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Abstract

Remote sensing is defined as a mechanism facilitating the measurement of object’s
features on the earth’s surface through the data obtained from platforms such as air-
craft and satellites. Remote sensing provides the observation, mapping, analysis, and
management of various resources present on the earth. In the past few decades, the
tremendous progress in remote sensing technologies has enriched the techniques of ac-
quisition, processing, and analysis of acquired data. The imaging data collected by
the satellite sensors can be characterized using features like spatial resolution, spectral
resolution, radiometric resolution, and temporal resolution. This thesis investigates the
optical images whose spectral range spans visible and near-infrared (NIR) regions of
the electromagnetic (EM) spectrum.

The images with high-spatial and high-spectral resolution are of immense interest
for various remote sensing applications like land mapping, change detection, and object
recognition. The current generation satellite sensors, namely QuickBird, IKONOS,
WorldView, GeoEye, etc., incur constraints such as the trade-off between spatial and
spectral resolutions, limited on-board storage of satellite platform, moderate signal to
noise ratio of received signal energy. The afore-mentioned commercial satellites usually
produce two kinds of images; Panchromatic (PAN) image with high spatial and low
spectral resolution and multispectral (MS) image with high spectral and low spatial
resolution characteristics. The physical and technological limitations of sensors prohibit
the objective of achieving an image with the finest spatial and spectral resolution.

Pan-sharpening (PS) is a remote sensing image fusion method that produces a high-
resolution multispectral (HRMS) image by synthesizing the low-resolution MS image
with a corresponding high-resolution PAN image. The requirement of pan-sharpened
data is steadily increasing, driven by the consistent diffusion of commercial products
using high-resolution images like Google Earth and Bing Maps. To date, different
classes of pan-sharpening methods such as component substitution, multi resolution
analysis, and model based methods have been developed. Most of the conventional
PS methods induce spectral distortion and spatial artifacts in the fused image. Further,
there is a demand for an efficient fusion technique that yields a pan-sharpened image
with balanced spatial and spectral qualities.

This research concentrates on developing pan-sharpening techniques using a sparse
representation mechanism. In PS problems, the fused image is obtained by imparting
the missing spatial features extracted from the PAN image into the MS image bands.
The sparse representation (SR) based PS methods exploit the sparse nature of spatial
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details using an appropriate basis, usually termed as a dictionary. The construction of
a pertinent dictionary that promotes the sparsity of PAN and MS images is the funda-
mental task in SR based pan-sharpening problems. Motivated by the existing SR based
techniques, PS methods based on two different dictionaries, namely dual dictionary
and multi-scale dictionary are proposed in this thesis. To cope with the computational
complexity realized by the large-sized satellite images, the SR based methods adapt
patch-based strategies. The PS mechanism is implemented on overlapped patches ex-
tracted from the source images. The overlapping mechanism results in redundant and
inconsistent image features in the fused image. An alternative mechanism termed as
convolutional sparse representation (CSR) is deployed to deal with the drawbacks in
patch-based pan-sharpening techniques. The CSR based methods are robust to misreg-
istration between source images and produce the pansharpened image with enhanced
spatial and spectral features. In addition to these methods, a variational pan-sharpening
scheme is developed in this thesis to preserve the spatial details and to reduce the spec-
tral distortion. The pan-sharpening process is formulated as a constrained optimization
function using the appropriate and reliable prior terms. The developed optimization
problem is solved using a suitable minimization algorithm yields a pan-sharpened im-
age.

The proposed methods are evaluated using the datasets obtained over different ge-
ographical terrains. The experimentation is performed at full-scale and reduced-scale
resolutions as specified by the Wald’s and QNR protocols. The pan-sharpening tech-
niques developed in this thesis are validated using visual and quantitative evaluation.

Keywords: Pan-sharpening; High-resolution multispectral image; Sparse represen-
tation; Dictionary learning; Convolutional sparse coding; Variational method.
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CHAPTER 1

INTRODUCTION

Remote sensing is the process of acquiring features of an object or an activity through
sensors positioned at a distant platform, not being in direct contact with the object of
interest. Aircrafts and satellites are the common platforms that facilitate data acquisi-
tion for remote sensing observation. Remote sensing sensors, especially those mounted
on satellites, furnish the valuable imagery data of the earth’s surface. The accessibility
and analysis of such data have promoted the applications in fields like climatic changes,
precision agriculture, land-cover, and land-use aspects, etc. The primary objective of
remote sensing (RS) sensors is to capture the energy reflected or emitted by the earth’s
surface in a digital format. The recorded digital data is processed by the computing ma-
chines to produce imaging products useful for a wide range of applications. Depending
upon the specifications of spectrum usage, the following three types of images are pro-
duced by the RS sensors: optical images, synthetic aperture radar (SAR) images, and
light detection and ranging (LiDAR) images (Pohl and Van Genderen, 2016). This the-
sis primarily involves optical images that correspond to the visible and infrared spectral
regions of the electro-magnetic (EM) spectrum.

The EM spectrum comprising a broad range of wavelengths and the corresponding
frequencies is shown in Fig.1.1.

Figure 1.1: Visible and InfraRed spectral regions(expanded) of an electro-magnetic
spectrum



The remote sensing optical images are characterized by the following sensor at-
tributes: spatial resolution, spectral resolution, radiometric resolution, and temporal
resolution. Spatial resolution refers to the geographical area on the ground represented
by a pixel or a measure of the smallest object that can be resolved by the sensor. The
amount of scene details that can be secured by the sensor increases with the decrease
in pixel size. The spatial resolution of the sensor is associated with its instantaneous
field of view (IFOV). The subtended angle through which a detector element or pixel
captures the radiation energy is defined as IFOV. For a given number of pixels, the
finer the IFOV (corresponding to small area coverage) is, higher the spatial resolution.
The spatial resolution of a sensor is the minimum distance by which two separate ob-
jects are observed as distinct and is expressed in meters (m). The spectral resolution
is the sensor’s capability to resolve the wavelength intervals/bands of electro-magnetic
spectrum. The narrower the spectral bandwidth is, the higher the spectral resolution.
Depending on the supported spectral resolution, sensors can be classified as panchro-
matic, multispectral, hyperspectral and ultraspectral. Multispectral (MS) images are
usually composed of 4-7 spectral bands. Whereas, the sensor that can measure number
of spectral bands in the order of hundreds or thousands is referred to as hyperspectral
(HS) data. In addition to the MS or HS images, satellite sensors produce a panchromatic
(PAN) image. The PAN sensor integrates the radiation from visible and near-infrared
range into a single broadband.

The radiometric resolution indicates the dynamic range or different intensities of
radiation that the sensor can able to distinguish. The sensor with high dynamic range
can simultaneously observe the low and high contrast objects in the scene. The dy-
namic range of QuickBird sensor is 11 bits, thus 2048 intensity levels are present in
each spectral band. Temporal resolution is the time elapsed between two successive
measurements of the same scene and is also named as revisit time. Temporal resolution
characteristic is useful for land-cover change detection aspect. The resolution charac-
teristics of some of the high-resolution sensors are presented in Table 1.1 (Pohl and
Van Genderen, 2016).

The trade-off between sensor’s specifications such as IFOV, signal-to-noise ratio
(SNR), and on-board storage of satellite sensors impose constraints on the desired spa-
tial and spectral resolutions. For a specific value of IFOV, to contend the image SNR,
MS sensors (usually with reduced spectral bandwidth compared to PAN sensor) must
support low spatial resolution. The PAN imaging sensor is sensitive to the radiation
within a broader wavelength range. Conversely, each MS band covers a narrow spectral
range. The higher amount of energy received by the PAN imaging sensor per pixel can
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Table 1.1: Resolution characteristics of sensors
Features QuickBird Pléiades IKONOS

Dynamic

range

(bits/pixel)

11 12 or 16 11

Spatial

resolution (m)

PAN MS PAN MS PAN MS

0.7 2.8 0.5 2 1 4

Spectral

range (nm)

455–745 B: 455–525 455–745 B: 455–525 450–900 B: 450–520

G:530-590 G: 530–590 G: 510–600

R: 625–895 R: 625–895 R: 630–700

NIR1:760–890 NIR1: 760–890 NIR1: 760–850

detect intensity variations with smaller pixel sizes compared with MS sensors. Hence,
on the same satellite platform, the resolution of PAN sensor is higher than that of MS
sensor. Owing to these limitations, the higher spatial resolution can be acquired with
a compromise on spectral diversity. The current generation satellite sensors such as
IKONOS, QuickBird, WorldView, Pléiades and GeoEye produce images with comple-
mentary spatial and spectral characteristics: A panchromatic (PAN) image with high-
spatial resolution and a multispectral (MS) image with high-spectral resolution. The
most effective solution for providing high-spatial resolution and high-spectral resolu-
tion remote sensing images is to develop efficient image fusion techniques.

Wald.L (Wald, 1999) defined image fusion as ” a formal framework which are ex-
pressed means and tools for the alliance of data of the same scene originating from
different sources. It aims at obtaining information of greater quality; the exact defe-
nition of quality depend upon the application.” Fused image give better interpretation
means and results as data with different characteristics are merged. The objective of
image fusion technique is to integrate the useful information from multiple images of
the same scene to generate a result which can provide more useful information than that
can be obtained from any source image individually.

The remote sensing applications like land-use and land-cover classification, envi-
ronmental monitoring, objection detection, and Google maps desire the images with
high spatial as well as high spectral resolution. Hence, the objective is to integrate the
geometric features constituted by the PAN image (but not present in MS image) and
the spectral bands of the MS image (contrary to an unique band in PAN image) into
a single image. The advanced data fusion techniques have been developed to exploit
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increasing amount of the sophisticated multi-sensor data. Specific methodologies with
acceptable apprehension of input data are desirable for image fusion. Remote sensing
fusion mechanisms furnish the imagery with enhanced interpretation capabilities on
combining essential spatial and spectral features.

1.1 Pan-sharpening

Pan-sharpening (PS) is a remote sensing image fusion technique that combines the com-
plementary spatial and spectral characteristics from the individual images and synthe-
sizes a high-resolution multispectral (HRMS) image. Thus, the pan-sharpening process
produces images with high spatial resolution while preserving the essential spectral
information (Alparone et al., 2015). The PAN, MS and HRMS images with the corre-
sponding resolution properties are shown in Fig.1.2.

Figure 1.2: PAN, MS and Pan-sharpened images (WorldView-2)

For an illustration, if the multispectral image comprises of 256×256×4 pixels, the
corresponding panchromatic image is 1024×1024 pixels. These two images are treated
as the observed data. The obtained pan-sharpened image consists of 1024×1024×4
pixels. The number of pixels that are to be estimated is 3.2 times the number of pixels
that synthesize the observed data.

The research related to sparse representation and reconstruction of images has ex-
panded significantly in the recent years. Sparsity deals with the representation of images
using an overcomplete dictionary that consists of image patches as columns (called as
atoms). Images are described as linear combinations of few of these atoms. Designing
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an appropriate dictionary that sparsely represents the given image is a challenging task.
The sparse recovery of signals over an appropriate dictionary is one of the most ac-
tively developed theories for remote sensing applications. The intial attempts to apply
the concept of sparsity to pan-sharpening of multispectral images are reported in the
recent years.

The following two sections describe the concepts of sparse representation of sig-
nals/images, the dictionary learning mechanism and the concept of multi-scale dictio-
nary learning process in wavelet domain.

1.2 Sparse Representation Mechanism

During the past two decades, sparsity has emerged as a prominent concept in a wide-
range of image processing applications (image denoising, compression, restoration and
super resolution; to name only a few applications) (Rish and Grabarnik, 2014). Much
of the recent evolution of research made in image processing domain can be attributed
to the sparse modelling of image content and a wise implementation of these models in
a variety of applications.

A signal/image, y is considered as an n×1 column vector in a finite-dimensional
subspace of Rn, is strictly or exactly sparse if most of the vector’s elements are equal to
zero, i.e., if its support Λy = {1≤ i≤ n| y[i] 6= 0} is of cardinality k� n. A k-sparse
signal is a signal for which exactly k of its samples have a non-zero value. If a signal
is not sparse in its inherent domian, it may be represented sparsely in an appropriate
transform domain. For instance, if y represents a sinusoidal signal it is clearly not sparse
in time-domain, however, its Fourier transform is extremely sparse (actually 1-sparse,
comprising of only one arbitrary frequency).

The natural images are tend to be sparse in a redundant image domain which is
usually known as dictionary where, every column of the dictionary is called an atom.
The image can be modelled as a linear combination of K atoms of the dictionary such
that,

y = Ds (1.1)

where, s is called sparse representation vector of an image y with the associated dictio-
nary D. If the dictionary is a fixed basis, every signal can be exclusively represented as
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a linear combination of the dictionary atoms. For an orthogonal dictionary, the sparse
representation coefficients (elements of vector s) can be measured as inner products of
the signal y and the dictionary atoms. Whereas, if the dictionary is non-orthogonal, the
sparse coefficients (elements of s) are the inner products of the signal, y, and the in-
verse of dictionary D, also referred to as the bi-orthogonal dictionary. An overcomplete
dictionary (Dn×K,n� K) has more elements/ atoms than the dimension of the image.
Hence, the dynamics in Eq.1.1 amounts to an under-determined system of linear equa-
tions. This leads to a possibility of existing infinetely many vectors, s to satisfy the
relation y = Ds. The schematic representation of a signal over a redundant dictionary is
shown in Fig.1.3.

Figure 1.3: Sparse representation schematic.

The aim of sparse representation (also known as sparse coding) is to find a vector s
with fewest possible non-zero elements. Representing the image y using an appropriate
dictionary D by enforcing the sparsity on s, leads to solving the following optimization
problem.

ŝ = argmin ‖s‖0 subject to ‖y−Ds‖2
2 = 0 (1.2)

where, ||s||0 is the `0 pseudo-norm that counts the number of non-zero elements in
vector s. It is well-known that solving the Eq.1.2 is a non-deterministic polynomial-time
hard (NP-hard) problem. Therefore, the following two tractable altenative approaches
have been practiced: greedy algorithms and convex relaxation.

The `1 minimization problem,

ŝ = argmin ‖s‖1 subject to ‖y−Ds‖2
2 ≤ ε (1.3)
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is regarded as a convex relaxation of Eq.1.2 (Donoho, 2006). Here, ε is the error tol-
erance. Usually, the Eq.1.3 is also termed as Basis Pursuit (BP). The `1 minimiza-
tion problem can be solved with efficient convex optimization methods. The greedy
algorithm called orthogonal matching pursuit (OMP) (Tropp, 2004) has proven to be
impressive in solving sparse approximation problem (Eq.(1.3)).

OMP algorithm is an iterative algorithm to solve the sparse approximation problem.
The fundamental principle of this algorithm is gradually finding the non-zero locations
of sparse coefficients vector ‘s’ one at a time. The training signal y is assumed as initial
residual. In each step, the algorithm search for the column from the dictionary D that
best correlated with the current residual. Subsequently, by considering the new atom
and its coefficient the residual is updated. In each iteration of algorithm, all the non-zero
coefficients are updated by the Least-Squares method. The choice of the dictionary that
sparsifies the signals is crucial for the success of the sparse coding problem.

1.3 Dictionary Learning Mechanism

The performance of the sparse coding algorithms in terms of attained approximation
quality and possible choices for the optimal sparse coefficient vector s depends not
only on the signal y but also on the over complete dictionary, D. For a given class of
images, there exist dictionaries that are more likely to lead to sparsest solutions than
that can be obtained on using the other dictionaries. The explicit aim of dictionary
learning methods is to find an optimized dictionary that constitute a set of specific atoms
describing the most vital attributes of the target images.

The methods for designing a dictionary can be divided into the following two cat-
egories: the analytic method and the learning based method. In analytic method, the
dictionaries are designed using a set of pre-determined functions/bases. The dictionar-
ies of this category includes definite matrices formed exclusively by Fourier transform,
Wavelets, Curvelets etc. These dictionaries are extremely structured and can be imple-
mented in a speedy manner.

In the learning based class, the dictionary is learned from a set of training samples
which is more adaptive to the data. The learned dictionaries yield better performance
in specific applications, although at the cost of unstructured features. A typical set of
such applications includes the images, which contain complicated and non-stationary
information. K-Means singular value decomposition (K-SVD) algorithm (Aharon et al.,
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2006) is a prominent dictionary learning/training algorithm to extract the most premitive
features of images. The dicionary learning problem can be formulated as:

argmin
D,S

‖Y−DS‖2
F subject to ‖si‖0 ≤ T0 ∀ i (1.4)

where, Y ∈ Rn×N is a matrix of columns being training images. S ∈ RK×N, with si as
columns is a matrix of sparse representations for the data elements in Y. Here, T0 is the
admitted sparsity level for each column of S and ‖.‖F represents the Frobenius norm.

The Frobenius norm of a ‘p×q’ matrix, D is defined as the squareroot of sum of
squares of its elements.

|D|F =

√√√√ p

∑
i=1

q

∑
j=1
|dij|2

K-SVD solves the Eq.1.4 iteratively by the execution of the following two stages: sparse
coding and dictionary-update. The Dictionary D is initialized arbitrarily and sparse
coefficients α are computed in the first stage. The penalty term is written as

||Y−DS||2F =
N

∑
i=1
||yi−Dsi||22, (1.5)

The problem formulated in Eq.1.4 is seperated into N sub problems.

for i = 1,2, .....N. min
si
||yi−Dsi||22 subject to ||si||0 ≤ T0

In second stage, the dictionary atoms are modified with the corresponding current sparse
vectors. Presuming the dictionary D and the sparse coefficient matrix S are fixed, the
column dk from the dictionary and its corresponding coefficients in s, that is ith row si

T

to be considered for updation. In the formulated objective function (Eq.1.4), the term
DS is decomposed as

||Y−DS||2F =

∥∥∥∥∥Y−
K

∑
i=1

disi
T

∥∥∥∥∥
2

F

(1.6)

=

∥∥∥∥∥(Y−∑
i 6=k

disi
T)−dksk

T

∥∥∥∥∥
2

F

(1.7)

= ||Ēk−dksk
T||2F (1.8)
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Ēk is the error matrix for all the N sub-problems, except for the kth atom in the dictio-
nary. The following modifications are executed on the error term, Ēk, defined in Eq.1.8,
in order to enforce the sparsity constraint. The error matrix, Ēk is modified such that it
is restricted to include only the sub-problems (out of total N sub-problems) that are cur-
rently using the dk atom, labled as ĒR

k . The row vector, sk
T is shrinked by discarding the

zero entries and termed as sk
R. Under these circumstances, the problem can be treated

as the minimization of the function

||ĒR
k −dksk

R||2F (1.9)

The singular value decomposition (SVD) is used to decompose the restricted error ma-
trix as ĒR

k = U∆VT . The first column of U is the new solution d̃k, and the first column of
VT multiplied by ∆(i, j), i = j = 1, is the new coefficient vector sk

R. The values obtained
from SVD, effectively minimize the error defined in Eq.1.8.

The prominent results with K-SVD can be achieved by implementing the following
variations.

• The dictionary element which is being not frequently used (relatively with other
atoms) during sparse coding stage can be replaced with least represented training
vector.

• If any two most similar columns (if the absolute inner product of two columns
exceeds a threshold value) are exists in the dictionary, one of the column can be
replaced with least represented vector.

1.3.1 Multi-Scale Dictionary Learning Using Wavelets

The inherent features of a certain class of images can be acquired effectively by com-
bining the features of multi-scale representations (such as Wavelets) with the capability
of learned dictionaries. The traditional analytic and learning based approaches can be
merged to construct exactly a multi-scale learned dictionary inheriting the advantages
of both of these approaches. The notion of multi-scale dictionary learning is effective
for sparse and redundant representation of signals which are naturally appear at dif-
ferent scales. The multi-scale dictionary learning using wavelets can be expressed by
modifying Eq.(1.4), as :

argmin
D,S

‖WAY−DS‖2
F subject to ‖si‖0 ≤ T0 ∀ i (1.10)

9



where, WA is the wavelet analysis operator. The Wavelet analysis domain is a collection
of coefficient images or bands. Different bands consists of data at different scales and
orientations (horizantal, vertical and diagonal).

According to this formulation, the data samples can be represented as sparse com-
bination of atoms from a multi-scale core dictionary like wavelets. Since the wavelet
domain is a combination of bands at different scales, the multi-scale dictionary learning
process can be summarized as learning separate dictionaries for different bands which
in turn are oriented in different directions, namely horizontal, vertical and diagonal.
Thereby, the dictionary learning in the transform domain is expressed as:

∀ b argmin
D,S

‖(WAY)b−Dksb‖2
F subject to ‖si,b‖0 ≤ T0 ∀ i (1.11)

Here, b denotes index for wavelet sub-bands. The formulation in Eq.1.11 implies that
the dictionary is trained in wavelet domain, further it leads to reasonable computational
cost in learning as well as in sparse coding.

In contrast to the dictionary learning in image domain, a large area of image is af-
fected with the increase of level of decomposition in wavelet domain learning approach.
This feature creates a global as well as local outlook for the wavelet domain dictionary
learning mechanism.

1.4 Overview of Pan-sharpening Paradigms

Pan-sharpening is a pixel level fusion technique that deals with a process of changing
the low-spatial resolution multispectral bands to high-spatial resolution color images on
fusing with a co-georegistered high spatial resolution panchromatic (black and white)
image of the same area. Pan-sharpening has become important in many applications
of remote sensing like change detection, monotoring hazards and other applications.
Owing to great importance of pan-sharpened images, many pan-sharpening algorithms
have been developed by the researchers. The comprehensive review articles present
the development in remote sensing image fusion field in the last three decades (Vivone
et al., 2015; Pohl and van Genderen, 2015; Ghassemian, 2016; Duran et al., 2017).
To date, many pan-sharpening methods have been developed which can be classified
into different categories based on the mathematical framework used to implement the
fusion process. The two well-known and established classes of algorithms are based on
the concept of component substitution (CS) and multi-resolution analysis (MRA). The
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other categories include fusion based on sparse representation of signals and variational
schemes. Furthermore, several hybrid methods have been proposed which combines
the modalities of different categories.

The CS and MRA methods can be summarized in a rational framework, so as to
apparently express the differences between the two classes. Let Xk,k = 1,2, ...B. be
the MS image with B number of bands and P be the PAN image. The MS image up-
sampled to the size of PAN image is denoted as X̃k and X̂k represents the estimated
HRMS image.

The pan-sharpened image is obtained by adding a detail image, DI, to the up-
sampled MS image, X̃k, as

X̂k = X̃k +gk.DI, k = 1,2, ...B (1.12)

The detail image, DI, is usually composed of spatial details missing in MS image bands.
The size of detail image DI, is the same as that of up-sampled MS image and pansharp-
ened images. The CS and MRA methods mainly differ in terms how the details of
an image DI are estimated. The quality of the pansharpened image is predominantly
affected by the detail image. In Eq.1.12, gk = [g1,g2....gB] is a vector of insertion coef-
ficients, which are band-specific. For CS based methods, the detail image is estimated
as,

DI = P−
B

∑
k=1

ωk.X̃k (1.13)

The choice of parameters like insertion coefficients (gk) and the band dependent weights
(ωk) are determined by the corresponding CS technique. The weight vector specifies the
proportion in which each band has to be preferred for the weighted sum of MS bands.
The spectral distotion in the pansharpened image is resulted by the difference between
PAN image and the weighted sum of MS bands. The familiar CS based methods are
intensity-hue-saturation (IHS) (Tu et al., 2001, 2004), principal component analysis
(PCA) (Chavez et al., 1991), Gram-Schmidt transform (GS) (Laben and Brower, 2000)
and adaptive GS (GSA) methods (Aiazzi et al., 2007).

The detail image for MRA techniques is estimated as:

DI = P−PL (1.14)

Where PL represents the low-pass version of PAN image, P. The particular MRA al-
gorithm determines the type of the filter used to determine PL and the insertion co-
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efficients vector gk. The well-known MRA methods are based on high-pass filter
(HPF) (Chavez et al., 1991), wavelets (Amolins et al., 2007b), atrous wavelet trans-
form (ATWT) (Nunez et al., 1999), additive wavelet luminance proportional (AWLP)
(Otazu et al., 2005), curvelet transform (Nencini et al., 2007) and contourlet transform
(Yang and Jiao, 2008).

The CS methods preserve the requisite spatial details, however, they induce spectral
distortion in the fused image. The disparity between PAN image and the replaced spatial
component, results in lack of retaining the consistent spectral information. Whereas,
MRA methods are capable of enhancing the spectral information, though inferior to CS
methods in spatial detail enhancement.

The concept of sparsity has become prevalent for the pan-sharpening of multispec-
tral images in the recent years. The reliable and robust solutions to the pan-sharpening
problem are designed based on the sparse representation framework in this thesis. The
sparse coding is promoted by constructing the relevant dictionaries based on the fea-
tures extracted from the source images. In addition, a variational based optimization
paradigm is designed for the pan-sharpening mechanism.

