methods (Soleimanpour and Mo-

hammadi, 2013, Rouhani et al., 2016).

1.2.3.2 Approximate method

Approximate methods can permit non-linear analysis; they provide approximate sta-

tistical information of the result variables. The approach is similar to Monte-Carlo

simulation requiring a lesser number of deterministic load flow calculations. The

point estimate based approximate methods deal with the statistics of input random

variables and does not require the complete knowledge about their probability distri-

butions. Two-point estimation method is the ever simplest point estimation method

used in the literature. The variants of point estimation method and their performance

comparison is carried out in (Su, 2005b, Morales and Perez-Ruiz, 2007). The compu-

tation time of various point estimation methods are directly related with the number

of input random variables and is sensitive to system complexity while the estimation of

higher order moments is erroneous. The unscented transformation method generates

the suitable number of samples (sigma points) deterministically to approximate the

probability distributions (Aien et al., 2012). It is computationally efficient than point

estimation method and can handle input correlations more effectively. The aforesaid

methods obtain the statistical parameters of result variables and use a series expan-

sion method to approximate their probability distributions. Few other approximate

methods are discussed in (Zou and Xiao, 2014, Hong et al., 2016).

The point estimation methods proposed by Rosenblueth, Li and Harr can easily

handle correlation among input random variables whereas; Hong’s point estimation

method has a strong assumption of independent inputs (Morales and Perez-Ruiz,

2007). This drawback is subdued by combining point estimation method with Gaus-

sian transformation technique (Morales et al., 2010). The correlation in (Zou and

Xiao, 2014) is incorporated by transforming correlated input random variables into

independent standard Gaussian domains.

1.2.3.3 Analytical method

An analytical method obtains PLF results quickly by operating either on the proba-

bility distributions of input random variables or their cumulants.
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(i) Convolution-based analytical methods and variants: Conventional analytical

methods assume simplifications such as linearization of the system model, in-

dependence, and Gaussian input random variables (Allan et al., 1974, Allan

and Al-Shakarchi, 1976, 1977). For a higher number of input random variables,

numerous convolution operations are required to be performed using Laplace

transform (Allan et al., 1974). A new discrete frequency domain convolution

by applying fast Fourier transform is proposed and found to provide fast and

precise results (Allan et al., 1981). The idea of using sequence operations to ac-

complish arithmetic calculations among the univariate input random variables

in PLF is inspired from (Kang et al., 2002). The assumption of independent

input random variables is the main disadvantage of the approach. Then af-

ter, the concept of multivariate joint probability sequence is introduced in (Liu

et al., 2017). Dependent discrete convolution method as proposed in (Zhang

et al., 2016) incorporates input dependencies in analysis with the help of copula

density functions. A Gaussian mixture model (GMM)-based approach using

convolution is applied for PLF under the assumption of independent input ran-

dom variables (Sirisena and Brown, 1983). It takes a great deal of computational

time to accomplish the convolution among input random variables. Then after,

the input correlations in GMM-based PLF are accounted in (Valverde et al.,

2012).

(ii) Cumulant-based analytical methods and variants: Cumulant method is a well

established analytical method which obtains cumulants of a linear combina-

tion of correlated input random variables in a single step (Sanabria and Dillon,

1986, Hoese and Garcés, 1999). The main advantage of this method is its high

computational efficiency for larger systems (Fan et al., 2012). Various mecha-

nism to incorporate input correlation in cumulant method is detailed in (Fan

et al., 2012, Hoese and Garcés, 1999, Cai et al., 2012). From the obtained cu-

mulants of result variables, probability distributions can be approximated with

the help of series expansion methods such as Gram-Charlier method (GCM),

Cornish-Fisher method (CFM), and Edgeworth method (EGM) (Fan et al.,

2012), Von Mises function (Sanabria and Dillon, 1986), Pearson’s functions

(Abdullah et al., 2013), and optimal fitting of distribution based on maximum

entropy method (Williams and Crawford, 2013). Few other methods under this

category includes, combined cumulant and Laplace transform (Kenari et al.,

12



2017), cumulant-tensor (Amid and Crawford, 2018) and cumulant based multi-

ple integral method (Wu et al., 2016).

The input correlation can be included in cumulant method by various formula-

tions as described below.

(a) Formulation based on joint distribution: This method necessitates the

availability of joint probability density function or joint probability mass

function of input random variables. In reality, it is cumbersome to ob-

tain joint distribution of input random variables (Fan et al., 2012). Nataf

model and Morgenstern model are used to construct the joint distribution

from the prescribed marginals and covariances (Liu and Der Kiureghian,

1986). Morgenstern model parameter is either constant or dependent on

the shape parameters of the marginal distributions. Nataf model provides

a much wider range of PMCC whereas; a limit imposed on the permitted

value of PMCC is the main disadvantage of Morgenstern model. Efforts

have been made (Papaefthymiou and Kurowicka, 2009) to construct joint

distribution from the marginal distributions using copula method. How-

ever, the method is convenient for a bivariate case with increasing intricacy

for a multivariate case.

(b) Formulation-based on orthogonal transformation: Cholesky factorization

based orthogonal transformation method accurately transforms Gaussian

correlated random variables into uncorrelated sets, but the significant error

is introduced when applied to multivariate non-Gaussian cases (Chen et al.,

2015). Rotational linear orthogonal transformation technique accurately

estimates the cumulants of correlated non-Gaussian input random variables

for orders higher than two (Hoese and Garcés, 1999).

(c) Extended correlation handling methods: There are two approaches dis-

cussed in the literature to incorporate input correlation in cumulant method

(Hoese and Garcés, 1999, Cai et al., 2012). Although the correlations

among Gaussian and non-Gaussian input random variables can be consid-

ered, the methods are not free from the use of a series expansion while

approximating the probability distributions of the result variables.

Convolution-based analytical methods are computationally less efficient, and most

of them assume input random variables are independent (Allan et al., 1974, 1981,

13



Kang et al., 2002). The dependent discrete convolution method that adopts copula

density function to incorporate input dependency is computationally less efficient for

an increased number of input random variables (Zhang et al., 2016). Further, the

chosen small sequence intervals to reduce discretization error increases the compu-

tational time drastically. The cumulant-based analytical method in (Sanabria and

Dillon, 1986) that separately deals with continuous and discrete parts of result vari-

ables assumes the continuous input random variables to follow Gaussian distributions.

The analytical methods in (Fan et al., 2012) use series expansion methods. Although

series expansion methods are computationally more efficient than Von Mises function,

the performance of series expansion based cumulant method worsens in approximat-

ing multimodal probability distributions of result variables. Maximum entropy algo-

rithm optimally fits the distribution based on its entropy. It overcomes the demerits

of series expansion methods but for the reconstruction of multimodal distributions,

a higher number of moments are required to be estimated (Williams and Crawford,

2013). Both Lagrange multiplier calculation method using Newton solver and MAT-

LAB minimization functions to obtain maximum entropy has the limitations for the

higher number of moments. The former is sensitive to the chosen initial conditions

whereas the latter suffers from the computational limitations of MATLAB. The ana-

lytical method-based PLFs as discussed in (Fan et al., 2012, Hoese and Garcés, 1999,

Cai et al., 2012, Abdullah et al., 2013) applies various mechanisms for modeling input

correlations. There are no clear indications in the literature about the applicability

of combined cumulant and Laplace transform, cumulant-tensor, cumulant based mul-

tiple integral method in approximating multimodal probability distributions of result

variables.

1.2.4 Applications of probabilistic load flow

PLF is a vital tool for PSSA of power systems during the planning and operational

studies. Various other applications of PLF that has not been covered in sections 1.2.1

through 1.2.3 are briefly reviewed underneath.

With the help of PLF, the dimensioning and setting of voltage controlled de-

vices (switched capacitors, static reactive compensators, and tap-changing transform-

ers) achieve a better voltage control in (Hatziargyriou and Karakatsanis, 1994, 1997,

Hatziargyriou et al., 2005, Su, 2005a).
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Three-phase PLF evaluates the steady-state condition of a power system consid-

ering unbalance in load and other components. The interaction between unbalanced

three-phase source and high voltage DC transmission system is studied in (Caramia

and Varilone, 1998). PLF in a system with unbalanced load is discussed in (Caramia

et al., 1999). The deterministic and stochastic components of three-phase real and

reactive powers are modeled separately in (Wang and Pierrat, 2001) for the proba-

bilistic assessment of voltage unbalance factor. Voltage regulation problem due to the

inclusion of PV generation is addressed in (Gomez-Gonzalez et al., 2013, Alam et al.,

2013). A PLF considering asymmetrical line parameters and the unbalanced load is

studied in (Ran and Miao, 2016). A probabilistic model to describe the uncertainties

associated with harmonics is developed to obtain the steady-state network voltages

at harmonic frequencies (Mohammadi, 2015).

PLF is also applied for the maintenance, operation, and expansion of electric

railway systems (Ho et al., 2003, 2004, 2005). Starting with a simplified model based

on feeding current, return conductor current and train current (Ho et al., 2003), few

other studies considering train position as random variable (Ho et al., 2004) and train

voltage model under various feeding systems (Ho et al., 2005) are carried out for PLF

in electric railway system.

1.3 Research gaps

Based on the critical review carried out in the previous section, the following research

gaps are worth highlighting.

Firstly, it is learnt that the existing methods for characterizing the input uncer-

tainties have not adopted an adequate preprocessing to filter out the deterministic

components from the historical records of various inputs such as load power, PV gen-

eration, ambient temperature, etc. As geographical, environmental and social factors

profoundly influence the inputs mentioned above, a thorough understanding of these

physical phenomena to ascertain the actual influencing factors and their level of in-

fluence is essential to predict the complex deterministic pattern in data. Further, a

multi-time instant preprocessing is necessary to ensure the extraction of actual unpre-

dictable component of uncertainty at various time instants. Such a study considering

the data of various places by developing generic models for the characterization of un-

predictable uncertainty is worth investing. Further, a realistic spatiotemporal model
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capable of extracting the statistical properties from historically observed data for the

generation of future scenarios is also essential.

Secondly, none of the temperature related PLF studies have explored the effect of

ambient temperature uncertainty on branch parameters. However, it is found that the

temperature-augmented load flow accounting for the temperature effect has a domi-

nant impact on branch power flows and losses. On this line, it would be interesting

to analyze the uncertainty influence of ambient temperature on PLF result variables.

Further, the over-limit risks due to the uncertainties in ambient temperature and PV

generation in case of a PV-integrated power system considering input dependencies

can help in providing a better insight into the system reliability. Except that the

PV generation has maximum coefficient of variation at noon, the other input random

variables have maximum coefficient of variation values at different other time instants.

Hence, a more realistic risk assessment can only be accomplished by performing PLF

simulations not just at noon but also at the other time instants.

Thirdly, the research attention towards proposing a new PLF method to accu-

rately approximate multimodal probability distributions of result variables is highly

essential. Although simple random sampling-based Monte-Carlo simulation along

with a nonparametric density estimation approach is suitable in the present context,

for an operational study requiring a timely decision, its application is not feasible as it

is computationally burdensome and thus, use of an analytical method is an appropri-

ate choice. There is no single analytical method in the literature that can accurately

approximate multimodal probability distributions with reduced computational effort

while considering input correlations. The available analytical methods either fail to

accurately approximate multimodal probability distributions of result variables by

including the input correlation effect or require higher computational time to approx-

imate probability distributions of result variables. Further, it is observed that none of

the PLF studies have considered the correlation effects among a mixture of Gaussian,

non-Gaussian and arbitrary distributions. One of the ways to address the above con-

cerns is through hybridization. Wherein, the chosen methods for hybridization not

only should yield the desired overall performance but also subdue the shortcomings

of the individual techniques. In a nutshell, an improved hybrid method is expected

to fit into the place indicated as “Method of Interest” [refer Figure 1.4] which is of

interest in this thesis.
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Figure 1.4: General performance characteristics of prominent PLF methods.

1.4 Research objectives

Based on the research gaps, the aim of the thesis is to “develop models and methods

for PSSA of PV integrated power systems”. As a part of it, the following issues are

addressed:

(i) A detailed uncertainty analysis and probabilistic modeling for PSSA.

(ii) Over-limit risk assessment of power systems under various PV penetrations and

input correlations considering electro-thermal coupling effect of transmission

branches.

(iii) Sensitivity matrix based PSSA for operational studies.

1.5 Structure of the thesis

The thesis includes five chapters and six appendices. The outline of the thesis is

briefly highlighted in Figure 1.5. A detailed organization is elucidated underneath.

Chapter 1 presents the background and motivation of the thesis along with the

relevant literature review. Following the research gaps, the contributions and thesis

outline are provided.

Chapter 2 extensively analyzes the uncertainty characteristics and correlation ef-

fects in historical PV generation, load power, and ambient temperature data of five
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Figure 1.5: The outline of the thesis.
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years duration. Based on the various observations of the complex periodic patterns

in the time series of aforesaid inputs and through a thorough understanding of their

physical process, potential regressors for multiple linear regression model to trace the

predictable components are ascertained. A multi-time instant preprocessing using the

above regression models is carried out resulting in the unpredictable components of

these uncertain inputs. Finally, a scenario-based multivariate spatiotemporal model is

developed by adopting multi-time instant preprocessing, transformation techniques,

principal component analysis and a suitable time series model.

Chapter 3 developes a temperature-augmented power system model to perform

PLF. A detailed calculation of the model parameters is elucidated. The system over-

limit risk indices are formulated, and risk assessment is performed in PV-integrated

New England 39-bus power system using temperature-augmented PLF (TPLF). The

effect of variations of TPLF model parameters on the statistics of result variables

is also discussed. The probability distributions of PV generations under various PV

penetrations are compared. Finally, the effects of PV penetrations and input cor-

relations on over-limit risks of result variables are discussed through detailed result

analyses.

Chapter 4 analyzes various results such as (i) comparison of the accuracy of differ-

ent sensitivity matrix based power system models, (ii) investigation on the accurate

handling of input correlations by the proposed hybrid methods, and (iii) accuracy of

the proposed hybrid methods in approximating multimodal probability distributions

of result variables using PLF and TPLF. The above verifications are carried out on

five different test systems considering a variety of distribution types and correlations.

Chapter 5 summarizes the conclusions drawn from Chapter 2 through 4. Finally,

few possible extensions of this research work are suggested.
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Chapter 2

UNCERTAINTY ANALYSIS

AND MODELING

2.1 Preamble

Uncertainty analysis is an essential step in probabilistic load flow (PLF) to quantify

the unpredictable components of input random variables based on their historical

data whereas; a suitable probabilistic model defines their possible distributions. This

chapter aims at devising suitable preprocessing approaches to characterize the uncer-

tainties of PLF inputs. The suggested multi-time instant preprocessing approaches

based on multiple linear regression models are helpful in studies where information

regarding the time of the year is vital. Further, the proposed preprocessing is utilized

for the analytical characterization of the spatiotemporal information to obtain the

most likely photovoltaic (PV) generation time series for a future time-horizon.

2.2 Uncertainty characterization

The probabilistic characterization of uncertain variables is an essential step before any

probabilistic power system analysis. Unlike studies that consider specific parametric

distributions (either assumed or decided by the analyst) to quantify uncertainties, in

this study, based on historical observations, realistic uncertainty models are devel-

oped. A set of steps as described in Figure 2.1 is applied to historical observations of

uncertain variables collected at different time instants and from various locations.
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Figure 2.1: Uncertainty modeling steps.

2.2.1 Collection of historical data

The PV generation data are collected from rooftop PV installations of three nearby

locations [refer Figure 2.2] in the USA (Monkton (M), Parkesburg (P) and Lincoln

(L)) (PVOUT, 2016). They are respectively denoted as PV1, PV2 and PV3. The

load power data are collected from eight weather zones of Texas [refer Figure 2.3],

i.e., Coast (C), East (E), Far West (FW), North (N), North Central (NC), South (S),

South Central (SC) and West (W) (ERCOT, 2016). The ambient temperature data

are collected from Lincoln of USA (WUNDER-GROUND, 2016) along with three

locations in India (Berhampur (B), Coimbatore (CO), Mangaluru (MA)) (NREL,

2017). The PV generation, load power and ambient temperature data corresponding

to the years 2012 to 2016 are collected from the USA whereas, the Indian ambient

temperature data corresponds to the years 2010 to 2014. The data are collected at

an hourly time step excluding the leap days. The technical details of the three PV

arrays are provided in Table 2.1.

Table 2.1: Technical details of the PV arrays.

Details PV Array 1 PV Array 2 PV Array 3

Place Monkton Parkesburg Lincoln

Standard test conditions

TP
Ref = 250C TP

Ref = 250C TP
Ref = 250C

βRef = 0.00450C−1 βRef = 0.00450C−1 βRef = 0.00450C−1

ηRef = 15.27% ηRef = 13.60% ηRef = 14.69%

Capacity (kW) 10 7.65 8.88

Module dimension (mm3) 1650× 992× 40 1580× 808× 40 1665× 991× 50

No of modules 40 48 34

Module maximum power (W) 250 185 225

Orientation South (γ = 1800) South (γ = 1800) South-West (γ = 2250)

Tilt angle (deg.) 30 25 30

Note: TP
Ref = Reference cell temperature, βRef = Temperature coefficient for cell efficiency, ηRef =

Reference PV generation efficiency, and γ = Array azimuth angle.
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Figure 2.2: Sites from where PV generation data is collected.

Figure 2.3: Weather zones of Texas from where load power data is collected.
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2.2.2 Preprocessing

Preprocessing of historical data is an important step before uncertainty modeling. It

consists of three significant steps (step-2, step-3 and step-4) as indicated in Figure

2.1. These steps are applied to the historically observed PV generation, load power,

and ambient temperature data.

2.2.2.1 Data debugging, missing data updation and removal of daylight

time shift effect

This step is imperative in preprocessing as historical observations are often vulnerable

to missing values, and outliers. In few cases of the historical observations, missing

values are noticed to be less than 2% of the total database. Such data are updated

with the recent previous values. The effect of daylight time shifting (popularly known

as daylight saving time) is removed from the data.

2.2.2.2 Estimation of annual predictable variation

The historical daily time step data that correspond to a specific time of the year

conflates deterministic and unpredictable components. The deterministic component

refers to the annual periodic variation whereas; unpredictable component refers to the

uncertainty. The presence of the deterministic components influence the probability

distributions and correlations of the uncertainty components. Hence, an accurate

estimation of the deterministic component is an essential task. In the literature,

multiple linear regression-based models [refer Appendix A] are used to estimate the

periodic variations. In such a model, the right choice of regressors is important for

accurate predictions. The chosen regressors should have some theoretical relevance

to the model. The potential regressors are chosen by analyzing the daily time step

historical record of the variables at different time instants for any possible clues for

the existence of predictable variations. The time series of a few cases are plotted in

Figure 2.4. The duration and time of the year for each case are highlighted.

In case of PV generation, the changing solar position and the PV installation

location affect the production pattern whereas, the complex patterns of load power

at various places are due to social, environmental, and economic factors and the same

for ambient temperature are due to latitude, altitude, seasonal change, vegetation,
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urbanization, etc. The historical data show strong yearly periodic patterns. Two

distinct set of observations are made and are as follows:

Observations from PV generation time series:

(i) At different locations and time instants, production patterns are extremely dif-

ferent [refer Figure 2.4(a)-(e)].

(ii) The production patterns are multimodal [refer Figure 2.4(a) and (b)], skewed

[refer Figure 2.4(c) and (d)] or both [refer Figure 2.4(e)].

(iii) The production patterns have an evident decreasing trend [refer Figure 2.4(a)-

(e)].