1.5 Research Objectives

To acquire the legitimate balance between transferring spatial details and preserving
spectral information of a high-resolution multispectral (HRMS) image, sparsity and
variational based pan-sharpening methods have enticed huge attention. The general ob-
jective of this thesis is to solve the pan-sharpening problem by developing a variety
of dictionaries to promote the sparsity of remote sensing images. Further, the pan-
sharpening is fomulated as a variational model driven by consistency priors in a unified
optimization framework. The optimization problem is then solved to obatin the pan-
sharpened image. The sub-objectives are:

1. To design a robust sparsity model by using the statistical measures during the
learning phase of the dictionary to reduce spectral distortion in the fused image and
memory requirements of the pan-sharpening algorithm. The scale-invariance notion is
deployed in learning a dual dictionary to reconstruct the spatial details that are to be
imparted into the fused image.

2. By Developing a sparsity based fusion method using multi-scale learned dic-
tionary that inherits the merits of both adaptive and learning based dictionaries. The
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principle of multi resolution analysis (MRA) is combined with the concept of sparse
recovery to obtain the pansharpened MS image.

3. The shortcomings in patch based fusion are, limited ability in detail preservation
and high sensitivity to misregistration. Formulating a fusion model for pan-sharpening
based on convolutional sparse representation (CSR) to overcome the aforementioned
drawbacks.

4. To develop an efficient variational model for pan-sharpening, by formulating an
energy functional consists of pertinent regularization terms and an optimization algo-
rithm to solve the energy function.

1.6 Structure of Thesis

The structure of the thesis chapter-wise is as follows.

Chapter-2: In this chapter, the protocols developed for evaluation of pansharpened
images and different quality metrics used in the assessment of experimental results are
discussed. The chapter also presents various datasets used for experimentation.

Chapter-3: A two-stage pan-sharpening algorithm for enhancing the spatial details
is presented in this chapter. A dual dictionary is constructed with the patches having
high-frequency details extracted from the PAN image and its low resolution variant. A
de-blurring filter is designed and the up-sampled MS images are processed with the
designed filter to reduce the spectral distortion in the fused image. An efficient training
algorithm, namely, parallel atom-updating dictionary learning (PAU-DL) is used for
dictionary learning.

Chapter-4: The pan-sharpening method that combines the MRA framework with
the sparse representation over a multi-scale learned dictionary is illustrated in this chap-
ter. The multi-scale dictionary is learned in wavelet domain. The multi scale learned
dictionary enhances the representation of inherent features of the images with an effi-
cient sparse coding.

Chapter-5: The Convolutional Sparse Representation (CSR) is a relatively recent
development in many image processing applications, as an alternative to the generalized
sparse representation. Two panshrpening methods based on Convolutional sparse rep-
resentation (CSR)are presented in this chapter. The conventional sparse representation
based pan-sharpening methods employ patch partition based strategies. An alternative
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mechanism called convolutional sparse representation is applied for pan-sharpening.
Cartoon plus texture (CPT) based image decomposition is used to enhance the spatial
and spectral qualities of pan-sharpened image. Further, another pan-sharpening scheme
is implemented in which wavelet decomposition is used and CSR based fusion is per-
formed in wavelet domain instead of exercising it in spatial domain.

Chapter-6: A variational model for pan-sharpening is proposed in this chapter.
The panshrpening process is formulated as a constrained optimization problem with the
appropriate prior terms. The inter-band correlation is exploited to reduce the spectral
distortion in the fused image. An efficient algorithm called alternating direction method
of multipliers (ADMM) is developed to minimize the optimization function. The op-
erator splitting framework assisted by the ADMM algorithm yields the pansharpened
image as a solution of the proposed optimization problem.

Further, in chapters 3,4,5 and 6, the comprehensive fusion quality assessment rela-
tive to state-of-the-art methods is detailed.

Chapter-7: The conclusions are drawn and perspectives on future work are given
in this chapter.
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CHAPTER 2

QUALITY ASSESSMENT OF PAN-SHARPENED
IMAGES AND SPECIFICATIONS OF DATASETS

The quality assessment of pan-sharpened images is very important in various remote
sensing applications. The suitability of the fused product for a partticular application
depends on the spatial and spectral quality of the pansharpened images. The spectral
information is useful for the applications like soil and vegetation analysis and lithogra-
phy. The geometric feature detection and extraction based applications depend heavily
on the spatial information. For the given input datasets, pan-sharpening process aims
to produce a new dataset that acquires some of the properties of its components. The
objective of quality metrics is to evaluate the consistency of preserving the spatail and
spectral resolution features of fused image that are inherited from the given source im-
ages.

The critical limitations for fusion quality evaluation are: the reference image for
comparison is unavailable and if the quality is evaluated at the highest resolution (at the
resolution of PAN image), the measured spatial and spectral qualities may follow oppo-
site trends. To cope with the problems of lack of reference image and spectral-spatial
distortion trade-off, distinct protocols have been proposed for the quality evaluation.
These protocols have evolved because a single performance measure is not suitable to
validate the quality of pan-sharpened images. The lack of an ideal reference image for
comparison limits the objective evaluation of fusion results, independent of the chosen
assessment index (Vivone et al., 2015). Therefore, assessment of image fusion mech-
anism makes usage of two different approaches. The first, a qualitative approach, is
as the visible inspection of fused images, comparing the outcome to the original input
data. The second, a quantitative approach, uses statistics and other assessment methods
to provide comparable quality measures also known as quality indices.

This chapter focuses about the overview on quality assessment of fusion of mul-
tispectral (MS) images with high-resolution panchromatic (PAN) observations. A de-
tailed discussion about the protocols developed for the evaluation of pan-sharpened
products and the datasets used for experimentation are presented. The notions of spatial
and spectral quality and the quality metrics used for their measurements are discussed.



2.1 Quality Metrics

Quality metrics are defined to evaluate the similarity for both the scalar and vector
valued images, as required by the established protocols. The list of metrics to assess
the quality of pan-sharpened images is long. The most commonly used quality metrics
including definitions are explained in this section.

• Correlation coefficient (CC) : Correlation coefficient indicates the degree of sim-
ilarity between the original MS image, X and the pan-sharpened image, X̂ each
having the size p × q. The CC can be determined as:

CC =
∑

p
i=1 ∑

q
j=1[X̂i,j− ¯̂X][Xij− X̄]√

∑
p
i=1 ∑

q
j=1[X̂i,j− ¯̂X]2.∑

p
i=1 ∑

q
j=1[Xij− X̄]2

(2.1)

where X̄ and ¯̂X represents the mean values of original MS image and pan-sharpened
image, respectively. The optimal value of CC is one.

• Root mean square error (RMSE) : RMSE gives the standard measure of differ-
ence in pixel values between two images, the original MS image X and the pan-
sharpened image X̂.

RMSE =

√√√√ 1
pq

p

∑
i=1

q

∑
j=1

(Xi,j− X̂i,j)2 (2.2)

For smaller values of RMSE the pansharpened image is in close match with the
original MS image.

• Universal image quality index (UIQI) : UIQI measures the similarity between two
images X and X̂.

Q =
4.σX,X̂.X̄.

¯̂X

(σ2
X +σ2

X̂
)[X̄2 +

¯̂X
2
]

(2.3)

in which σX ,X̂ denotes the covariance between X and X̂, X̄ and ¯̂X are means,
and σ2

X and σ2
X̂

are the variances of original MS image, X and the pan-sharpened

image, X̂, respectively.

This index can be re-written as product of three factors:

Q =
σX,X̂

σXσX̂
.

2.X̄.
¯̂X

[X̄2 +
¯̂X

2
]
.

2.σXσX̂
(σ2

X +σ2
X̂
)
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First factor is the correlation coefficient between X and X̂. Second factor indicates
spectral distortion as bias in the mean of X with respect to X̂. Third term reflects
changes in contrast between X and X̂.

• Spectral angle mapper (SAM): SAM calculates the spectral similarity between
fused image and the original MS image.

SAM(VX,VX̂) = arccos
( 〈VX,VX̂〉
‖VX‖2 . ‖VX̂‖2

)
(2.4)

Where 〈..〉 and ‖.‖2 operators denote dot product and l2 norm, respectively. VX
and VX̂ are the spectral vectors constructed from each pixel of the original MS
image, X and fused MS image, X̂. To provide an overall assessment of spectral
distortion, SAM is averaged over the entire image. An ideal value (ZERO) of
SAM indicates the absence of spectral distortion.

• ERGAS is a French acronym for “Erreur relative globale adimensionnelle de
synthese“. It depicts global quality of the fused image.

ERGAS = 100
h
l

√√√√ 1
B

B

∑
i=1

(
RMSE(i)
MEAN(i)

)
(2.5)

where (h
l ) is the resolution ratio between PAN and LRMS images. B is the number

of bands. MEAN (i) is mean (average) of i th band. A low ERGAS value indicates
an optimal state of spectral information preservation.

• Q4 : Q4 is a multispectral extension of UIQI suitable for images having four
spectral bands.

The Q4 index is defined as :

Q4 =
4 |σZxσZx̂|. |Z̄x|. |Z̄x̂|

(σZ2
x +σZ

2
x̂)|Z̄x|2|Z̄x̂|2

(2.6)

where,

Zx = ax + ibx + jcx +kdx

Zx̂ = ax̂ + ibx̂ + jcx̂ +kdx̂ (2.7)

are the quaternions and represent the reference MS image and fused image. Let
a,d,c and d denote the radiance values of an image pixel in B,G,R and NIR bands,
respectively. The optimal value of Q4 is 1, which indicates the original MS image
and fused image are identical.

• Relative average spectral error (RASE): RASE is an error index that gives the
global quality of fused image.
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RASE =
100

∑
B
i=1 µ(i)

√√√√B
B

∑
i=1

MSE(i) (2.8)

where µ(i) is the mean of ith band and B denotes the number of spectral bands.
MSE is the mean square error between two spectral bands b1 and b2, which is
defined as MSE = E[(b1−b2)

2]. The operator E (expectation) denotes the spa-
tial average. The lower values of RASE indicates the similarity between multi
spectral bands.

• Structural similarity index measure (SSIM): SSIM estimates the structural simi-
larity between the pansharpened image and the reference image.

SSIM =
(2.µx.µx̂ + c1)(2.σx.x̂ + c2)

(µ2
x +µ2

x̂ + c1)(σ2
x +σ2

x̂ + c2)
(2.9)

The constants c1 and c2 are necessary to avoid a divison by zero. They depend
on the dynamic range of the pixel values. SSIM compares luminance, contrast,
and structure using means and standard deviations of fused and reference image.
The higher the value of the measure, the better is the expected quality of the fused
image.

2.2 Protocols for Pan-sharpening

Quantitative image quality assessment is based on mathematical modeling and often
referred to as objective analysis. The goal is to determine the closeness of the two
data sets or in other words their similarity. For the quality assessment of fused images,
several protocols have been established in the literature; Wald’s ptocol (Wald et al.,
1997), Zhou’s protocol (Zhou et al., 1998), Khan’s protocol (Khan et al., 2009), quality
with no reference (QNR) protocol (Alparone et al., 2008) etc. are the prominent one.
The Wald’s protocol is widely accepted for pan-sharpened image quality estimation by
the research community and is reviewed further in (Ranchin et al., 2003; Thomas et al.,
2008).

The approved protocols are reliable and authentic for quality evaluation. These
protocols develop a combination of metrics that provide a comparable framework for
quality. The basis admitted by researchers is, legitimate quality assessment depends on
both visual inspection and a quantitative approach.
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2.2.1 Wald’s Protocol

The fused image is supposed to maintain the following three properties proposed by this
protocol. The first property, consistency specifies that any fused image X̂, if degraded
to its basic resolution, should be identical to the original MS image X. The evalution
under this property is established as: The pan-sharpening process is performed on the
original dataset to achieve the fused image X̂. The obtained pan-sharpened image, X̂
is down-sampled to the resolution of source MS image, X. The comparison is made
between the images X̂ and X. Thus, the consistency property quantifies the spectral
quality of spatially enhanced image.

According to the second property, synthesis, the pan-sharpened image should be
similar to ideal image that a corresponding sensor would observe at the spatial reso-
lution of HRMS image. The images are viewed as scalar images, that is the property
is checked for individual bands of multispectal image. For vector images, that is for
all the bands of MS image, the synthesis property requires that the multispectral vector
of fused (pan-sharpened) images should be as identical as possible to the multispectral
vector of ideal images that the corresponding sensor, if it exists, would observe at the
spatial resolution of the high-resolution image (same as the resolution of PAN image).
The later part of synthesis property proposed for vector images is also known as the
third property of Wald’s protocol.

The second and third properties are difficult to implement since, the ideal image
requisite for comparison does not exist. Hence, the synthesis property is implemented
on the images at reduced-scale. The source images are degraded to a scale equal to
the resolution ratio between PAN and MS images (usually the ratio is four). The pan-
sharpening process is performed on down-sampled images, produces the fused image
at the resolution of original MS image. The fused image is then compared with the
original MS image. The MS image is treated as a reference image, hence the second
and third properties can be tested.

The schematic of quality evaluation at reduced-scale is presented in Fig.2.1.

2.2.2 QNR Protocol

The lack of reference for quality evaluation has motivated the evolution of another pro-
tocol known as quality with no reference (QNR) protocol. The QNR protocol assess the
quality of pan-sharpened images without requiring a reference HRMS image. The QNR
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Figure 2.1: Assessment process of Wald’s synthesis property

protocol operates at full-scale and involves two metrics to evaluate spatial and spectral
quality of the fused image, namely spectral distortion index Dλ and spatial distortion
index Ds.

The spectral distortion index Dλ is estimated between low-resolution MS image
bands and the fused image bands. Two sets of UIQI values are estimated at low and
high-resolution to determine the spectral distortion index. The differences between
corresponding UIQI values indicates the spectral distortion produced by fusion process.

Dλ =

√√√√ 1
B(B−1)

B

∑
i=1

B

∑
j=1,j 6=i

∣∣Q(Xi,Xj)−Q(X̂i, X̂j)
∣∣θ1 (2.10)

where Xi is the ith band of low resolution MS image, X̂i is ith band of pan-sharpened
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MS image and B is the number of spectral bands. Q represents the the index UIQI and
the exponent θ1 is an integer selected to assert the large difference values and its default
value is set as one.

The spatial distortion index (Ds) is estimated by calculating the UIQI values be-
tween the MS image bands and low resolution version of PAN and as well as between
pan-sharpened MS image bands and the PAN image. The difference between the two
values produce spatial distortion index:

Ds =

√√√√ 1
N

B

∑
i=1

∣∣Q(Xi,PL)−Q(X̂i,P)
∣∣θ2 (2.11)

with PL is the PAN image down-sampled to the resolution of MS image. The default
value for the exponent θ2 is considered as unity.

The global quality measure QNR is evaluated as

QNR = (1−Dλ )
a1 .(1−Ds)

a2 (2.12)

QNR measures both the spatial and spectral qualities of the fused image. Further, a1 and
a2 are the tuning parameters used in order to assign the priority to the spectral quality
and spaial quality evaluation respectively.

If a1 = a2 = 1, the spatial and spectral aspects are considered with equal precedence
in quality assessment of fused image.

The quality assessment paradigm using QNR protocol is developed based on the
following hypothesis.

(i) The inter-band similarities between the low-resolution MS image bands mea-
sured using the index UIQI should not change with resolution.

(ii) The relation between a low-resolution version of PAN image and each low-
resolution MS image band should be identical to the relation between high-resolution
PAN image and each band of pan-sharpened MS image.

(iii) The estimated spectral (MS-MS) or spatial (MS-PAN) differences in similarity
values at low and high-resolution are the quantitative measures of distortion present.
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2.3 Datasets

This section discusses about the various datasets used in the domain of remote sensing
research. The remote sensing datasets from four different sensors- IKONOS, Quick-
Bird, WorldView-2, and a simulated dataset acquired from Pléiades are used in this
research work.

1. IKONOS dataset 1:

IKONOS was the first high resolution satellite launched in 1999, consists of op-
tical very high resolution (VHR) sensor. The images generated by the IKONOS
sensor are appropriate for small-area analysis due to its high resolution and point-
ing capabilities. The radiometric resolution of the IKONOS data is quantized to
11 bits.

The IKONOS dataset used in the current research work is composed of moun-
tainous area with trees of sichuan from China. The spatial resolution of PAN and
MS images are 1-m and 4-m, respectively. The resolution ratio between PAN and
MS images is four. The MS image is composed of 4-bands: Red, Green, Blue
and Near InfraRed (NIR).

2. QuickBird dataset 2:

QuickBird satellite was launched in 2001 for commercial purposes. The data
acquired is quantized to 11 bits. A single sensor captures both the PAN and MS
images. The QuickBird sensor offers PAN image with 0.7-m resolution and 4-
band (R,G,B and NIR) MS image with 2.8-m resolution. The images used for
this thesis work, include a forest area of the geographical region ”Surderban”
situated in the eastern part of India.

3. WorldView-2 dataset 3:

DigitalGlobe company launched the WorldView-2 (WV-2) satellite in 2009. The
WV-2 dataset used for experimentation in this work represents an area from Syd-
ney, Australia. The WorldView-2 sensor produces a single band PAN image and
an eight band MS image. The MS image composed of four standard color bands
(red, green, blue, and near- infrared 1) and four new bands (coastal, yellow, red
edge, and near-infrared 2).

WorldView-2 sensor provides 0.5-m panchromatic image and 8-band MS image
with each spectral band maintaining 2-m resolution. The resolution ratio is 4
and the radiometric resolution is 11 bits. The spectral range of PAN acquired
by WorldView-2 is narrower than that of acquired from IKONOS and QuickBird
sensors.

1http://www.glcf.umiacs.umi.edu/data/ikonos
2http://www.glcf.umiacs.umi.edu/data/quickbird
3https://www.apollomapping.com/image downloads/WV2/
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4. Pléiades dataset 4:
For the Pléiades dataset, the resolution of MS bands is 60-cm. The high resolu-
tion PAN image is simulated from the available MS bands. The resolution ratio
between PAN and MS images is selected as four and the radiometric resolution is
11 bits. This dataset represents the urban area of Toulouse in France.

4http://www.openremotesensing.net/
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CHAPTER 3

SPARSE REPRESENTATION DRIVEN TWO-STAGE
PAN-SHARPENING ALGORITHM

This chapter presents a pan-sharpening (PS) technique exploiting sparse representa-
tion of spatial details over a dual-dictionary learned from the high-frequency details of
panchromatic image. The proposed method is implemented in two stages. The spectral
components and spatial components are estimated separately and subsequently inte-
grated to obtain the required high-resolution multispectral (HRMS) image. The section
3.1 presents the state-of-the-art sparsity based pan-sharpening methods. The mathemat-
ical framework and the implementation details of the proposed method are described in
section 3.2. Section 3.3 presents the comprehensive comparative performance analysis
of proposed method with the help of visual outcomes and quality metrics. Section 3.4
concludes the chapter.

3.1 A Review of Sparsity Based Pan-sharpening Meth-
ods

The sparse representation based pan-sharpening methods lead to the promising results
compared with the conventional CS and MRA based methods. SR based fusion meth-
ods exploit the fact that the image patches are sparse in a redundant dictionary. The SR
based remote sensing fusion method was first proposed in (Li and Yang, 2011) (authors
used the term compressive sensing). The high-resolution MS (HRMS) image is re-
constructed based on sparsity regularization. A random raw patches dictionary derived
from HRMS images is used to promote the sparsity of fused image patches. However,
the inherent limitation of this scheme is that the dictionary construction requires a large
set of training images which may not be readily available.

To overcome this problem, pan-sharpening techniques with sparse coding over two
different kinds of dictionaries have been proposed in the literature. The dictionary con-
structed from the available source images i.e., the PAN and MS images. (Jiang et al.,
2012) proposed a trained dictionary synthesized using PAN and low-resolution MS



(LRMS) images for the sparse representation of fused image patches. The HRMS im-
age patches are assumed to be sparse and reconstructed from a joint dictionary learned
from both the source images. In (Li et al., 2013b; Cheng et al., 2014), authors consider
the advantage of using the source images to produce adaptive dictionaries. The dictio-
nary for unknown HRMS image is learned without using a set of training images. All
these methods exploit the relationship between source images and fused image using an
established remote sensing image formation model.

The remote sensing image formation model can be illustrated as following:

The observed LRMS image is modeled as the decimated and noisy version of the
HRMS image.

X = M1.X̂+ν1 (3.1)

where, X̂ and X are the column vectors (lexicographically ordering its pixels) repre-
senting the HRMS image and MS image respectively. The matrix M1 is introduced to
implement the blurring and spatial degradation operations and ν1 represents the zero
mean additive gaussian noise vector.

PAN image can be approximated as a linear combination of HRMS image bands
with some additive Gaussian noise, since both the images maintain same spatial resolu-
tion.

P = M2X̂+ν2. (3.2)

where, M2 = [w1I,w2I,w3I,w4I], I is an identity matrix. w1,w2,w3 and w4 are the
weights corresponding to four MS spectral bands and ν2 is the additive Gaussian noise
vector.

On combining equations (3.1) and (3.2)

G = McX̂+ν (3.3)

G =

[
X
P

]
Mc =

[
M1

M2

]
and ν =

[
ν1

ν2

]

The objective of pansharpening is to recover the HRMS image X̂, from the source image
set G. The reconstruction of pan-sharpened image from the source images (Eq.3.3) is
formulated as an optimization problem with sparsity constraint.

α̂ = arg min ||α||0 s.t. ||G−φα||22 ≤ ε (3.4)
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where, φ = McD, D is a dictionary and the HRMS image can be represented as a linear
combination of atoms (columns) of the dictionary and the sparse coefficients vector α

as X̂ = Dα . The equation 3.4 is solved for the sparsest α by using orthogonal matching
pursuit (OMP) algorithm. Finally, the HRMS image is estimated as X̂ = D.α̂ where α̂

is an optimally sprase vector. Since it is very difficult to solve the problem in Eq.3.4
especially for large images, the OMP algorithm and dictionary learning algorithms are
operated on image patches.

Another variant of SR based methods is based on designing dictionaries only from
PAN image and its low resolution version. The underlying principle for these methods
is the direct coherence between low resolution image patches and its high resolution
counterparts. In (Zhu and Bamler, 2013) (authors named it as SparseFI) a PS tech-
nique is proposed based on the dictionary that explores sparse coding of MS images
over the dictionary learned from PAN image. An extension of SparseFI, a two-step
sparse coefficient estimation method (Joint SparseFI) is proposed in (Zhu et al., 2016).
A two step sparse coding method with the exploitation of patch normalization (PN-
TSSC) is presented in (Jiang et al., 2014) to reduce the spectral distortion. Vicinanza
et al.(Vicinanza et al., 2015) proposed a fusion method that relies upon patch similar-
ity paradigm integrated with spatial details injection scheme. The HF details of MS
image patches are sparsely represented over a dictionary learned from degraded PAN
image. The principle of CS and MRA methods is combined with the sparse represen-
tation of high-frequency details is investigated in few of the recent works (Yin, 2015;
Cheng et al., 2015). The high-frequency details extracted from the PAN image are
sparse coded and reconstructed over a dictionary and are injected into the MS bands.
The pan-sharpening process is formulated as a restoration problem under sparsity con-
straint over a trained dictionary in (Wang et al., 2017). The dictionary is composed of
several sub-dictionaries, learned using PAN image and corresponding MS image.

The critical issue in all these sparse representation based pan-sharpening methods
is the dictionary construction. If the sampled patches are appropriate, then dictionary
can represent all the details of remote sensing images. Large sized dictionaries lead
to computational complexity. Since these methods use patch based processing, size of
the image patch is an important parameter to be considered in yielding the fused image
of required quality. Small patches contain little texture information while the large
patches lacks generalization capability and involves high computational complexity. In
addition, most of the current generation satellite sensors produce PAN and MS images
whose spectral ranges are not exactly aligned.
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A pan-sharpening method is designed in order to mitigate the effects of spectral
range mismatch between PAN and MS image bands, and the computational burden in
dictionary learning process. The main principle underlying this method is scale in-
variance between the sparse coefficients, i.e., the direct correspondance between the
coefficients of PAN image and it’s low-resolution variant. Since, the PAN and MS im-
ages observe the same scene, the MS image patches can be sparsely represnted over the
dictionary learned from PAN image. The spatial details extracted fom PAN image are
sparsely reconstructed using a dual dictionary. The HRMS image is obtained by inject-
ing the spatial details into the interpolated and deblurred MS image bands. The detailed
implementation of the pan-sharpening method is described in the following section.

3.2 Two-Stage Pan-sharpening Algorithm

An efficient two-stage pan-sharpening algorithm is proposed to moderate the spectral
distortion and to preserve the essential spatial details in the fused image. The compo-
sition of high-resolution MS (HRMS) image, i.e., the spatial details and spectral infor-
mation are estimated separately. The spectral mismatch between PAN and MS image
bands degrades the quality of fused outcome. The spectral mismatch effect is miti-
gated by using the sensor’s modulation transfer function (MTF) based pre-processing
between PAN and MS images combined with the joint dictionary learning paradigm.