Observations from load power and ambient temperature time series:

(i) At a particular place, but, at different time instants, the variation patterns are

nearly the same. At different places, the variation patterns are different [refer

Figure 2.4(f)-(l)].

(ii) The periodic variations are highly complex [refer Figure 2.4(f)-(k)].

(iii) The trend effects and additive seasonalities are dissimilar [refer Figure 2.4(f)-

(l)]. For all the cases of load power, there exist increasing trend characteristics.

However, the trend characteristics of ambient temperature are highly complex.

Based on the above observations, two different multiple linear regression models

are proposed and for the same, modeling steps are discussed underneath.

2.2.2.3 Multiple linear regression model for photovoltaic generation

PV generation being greatly influenced by Earth-Sun geometry, a clear sky model

using multiple linear regression suffices to trace the production pattern. The chosen

regressors are selective trigonometric functions over solar elevation angle (θS), solar

azimuth angle (γS), and incident angle of solar radiation (θI). The ensuing explanation

reveals the appropriate choice of trigonometric functions.

The PV generation at a particular location and time instant with a fixed tilt angle

θT depends on the following major factors:

(i) Factors that describe the apparent position of the Sun in the sky as viewed from

the location are elevation and azimuth angles.
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(a) The θS being a function of the Sun’s height, is an important factor that

measures the intensity of solar irradiance. For higher θS, solar intensity

is more concentrated i.e., more light strike a given area and vice versa.

At noon, i.e., for θS = 900 direct solar irradiance is maximum whereas,

an oblique θS gives less direct solar irradiance because of the factor sin θS

[refer Figure 2.5(a)].

(b) For a given orientation of panel, γS specifies the angle by which the Sun

deviates from the oriented direction. The γS is measured on the horizontal

plane and it completely neglects the Sun’s elevation. The sin γS indicate the

actual horizontal distance of the Sun’s position from the oriented direction;

their positive and negative values respectively correspond to the position

of the Sun at pre-noon and post-noon time instants [refer Figure 2.5(b)].

(ii) The θI defined as the angle between the line that points to the Sun and the

line that is normal to the module surface depends on location (changes place to

place), the Sun’s position (changes in every instant of time and day), and plane

direction (changes if plane is moved, i.e. affected by array tilt angle θT). The

cosine component of θI is that component of direct solar radiation which can

be collected by the plane. If θI is 00, cos θI becomes maximum i.e., maximum

solar radiation is collected by the plane. Smaller the θI, radiation capturing

is better. Intensity on a tilted surface is the product of normal intensity and

cos θI. Hence, the maximum amount of intensity that could reach a collector is

reduced by a factor cos θI [refer Figure 2.5(c)].

The proposed model embodies three significant regressors: T1 = sin θS, T2 =

sin γS, and T3 = cos θI. The annual and daily variations of the three regressors at 12

time instants (7 am to 6 pm at an hourly interval) during the day time for one year

at Monkton is shown in Figure 2.6. The negative values of θS indicates that the Sun

is under the horizon, which generally happens before sun rise and after sun set. In

addition, the trend effect (e.g., decrease in production pattern due to aging effect)

is accounted in the model by adding two extra terms: T4 = dN, and T5 = (dN)2

where, dN is a number mapped as the day number of the year. The inclusion of T5 in

addition to T4, is to capture the possible nonlinearity in trend effect. The proposed

model is suggested to be of the form:
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PPV = aMT1 + bMT2 + cMT3 + dMT4 + eMT5 + fM + εPV = P̂PV + εPV (2.1)

where aM, bM,· · · ,fM are the unknown model parameters whose values are calculated

using the method of least squares; PPV is the observed PV generation; P̂PV is the

predictable PV generation; εPV is the error term or residual of the model which refers

to the uncertainty component of PV generation. The residual sum of squares is

defined as,

RS (aM, bM, cM, dM, eM, fM) =
ss∑
k=1

{
PPV (k)− P̂PV (k)

}2

(2.2)

where “ss” is the total number of data samples collected at a particular time instant for

five years. The values of the model parameters are obtained by solving the following

equations:

∂(RS)

∂aP

= 0,
∂(RS)

∂bP

= 0,
∂(RS)

∂cP

= 0 ,
∂(RS)

∂dP

= 0,
∂(RS)

∂eP

= 0, and
∂(RS)

∂fP

= 0 (2.3)

Formulations to evaluate T1, T2 and T3:

The expressions for θS and γS are respectively given as,

θS = sin−1 (sin θLA sin θD + cos θH cos θLA cos θD) (2.4)

γS = sin−1

(
− sin θH cos θD

cos θS

)
(2.5)

where θLA is the latitude, θD is the declination angle, θH is the hour angle. For the

Northern hemisphere, θD is calculated as,

θD = 23.450 sin

(
dN + 284

365
× 3600

)
. (2.6)

The value of θH can be calculated by converting clock time to solar time (Hol-

bert and Srinivasan, 2011). A step by step formulation for the same is provided

underneath.
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(i) Step-1: Equation of time is calculated as,

tE = 9.87 sin (2D)− 7.53 cos (D)− 1.5 sin (D) ,where,D =

(
360

365

)
(dN − 81) .

(2.7)

(ii) Step-2: Local solar time is calculated as,

tLS = tLC ± (4 min ./ deg .)
(
θSTM

LO − θLO

)
+ tE (2.8)

where tLC is the local clock time or standard time, θLO is the local longitude

of the location, θSTM
LO is the local longitude of standard time meridian which is

calculated as,

θSTM
LO = 150

[
θLO

150

]
(2.9)

where
[
θLO

150

]
returns the nearest integer to θLO

150
. The sign of second term in (2.8)

is positive (+) for Western longitudes and negative (-) for Eastern longitudes.

(iii) Step-3: Finally, θH is calculated as,

θH = 150 (tLS − 12) . (2.10)

The range of γS as calculated using (2.5) is +900 to −900. Using (2.5), (2.6) and

(2.10), the criteria to obtain the required value of γS with reference to the true North

(Dave et al., 1975) is given as,

γR
S =

{
1800−γS , cos θH ≥ (tan θD/ tan θLA)

3600 + γS , cos θH < (tan θD/ tan θLA)
. (2.11)

Using (2.11), the expression for θI of a non-tracking type tilted PV array for a

given orientation is given as,

θI = cos−1
{

sin θS cos θT + cos θS sin θT cos
(
γ − γR

S

)}
. (2.12)

For the South and the South-West facing PV arrays, the values of γ are 1800 and

2250 respectively. Hence, the first three regressors can be obtained using (2.4), (2.5)

and (2.12).
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Finally, the residual i.e., the uncertainty of the PV generation is obtained as,

εPV = PPV − P̂PV (2.13)

The probability density of the uncertainty component as obtained using (2.13)

can be approximated by using a non-parametric density estimation method [refer

Appendix B] as suggested in (Soleimanpour and Mohammadi, 2013, Rouhani et al.,

2016).

2.2.2.4 Multiple linear regression model for load power and ambient tem-

perature

A multiple linear regression model for preprocessing depends significantly on the type

of seasonalities in the time series. The seasonalities in load power and ambient tem-

perature time series as evident from Figure 2.4 are additive. The time series is split

into distinct yearly datasets to obtain the seasonality orders. The fast Fourier trans-

form method applied to the data set of each year, yields in a set S with elements

representing the dominant frequency orders. The preceding approach leads to a re-

duced number of candidate frequency components from which the optimal frequency

numbers are selected using a penalizing strategy. Unlike (Mcleod and Gweon, 2013),

where starting with the fundamental component, the immediate succeeding orders are

sequentially appended until the optimal order is reached, the proposed approach on

the other hand, considers only those frequency components (in a decreased order of

their dominance) that are deemed fit in modeling the concealed seasonalities. Having

obtained the set H (a subset of S) with h0 elements and the optimal time trend order

t0, the proposed regression model is suggested to be of the form:

Y =

t0∑
t=1

aM,t(dN)t +
∑
h∈H

(
bsM,h sin

2πhdN

TS

+ bcM,h cos
2πhdN

TS

)
+ c′M + εY = Ŷ + εY

(2.14)

where Ŷ is the predictable component of Y ; dN = 1 corresponds to the first sample

of Y (load power/ambient temperature time series). The first summation in (2.14)

accounts for the trend effect whereas; the Fourier terms in the second summation

trace the seasonalities in the data. The residual εY refers to the uncertainty of the

regressand Y . The seasonal period “TS” is taken as 365 for a daily time step time
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series excluding leap days.

The model parameters aM, b
s
M, b

c
M and c′M are estimated using the least squares

method. For multiplicative seasonalities, the developed model can be easily extended

by estimating the changing seasonal variances as discussed in (Mcleod and Gweon,

2013). The extraction of dominant frequency orders and the criteria for model selec-

tion are elaborated as under:

Extraction of dominant frequency orders:

A dominant frequency component carries the maximum energy among all frequen-

cies in the amplitude spectrum. There can be, however, more than one dominant fre-

quencies present in a time series. They can be ordered by their energies, referred to

as second dominant, third dominant, etc. Extraction of dominant frequencies is the

process of their identification, and sometimes their removal from the time series. The

best way to find out the dominant frequencies is via amplitude spectrum obtained

using fast Fourier transform. An amplitude spectrum reveals the hidden dominant

frequencies in the time series. It is also important to rank the dominant frequencies.

The various steps proposed to extract the dominant frequency orders are as follows:

(i) Step-1: The daily time-series [TS]365Ny×1 of Ny years is split into distinct year

data sets: [TS1]365×1, [TS2]365×1, · · · ,
[
TSNy

]
365×1.

(ii) Step-2: The dominant frequencies in the distinct year data sets are calculated

using the following sub-steps:

(a) Apply fast Fourier transform to obtain the amplitude spectrum in fre-

quency domain.

(b) The frequency numbers are arranged in descending order of their ampli-

tudes in the spectrum.

(c) First 30 frequency orders pertaining to Ny years are stored in matrix

[DF1]30×Ny
.

(iii) Step-3: The unique frequency orders (say,“ufc” in number) common in any two

amongst Ny years are stored in vector [DF2]ufc×1.

(iv) Step-4: The position of elements of vector [DF2] in the columns of matrix [DF1]

are stored in matrix [DF3]ufc×Ny
. The corresponding elements of vector [DF2]

not present in the columns of matrix [DF1] are set to zero in matrix [DF3].
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(v) Step-5: Finally, the dominant frequency orders of the given time-series are the

list of frequency orders ranked using the following sub-steps:

(a) An intermediate matrix [IM]ufc×2 is formed with column values, respec-

tively the total number, and sum of corresponding row-wise non-zero ele-

ments in matrix [DF3].

(b) The matrix [IM] is partitioned into sub matrices [IM1] , [IM2] , · · · ,
[
IMNy−1

]
of same number of columns and contains rows of [IM] with first column

values same as Ny,Ny−1, · · · , 2 respectively. The rows in the sub-matrices

are rearranged as per the increasing order of their second column values.

The first column values are updated with their corresponding frequency

orders.

(c) Lastly, the sub matrices are row-wise concatenated and the first column

values indicating the first “ufc” dominant frequencies (in the decreasing

order of their energy) are stored in vector [DF4]ufc×1.

Criteria for model selection:

The adopted penalizing strategy for obtaining t0 and h0 to ensure a balance be-

tween good-fit and parsimony is discussed herein. Among the available criteria for

model selection, Bayesian information criterion induces higher penalization for mod-

els and being parsimonious; it is suitable for relatively larger data sets (Dziak et al.,

2017) as considered in this work. In general, the Bayesian information criterion scores

(Mcleod and Gweon, 2013) are calculated as,

BIC = −2 ln (`max) + (mp). ln (ss) (2.15)

where “mp” is known as the number of model parameters. For the regression model

in (2.14) under the assumption that ε is Gaussian distributed with mean as zero,

variance as σε
2 and since, each εi (i = 1, 2, · · · , ss) is independent and identically

distributed, the likelihood of ε is the product of likelihood contributions by each

observation. It is given as,
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` = f (ε/σε) =
ss∏
i=1

f (εi/σε)

=
ss∏
i=1

1
σε
√

2π
e
− (εi)

2

2σε2 = (2πσε
2)
− ss

2 . e
−

ss∑
i=1

(εi)
2

2σε2 = (2πσε
2)
− ss

2 . e
− RS

2σε2

(2.16)

where residual sum of squares, RS=
ss∑
i=1

(εi)
2, and f(.) is the probability density func-

tion. Maximum likelihood (`max) in (2.15) can be obtained by maximizing (2.16) i.e.,

by solving d`
dσε

= 0 as discussed under:{(
2πσε

2
)− ss

2 . e
− RS

2σε2 .
RS

σε3

}
+
{
e
− RS

2σε2 . (2π)−
ss
2 . (−ss) . σε

−ss−1
}

= 0

⇒ σε
−ss−3. e

− RS
2σε2 .

(
RS− ssσε

2
)

= 0⇒ σε
2 = 0,

RS

ss
(2.17)

Substituting σε
2 = RS

ss
of (2.17) in (2.16) yields,

`max =

(
2πRS

ss

)− ss
2

. e−
ss
2

⇒ ln (`max) =
(
−ss

2

){
ln

(
2πRS

ss

)
+ 1

}

⇒ −2 ln (`max) = ss

{
ln

(
2πRS

ss

)
+ 1

}
(2.18)

Using (2.18) in (2.15) yields,

BIC = ss

{
ln

(
2π.RS

ss

)
+ 1

}
+ (mp). ln (ss) (2.19)

2.2.3 Performance comparison of proposed multiple linear

regression models

In this section, the performance of the proposed models in (2.1), and (2.14) are

compared with that of the model(s) in the literature. The suitability of the proposed

model in (2.1) for improved preprocessing as compared to (Fan et al., 2014) is demon-

strated in light of the following subsequent major observations. The observed data of
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(i)

(ii) (iii)

Figure 2.7: Comparison of models in tracking periodic variation in (i) PV2 at 1 pm, (ii)
PV1 at 7 am, and (iii) PV3 at 6 pm.

PV1, PV2 and PV3 respectively at 7 pm, 1 pm and 6 pm (arbitrarily chosen) are taken

into consideration to show the capability of (2.1) in predicting the periodic variation.

The corresponding results of different possible models of PV2 are compared in Figure

2.7 (i)-(a). The various terms used in the models are highlighted. It is evident that

the observed data has a multimodal periodic variation. The models considering the

term(s): T1 (Fan et al., 2014), (T1, T4, T5), and (T2, T4, T5) fail to trace multi-

modality in data. However, the inclusion of the terms: T4, and T5 in latter two cases

track the trend in data which (Fan et al., 2014) fails as indicated in Figure 2.7(i)-(b).

Although the terms T1, T2, and T3 are partially dependent, a model which includes

only a single term (say T3) is less accurate as compared to the model with all the

three terms taken into consideration. In Figure 2.7(i)-(c), comparison of three plots

concludes that (2.1) traces the multimodality and trend effect which (Fan et al., 2014)

fails. Further, the cases in Figure 2.7(ii) and (iii) reveals the capability of the pro-

posed model in tracing skewness and trend effect present in data. The performance

comparison of various models in Figure 2.7 is based on the reduction of coefficient of

variation with respect to the coefficient of variation of the actual data.
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The percentage coefficient of variation is calculated as,

% CV =
Standard deviation value

Mean value
× 100. (2.20)

There is a reduction in coefficient of variation from 54.23% (actual data) to 50.24%

by (2.1) i.e., 3.99% whereas; the reduction is 2.79% by (Fan et al., 2014) in Figure

2.7(i). In the other two case of Figure 2.7, the reduction in coefficient of variation

are 51.02% and 60.66% by (2.1) whereas, 47.78% and 56.42% by (Fan et al., 2014).

A set of similar inferences can be drawn in the remaining cases [refer Table 2.2].

Table 2.2: Comparison of coefficient of variations of PV generations before and after
preprocessing.

Time

instant

% CV

PV array 1 PV array 2 PV array 3

BP AP1 AP2 BP AP1 AP2 BP AP1 AP2

7:00 am 107.74 59.96 56.72 115.63 74.31 71.68 96.72 53.99 51.81

8:00 am 90.60 57.47 55.89 80.03 64.89 63.65 64.92 51.49 49.01

9:00 am 70.74 56.07 54.84 64.57 58.32 57.75 55.16 49.58 48.69

10:00 am 58.96 54.13 53.52 58.50 54.30 53.81 53.05 49.15 48.56

11:00 am 55.18 52.90 52.65 54.34 51.07 50.79 51.74 49.42 49.10

noon 54.44 52.82 52.62 53.45 50.71 50.39 51.57 49.88 49.68

1:00 pm 55.15 53.10 52.51 54.23 51.44 50.24 53.78 52.27 52.15

2:00 pm 57.66 55.26 54.37 57.00 53.32 52.46 56.36 54.01 53.85

3:00 pm 60.18 56.19 55.46 59.22 54.46 53.83 64.58 57.65 57.06

4:00 pm 68.76 57.99 56.90 69.23 56.40 55.35 81.08 64.48 62.20

5:00 pm 92.24 60.47 57.80 91.03 61.95 59.67 103.02 70.34 68.48

6:00 pm 125.20 64.37 59.16 132.12 73.34 68.11 137.74 81.32 77.08

Note: BP stands for before preprocessing. AP1 and AP2 stands for the values after preprocessing
using (Fan et al., 2014) and (2.1) respectively.

To facilitate a better understanding of the obtained results, the time axis of plots

in Figure 2.8 is divided into three zones: zone-1 (7 am to 10 am), zone-2 (10 am to 4

pm) and zone-3 (4 pm to 6 pm). From Figure 2.8, it is observed that the reduction

in coefficient of variation is less at the time instants of zone-2 whereas the reduction

is more in the zone-1 and zone-3 time instants. The maximum reduction occurs at

extreme time instants (i.e., 7 am and 6 pm) for all the three places. At 7 am, the

reductions using (Fan et al., 2014) compared to actual data are 47.78%, 41.32% and
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Figure 2.8: Plots of statistical parameters of PV generations before and after preprocess-
ing.

Note: BP stands for before preprocessing. AP1 and AP2 stands for the values after
preprocessing using (Fan et al., 2014) and (2.1) respectively.

Figure 2.9: Plots of PMCCs among the PV generations before and after preprocessing.
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Figure 2.10: Performance comparison of models (Model-1 and Model-2 refers to (Fan
et al., 2014) and (2.1) respectively) in the region of low PV power generation.

42.73% respectively for the three arrays whereas, the corresponding reductions are

51.02%, 43.95% and 44.91% for (2.1). At 6 pm, the reductions using (Fan et al.,

2014) compared to actual data are 60.83%, 58.78%, and 56.42% respectively for the

three arrays whereas; the corresponding reductions are 66.04%, 64.01%, and 60.66%

for (2.1). Further, product moment correlation coefficient (PMCC) represented as

ρ between the pair of PV generations, respectively given as, ρPV1,PV2 , ρPV1,PV3 and

ρPV2,PV3 are plotted in Figure 2.9. A significant reduction in PMCC values is observed

using (2.1). In all the cases, the PMCC values are positive due to nearly the common

effects of solar irradiance, ambient temperature, and other environmental factors. It

is evident from Figure 2.9 that PMCC values are reduced with increasing distance.

The geographical distance between PV arrays 1 and 3 as well as PV arrays 2 and 3

are nearly the same; hence, the PMCC plots closely resemble. On the other hand, a

lesser distance between PV arrays 1 and 2 leads to higher values of PMCC at all the

time instants.