The implementation mechanism of the proposed method can be summarized as:

• An MTF-matched deblurring filter is designed and up-sampled MS image is pro-
cessed with the designed filter in order to reduce the spectral distortion in the
fused outcome. Since, the LRMS image can be treated as blurred and downsam-
pled version of HRMS image.

• To extract the most relevant spatial details from each band, a preprocessing step is
performed on PAN and MS bands with the filters that are matched with sensor’s
MTF. The dictionaries are trained with the high freuency details extracted from
the PAN image.

• Two dictionaries are trained jointly to justify the coherence between sparse coef-
ficients at different scales.

• In place of K-SVD, a fast and efficient training algorithm namely, profile atom
update-dictionary learning (PAU-DL) is used to construct the dictionaries while
reducing the computational complexity without compromising the output quality.
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3.2.1 The Proposed Pan-sharpening Framework

Let Xk with k = 1, 2, ...B. denotes MS image with B bands and P be the PAN image.
The objective of the pan-sharpening is to produce HRMS image X̂k, (k = 1, 2, ...B)
having the spatial resolution of PAN image while preserving the spectral characteristics
of MS image.

The HRMS image having high spatial and rich spectral resolution characteristics,
can be realized on fusing the high-spatial resolution PAN image with the MS image
possessing higher spectral resolution. The HRMS image can be represented using linear
combination of its low and high-frequency components as,

X̂k = X̂L
k + X̂H

k , k = 1,2....B. (3.5)

The reconstruction of desired high-resolution MS image, X̂ consists of the follow-
ing two phases: The low-frequency components X̂L

k infers spectral details and can be
derived from the given MS image. Whereas, the extricated spatail details from the PAN
image are utilized to construct the high-frequency components.

3.2.2 Spectral Component (X̂L
k ) Estimation

Observation of remote sensing image formation model describes that the given MS im-
age can be treated as blurred and down-sampled version of the HRMS image. The
spectral component of HRMS image, X̂L

k can be obtained by interpolating the MS im-
age to the scale of PAN image followed by a deblurring operation. Deblurring is the
process of removing blur by applying a filter on the image, considered as an impor-
tant technique during image restoration process. Wiener filter, Regularized filter and
the filter designed based on Lucy-Richardson algorithm are few of the recognized de-
blurring filters (Gonzalez, 2016). While considering the execution speed and quality
of the output, Wiener filter is preferred for deblurring in most of the image processing
applications.

The MS image processed with MTF deblurring filter is successfully used for pan-
sharpening in CS and MRA techniques (Palsson et al., 2016). The process of generating
interpolated and MTF deblurred MS image is described as:

The interpolated MS image (X̃k) is obtained by employing bi-cubic interpolation
method:
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X̃k = (Xk ↑ R) (3.6)

where ↑ R represents the up-sampling operation by a factor of R.

The blurring filters that are matched with MTF of the MS sensor are approximated
using Gaussian low-pass filters. The gain at Nyquist frequency is usually provided by
the sensor specifications. The Wiener deblurred filter, Wd

k, for each band of MS image
can be estimated as:

Wd
k =

1
Hk

.
|Hk|2

|Hk|2 + 1
Sη

(3.7)

where, |Hk|2 = H∗k.Hk.

Hk is the Fourier transform of the blurring filter for kth band.

H∗k is the complex conjugate of Hk,

1
Sη

is the noise to signal power ratio, usually approximated by a constant.

The Fourier transform of the required spectral (low-frequency) component can be
determined as:

X̄L
k = Wd

k.(X̄k) (3.8)

X̄k is the Fourier transform of the X̃k. Invoking the inverse Fourier transform of X̄L
k , the

MTF deblurred version of MS image (X̂L
k ) is obtained.

3.2.3 Spatial Component (X̂H
k ) Estimation

The high-frequency details (X̂H
k ) can be estimated by the spatial details derived from

PAN image and must be relevant to the each band of MS image. The sparsity is more
appropriate for the components having high intensity variations like edges and image
textures. In this work, the sparse coefficients invariance over different resolutions is
adapted to estimate the high-frequency components. The image patches at different
resolutions share the similar sparse coefficients over a jointly learned dictionary.

The PAN image is histogram matched with each band of the up-sampled MS image
to produce a modified PAN image Pk. The high-frequency components of the PAN
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images can be obtained as:

Ph
k = Pk− (Pk)∗mk, k = 1,2....B. (3.9)

The symbol * denotes the convolution operator, and mk is the filter matched to the
sensor modulation transfer function (MTF) of kth band of MS image. Here, mk is
approximated by a Gaussian filter offering specific sensor gain at the Nyquist frequency.

The PAN image is down-sampled to the resolution of original MS image to get a
low-resolution PAN image, LP. The band specific high-frequency components of LP,
LPh

k, for the considered bands can be obtained as:

LPh
k = LPk− (LPk)∗mk, k = 1,2.....B. (3.10)

Each band of MS image (Xk) is processed by a MTF matched filter to obtain corre-
sponding low-frequency version. The high-frequency details of each MS band are ob-
tained as:

Xk,h = Xk−Xk ∗mk (3.11)

The sparse representation for the patches of each Xk,h component is evaluated with
respect to a low-resolution dictionary DLR

k as

min||αk|| s.t. ||Xk,h−DLR
k αk||22 ≤ ε (3.12)

Following the estimation of sparse coefficients vector, αk the desired spatial compo-
nents, (ŶH,ms

k ), can be reconstructed using a high- resolution dictionary DHR
k as

X̂H
k = DHR

k .αk (3.13)

The HRMS image, X̂k is obtained by merging the spectral component, X̂L
k and the

spatial component, X̂H
k .

Pseudo code to implement the proposed method is given as algorithm-1.
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Algorithm 1 Two-Stage Pan-sharpening Algorithm

INPUT: PAN image P and low-resolution MS image bands X1,X2, ......XB.

For k= 1 to B (i.e., for each band).

I. Spectral component (X̂L
k ) estimation:

1. (X̃)k = Xk ↑ R. (↑ indicates up-sampling operation).

2. Construct a Wiener deblurring filter for each band of MS image using Eq.3.7.

3. By multiplying the fourier transform of Interpolated MS image with the corre-
sponding Wiener filter yields the spectral component in frequency domain.

4. The inverse Fourier tranform of the outcomes obtained in step (3) results in the
required spectral component (X̂L

k ).

II. Spatial component (X̂H
k ) estimation:

1. Perform histogram matching between PAN image, P, and each band of MS image
Xk to produce image set Pk.

2. Down-sample the image P by a scale factor four to get a low resolution version
LP. Perform the histogram matching between P and MS image bands to produce
LPk.

3. Attain the high-frequency components of image set Pk using Eq. 3.9.

4. Attain the high-frequency components of image set LPk using Eq.3.10

5. pi
k,h and pi

k,l are the column vectors extracted from the patches of Pk and LPk
respectively.

6. Train the dictionaries DHR
k and DLR

k using PAU-DL algorithm as given in Eq.3.14.

7. Rearrange Xk,h into column vectors and calculate sparse coefficients correspond-
ing to spatial details to be injected in to k-th band (α̂k) using Eq.3.12.

8. Estimate the spatial details (X̂H
k ) on multiplying sparse coefficients vector (αk)

with the corresponding dictionary DHR
k as per Eq.3.13.

Reconstruct the HRMS image (X̂k) using Eq. 3.5.

End For

OUTPUT: The pansharpened MS image bands X̂,
1X̂2, .....X̂B.
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3.2.4 Dual Dictionary Learning Mechanism

To ensure that the high and low-resolution patches have the identical sparse coefficients,
the corresponding dictionaries must learn jointly. The high-frequency components of
PAN image and its low-resolution version are used to generate the dual dictionaries.
The dual-dictionay learing process is formulated as an optimization problem.

For each band, k = 1, 2,.....B.

< DHR
k ,DLR

k ,αk >= argmin
(DHR

k ,DLR
k ,αk)

||pi
k,h−DHR

k α
i
k||22 + ||pi

k,l−DLR
k α

i
k||22 subject to ∀i ||α i

k||0 ≤ T0 (3.14)

with i = 1,2...... n indicates the number of patches. Where, pk,h denotes the matrix con-
taining columns as paches extracted from the high frequency version of original PAN
image Ph

k. Similarly, pk,l represents the patches obtained from the high-frequency ver-
sion of PAN image realized at low resolution, LPh

k and αk = [α1
k ,α

2
k , ....α

n
k ] is the sparse

coefficient matrix for the signals pk,h and pk,l and T0 is the upper bound of sparsity in-
dex.

To impose the sparse coefficients equality, the joint learning of dual dictionaries can
be converted into a single sparse decomposition problem as :

< D,αk >= argmin
(D,α)

||pk−Dαk||22 subject to ∀i ||α i
k||0 ≤ r0 (3.15)

where,

pk =

[
pk,h

pk,l

]
and Dk =

[
DHR

k

DLR
k

]

3.2.5 K-SVD Versus PAU-DL Training Algorithm Analysis

K-SVD is approved as most efficient among the dictionary learning algorithms. In each
iteration one atom is updated in the second stage (update stage) of K-SVD algorithm.
The objective function of dictionary trianing/learning using K-SVD algorithm is given
as:

min
(D,S)
||Y−DS||22 subject to ∀i ||si||0 ≤ T0 (3.16)
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While updating the ith atom, di of the dictionary D, the non-zero entries in its associated
row vector of S (referred as ’profile’ of the atom) are also updated. The update process
of the atom di along with non-zero entries of the ith row of S , si

T leads to solving the
following minimization problem.

minimize ||ĒR
i −disi

R||2F (3.17)

where, ĒR
i denotes the error matrix without considering the atom di and si

R denotes the
row vextor by discarding the zero entries from si

T. The SVD gives the closest rank-1
approximation of ĒR

i which is the solution of Eq.3.17.

In solving the dictionay learning problem using K-SVD is computationally complex
especially in high dimensions. Parallel Atom-Updating Dictionary Learning (PAU-DL)
algorithm, is computationally efficient and mainly differs with K-SVD in the dictionary
update phase. The optimization problem in Eq.3.15 is solved by using the PAU-DL al-
gorithm (Sadeghi et al., 2014). The prime difference between K-SVD and PAU-DL lies
in the second stage of learning algorithm i.e., the dictionary column update mechanism.
The parallel-atom update mechanism also accerates the convergence rate of the algo-
rithm. The update mechanism using PAU-DL is described as following: The overall
error matrix is written as

Ē = Y− (A1 +A2 ++−−−−−−−−AJ). ∀i,Ai = di.si
R. (3.18)

In K-SVD each Ai is updated by performing ’J’ alternative updations of di and sR.
To update Ai, the error Ēi is computed using the updated versions of A1...Ai, while
Ai+1.....AJ have not yet updated. In similar way all Ai are partially updated. Instead
of updating one atom at a time, PAU-DL implements the parallel updation of all the
atoms, results in accelerating the convergence rate of the algorithm. The parallel atom
update mechanism is described in Algorithm 2. The exhaustive implementation details
of PAU-DL are presented in (Sadeghi et al., 2014).

3.3 Results and Analysis

The validity of the proposed method is appraised with four different sensor’s datasets
namely, QuickBird, IKONOS, Pléiades (Vivone et al., 2015) and WorldView-2. The
analysis of obtained results is performed on considering six prominent pan-sharpening
methods from different categories. FIHS (Tu et al., 2004) from CS class, AWLP (Otazu
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Algorithm 2 Parallel atom update mechanism

Error matrix: Ē = Y- DS

for j = 1.....J do

for i = 1.....N do

Ēi = Ē+disT
i

update sT
i

update di

Ē = Ēi−disT
i

end for

end for

et al., 2005) from MRA, along with SR-Li (Li and Yang, 2011), SR-TD (Cheng et al.,
2014), SR-WT (Cheng et al., 2015) and SR-D (Vicinanza et al., 2015) from sparse
representation methods family are used for comparison.

For a generous comparison, the low resolution patch size is considered as 2×2 with
1 pixel overlap for all the SR based methods and OMP algorithm is used to estimate
sparse coefficients. The proposed method is implemented by constructing two dictio-
naies: HR dictionary of size 64×512, and LR dictionary of size 4×512. The size of
patches extracted to train the HR and LR dictionaries are 8×8 pixels and 2×2 pixels,
respectively. During the training stage of dictionaries, the number of iterations in PAU-
DL is set as 35. The dictionary is intialized with randomly selected training signals.
Mutual coherence threshold is selected as 0.95. OMP algorithm with error threshold 1
is used for sparse coefficients estimation.

The performance evaluation of the proposed method is exercised using two distin-
guished protocols labeled as Wald’s protocol (Wald et al., 1997) and QNR protocol
(Alparone et al., 2008). The synthesis property of Wald’s protocol is considered for
the evaluation at reduced-scale. The original images are processed using MTF matched
filters and down-sampled by a ratio of 4. The gain at Nyquist frequency to design Gaus-
sian based MTF matched filters for different datasets are given in Table 3.1. The fusion
is performed on the degraded data, further the result is compared with the original MS
image which is treated as reference image.

The full-scale assessment is carried out with consistency property of Wald’s protocol
and QNR protocol. According to the consistency property, pan-sharpening is executed
on source PAN and MS images. The fusion outcome is degraded to the scale of original
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Table 3.1: Gain at Nyquist frequency for different sensors
MS Image Bands

Sensor Blue Green Red NIR PAN
QuickBird 0.34 0.32 0.30 0.22 0.15
IKONOS 0.26 0.28 0.29 0.28 0.17
Pléiades 0.29 0.29 0.29 0.29 0.15

WorldView-2 0.35 0.35 0.35 0.35 0.11

MS image which is considered as refernce image for comparison purpose. Six quality
metrics are used for quantitative comparison of the proposed method on considering
synthesis and consistency properties are defined as:

• CC: Correlation Coefficient is a similarity index with optimal value of one.

• ERGAS: The French acronym for Relative dimensionless global error in synthesis
is a global error index. Low values of ERGAS imply similarity between fused and
source multispectral data.

• SAM: Spectral Angle Mapper is usually expressed in degrees and equal to zero if
both the images used for comparison are spectrally identical.

• SSIM: It express the structural similarity of two images, its higher value indicates
more similarity.

• Q4: It is a multi-spectral extension of Universal Image Quality Index (UIQI) and
is suitable for the images with four spectral bands. Its optimal value is one when
two images are identical.

• PSNR: Peak Signal to Noise Ratio, higher value indicates less noise ingradient.

Since no reference image is available for comparison in practice, QNR protocol
is more reliable for quality assessment at full-scale. QNR protocol comprises of 3
indices; spectral distortion index (Dλ ), spatial distortion index (Ds) and Quality with no
Reference (QNR).

QNR: Its optimal value is one and is obtained when indices Dλ and Ds are zero.

3.3.1 Evaluation Using Synthesis Property

The QuickBird dataset represents the forest area from Sunderbans-India region. The
spatial resolution is 0.7-m for PAN image and 2.8-m for four band MS image (Blue,
Green, Red and Near InfraRed (NIR)). The visual results at reduced-scale with Quick-
Bird data are shown in Fig.3.1.
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Figure 3.1: Pan-sharpening results evaluated using synthesis property for QuickBird
data (a) PAN image (200x200, 2.8-m) (b) Up-sampled MS image (200x200,
11.2-m) (c) Reference MS Image (d) FIHS (e) AWLP (f) SR-Li (g) SR-TD
(h) SR-WT (i) SR-D (j) Proposed method

The PAN image of size 200×200 pixels at 2.8-m resolution and up-sampled MS im-
age with 11.2-m resolution are shown in Fig.3.1(a) and (b) respectively. The Reference
MS image used for comparison of pan-sharpened outcomes is shown in Fig.3.1(c). The
pan-sharpened outcomes of different methods are presented in Fig.3.1(d)-(j). Table 3.2
summarizes the quality metrics corresponding to the visual results shown in Fig.3.1.
The optimal value for each index is highlighted in bold case. The outcome of FIHS
method (Fig.3.1.(d)) shows color distortion and modest blurring of the spatial details.
The highest value of performance measures like SAM and ERGAS obtained for FIHS
method is in match with the visual result. The outcome of AWLP method (Fig.3.1(e))
appears to be natural and presrves most of the spatial details that are present in refer-
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Table 3.2: Quality metrics for QuickBird data evaluated using synthesis property
CC ERGAS SAM SSIM Q4 PSNR

FIHS 0.8735 2.2136 3.0137 0.7643 0.8837 27.0008
AWLP 0.9304 1.9853 2.8798 0.7841 0.8986 29.1164
SR-Li 0.8983 2.0171 2.9537 0.7823 0.8814 27.5725
SR-TD 0.9008 1.8725 2.3471 0.7978 0.8952 28.0172
SR-WT 0.9017 1.8862 2.3646 0.8031 0.8965 28.4213
SR-D 0.9189 1.6342 2.3161 0.8015 0.8978 29.2297

Proposed 0.9285 1.3339 2.1155 0.8163 0.9036 29.1568

ence image. The blocking artifacts are visible particularly at the edges in the result of
SR-Li method. There is no noticeable difference between the results of SR-WT and
SR-D methods. The proposed method outcome has more proximity with the reference
image compared outcomes obtained on using other reported methods.

The absolute difference between pixels value of each fused image and the reference
MS image is presented in Fig.3.2. The difference between the fused and reference

Figure 3.2: Difference between pan-sharpened images for each method and reference
MS image in Fig.3.1. (Red colored pixels indicates large differences and
black pixels indicate less difference) (a) FIHS (b) AWLP (c) SR-Li (d) SR-
TD (e) SR-WT (f) SR-D (g) Proposed method

images are indicated by the extent of brightness in difference images. The areas which
appear in bright color indicates the amount of difference, whereas, the smallest pixel
differences are indicated by dark regions. On performing analysis of the difference
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images presented in Fig.3.2, it can be interpreted that the result obtained using the
proposed method is comparatively almost similar to the reference image with minimal
accompanied distortion. The difference image obtained using the proposed method
(Fig.3.2(g)) appears as black infers minute difference between the pan-sharpened image
and the original MS image. The quality metrics are consistent with the visual outcomes.

The performance of the proposed method is further estimated at reduced-scale with
another dataset from WorldView-2 sensor. The WorldView-2 sensor provides the PAN
and MS images at the spatial resolution of 0.5-m and 2-m, respectively. The visual
outcomes for degraded dataset obtained from WorldView-2 are presented in Fig.3.3.
Degraded PAN image of size 200×200 pixels at 2-m resolution and MS image at 8-

Figure 3.3: Pan-sharpening results evaluated using synthesis property for WorldView-2
data (a) PAN image (200×200, 2-m) (b) Up-sampled MS image (200×200,
8-m) (c) Reference MS Image (d) FIHS (e) AWLP (f) SR-Li (g) SR-TD (h)
SR-WT (i) SR-D (j) Proposed method
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m resolution are shown in Fig.3.3(a) and (b), respectively. The refernce MS image is
shown in Fig.3.3(c) and the outcomes of different methods are reported in Fig.3.3(d)-
(j). The pixels difference between obtained pan-sharpened images on using different
methods and reference MS image (Fig.3.3(c)) is presented in Fig.3.4.

The difference image observation as indicated in the Fig.3.4 demonstrates that the
proposed method yields least possible pixel difference with the given reference MS im-
age. The outcomes of FIHS and SR-Li methods experience a firm spectral distortion
particularly for the regions composed of trees. The details of buildings roof and roads
are not sharp enough in the outcome of AWLP method. The visual perception obtained
from methods SR-TD, SR-WT and SR-D is nearly same as that of the reference im-
age. Though, the apprehension of slight color changes is difficult to recognize from
the visual analysis; the superiority of proposed method is evidenced by quality metrics
reported in Table 3.3.

Figure 3.4: Difference between pan-sharpened images for each method and reference
MS image in Fig.3.3. (Bright pixels means large difference and black mens
less difference)(a) FIHS (b) AWLP (c) SR-Li (d) SR-TD (e) SR-WT (f)
SR-D (g) Proposed method

The optimal values are achieved by the proposed method for all the metrics except
SSIM and PSNR. Herein, the obtained values of quality metrics demonstrate the ade-
quate performance of the proposed method in terms of retaining desired spatial details
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Table 3.3: Quality metrics for WorldView-2 data evaluated using synthesis property
CC ERGAS SAM SSIM Q4 PSNR

FIHS 0.9381 3.1275 4.0219 0.8354 0.9025 19.2142
AWLP 0.9533 2.8538 3.6435 0.8571 0.9277 20.5779
SR-Li 0.9458 2.9164 3.9127 0.8473 0.9148 20.3426
SR-TD 0.9482 2.8563 3.6349 0.8681 0.9285 20.4872
SR-WT 0.9615 2.8619 3.6426 0.8489 0.9321 21.2420
SR-D 0.9673 2.8673 3.7011 0.8563 0.9362 21.6537

Proposed 0.9720 2.5932 3.2762 0.8632 0.9401 21.4823

and preserving required spectral contents.

Analysis of visual results and quality metrics at reduced-scale reveal that the pro-
posed method predominantly shows its eminence in enhancing the spatial details as
well as the desired spectral information. The difference images presented in Fig.3.2(g)
and Fig.3.4(g) manifest that the proposed method results into fused image that is almost
similar to the reference MS image.

3.3.2 Evaluation Using Consistency Property

The data captured by IKONOS sensor are investigated to test and validate the proposed
method at full-scale using consistency property of Wald’s protocol. The images of
IKONOS are acquired over China-sichuan region, which is composed of mountainous
and vegetated area.

The PAN and 4-band MS image resolution is 1-m and 4-m, respectively. The data
without degradation having specifications as: PAN image of size 256×256 at 1-m
resolution and re-sampled MS image at 4-m resolution are shown in Fig.3.5(a) and
Fig.3.5(b), respectively. The pan-sharpened images realized using different methods
are degraded to the scale of original MS image for performance estimation. The visual
outcomes of different methods are presented in Fig.3.5(c)-(i).

The quality metrics values presented in Table 3.4 indicate the highest degree of
similarity between the pan-sharpened image outcome of the proposed method and the
reference MS image. The SAM value attained on using the proposed method is also
better than that of obtained from the other methods except for the SR-WT and SR-D.
The Q4, SSIM and CC value of all the methods except for FIHS method differs by a
narrow margin. It indicates the significant differences that can be observed from image
analysis.
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Figure 3.5: Pan-sharpening results evaluated using consistency property for IKONOS
data (a) PAN image (256×256, 1-m) (b) Up-sampled MS image (256×256,
4-m) (c) FIHS (d) AWLP (e) SR-Li (f) SR-TD (g) SR-WT (h) SR-D (i)
Proposed method.

Table 3.4: Quality metrics for IKONOS data evaluated using consistency property
CC ERGAS SAM SSIM Q4 PSNR

FIHS 0.9411 2.0517 1.5748 0.8826 0.8960 23.8261
AWLP 0.9883 1.8765 1.2472 0.9609 0.9684 24.6439
SR-Li 0.9764 1.9274 1.3216 0.9535 0.9628 24.1192
SR-TD 0.9796 1.5876 1.3107 0.9574 0.9800 25.2472
SR-WT 0.9834 1.5770 1.1452 0.9624 0.9739 25.5769
SR-D 0.9873 1.3937 1.1483 0.9642 0.9752 26.3123

Proposed 0.9864 1.2962 1.1604 0.9783 0.9821 25.8954
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3.3.3 Evaluation Using QNR Protocol

In this section, the performance of the proposed method is evaluated using the datasets
without degradation. Fig.3.6(a) and (b) shows the QuickBird images; PAN image (256
× 256 pixels) at 0.7-m resolution and MS image at 2.8-m resolution, respectively. The
visual outcomes for different methods at full-scale are presented in Fig.3.6(c)-(i).

Figure 3.6: Pan-sharpening results evaluated using QNR protocol for QuickBird data
(a) PAN image (256 × 256, 0.7m) (b) Up-sampled MS image (256×256,
2.8-m) (c) FIHS (d) AWLP (e) SR-Li (f) SR-TD (g) SR-WT (h) SR-D (i)
Proposed method

The observations of visual results reveal that the outcome of FIHS method as shown
in Fig.3.6(c) exhibits slight color changes and distortion in the form of blurred spatial
details in some parts of the image. The roofs and edges in the fused image experiences
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blurring in AWLP method’s outcome. The results of SR-based methods are relatively
similar, whereas, modest sharp details are visible in the outcome of SR-D method. The
outcomes of the proposed method (Fig.3.6(i)) possesses best performance features value
of both spatial and spectral details. Table 3.5 reports the quality metrics associated with
the visual results presented in Fig.3.6. The highest value for QNR index justifies that
the proposed method is superior than the other considered methods.