From the above result analysis, it is clear that the model in (2.1) performs better

over (Fan et al., 2014) for zone-1 and zone-3 time instants. However, for zone-2

time instants, especially at noon, a significant distinction in the models performance

is imperceptible. Since in a probabilistic assessment, both input uncertainties and

the associated correlations affect the probability distributions of result variables, the

model in (2.1) would be more selective for accurate estimation of results. The results

demonstrated in Figure 2.10 for a few cases reveal that in the region of low-power

production, (Fan et al., 2014) fails to perform as desired in comparison to the model

in (2.1).

From Figure 2.11(a), it is noteworthy that the density plots after preprocessing
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Note: BP stands for before preprocessing. AP1 and AP2 stands for the values after
preprocessing using (Fan et al., 2014) and (2.1) respectively.

Figure 2.11: Comparison of probability density plots of PV generation uncertainties for
various cases.

are significantly different from the raw data. Further, there is a slight difference in

the density plots after preprocessing by the models. For time instants in zone-1 and

zone-3, varying geographical locations has a remarkable impact on the density plots,

and there is no certainty regarding the number of modes that may be present in the

distributions. Figure 2.11(b) serves as an example case supporting the above-claimed

observation. However, for time instants in zone-2, the density plots are observed to

be bimodal. In Figure 2.11(c), at 11 am, 1 pm and 3 pm the probability density

plots are bimodal. Similar inferences can be drawn for other time instants in zone-2

for all the three arrays. Various steps in uncertainty modeling as described in Figure

2.1 for PV1 at 9 am is shown in Figure 2.12. Although stationarity in mean value

is achieved, standard deviation value is still changing. Similar observations are also

noticed in the remaining cases. The non-Gaussian arbitrary probability distributions

of residuals indicate that PV generation time series at various places and time instants

are extremely random.

The plots of multiple linear regression parameters at various time instants is shown

in Figure 2.13. Among the first three regressors of the model, T2 has a lower value of

correlations with T1 and T3 whereas, T1 and T3 are highly correlated. The regressors

T1 and T3 differs from each other only by the inclusion of θT in T3 (for θT = 00,

T1 = T3). The plot of aM is approximately a mirror image of plot of cM (with

disproportionate magnitudes) as the effect of the corresponding regressor is masked

by the other. Since, all the three terms, directly or indirectly affect the PV production

patterns and also has better predictions as evident through Figure 2.7 to Figure 2.10,

it is imperative to consider all of them in the multiple linear regression model for
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Figure 2.13: Plot of multiple linear regression model parameters at various time instants
for PV1.

multi-time instant preprocessing.

Now, the suitability of the proposed model in (2.14) is evaluated through compar-

ison of results with that of the following models.

(i) M1: Model that considers seasonal and annual variations (Fan et al., 2012).

(ii) M2: Model with fixed order time trend and Fourier terms (e.g., t0=3, H =

{1, 2, 3, 4, 5} for load power, and t0=2, H = {1} for ambient temperature).

(iii) M3: Model wherein starting with the fundamental component, the immediate

succeeding orders are sequentially appended (Mcleod and Gweon, 2013).

Table 2.3: Estimated values of t0, and H for various cases in Figure 2.14.

Figure 2.14
M3 M4

t0 H t0 H

(a) 2 {1, 2, 3} 2 {1, 52, 2, 6}
(b) 3 {1} 3 {1, 18, 28}
(c) 7 {1, 2, 3, 4, 5, 6} 7 {1, 2, 8, 16, 5, 6}
(d) 10 {1, 2, 3, 4, 5, 6, 7, 8} 10 {1, 2, 4, 3, 15, 11, 8}

Henceforth, the model in (2.14) is referred to as M4. Unlike in (Fan et al., 2012,

2014), a reduced coefficient of variation value after preprocessing cannot be used as a

model performance evaluation index as the regressors in M1 and M2, being fixed for

any arbitrary data yields possibly an under-fitted or over-fitted model. It is worth

mentioning that an over-fitted model has a low coefficient of variation compared to a

best-fit model which together has lower coefficient of variation than an under-fitted
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model. Therefore, a lower BIC score that confirms the potential regressors for a

best-fit model is considered as the performance evaluation criterion. The periodic

variations captured by the models for a few randomly chosen cases are compared

in Figure 2.14; the %CV values and BIC scores for each case are highlighted. The

results are elucidated on a case to case basis. For all the cases, BIC scores are less

for M4, but %CV after preprocessing is not the least. It is quite evident from Figure

2.14 that, at different places, load power and ambient temperature time series have

dissimilar trends and seasonalities. It is difficult to capture such characteristics with

a fixed number of regressors as in M1 and M2. Frequency orders: 3, 4 and 5 being

not dominant, their inclusion in M2 overfits the model leading to a reduced %CV.

However, in M3 and M4, the flexibility in choosing t0 and h0 facilitates in identifying

the true variations. In order to clearly demonstrate the competency of M4 over M3, the

corresponding estimated values of t0 and H are presented in Table 2.3. The values

of t0, unlike H, are same for both the models. Further, there is no definite trend

behavior in Figure 2.14(b), (c), and (d) leading to corresponding higher values. On

the other hand, each regressor included in M3 and M4 being penalized, the obtained

H in case of M3 has every chances of missing the dominant frequency component(s).

For instance, 52nd order frequency component (that represents weekly variation in

load power) being the second dominant frequency, is not present in H of M3 [refer

Table 2.3]. Hence, it is important to select beforehand the set of dominant frequency

components that truly characterize the concealed seasonalities.

A set of steps for the extraction of dominant frequency orders as discussed in

section 2.2.2.4 are applied to the load power data of North Central zone during 2012-

2016 at 7 pm [refer Figure 2.15]. The plots of statistical parameters at various time

instants before and after preprocessing for a few cases of load powers and ambient

temperatures are shown in Figure 2.16 and Figure 2.17 respectively. It is evident

that the plots of statistical parameters of load power at various places are almost

same. However, the same is not true in case of ambient temperature. Further,

the plots of PMCCs at various time instants before and after preprocessing for a

few cases of load powers and ambient temperatures are shown in Figure 2.18 and

Figure 2.19 respectively. The comparison of few cases in Figure 2.18 indicates that,

before and after preprocessing, the PMCC plots are nearly opposite to each other.

The same applies to other cases. On the other hand, the PMCC values of ambient

temperatures are significantly reduced after preprocessing as compared to the values
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Figure 2.16: Plots of statistical parameters of load powers from Coast and North weather
zones of Texas before and after preprocessing.

before preprocessing.

Various steps in uncertainty modeling as described in Figure 2.1 is applied to a

few cases of load powers and ambient temperatures and are shown in Figure 2.20 and

Figure 2.21 respectively. In both the cases, stationarity in mean value is achieved

but, standard deviation value is not strictly stationary. Similar observations are also

noticed in the remaining cases. Unlike PV generation, where there is no specific

distribution type to approximate the uncertainty components, in case of load powers

and ambient temperatures, Gaussian distribution approximately fits their uncertainty

components at most of the time instants. In few cases, the distributions with heavier

tails are approximated by t-distributions.

2.3 Spatiotemporal forecasting model

The uncertainty modeling procedures (based on time of the year) as detailed in section

2.2 are suitable for planning studies. Whereas a preeminent spatiotemporal model

that efficiently extracts the statistical properties from the observed data is ideal for

operational studies. In general, the development of a multivariate spatiotemporal

probabilistic model is strenuous as it has to deal with multivariate probability dis-

tribution functions. To address this, a multidimensional characterization based on a

spatiotemporal scenario set can be employed as a viable substitute. It is achieved by
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Figure 2.17: Plots of statistical parameters of ambient temperatures before and after
preprocessing.

Note: BP stands for before preprocessing, AP stands for after preprocessing.

Figure 2.18: Plots of PMCCs between the load powers before and after preprocessing.
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Note: BP stands for before preprocessing, AP stands for after preprocessing.

Figure 2.19: Plots of PMCCs between the ambient temperatures before and after prepro-
cessing.

approximating the continuous stochastic process by a discrete equivalent and thereby

embedding temporal dependency information that cannot be assimilated using in-

terval/quantile representation (Le et al., 2015). The authors in (Le et al., 2015)

applied the principal component analysis and a time-series technique to analytically

characterize the statistical facets of the multi-site multi-variable stochastic process.

Gaussianity and stationarity respectively being the primary requirements for principal

component analysis and time-series models, they are managed through the modeling

framework using transformation and preprocessing techniques respectively. Although

the transformation of non-Gaussian time series to Gaussian domain is straightforward,

two primary concerns with (Le et al., 2015) are the inadequacy in adoption of the

preprocessing approach mainly emerging due to the difficulty in proper identification

of epochs and the use of a time series model such as autoregressive or autoregressive

moving average cannot adequately model the time-dependent variability of the resid-

ual after preprocessing. To this concern, the preprocessing techniques as discussed in

section 2.2 are employed and the concern of modeling the changing standard deviation

of input random variables are better characterized with the help of an autoregressive

conditionally heteroscedastic (ARCH) or generalized autoregressive conditionally het-

eroscedastic (GARCH) time series model. The complete modeling steps are discussed

underneath.

(i) Step-1: Arrange the historically observed time-series data in the form as given

in (C.1) [refer Appendix C].

(ii) Step-2: Obtain the mean stationary residuals of inputs of step-1 using prepro-
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cessing approaches described in section 2.2.

(iii) Step-3: The non-Gaussian mean stationary data of step-2 is transformed into

standard Gaussian domain using Φ−1
[
F̂ (•)

]
where F̂ (•) is the estimated em-

pirical cumulative distribution function (CDF) of the mean stationary inputs

and Φ−1 (•) is the inverse of the standard Gaussian CDF.

(iv) Step-4: Apply the principal component analysis [refer Appendix C] to the trans-

formed time-series of step-3.

(v) Step-5: The temporal correlations in the principal components of step-4 is mod-

elled using GARCH or the simpler form ARCH whichever is suitable [refer sec-

tion 2.3.1].

(vi) Step-6: Use the model in step-5 for each principal component to generate future

time series as per the requirement of the study.

(vii) Step-7: The obtained data in step-6 are back transformed to their original

domain using the reverse transformation of step-3.

(viii) Step-8: The items removed in the preprocessing step are added back to obtain

scenarios obeying the complete characteristics.

2.3.1 Generalized autoregressive conditionally heteroscedas-

tic model

GARCH model is able to describe the variation in time of the standard deviation of

the residuals. A GARCH(p,q) model with appropriate values of model parameters

“p” and “q” fits variance non-stationarity or volatility of the residual εt such that

εt = σtzt where zt is a strong white noise process which is assumed as independent and

identically distributed ∼ N (0, 1) , and σt is the time dependent standard deviation

given as,

σ2
t = α0 + α1σ

2
t−1 + · · ·+ αpσ

2
t−p + α′1ε

2
t−1 + · · ·+ α′qε

2
t−q (2.21)

where “p” and “q” are respectively referred to as the orders of the GARCH terms σ2

and ARCH terms ε2; α0, αi( i = 1, 2, · · · , p), and α′i( i = 1, 2, · · · , q) are the model

parameters.

The necessary and sufficient conditions for coefficients is given as, α0 > 0, αi ≥
0; i = 1, 2, · · · , p, and α′i ≥ 0; i = 1, 2, · · · , q. ARCH model is a special case of

GARCH model with αi = 0, ∀i.
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Figure 2.22: Daily time stepped observed PV generation time-series.

Figure 2.23: Scatter plot of observed PV generations in Figure 2.22.

2.3.2 Performance comparison of proposed spatiotemporal

forecasting model

In this section, the suitability of the proposed spatiotemporal model for improved

forecasting as compared to (Le et al., 2015) is demonstrated. Daily time-stepped
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Figure 2.24: Scatter plot of residuals after transformed to standard Gaussian domain.

observed data of PV1, PV2, and PV3 corresponding to the noon from 2012 to 2016 is

taken into consideration (refer Figure 2.22). The scatter plots of the above PV genera-

tion time series are shown in Figure 2.23. Firstly, the observed data are preprocessed

using (2.1). Although the residuals after preprocessing are mean stationarity, the

standard deviation is still time changing (volatile standard deviation). The obtained

non-Gaussian mean stationary data is transformed into a standard Gaussian domain

which is the primary requirement for principal component analysis. The scatter plot

of residuals after transformed to standard Gaussian domain is shown in Figure 2.24.

Principal component analysis as applied to the above three transformed mean sta-

tionary data yields principal components PC-1, PC-2, and PC-3. The time series

relevant to each principal component is shown in Figure 2.25. It is evident from the

plot that the principal components are different in terms of magnitude. PC-1 contains

the largest percentage of information in the data; PC-2 contains the second largest

and so on. The PMCC values ρPC−1,PC−2=0, ρPC−1,PC−3=0, and ρPC−2,PC−3=0 show

that principal components are uncorrelated.

Finally, the ARCH model is built on the basis of principal components with re-

gressors as decided from the sample partial autocorrelation plots. The sample partial

autocorrelation values are obtained using the data corresponding to the first four

years i.e., 2012-2015 as training sample. The developed models of principal compo-
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Figure 2.25: Time-series of principal components.

nents are then used to forecast future samples. The data pertaining to the year 2016

is considered as the testing sample and the accuracy of the proposed spatiotemporal

model as compared to (Le et al., 2015) is demonstrated in light of the forecasting

accuracy. Root mean square error (RMSE) is used as the index for forecasting ac-

curacy. The RMSE plot for forecasted PV1 for the first 120 days of the year 2016

is shown in Figure 2.26. It can be clearly observed from the figure that, the model

in (Le et al., 2015) i.e., the AR model fails to model the volatility effect in standard

deviation hence leads to higher values of RMSE value.

2.4 Conclusions

This chapter has analyzed the uncertainty characteristics of historical PV generation,

load power and ambient temperature data using the proposed ingenious way of deter-

mining the potential regressors for multiple linear regression model based multi-time

instant preprocessing techniques. In summary, the following observations from the

result analysis are worth noting.

(i) In case of PV generation, the yearly periodic deterministic component is mainly

influenced by solar position and the PV installation location. Hence, the possi-

ble generic model with a fixed number of regressors suitable for various places
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Figure 2.26: Comparison of RMSE.

and time instants is proposed. On the other hand, load power and ambient tem-

perature are profoundly influenced by social and environmental factors respec-

tively; it is challenging to develop possible generic models with a fixed number

of regressors. Hence, for each case, the regressors representing the proper time

trend terms and seasonalities that deemed fit are ascertained.

(ii) The proposed models for preprocessing were effective in removing the pre-

dictable components from the data as compared to the literature thereby jus-

tifying their improved performance. In case of PV generation, the proposed

preprocessing is more effective in the time instants of zone-1 and zone-3.

(iii) The residuals after preprocessing have reduced values of standard deviations as

compared to before preprocessing in all the cases. The reduction is not uniform

at various time instants. In case of PV generation, the reduction is more in

the zone-1 and zone-3 time instants than zone-2 time instants. It is because,

during zone-2 time instants, PV generation is high, so is the uncertainty which

dominates over the predictable variation. In case of load power, the reduction

is extremely less during 1 am to 7 am for all the studied cases. However, at

the remaining time instants, the reduction is significant. It is due to the fact

that, aggregate load up till 7 am from the early morning is comparatively low,

and so is the standard deviation. In case of ambient temperature, except for
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Mangaluru where the reduction is more in zone-2 time instants, all other places

of the studied cases the reduction is reasonably constant.

(iv) The residuals after preprocessing are stationary as far as mean value is con-

cerned; however, the standard deviation is dependent on time. This effect is

more prominent in case of PV generation as compared to the other two cases.

(v) There are also some critical observations from PMCC plots. There is a reduction

in PMCC values among PV generations as well as among ambient temperatures

after preprocessing as compared to the corresponding values before preprocess-

ing. The PMCC values between PV generations are significantly reduced at

zone-1 and zone-3 time instants whereas; the reduction is less for zone-2 time

instants whereas; the decrease of PMCCs is nearly uniform in case of ambi-

ent temperature. There is a peculiar observation of an opposite characteristics

plots of PMCCs between aggregate load powers before and after processing for

all pairs of the studied weather zones.

(vi) Finally, a spatiotemporal model using proposed preprocessing, transformation

techniques, principal component analysis, and ARCH/GARCH model is pro-

posed.

The developed multi-time instant uncertainty modelling can be applicable for (i)

long-term planning for the network reinforcement of PV-integrated power systems,

(ii) scheduling of daily PV generation energy, (iii) calculation of operational relia-

bility indices for power systems integrated with PV generations, (iv) chronological

probabilistic analysis of power systems, etc.
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Chapter 3

OVER-LIMIT RISK

ASSESSMENT

3.1 Preamble

The structural changes in power systems due to the enormous integration of photo-

voltaic (PV) generations necessitate the development of suitable models and methods

to quantify system risks accurately. Over-limit risk assessment is the central issue

in planning under uncertainty and probabilistic load flow (PLF) is the fundamental

tool. The planning engineers involved with decision making process prefer to handle

accurate risk indices. Generally, peak values of the uncertain inputs are used as worst

case condition in planning studies. However, different uncertain input random vari-

ables have peak values at different time instants as observed in chapter 2. Further,

time instants pertaining to highest variance and mean value need not necessarily be

the same. Hence, it is essential to carry out the risk assessment for various time in-

stants (say, at an hourly interval) during the planning stage to maintain system risk

at an acceptable level. This chapter extends the conventional power system model

by incorporating the temperature effect to perform a more realistic risk assessment.

The PLF study that uses temperature-augmented system model by considering am-

bient temperatures of the transmission branches as uncertain inputs is referred to

as temperature-augmented PLF (TPLF). Monte-Carlo simulaton method is used for

both PLF and TPLF simulations for various result analyses including risk assessment.
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3.2 Temperature-augmented power system model

PLF is carried out by propagating input uncertainties through a power system model

that describes the functional relationships among the input random variables and

result variables (Papaefthymiou, 2007). In the conventional power system model for

PLF, transmission branch resistances are presumed temperature independent. In

reality, there exists a strong coupling among resistance, temperature and real power

loss of a transmission branch. This electro-thermal coupling can be better understood

from Figure 3.1. As evident from the figure, besides the ohmic losses, environmental

factors (ambient temperature, wind speed, wind direction, etc.) and branch param-

eters (diameter, emissivity, etc.) dictate the equilibrium temperature of the branch.

Among the various factors, dominant is the ambient temperature. By introducing an

extra mismatch equation related to temperature, temperature-augmented load flow

carried out in (Frank et al., 2013) reduces the temperature-related error that is inher-

ent in conventional load flow. The parameters describing the thermal characteristics

are generally being not specified in the datasheet of transmission branches, thermal

resistance model is used for the development of temperature-augmented load flow

model instead of the thermal balance equation (the former model do not fundamen-

tally alter the latter) under the following assumptions:

(i) The system is under electrical and thermal steady-state.

(ii) The three-phase system is assumed balanced.

(iii) The branch conductor is an ideal uniform material, i.e., it’s temperature is equal

to the ambient temperature in the absence of current flow.

(iv) The variation in branch reactance due to temperature variation is negligible.

The electrical dynamics are neglected in load flow so long as the system is assumed

free from fault or any other abnormal conditions. The above assumptions are often

reasonable as transmission branches do not typically have a vast change in power flow

within the time-scales of classical steady-state. Further, the thermal dynamics of the

transmission branches can be assumed short as compared to the changes in branch

loading over time. The changes in the power flow for most of the part are roughly

the same from minute-to-minute. Moreover, changes those occur, say a reduction

in power flow due to load dropping off as the night sets in, are on the time-scale of

minutes. Because of this, the thermal dynamics can be neglected.
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Figure 3.1: Electro-thermal coupling effect in a transmission branch.

With a motivation to analyze the effect of ambient temperature uncertainty on

PLF result, temperature-augmented load flow is first revisited, and its possible ap-

plication for PLF is discussed in section 3.3.

3.2.1 Temperature-augmented load flow model

The resistance of a transmission branch i− j (branch connecting ith bus and jth bus)

is expressed as,

Ri−j = RRef, i−j

(
Ti−j + TF, i−j

TRef, i−j + TF, i−j

)
(3.1)

where Ti−j is the conductor temperature of the branch i − j, TF is the temperature

constant, RRef, i−j and TRef, i−j are the reference values of Ri−j and Ti−j respectively.

According to thermal resistance model, Ti−j is expressed as,

Ti−j = TAmb, i−j + TRise, i−j = TAmb, i−j +Rθ, i−jPLoss, i−j (3.2)

where TAmb and TRise, are the ambient temperature and branch temperature rise

above TAmb respectively, Rθ is the thermal resistance, PLoss is the branch power loss.

Using (3.2) a temperature related expression is introduced as,
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T ′i−j = Ti−j −Rθ, i−jPLoss, i−j = TAmb, i−j. (3.3)

As the real and reactive bus power injections (P , and Q respectively) are specified,

the mismatch equations ∆P , and ∆Q respectively can be explicitly expressed (Wang

et al., 2010). However, it is difficult to define the branch temperature mismatch

equations since their values are unknown a priori. Nevertheless, an equation for T ′

can be defined for the temperature dependent branches where T ′ is the measure of the

difference between the present value of T and the calculated temperature by using the

state variables i.e., bus voltage angle δ and bus voltage magnitude |V | (Frank et al.,

2013). From (3.3), it is clear that, the value of T ′ is equal to TAmb. As transmission

branches are rated according to maximum temperature, Rθ, i−j is calculated as,

Rθ, i−j =
TRated rise, i−j

PRated loss, i−j
(3.4)

where TRated rise, i−j is the expected temperature rise at rated power level, typically

dictated by line sag considerations, allowable operating temperature of insulating

materials, etc. The value of PRated loss, i−j is either specified or calculated as,

PRated loss, i−j = I2
Rated, i−jRHot, i−j (3.5)

where IRated, i−j is the MVA rating of the branch i− j assuming voltage magnitudes

of the connecting buses at 1 pu; RHot, i−j is the conductor resistance at TRated rise, i−j.

The value of PRated loss is either specified or is calculated using the fully loaded

resistance RHot measured at worst-case TAmb i.e., TAmb−wc. The expression of RHot

for a temperature dependent branch using (3.1) is given as,

RHot, i−j = RRef, i−j

(
TAmb−wc, i−j + TRated rise, i−j + TF, i−j

TRef, i−j + TF, i−j

)
. (3.6)

The expression for PLoss, i−j (Frank et al., 2013) is given as,

PLoss, i−j = gi−j
(
|Vi|2 + |Vj|2 − 2 |Vi| |Vj| cos δij

)
(3.7)

where gi−j is the conductance of branch i− j; δij = δi− δj. Substituting (3.7) in (3.3)

yields,

T ′i−j = T i−j −Rθ, i−j gi−j
(
|Vi|2 + |Vj|2 − 2 |Vi| |Vj| cos δij

)
. (3.8)
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Finally, all the mismatch equations expressed as the difference between the spec-

ified and calculated values are given as,

∆Pi = PSp, i − Pi,
∆Qi = QSp, i −Qi,

∆T ′i−j = TAmb, i−j − T ′i−j,
(3.9)

where PSp, i and QSp, i, respectively are the specified real and reactive power injections

at an ith bus; Pi and Qi at an ith bus are calculated by using the steady-state load

flow equations (Wang et al., 2010).

In terms of temperature-augmented Jacobian matrix, the mismatch equations in

(3.9) are expressed as,

 ∆P

∆Q

∆T ′

 =


∂P
∂δ

∂P
∂|V |

∂P
∂T

∂Q
∂δ

∂Q
∂|V |

∂Q
∂T

∂T ′

∂δ
∂T ′

∂|V |
∂T ′

∂T


 ∆δ

∆ |V |
∆T

 = (JM1)

 ∆δ

∆ |V |
∆T

 . (3.10)

The matrix equation (3.10) relates the mismatch vector of P and Q at all buses

and T ′ of all temperature dependent branches with that of the error vector of δ, and

|V | of all buses and T of all temperature dependent branches. The error component

of state vectors using (3.10) is obtained as,

 ∆δ

∆ |V |
∆T

 =
(
JM−1

1

)  ∆P

∆Q

∆T ′

 (3.11)

where JM1 is the state vector Jacobian matrix.

The model so developed is referred to as a single slack bus temperature-augmented

load flow model. The main advantage of this model is that the transmission branch

temperature can be directly calculated from the load flow solution using the Newton-

Raphson method. In temperature-augmented load flow, the elements in the state vec-

tor are updated using the errors estimated in (3.11) in each iteration. This continues

until all mismatches fall within a presumed tolerance. The flowchart for temperature-

augmented load flow adopting bus-type switching logic for checking reactive power

limit specifications at a P |V| bus is shown in Figure 3.2.
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Figure 3.2: Flowchart for temperature-augmented load flow.
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3.3 Temperature-augmented probabilistic load flow

using Monte-Carlo simulation

For a TPLF simulation, the major requirements are (i) temperature-augmented power

system model, (ii) probability distributions of the input random variables, and (iii)

correlation informations among the input random variables.

Monte-Carlo simulation method solves the TPLF by a series of NS temperature-

augmented load flow simulations, with each time considering a set of values for input

random variables. Simultaneously, NS samples as required for the result variables

are obtained. The value of NS is generally obtained by setting variance coefficient

value [refer Appendix D] less than 1% for all the result variables (Fan, 2012). The

probability distributions of the TPLF result variables enable the calculation of ade-

quacy indices as discussed in Table 3.1 which are extremely useful for over-limit risk

assessment.

Table 3.1: Use of probability distributions of TPLF result variables.

Result variable Adequacy index

Bus voltage magnitude Steady-state under voltage and overvoltage probabilities.

Branch temperature Probability of branch temperature above the allowable limit.

P |V| bus reactive power Probability of generator violating the reactive power limit.

Branch power flow Steady-state overload probability of transmission branch.

Slack bus power Probability of slack bus power exceeding the limit.

Branch power loss Accurate probabilistic monitoring of sag and thermal limits.

3.3.1 Generation of random samples for Monte-Carlo simu-

lation

Under the assumption that, discrete and continuous input random variables are in-

dependent to each other, the mechanisms to generate NS samples of discrete and

correlated continuous input random variables are discussed as under.

3.3.1.1 Random generations from a discrete random variable

For a given discrete random variable, define vectors d and p each of length ld that

respectively stores the discrete values of the random variable and the associated prob-
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ability values. Then carry out the following steps:

(i) Develop uniform random generation vector u.

(ii) Obtain cumulative sum vector c for the elements of p.

(iii) For i = 1, 2, · · · , ld

(a) Create vector lk that stores the linear indices of the logical expression

(u > c (i)) & (u ≤ c (i+ 1)).

(b) Develop a random generation vector rg that satisfies the condition rg (lk) =

i.

3.3.1.2 Random generations pertaining to correlated continuous random

variables

In particular, the random number generation techniques produce uniformly distributed

samples whereas; the inclusion of the desired correlation is carried out in the standard

Gaussian domain. So a step by step algorithm to obtain the desired NS samples of

“nc” correlated continuous input random variables is detailed underneath.

(i) Step-1: Define matrix [ID]1825×nc that stores the historical observations of “nc”

random variables for past five years (1825 data samples) column wise.

(ii) Step-2: Develop product moment correlation coefficient (PMCC) matrix [ρ]nc× nc

with an off-diagonal element ρij representing the PMCC between ith and jth

random variables as calculated from their historical observations.

(iii) Step-3: Obtain matrix [u]NS×nc that combines column wise the NS samples

pertaining to “nc” independent uniform random variables.

(iv) Step-4: Transform matrix [u]NS×nc to a new matrix
[
uC
]
NS×nc

that combines NS

samples pertaining to “nc” correlated uniform random variables. The transfor-

mation requires a set of following steps.

(a) Convert the column vectors of [u]NS×nc to standard Gaussian domain using

the inverse cumulative distribution function (CDF) transformation and

unite in matrix [v]NS×nc. Note here that the transformed samples are still

not correlated.

(b) To account for the transformation from Gaussian to uniform domain the

off-diagonal elements ρij of the desired PMCC matrix is corrected as, ρC
ij =

2 sin
(
π
6
ρij
)

and thus leading to a new corrected PMCC matrix
[
ρC
]

nc× nc
.
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(c) The upper triangular matrix obtained from the Cholesky decomposition

of
[
ρC
]

nc× nc
multiplied with [v]NS×nc yields the column wise correlated

samples concatenated in matrix
[
vC
]
NS×nc

.

(d) The obtained correlated samples in step-4(c) are transformed back to the

uniform domain using CDF of the standard Gaussian distributions yields

in matrix
[
uC
]
NS×nc

.

(v) Step-5: Establishment of the marginal distributions of the continuous random

variables using a set of following sub steps.

(a) Transform the column vectors of matrix [ID]1825×nc to Gaussian domain us-

ing Φ−1
[
F̂ (•)

]
where F̂ (•) is the estimated empirical CDF of the columns

of [ID]1825×nc and Φ−1 (•) is the inverse of the standard Gaussian CDF.

(b) The principal component analysis [refer Appendix C] applied to the trans-

formed data in step-5(a) yields
[
IT
D

]
1825×nc

, the columns of which are inde-

pendent of each other.

(c) The obtained data in step-5(b) are back-transformed to their original do-

mains.

(d) The estimated empirical distributions of the samples of step-5(c) pertain-

ing to the continuous random variables are referred to as their marginal

distributions.

(vi) Step-6: Finally, the samples of the correlated continuous random variables are

obtained through the inverse marginal CDF transformation on
[
uC
]
NS×nc

.

3.4 System over-limit risk indices

The over-limit risk indices are calculated as the product of event’s over-limit proba-

bility and the corresponding severity (Li et al., 2015). The various events are under-

voltage, over voltage, overload, thermal overload, etc. A detailed formulation of the

same is discussed underneath.

3.4.1 Over-limit probability calculations

The over-limit probability of a result variable is defined as the probability of exceeding

a predefined limiting value (Fan, 2012). For a result variable X, the probability of
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exceeding the higher limit XH,Limit,

prob (X > XH,Limit) = L (XH,Limit) = 1− F (XH,Limit) (3.12)

where L (•) and F (•), respectively are the complementary distribution function and

CDF. Now the probability of falling below the lower limit, XL,Limit is denoted as,

prob (X < XL,Limit) = F (XL,Limit) . (3.13)

From the complementary distribution functions of bus voltage magnitudes, the

values of under-voltage probability and over-voltage probability at the hth hour are

calculated as,

UVPh = 1−
n∏
i=1

(1− UVPih), OVPh = 1−
n∏
i=1

(1−OVPih) (3.14)

where “n” is the total number of buses in the system; UVPih and OVPih respectively

are the under-voltage probability and over-voltage probability values of ith bus at hth

hour.

Similarly from the complementary distribution functions of branch apparent power

flows and branch temperatures, the over-load probability and thermal over-load prob-

ability at the hth hour are calculated as,

OLPh = 1−
∏̀
k=1

(1−OLPkh), TOLPh = 1−
∏̀
k=1

(1− TOLPkh) (3.15)

where “`” is the total number of branches in the system, OLPkh and TOLPkh respec-

tively are the over-load probability and thermal over-load probability values of kth

branch at the hth hour.

3.4.2 Over-limit severity calculations

The severity of over-limit quantifies the deviation of mean value of the result variable

from the reference or threshold value. It signifies the extent of the over-limit violation.

In risk assessment, there is a need to quantify the severity of over-limit as it can

be observed from Figure 3.3, the two probability density plots of the same result

variable (respectively corresponding to different input uncertainties and correlations)

may have the same over-limit probability values but deviations of their mean values
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Figure 3.3: An example case to show the need of a severity function in the risk assessment.

Figure 3.4: Plots of severity functions.

from a prespecified threshold may be different. The severity functions used in this

study are continuous (exponential functions). The voltage severity function of ith bus

at hth hour is expressed as,

VSFih = ekVVDih − 1 (3.16)

where kV = ln (2) / ||VLimit| − 1|; voltage deviation of ith bus at hth hour is calculated

as, VDih =
∣∣1− µ|Vih|∣∣, µ|Vih| is the mean value of the voltage of ith bus at hth hour.

When µ|Vih| = 1 pu, voltage severity function is zero and its value equals to unity for

µ|Vih| = |VLimit|. Similarly, over-load severity function and thermal over-load severity

function of kth branch at hth hour are respectively given as,

OLSFkh = ekOLOLDkh − 1, TOLSFkh = ekTOLTOLDkh − 1 (3.17)

where kOL = 2 ln (2) / |SLimit, k|; kTOL = 2 ln (2) /TLimit, k; |SLimit, k|, and TLimit, k re-

spectively are the apparent power flow limit and branch temperature limit of the kth
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branch.

The severity functions as defined in (3.16) and (3.17) are ploted in Figure 3.4. In

(3.17), over-load deviation and thermal over-load deviation of kth branch at hth hour

are respectively calculated as,

OLDkh =
∣∣|STh, k| − µ|Skh|

∣∣ , TOLDkh = |TTh, k − µTkh| (3.18)

where µ|Skh| and µTkh , respectively are the mean values of apparent power flow and

temperature of the kth branch at the hth hour, |STh, k| and TTh, k respectively are the

threshold values of apparent power flow and temperature of kth branch (taken as 50%

of |SLimit, k| and TLimit, k respectively).

3.4.3 Calculation of risk indices

The risk of system over-voltage (RSOV) at the hth hour is calculated as,

RSOVh =
n∑
i=1

(OVPih) . (VSFih) . (3.19)

Finally, the risk of system over-load (RSOL) and risk of system thermal over-load

(RSTOL) at the hth hour are respectively calculated as,

RSOLh =
∑̀
k=1

(OLPkh) . (OLSFkh) , RSTOLh =
∑̀
k=1

(TOLPkh) . (TOLSFkh) (3.20)

3.5 Case study and discussion of results

The risk assessment is carried out on modified New England 39-bus power system.

The modification is the integration of the three PV arrays as discussed in section

2.2.1. The PV arrays are assumed free from providing any voltage support to the

system; hence, the reactive power generations are zero, and the corresponding buses

are treated as PQ type. The PV system connected buses can also be modeled as P |V|
type, provided, the inverters connected to the systems have inherent reactive power

capability. Suitable reactive power limits are to be set to maintain the bus voltages

at the specified values. This limit corresponds to the nameplate reactive limit of the

70



Figure 3.5: Single line diagram of the PV-integrated New England 39-bus power system.

71



inverter. The single line diagram of the modified New England 39-bus power system

is shown in Figure 3.5.

Table 3.2: Probabilistic description of discrete load powers.

Bus 9 Bus 18
Probability value

Real (pu) Reactive (pu) Real (pu) Reactive (pu)

0.04 -0.61 1.32 0.15 0.10

0.05 -0.64 1.46 0.20 0.15

0.06 -0.67 1.58 0.28 0.30

0.07 -0.68 1.66 0.34 0.25

0.09 -0.69 1.70 0.43 0.20

3.5.1 Power system description

The power system data used in this study is adopted from (Frank et al., 2016). The

system base power is set to 100 MVA, while the base value of branch temperature is

set to 100 0C for computational convenience. The temperature base does not bear

any relationship with voltage and power base values. The bus power data specified

for the test system are deterministic, hence, the probabilistic nature of the input

quantities has to be devised. The three PV arrays as discussed in section 2.2.1 are

included at buses 26, 27, and 28. The loads connected at buses 9, 18, 21, 23, 24, 25,

26, 27, 28 and 29 are assumed as random variables. The discrete load instants and

their corresponding probability values for real and reactive load powers at buses 9

and 18 are specified in Table 3.2. The real load powers at buses 21, 23, 24, 25, 26, 27,

28, and 29 follow Gaussian distributions with coefficient of variations same as that of

the values after preprocessing of the load data of eight weather zones as discussed in

section 2.2.1. The mean values correspond to the specified deterministic data. The

load power factors at these buses are presumed constant. In practice, it is difficult

to collect ambient temperature data for all the temperature dependent branches for

possible probability distributions. Hence, for simplicity, the statistical parameters of

ambient temperatures for all the temperature dependent branches are assumed same.

The PMCC matrix for TPLF is constituted among 20 continuous input random

variables which include generations of the three PV arrays, ambient temperature

(TAmb), real and reactive load powers at buses 21, 23, 24, 25, 26, 27, 28, and 29.
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Since, the collected load power data and PV generation data belongs to different

places, the PMCC between PV generations and load power is assumed to be 0.3.

The other PMCC values are calculated from the historical data after preprocessing.

For various result analysis, Monte-Carlo simulation with 30000 samples are used for

performing PLF and TPLF simulations at noon. The programming codes for Monte-

Carlo simulation are developed using MATLAB 7.10 and are executed on a computer

with i7 processor with RAM size of 8 GB. The base-case PMCC matrix defined

among the first 12 continuous input random variables is indicated in Table 3.3. The

PMCC values between reactive load powers and the first four input random variables

[refer Table 3.3] are same as that of the real load powers and first four input random

variables due to the assumptions of constant load power factors.

Table 3.3: Base-case PMCC matrix defined among first 12 continuous input random
variables.

PV1 PV2 PV3 TAmb PD,21 PD,23 PD,24 PD,25 PD,26 PD,27 PD,28 PD,29

PV1 1 0.7183 0.6005 0.0518 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

PV2 0.7183 1 0.5841 0.0538 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

PV3 0.6005 0.5841 1 0.1356 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

TAmb 0.0518 0.0538 0.1356 1 0 0 0 0 0 0 0 0

PD,21 0.3 0.3 0.3 0 1 0.7868 0.5172 0.5787 0.6534 0.7336 0.7799 0.5865

PD,23 0.3 0.3 0.3 0 0.7868 1 0.6205 0.8146 0.8871 0.6655 0.8559 0.7680

PD,24 0.3 0.3 0.3 0 0.5172 0.6205 1 0.7057 0.6905 0.4899 0.6486 0.7969

PD,25 0.3 0.3 0.3 0 0.5787 0.8146 0.7057 1 0.9421 0.5160 0.7334 0.8386

PD,26 0.3 0.3 0.3 0 0.6534 0.8871 0.6905 0.9421 1 0.5909 0.8222 0.8590

PD,27 0.3 0.3 0.3 0 0.7336 0.6655 0.4899 0.5160 0.5909 1 0.8071 0.6488

PD,28 0.3 0.3 0.3 0 0.7799 0.8559 0.6486 0.7334 0.8222 0.8071 1 0.8484

PD,29 0.3 0.3 0.3 0 0.5865 0.7680 0.7969 0.8386 0.8590 0.6488 0.8484 1

3.5.2 Impact of increased penetration of photovoltaic gener-

ations on the statistics of result variables

The percentage penetration level of PV generation (percentage of total system real

load power) is expressed as,

% PL =
Mean value of total PV generation

Mean value of total system load
× 100. (3.21)

The mean value of total PV generation for a given penetration level is obtained

by using (3.21). It is assumed that the obtained mean value corresponds to the
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time of maximum PV generation (usually occurs at noon) and is shared among the

three PV arrays. Let, µ12
1 , µ12

2 , and µ12
3 (the superscript “12” denotes noon) be the

assigned mean values of the PV generations of three arrays based on their capacities

as specified in Table 2.1. By adopting this nomenclature, a method to compute the

mean values of individual PV generations is explained by considering 5% penetration

level. The mean value of the total PV generation using (3.21) is obtained as 3.1271

pu (total system real load power is 62.5423 pu). The ratio of ratings of PV2 to PV1,

and PV3 to PV1 is calculated as 0.765 and 0.888 respectively. Hence, the value 3.1271

pu is shared among the PV arrays as, µ12
1 = 1.1787 pu, µ12

2 = 0.9017 pu, and µ12
3 =

1.0467 pu. The PV generation for the pth array i.e., PV12
p corresponding to a given

penetration level is calculated by multiplying a factor (obtained as a ratio of µp to

the mean of actual PV generation of the pth array) with actual PV generation of the

array. These set of steps are applied to various other penetration levels for obtaining

the mean values of PV generations at noon as indicated in Table 3.4.