Table 3.5: Quality metrics for QuickBird data evaluated using QNR protocol
Dλ DS QNR

FIHS 0.0467 0.1317 0.8277
AWLP 0.0426 0.0815 0.8794
SR-Li 0.0297 0.0795 0.8931
SR-TD 0.0276 0.0515 0.9223
SR-WT 0.0301 0.0423 0.9289
SR-D 0.0317 0.0338 0.9312

Proposed 0.0272 0.0396 0.9343

Further, the proposed method is appraised with Pléiades dataset. The Pléiades
dataset represents an urban area from Toulouse city of France. The MS bands main-
tain 60-cm resolution and the PAN image is produced by simulation. The PAN and up-
sampled MS images are shown in Fig.3.7(a) and (b), respectively. The pansharpened
outcomes of different methods for Pléiades data at full-scale are presented in Fig.3.7(c)-
3.7(i). The quantitative evaluation results are presented in Table 3.6. The visual analysis
and quality metrics values illustrate the improved performance of proposed method over
the other reported methods.

The percentage improvement of SAM index for the proposed method over the sec-
ond highest values are: 8.7% for QuickBird and 9.8% for WorldView-2 datasets at
reduced-scale evaluation (Table 3.2 and 3.3 respectively). For the two tested datasets at
full-scale the proposed method acquires lowest values for spectral distortion index Dλ .
These values approve the substantial reduction in spectral distortion achieved by adopt-
ing the deblurring operation for up-sampled MS image bands. Similarly, the highest
value for the metrics Q4 and QNR for all the tested datsets, manifests the capability of
the proposed method in enhancing the overall quality of the pan-sharpened output.

The visual outcomes and quality index values approve that the de-blurring operation
results in spectral distortion reduction. Further, the dual-dictionary learning process
enhances the spatial quality of fused image.

43



Figure 3.7: Pan-sharpening results evaluated using QNR protocol for Pléiades data (a)
PAN image (256×256 , simulated) (b) Up-sampled MS image (256×256,
60-cm) (c) FIHS (d) AWLP (e) SR-Li (f) SR-TD (g) SR-WT (h) SR-D (i)
Proposed method

Table 3.6: Quality metrics for Pléiades data evaluated using QNR protocol
Dλ DS QNR

FIHS 0.0371 0.0584 0.9066
AWLP 0.0393 0.0416 0.9207
SR-Li 0.0258 0.0385 0.9367
SR-TD 0.0225 0.0219 0.9561
SR-WT 0.0118 0.0202 0.9682
SR-D 0.0086 0.0163 0.9752

Proposed 0.0079 0.0126 0.9796
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3.4 Conclusion

While establishing the striking comparison with the traditional SR-based methods, the
proposed method comprises of two phases. During first phase after making usage of
interpolated MS bands, these MS bands are deblurred. The MTF deblurring process
predominently reduced the spectral distortion. The most relevant spatial information
extricated from the PAN image is injected into these MS bands in the second phase. The
dual dictionaries are trained using the patches of high-frequency details extracted from
the PAN image and its low-resolution version. A computationally efficient algorithm
(PAU-DL) is used for dictionary learning. The essential spatial details are enhanced by
exploiting the scale invariance concept in conjunction with a jointly learned dictionary.
The prevalence of the proposed method is conspicuously demonstrated by the visual
outcomes and quantitative performance measure metrics. The proposed method is eval-
uated using four different datasets at both reduced-scale and full-scale resolutions. The
visual outcomes and quantitative results approve the quality of the fused outcome.
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CHAPTER 4

SPARSITY INSPIRED PAN-SHARPENING
TECHNIQUE USING MULTI-SCALE LEARNED

DICTIONARY

The significant issues in remote sensing image fusion are enhancing the spatial details
and preserving the essential spectral information. The classical pan-sharpening meth-
ods often incur spectral distortion and still striving to produce the fused images with
prominent spatial and spectral attributes. Motivated by the enhanced quality outcomes
of sparse representation (SR) theory, a novel pan-sharpening method is developed based
on sparse representation of high-frequency (HF) components over a multi-scale learned
dictionary (MSLD). MSLD technique acquires the capability of extracting the intrinsic
characteristics of images, wherein, it possesses the features of both multi-scale repre-
sentation and learned dictionaries.

An efficient pan-sharpening (PS) method is developed that effectively combines the
ARSIS scheme with sparse representation of spatial details over a multi-scale learned
dictionary. Ophir et.al,(Ophir et al., 2011) proposed the multi-scale dictionary (MSD)
learning concept by merging the existing two approaches for the choice of dictionary:
analytic approach and learning based approaches, in order to gain the advantages of
both. (Yin, 2015) employed SR with MSLD (multi-scale learned dictionary) concept
for the fusion of medical images, by using a joint dictionary learning approach. The
proposed method exploits the hypothesis of direct coherence between the patches over
different scales to spatial components enrich with high-frequency details, i.e., the sparse
coefficients of spatial details extracted from PAN image and its low-resolution variant
images are comparable over the pertinent dictionaries. In contrast to the methods (Jiang
et al., 2014; Vicinanza et al., 2015), the proposed PS-MSLD method explores the dic-
tionaries learning in wavelet domain. The dictionaries are trained by the respective
high-frequency details extracted from the two versions of available PAN image realized
at different spatial resolutions. A quick and efficient method, Atom-Profile Updating
Dictionary Learning (APrU-DL) (Sadeghi et al., 2014) is used for training the dictionar-
ies. The APrU-DL algorithm has proven its efficiency over the other dictionary learning
methods, not only for the substantial reduction of computational complexity but also in
accomplishing the more accurate outputs.



The PS-MSLD method inheritates the following novelties.

• Since the dictionaries are learned using the details of the PAN image, it improves
adaptiveness of the dictionary and also the robustness of pansharpening process.

• Multi-scale learned dictionaries acquire the features of both analytic and learned
dictionaries, yield better results in remote sensing image fusion. Further, the
MSLD enhances the representation of inherent features of the images, with effi-
cient sparse coding.

• The APrU-DL algorithm used for training, ameliorate the quality of output with
better convergence rate.

4.1 Multi-Scale Learned Dictionary

The learning algorithms essentially attempt to construct an appropriate dictionary, that
can provide finest sparse approximation of the given image samples with respect to the
trained dictionary.

The multi-scale learned dictionary (MSLD) inherits the features of both analytic and
learned versions of dictionaries and has the advantage of easily implementable sparse
coding of signals with only local operations. The concept of learning a dictionary from
a set of training signals is represented as follows:

argmin
D,S

‖Y−DS‖2
F subject to ‖si‖0 ≤ T0 ∀ i (4.1)

where Y = {y1,y2, ....yN} ∈ Rn×N is a matrix of columns (yi) being training signals.
S = {s1,s2, .......sN} ∈ RK×N, with si as columns is a matrix of sparse representations
for yi. Let D ∈ Rn×K(n� K) be an over complete dictionary. T0 denotes the admitted
sparsity level for each column si and ‖.‖F represents the frobenius norm. On amending
Eq.(4.1), the multi-scale dictionary learning using wavelets can be expressed as,

argmin
D,S

‖WAY−DS‖2
F subject to ‖si‖0 ≤ T0 ∀ i (4.2)

here, WA is the wavelet analysis operator.

According to this formulation the data samples can be represented as sparse com-
bination of atoms from a multi-scale core dictionary like wavelets. Since the wavelet
domain is a combination of bands at different scales, the multi-scale dictionary learning
process can be summarized as learning separate dictionaries for different bands which
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in turn are oriented in different directions, namely horizontal, vertical and diagonal.
Thereby, the dictionary learning in the transform domain is expressed as:

∀b argmin
D,S

‖(WAY)b−DbSb‖2
F subject to ‖si,b‖0 ≤ T0 ∀ i (4.3)

here, b denotes index for wavelet sub-bands.

Aharon et al. (2006) proposed a well-established and prominently used algorithm
named as K-SVD for dictionary learning, which is flexible and compatible with any
sparse coding technique. K-SVD is an iterative method that alternates between two
intricate steps called sparse coding and dictionary update. In the sparse coding stage;
based on the current dictionary D, the algorithm solves the Eq.4.1 for sparse coeffi-
cient vector (si) for each column of the training signal, Y. During the second stage; the
columns of dictionary are updated together with the non zero coefficients of the sparse
vectors. For the first stage, any sparse coding algorithm can be used. In the dictionary
update stage, each atom of the dictionary D, and the non-zero elements of its corre-
sponding row vector in coefficient matrix S (usually labeled as profile) are modified in
each iteration, which leads to the faster algorithm convergence.

Sadeghi et al. (2014) developed an efficient dictionary learning algorithm labeled
as APrU-DL, by proposing few modifications for both the phases of K-SVD. To en-
hance the performance of sparse coding process, debiasing technique is used in the first
stage. The dictionary atom along with its entire profile (not only non zero elements) is
allowed to change in the second stage. These modifications greatly enhance the global
convergence rate and reduce the computational complexity in learning process without
compromising the performance.

4.2 Pan-sharpening Using Multi-Scale Learned Dictio-
nary (PS-MSLD)

Let Xk, (k = 1,2, ..B) be the MS image with B bands, and P be the high resolution
PAN image, used as source images for fusion. Let X̃k,(k = 1,2, ....B) be the MS im-
age up-sampled to the resolution of PAN image with N number of bands and LRP be
the low-resolution (LR) PAN image obtained by down-sampling the PAN image to the
resolution of MS image. Presuming X̂k,(k = 1,2, ..B) represents the fused bands of
high-resolution (HR) MS image obtained by pan-sharpening.
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Wavelet transform is specifically a multi-scale decomposition operator. The HR and
LR dictionary formulation strategy suggests that the dictionaries are trained in wavelet
domain instead of the image domain. The wavelet analysis domain is a collection of
coefficient images. The different coefficient images (or sub-images) contain data at dif-
ferent scales and in different orientations (horizontal,vertical and diagonal). Hence, to
represent these coefficient images usage of separate sub-dictionaries is more justifiable.
The patches used for dictionary training in image domain assert merely the local corre-
lation between pixels. Whereas, a small patch in the wavelet domain affects large area in
the image domain, and this effect increases proportionally with the increase of wavelet
decomposition level. The learning process in wavelet domain captures the correlation
between adjacent wavelet coefficients. The attractive feature of learning dictionary in
transform domain is the ease of implementing the sparse coding process.

The high intensity variations in the images i.e., high-frequency components are
more appropriate for sparsity. The Discrete wavelet transform (DWT) divides the origi-
nal image into four sub images at its first level of decomposition. The detail coefficient
images i.e., horizontal, vertical and diagonal component images resolves the edges and
curves aligned in respective directions. To construct the dictionary, the training signals
are taken from these details images by using patch processing. i.e., images are divided
into overlapping patches and then the overlapped patches are converted into column
vectors. Hence, the dictionaries used in this method are trained by the vectors that are
constructed using the coefficients carrying high-frequency details.

The block diagram of the proposed method is shown in Fig.4.1. The schematic dia-
gram for dictionary construction from the intensity matched images is shown in Fig.4.2.

The implementation of PS-MSLD method consists of the following four stages;
HR dictionary construction, LR dictionary construction, sparse coefficients estimation,
HRMS image reconstruction.

4.2.1 HR Dictionary Construction

A high-resolution (HR) multi-scale dictionary is learned with the high-frequency (HF)
sub-images derived from PAN image, P by applying wavelet transform.

Let HIPk,(k = 1,2...B) be the new PAN image obtained by performing the his-
togram matching of PAN image, P with each band of up-sample MS image, X̃k. To-
wards it, generate one HR sub-dictionary corresponding to every HIP image as follows:
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Each HIP image is decomposed by using wavelet transform to obtain three relevant
high-frequency sub-images (HIPH,HIPV,HIPD). The letters H,V and D in suffix rep-
resents the horizontal, vertical and diagonal directional sub-images, respectively ex-
tracted from the corresponding image by applying wavelet transform. Each of these
sub-images are arranged as patches of size (p×p) and are aligned into column vectors.
These column vectors are used as training data to obtain the elements of HR dictionary,

DHR
k =

DHR
Hk

DHR
Vk

DHR
Dk

 (4.4)

where, k = 1,2,...B.

The elements of the above matrix are the dictionaries trained by MSLD with relevant
HF data samples as training data. i.e., DHR

Hk
is the dictionary trained by the data samples

taken from horizontal sub-image obtained from HIPk image.

4.2.2 LR Dictionary Construction

A low-resolution (LR) dictionary is constructed from the LIP image bands. Generate
one LR sub dictionary corresponding to every LIP image (LIPk), that is obtained by
performing histogram matching with each band of MS image (Xk) with LRP image.
The LR sub-dictionaries can be represented as

DLR
k =

DLR
Hk

DLR
Vk

DLR
Dk

 (4.5)

where DLR
Hk

is the dictionary trained by the column vectors extracted from horizontal
sub-image patches of size (p/R×p/R) of LIPk image (where R is the resolution ratio
between MS and PAN images). Similarly, DLR

Vk
and DLR

Dk
are the trained dictionaries

obtained by vertical and diagonal sub-images of LIPk, respectively.

The histogram matching process assists in improving the spatial similarity between
the PAN and MS images. To enhance the dictionary properties like abundance in train-
ing and shift-invariance, the training patches are considered with maximum possible
overlapping. The blocking effects are introduced if there is no overlapping. Whereas,
redundancy increases with the increase of overlapping between the patches. Hence, the
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amount of overlapping should be selected so as to balance the quality of reconstructed
fused image and the associated computational complexity.

The pan-sharpening algorithms developed in (Jiang et al., 2014; Vicinanza et al.,
2015) justify the scale correspondence between HR and LR image patches. In the
proposed PS-MSLD method, the patch similarity is exploited for the high-frequency
details that are derived from the PAN image at different scales. The ratio between
the HR and LR dictionary patches is equal to the resolution ratio between MS image
and PAN image. The two dictionaries, namely DHR and DLR used in this method are
constructed at PAN scale and MS scale, respectively. If the patch size for LR dictionary
construction is selected as M x M pixels, to cover the same area the corresponding patch
size in HR dictionary must be R2(p x p). Thereby, the ratio between HR and LR patches
is same as the spatial resolution ratio between PAN and MS images. Hence, the HR and
LR dictionaries inherit the same size.

4.2.3 Sparse Coefficients Estimation

Owing to the fact that PAN and MS images are captured simultaneously over same area,
the details of MS image bands can be sparsely represented using a dictionary learned
from the PAN image. The possibility of sparse representation of the hyperspectral im-
age patches over the similar patches extracted from PAN image, has been used for super
resolution of hyperspectral images (Zhao et al., 2011, 2014). Though, in this fusion
method based on the hypothesis that two images are acquired over the same scene, it is
presumed that the spatial information contained in PAN image and MS bands is similar.

With the basis of patch invariance, it is assumed that the high-frequency details of
LR and HR image patches admit the similar sparse coefficients over the correspond-
ing dictionaries DLR

k and DHR
k , respectively. By using OMP algorithm the sparse co-

efficients are estimated from MS image patches. Each band of MS image (Xk), (k
= 1,2...B.) is decomposed using wavelet transform to get the three corresponding HF
sub-images. Further, on arranging each of the sub-image as overlapping patches of
size (p/R×p/R) and subsequently these patches are represented by column vectors
namely, Hmsk,Vmsk and Dmsk. Usage of these column vectors lead to a coefficient ma-
trix as Ck = [Hmsk,Vmsk,Dmsk]

T. The sparse coefficients matrix corresponding to kth

band of MS image (Xk) can be estimated on solving the following sub problem.

α̂k = argmin ‖αk‖0 s.t. ‖Ck−DLR
k αk‖2

2 ≤ ε (4.6)
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The Eq.4.6 is solved by processing the each element of Ck and DLR
k individually to ob-

tain the sparse coefficient matrix αk, where αk = [αHk,αVk,αDk]
T. Similarly, the sparse

coefficients for all the bands of MS image are obtained by solving the Eq.4.6 for k =
1,2,....B.

(↑ R indicates interpolation by a factor R.)

Figure 4.1: The block-diagram of PS-MSLD

4.2.4 Pan-sharpened Image Reconstruction

The patches of missing high-frequency details for each band are obtained on multiply-
ing the sparse coefficients αk with the corresponding HR dictionary DHR

k .
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[HFDHk ,HFDVk,HFDDk]
T = DHR

k .αk (4.7)

Rearranging the patches obtained from Eq.4.7 as images and on performing the inverse
wavelet transform on these image patches. This process results into the missing HF
details (HFDk) corresponding to each band. The high resolution MS image, X̂k is con-
structed by injecting the HFDk into up-sampled MS image bands by using the additive
model of the ARSIS scheme as,

X̂k = X̃k +(HFDk), k = 1,2.....B. (4.8)

The four phases described above are implemented for each band of the source MS image
and histogram matched PAN image bands, to obtain the final HRMS image.

HIP
APrU-DL

Extract Patches
DH

DV

DD

DHR  = Diag ( DH, DV, DD)DWT

HF Sub Images
(H,V,D)

Figure 4.2: Schematic diagram for dictionary learning

4.2.5 Pseudo code for PS-MSLD algorithm

To implement the proposed PS-MSLD algorithm, the working mechanism in the form
of pseudo code can be presented as:

Pseudo code: PS-MSLD Algorithm for Pan-sharpening

Input: Panchromatic (P) and N-band MS image (Xk)

Output: High-Resolution MS image (X̂k)
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for each band of MS image k = 1... to.. B do,

• X̃k = (Xk) ↑ R. (Up-sampling the k-th band of MS image by a factor R).

• HIPk = Histogram Matching (P, X̃k).

• H1: [HIPH,HIPV,HIPD] = DWT(HIPk).

• For each of the sub-images obtained as given in step H1, extract the overlapping
patches and arrange the patches as column vectors.

• For each set of training vectors : use APrU-DL algorithm to generate sub-dictionaries
DHR

H ,DHR
V and DHR

D .

• DHR
k = diag (DHR

H ,DHR
V ,DHR

D ).

• LRP = (P)↓ R. (Down-sampling of HRP image by a factor R).

• LIPk = Histogram Matching (LRP, Xk).

• L1: [LIPH,LIPV,LIPD] = DWT (LIPk).

• Obtain three sets of training signals by patch processing using the sub-images
obtained as given in step L1.

• Invoke APrU-DL algorithm to each training set and generate sub-dictionaries,

DLR
Hk

,DLR
Vk

and DLR
Dk

.

• DLR
k = diag (DLR

Hk
,DLR

Vk
,DLR

Dk
).

• [MSHk,MSVk ,MSDk] = DWT (Xk).

• Hmsk,Vmsk,Dmsk are the extracted patches.

• Ck = [Hmsk,Vmsk ,Dmsk ]
T.

• α̂k = argmin||αk||0 s.t ||Ck−DLR
k αk||2 ≤ ε .

• [HFDHk ,HFDVk,HFDDk] = DHR
k .αk.

• HFDk = IDWT(HFDHk ,HFDVk,HFDDk).

• X̂k = X̃k +HFDk.

End for
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4.3 Experimental Results

The validation of the PS-MSLD method is performed at both reduced-scale and full-
scale using the datasets composed of different geographical terrains. The synthesis
property of Wald protocol (Wald et al., 1997) is used to evaluate performance measures
at reduced-scale. As per this protocol, the given source images (PAN image and MS
image) are decimated by a factor R (which is equal to the resolution ratio between MS
and PAN images). Subsequently, fusion is performed on the decimated images, and
the fusion scheme outcomes are compared with the original MS image. The original
MS image is treated as a reference image for comparison. For the experimentation at
full-scale, under the light of no reference image availability, fusion is performed on real
dataset. The metric ‘Quality with No Reference’ (QNR) (Alparone et al., 2008) is used
for performance evaluation.

The following pan-sharpening methods are used to perform comparative analysis
with the proposed PS-MSLD method.

• EXP: Interpolated MS image without any details injection. The Matlab function
‘imresize’ is used in conjuction with bi-cubic interpolation method.

• GIHS: Generalized Intensity Hue Saturation method (Tu et al., 2001).

• SW: The Wavelet fusion scheme with substitution model (Amolins et al., 2007a).

• GSA: Gram-Schmidt Adaptive method (Aiazzi et al., 2007).

• MGC: (MTF-GLP-CBD) Modulation Transfer Function matched filter with Gen-
eralized Laplacian Pyaramid. The regression based injection model is used in this
method (Alparone et al., 2007).

• AWLP: Additive Wavelet Luminance Proportional method (Otazu et al., 2005).

• SR-TD : Sparse Representation based pansharpening using Trained Dictionary
(Cheng et al., 2014).

• SR-WT: Fusion via Wavelet Transform and Sparse Representation (Cheng et al.,
2015).

• SR-D : Sparse Representation of injected Details (Vicinanza et al., 2015).

The implementation details of GIHS, GSA, MGC and AWLP methods are taken
from the software package developed by (Vivone et al., 2014), in that the decomposition
level for AWLP is set as two. For the SR-TD method, the dictionary is trained over
50 iterations by using 10000 random HRMS patches together with the corresponding
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HR PAN patches. The initial dictionary consists of 2500 random HRMS patches. K-
SVD algorithm is used for training purpose and the OMP algorithm is used for sparse
coding. The remaining parameters are considered as given in (Cheng et al., 2014). The
fusion methods presented in SW (Amolins et al., 2007b) and SR-WT (Cheng et al.,
2015) are extended for four bands in order to have consistent comparison with the other
considered methods. For SR-WT, the parameters are chosen as : αi in IHS is 1/4, in
SFIM the averaging filter size is 5×5, OMP algorithm for sparse coding and the training
dictionary size is 64× 256. For SR-D method the the dictionary sizes are 64× 256 at
high-resolution and 4×256 at low-resolution, respectively. The sparse coefficients are
estimated using OMP algorithm. In the proposed PS-MSLD method, Haar wavelet
transform with single level decomposition is used to extract HF coefficients. Haar is
the first and simplest wavelet orthonormal basis. Haar wavelet is exactly reversible
without introducing edge effects. On the contrary; other bases like Daubechies and
its derivatives are smoother than Haar. Since high-frequency details are required to
construct the dictionaries, Haar is relatively better compared to the other wavelet bases
that yield smoothing effect. During the training stage of dictionaries, the number of
iterations in APrU-DL is set as 50. OMP algorithm with error threshold 1 is used
for sparse coefficients estimation. Since the training data is chosen directly from the
available PAN image, the learning mechanism improves the adaptability of dictionaries
DHR and DLR. The size of HR and LR sub-dictionaries are 64× 512 and 4× 512,
respectively. The up-sampled MS image, X̃k is obtained from the original MS image,
Xk by invoking bi-cubic interpolation method (The MATLAB Function ‘imresize’ is
used to perform the interpolation operation).

For the consistent comparison, the patch size of 8×8 with 4 pixels overlapping is
considered for all SR based methods. In the proposed PS-MSLD scheme, to construct
LR dictionary the patch size is 2×2 with 1 pixel overlapping and the corresponding HR
dictionary patch size is 8×8 with 4 pixels overlapping is considered. The resolution
ratio (R) between MS ans PAN images is 4 for all datasets considered for the evalua-
tion of PS-MSLD scheme. All the methods are implemented in MATLAB on pentium
3.1GHz, i5- processor, windows 7 PC with 8GB memory.

4.3.1 Experimental Results at Reduced-Scale

The datasets acquired from three different sensors, namely, Pléiades, QuickBird and
IKONOS are used to estimate the performance of the proposed PS-MSLD method at
reduced-scale. The specifications of datasets are given as:
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QuickBird dataset: The QuickBird sensor offers PAN image with 0.7-m resolution
and 4-band (R,G,B and NIR) MS image with 2.8-m resolution. These images include a
forest area of the region named Surdarbans from eastern part of India. The size of the
images used are 512×512 for PAN and 128×128×4 for MS images.

IKONOS dataset: The IKONOS dataset is composed of mountainous area with trees
of sichuan from China. The spatial resolution of PAN and MS images are 1-m and 4-m,
respectively. The size of the images are 256×256 pixels for PAN image and 64×64×4
pixels for MS image.

Pléiades dataset: The size of dataset is 1024×1024 and the resolution ratio is con-
sidered as 4. Since no PAN image is available for this dataset, the same is synthesized
from the available MS bands. This dataset is available from the software package pro-
vided by (Vivone et al., 2015), consists of urban area from Toulouse (France).

For all the datasets, the source images are pre-registered.

The following Quality indices are considered for evaluation at reduced-scale.

• CC: Correlation Coefficient whose optimal value is one.

• SSIM: Structural Similarity between two images. Larger the value of SSIM
higher the similarity between fused and source image.

• PSNR: Peak Signal to Noise Ratio, higher value indicates less noise ingradient.

• ERGAS: Relative dimension less global error in synthesis, Low value of ERGAS
indicates similarity between multispectral bands.

• SAM: Spectral Angle Mapper, generally expressed in degrees and is equal to zero
if two images are spectrally identical.

• Q4: Measures the similarity between two images, and is suitable for images with
four spectral bands. Q4 values ranges from 0 to 1, and is equal to 1 if both images
are equal. (For calculating Q4, block size is chosen as 32×32 pixels).

The values of CC, SSIM and PSNR are represented as an average of four bands.
For all the experiments at reduced-scale, a Gaussian filter matched with the MTF of
the sensor has been used for all the bands to avoid aliasing. Usually, the sensor gain at
Nyquist frequency is provided by the manufacturer. The original PAN and MS images
are decimated by a factor 4. To emphasize the finest spatial details the pansharpened
outcomes of various methods are presented with a magnified square region on using the
datasets at reduced-scale.
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4.3.1.1 Experimental Results Using QuickBird Dataset

The outcomes are obtained by performing the fusion between degraded PAN image
with 2.8-m resolution and the degraded MS image bands having 11.2-m resolution.
Subsequently, the obtained results are compared with reference MS image having 2.8-m
resolution. Fig.4.3(a) and 4.3(b) shows the degraded PAN image with 2.8-m resolution
and the reference MS image (false color image: green-NIR-blue) with 2.8-m resolution.
The up-sampled MS image (EXP) maintaining 11.2-m resolution is shown in Fig.4.3(c).
The fused images on using different methods are depicted in Fig.4.3(d)-(l). In addition

Figure 4.3: Pan-sharpening results with QuickBird data at reduced- scale (a) Degraded
PAN image (512x512, 2.8-m) (b) original MS image (2.8-m) (c) EXP (up-
sampled MS image ) (d) GIHS (e) SW (f) GSA (g) MGC (h) AWLP (i)
SR-TD (j) SR-WT (k) SR-D (l) PS-MSLD

to fused outcomes, for each image a square sub-region (marked in red color) comprising
a part of highway and trees is zoomed and shown at the left bottom corner of the images.
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Observation of visual results as presented in Fig.4.3 reveals that, the proposed
method produces relatively less spectral distortion compared to the fused outcomes ob-
tained using other considered methods. The result of GSA (Fig.4.3(f)) method appears
to be sharper and with clear details among the classical methods. On analyzing the re-
sult of the proposed method as shown in Fig.4.3(l); it is evident that the high- frequency
spatial details are effectively extracted. In terms of visual perception of enlarged sub-
region, the proposed method is comparable with other methods such as SR-D, AWLP
and GSA. The quantitative measures for the QuickBird dataset at reduced-scale are
reported in Table 4.1.

Table 4.1: Quality indices for QuickBird (India-Surderban) dataset at reduced-scale
CC SSIM PSNR ERGAS SAM Q4

EXP 0.7308 0.4012 20.7231 3.2031 3.7119 0.6834

Classical
Methods

IHS 0.6313 0.2895 19.6576 3.0620 3.9137 0.4066
SW 0.7212 0.3813 20.7145 3.1356 3.7487 0.6917

GSA 0.8186 0.7614 21.7029 3.0177 3.5914 0.7061
MGC 0.8176 0.4198 21.9732 2.8317 3.4713 0.7026
AWLP 0.8247 0.7878 22.1430 2.9347 3.6392 0.7216

SR-based
Methods

SR-TD 0.8329 0.7863 21.3452 2.8435 3.9045 0.7563
SR-WT 0.8341 0.8091 21.8764 2.9871 3.7161 0.7545
SR-D 0.8476 0.8125 22.3653 2.8325 3.3256 0.7892

Proposed PS-MSLD 0.8508 0.8321 22.0231 2.9429 3.3211 0.7912

The proposed method achieves optimal performance for CC, SSIM, SAM and Q4
measures. Although, the other two measures namely PSNR and ERGAS are slightly
compromised. The best value for SAM indicates the fused outcome of proposed method
is almost similar to the reference image compared to the results obtained using the other
reported methods. It is evident from the visual observation and quantitative measures
that the SR-D method and the proposed PS-MSLD method better preserves the spectral
fidelity than the other methods. The optimal value for each quality metric is indicated
in bold and the second best value is highlighted with an underline.

4.3.1.2 Experimental Results With IKONOS Dataset

Fig.4.4(a) and 4.4(b) shows the degraded PAN image with 4-m resolution and original
MS image (false color image: NIR-blue-green) with 4-m resolution. The up-sampled
MS image maintained at 4-m resolution, is shown in Fig.4.4(c). The fusion outcomes
of different methods are depicted in Fig.4.4(d)-(l). Further, a smaller sub-region of the
forest area (enclosed by a red color square box) is enhanced and displayed at the left
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bottom corner of each image.

Figure 4.4: Pan-sharpening results with IKONOS data at reduced-scale (a) PAN image
(256x256, 4-m) (b) Reference MS image (256x256,4-m) (c) EXP (upsam-
pled MS image) (d) GIHS (e) SW (f) GSA (g) MGC (h) AWLP (i) SR-TD
(j) SR-WT (k) SR-D (l) PS-MSLD

On comparing the fused outcomes obtained by GIHS as shown in Fig.4.4(d) and
that of SW method shown in Fig.4.4(e) with the reference image shown in Fig.4.4(b),
modest spectral distortions are clearly visible. The similar effect with comparatively
less color distortion also appears in the fused outcome of SR-WT method (Fig.4.4(j)).
The proposed method leads to qualitatively improved outcomes in terms of maintaining
finer spatial details and rich spectral contents and the same is reflected in the extracted
enlarged image segment shown in the lower left square box.

The quantitative performance measures corresponding to the visual results as shown
in Fig.4.4 are reported in Table 4.2. The proposed method accomplishes the best values
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for CC, SSIM, ERGAS and Q4. The visual fused outcomes and quality indices are
consistent with each other. The optimal value for each quality metric is indicated in
bold and the second best value is highlighted with an underline. On comparing the per-
formance measures presented in Table 4.2; it is evident that the performance of AWLP
matches with the outcomes obtained using the SR-based methods. The proposed PS-
MSLD method outperforms almost in all the quality metrics compared to other reported
methods.

The quantitative assessment results demonstrate the effectiveness of the proposed
PS-MSLD algorithm in terms of its ability to extract the desired spatial details.

Table 4.2: Quality indices for IKONOS (China-Sichuan) dataset at reduced-scale
CC SSIM PSNR ERGAS SAM Q4

EXP 0.9233 0.7129 22.2870 3.9785 4.6243 0.7436

Classical
Methods

GIHS 0.8744 0.6405 21.1568 3.3592 4.9417 0.7210
SW 0.9467 0.6969 24.3324 2.7690 4.1590 0.8166

GSA 0.9538 0.7556 24.3424 2.5244 3.3271 0.8529
MGC 0.9483 0.7483 24.0361 2.5134 3.4034 0.8591
AWLP 0.9597 0.7772 25.1861 2.3323 2.9329 0.8697

SR-Based
Methods

SR-TD 0.9584 0.7801 24.8137 2.4142 3.0145 0.8711
SR-WT 0.9607 0.8194 24.4113 2.4652 3.1126 0.8843
SR-D 0.9623 0.8219 24.8267 2.3502 2.8158 0.8879

Proposed PS-MSLD 0.9711 0.8278 25.1247 2.3131 2.9399 0.8931

4.3.1.3 Experimental Results Using Pléiades Dataset

The PAN image for this dataset is simulated from the available MS bands of size
1024x1024 (Vivone et al., 2015). The visual outcomes of Pléiades dataset at reduced-
scale are presented in Fig.4.5. analysis of it clearly reveal that the color distortion is
present in the outcomes of GIHS and SW schemes as shown in Fig.4.5(d) and (e), re-
spectively. In the family of classical methods, GSA and AWLP outcomes are slightly
sharper as compared to the reference image (Fig.4.5(b)). The outcomes of SR-based
methods manifest the sharpness in appearance and the same can be observed in quan-
titative results. An area surrounded by buildings is magnified and shown at the top left
corner in each image.

The Quantitative performance measures at reduced-scale corresponding to visual
observations shown in Fig.4.5 are reported in Table 4.3. Analysis of quality metrics re-
ported in Table 4.3 reveal that, for the urban dataset the performance of classical meth-
ods namely, GSA, AWLP and MGC are moderately good for the performance metrics
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Figure 4.5: Pan-sharpening results with pléiades data at reduced-scale (a) PAN image
(b) MS image (c) EXP (d) GIHS (e) SW (f) GSA (g) MGC (h) AWLP (i)
SR-TD (j) SR-WT (k) SR-D (l) PS-MSLD

CC, SSIM and Q4. The proposed PS-MSLD method achieves the optimal values for
CC, PSNR and Q4. The quantitative results evidence the competitive performance of
SR-D method with the proposed method for the urban dataset.

Three different datasets with different geographical compositions like urban, vege-
tation and mountains with trees are used for the analysis at reduced-scale. The detailed
analysis of visual and quantitative results lead to the following conclusions: The color
distortion is exhibited by the classical methods like GIHS and SW for all the consid-
ered datasets. It is clearly justified by the higher values of SAM index and also from
the visual outcomes. For all the considered datasets AWLP and GSA schemes mani-
fest superior performance among the classical methods. For the images comprises of
vegetated area the MTF-GLP method achieves relatively better performance within the
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Table 4.3: Quality indices for Pléiades (Toulouse, France) dataset at reduced-scale
CC SSIM PSNR ERGAS SAM Q4

EXP 0.8821 0.9048 14.9729 6.1045 4.6951 0.7771

Classical
Methods

GIHS 0.9264 0.8542 16.5606 5.0658 5.2064 0.8395
SW 0.9073 0.8490 16.9707 5.4383 4.6317 0.8343
GSA 0.9627 0.9665 22.1795 3.1023 4.4682 0.9582
MGC 0.9654 0.8315 21.9842 3.3392 4.2935 0.9507
AWLP 0.9661 0.9635 20.2386 3.5483 4.3505 0.9417

SR-based
Methods

SR-TD 0.9672 0.9611 20.8765 3.5764 4.4765 0.9487
SR-WT 0.9711 0.9634 22.1881 3.4623 4.3689 0.9511
SR-D 0.9724 0.9614 22.1138 3.5232 4.4123 0.9572

Proposed PS-MSLD 0.9817 0.9573 22.2127 3.2549 4.3214 0.9606

classical algorithms family. On analyzing the performance measures obtained using the
class of the SR-based methods; the outcomes of SR-D method are comparable with the
proposed PS-MSLD method. SR-WT method outcomes appear smoother particularly
for vegetated and mountainous datasets. The detailed visual and quantitative results
at reduced-scale illustrate the effectiveness of the proposed PS-MSLD in reducing the
distortions attribute and improving the overall quality of the fused outcomes.

4.3.2 Experimental Results at Full-Scale

In this section the proposed method is analyzed on WorldView-2 and another set of
QuickBird images at full-scale. The metrics at full-scale based on QNR protocol give
a more decisive measure of the quality of pansharpened images. As per QNR protocol,
the fusion is performed on original PAN image and the MS image up-sampled to the
scale of PAN image. The MATLAB function ’imresize’ is used for up-sampling of the
MS image (bi-cubic interpolation method). The PAN image of size 512×512 pixels and
MS image of size 128× 128×4 pixels are used for full-scale evaluation.

The WorldView-2 sensor provides the PAN and MS images at the spatial resolution
of 0.5-m and 2-m, respectively. The MS image of the WorldView-2 datset contains 8
bands out of which, only 4 bands (Blue,Green,Red and NIR1 (2,3,5 and 7)) are con-
sidered for experimentation. This dataset is composed of different buildings, roads and
trees. Fig.4.6 shows the visual fused outcomes of various pansharpening algorithms on
WorldView-2 images. Fig.4.6(a) and (b) shows PAN image at 0.5-m and up-sampled
MS image (EXP) at 2-m resolution.

The visual perception of GIHS method as shown in Fig.4.6(c) exhibits a perceptible
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 4.6: Pan-sharpening results with WorldView-2 data at full-scale (true color im-
ages (5-3-2)) a) PAN image b) Up-sampled MS image (EXP ) (c) GIHS
(d) SW (e) GSA (f) MGC (g) AWLP (h) SR-TD (i) SR-WT (j) SR-D (k)
PS-MSLD

Table 4.4: Quality indices for WorldView-2 dataset at full-scale
EXP GIHS SW GSA MGC AWLP SR-TD SR-WT SR-D PS1

Dλ 0 0.0545 0.0305 0.0280 0.0252 0.0147 0.0164 0.0192 0.0059 0.0064
Ds 0.0952 0.0538 0.0550 0.0540 0.0484 0.0486 0.0463 0.0411 0.0351 0.0342

QNR 0.9048 0.8946 0.9162 0.9195 0.9276 0.9375 0.9381 0.9404 0.9592 0.9595
1.PS-MSLD

color change in the green area. The result of SW method (Fig.4.6(d)) appears to be
slightly blurred. This effect is justified by the spatial distortion index estimate for SW
method as reported in Table 4.4. The quality indices for the full-scale evaluation are
reported in Table 4.4. The proposed PS-MSLD method yields best values for spatial
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distortion index (Ds) and for QNR. From quantitative results obtained at full-scale, in
relative sense, the performance of AWLP method is optimum among the other classical
methods. The visual outcomes and value of quality indices exhibit the superiority of
the proposed PS-MSLD method.

Another set of images from QuickBird sensor, consists of trees and roads is used
for the full-scale assessment. Fig.4.7 presents the QuickBird images at full-scale and
the corresponding pan-sharpened images. Fig.4.7(a) and (b) shows the PAN image at
0.7-m resolution and MS image at 2.8-m resolution.

Figure 4.7: Pan-sharpening results with QuickBird data at full-scale (false color
images(4-2-3)) a) PAN image (512x512, 0.7-m) b) up-sampled MS image
(EXP) (512x512, 2.8-m) (c) GIHS (d) SW (e) GSA (f) MGC (g) AWLP (h)
SR-TD (i) SR-WT (j) SR-D (k) PS-MSLD

For the better appearance of details;the images are displayed by false color compo-
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sition with NIR-green-blue (4-3-2) bands. The experimental outcomes of all SR-based
methods surmounts in spatial and spectral preservation compared to the classical meth-
ods. The quality metrics comprising spectral, spatial distortion index and QNR values
are reported in Table 4.5.

Table 4.5: Quality indices for QuickBird dataset at full-scale
EXP GIHS SW GSA MGC AWLP SR-TD SR-WT SR-D PS1

Dλ 0 0.0754 0.0735 0.908 0.0704 0.0737 0.0664 0.0592 0.0346 0.0352
Ds 0.2965 0.3201 0.3124 0.2455 0.2178 0.2286 0.1989 0.1811 0.1435 0.1379

QNR 0.7035 0.6286 0.6370 0.7051 0.7271 0.7145 0.7479 0.7704 0.8269 0.8318
1.PS-MSLD

The proposed PS-MSLD method yields optimal values for QNR index for both the
datasets at full-scale evaluation. It demonstrates that the proposed PS-MSLD method
maintains good spatial characteristics and preserves the desired spectral information
comprehensively.

4.4 Conclusion

The notion of multi-scale learned dictionary (PS-MSLD) based sparse regularization is
investigated for pan-sharpening in this work. Wavelets as basis is used to impart the
learning of dictionaries. Multi-scale learned dictionary is attractive because of its ease
in performing the sparse coding. The proposed PS-MSLD successfully combines sparse
representation theory and the concept of similarity between patches at different scales
with corresponding dictionaries. The experimental results demonstrate the capability
of the PS-MSLD towards enhancing the spatial resolution thus, maintaining the quality
spatial details and accompanied significant reduction in spectral distortion. Although,
separate dictionaries are learned for each band, the proposed method requires moderate
computational efforts compared to the traditional dictionary learning based methods.
The APrU-DL algorithm improves the quality of the fused outcomes with significant
reduction in learning complexity and better convergence rate. A further study may be
carried out to develop a structured multi-scale dictionary to enhance properties like
spatial invariance, adaptivity and over-completeness. It may lead to much improved
quality of fusion process.
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CHAPTER 5

PAN-SHARPENING ALGORITHMS BASED ON
CONVOLUTIONAL SPARSE REPRESENTATION

Pan-sharpening (PS) is a prominent remote sensing image fusion technique. It yields
high-resolution multispectral (HRMS) images, which are imperative for the applica-
tions such as recognition, detection etc. PS methods based on conventional sparse rep-
resentation induce blurring effects and are unable to preserve the essential spatial details
in the fused image. A review of literature infers that the pan-sharpening methods can
be categorized as component substitution (CS), multi resolution analysis (MRA) based
methods and sparse representation (SR) based methods. CS methods are capable of
retaining the spatial details, however, these methods lead to spectral distortion. MRA
methods are capable to preserve the inherent spectral information though, these meth-
ods are not as promising as the CS methods in terms of extracting pertinent spatial
details. With an intention of improving the quality of the fused outcome, the princi-
ples of CS and MRA are combined and a generalized version of band dependent spatial
details (BDSD) scheme is developed by (Zhong et al., 2017). This method achieves
considerable reduction in spectral distortion compared with the other conventional PS
methods. However, it suffers from few drawbacks such as spatial artifacts present in the
fused image.

Sparse Representation (SR) of image patches has become prevalent (Candes et al.,
2006; Elad et al., 2010), and applied to remote sensing image fusion due to its effec-
tiveness in enhancing the spectral and spatial details in the resultant fused image. The
two major categories of SR based pan-sharpening methods are; the dictionary learned
from the patches of PAN and MS images and the dictionary learned from PAN image
and its low-resolution version. In contrast to the existing PS methods, pansharpening
based on a single compact dictionary generated using HRMS images is proposed in
(Ayas et al., 2018), to scale-down the time complexity of the algorithm. Apart from the
various modifications being proposed, the PS algorithms are still striving to achieve a
balanced trade-off, between the spatial and spectral contents in the fused image.

However, the dictionary construction and subsequent update process, in most of
these SR based methods are computationally expensive and so obtained pan-sharpened



images incur spectral distortion. The dictionary learned from PAN image may not be
adequate to sparsely represent the MS image patches. Moreover, the phenomenal dif-
ference in spectral response between the MS and PAN images results in an unwarranted
degradation of fusion performance. Most of the SR based pan-sharpening methods
adapted patch-partition based processing strategy. In that, the image is decomposed
into overlapped patches and usually, the sparse coding is performed on these individual
patches. The overlapped pixels are averaged and rearranged to reconstruct the fused
image. An increase in amount of overlapping between adjacent patches increses the
smoothing of some details in the resultant image thereby it results in redundant repre-
sentation. In multi-sensor image fusion, shift-invariance or translation-invariance is an
issue of significant concern and must be dealt with precise care. In scenario, wherein
the representation scheme is not shift-invariant, the fused image incurs ringing artifacts
for misregistered regions. To overcome the aforementioned featured limitations, the
mechanisms of representation and averaging are applied for the entire image, instead of
exercising it for the individual patches. Using this approach, it is possible to design a
fusion scheme, which is robust to misregistration.

The fusion methods proposed in this chapter attempt to mitigating the shortcom-
ings of patch based pan-sharpening methods using an alternative representation format
known as convolutional sparse coding (CSC)/convolutional sparse representation (CSR)
(Wohlberg, 2016a). In CSC, the sparse coding is applied to the entire image using a set
of convolutional filters.

This chapter is organized into two parts that discuss two different pan-sharpening
methods, which operate on the CSC mechanism to accomplish the HRMS images with
rich spatial and spectral features. The first part presents a PS algorithm in which the
source images are decomposed as cartoon and texture components. Distinct fusion
models are implemented on the decomposed componets to obtain the pan-sharpened
image. In contrast to the first method, the second part discusses a pan-sharpening
method in which the fusion mechanism is executed in wavelet domain. The preliminary
concepts such as convolutional sparse coding (CSC) and cartoon plus texture decom-
position (CPT) are presented in section 5.1. A robust pan-sharpening algorithm based
on convolutional sparse representation for spatial enhancement is presented in part I
of this chapter. Part II of this chapter comprises a pan-sharpening method based on
discrete wavelet decomposition and convolutional sparse representation. The outcomes
of these two schemes are presented and analysed using visual results and quantitative
performance measures.
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5.1 Preliminaries

The basic principles and mathematical framework used in the proposed pan-sharpening
algorithms, convolutional sparse coding (CSC) and cartoon plus texture (CPT) decom-
position are presented in this section. In addition, the basic difference in implementing
the sparse representation (SR) and convolutional sparse representation (CSR) mecha-
nisms is also presented in this section.

5.1.1 Convolutional Sparse Coding Mechanism

The Convolutional Sparse Coding (CSC) is a relatively recent development in many
image processing applications, as an alternative to the generalized sparse representa-
tion. The basic idea of CSC is to obtain a convolutional decomposition of an im-
age under sparsity constraint. The CSC model makes use of a set of dictionary fil-
ters {dm,m = 1...M}, in place of conventional dictionary D. A set that comprises sum
of convolutions of dm with the corresponding representations {xm,m = 1...M} recon-
structs the entire image ‘I’. Here, xm is a set of unknown coefficients maps. By regular-
izing xm with sparsity prior, the CSC model can be formulated as:

argmin
{xm}

1
2
||dm ∗xm− I||22 +λ ∑

m
||xm||1 (5.1)

where λ is a regularizing parameter that maintains balance between the sparsity and
reconstruction error. The dictionary filters are usually learned from a number of training
images using the following model:

argmin
{dm}{xn,m}

1
2 ∑

k
‖∑

m
dm ∗xn,m− Ii‖2

2 +λ ∑
n

∑
m
‖xn,m‖1 s.t‖dm‖2 = 1. (5.2)

Here, Ii is a set of training images and the constraint on dm is used to prevent the scaling
ambiguity and the index n represents the arbitrary number of training images.

Eq.5.1 is the convolution form of the basis pursuit denoising (BPDN) problem,
known as convolutional BPDN (CBPDN). In this work, alternating direction method
of multipliers (ADMM) is used to solve the CBPDN problem. The sub-problem involv-
ing convolution in ADMM algorithm is calculated in Fourier domain (Bristow et al.,
2013). An extensive study has been conducted on the performance of ADMM for dif-
ferent values of the balancing parameter λ in (Wohlberg, 2015). Usually, the ADMM is
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faster with much smaller values of λ (less than 0.1) for image reconstruction problems.
Smaller value of λ emerges as a good choice for image processing applications that
demand low reconstruction error. As per (Wohlberg, 2015), in the proposed method,
λ value is chosen as 0.05. The comprehensive learning mechanism for the dictionary
filters and the strategy to implement CBPDN is same as given in (Wohlberg, 2016b).

The convolutional model is acquired from the shift-invariance paradigm, which is
an important requisite property for image fusion. In contrast to conventional SR, the
CSC model computes the sparse representation for the entire image, hence the obtained
representation is single-valued and optimized over the entire image (Liu et al., 2016).
To overcome the drawbacks of conventional patch based SR algorithms, CSC model is
invoked for pan-sharpening of multispectral images in this work.

5.1.2 Sparse Representation Versus Convolutional Sparse Repre-
sentation

The sparse representation (SR) mechanism estimates the sparse coefficient vector, s for
an image patch, y using an over-complete dictionary, D, as

s = argmin ‖s‖1 subject to ‖y−Ds‖2
2 ≤ ε (5.3)

here, ‘ε’ is the tolerable reconstruction error. The schematic of SR mechanism is shown
in Fig.5.1. An image, I composed of n number of patches, can be expressed as a linear

Figure 5.1: Sparse representation schematic.

combination of dictionary atoms di, and the sparse coefficient vectors, si corresponding
to the image patches. i.e., I = ∑i disi, i = 1,2, ..n. With n number of patches extracted
from the image I, and y, s are the patches and coeffcients vectors, respectively.
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In CSR mechanism, the image I can be expressed as sum of convolutions of dictio-
nary elements, dm and each feature maps, xm. i.e., I = ∑m dm ∗xm. The size and number
of the dictionary filters can be chosen arbitrarily. The size of the coeffcients maps, xm

are same as that of the image I, and the index, m is same as that of the dictionary filters,
dm. The schematic of CSR mechanism is presented in Fig.5.2.

Figure 5.2: Convolutional sparse representation schematic.

5.1.3 Cartoon and Texture Decomposition

Each image can be characterized as a combination/mixture of its texture (T) and cartoon
(C) components. The geometric and smoothly varying component, composed of image
hues and boundaries is termed as cartoon component. The texture element is an oscil-
latory or small scale spatial patterns of the image. Therefore, the spectral information
and spatial details of an image can be conveniently mapped to its cartoon and texture
components, respectively.

Meyer (Meyer, 2001) presented the conventional mechanism to decompose an im-
age I into cartoon plus texture components and is given by :

inf
C,T∈X1×X2

F1(C)+ γ F2(T) : I = C+T (5.4)

where, F1 and F2 are functionals and X1 and X2 are spaces of functionals such that
X1 = {C : F1(C)≤ ∞} and X2 = {T : F2(T)≤ ∞}.

The decomposition of an image as I = u + v, where u (cartoon component) and v
(texture component) are the solutions of an optimization problem of the form :

min
u

T(I−u)+ γ J(u) (5.5)

where, J(u) is cartoon image prior, T(v) is texture image prior and γ is a regularization
parameter, that controls the trade-off between cartoon and texture components.
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In this work, J is considered as Total Variation (TV) prior. Hilbert framework (Aujol
and Gilboa, 2006) is used to define the texture prior T. The attributes suggest that Total
Variation (TV) is the relevant space to represent cartoon component. The TV of a
smooth image f is defined as

J(f) =
∫
‖5 f(x)dx‖ (5.6)

The discrete version of a gradient operator is defined as :

(5u)i,j = ((5u)1
i,j,(5u)2

i,j) (5.7)

where,

(5u)1
i,j =

{
ui+1,j−ui,j i f i < p.