Table 3.4: Mean values of PV generations in pu for various penetration levels.

PV array Base-case
Penetration level

5% 10% 15% 20%

PV1 0.0283 1.1787 2.3574 3.5361 4.7148

PV2 0.0222 0.9017 1.8034 2.7051 3.6068

PV3 0.0238 1.0467 2.0934 3.1401 4.1867

To analyze the effect of an increase in PV penetrations on the statistics of result

variables, various penetration levels such as base-case, 5%, 10%, 15%, and 20% are

considered. The probability density plots of PV generations pertaining to various

penetration levels at noon for all the three PV arrays are shown in Figure 3.6. It

is observed that, with an increase in penetration, the variance of PV generation

increases. Further, the probability density plots are observed to be magnified while

the shape remains the same. The cumulative probability plots of net real power load

at buses 26, 27 and 28 for various penetration levels are plotted in Figure 3.7. It

is observed that the net load power variability in all the three cases increases with

an increase in PV penetration leading to a subsequent decrease in the mean values.

Further, the lower tails of the distributions are shifted towards the negative axis. As

it is evident from Figure 3.7, in the base-case, low PV penetration does not cause

multimodality in the cumulative probability of net load power. For the remaining
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Note: PL stands for penetration level.

Figure 3.6: Comparison of probability density plots of PV generations for various pene-
tration levels.

Note: PL
stands for penetration level.

Figure 3.7: Cumulative probability plots of net load at buses 26, 27 and 28 for various
PV penetrations.

four PV penetration cases, cumulative probability plots of net load are multimodal

at buses 26, 27 and 28. It can be further observed that for penetration above 10%,

bidirectional power injections are evident at buses 27 and 28 whereas the same is

noticed above 5% at bus 26.

Since the buses and branches in the vicinity to the PV array locations are subjected

to more uncertainty influences (Fan et al., 2012), the probability distributions of bus

voltage magnitudes of buses 26, 27 and 28; branch temperatures and power flows

in the branches 26-27 and 26-28 are analyzed. Both PLF and TPLF simulations are

performed at noon considering various PV penetration cases as described in Table 3.4

and the results are compared in Table 3.5. Henceforth, PL, i−j, QL, i−j, and |SL, i−j|
are used to represent respectively the real, reactive, and apparent power flows in the
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branch i−j. P31 andQ31, respectively are the slack bus real and reactive powers. From

the comparison of results in Table 3.5, it is clear that the increase in penetration has

a noticeable effect on branch temperatures and branch loadings. The PLF and TPLF

results are nearly the same for bus voltage magnitudes indicating that temperature-

augmentation barely affects bus voltage magnitudes. However, on the other hand,

it has a significant effect on the variance of real and reactive power flows; the effect

becomes more prominent for increased penetrations. In all the above three cases for

bus voltage magnitudes with the increase in penetration beyond 5%, mean values are

decreased whereas the standard deviation values are increased due to the uncertainty

influence of PV generations at these buses. However, in the base-case, the patterns of

mean values and standard deviations are significantly biased because of bidirectional

power injections at these buses. TPLF provides the statistical information of branch

temperatures of temperature dependent branches which PLF fails to accomplish. Due

to temperature augmentation, real power flow variability of the branch 26-27 using

TPLF is significantly increased as compared to PLF. The probability density plots of

few result variables using PLF and TPLF are compared in Figure 3.8. The differences

in probability density plots are noticeable in all the cases. Similar inferences are

obtained in case of other result variables as well. The slack bus powers are radically

changed especially for 15% and 20% penetrations. The slack bus absorbs the excess

real power, resembling the real-time scenario of power export to the nearby systems.

The analysis of other branch power flow distributions indicates that, in most of the

cases, the increase in penetration leads to bi-directional power flows indicated by the

probability distributions extended to both positive and negative axes.

3.5.3 Effect of variations of temperature-augmented system

model parameter values on the statistics of result vari-

ables

The base-case values of the model parameters TRef, TRated rise, and TAmb-wc respectively

are 10 0C, 25 0C, and 40 0C. The above three parameters cannot always be considered

constant and the effect of their variation on the statistics of the result variables would

be of interest. The analysis is carried out for 5% penetration considering a few result

variables associated with the branches where the effect of temperature dependence

is the highest. As the temperature effect is taken into account, resistances of all the
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Figure 3.8: Comparison of probability density plots of (a) PLoss, 26−27 (5% penetration), (b)
|V26| (10% penetration), (c) PL, 2−3 (15% penetration) and (d) PLoss, 26−28 (20% penetration)
using PLF and TPLF.

temperature dependent branches are increased. Two relative percentage error indices

are defined to quantify the effect of a change in first two statistical parameters due

to temperature-augmentation, and are given as,

eµ =

∣∣∣∣µWT − µT

µWT

∣∣∣∣× 100, eσ =

∣∣∣∣σWT − σT

σWT

∣∣∣∣× 100 (3.22)

where µWT and µT, respectively are the mean values of a particular result variable as

obtained using PLF and TPLF; σWT and σT, respectively are the standard deviation

values of a particular result variable as obtained using PLF and TPLF.

There is a significant increase in the value of eµ with an average value that amounts

to 123.84% for branch temperature due to the inclusion of temperature effect. On the

other hand, the average eµ of branch power flow and branch power loss respectively

amounts to 5.65% and 6.93% whereas, average eσ of those respectively amounts to

26.29% and 33.39%. The effect of temperature-augmentation on other result variables

is significantly less. The values of eµ and eσ of branch power flow in case of a few

branches where the effect of temperature dependence is prominent are indicated in

Table 3.6. It is observed that the temperature augmentation leads to an increase
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Table 3.6: Effect of temperature-augmentation on first two statistical moments of branch
power flows in a few branches.

Branch
% Relative change in Real power Reactive power Apparent power

Branch resistance Branch temperature eµ eσ eµ eσ eµ eσ

02-03 08.73 207.91 00.36 02.17 02.42 18.58 00.43 02.64

02-25 08.30 197.72 00.48 01.73 05.54 15.13 00.06 00.56

06-11 10.45 248.70 00.13 01.13 05.62 03.77 00.13 01.13

10-11 07.73 184.11 00.08 00.99 01.56 12.40 00.10 01.09

15-16 07.34 174.80 00.04 00.89 00.67 04.49 00.11 01.01

16-19 08.27 196.83 00.06 05.46 00.97 00.04 00.07 02.16

21-22 07.26 172.78 00.03 00.74 00.23 01.57 00.04 00.85

23-24 06.21 147.98 00.01 00.93 10.49 02.77 00.01 00.94

26-27 06.34 150.91 00.42 00.45 01.16 01.62 00.44 00.50

in power flow variability. The effect of variations of model parameter values on the

average of error indices of power flows using (3.22) are provided in Table 3.7. In

a majority of the cases, the increase in model parameter values either increases or

decreases the values of error indices. However, in a few cases, though the effect is

prominent, no fixed pattern justifies the change in error indices.

3.5.3.1 Practical implementation of temperature-augmented probabilis-

tic load flow

In reality, the ambient temperature of different branches have diverse values of co-

efficient of variations, and the PMCCs between them are also different. Hence, a

practical implementation of TPLF necessitates the collection of data through the

sensors installed at different locations in the power system. Further, the ignorance of

correlation effect between the ambient temperatures at various locations may degrade

the aptitude of TPLF for the accurate approximation of branch power flow and power

loss probability distributions.

3.5.4 Over-limit risk assessment

The probability distributions of result variables as obtained by TPLF are useful in

determining the system over-limit risk indices under various PV penetrations and

input correlations. All the system buses and branches are considered for evaluating
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over-limit risks. Table 3.8 shows over-load probability (> |SLimit|) and thermal over-

load probability (> TLimit) values of temperature dependent branches at noon for

20% penetration. Table 3.9 indicates the under-voltage probability (<0.95 pu) and

over-voltage probability (>1.05 pu) at noon for 20% penetration at all the load buses.

The value of |SLimit| is taken as the MVA rating of the branch and that of TLimit is

set to 0.5 pu, since the maximum allowable temperature of value 50 0C is typically

selected to avoid loss of strength, sag and branch losses, etc. The over-limit probability

values are calculated from the respective complementary distribution functions. The

system over-limit probability values using (3.14) and (3.15) for various penetrations

are compared in Table 3.10 with and without considering input correlations. The

over-limit probability values differ significantly considering input correlation. The

error becomes more prominent with the increase in penetration. It is evident from

the comparison of results that with an increase in penetration, system under-voltage

probability, over-load probability, and thermal over-load probability values increase

whereas, system over-voltage probability values decreases.

Table 3.9: Under-voltage probability and over-voltage probability values of load buses for
20% penetration.

Bus UVP OVP Bus UVP OVP Bus UVP OVP

1 0 0.1069 11 0.1406 0.0001 21 0 0.1896

2 0.0774 0.0437 12 0.0142 0.0033 22 0 0.0741

3 0.2860 0.0028 13 0.1043 0.0053 23 0 0.0595

4 0.1436 0.0025 14 0.0525 0.0045 24 0 0.7212

5 0.1039 0.0035 15 0 0.0344 25 0 0.2459

6 0.1966 0.0002 16 0.0093 0.0723 26 0.0055 0.1180

7 0.1891 0.0001 17 0.0418 0.0545 27 0 0.2692

8 0 0.0343 18 0 0.1863 28 0 0.2467

9 0.0014 0.0035 19 0 0 29 0 0.0082

10 0.0207 0.0028 20 0 0.0095

Note: UVP: Under-voltage probability, OVP: Over-voltage probability.

Finally, the impact of input correlation on the calculation of system risk indices

using (3.19) and (3.20) at noon is compared in Table 3.11 for various PV penetrations.

It is interesting to note that, in most of the cases, unaccounted input correlations

in analysis leads to an underestimation of risk indices. Calculation of risk indices

considering input correlations reflect the system security more precisely and thus

provides highly useful information for decision-makers. The system RSOV increases
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Table 3.10: System over-limit probability values with and without considering input cor-
relation.

Penetration level
System UVP System OVP System OLP System TOLP

WC BC WC BC WC BC WC BC

Base-case 0 0 1 1 0 0.0027 0 0.0002

5% 0 0 1 1 0.0619 0.1707 0.0098 0.0235

10% 0 0 1 1 0.9203 0.9297 0.4049 0.5029

15% 0 0.0010 0.9998 1 0.9995 0.9998 0.9539 0.9660

20% 0.4765 0.7814 0.9351 0.9609 1 1 0.9991 0.9994

Note: UVP: Under-voltage probability, OVP: Over-voltage probability, OLP: Over-load probability,
TOLP: Thermal over-load probability, WC: Without correlation, BC: Base-case correlation.

Table 3.11: System RSOV, RSOL, and RSTOL values for various PV penetrations.

Risk index Penetration level Without correlation Base-case correlation

RSOV

Base-case 04.1905 04.0715

5% 04.6464 04.7135

10% 02.8328 02.9559

15% 02.1462 02.4382

20% 01.5556 01.8008

RSOL

Base-case 0 00.0008

5% 00.0422 00.1138

10% 01.7250 01.8098

15% 06.0273 05.8387

20% 12.2257 11.5308

RSTOL

Base-case 0 0

5% 00.0029 00.0069

10% 00.2850 00.3600

15% 02.1760 02.2598

20% 07.5092 07.2365

82



with increase in penetration from base-case to 5% but for penetration beyond 5%,

system RSOV decreases. The over-limit risk assessment at the remaining time instants

of the day follows the similar set of steps as adopted for noon. It is to be noted

that, as the influence of input uncertainty at a specific instant of time is evaluated,

conventional generation dispatch strategies are not considered. However, it is an

essential aspect of PV integrated power systems to adjust the total conventional

generation to match the changes in PV generation with automatic generation control

or day-ahead generation scheduling (Fan et al., 2013).

3.6 Conclusions

This chapter has presented a risk-based power system planning with large-scale in-

tegration of PV generations. The effect of PV penetrations and change in values of

TPLF model parameters on the statistics of result variables were analyzed in detail.

Further, the over-limit risk indices were calculated for various penetrations and in-

put correlations. In summary, the following observations from the result analysis are

worth noting.

(i) The change in values of TPLF model parameters has a significant effect on

statistics of result variables.

(ii) A TPLF study considering higher PV penetrations lead to a higher variability

in branch power flows and branch temperatures as compared to the other result

variables.

(iii) TPLF simulations under various PV penetrations and input correlations help

in identifying the critical buses and branches by quantifying system risk indices.

It assists in providing the theoretical support for the assessment of system re-

inforcement and its reliable operation.

(iv) The calculated risk indices reflecting the system security level can be used as

an indicator for evaluating the power system security.

As compared to PLF, an improved accuracy of TPLF results qualifies as a suitable

choice for applications including (i) probabilistic assessment of line sag and thermal

capacity, (ii) probabilistic voltage stability study, (iii) probabilistic optimal power

flow, etc.
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Chapter 4

SENSITIVITY MATRIX BASED

STEADY-STATE ANALYSIS

4.1 Preamble

In this chapter, an upgrade to the sensitivity matrix based power system model is

proposed by considering the electro-thermal coupling effect of transmission branches.

Two hybrid methods are proposed to accurately approximate the multimodal proba-

bility distributions of result variables with reduced computational effort while consid-

ering input correlations. Then after, probabilistic steady-state analysis (PSSA) using

probabilistic load flow (PLF) and temperature-augmented PLF (TPLF) is carried out

using the proposed hybrid methods aiding the operational study of power systems.

4.2 Sensitivity matrix based power system model

The primary step in PSSA for an operational study is the development of a sensitivity

matrix based power system model. The sensitivity matrix is a relation matrix between

input and result variables. Unlike the Monte-Carlo simulation, PLF/TPLF using

sensitivity matrix based power system model facilitates in obtaining faster results in

operational studies as the elements of the sensitivity matrix is calculated only once.

For an “n” bus power system comprising of “m” P |V| buses and “`” branches,

various sensitivity matrix based power system models are summarized in Figure 4.1.

The sensitivity matrices of uncertainty components of various result variables used in
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Figure 4.1 are as defined under:

(i) K1: State vector (x̄) sensitivity matrix.

(ii) K2: P |V| bus reactive power vector (ȳ
′
) sensitivity matrix.

(iii) K3: Branch power flow vector (z̄) sensitivity matrix.

(iv) K4: Slack bus power vector (ȳ
′′
) sensitivity matrix.

(v) K5: Branch power loss vector (z̄
′
) sensitivity matrix.

It is to mention here that, the superscripts “′” and “′′” used for few result vari-

ables [refer Figure 4.1] is to have a clear distinction among the result variables and it

does not imply the derivative operation. The sensitivity matrices are obtained from

the converged load flow solutions considering the expected values of input random

variables as the point of linearization. In Figure 4.1, ∆ȳ is the uncertainty component

vector of input random variables and “tdb” is the total number of temperature de-

pendent branches. The transmission branches having non-zero series resistances are

referred to as temperature dependent branches. The various models are discussed as

under:

(i) Traditional PLF model: In this model, the case of generator hitting the reac-

tive power limit is not considered, and all the P |V| buses are treated as PQ

type (Fan et al., 2012). The bus power injections at the PQ buses are modeled

probabilistically and the combined effect of input uncertainties on the probabil-

ity distributions of bus voltages, branch power flows, and slack bus powers are

obtained. Since, P |V| buses are treated as PQ type, matrix “K2” is absent in

this model.

(ii) Modified PLF model: In this model, the orders of the sensitivity matrices are

reduced by eliminating the reactive power equations of P |V| buses. The reactive

power demands at these buses may be uncertain, but the solution to their

incremental change is irrelevant so long as the reactive power injections at these

buses stay well within the limit (Wang and McDonald, 1994). However, in a

case where solution convergence is achieved but Q-limit violates at certain P |V|
buses, the respective buses are changed to PQ type. Accordingly, the orders of

the sensitivity matrices will change.

(iii) TPLF model: It is the extension of modified PLF model that accounts for the

electro-thermal coupling effect by including the ambient temperatures of the

transmission branches in the input vector.
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Figure 4.1: Comparison of various sensitivity matrix based power system models.

In modified PLF model and TPLF model, P |V| bus voltage magnitude uncertainty

can also be included by modifying the dimensions of the Jacobian matrices. For

steady-state power flows, the voltage magnitude of the P |V| buses does not change

over the specified value as long as the system has sufficient reactive power support.

4.2.1 Evaluation of sensitivity matrices of temperature-augmented

power system model

In compressed form (3.11) is represented as,

∆x̄ = JM−1
1 ∆ȳ = K1∆ȳ (4.1)

Using (4.1), the uncertainty component vectors of ȳ
′
, z̄, ȳ

′′
and z̄

′
(Sauer and

Hoveida, 1982, Fan et al., 2012) are respectively given as,

∆ȳ
′
= JM2∆x̄ = JM2K1∆ȳ = K2∆ȳ

∆z̄ = JM3∆x̄ = JM3K1∆ȳ = K3∆ȳ

∆ȳ
′′

= JM4∆x̄ = JM4K1∆ȳ = K4∆ȳ

∆z̄
′
= JM5∆x̄ = JM5K1∆ȳ = K5∆ȳ

(4.2)
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Formulations of the Jacobian matrices JM1, JM2, JM3, JM4 and JM5 are detailed

in Appendix E. Using (4.1) and (4.2), the vectors x̄, ȳ
′
, z̄, ȳ

′′
and z̄

′
can be written

as,

x̄ = K1ȳ + x̄0, x̄0 = x̄0 −K1ȳ
0

ȳ
′
= K2ȳ + ȳ

′
0, ȳ

′
0 = ȳ

′0 −K2ȳ
0

z̄ = K3ȳ + z̄0, z̄0 = z̄0 −K3ȳ
0

ȳ
′′

= K4ȳ + ȳ
′′
0 , ȳ

′′
0 = ȳ

′′0 −K4ȳ
0

z̄
′
= K5ȳ + z̄

′
0, z̄

′
0 = z̄

′0 −K5ȳ
0

(4.3)

In (4.3) x̄0, ȳ0, ȳ
′0, ȳ

′′0, z̄0 and z̄
′0 are the expected values of x̄, ȳ, ȳ

′
, ȳ
′′
, z̄ and

z̄
′

respectively. The values of x̄0, ȳ0, ȳ
′0, ȳ

′′0, z̄0, z̄
′0, “K1”, “K2”, “K3”, “K4” and

“K5” are obtained from converged load flow solution. Separating the discrete and

continuous parts of ȳ in (4.3) yields,

x̄ = K1ȳ
D + K1ȳ

C + x̄0 = x̄D + x̄C + x̄0

ȳ
′
= K2ȳ

D + K2ȳ
C + ȳ

′
0 = ȳ

′D + ȳ
′C + ȳ

′
0

z̄ = K3ȳ
D + K3ȳ

C + z̄0 = z̄D + z̄C + z̄0

ȳ
′′

= K4ȳ
D + K4ȳ

C + ȳ
′′
0 = ȳ

′′D + ȳ
′′C + ȳ

′′
0

z̄
′
= K5z̄

D + K5z̄
C + z̄

′
0 = z̄

′D + z̄
′C + z̄

′
0

(4.4)

where x̄C = x̄G + x̄NG, ȳ
′C = ȳ

′G + ȳ
′NG, ȳ

′′C = ȳ
′′G + ȳ

′′NG, z̄C = z̄G + z̄NG, and

z̄
′C = z̄

′G + z̄
′NG.

Table 4.1: Orders of matrices and vectors used in (4.3).

Vector Order Vector Order Vector Order Matrix Order Matrix Order

x̄ k × 1 ȳ
′

m × 1 ȳ
′

0 m × 1 K1 k × k K4 2 × k

ȳ k × 1 ȳ
′′

2 × 1 z̄0 2` × 1 K2 m × k K5 2` × k

z̄ 2`× 1 x̄0 k × 1 ȳ
′′

0 2 × 1 K3 2`× k

Note: k = 2n - m - 2 + tdb.

In (4.4) the superscripts “D”, “C”, “G” and “NG” stand for discrete, continuous,

Gaussian and non-Gaussian respectively. The components yD, yG and yNG may not

be present at all the buses. Further, these components at all the buses are either

correlated or a few are correlated while remaining statistically independent with the

rest. The presence of discrete and non-Gaussian input random variables in the lin-

ear combination of (4.4) may result in multimodal probability distributions of the
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result variables depending mainly on the sensitivity coefficients. In (4.4), the discrete

and continuous components are assumed independent (Usaola, 2009). The orders of

different vectors/matrices involved in (4.3) are indicated in Table 4.1. The model

formulated in (4.4) is the proposed sensitivity matrix based model where the orders

of the sensitivity matrices depend on the model type as described in Figure 4.1.

4.3 Proposed hybrid methods

For an operational study the development of a suitable analytical method or hy-

bridization of the existing analytical methods is an equally important task for the

approximation of multimodal probability distributions of result variables. The pro-

posed methods aim at hybridizing extended cumulant method (ECM) with Gaussian

mixture approximation (GMA) and then with copula-based sequence operation the-

ory [refer Figure 4.2]. The corresponding advantages and disadvantages of each of

the methods chosen for hybridization are highlighted in Figure 4.2. First, the meth-

ods are elaborated, followed by the motivations for hybridization is discussed. Then

after, each of the hybrid methods is explained in detail. The proposed hybrid meth-

ods necessitate linear relationships among the result variables and the input random

variables. The generalized expression of a result variable in (4.4) can be represented

as,

Y =
{

sc1. y
D
1 + sc2. y

D
2 + · · ·+ sc2n−m−2+tdb . y

D
2n−m−2+tdb

}
+
{

sc1 . y
G
1 + sc2 . y

G
2 + · · ·+ sc2n−m−2+tdb . y

G
2n−m−2+tdb

}
+
{

sc1 . y
NG
1 + sc2 . y

NG
2 + · · ·+ sc2n−m−2+tdb . y

NG
2n−m−2+tdb

}
+ Y0

(4.5)

where “sc” is sensitivity coefficient, the value of which is either positive or negative;

Y0 is a constant term that corresponds to the last summand of (4.4).

For non-zero sensitivity coefficients, considering each summand of (4.5) as an

equivalent random variable, a simplified representation is given as,

Y =
(
Y D

1 ± Y D
2 ± · · · ± Y D

nd

)
+
(
Y C

1 ± Y C
2 ± · · · ± Y C

nc

)
± Y0. (4.6)

where subscripts “nd” and “nc” are respectively the total number of discrete and

continuous input random variables.
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Separating the Gaussian and non-Gaussian components of (4.6) yields,

Y =
(
Y D

1 ± Y D
2 ± · · · ± Y D

nd

)
+
(
Y G

1 ± Y G
2 ± · · · ± Y G

ng

)
+
(
Y NG

1 ± Y NG
2 ± · · · ± Y NG

nng

)
± Y0

= Y eD ± Y eG ± Y eNG ± Y0

(4.7)

where subscripts “ng” and “nng” are respectively the total number of Gaussian and

non-Gaussian input random variables; Y eD, Y eG and Y eNG respectively are the equiv-

alent discrete, equivalent Gaussian, and equivalent non-Gaussian components.

4.3.1 Extended cumulant method

ECM is an extended version of cumulant method which is capable of estimating the

cumulants (of any order) of a linear combination of correlated Gaussian and non-

Gaussian random variables (Hoese and Garcés, 1999). The linear combination of

correlated continuous input random variables as expressed in (4.6) is given as,

Y eC = Y C
1 ± Y C

2 ± · · · ± Y C
nc. (4.8)

In compact form, (4.8) can be written as Y eC = Wnc−2 ± Y C
nc where Wnc−2 is

evaluated in (nc− 2)th step. At any ith step, as can be seen from Figure 4.3 that,

Wi−1 uses the statistical parameters of W0 to Wi−2 e.g., (nc− 1)th step uses the

statistical parameters of W0, W1, · · · , Wnc−2 where W0 = Y C
1 .

In step-1, W1 = Y C
1 ± Y C

2 . The cumulants of W1 are obtained as,

CW1, k =

{
A (k) CY C

1 , k
+ (±1)k CY C

2 , k
, σY C

2
≥ σY C

1

CY C
1 , k

+ (±1)kA (k) CY C
2 , k

, σY C
1
≥ σY C

2

(4.9)

where the function A (k) = (1 + ρ)k − ρk, ρ =


± ρY C

1 ,Y
C
2

(
σ
YC
2

σ
YC
1

)
, σY C

2
≥ σY C

1

± ρY C
1 ,Y

C
2

(
σ
YC
1

σ
YC
2

)
, σY C

1
≥ σY C

2

.

In (4.9), CY C
1 , k

, CY C
2 , k

, and CW1, k are the kth order cumulants of Y C
1 , Y C

2 , and W1

respectively; σY C
1

and σY C
2

are the standard deviations of Y C
1 and Y C

2 respectively;

ρY C
1 ,Y

C
2

is the product moment correlation coefficient (PMCC) between Y C
1 and Y C

2 .

For Wi = Wi−1±Y C
i+1, 1 ≤ i ≤ nc−2, the parameters σWi

and ρWi,Y C
i+2

are respectively

calculated as,
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Figure 4.2: Methodology for hybridization.
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Figure 4.3: Steps to obtain cumulants of a linear combination of correlated continuous
random variables.

σWi
=
√
σ2
Wi−1
± 2ρWi−1,Y C

i+1
σWi−1

σY C
i+1

+ σ2
Y C
i+1
, (4.10)

ρWi,Y C
i+2

=
ρWi−1,Y C

i+2
σWi−1

± ρY C
i+1,Y

C
i+2
σY C

i+1

σWi

. (4.11)

4.3.2 Gaussian mixture approximation

GMA method approximates the probability distributions of both non-Gaussian and

discrete input random variables through a convex summation of Gaussian distribu-

tions. GMA as applied to individual non-Gaussian one-dimensional random variables

is referred to as univariate-GMA (Sirisena and Brown, 1983, Valverde et al., 2012).

In multivariate-GMA, the correlated non-Gaussian input random variables at various

buses are augmented together forming a multivariate structure. Both the types are

discussed underneath.

(i) Univariate-GMA: The probability density function (PDF) of a non-Gaussian

bus power yNG
j at jth bus can be approximated by a gth

j order Gaussian sum

given as,

f
(
yNG
j

)
=

gj∑
k=1

wjkfNk(µjk,σ2
jk)
(
yNG
j

)
;

gj∑
k=1

wjk = 1 (4.12)

where wjk is the weight factor; fNk is Gaussian PDF of the kth component of

yNG
j ; µjk and σ2

jk are respectively the mean and variance of the kth component.

A discrete bus power yD
j at jth bus is approximated as a mixture of Gaussian

components given as,
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f
(
yD
j

)
=

ldj∑
k=1

w′jkfNk(djk,0)
(
yD
j

)
;

ldj∑
k=1

w′jk = 1 (4.13)

where djk and w′jk are the discrete values and the corresponding probability

weights of yD
j respectively; ld is the length of the discrete sequence.

(ii) Multivariate-GMA: In case of multivariate-GMA, the probability distribution

of an nr-dimensional augmented structure ya is given as,

f (ya) =

g∑
k=1

wkfNk (ya);

g∑
k=1

wk = 1. (4.14)

The PDF of nr-dimensional kth Gaussian PDF is expressed as,

fNk (ya) =
1

(2π)
nr
2 |Σk|

1
2

e−
1
2

(ya−µk)T(Σk)−1(ya−µk) (4.15)

where wk, µk and Σk are the weight factor, mean vector and covariance matrix

of the nr-dimensional kth Gaussian PDF respectively; |Σk| and (Σk)
−1 are the

determinant and inverse of Σk respectively.

The probability distributions of discrete bus powers are modeled in a similar

way as in the case of univariate-GMA. The weight factors/probability weights

satisfy the condition: 0 < w, w′ ≤ 1.

The Gaussian mixture model (GMM) parameters of each Gaussian component for

a specific “g” are obtained using the expectation maximization algorithm (Carmona-

Delgado et al., 2015).

4.3.3 Sequence operation theory

In sequence operation theory-based framework, knowledge of the following concepts

is essential.

(i) Discrete sequence: A discrete sequence a (i) is defined as a sequence comprising

of numeric values at discrete instants i = 0, 1, · · · ,Na satisfying the conditions:

a (i) = 0, i > Na and a (i) 6= 0, i = Na where Na is the sequence length.
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Figure 4.4: Conversion of a probability sequence to cumulative probability plot and vice
versa.

(ii) Probability sequence: A discrete sequence a (i) is said to be a probability se-

quence if it satisfies,
Na∑
i=0

a (i) = 1. (4.16)

An example of probability sequence with sequence interval ∆S is depicted in

Figure 4.4. The cumulative sum of probabilities obtains its cumulative proba-

bility plot. Similarly, for a given cumulative probability plot, the corresponding

probability sequence can be obtained using the reverse process. A probability

distribution, as well as a scalar, can be represented as a probability sequence.

The latter is referred to as an one-point distribution.

(iii) Sequence operations: Sequence operations are used to accomplish arithmetic

operations (Kang et al., 2002); they are addition type convolution, subtraction

type convolution, and sequence multiplication operation. For two probability
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sequences a (ia) and b (ib), they are respectively expressed as,

u (i) =
∑

ia+ib=i

CD (ia, ib) . a (ia) . b (ib), i = 0, 1, · · · , Na + Nb

v (i) =


∑
ia≤ib

CD (ia, ib) . a (ia) . b (ib) , i = 0∑
ia−ib=i

CD (ia, ib) . a (ia) . b (ib) , 1 ≤ i ≤ Na

s (i) =
∑
iaib=i

a (ia) . b (ib), i = 0, 1, · · · , NaNb

(4.17)

The copula density function CD (ia, ib) in (4.17) is expressed as,

CD (ia, ib) = cou

(
ia∑

k1=0

a (k1),

ib∑
k2=0

b (k2), ρab

)
= cou (U1,U2, ρab) (4.18)

where ia = 0, 1, · · · ,Na, ib = 0, 1, · · · ,Nb and ρab is the PMCC between those

two continuous random variables from where the sequences a and b are origi-

nated.

The addition type convolution and subtraction type convolution are strictly

applicable to sequences having the same interval. The resultant sequence inter-

val is same as that of the input. On the other hand, sequence multiplication

operation is applied to sequences (at least one must correspond to a scalar)

with different intervals and the resultant sequence interval is the product of

individual intervals.

4.3.4 Combined cumulant and Gaussian mixture approxima-

tion

The hybridization of cumulant method and GMA referred to as combined cumulant

and Gaussian mixture appoximation (CCGMA) does not necessitates the convolution

operations of conventional GMA. The same is achieved with cumulant calculations,

thereby saving substantial computational time.

Since a GMM approximates probability distributions of non-Gaussian input ran-

dom variables by convex summation of Gaussian distributions and each Gaussian

distribution can be adequately described by first two cumulants, cumulant-based rep-
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resentations of (4.12) and (4.13) are given as,

CyNG
j

=

gj∑
k=1

wjkNk

(
µjk

σ2
jk

)
, CyDj =

ld∑
k=1

w′jkNk

(
djk

0

)
. (4.19)

In CCGMA, each non-Gaussian input random variable or an augmented struc-

ture are approximated by a gth order Gaussian sum. In case of a discrete input

random variable, the approximated Gaussian sum number equals to the number of

discrete impulses. The total number of Gaussian components (Nr) essential to ap-

proximate the probability distribution of a result variable is calculated as the product

of the Gaussian components pertaining to all non-Gaussian and discrete input ran-

dom variables. Finally, the distribution of a result variable can be established from

the weighted sum of distributions of Gaussian components obtained in Nr evalua-

tions. In each evaluation, equivalent probability weight is obtained as the product

of probability weights of all the Gaussian components in the respective evaluation.

The accuracy of the estimated multimodal probability distributions of result variables

mainly depends on the determination of true number of mixture components and a

proper initialization strategy. The true number of mixture components are obtained

using cluster distortion function based approach (Pham et al., 2005), and the results

of k-means clustering algorithm pertaining to the optimal cluster number are used for

the initialization of expectation-maximization algorithm to obtain GMM parameters.

A flowchart for the implementation of univariate-CCGMA in provided in Figure 4.5.

4.3.4.1 Cluster number selection approach

A cluster distortion function-based approach is applied for the estimation of an op-

timal number of data clusters for a given data. Here, the idea is to identify the

concentrated regions of objects in the data, i.e., the data distortion. The sum of

cluster distortion for a given value of “g” is given as,

Sg =

g∑
j=1

Ij (4.20)

and the function f (g) for cluster number selection is given as,

f (g) =

{
1 , g = 1

Sg

αgSg−1
, Sg−1 6= 0 & g > 1

(4.21)
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Figure 4.5: Flowchart for establishing the probability distribution of a result variable
using univariate-CCGMA.
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where, Ij is the distortion of jth cluster.

If data dimension Nd >1, then αg in (4.21) is expressed as,

αg =

{
1− 3

4Nd
, g = 2

αg−1 + 1−αg−1

6
, g > 2

(4.22)

and must satisfy the condition 0 < αg ≤ 1. For a smaller value of f (g), the data

is more concentrated. Hence, the value of “g” that yields smaller value of f (g) is

regarded as optimal.

4.3.5 Combined cumulant and sequence operation theory

The hybridization of cumulant method and sequence operation theory referred to as

combined cumulant and sequence operation theory (CCSOT) separately deals with

the discrete, Gaussian and non-Gaussian input random variables to achieve the desired

higher accuracy with the reduced computational burden. The overall procedure to

obtain the probability distribution of a result variable using CCSOT is as follows:

(i) Discretization: The sensitivity coefficients and probability distributions of input

random variables other than Gaussian are discretized.

(a) A sensitivity coefficient “sc” is converted to a probability sequence of inter-

val ∆S1. Sequence length “N” is obtained as N = sc/∆S1. The probability

value at the Nth discrete instant is unity whereas, at the remaining “N”

instants, its value is zero.

(b) A discrete distribution of load power with a maximum value of “LM” is

converted to a new probability sequence of interval ∆S2. Sequence length

“N” is obtained as N = LM/∆S2. The load values Li, i = 1, 2, · · · , LM

correspond to the instants Li/∆S2 in the new probability sequence. At

the remaining “N + 1−M” instants, the probability value is zero.

(c) For a continuous non-Gaussian input random variable having a known

empirical marginal cumulative distribution function (CDF) with the cu-

mulative probability values estimated at an interval of ∆S2, N = E/∆S2.

“N” is the upper bound of the random variable. The probability values at

the “N+1” instants can be obtained by the reverse process of Figure 4.4.
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(ii) Calculation of PMCC between Y eG and Y eNG: Figure 4.6 indicates various

intermediate steps involved in obtaining the PMCC between Y eG and Y eNG.

In step-1, the given PMCC matrix is rearranged as per the sequence of input

random variables as indicated in (4.8). The reduced dimension PMCC matrix in

step-2 is obtained from step-1 PMCC matrix using (4.9) to (4.11). Repositioning

the elements of step-2 PMCC matrix yields step-3 PMCC matrix. Finally, in

step-4, the PMCC between Y eG and Y eNG is obtained using (4.9) to (4.11).

(iii) Probability sequences pertaining to discrete and non-Gaussian components of

(4.7): The product terms of discrete as well as non-Gaussian components of

(4.7) are evaluated using sequence multiplication operation yields probability

sequence of interval ∆S = ∆S1∆S2. Finally, the addition type convolution

or subtraction type convolution (depending on the sign of sensitivity coeffi-

cients) among the probability sequences obtained using sequence multiplication

operation yield Y eD and Y eNG. For the evaluation of addition type convolu-

tion/subtraction type convolution operation, Gaussian copula density function

is used. It extracts the dependency structure from correlated standard Gaus-

sian distributions and has the benefit that, the marginal distributions can be

arbitrary. Copula helps in modeling the marginal distributions and dependence

structure separately. Gaussian copula density function is expressed as,

cou (U1,U2, ρab) =
1√

1− ρ2
ab

.e
− 1

2

(
ρ2abu

2
1−2ρabu1u2+ρ

2
abu

2
2

1−ρ2
ab

)
(4.23)

where u1 and u2 are obtained from the inverse cumulative probability trans-

formation [refer to Figure 4.7]; the values of “U1” and “U2” lies in the range

[0,1].

(iv) Determination of probability sequence pertaining to Gaussian component of

(4.7): Linear combination of correlated Gaussian random variables is also a

Gaussian random variable and its probability distribution can be described by

first two cumulants (Villanueva et al., 2014). The first two cumulants C1 and C2

of Gaussian component of (4.7) is calculated using the formulations as discussed

in section 4.3.1. Its cumulative probability values are obtained in the range

[C1 − 4
√
C2, C1 + 4

√
C2] at intervals of ∆S. Finally, the probability sequence

is recovered using reverse process of Figure 4.4.

(v) Distribution of result variable: The probability sequences pertaining to discrete,
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Figure 4.7: Schematic representation to obtain u1 and u2 of (4.23).

Gaussian, non-Gaussian components of (4.7) have same sequence interval of ∆S.

The PMCC values between Y eD and Y eG as well as between Y eD and Y eNG

are zero whereas, between Y eG and Y eNG is obtained using step (iii). Using

the obtained probability sequences of Y eD, Y eG and Y eNG and the associated

correlations, the probability sequences of the result variables can be obtained

using addition type convolution or subtraction type convolution. Finally, the

cumulative probability plots can be obtained.

4.4 Case study and discussion of results

The performance of the proposed hybrid methods is verified on various test systems

such as New England 39-bus test system (Frank et al., 2016), IEEE 14, 57, 118-bus

test systems (UWEE, 2015) and Indian utility 62-bus system (PWTEB, 2017) by

performing PLF and TPLF using sensitivity matrix based power system models as

described in Figure 4.1. The programming codes are developed using MATLAB 7.10

and are executed on a computer with i7 processor and RAM size of 8 GB.

PLF is carried out to accomplish the following investigations.

(i) Accuracy comparison of results using traditional PLF model and modified PLF

model.

(ii) Investigations on the accuracy of proposed hybrid methods considering input

correlations.

(iii) Performance assessment of the proposed hybrid methods in approximating mul-

timodal probability distributions of result variables.