0 i f i = p.
(5.8)

and,

(5u)2
i,j =

{
ui,j+1−ui,j i f j < q.

0 i f j = q.
(5.9)

where the size of the image is p×q.

The discrete total variation of u is defined as:

J(u) = ∑
1≤i≤p,1≤j≤q

|(5u)i,j| (5.10)

The gradient of the TV norm is

Grad J(u) = div
(
5u
‖5u‖

)
(5.11)

The discrete version of the divergence operator can be defined as div =−5∗, where
5∗ is adjoint of5.

Note: The gradient of the TV norm is not defined at pixel ‘x’ with 5 f(x)= 0. The
gradient flow of TV norm is not well defined. Hence, the gradient flow is defined for a
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smooth TV norm as:
Jε(f) =

∫ √
(ε)2 +(‖5 f(x)‖)2 (5.12)

where, ε is a regularization parameter.

The texture norm is defined using the Fourier transform F as:

T(v) =
1
2
‖diag(W) F(u)‖2 (5.13)

W is the weight associated with frequency. The selection of W is large for low frequen-
cies, and small for high frequencies to ensure the pertinent features of texture compo-
nent.

The gradient of texture norm is expressed as:

Grad T(v) = Ḣv, Ḣ = F∗diag(W2)F (5.14)

F∗ is the inverse Fourier transform. The Hilbert, H−1 model is intended to capture the
high-frequency textures effectively. In this work, Total Variation - Hilbert {TV-H−1}
method is implemented for image decomposition (Osher et al., 2003). The TV-H−1

decomposition solves,

min
u

ζ (u) =
1
2
||WF(I−u)||2 + γ J(u) (5.15)

The mapping u 7→ ζ (u) is a smooth function and can be minimized using a gradient
descent (with the assumption of initial cartoon layer u = I) as:

u = u− τ(Grad T(u− I)+ γ Grad J(u)) (5.16)

where Grad J(u) is gradient of J(u), γ is the trade-off between cartoon and texture
components. Usually, the H−1 texture model is intended to chose very high-frequency
and thus, perform poorly for medium frequency textures. In order to retain the desired
textures the trade-off parameter γ need to be chosen meticulously.

The gradient of texture norm is defined as: τ is the gradient descent step size and it
should satisfy the condition

τ <
2

maxωW2
ω + γ.ε/8

(5.17)

where, Wω is the weight associated with the operating frequency ω and ε is a regular-
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ization parameter chosen as a small value (1e−2) in this work.

The gradient descent operation is performed to find out the steady and converged
cartoon component. The texture component is the difference between the given original
image and the associated cartoon component.

v = I−u. (5.18)

PART I

A Robust Pan-Sharpening Algorithm Based on Convolutional Sparse
Coding for Spatial Enhancement

An effective PS method is proposed based on cartoon and texture decomposition of
each of the source images. The motivation for cartoon plus texture (CPT) decomposi-
tion of each source image can be illustrated as: The texture component of an image con-
tains meaningful and repeated structures and oscillating patterns, whereas the cartoon
component is piece-wise smooth, and consists of geometric structures corresponding to
the sharpe edges and object hues of image (Buades et al., 2010). The spectral informa-
tion predominantly resides in the cartoon component, and it’s orthogonal complement,
texture component manifests spatial details of remote sensing images. An effective CPT
decomposition method can discriminate spatial and spectral features of remote sensing
images comprehensively. The quality of fused outcome greatly affected by the amount
of details injected. In this context, appropriate balance must be maintained as excessive
injection causes spectral distortion, whereas insufficient quantum of injection leads to
loss of finer details.

The pan-sharpening method based on CPT decomposition is proposed in (Lotfi and
Ghassemian, 2018b), in that only the texture component of PAN image is exploited for
the spatial details extraction. Limitations of this scheme are moderate spectral distortion
and marginal spatial enhancement. These observations navigate to devise an appropriate
pan-sharpening mechanism to enhance the quality of the fused outcome. It can be
attained by choosing proper fusion models for the cartoon and texture components.

The proposed scheme combines the CSC and cartoon plus texture based image de-
composition. The primary motive is to enhance the spatial quality of the fused image
while preserving the necessary spectral information. The main contributions of the pro-
posed work can be summarized as:

• The two major shortcomings of the existing SR based PS methods are (a) limited
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ability in detail preservation and (b) high sensitivity to misregistration. Impact of
both of these drawbacks can be reduced by adapting CSC for pansharpening.

• A modified CPT decomposition procedure is proposed, to separate the spatial
and spectral components of source PAN and MS images precisely. The separa-
tion mechanism assists the balanced detail injection, which further provides the
legitimate trade-off between spatial details and spectral information in the pan-
sharpened image.

• Appropriate fusion rules for cartoon and texture components are designed based
on the components intrinsic characteristics.

• To capture the maximum features in the fused image, an efficient gradient based
fusion model is proposed to merge the spatial and spectral components holisti-
cally which in turn yields the pan-sharpened image.

5.2 A Hybrid Pan-Sharpening Algorithm

Let X = {Xk}k=1,2....B. be the source MS image having B spectral bands, P be the PAN
image and X̃ = {X̃k}k=1,2...B. be the MS image up-sampled to the size of PAN image.
The pan-sharpened image {X̂k}k=1,2...B. is synthesized by the superposition of its tex-
ture and cartoon components, estimated from the source images (PAN and MS images,
P and X̃ ). Ideally, the reconstructed pan-sharpened image should possess the high
spatial resolution of PAN image and the precise spectral information of the MS image.

A preliminary equalization is performed between the PAN image (P) and MS image
bands (Xk) to generate N-bands for PAN image ( {Pk}k=1...B). Objective of the prelim-
inary equalization is to reduce the inhomogeneties between PAN image and MS image
bands. The PAN image is preprocessed, as it is histogram matched with each band of
MS image. The purpose is to maintain the same mean and variance for PAN and MS
images. The histogram matching process results in four PAN images (Pk,k = 1,2,3,4.)
corresponding to four MS image bands and assists in improving the spatial similarity
between the PAN and MS images.

The proposed pan-sharpening approach for each band k= 1,2....B. is described as:

Decompose each image Pk and X̃k into its corresponding texture (T) and cartoon
(C) components as:

Pk = Tk
P +Ck

P (5.19)
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X̃k = Tk
X̃
+Ck

X̃
(5.20)

The notion of CPT decomposition is adapted to separate spatial details and band specific
spectral information efficiently and further, to perform the controlled injection of details
at the appropriate pixel regions. The legitimate fusion rules are adapted for cartoon
and texture components in order to (i) reduce the shortcomings induced by the patch
based fusion methods and (ii) enhance the visual quality of the pan-sharpened image
extensively.

Fused texture component is obtained by adopting CSC model and subsequently,
the activity level measurement of the resultant coefficients obtained from CSC. Fused
cartoon component is accomplished by using averaging strategy. The HRMS image is
reconstructed by linearly combining the fused texture and cartoon components based
on the constituent gradient information.

5.2.1 Fusion of Texture Components

The texture components are predominantly composed of the structural information of
the source images. Thus, the spatial details of PAN and MS images can be character-
ized by its constituent texture components. The specific details injection refrains the
spectral distortion in the fused image. Hence, the fusion rules for texture component
are developed to strengthen the boundary information and to impart the essential details
into the pansharpened image.

Two key issues for the fusion process include, activity level measurement and com-
bining coefficients. The larger activity level implies more information. The appropriate
choice of combining coefficients transfers the most useful information into the fused
image (Dogra et al., 2017).

The CSC model presented in (Wohlberg, 2016b) is invoked to determine the sparse
coefficient maps for the texture components Tk , { Tk

P and Tk
X̃
} and is given as:

argmin
{Mk,j}

1
2
||

J

∑
j=1

dj ∗Mk,j−Tk||22 +λ

J

∑
j=1
||Mk,j||1 (5.21)

where, Mk,j, j = 1,2....J are sparse coefficients maps for the image components Tk and
Mk,1:J(x,y) denotes a J-dimensional vector with the elements of Mk,j at the spatial po-
sition (x,y). The l1- norm for each of the vector, Mk,1:J(x,y), is measured and validated
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as an activity level measurement.

It is trivial that, there is a misregistration between the images of same scene pro-
duced by remote sensing acquisition systems. Owing to misregistration, the further pro-
cessing like interpolation and fusion between the images of different spatial resolutions
do not yield the desired results (Alparone et al., 2015). The performance degradation
caused by misregistration can be alleviated by implementing an averaging mechanism
based on a window of size r× s. The resultant activity level pattern is obtained as:

L̄k(x,y) =
1

(2n+1)2

n

∑
r,s=−n

||Mk,1:J(x+ r,y+ s)||1 (5.22)

The value of ’n’ decides the size of the window and affects the preservance of finer de-
tails. Usually, smaller values are chosen for multi-sensor image fusion and is considered
as three in this work.

To ensure that all the important features of source images remain intact, the fused
coefficients maps for cartoon component is obtained by invoking choose-max (CM)
fusion rule (Yang and Li, 2010). Essentially, under this specific fusion rule, the sparse
coefficients maps having the highest corresponding activity level pattern is selected
based on the following hypothesis:

Mf,j(x,y) =

{
Mu,j(x,y) if L̄u(x,y)≥ L̄v(x,y)
Mv,j(x,y), otherwise

for j = 1.....J. (5.23)

Subsequently, the fused texture component, Tk
f is estimated as:

Tk
f =

J

∑
j=1

dj ∗Mf, j. (5.24)

Where, * indicates the convolution operation.

5.2.2 Fusion of Cartoon Components

The detailed information about geometric shapes of the source images is constituted
by its associated cartoon components. Cartoon component is the piecewise-smooth
segment and it possesses the global structural information of the image.

The cartoon component for the fused image is obtained by performing average es-
timation of the individual components. The inherent variations in the characteristics
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of PAN and MS images lead to different intensity values at the same pixel locations.
Averaging exercise is simple and the most frequently used strategy to reduce the visual
disparity in the resultant image (Liu et al., 2016).

The fused cartoon component Ck
f is obtained as:

Ck
f =

1
2
(Ck

P +Ck
X̃) (5.25)

The rationale in favour of averaging operation is that it preserves the underlying geomet-
ric structures of the source images. Similar degree of geometric structure preservance
is not possible on using the ’absolute-max’ fusion rule.

5.2.3 Pan-sharpened Image Reconstruction

Image gradient information has proven its effectiveness in many image processing ap-
plications like, texture analysis, image de-noising etc. For multi modality image fusion,
gradient based fusion model has been successfully used in (Zhu et al., 2018).

For an image, I, at the spatial location (c, d) the gradient information gI(c,d) can be
expressed as :

gI(c,d) =
√

gI
x(c,d)2 +gI

y(c,d)2 (5.26)

The symbols gI
x(c,d) and gI

y(c,d) denote the gradients in x and y directions, respec-
tively. The gradient strength for the entire image, I, of size (C, D) can be calculated
as:

GI =
C

∑
c=1

D

∑
d=1

gI(c,d) (5.27)

To preserve the texture information and to overcome the over-smoothening effect in the
pan-sharpened image, a fused weight is determined based on gradient strength. HRMS
image is reconstructed by the integration of fused texture and cartoon components as:

X̂k = Ck
f +

√
GT1 +GT2

GTf
.Tk

f (5.28)

GT1 = Gradient strength of Tk
Y, GT2 =Gradient strengh of Tk

X̃ and GTf = Gradient
strengh of Tk

f

A schematic diagram for the proposed pan-sharpening algorithm is depicted in Fig-
ure 5.3.

78



Figure 5.3: The proposed pan-sharpening algorithm schematic.
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5.3 Results and Discussions

The performance of the proposed hybrid algorithm is evaluated using datasets with di-
verse geographical contents obtained from the sensors: QuickBird, IKONOS, Pléiades
and WorldView-2. The PAN and MS images having different sizes are used for ex-
perimentation. The scale ratio is four for all the considered datasets. The proposed
algorithm does not perform any decomposition of the PAN and MS images in different
scales and orientations. The dictionary filters are applied for the entire image. Hence,
there is no constraint on the resolution ratio between MS and PAN images. Further, the
proposed algorithm is insensitive to resolution ratio between source images, i.e., PAN
and MS images.

To demonstrate the efficiency of the proposed algorithm in a comprehensive manner,
it is tested under various scenarios: Reduced-scale evaluation using synthesis property
of Wald’s protocol (Wald et al., 1997), Full-scale evaluation using consistency property
of Wald’s protocol and QNR protocol (Alparone et al., 2008). The proposed method
is compared with seven other state-of-the-art PS methods IHS(Carper, 1990), AWLP
(Otazu et al., 2005), MTF-GLP (Aiazzi et al., 2006), SR-Li (Li and Yang, 2011), SR-
TD(Cheng et al., 2014), SR-D (Vicinanza et al., 2015), SR-LD (Li et al., 2013b) and SR-
CD (Ayas et al., 2018). In addition, a resampled MS image is also included during the
comparison and is referred as EXP. For quantitative evaluation, five quality/performance
metrics are adapted, namely correlation coefficient (CC), spectral angle mapper (SAM),
root mean square error (RMSE), relative dimensionless global error in synthesis (ER-
GAS), and universal image quality index (Q4).

In the proposed algorithm, TV−H−1 approach is used to decompose a given im-
age into cartoon and texture components. The cartoon/texture trade-off parameter (γ)
is selected as 4. To impart learning behaviour for the dictionary filters and to estimate
sparse coefficients maps, ADMM algorithm is used. In order to reduce the computa-
tional complexity and to enhance the reconstruction quality, the large linear system in
the subproblem of convolution is solved by adopting Sherman -Morrison (SM) method.
The number of iterations for learning filters is considered as 50. The dictionary filters
of size 8×8×64 and 64 sparse coefficient filters with the size equivalent to the corre-
sponding image are implemented for CSC. The execution of CSC algorithm is done as
deliberated in (Wohlberg, 2016b).

All the methods are implemented using MATLAB (R2013a), on a computing ma-
chine with 8 GB RAM, i5-2400 CPU @ 3.10GHz.
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5.3.1 Evaluation Using Synthesis Property

The evaluation of the proposed method at reduced-scale is exercised using Pléiades
and IKONOS datasets. For the Pléiades dataset the PAN image is simulated from the
available MS bands having 60-cm resolution. This dataset represents the urban area of
Toulouse from France. The IKONOS dataset represents a mountainous area of Sichuan
from China. IKONOS satellite produces 4-m MS images (4 bands) and 1-m panchro-
matic image. The images of size 256×256 for PAN image and 64×64×4 for MS image
are used for both the datasets during the reduced-scale experimentation.

The visual results obtained on using different pan-sharpening algorithms for the
Pléiades dataset are presented in Fig.5.4. Fig.5.4(a) shows the degraded PAN image.
Fig. 5.4(b) shows the MS image up-sampled to the size of PAN image and termed as
EXP. Fig.5.4(c) is the refernce MS image used for comparison. Fig.5.4(d)-(l) presents
the outcomes of different pan-sharpening schemes.

The quantitative results for the Pléiades dataset corresponding to the visual results
(Fig.5.4) are presented in Table 5.1. The proposed method attains the optimal values
for all the quality metrics except for ERGAS on Pléiades dataset. In comparitive terms,
the analysis of visual results as shown in Fig.5.4(d)-(l) reveal that on assessing the
performance about preserving the spatial details, the proposed method performs much
better than the other reported methods. Visual outcomes obtained on using the proposed
method indicate that, the roof edges appearance is much sharper than that acquired from
the other methods. The MRA based method, AWLP retains moderately good spectral
information, however this is achieved at the cost of spatial details. Moreover, the SR
based methods utilizing different dictionaries are simulated for the comparison purpose.
The efficacy of the proposed method in terms of offering significant enhancement of
fusion quality over the SR based methods is evidenced by the visual and quantitative
results.

The reduced-scale outcomes of IKONOS dataset are presented in Fig.5.5. Fig.5.5(a)
shows the degraded PAN, whereas Fig.5.5(b) is the MS image up-sampled to the resolu-
tion of PAN image. Fig.5.5(c) is treated as a reference MS image. The visual outcomes
of different PS methods are presented in Fig.5.5(d)-(l). As can be seen from Fig.5.5 the
fused image obtained by IHS method (Fig.5.5(d)) suffers from spectral distortion. The
outcomes of classical methods, AWLP and MTF-GLP, and SR-Li (Fig.5.5(e), (f), (g))
exhibit good spectral preservation but possess slight blurring artifacts. Besides this the
result of SR-TD method (Fig.5.5(h)) is accompanied by slight color distortion at bottom
left corner. The fused outcomes obtained on using the SR-LD, SR-D, SR-CD and the
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Figure 5.4: Visual results of pan-sharpening methods for Pléiades data at reduced-scale
(a) Degraded PAN image (b) Up-sampled MS image (EXP) (c) Reference
MS image (d) IHS (e) AWLP (f) MTF-GLP (g) SR-Li (h) SR-TD (i) SR-D
(j) SR-LD (k) SR-CD (l) Proposed Method

Table 5.1: Quantitative results for Pléiades data using synthesis property
Q4 ERGAS SAM CC RMSE

EXP 0.7781 5.8893 4.5972 0.6983 16.4325
IHS 0.8629 4.3284 4.7326 0.9116 14.2918

AWLP 0.9463 3.2753 3.4327 0.9283 12.3864
MTF-GLP 0.9515 3.2284 3.4161 0.9311 12.4108

SR-Li 0.9341 3.3587 3.7618 0.9134 13.8942
SR-TD 0.9481 2.8758 3.3297 0.9358 12.9853
SR-D 0.9385 2.9426 3.3286 0.9387 12.2302
SR-LD 0.9479 2.9654 3.2961 0.9323 12.2336
SR-CD 0.9392 2.9651 3.2853 0.9342 12.2351

Proposed 0.9573 2.8761 3.2837 0.9431 11.9727
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Figure 5.5: Visual results of pan-sharpening methods for IKONOS data at reduced-
scale (a) Degraded PAN image (b) Up-sampled MS image (EXP) (c) Refer-
ence MS image (d) IHS (e) AWLP (f) MTF-GLP (g) SR-Li (h) SR-TD (i)
SR-D (j)SR-LD (k) SR-CD (l) Proposed Method

proposed method, manifest slightly better preservance of spatial details. The proposed
method (Fig.5.5(l)) shows the overall improved visual quality and the presence of much
sharper details. The quantitative results for IKONOS dataset are presented in Table 5.2.
The proposed method achieves the optimal values for performance measures namely,
Q4, ERGAS, SAM and RMSE. Although, the performance measures obtained from SR-
LD and SR-CD schemes are in close match with that obtained on using the proposed
PS scheme, computationally SR-LD is more intensive than the proposed scheme.

The proposed method accomplishes the optimal values for Q4, SAM and RMSE
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Table 5.2: Quantitative results for IKONOS data using synthesis property
Q4 ERGAS SAM CC RMSE

EXP 0.7536 3.9632 4.5362 0.7842 14.6846
IHS 0.7524 3.7653 4.6583 0.8115 13.8975

AWLP 0.8987 2.9243 3.1658 0.9153 12.3156
MTF-GLP 0.8835 3.1572 3.2617 0.9241 12.3426

SR-Li 0.8932 3.4378 3.3476 0.9023 12.6748
SR-TD 0.9287 3.2294 3.2686 0.9226 12.1136
SR-D 0.9274 3.1641 3.2574 0.9247 11.9432

SR-LD 0.9389 2.9534 3.1215 0.9328 11.8361
SR-CD 0.9345 2.9642 3.2453 0.9311 11.9147

Proposed 0.9438 2.9242 3.1157 0.9324 10.9204

for both the datasets. It is clearly evident from the reduced-scale evaluation, that the
quality of fused outcomes achieved using the proposed method is significantly enhanced
compared to the reported SR based methods.

5.3.2 Evaluation Using Consistency Property

According to the consistency property of Wald’s protocol, the pan-sharpening methods
are implemented on the source images without encountering the degradation process.
Further, the fused image is spatially degraded to the resolution of original MS image,
which is considered as a reference image for the comparison.

The dataset acquired from QuickBird sensor represent Sunderbans region located
in India, is used for the evaluation using consistency property. QuickBird provides
PAN image of 0.7-m resolution and the corresponding 4-band MS image with 2.8-m
resolution. The size of PAN and MS images used for experimentation is 256×256
pixels and 64×64×4 pixels, respectively. Fig.5.6(a) and (b) shows the considered PAN
and up-sampled MS images. The corresponding pan-sharpened results are presented in
Fig.5.6 (c)-(k).

On analyzing the visual results, it is clearly evident that the fused outcomes ob-
tained on using the IHS and SR-Li methods, are unable to preserve the desired spectral
information and this artifact emerges in a form of mild color change in the regions con-
taining trees. The fused outcomes obtained using AWLP, MTF-GLP and SR-D methods
display modest blurring of spatial details. On observing the magnified regions of the
visual outcomes of schemes SR-TD, SR-LD, SR-CD and the proposed method it can
be concluded that, the proposed PS method is able to retain sharp edges in the fused
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Figure 5.6: Visual results of pan-sharpening methods for QuickBird data at full-scale
(a) PAN image (b) Up-sampled MS image (EXP) (c) IHS (d) AWLP (e)
MTF-GLP (f) SR-Li (g) SR-TD (h) SR-D (i)SR-LD (j) SR-CD (k) Proposed
Method

outcome. The proposed method exhibits comparatively less spectral distortion and pre-
serves the spatial information effectively. For the proposed method the zoomed portion
of the image clearly indicates the spatial details preservation. The associated quality
metrics values are furnished in Table 5.3. Proposed method achieves the optimal value
for performance measures ERGAS, SAM and CC. The SR-CD method results slightly
better value than the proposed method for Q4. The distortion indices ERGAS, SAM
and the spatial quality measure CC values are optimal for the proposed method. The
visual outcomes and the quality metrics validate the superiority of the proposed method
over the reported SR based methods.
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Table 5.3: Quantitative results for QuickBird data using consistency property
Q4 ERGAS SAM CC RMSE

EXP 0.9352 1.8467 1.9561 0.9461 15.2419
IHS 0.9273 1.7593 1.9862 0.9317 16.2976

AWLP 0.9521 1.5386 1.7535 0.9592 10.1308
MTF-GLP 0.9532 1.5293 1.6935 0.9882 10.1316

SR-Li 0.9427 1.7462 1.8213 0.9534 11.8675
SR-TD 0.9583 1.4876 1.6392 0.9739 11.6574
SR-D 0.9624 1.5621 1.6427 0.9715 11.8749

SR-LD 0.9664 1.4369 1.5372 0.9747 10.2152
SR-CD 0.9672 1.4371 1.5483 0.9725 10.3927

Proposed 0.9633 1.3287 1.4238 0.9791 10.3542

5.3.3 Evaluation Using QNR Protocol

The Quality with No Refernce (QNR) protocol (Alparone et al., 2008) appraises the
quality of the pan-sharpened outcomes in the absence of any reference image. QNR
protocol consists of spectral distortion index Dλ , spatial distortion index Ds, and a sim-
ilarity measure QNR.

The dataset acquired from WorldView-2 sensor that represents an area from Sydney,
Australia is used for evaluation at full-scale resolution. WorldView-2 sensor provides
0.5-m PAN image and 8-band MS image (In this work only 4 bands are considered for
experimentation , Red (R), Green (G), Blue (B) and NearInfraRed (NIR)) with each
spectral band maintaining 2-m resolution. The size of the PAN and MS images is
512×512 and 128×128×4, respectively.

The visual pan-sharpened outcomes for the assessment at full-scale with WorldView-
2 data are shown in Fig.5.7. Associated quantitative results are presented in Table 5.4.
The proposed method attains optimal values for the spatial distortion index (Ds) and
for the overall quality measure (QNR). The quantitative results indicate that the pan-
shapened image obtained on using the proposed method shows finest spatial details
along with the overall improved quality. Fig.5.7(a) and (b) shows the PAN and up-
sampled MS images, respectively. Fig.5.7(c)-(k) represents the pansharpened outcomes
obtained on executing the different methods. In Fig.5.7, the spatial details like roofs
of the buildings are blurred in the outcomes obtained from AWLP (Fig.5.7(d)) and SR-
Li (Fig.5.7(f)) schemes. A slight color change appears at the green areas in the fused
outcome resulting from IHS method as shown in Fig.5.7(c). The outcomes of SR-
TD (Fig.5.7(g)), SR-D (Fig.5.7(h)) and SR-LD (Fig.5.7(i)) are oversharpened in some
regions. The visual outcome of SR-CD (Fig.5.7(j)) shows better consistency in both
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spatial and spectral aspects compared with the other SR based methods used for evalu-
ation. The proposed method (Fig.5.7(k)) retains the essential spectral details and shows
moderately good enhancement in spatial components appearance.