Using TPLF model, the following investigation is carried out.
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(i) The effectiveness of the proposed spatiotemporal model in capturing both spa-

tial and temporal correlations among the input random variables of TPLF is

examined. Multivariate-CCGMA is applied for the approximation of the prob-

ability distributions of result variables.

For various result analysis, PV arrays are considered to be installed at certain

buses of the above test systems. The PV arrays inject only real power to the system,

and the reactive power generations of the PV arrays are assumed zero.

Since the motivation behind proposing hybrid methods is to approximate the mul-

timodal probability distributions of result variables accurately, a mixture of discrete,

Gaussian and non-Gaussian input random variables of different statistical parame-

ters are considered. The statistical parameters and correlation details of the input

random variables in case of all the test systems are described in Table 4.2 through

4.6. In Table 4.2, the PV array installation buses are randomly chosen. The assumed

PMCC values for IEEE 14-bus, 57-bus and 118-bus systems in Table 4.5 is adopted

from (Fan et al., 2014). The probability mass functions of real power generation of

conventional generators in Table 4.6 is assumed to follow Bernoulli distribution.

4.4.1 Measures for accuracy comparison

Accuracy of the proposed methods is ascertained by calculating two types of errors

such as average root mean square error (ARMSE) and absolute percentage error. The

ARMSE is calculated as, √
Np∑
i=1

(CDFMCSi − CDFCOMi
)2

Np

(4.24)

where CDFMCSi and CDFCOMi
respectively are the ith values on the CDF plots using

Monte-Carlo simulation and the comparing method; Np is the selected number of

points in the CDF plots whose value is set to 100 in this thesis.

Absolute percentage error in standard deviation (σ) is calculated as,

eσ =

∣∣∣∣σX,MCS − σX,COM

σX,MCS

∣∣∣∣× 100 (4.25)

where σX,MCS, and σX,COM respectively are the standard deviation values of X using

MCS and the method under comparison.
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Table 4.6: Details of discrete power generations.

Parameters
IEEE 14-bus IEEE 57-bus

Bus 2 Bus 3 Bus 12

Unit no. 1 2 1 2 1 2 3 4

Capacity (pu) 0.22 0.22 0.22 0.22 0.84 0.84 0.84 0.84

Forced outage rate 0.1 0.08 0.1 0.08 0.09 0.09 0.07 0.07

Aggregate error is calculated by summing up the values of error for all the result

variables. The average error is obtained as the ratio of aggregate error and the total

number of result variables.

4.4.2 Accuracy comparison of probabilistic load flow results

using traditional and modified power system models

The competency of modified PLF model in approximating probability distributions of

result variables using CCSOT as compared to the traditional model is verified in Table

4.7. The PV-integrated New England 39-bus system is used for the result analysis.

The average absolute percentage error in the standard deviation of result variables

using both the models are calculated by considering Monte-Carlo simulation results

as reference. It is observed that PLF results so obtained using traditional model are

more erroneous as compared to the modified PLF model. Among the result variables,

the error in the bus voltage magnitude is the highest as traditional model treats P |V|
buses as PQ type leading to erroneous estimation of sensitivity coefficients. The

probability distributions of PL, 28−29 using both the models are compared in Figure

4.8 as an example case. The higher accuracy of modified model as compared to the

traditional one is evident.

4.4.3 Investigation on the accuracy of proposed hybrid meth-

ods considering input correlations

This section investigates the capability of the proposed hybrid methods in including

input correlations in the analysis. At first, the accuracy of Gaussian copula based

sequence operations used in CCSOT is investigated by considering different distri-

bution types and correlations as defined in Table 4.8 for various cases of arbitrarily
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Note: MCS: Monte-Carlo simulation, TPM: Traditional PLF model, MPM:
Modified PLF model.

Figure 4.8: Comparison of probability density plots of PL, 28−29 using various PLF models.

Table 4.7: Accuracy comparison of PLF results using traditional and modified model.

PLF result variables
Average eσ

Traditional model Modified model

x̄
δ 01.62 00.72

|V | 778.02 25.77

ȳ
′

Q - 18.07

z̄
PL 25.23 03.21

QL 110.12 11.21

ȳ
′′ P31 00.84 00.25

Q31 182.72 16.79

z̄
′ PLoss 29.87 07.41

QLoss 103.38 09.53
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chosen input random variables denoted as X1 and X2.

Table 4.8: Different distribution types of input random variables for the accuracy com-
parison of Gaussian copula based sequence operations.

Case Inputs Distribution type Distribution parameters

1
X1

Gaussian µ = 0.5 , σ = 0.08
X2

2
X1 Gaussian µ = 0.5 , σ = 0.08

X2 Weibull shape parameter=1.5, scale parameter=2

3
X1 Weibull shape parameter=1.5, scale parameter=2

X2 Beta shape parameters of 5 and 2

4
X1 PV1 after preprocessing at noon

Non-parametric

X2 PV2 after preprocessing at noon

The accuracy of addition type convolution operation in handling different PMCCs

is shown in Figure 4.9 considering the first three cases of Table 4.8. The results of

an addition type convolution operated sequence XATC = X1 + X2 so obtained for

the first three cases are compared with that of Monte-Carlo simulation to ascertain

their accuracy. In order to further investigate the accuracy of addition type convolu-

tion and subtraction type convolution operations in incorporating both positive and

negative values of correlation between two non-parametric multimodal probability

distributions, case-4 in Table 4.8 is taken into consideration. The results for addition

type convolution operated sequence XATC1 = X1 +X2 and subtraction type convolu-

tion operated sequence XSTC = 10X1 − X2 are compared with that of Monte-Carlo

simulation as shown in Figure 4.10. In both the figures, the results of the sequence

operations closely follow the Monte-Carlo simulation plots indicating their accuracy

in handling correlated input random variables of any distributions.

Further, the capability of both the hybrid methods in handling correlated input

random variables precisely in PLF is evaluated by considering IEEE 118-bus test sys-

tem. In case of CCGMA, cluster distortion function based approach estimates the

value of “g” as 4. For CCSOT the values of ∆S1 and ∆S2 are taken as 0.01. The

cumulative probability plots of PL,100−103 using univariate-CCGMA and CCSOT are

compared with Monte-Carlo simulation in Figure 4.11 with and without considering

base-case correlation. It is evident that the plots obtained using both the hybrid

methods are closer to Monte-Carlo simulation. Various other PMCCs are also con-
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Note: MCS: Monte-Carlo simulation, ATC: Addition type convolution.

Figure 4.9: Accuracy comparison of Gaussian Copula based addition type convolution
operation to handle different parametric distributions and input correlations.

Note: MCS: Monte-Carlo simulation, ATC: Addition type convolution, STC:
Subtraction type convolution.

Figure 4.10: Accuracy comparison of Gaussian Copula based addition type convolution
and subtraction type convolution operations to handle non-parametric distributions and
input correlations.
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Note: MCS: Monte-Carlo simulation, WC: Without correlation, BC: Base-case
correlation.

Figure 4.11: Comparison of cumulative probability plots of PL,100−103 with and without
considering input correlation.

sidered, and it is found that for any value of PMCC, in case of all the result variables,

plots obtained using CCGMA, CCSOT, and MCS are nearly the same. This indicates

that the proposed hybrid methods are capable of handling input correlations satis-

factorily. Due to the consideration of base-case correlation, the standard deviation of

PL,100−103 is increased.

Finally, the effect of multiple input correlations, i.e. among the PV generations,

load powers and PV generations with their local loads on the probability distributions

of result variables is studied by considering three correlation conditions as defined in

Table 4.9. The analysis is carried out on New England 39-bus, IEEE 14 and 118-bus

test systems by performing PLF and TPLF simulations. Multivariate-CCGMA is

applied to obtain the probability distribution plots of the result variables. The effect

of various values of PMCC on the first two statistical moments pertaining to each

correlation type is compared in Table 4.10 for a few cases. It is to note that the impact

of input correlation has a noticeable effect on the standard deviation of the result

variables and the effect is more prominent in the tail regions of the distributions.

Depending on the sign of the associated sensitivity coefficients, the effect of input

correlation either elongates or shortens the tail region of the distributions. It can

be noticed from Table 4.10 that an increase in PMCC value decreases the standard
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deviation values of PL,103−105 and QL,25−26. However, the reverse is noticed in the

remaining cases.

Table 4.9: Three different input correlation conditions.

Correlation type C-1 C-2 C-3

PV-PV 0, 0.5, 1 BC BC

PV-Local load BC 0, 0.5, 1 BC

Load Load BC BC 0, 0.5, 1

Note: BC: Base-case correlation.

From the above analysis of results, it is clear that correlation does not have any

effect on the mean value and has an effect on standard deviation [refer Table 4.10].

A fixed change in the value of PMCC results in nearly a fixed change in the value

of standard deviation. The reason for such observations is due to the linearization of

non-linear load flow equations. In the sensitivity matrix based power system models,

result variables are linearly related with the input random variables. The correlation

between the input random variables does not affect the expected value of result vari-

ables whereas; the variance of result variables is a linear function of input correlation

[refer Appendix F]. In case of non-linear models, input correlation affects the expected

values of result variables and also the higher order moments of result variables could

be affected even more. Refer (F.3) and (F.4) of Appendix F.

4.4.4 Performance assessment of the proposed hybrid meth-

ods in approximating multimodal probability distribu-

tion of result variables

Solution accuracy and computational efficiency are the two performance criteria con-

sidered. The performance of the proposed hybrid methods is investigated on IEEE

14, 57 and 118-bus test systems considering the statistics of input random variables

as defined in Table 4.2 through 4.4 and Table 4.6 as well as the base-case correlations

as in Table 4.5. The results are compared with that of ECM using series expansion

methods, dependent discrete convolution, and Monte-Carlo simulation. First six cu-

mulants of result variables are considered while applying a series expansion based

ECM.

The accuracy and efficiency of CCGMA are related to “g”, and those of CCSOT
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Table 4.10: Effect of various input correlation conditions on the statistics of few result
variables.

Test system/model type Correlation type Result variable PMCC µ σ

New England 39-bus/TPLF C-1 δ27

0 -0.1948 0.0233

0.5 -0.1948 0.0251

1 -0.1948 0.0269

IEEE 118-bus/PLF C-1 PL, 103−105

0 0.3473 0.0298

0.5 0.3473 0.0278

1 0.3473 0.0257

New England 39-bus/TPLF C-2 QL, 25−26

0 -0.1668 0.0068

0.5 -0.1668 0.0065

1 -0.1668 0.0062

IEEE 14-bus/PLF C-3 |V13|
0 1.0548 0.00114

0.5 1.0548 0.00120

1 1.0548 0.00126

IEEE 118-bus/PLF C-3 PL, 105−106

0 0.1145 0.0287

0.5 0.1145 0.0292

1 0.1145 0.0297
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Note: MCS: Monte-Carlo simulation.

Figure 4.12: Comparison of cumulative probability plots of PL,49−54.

are related to ∆S. In the previous section, a cluster distortion function based ap-

proach was applied for determining the value of “g”, and the value of ∆S was set to

0.0001. In order to examine their performance, four different values of “g” such as 2,

3, 4, 5 and three different values of ∆S such as 0.001 (∆S1 = 0.1, ∆S2 = 0.01), 0.0001

(∆S1 = 0.01, ∆S2 = 0.01) and 0.00001 (∆S1 = 0.001, ∆S2 = 0.01) are now consid-

ered. The cumulative probability plots for PL,49−54 with various values of “g” and ∆S

are compared in Figure 4.12. The CCSOT result with ∆S = 0.00001 is more close to

Monte-Carlo simulation (ARMSE = 0.0316) followed by CCGMA plots for various

“g”. CCSOT result with ∆S = 0.001 approximates the cumulative probability plot

with maximum error i.e., ARMSE = 0.8931. The aggregate and average ARMSE

for the considered “g” and ∆S using univariate-CCGMA, multivariate-CCGMA and

CCSOT are compared in Table 4.11 for IEEE 118-bus system (558 result variables).

Unlike, CCSOT where the reduction in ∆S reduces the ARMSE value, the increase

in the value of “g” does not yield reduced ARMSE in case of CCGMA. The peculiar

observation might be because of the increase in the value of “g” yields data overfitting.

The average absolute percentage errors in standard deviation using CCGMA and

CCSOT for all the 558 result variables are compared with combined cumulant and

Gram-Charlier method (CCGCM), combined cumulant and Cornish-Fisher method

(CCCFM), dependent discrete convolution and Monte-Carlo simulation in Table 4.12.

The first six cumulants of the result variables are calculated in case of CCGCM and
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Table 4.11: Comparison of ARMSEs of the proposed hybrid methods considering input
correlations.

PLF method Aggregate ARMSE Average ARMSE

Univariate-CCGMA

g = 2, Nr = 160 78.2696 0.1403

g = 3, Nr = 1215 77.9332 0.1397

g = 4, Nr = 5120 77.4433 0.1388

g = 5, Nr =15625 79.1356 0.1418

Multivariate-CCGMA

g = 2, Nr = 10 81.7975 0.1466

g = 3, Nr = 15 75.9182 0.1361

g = 4, Nr = 20 71.4296 0.1280

g = 5, Nr =25 80.6712 0.1446

CCSOT

∆S = 0.001 425.9772 0.7634

∆S = 0.0001 70.5312 0.1264

∆S = 0.00001 59.4270 0.1065

CCCFM. The value of ∆S is set to 0.0001 in case of dependent discrete convolution.

The value of “g” is obtained using cluster distortion function based approach.

Table 4.12: Comparison of absolute percentage errors and simulation times for various
PLF methods considering base-case correlations.

PLF method

IEEE 14-bus IEEE 57-bus IEEE 118-bus

Average eσ Time (sec.) Average eσ Time (sec.) Average eσ Time (sec.)

Univariate-CCGMA 2.58 (Nr = 1600) 8.15 4.21 (Nr = 25600) 308.85 3.96 (Nr = 5100) 398.88

Multivariate-CCGMA 2.47 (Nr = 200) 1.02 3.64 (Nr = 4800) 48.64 3.73 (Nr = 20) 16.38

CCSOT 2.38 24.37 3.59 73.43 3.63 117.81

CCGCM 2.64 5.72 4.43 55.86 4.30 60.75

CCCFM 2.50 6.88 3.78 57.14 3.78 79.30

Dependent discrete convolution 2.30 37.69 3.48 196.84 3.53 974.55

Monte-Carlo simulation - 20.06 - 100.30 - 1842.15

Cumulative probability plots for PL,46−48, PL,64−61, QL,45−46, and QL,64−65 consid-

ering base-case correlations using all the methods are compared in Figure 4.13. In all

the cases, CCGMA, CCSOT and dependent discrete convolution plots are closer to

Monte-Carlo simulation plots as compared to CCGCM and CCCFM plots. CCGCM

and CCCFM are found incapable of approximating multimodal distributions of the

result variables. It is to further notice that, the upper tails of cumulative probabil-
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Figure 4.13: Comparison of cumulative probability plots of PL,46−48, PL,64−61, QL,45−46

and QL,64−65.

ity plots pertaining to PL,46−48, and QL,45−46 using CCGCM exceed unity whereas;

lower tail of PL,64−61 goes below the zero value. Similar observations are also noticed

in case of few other result variables. The reduced accuracy of the series expansion

methods is because they provide an approximation around the Gaussian distribution

and accuracy mainly depends on how much the distribution is close to the Gaussian

distribution. The total number of input random variables being more, the simulation

time for dependent discrete convolution exceeds Monte-Carlo simulation in case of

IEEE 14-bus and 57-bus systems. It is to note that, the simulation time in case of

multivariate-CCGMA is least as compared to other methods, the average eσ in case

of CCSOT is the lowest compared to all the methods. It is further to mention that,

for approximating unimodal probability distributions, CCGCM and CCCFM are the

better choices.
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Figure 4.14: PV array installation sites in Tamilnadu.
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4.4.5 Spatiotemporal model based temperature-augmented

probabilistic load flow simulations

In this section, TPLF is carried out on modified Indian utility 62-bus system by

using the spatiotemporal model as discussed in section 2.3. The modification is the

integration of five PV arrays, geographical locations of which are as shown in Figure

4.14.

For TPLF simulations the system base power and base temperature are set to

100 MVA and 100 0C respectively. CCGMA method is applied for approximating

the multimodal probability distributions of result variables. For the given values

of transmission branch MVA ratings, temperature-augmented load flow has conver-

gence problem. Since Newton-Raphson method does not guarantee convergence, if

the starting values are far from the true solution, load flow algorithm is initialized

using warm start, i.e. started from the solution to a conventional load flow solution

to facilitate algorithm stability and speed convergence. Hourly irradiance, ambient

temperature, and wind speed data are collected for the past 15 years (2000-2014).

The chosen sites for PV array installation corresponds to the bus numbers 18, 38,

41, 53 and 62 of Indian utility 62-bus system. The single line diagram of the system

under study is shown in Figure 4.15. Taking irradiance data (direct normal irradiance

rDN, diffuse horizontal irradiance rDH, and global horizontal irradiance rGH), ambient

temperature TAmb, and wind speed vW of the past 15 years, the PV generation time

series for the considered period is obtained using a set of steps as discussed in Figure

4.16.

The ambient temperature of all the transmission branches are presumed constant

and corresponds to the location Trichy. Now, the TPLF inputs include the obtained

PV generation time series using Figure 4.16, ambient temperature, and load real

and reactive powers. The above inputs form a multivariate structure and a set of

steps as discussed in section 2.3 is applied for the development of a spatiotemporal

model to forecast their future time series. Autoregressive conditionally heteroscedas-

tic (ARCH) model built with orders 4 to 8 fits all the principal components. The

developed ARCH models for principal components is used for the generation of fu-

ture time series. Finally, the obtained scenarios obey all the characteristics of the

historical observations of inputs and their corresponding probability distributions are

approximated using a non-parametric density estimation method. The cumulative
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Figure 4.15: Single line diagram of PV integrated Indian utility 62-bus system.
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Figure 4.16: A set of steps to obtain PV generation time series using the time series of
irradiance, ambient temperature, and wind speed.
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Figure 4.17: Comparison of cumulative probability plots (i) PL,37−38 and (ii) PL,41−42.

probability plots of a few result variables (real power flow in the branches 37-38 and

41-42) for the system under consideration using CCGMA is compared with that of

Monte-Carlo simulation [refer Figure 4.17]. Both the plots are nearly the same. The

similar observations are also noted in case of remaining result variables indicating the

accuracy of the CCGMA used for TPLF.

4.5 Conclusions

This chapter has presented the PSSA of power systems using the proposed hybrid

methods such as CCGMA and CCSOT. Firstly, the traditional PLF model is mod-

ified, and the resulting reduced order model is further upgraded by accounting for

the electro-thermal coupling effect of transmission branches. With regard to the ac-

curate approximation of multimodal probability distributions of result variables, the

performance of the proposed hybrid methods were verified as applied to various test

systems. In summary, the following observations from the result analysis are worth

noting.

(i) The accuracy of modified PLF model is highly appreciable in comparison to
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traditional model in the studied system.

(ii) The direct calculation of probability distributions of branch temperatures using

sensitivity matrices without solving the thermal balance differential equation

is the main advantage of the TPLF. Further, it is free from the requirement

of the value of the parameters describing the thermal characteristics of branch

conductors.

(iii) The proposed hybrid methods effectively incorporates the input correlations

and thereby accurately approximates the multi-modal probability distributions

of result variables.

(iv) The assumption of the same value of PMCC between the components of two dif-

ferent Gaussian mixtures as that between the Gaussian mixtures in univariate-

CCGMA degrades its accuracy as compared to multivariate-CCGMA.