Figure 5.7: Visual results of pan-sharpening methods for WorldView-2 data at full-scale
(a) Degraded PAN image (b) Up-sampled MS image (EXP) (c) IHS (d)
AWLP (e) MTF-GLP (f) SR-Li (g) SR-TD (h)SR-D (i) SR-LD (j) SR-CD
(k) Proposed Method

Table 5.4: Quantitative results for WorldView-2 data using QNR protocol
EXP IHS AWLP MTF-GLP SR-Li SR-TD SR-D SR-LD SR-CD Proposed

Dλ 0 0.0463 0.0387 0.0368 0.0356 0.0319 0.0271 0.0278 0.0276 0.0274
DS 0.0968 0.0581 0.0559 0.0514 0.0528 0.0476 0.0356 0.0399 0.0384 0.0358

QNR 0.9032 0.8983 0.9076 0.9137 0.9135 0.9220 0.9322 0.9334 0.9351 0.9378

The comprehensive analysis of visual and quantitative results indicate that, the pro-
posed method is comparable with the SR based pan-sharpening methods, such as SR-D,
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SR-LD and SR-CD for all the datasets cosidered in this work. However, the proposed
method does not accomplish the optimal values for all the quality metrics, it is compu-
tationally less complex than the SR based methods. The full scale and reduced scale as-
sessments obtained on using the proposed algorithm clearly demonstrates the enhance-
ment in spatial quality, as compared to fused outcomes obtained using the reported SR
based methods.

Further, for a broad regime of applications, the performance analysis of algorithm
implementation is usually evaluated in terms of parametric variations, time complexity,
memory storage requirements etc. In the following two subsections; analysis of para-
metric variations (varying number of filters) and estimation of the proposed algorithm
computational time is investigated and compared with the reported pan-sharpening
methods.

5.3.4 Analyzing Impact of Number of Filters

The quality of fusion outcome using CSC is influenced by two crucial factors: the size
of filter and number of dictionary filters. In order to learn the necessary details (spa-
tial and spectral features of source images) and to impart precise care for the inherent
structures, the filter size is considered as 8× 8 pixels. Apart from the size of filters
employed, the other parameters values considered is same as given in section 4. The
proposed method is validated for 16, 32, 64 and 128 number of dictionary filters, to
analyze its impact on three quality metrics SAM, ERGAS and Q4.

On analyzing these characteristics, it can be observed that, for the number of filters
equal to or greater than 64, all these three quality metrics attain the steady state value.
Since for the number of filters greater than 64, a marginal improvement in the quality
metrics with respect to attained steady state value is hard to discriminate, it drives to fix
the number of filters parameter as 64. Thus, to maintain the striking balance between
the quality metrics and the computaional complexity of algorithmic implementation; in
the proposed pan-sharpening method the number of filters are considered as 64.

5.3.5 Proposed Algorithm’s Execution Time Analysis

The computational time of the proposed method is compared with the other reported
pansharpening methods. The execution time estimation with IKONOS data set of size
256× 256 pixels is furnished in Table 5.5. All the values of timings reported in Table
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5.5 are measured in units of seconds.

Table 5.5: Computational time of different methods for IKONOS dataset
Method IHS AWLP MTF-GLP SR-Li SR-TD SR-D SR-LD Proposed

Time(sec.) 0.3 0.9 1.2 1425.3 1865.2 81.3 2869.1 127.8

All these methods are implemeted in MATLAB R2013a, on a computing system
with 3.1GHz, 8-GB RAM. From the statistics furnished in Table 5.5, IHS, AWLP and
MTF-GLP methods consume less time. Although, from the quantitative and qualitative
perspectives IHS method exhibits poor performance. AWLP and MTF-GLP methods
show considerable improvement over IHS, however, deficient compared with the pro-
posed method. All the SR based methods used for the comparison comprises of dictio-
nary training stage as well. The training phase execution is done in iterative manner on
using the image patches. Therefore, the class of SR methods requires more computa-
tion time compared to CS and MRA methods. Though, SR-Li method doesn’t involve
any training phase, however, the relatively higher computation time owes to a large size
dictionary synthesized using raw patches.

For the given implementation specifications, the performnce of SR-Li is also not
competetive with the remaining SR based methods. SR-TD and SR-LD methods in-
volve dictionary which is trained using the patches of PAN and MS images. This task is
obviously computationally intensive thus, demands higher execution time. Compared
to all these methods, SR-D scheme is comparitively faster since the dictionary is con-
structed by means of direct filtering operations. Although, the accompanying limitation
of these SR based methods is that the trade-off between the spatial details and spec-
tral preservation is unbalanced and thus inadequate. SR-CD method also involves the
dictionary training process. Compared with the other SR based methods, in SR-CD
method, fewer samples are used in trianing process to acquire the comparable quality
for fused outcome. Obviously, the increase size of the dictionary increases the quality
of the pansharpened image as well as computational complexity.

The computation time of the proposed method is given in Table 5.5, for the images
of size 256×256 pixels, filter size 8×8 pixels and 64 number of dictionary filters. The
CSC based pan-sharpening method with specified parameters described in this work, is
attractive in terms of visual quality, quantitative performance metrics and computational
cost. The proposed method is computationally superior in terms of supportive execution
time when compared to the most of the state-of-the-art SR based methods.
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PART II

Pan-sharpening With Discrete Wavelet Decomposition and Convolu-
tional Sparse Representation

To overcome the drawbacks of traditional PS methods, an efficient pansharpening
(PS) method is proposed in order to attain the prevalence of discrete wavelet transform
(DWT) and CSR paradigms. Notably, in this method the PAN and MS images are
decomposed into approximate and detail coefficient bands using discrete wavelet trans-
form. Whereas, in the method presented in PART I (Gogineni and Chaturvedi, 2019),
cartoon and texture decomposition is implemented. The CSR mechanism maintains
the shift-invariance feature, which is an essential component for image fusion. The
traditional fusion models such as ’max-absolute’ and ’averaging components’ yields
smoothing effects in the fused image. The proposed PS technique implements the fu-
sion models that are designed to transmit the important details from source images into
the fused image. The CSR paradigm is invoked to merge the approximate coefficient
bands obtained by wavelet decomposition. The detail coefficient bands are fused based
on the relative wavelet energy estimated over a specified region. Finally, the fused ap-
proximate and detail coefficient bands are merged to synthesize the HRMS image. The
qualitative and quantitative outcomes approve that the explored fusion models in this
method, effectively impart the most consistent features from PAN and MS images to
the HRMS image.

5.4 Pan-Sharpening Framework With Combined DWT
and CSR

The low-resolution MS (LRMS) image, Xk, k = 1,2 ....B., is up-sampled to get the res-
olution of the PAN image, is represented as X̃k. The histogram equalization operation
is performed between PAN image, P, and the up-sampled LRMS image, X̃k, to generate
the corresponding equalized PAN images, Pk. A pansharpening technique that exploits
the features of discrete wavelet transform (DWT) and convolutional sparse representa-
tion (CSR) is presented in this section.

The convolutional sparse coding based fusion rules are implemented in the wavelet
domain in order to overcome the shortcomings of traditional pansharpening methods.
In contrast to earlier approaches, the fusion process is performed in the wavelet domain
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but not in image domain. For each band, i.e., k =1,2,....B.; the proposed pansharpening
framework is presented in Fig. 5.8.

Figure 5.8: The combined DWT and CSR based pan-sharpening schematic

5.4.1 Decomposition Using Discrete Wavelet Transform

The pansharpening outcome is considerably affected by the level of decomposition of
the wavelet transform. For the higher decomposition levels, a single coefficient in the
transform domain influences a relatively large area of the image. Hence, a small error
in decomposed bands causes primitive artifacts in the resultant image obtained by the
inverse transformation. To make the process robust to noise and misregistration, the
wavelet decomposition level is selected as two in the proposed pansharpening method
between PAN and MS images.
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The source images; interpolated MS image, X̃k and PAN image Pk are decomposed
using wavelet transform to generate the corresponding approximate coefficient bands
{AX̃k

, APk} and detail coefficient bands {DX̃k
, DPk}.

5.4.2 Fusion of Approximate Coefficient Bands

In contrast to the conventional patch-partition based methodology used in SR schemes,
CSR is an efficient coding paradigm to represent the entire image using sparse co-
efficient maps. In CSR mechanism, any image, I is represented as a sum of set of
convolutions between dictionary filters di and the unknown sparse coefficient maps xi.

argmin
{xi}

1
2

∥∥∥∥∥∑i
di ∗xi− I

∥∥∥∥∥
2

2

+λ ∑
i
‖xi‖1 (5.29)

Where, λ is a regularization parameter and ’*’ represents convolution operator.

Various image fusion methods (Li et al., 2013a; Liu et al., 2016) have been de-
veloped based on the decomposition of source images into its constituent prime and
secondary layers. The prime layer composed of large-scale intensity variations and
the secondary layer consists of small-scale variations of the source image. Since the
approximate coefficient bands also consist of small intensity variations that reflect the
geometric features, the prime and secondary layer decomposition strategy is deployed.

The approximate coefficient bands of MS and PAN images are further decomposed
into its constituent prime and secondary layers. The prime layer, Ab

X̃k
of approximate

coefficient band {AX̃k
} of MS image is estimated by solving the optimization problem

formulated in Eq.5.30. Similarly, the solution of Eq.5.31 yields the prime layer, Ab
Pk

of
approximate coefficient band, {APk} of the PAN image.

argmin
Ab

X̃k

||AX̃k
−Ab

X̃k
||2F +η(||gx ∗Ab

X̃k
||2F + ||gy ∗Ab

X̃k
||2F) (5.30)

argmin
Ab

Pk

||APk−Ab
Pk
||2F +η(||gx ∗Ab

Pk
||2F + ||gy ∗Ab

Pk
||2F) (5.31)

The parameters gx = [−1 1] and gy = [−1 1]T are horizantal and vertical gradient
operators, respectively. The notion ||.||F represents Frobenius norm. The regularization
parameter η is selected as 5 for the proposed CSR based pansharpening scheme. The
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Tikhonov regularization (Eq.5.30, Eq.5.31) based fast Fourier transform computes the
prime layer. Further, the secondary layers are be estimated as

Ad
X̃k

= AX̃k
−Ab

X̃k
. (5.32)

Ad
Pk

= APk−Ab
Pk
. (5.33)

Here, Ad
X̃k

and Ad
Pk

are the secondary layers decomposed from AX̃k
and APk , respec-

tively.

A set of dictionary filters dm,m = 0,1....M. are learned from the approximate co-
efficient bands by using the ADMM dictionary learning algorithm. The implementation
details and complete decsription of ADMM algorithm to solve the CBPDN problem are
given in (Wohlberg, 2015).

The sparse coefficients maps xi,m for each of the secondary layer Ad = {Ad
X̃k
,Ad

Pk
}

are obtained by solving the CSR model.

argmin
{xi,m}

1
2

∥∥∥∥∥ M

∑
m = 1

dm ∗xi,m−Ad

∥∥∥∥∥
2

2

+λ

M

∑
m = 1
‖xi,m‖1. (5.34)

With i = 1,2. and m = 1...M. Where i = 1 corresponds to the sparse coeffcient maps
of Ad

X̃k
and i = 2 corresponds to the sparse coeffcients maps of Ad

Pk
.

||L(c,d)||1 is the l1 norm for the sparse coefficent maps x1:M(c,d), which is con-
sidered as activity level measure. Here, c and d represents the spatial coordinates. The
activity level pattern for the sparse coefficient maps, xi,m is evaluated with a window of
size (r,s) as

L̄i(x,y) =
1

(2n+1)2

n

∑
r,s=−n

||x1:M(c+ r,d+ s)||1 (5.35)

The value of ‘n’ determines the size of the window. Further, to sustain the fine de-
tails of the source images, the value of n is considered as 3 for the pansharpening of
multispectral images.

The fused coefficient maps, xf,m are evaluated by executing the following decision
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rule.

xf,m(c,d) =

{
x1,m(c,d) if L̄1(c,d)≥ L̄2(c,d)
x2,m(c,d), otherwise

for m = 1....M. (5.36)

Subsequently, the band specific fused secondary layers are obtained as

Ad
fk
=

M

∑
m=1

dm ∗xf,m. (5.37)

The fused prime layer is obtained by an averaging mechanism

Ab
fk
=

1
2
(Ab

X̃k
+Ab

Pk
) (5.38)

The aggregate approximate fused band, Afk is generated as

Afk = Ad
fk
+Ab

fk
(5.39)

5.4.3 Fusion of Detail Coefficient Bands

The associated Wavelet energy is used to fuse the detail coefficient bands, and is defined
as

Ě(w) =
1

w1×w2

w1

∑
c=1

w2

∑
d=1

g(c,d)2 (5.40)

Where, g(c,d) is the wavelet coefficient at the spatial location (c,d) and w is a local
window of size w1×w2 pixels. The fused detail coefficient band, Dfk is produced by
imposing the following rule.

Dfk(c,d) =

{
DX̃k

(c,d) if Ě(wX̃k
(c,d))> Ě(wPk(c,d))

DPk(c,d), otherwise
(5.41)

Where, wX̃k
(c,d) and wPk(c,d) are the windows centered at the pixel locations (c,d) of

the bands DX̃k
and DPk , respectively and Ě(.) represents the wavelet energy of the local

window in an image, centered at the spatial location (c,d).

Finally, the kth band of fused high-resolution MS image, X̂k is reconstructed by
performing the inverse wavelet transform on fused approximate and detail components
Afk and Dfk , respectively.
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5.5 Results and Analysis

In this section, the proposed pan-sharpening method is validated using different satel-
lites datasets including QuickBird, IKONOS and Pléiades. The proposed method is
compared with ten state-of-the-art methods: FIHS (Tu et al., 2004) from CS category,
AWLP (Otazu et al., 2005), and MTF-GLP (Aiazzi et al., 2006) from MRA category,
SR-LD (Li et al., 2013b), SR-D (Vicinanza et al., 2015), random sampling-based SR
method termed as SR-RS (Yang et al., 2018) and SR-CD (Ayas et al., 2018) from sparse
representation, SR-WT (Cheng et al., 2015) from wavelet decomposition based meth-
ods, and CSR-D (Fei et al., 2019) and CSR-R (Gogineni and Chaturvedi, 2019) from
the convolutional sparse coding based PS methods. Further, the interpolated MS image
by using a 23 coefficient polynomial kernel (Aiazzi et al., 2002) (termed as EXP) is also
used for the comparison.

The quality metrics defined by authorized protocols such as correlation coefficient
(CC), spectral angle mapper (SAM), erreur relative global adimensionnelle de synthe-
see (ERGAS), root mean square error (RMSE) and Q4 (4-band extension of universal
image quality index (UIQI)) are used to validate the efficiency of the proposed method.
The implementation details for the conventional FIHS, AWLP, and MTF-GLP methods
are considered from the software package provided by (Vivone et al., 2014). The pa-
rameters for SR based methods used in the comparison are manually tuned to achieve
the optimal performance. For the implementation of the proposed method, DWT with
two-level decomposition is used for the decomposition of source images. The regular-
ization parameter λ in CSR (Eq.5.29) is selected as 0.12 to maintain a balance between
the computational effort and performance outcomes. The local window size to measure
the wavelet energy is set as 3×3 pixels.

All the experiments are conducted using MATLAB2015a, on a personal computer
with CPU intel core i5 @ 3.10 GHz, 8 GB RAM.

5.5.1 Experimental Results With QuickBird Dataset

QuickBird sensor produce a 0.7-m PAN image and a 2.8-m MS image having four
bands. The synthesis property of Wald’s protocol (Wald et al., 1997) is adapted to test
the effectiveness of the proposed method at a reduced-scale, where the source images
are filtered with 7×7 Gaussian filter and down-sampled by a factor four. The pansharp-
ening process is performed on degraded images. The fused outcome is compared with
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the original MS image, which is treated as a reference image.

The PAN image, reference MS image and the interpolated MS image (termed as
EXP) are presented in Fig.5.9(a), (b) and (c), respectively. The visual outcomes of the

Figure 5.9: Visual results of QuickBird data (a) PAN image (b) Reference MS image
(c) Up-sampled MS image (EXP) (d) FIHS (e) AWLP (f) MTF-GLP (g)
SR-LD (h) SR-WT (i) SR-D (j) SR-RS (k) SR-CD (l) CSR-D (m) CSR-R
(n) Proposed method

CS and MRA methods; FIHS, AWLP and MTF-GLP are presented in Fig.5.9(d), (e) and
(f), respectively. The pan-sharpened images obtained from the five SR based methods
are presented in Fig.5.9(g)-(k). The two CSR based methods and the proposed method’s
outcome are presesented in Fig.5.9(l)-(n). The corresponding quantitative measures are
given in Table 5.6. The optimal value for each metric is indicated in boldface. The
second best optimal value is highlighted by an underline. A section of the image that
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covers a part of the highway region (enclosed in red colored square box) is zoomed and
shown separately at the left bottom corner of every image.

Table 5.6: Quantitative measures for QuickBird dataset

CC ERGAS RMSE SAM Q4

EXP 0.8531 4.1436 17.1492 4.1127 0.8253

FIHS 0.8718 3.2146 16.2178 3.6403 0.8559

AWLP 0.8904 2.6168 15.7317 3.5371 0.8716

MTF-GLP 0.9017 2.5361 15.6193 3.5411 0.8738

SR-LD 0.9161 2.6273 15.7145 3.5281 0.8757

SR-WT 0.9247 2.6384 15.8875 3.3874 0.8846

SR-D 0.9265 2.6196 14.6329 3.5673 0.8891

SR-RS 0.9345 2.5127 14.3127 3.2115 0.9286

SR-CD 0.9376 2.4683 13.9638 3.2143 0.9245

CSR-D 0.9379 2.4623 13.7431 3.1519 0.9316
CSR-R 0.9380 2.4762 13.6147 3.2218 0.9288

Proposed 0.9382 2.4759 13.2618 3.1473 0.9251

It can be observed from Fig.5.9 (d) and Fig.5.9(g) that, the outcomes of FIHS, and
SR-LD are exhibiting spectral distortion and appears to be blurred compared with the
reference image (Fig.5.9(b)). The wavelet based method, SR-WT (Fig.5.9(h)) suffers
from minimal blocking artifacts particularly at the roofs of the buildings. Fig.5.9(e),
Fig.5.9(f), Fig.5.9(j) and Fig.5.9(k) shows the outcomes of AWLP, MTF-GLP, SR-RS,
and SR-CD, respectively, appears to have better visual quality. The edges are not well
sharp enough in the outcome of SR-D (Fig.5.9(i)).

It is evident from the visual outcomes that the CSR based methods (Fig.5.9(l)and
(m) ) are relatively better in preserving the spectral information and retaining the geo-
metric details compared with the other reported methods. The outcome of the proposed
method (Fig.5.9(n)) is relatively in a close match with the reference MS image. It is
obvious from the zoomed portion that, the proposed method better preserves the spatial
structures and yields the minimum possible spectral distortion.

From the quantitative measures presented in Table 5.6, it is evident that the pro-
posed method is effective in maintaining the reasonable balance between the spatial
and spectral features in the pansharpened image.
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5.5.2 Experimental Results With IKONOS Dataset

The performance of the proposed method is estimated at a full-scale using the consis-
tency property of Wald’s protocol. The source images are 1-m PAN image and 4-m MS
image with four bands, captured by the IKONOS sensor representing a mountainous
area of Sichuan from China. The pan-sharpening process is executed on the original
data set further, for comparison purpose the fused outcome is down-sampled to the size
of the original MS image. The visual outcomes of different methods used for compari-
son are shown in Fig.5.10.

Figure 5.10: Visual results of IKONOS data (a) PAN image (b) Reference MS image
(c) Up-sampled MS image (EXP) (d) FIHS (e) AWLP (f) MTF-GLP (g)
SR-LD (h) SR-WT (i) SR-D (j) SR-RS (k) SR-CD (l) CSR-D (m) CSR-R
(n) Proposed method

The PAN image, reference MS image, and the up-sampled MS image are shown in
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Fig.5.10 (a), (b) and (c), respectively. The outcome of the FIHS (Fig.5.10(d)) method
suffers from intensity distortion. The consistent details appear in the outcomes of
AWLP and MTF-GLP methods are shown in Fig.5.10 (e) and (f), respectively. The
fused outcome of SR-LD, SR-WT and SR-D methods are unable to effectively preserve
the spectral details. It is difficult to compare the performance of SR-RS, SR-CD and
the proposed method visually. The pansharpened images produced by the CSR based
methods are quite similar to the refence MS image. To validate the effectiveness, the
difference between reference MS image and the outcomes of the reported methods are
presented in Fig.5.11. The quantum of difference appeared as a mix of bright region

Figure 5.11: Difference between the fused outcomes and the reference MS image for
IKONOS data (a) FIHS (b) AWLP (c) MTF-GLP (d) SR-LD (e) SR-WT
(f) SR-D (g) SR-RS (h) SR-CD (i) CSR-D (j) CSR-R (k) Proposed method
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and the dark regions. Further,the dark regions indicate that there is no substantial differ-
ence. It can be observed from the absolute difference images that the outcomes of CS
and MRA based methods exhibit considerable difference and appears as bright regions.
The difference images for CSR based outcomes and the proposed method (Fig.5.11(i)-
(k)) show maximum similarity with the refernce image, which is evidenced by the dark
regions. Besides this the quantitative measures are presented in Table 5.7. The pro-
posed method yields optimal values for CC, RMSE, Q4 and ERGAS and the second
best value for SAM.

Table 5.7: Quantitative measures for IKONOS dataset

CC ERGAS RMSE SAM Q4

EXP 0.8853 4.8329 15.1183 4.5736 0.8517

FIHS 0.9136 4.3163 14.9375 3.9537 0.8847

AWLP 0.9468 4.1461 14.8760 3.4817 0.9284

MTF-GLP 0.9481 4.1527 14.5397 3.3295 0.9279

SR-LD 0.9511 4.1731 14.2749 3.3417 0.9273

SR-WT 0.9542 3.9426 14.1261 3.2943 0.9268

SR-D 0.9558 3.9257 13.8672 3.2397 0.9313

SR-RS 0.9617 3.4621 13.4293 3.2104 0.9391

SR-CD 0.9587 3.5738 13.2841 3.1463 0.9485

CSR-D 0.9591 3.4179 13.1164 3.2018 0.9496

CSR-R 0.9573 3.3884 13.2175 3.2183 0.9514

Proposed 0.9624 3.3386 13.2103 3.1792 0.9536

5.5.3 Experimental Results With Tolouse (Pléiades) Dataset

The assessment at the full-scale is estimated by quality with no reference (QNR) pro-
tocol (Alparone et al., 2008) and is comprises of two metrics: spectral distortion index
Dλ and spatial distortion index Ds. However, the index QNR itself is a quality metric
and infers the similarity measure. The fusion mechanism is performed on the original
dataset without decimating the source images, and the MS image is interpolated to the
size of the PAN image.

The PAN image is shown in Fig.5.12(a) and interpolated MS image is shown in
Fig.5.12(b). The visual outcomes of different CS and MRA methods used for compari-
son are presented in Fig.5.12(c)-(e). The visual outcomes of different SR based methods

100



used for comparison are shown in Fig.5.12(f)-(j). The outcomes of CSR based methods
and the proposed method are shown in Fig.5.12(k)-(m). The dataset is composed of an

Figure 5.12: Visual results of Pléiades data (a) PAN image (b) Up-sampled MS image
(EXP) (c) FIHS (d) AWLP (e) MTF-GLP (f) SR-LD (g) SR-WT (h) SR-D
(i) SR-RS (j) SR-CD (k) CSR-D (l) CSR-R (m) Proposed method

urban area, buildings, and roads from Tolouse city, France. It can be observed that the
outcomes of FIHS and SR-LD suffers from distortion at the building roofs and roads
segment. The spatial distortion can be easily evidenced in some other segments for the
outcomes of SR-WT and MTF-GLP. According to the visual results, AWLP, SR-RS,
SR-CD, and the proposed method outcomes appear to be relatively sharper.

The corresponding quantitative measures are presented in Table 5.8. From the qual-
ity metrics, the CSR-D and CSR-R methods outperforms and yield the second best

101



optimal value in terms of overall quality measure QNR. For the remaining two met-
rics, Dλ and Ds, the proposed method leads to slightly better values than the CSR based
methods. The optimal values are obtained for spatial distortion index, spectral distortion
index and the global quality metric (QNR) using the proposed method.

The visual and quantitative results at the full-scale evaluation approve the effec-
tiveness of the proposed method in preserving the spatial details and maintaining the
requisite spectral information.