(v) For sensitivity matrix-based linear models, input correlation does affect the

second and higher order moments of the result variables whereas the mean

value is unaffected.
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Chapter 5

CONCLUSIONS AND FUTURE

SCOPES

This chapter summarizes the significant results emanated as an outcome of the re-

search work carried out by providing general conclusions and discussion on the key

findings, followed by suggestions for the possible extensions of this research work.

5.1 Conclusions

The increased uncertainties in the present era power systems due to the large-scale

integration of renewable generations in conjunction with the conventional uncertain-

ties has significantly motivated the researchers towards the adoption of probabilistic

methods for various power system studies. Among which, PLF reveals the steady-

state characteristics of the power system thereby providing valuable information for

power system planning and operation. The primary goal of this thesis was to propose

various models and methods for PSSA. Following the effort in accomplishing the set

research objectives, the general conclusions that are worth highlighting are as follows.

The second chapter was devoted to the probabilistic modeling of various uncer-

tain inputs such as PV generation, aggregate load power, and ambient temperature.

Preprocessing approaches were applied to the daily time step data of aforesaid in-

puts to filter out the predictable variations in data. It was shown that, in case of

PV generation, the applied preprocessing approach of developing a generic multiple

linear regression model with regressors possessing a theoretically formulated physical

relevance was successful in tracing the periodic changing patterns in data collected at
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multi-time instants from various locations. On the other, for load power and ambient

temperature, as the periodic patterns are much complicated, extraction of their con-

cealed seasonalities is strenuous. Therefore, the formulation of regressors exhibiting

physical relevance is not straightforward. To combat this issue, a methodology to

select a reduced but sensible candidate set of frequency components for capturing

seasonalities was deliberated. The developed spatiotemporal model using proposed

preprocessing along with transformation techniques, principal component analysis and

a suitable time series model effectively characterizes the statistical facets of uncertain

inputs.

Chapter three performed an over-limit risk assessment on the New England 39-

bus power system with large-scale integration of PV generations considering electro-

thermal coupling effect of transmission branches. From the results, it was observed

that the change in values of TPLF model parameters has a significant impact on the

statistics of result variables. In a PV-integrated power system, PSSA applied to a

temperature-augmented system model offers an effective way of examining the effects

of PV penetration and ambient temperature uncertainties on the steady-state values

of the result variables. A TPLF study considering higher PV penetrations lead to a

higher variability of branch temperatures, branch power flows and losses as compared

to the other result variables. TPLF simulations under various PV penetrations and

input correlations aided in identifying the critical buses and branches by quantifying

system risk indices. It also assisted in providing theoretical support for the assessment

of system reinforcement and reliable operation. The calculated risk indices reflecting

the system security level can be used as an indicator for evaluating the power system

security.

The fourth chapter proposed sensitivity matrix based power system models and

hybrid methods for PSSA. The performance of the above models and methods were

verified on New England 39-bus test system, IEEE 14, 57, 118-bus test systems, and

Indian utility 62-bus system by performing PLF and TPLF simulations. The ac-

curacy of modified PLF method is highly appreciable in comparison to traditional

PLF model in the studied systems. The direct calculation of probability distributions

of branch temperatures using sensitivity matrices without the need for solving the

thermal balance differential equation is the main advantage of the TPLF. Further,

it is free from the requirement of the value of the parameters describing the thermal

characteristics of branch conductors. The proposed hybrid methods effectively in-
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corporated the input correlations and also accurately approximated the multi-modal

probability distributions of result variables. The assumption of the same value of

PMCC between the components of two different Gaussian mixtures as that between

the Gaussian mixtures in univariate-CCGMA is found to degrade accuracy as com-

pared to multivariate-CCGMA. For sensitivity matrix-based linear models, input cor-

relation does affect the second and the higher order moments of the result variables

whereas the mean value remains unaffected.

5.2 Future scopes

Based on the research carried out in this thesis, the recommendations for future work

involve the following possible extensions.

(i) Selection of the true number of mixture components in GMM based PSSA: In

general, the techniques used for the selection of mixture component number

including the one applied in this thesis impose each candidate for the optimal

number to fit some criteria for all the possible candidates. Further, the difficulty

lies in the proper initialization and selection of the true number of mixture

components for multivariate data with clusters being not well separated.

(ii) Modeling of non-linear dependency: In practice, the dependence between var-

ious input random variables in any probabilistic analysis is rarely linear and

therefore, ignorance of this dependency will cause significant error in the study.

Although the proposed scenario-based spatiotemporal model analytically char-

acterize the correlation effect accurately, fails to capture the actual dependence

structure. Capturing such dependencies in a multivariate case with the help of

a suitable Copula-based model is worth investigating.

(iii) Further improvement of sensitivity matrix based power system model: The TPLF

model so developed includes only the ambient temperatures of temperature de-

pendent branches in the input vector to account for the electro-thermal coupling

effect. The inclusion of other influencing factors such as wind speed, solar ir-

radiance, etc., is expected to result in further improvement in the estimated

TPLF results.

(iv) Storage requirements in PV integrated Power systems: In this thesis, PSSA is

performed under the assumption that, the power system is memory-less, i.e.,

power system without storage. Determination of storage requirements for the
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large-scale integration of PV generations into the power system to manage the

emanating uncertainties would also be an exciting area of research.
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Appendix A

Multiple linear regression model in

matrix form

The linear regression is a statistical data analysis technique that captures the extent

to which there is a linear relationship between the response variable or regressand

and the regressors. The regressors are known as predictors or explanatory variables

as they predict or explain the factors that influence the regressand. The estimated

regression coefficients can calculate the degree of the impact. The negative coefficient

value dictates the inverse relation with the regressand, and the positive value can be

said to have a positive influence. A generic multiple linear regression model with “k”

regressors is given as,

yi = aM,0 + aM,1T1,i + aM,2T2,i + · · ·+ aM,kTk,i + εi, i = 1, 2, · · · , ss (A.1)

where y is the regressand, T1 through Tk are the regressors, aM,0 through aM,k are

the regression coefficients and ε is the residual of the model.

The model (A.1) is a form of parametric regression where the relationship between

regressand and regressors has a predetermined form. It models the conditional mean

of the regressand under the assumptions of (i) assigning equal weights to all the data

points and (ii) minimization of error sum of squares.

In linear regression, linear refers to the linearity in parameters and not the linearity

in regressors, i.e. parameters appear with power one; it is not multiplied or divided by

any other parameters. While the equation is linear in parameters, one can transform
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the predictor variable in ways that produce curvature. The model is still linear in the

parameters even though the predictor variables are non-linear.

The model (A.1) in matrix form is given as,

[Y ] = [T][aM] + [ε] (A.2)

where [Y ] =


y1

y2

...

yss


ss×1

, [T] =


1

1
...

1

T1,1

T1,2

...

T1,ss

· · ·
· · ·
. . .

· · ·

Tk,1

Tk,2

...

Tk,ss


ss×(k+1)

,

[aM] =


aM,0

aM,1

...

aM,k


(k+1)×1

, [ε] =


ε1

ε2

...

εss


ss×1

.

If âM is a vector of estimates of aM, the estimated multiple linear regression model

is given as,

Ŷ = TâM + e (A.3)

where e denotes the vector of residuals which is computed as,

e = Ŷ − TâM (A.4)

Now the sum of square of residuals as a function of âM is given as,

RS (âM) =
∑

ei
2 = eTe =

(
Ŷ − TâM

)T (
Ŷ − TâM

)

=
(
Ŷ
)T

Ŷ −
(
Ŷ
)T

TâM − (âM)TTTŶ + (âM)TTTTâM (A.5)

where the superscript “T” is the transpose operation.

The least square estimator is obtained by minimizing (A.5). Therefore the deriva-

tives are set equal to zero, i.e. ∂(RS)
∂âM

= 0. This results in

− 2TTŶ + 2TTT âM = 0
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⇒ âM =
(
TTT

)−1
TTŶ (A.6)

A solution for âM can be obtained using (A.6) if the inverse of TTT exists i.e.,

the matrix T should have rank k + 1. As the matrix T is a ss× (k + 1) matrix, this

requires that ss ≥ (k + 1). In practice, it is required that “k” is considerably smaller

than “ss”.

If the matrix T has rank “k”, it follows that the Hessian matrix ∂2(RS)

∂âM∂(âM)T
= 2TTT

is a positive definite matrix. Hence, (A.6) is indeed the minimum of (A.5).
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Appendix B

Non-parametric density estimation

method

In general, a non-parametric density estimation method is opted when the probability

distribution cannot be defined with the help of any parametric distribution form.

Non-parametric density estimation based on Kernel function with fixed bandwidth

for univariate case is discussed underneath.

For a given data of “N” samples, i.e. x = {x1, x2, · · · , xN}, an estimate of its

probability density function f (x) using Kernel function is given as,

_

f (x) =
1

N

N∑
i=1

1

h
ϕ

(
x− xi
h

)
(B.1)

where the smoothing parameter h is the bandwidth; ϕ (•) is the Kernel function with

choices to include Gaussian window, Parzen window, etc.

A proper choice of bandwidth and Kernel function are the important aspects in

non-parametric density estimation. The most popular approach to decide on the value

of h is the adoption of Silvermans thumb rule which minimizes the mean integrated

square error and is defined as,

h =

(
4σ̂5

3N

)1/5
(B.2)

where σ̂ is the standard deviation of the data.

Having decided an appropriate bandwidth, the Gaussian Kernel, the most common
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choice is defined as,

ϕ (z) =
1√
2π
e−

z2

2 . (B.3)

The Parzen window function on the other hand is given as,

ϕ (z) =

{
1, |z| ≤ 0.5

0, |z| > 0.5
. (B.4)

132



Appendix C

Principal component analysis: an

orthogonal linear transformation

Principal component analysis is a statistical technique that uses orthogonal trans-

formation to convert a set of observations of correlated random variables into an

uncorrelated set referred to as the principal components. Each principal component

is a univariate time series. Application of principal component analysis to correlated

Gaussian data, results in independent principal components. In case of a set of non-

Gaussian data, independent principal components are obtainable only if a suitable

transformation is used to convert the non-Gaussian data into Gaussian before apply-

ing principal component analysis. The application of principal component analysis

follows a set of steps as discussed under:

(i) Step-1: For “nc” correlated random variables each of “ss” samples, define a

matrix W of the form:

W =


w1

1 w2
1 · · · wss

1

w1
2 w2

2 · · · wss
2

...
...

. . .
...

w1
nc w2

nc · · · wss
nc


nc×ss

(C.1)

where an element wji corresponds to the jth element of ith random variable.

(ii) Step-2: Obtain mean subtracted matrix WC as,
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WC = W − [diag (µ1, µ2, · · · , µnc)]nc×nc


1

1
...

1

1

1
...

1

· · ·
· · ·
. . .

· · ·

1

1
...

1


nc×ss

(C.2)

where diag (•) is the diagonal matrix and µi is calculated as,

µi =
1

ss

ss∑
j=1

wji . (C.3)

(iii) Step-3: Form correlation coefficient matrix (ρ)nc×nc and check its positive def-

initeness. In case of a non-positive definite, repair for positive semi-definite

matrix.

(iv) Step-4: Obtain eigenvalues of (ρ)nc×nc and arrange the eigenvalues in the order of

λ1 ≥ λ2 ≥ · · · ≥ λnc. Obtain the corresponding eigenvectors ui, i = 1, 2, · · · , nc

and form matrix U =
(
u1| u2| · · · | unc

)
.

(v) Step-5: Finally, the principal components are obtained as,

Z = UTWC (C.4)

where each row in Z represents a principal component i.e., a time series which

is univariate and uncorrelated with other principal components.
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Appendix D

Estimation of variance coefficient

For an “nc” correlated input random variables (each of NS samples) represented

as Xij; i = 1, 2, · · · , nc; j = 1, 2, · · · , NS and “dnr” result variables, represented as,

Dk; k = 1, 2, · · · , dnr bearing a functional relationship D = F (X), the estimates of

the expected values of result variables is given as,

Ê (Dj) =
1

NS

NS∑
j=1

F (Xj) (D.1)

where Xj in the jth sampled value vector of “nc” input random variables and Dj is

the jth value vector of “dnr” result variables.

The uncertainty of the estimate in (D.1) is given by its variance which is calculated

as,

V
(
Ê (D)

)
=
V (D)

NS

(D.2)

where V (D) is the variance of D, estimated as,

V̂ (D) =
1

NS − 1

NS∑
j=1

{
F (Xj)− Ê (Dj)

}2

.

Finally, the variance coefficient β using (D.1) and (D.2) is estimated as,

β =

√
V
(
Ê (D)

)
Ê (D)

. (D.3)
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Appendix E

Formulation of the

temperature-augmented Jacobian

matrices

The formulations of the Jacobian matrices are as described under:

(i) Formulation of JM1: Since P at all buses except for the slack and Q at all

the load buses are known, corresponding mismatch equations can be explicitly

expressed. By eliminating the rows and columns corresponding to mismatch

equations of P and Q of the slack bus as well as Q of the P |V| buses from

(3.10) yields,

 ∆PNS

∆QL

∆T ′

 =


∂PNS

∂δ
∂PNS

∂|V |
∂PNS

∂T
∂QL

∂δ
∂QL

∂|V |
∂QL

∂T
∂T ′

∂δ
∂T ′

∂|V |
∂T ′

∂T


 ∆δ

∆ |V |
∆T

 . (E.1)

In a more simplified form, (E.1) is expressed as,

 ∆PNS

∆QL

∆T ′

 =

 J1 J2 J3

J4 J5 J6

J7 J8 J9


 ∆δ

∆ |V |
∆T

 = (JM1)

 ∆δ

∆ |V |
∆T

 (E.2)

where PNS is the real power injection vector at the non-slack buses and QL is the
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reactive power injection vector at the PQ buses. The uncertainty component of

state vector using (E.2) is obtained as, ∆δ

∆ |V |
∆T

 =
(
JM−1

1

)  ∆PNS

∆QL

∆T ′

 =
(
JM−1

1

)  ∆PNS

∆QL

∆TAmb

 . (E.3)

The sub-matrices J1, J2, J4, and J5 are same as that of the sub-matrices of

conventional load flow Jacobian matrix (Wang et al., 2010). The formulation

of sub-matrices J3 and J6 is detailed in (Frank et al., 2013). The partial differ-

entiation of (3.8) with respect to the state variables yields the elements of the

sub-matrices J7, J8, and J9. Although the temperature related mismatch equa-

tion as developed in (Frank et al., 2013) is slightly different from that developed

in (3.8), the sub-matrices of JM1 in both the cases are identical.

(ii) Formulation of JM2: By considering the rows corresponding to the mismatch

equations of Q of P |V| buses and the columns corresponding to PNS and QL of

(E.1) yields,

(
∆QP|V|) =

(
∂QP|V|

∂δ
∂QP|V|

∂|V |
∂QP|V|

∂T

)  ∆δ

∆ |V |
∆T


=
(

J10 J11 J12

)  ∆δ

∆ |V |
∆T

 = (JM2)

 ∆δ

∆ |V |
∆T

 .

(E.4)

In (E.4), QP|V| is the reactive power injection vector at the P |V| buses. The

sub matrices J10, J11, and J12 for QP|V| are formulated in the same way as that

of J4, J5, and J6 for QL.

(iii) Formulation of JM3: The uncertainty component of branch power flow vector

is expressed as,
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(
∆PL

∆QL

)
=

(
∂PL

∂δ
∂PL

∂|V |
∂PL

∂T
∂QL

∂δ
∂QL

∂|V |
∂QL

∂T

)  ∆δ

∆ |V |
∆T


=

(
J13 J14 J15

J16 J17 J18

)  ∆δ

∆ |V |
∆T

 = (JM3)

 ∆δ

∆ |V |
∆T

 .

(E.5)

In (E.5), an element of the left side vector is the power flow of branch i− j at

the ith bus (i.e., the power flow from ith bus to jth bus). The formulation of

the sub-matrices J13, J14, J16, and J17 is detailed in (Wang et al., 2010). The

formulation of sub-matrices J15 and J18 is detailed in (Frank et al., 2013).

(iv) Formulation of JM4: By considering the rows corresponding to the mismatch

equations of P and Q of slack bus and the columns corresponding to and PNS

and QL of (E.1) yields,

(
∆P S

∆QS

)
=

(
∂PS

∂δ
∂QS

∂δ

∂PS

∂|V |
∂QS

∂|V |

∂PS

∂T
∂QS

∂T

)  ∆δ

∆ |V |
∆T


=

(
J19

J22

J20

J23

J21

J24

)  ∆δ

∆ |V |
∆T

 = (JM4)

 ∆δ

∆ |V |
∆T

 .

(E.6)

In (E.6), P S and QS are the real and reactive power injection vectors at the

slack bus. The formulation of sub-matrices of JM4 is carried out in the same

way as that of JM1.

(v) Formulation of JM5: Real and reactive power flow vector from jth bus to ith

bus is developed by using a set of similar steps as used for (E.5). It is given as,

(
∆P

′
L

∆Q
′
L

)
=
(

JM
′

3

)  ∆δ

∆ |V |
∆T

 (E.7)

The branch power loss vector is obtained as the sum of (E.5) and (E.7). It is
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given as,(
∆PLoss

∆QLoss

)
=

(
∆PL + ∆P

′
L

∆QL + ∆Q
′
L

)

=
(

JM3 + JM
′

3

)  ∆δ

∆ |V |
∆T

 = (JM5)

 ∆δ

∆ |V |
∆T

 .

(E.8)

In (E.8) JM5 can also be obtained by the partial differentiation of branch power

loss with respect to the state variables. The orders of sub-matrices are indicated

in Table E.1.

Table E.1: Orders of sub-matrices.

SM Order SM Order SM Order

J1 (n− 1) × (n− 1) J9 tdb × tdb J17 ` × (n−m− 1)

J2 (n− 1) × (n−m− 1) J10 m × (n− 1) J18 ` × tdb

J3 (n− 1) × tdb J11 m × (n−m− 1) J19 1 × (n− 1)

J4 (n−m− 1) × (n− 1) J12 m × tdb J20 1 × (n−m− 1)

J5 (n−m− 1) × (n−m− 1) J13 ` × (n− 1) J21 1 × tdb

J6 (n−m− 1) × tdb J14 ` × (n−m− 1) J22 1 × (n− 1)

J7 tdb × (n− 1) J15 ` × tdb J23 1 × (n−m− 1)

J8 tdb × (n−m− 1) J16 ` × (n− 1) J24 1 × tdb
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Appendix F

Effect of input correlations on the

statistics of the result variables

For “nr” random variables, X1, X2, · · · , Xnr with known expected values µXi , and

variances σ2
Xi

, i = 1, 2, · · · , nr, the expected value and variance of a linearized model

Y = a1X1 + a2X2 + · · ·+ anrXnr is given as,

µY =
nr∑
i=1

aiµXi , (F.1)

σ2
Y =

nr∑
i=1

a2
iσ

2
Xi

+ 2
nr∑
i=1

i−1∑
j=1

aiajcov [Xi, Xj], (F.2)

where a1, a2, · · · , anr are the constant coefficients; cov [Xi, Xj] is the covariance be-

tween the random variables Xi and Xj.

It can be noted from (F.1) and (F.2) that the expected value of Y is not affected

by input correlation whereas; the variance is influenced by input correlation. Inter-

estingly, the variance is a linear function of input correlation. In case of a non-linear

model, input correlation also affects the expected value. Consider a non-linear model

of the form: Y = X1X2. The expected value and variance of Y are given as,

µY = µX1µX2 + cov [X1, X2] , (F.3)

σ2
Y = µX2

1
µX2

2
+ cov

[
X2

1 , X
2
2

]
− (µX1µX2 + cov [X1, X2])2. (F.4)
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