Table 5.8: Quantitative measures for Pléiades data

Method Dλ Ds QNR

EXP 0 0.0934 0.9066
FIHS 0.0351 0.0473 0.9193

AWLP 0.0343 0.0417 0.9254
MTF-GLP 0.0397 0.0386 0.9232

SR-LD 0.0375 0.0411 0.9229
SR-WT 0.0368 0.0394 0.9252
SR-D 0.0281 0.0359 0.9370

SR-RS 0.0286 0.0347 0.9377
SR-CD 0.0279 0.0336 0.9394
CSR-D 0.0265 0.0332 0.9412
CSR-R 0.0268 0.0329 0.9412

Proposed 0.0246 0.0327 0.9435

The comprehensive experimental results obtained at reduced-scale and full-scale
evaluation validate that the proposed method effectively overcome the drawbacks of
conventional SR based methods and competetive with the other CSR based methods.
The proposed method yields 2.31% improvement compared with the second best results
in spectral distortion index (SAM) for QuickBird dataset and second optimal value for
IKONOS daatset. In addition at full-scale evaluation the proposed method accomplishes
the optimal value for spectral distortion index. Also the proposed method accomplishes
optimal values for the overall quality measures CC and RMSE. For the full-scale eval-
uation, the proposed method shows better performance in terms of spatial and spectral
distortion reduction as well as quality of the overall outcomes. The visual and quanti-
tative results confirmed that the proposed method effectively preserves all the requisite
details in the fused image.
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5.6 Conclusion

Convolutional sparse coding (CSC) is an effective mechanism developed in recent past,
to deal with the shortcomings of traditional patch-partition based SR fusion methods.
Further, CSR based pansharpening methods yield a single-valued output by exploiting
the shift-invariance feature.

In the first part of this work, a novel pan-sharpening algorithm based on cartoon
and texture decomposition and the convolutional sparse coding is developed. High-
frequency textures are extracted from the PAN and upsampled MS images by means of
TV-Hilbert decomposition. The fused texture component is acquired by measuring the
activity level of sparse coefficient maps obtained using CSC mechanism. To preserve
the underlying geometric structures of the source images, the cartoon components are
averaged, which leads to the fused cartoon component. In addition, the fusion rules
are appropriately chosen in order to holistically transfer spatial and spectral features
into the resultant fused image. In the reconstructed HRMS image, to ensure the preser-
vance of essential spatial details, gradient-based fusion rule combines fused cartoon
and texture components. Furthermore, to analyze the impact of the number of filters
used in conjunction with CSC, it has been treated as a parameter during quality metrics
determination.

The second part of this chapter presents a pan-sharpening method based on the
combination of discrete wavelet transform and convolutional sparse representation. The
source images are decomposed by using discrete wavelet transform, into corresponding
approximate and detail coefficient bands. The approximate coefficient bands are fused
using CSR based activity level measures. The wavelet energy constituted by a window
of specified size is used to fuse the detail coefficient bands. Finally, the desired high-
resolution MS (HRMS) image is synthesized by applying the inverse wavelet transform
over fused approximate and detail coefficient bands.

The experimental results obtained at reduced-resolution and full-resolution are used
to evaluate the proposed method. The pan-sharpened images with promising spectral
quality are more suitable for applications like land-use classification and object detec-
tion and extraction. The classification accuracy increases with the decrease of spectral
distortion. The visual outcomes, particularly the difference images specifiy the en-
hancement of geometric structures in the fused outcome by the proposed method. The
specified quality makes the HRMS image more suitable for a particular application like
change detection. The visual results and quality metrics confirm the eminence of the
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CSR based pan-sharpening methods developed in this work, in maintaining a balanced
trade-off between geometric details enhancement and spectral richness in the fused im-
age. A strong structural correlation usually exists among the MS image bands. Thus, in
future investigations, the exploitation of correlation information can improve the spec-
tral quality and hence, the overall performance of the fused image.
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CHAPTER 6

A VARIATIONAL PAN-SHARPENING ALGORITHM
TO ENHANCE THE SPECTRAL AND SPATIAL

DETAILS

Various kinds of pan-sharpening methods have been developed over the past few decades
to produce high-resolution multispectral (HRMS) images (Vivone et al., 2015). The
component substitution (CS) based methods yield the images with reasonably good vi-
sual quality but suffer from the spectral distortion. The well-known multi resolution
analysis (MRA) based methods in which spatial details are injected into MS image
bands that are extracted from the panchromatic (PAN) image via multi resolution de-
composition. The HRMS images produced by the MRA based methods incur spatial
degradation in the from of blocky and aliasing artifacts, though the spectral distortion
is considerably reduced in comparison with the CS based methods. The sparse repre-
sentation (SR) based methods are associated with patch based processing and intricated
dictionary training phases. The amount of overlapping of patches and the size of the de-
signed dictionary greatly affects the quality of the fused image. The general conclusion
reveals that there is a trade-off between spatial and spectral quality in the fused image
produced by the aforementioned classes of pan-sharpening (PS) methods.

Recently, variational methods (Duran et al., 2017) have been evolved as a promi-
nent and attractive alternative for pan-sharpening of multispectral images. The primary
concern in the variational model based pansharpening mechanism is to construct an
objective energy functional with efficient and reliable prior terms. Further, the pan-
sharpened outcome is obtained using the energy functional minimization approach. The
HRMS images are produced with high-spatial and spectral qualities by combining the
mechanisms of various PS methods into a single variational framework.

The first variational pan-sharpening method named as pan plus multispectral images
(P+XS) was proposed by Ballester et al. (Ballester et al., 2006). The energy function is
composed of three prior terms, two of these prior terms are associated with the remote
sensing image formation model. The third term is based on the geometric information
contained in the panchromatic image. However, P+XS method results in blurring arti-
facts. The formulation of P+XS has motivated the development of many variational pan-



sharpening methods. An alternate variational pansharpening method (AVWP) (Möller
et al., 2012) is presented, in this scheme wavelet fusion and P+XS method are com-
bined with a new spectral consistency term. Although, the AVWP method produce
blocky artifacts in the pan-sharpened image. A non-local regularization term based on
self-similarity principle applied to PAN image is used for pansharpening in a novel vari-
ational model (NVM) (Duran et al., 2014). In this approach, two fidelity terms are used
to establish the relation between source images and the HRMS image. In (Lotfi and
Ghassemian, 2018a), a pansharpening model is proposed based on the decomposition
of source images into the constituent cartoon and texture components. These methods
suffer more degradation in reconstructed image quality.

Sparse optimization based continuous modelling is proposed for pansharpening of
multispectral images in (Deng et al., 2018). In this work, the correlation between the
MS image bands is enforced by a Toeplitz sparse prior term. The alternating direction
method of multipliers (ADMM) based operator splitting framework is used to solve
the formulated variational model. In discrete formulation paradigm, pan-sharpening
methods have been proposed based on total variation (TV) as a regularizer (Palsson
et al., 2014; He et al., 2014). Recently, dynamic gradient based sparsity is exploited for
geometric consistency and the method is named as dynamic TV (DTV) (Chen et al.,
2014). To instigate the feature of sparse representation and to enhance the fidelity of
fused image, l1 based regularized term is used for pan-sharpening in (Chen et al., 2018).
Most of these variational methods are able to mitigate the spectral distortion. However,
they induce spatial artifacts like blocks and blurring in the resultant images. In addition
to spectral enhancement, a holistic model is required to preserve the essential spatial
information as well in the fused image.

The objective of the pan-sharpening process is to maintain a balanced trade-off be-
tween the spatial and spectral information in the fused image. The variational model-
based methods treat the fusion process as an ill-posed inverse optimization problem
and construct the energy function based on the high-resolution PAN image, the low-
resolution MS image, and the ideal fused image. In this chapter, a new variational PS
method is proposed to inject the most vital spatial features of PAN image into HRMS
image, while preserving the essential spectral details. The main contributions of the
proposed variational model for pan-sharpening are listed as follows:

• A new total generalized variation (TGV) based prior term is proposed to precisely
inject the geometric features of PAN image like edges and texture information
into the pan-sharpened image. Further, TGV reduces the artifacts and preserves
the higher-order smoothness in the fused image.
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• By exploiting the correlation between MS image bands, a new spectral distortion
minimization term is designed.

• A data fidelity term is adapted from the image formation model to efficiently
inject the spectral details from the source MS image to the pan-sharpened im-
age. According to the image formation model, the LRMS image is considered
as a decimated and blurred version of the HRMS image. Under these baseline
assumptions, a data generative term is formulated.

• Based on the alternating direction method of multipliers (ADMM), an efficient
operator splitting framework is formulated to solve the proposed model.

6.1 Preliminaries

This section presents a necessary mathematical framework of total generalized variation
(TGV) and spectral angle mapper (SAM) concepts.

6.1.1 Total Generalized Variation (TGV)

Total Variation (TV) has been extensively used as a regularizer in image processing ap-
plications such as denoising, restoration, and reconstruction. Since TV deals with only
first-order derivatives, it leads to undesirable blocky and oil painting artifacts in the re-
sultant image. Total Generalized Variation (TGV) is a generalized version of TV and
possesses the higher-order derivatives of greater than or equal to two. TGV better pre-
serves higher-order smoothness, edges and eliminates the artifacts in the reconstructed
image (Bredies et al., 2010).

Let Ω⊂ Rd be a bounded domain, Ck
c
(
Ω,Symk(Rd)

)
be the space of compactly

supported symmetric tensor fields and κ = (κ0,κ1, .....κk−1)> 0 is a vector of fixed
positive real valued parameters. Using these, TGV of order k is defined as:

TGVk
κ(u) = sup

{∫
Ω

u divk v dx|v ∈ Ck
c

(
Ω,Symk(Rd)

)
,∥∥∥divlv

∥∥∥
∞

≤ κl, l = 0, . . . ,k−1
}
,

(6.1)

where, Symk(Rd) is assumed as the space of symmetric tensors on Rd and v are defined
as bounded vector fields. TGVk

κ is referred as total generalized bounded variation of
order k with a weight vector κ ∈ Rk. For k=1, κ0 = 1 the seminorm TGVk

κ coincides
with the bounded variation seminorm.
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The space bounded generalized variation (BGV) can be defined as

BGVk
κ(Ω) =

{
u ∈ L1(Ω)|TGVk

κ(u)< ∞

}
,

‖u‖BGVk
κ
= ‖u‖1 +TGVk

κ(u).
(6.2)

BGV spans the set of functions of order k with a weight vector κ , which are generalized
version of bounded variations. TGVk

κ is a seminorm on the normed space BGVk
α , and

the space BGVk
κ(Ω) is independent of κ . For k = 2, Sym2(Rd) is the space Sd×d that

spans all symmetric d×d matrices and models a set of bilinear forms which are usually
symmetric. Specifically, the second-order TGV (with k=2) can be expressed as:

TGV2
κ(u) = sup

{∫
Ω

u div2w dx|w ∈C2
c

(
Ω,Sd×d

)
, ‖w‖

∞
≤ κ0,‖divw‖

∞
≤ κ1

}
,

(6.3)
where, the divergences can be defined as:

(divw)h =
d

∑
j=1

∂wh j

∂x j
, 1≤ h≤ d, (6.4)

and

div2w =
d

∑
h, j=1

∂ 2wh j

∂xh∂x j
. (6.5)

TGV is a convex functional and the polynomials of the order less than k-1. In such
circumstances the value of the semi-norm TGVk

κ is zero.

6.1.2 Spectral Angle Mapper (SAM)

Given two spectral vectors, in which v = {v1,v2, ....,vN} be the pixel vector of multi-
spectral bands associated with an original image and v̂ = {v̂1, v̂2, ...., v̂N} be the pixel
vector of the corresponding fused bands, respectively. Let N be the number of bands
present in the image. The spectral angle mapper, SAM is determined as the spectral
angle between the two vectors (Alparone et al., 2015) as

SAM(v, v̂) = arccos
(
〈v, v̂〉
||v||2||v̂||2

)
(6.6)
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SAM is generally estimated on performing average operation over the entire image. If
the two images used for comparison are spectrally equal then the SAM value is zero,
this optimal value is true in an idealistic scenario and it indicates the absence of spectral
distortion, however, there exists a possibility of radiometric distortion.

6.2 Proposed Variational Model

The proposed variational pan-sharpening model consists of three terms to address the
following objectives: (i) To preserve the spectral information, (ii) To enhance the spatial
details and (iii) To reduce the spectral distortion. The terms are designed to attain a pan-
sharpened image having desired spatial and spectral features with reference to the given
PAN and MS images. The First term is adapted from the conventional remote sensing
image formation model, which can be operated as a data synthesizing fidelity term. The
fidelity term enforces spectral information preservation. To retain the requisite geomet-
ric structures and to impart the spatial information in a comprehensive manner from
PAN image to HRMS image, TGV based spatial details extracting term is designed. To
reduce the spectral distortion in the fused image, the correlation information between
MS bands is exploited. The spectral distortion index namely, SAM is utilized to design
an inter-band correlation term.

6.2.1 Data Synthesizing Fidelity Term

The remote sensing image formation model is presented abstractly that prepares under-
lying theme for the data synthesizing fidelity term:

Let P ∈ RM×N, be a PAN image and Xi,(i = 1,2..B) be the LRMS image with B
bands with each band of size m×n where, m = M/4 and n = N/4. The spatial reso-
lution of PAN image is four times that of the MS image. The pan-sharpened image
obtained post fusion process is ’B’ band HRMS image (X̂ = (X̂1, X̂2, ...., X̂B)) main-
taining the spatial resolution of the PAN image with the size of M×N for each band.
Let X̃ = (X̃1, X̃2, ....., X̃B) be the up-sampled LRMS image and has the same size as
PAN image, P.

The source images P, X, and the pan-sharpened image X̂ are represented as vec-
tors for computational purposes. Following the well-established remote sensing image
formation model, the low-resolution MS image bands can be treated as decimated and
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blurred variants of the corresponding HRMS image bands.

Xi = GX̂i +νi i = 1,2....B. (6.7)

Where, G = γiH. Let γi is the blur filter for ith band, and H is the decimation ma-
trix. The blur filter for each band is realized based on the modulation transfer func-
tion (MTF) of the band with its respective cutoff frequency. The decimation matrix,
H = 1

16 .I4⊗
(
(In⊗1T

4×1)⊗ (Im⊗1T
4×1)

)
is of (4mn×4MN) size to perform the down-

sampling operation and νi is an additive Gaussian noise matrix for the ith band. The
operator ⊗ denotes Kronecker product. I4 is an identity matrix of size 4×4 and 14×1 is
a 4×1 vector with all entries as unity.

To preserve the spectral details of the LRMS image, the data synthesizing fidelity
term is formulated as:

J1(X̂) =
1
2

B

∑
i=1
||Xi−GX̂i||22 (6.8)

Where B denotes the number of constituent spectral bands of LRMS/HRMS images.

6.2.2 Spatial Details Preserving Term

To inject the vital geometric features like edges and rich texture information of the PAN
image into the pansharpened image, TGV is adapted as a regularizer in the proposed
algorithm.

The TGV has been used in the reconstruction of images belonging to different
modalities like medical images, fusion of visible and infrared images etc. In addition to
the features that are recovered by the TV, the regularization using TGV predominantly
refrains the typical artifacts like oil painting effects.

TGV2 (Bredies and Valkonen, 2011) can be reformulated as:

TGV2
κ(u) = min

u∈BGV2
κ (Ω),r∈BD(Ω)

κ1

∫
Ω

|∇u− r|+κ0

∫
Ω

|ε (r)|, (6.9)

With BGV = {u ∈Ω/TGVk
κ(u)< ∞} is called the space of bounded generalized vaia-

tion of order k, with weight κ . Where, r are the vector fields of bounded deformation,
i.e. their distributional symmetrized derivative ε(r) is a measure and ∇u represents the
gradient of vector u.

In order to solve the energy function efficiently using the minimizer called Alter-
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nating direction method of multiplier (ADMM), the discretized version of TGV2 is
developed in (Bredies et al., 2010).

TGV2(u) = min
r

κ1||∇u− r||1 +α0||ε(r)||1 (6.10)

Here, ∇u =

[
∂xu
∂yu

]
and ε(r) = 1

2 [∇r+∇rT] denotes symmetrized derivative. In the pro-

posed method, r represents the processed image. In order to efficiently solve Eq.6.10,
the directional derivative ∇u is approximated with Du. Where D = (D1;D2). Hence,

ε(r) =

[
D1r1

1
2(D2r1 +D1r2)

1
2(D2r1 +D1r2) D2r2

]
(6.11)

where the finite forward differences in x and y directions are measured by the circulant
matrices D1 and D2, respectively.. Based on the reformulation of TGV, the spatial
difference between HRMS image and PAN image is expressed as:

J2(X̂) = κ1

B

∑
i=1
||D(X̂i−P)− r||1 +α0||ε(r)||1 (6.12)

The performance eminence of TGV mechanism over TV in preserving textures, edges
and reducing staircase effects has been presented experimentally for the different imag-
ing modalities in (Knoll et al., 2011; Guo et al., 2014a).

6.2.3 Inter-Band Correlation Preserving Term

The prime objective behind acquiring pansharpened image is to make it pragmatic for
applications such as classification, recognition, and detection. Ideally, the distortion
index called Spectral Angle Mapper (SAM) value should be close to zero so as to attain
the optimum correlation between spectral bands of MS image. In vector analogy, SAM
is zero if the two spectral vectors corresponding to the images X̂ and X̃ are parallel.

Under this assumption; to preserve the correlation between the MS image bands, a
hypothesis is presented in the proposed method. The ratio of any two different spectral
bands of HRMS image (X̂) should be equal to that of up-sampled MS bands (X̃),

X̂i

X̂j
=

X̃i

X̃j
, 1≤ i, j≤ B., i 6= j. (6.13)
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This constraint can be formulated as:

X̂iX̃j− X̂jX̃i = 0 i, j = 1,2...B., i 6= j. (6.14)

An energy term, J3(X̂) is defined to preserve the desirable correlation information be-
tween multispectral bands. Further, J3(X̂) also reduces spectral distortion.

J3(X̂) =
B

∑
i=1

B

∑
j=1
||X̂iX̃j− X̂jX̃i||22. (6.15)

On combining terms, J1(X̂),J2(X̂) and J3(X̂), the cost function for the proposed pan-
sharpening algorithm is formulated as:

J(X̂) =
1
2

B

∑
i=1
||Xi−GX̂i||22 +κ1

B

∑
k=1
||D(X̂i−P)− r||1 +κ0||ε(r)||1+

λ

2

B

∑
i=1

B

∑
j=i
||X̂iX̃j− X̂jX̃i||22

(6.16)

Where, λ is a regularization parameter and its value determines the relative contribution
of inter-band correlation term.

6.2.4 Optimization Method

The proposed formulation given in Eq.6.10 can be efficiently solved by alternating di-
rection method of multipliers (ADMM) (Gabay and Mercier, 1975). ADMM solves the
linearly constrained separable convex function of the form

min [θ1(x1)+θ2(x2)] subject to A1x1 +A2x2 = b (6.17)

With x1 ∈ φ1 and x2 ∈ φ2. θ1 : ℜn1 → ℜ and θ2 : ℜn2 → ℜ are closed proper convex
functions; φ1 ⊂ ℜn1 and φ2 ⊂ ℜn2 are closed convex sets; A1 ∈ ℜl×n1 and A2 ∈ ℜl×n2

are given matrices and b ∈ℜl is a given vector. The Lagrangian is defined as:

L(x1,x2; t) = θ1(x1)+θ2(x2)+
β

2 ||A1x1 +A2x2−b− t||22, In that t is the scaled La-
grange multiplier and β is a positive parameter. ADMM solves Eq.6.17 in an iterative
manner, the process initialize with x2

0 = 0 and t0 = 0 as follows:

x1
k+1 = argminx1L(x1,x2

k; tk)
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x2
k+1 = argminx2L(x1

k+1,x2; tk)

tk+1 = tk +β (b− (A1x1
k+1 +A2x2

k+1))

The pansharpening model described in Eq.6.16 consists of a non-smooth l1 term, and
can be amended by introducing auxiliary variables as

r =

[
r1

r2

]
s =

[
s1 s3

s3 s2

]

The model presented in Eq.6.16 is solved for each X̂i value and can be presented as

min
X̂i,P,v,s

1
2
||Xi−GX̂i||22 +

λ

2

B

∑
i=1

B

∑
j=i
||X̂iX̃j− X̂jX̃i||22 +κ1||vi||1 +κ0||s||1 (6.18)

with the change of variables vi = D(X̂i−P)− r , s=ε(r). The terms ||v||1(||s||1) is the
sum of l2-norms (Frobenius norm) of all 2×1 vectors (2×2 matrices).

The application of ADMM (Guo et al., 2014b) results in the following parameters
estimation:

vn+1 = argmin
v
||v||1 +

µ1

2
||v− (D(X−P)n− rn)− (ṽn)||22 (6.19)

sn+1 = argmin
s
||s||1 +

µ2

2
||s− ε(rn)− (s̃n)||22 (6.20)

(X̂n+1
i ,Pn+1) =argmin

X̂i,P

1
2
||Xi−GX̂i||22 +

λ

2

B

∑
i=1

B

∑
j=i
||X̂iX̃j− X̂jX̃i||22

+κ1
µ1

2
||vn+1− (D(X̂i−P)− r)− (ṽn)||22

+κ0
µ2

2
||sn+1− ε(r)− (s̃n)||22

(6.21)

ṽn+1 = ṽn +µ(D(Xi−P)n+1−vn+1) (6.22)

s̃n+1 = s̃n +µ(ε(rn+1)− sn+1) (6.23)

During each cycle of iterations involving Eq.6.19 to Eq.6.23, Eq.6.21 is a differentiable
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optimization problem.

The v and s subproblems specified in Eq.6.22 and Eq.6.23 can be solved using
shrinkage operators as:

v-subproblem:

vn+1 = shrink1(D(Xi−P)n− rn + ṽn,
1
µ1

) (6.24)

Where,
shrinka(a,

1
µ1

) =
a
||a||2

.max(||a||2−
1
µ1

,0) (6.25)

s-subproblem:

sn+1 = shrinkb(ε(rn)+ s̃n,
1
µ2

) (6.26)

Where,

shrinkb(b,
1
µ2

) =
b
||b||F

.max(||b||F−
1
µ2

,0) (6.27)

To obtain the solution of the differentiable part and the convergence analysis of ADMM
algorithm with comprehensive investigation, details are reported in (Guo et al., 2014b).
The solution of the formulated constrained optimization problem yields the requisite
high-resolution MS image. The parameters selected to implement the ADMM algo-
rithm and the convegence details are discussed in the following section.

6.3 Results and Analysis

In this section, the developed variational model for pan-sharpening is compared with the
following state-of-the-art methods at reduced-scale and full-scale: IHS(Tu et al., 2001)
as the classical CS based method; AWLP (Otazu et al., 2005), MTF-GLP (Aiazzi et al.,
2006) as the classical MRA based methods; SR-LD (Li et al., 2013b), SR-CD (Ayas
et al., 2018) as the sparse representation based methods; AVWP (Möller et al., 2012),
DTV (Chen et al., 2014) and V-L1 (Chen et al., 2018) as the representative variational
methods.

To validate the effectiveness of the proposed method, both the visual and quantita-
tive assessments are performed on datasets namely IKONOS, Pléiades, and QuickBird
sensors. The resolution ratio between MS and PAN images is four for all the experimen-
tal datasets. All the methods are implemented in MATLAB R2013a, run on a personal
computer with intel CPU @3.10-GHz and 8-GB RAM.
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6.3.1 Parameters Selection

Implementation of the proposed algorithm involves several parameters, which are to be
selected carefully. The regularization parameters for TGV are selected so as to maintain
an appropriate balance with the data synthesizing fidelity term and inter-band correla-
tion term. The image features are lost if more priority is given to the TGV term, whereas
less priority results in residual noise in the fused image. The crucial regularization pa-
rameter λ is tuned to give the best adaptive outcome between SAM and ERGAS. The
value of λ influences the spectral quality of the fused image. For the reduced-scale
dataset the performance characteristics of SAM and ERGAS with respect to variation
in parameter λ are shown in Fig.6.1. Fig.6.2 presents the variation of Q4 and full-scale
metrics Dλ and Ds with parameter λ .

Figure 6.1: Performance characteristics of SAM and ERGAS with regularization pa-
rameter λ variation (a) SAM Vs. λ (b) ERGAS Vs. λ

Figure 6.2: Performance characteristics of Q4, full-scale metrics with regularization pa-
rameter λ variation (a) Q4 Vs. λ (b) Dλ , Ds Vs. λ
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Based on these observations λ value is tuned to 0.9 x 10−3 for all the experiments.
The quantitative results do not show any noticeable change for the variations in α0 and
α1. Hence, the other regularization parameters are selected as α0 = 10−2,α1 = 10−3.
The remaining parameters are set as µ1 = 10−3,µ2 = 10−5, since these parameters
do not effect the spatial and spectral indices much. To maintain the balance between
performance and computational complexity, the number of iterations for the algorithm
is selected as 25.

6.3.2 Reduced-Resolution Assessment

Since the reference high-resolution MS image is not available, Wald’s protocol (Wald
et al., 1997) is considered to evaluate the quality of the fused image. The source images
are degraded by a factor of four, which is equal to the resolution ratio between PAN and
MS images and the original MS image is treated as a reference image. Several indices
have been developed for the quantitative assessment of spatial and spectral distortions
of the pansharpened image. In this work, Root mean square error (RMSE), spectral
angle mapper (SAM), Erreur Relative Globale Adimensionnelle de Synthése (ERGAS),
correlation coefficient (CC) and Universal Image Quality Index (UIQI) or Q-index (Q4)
are used as quality metrics.

The PAN and MS images produced by IKONOS dataset are of 1-m and 4-m resolu-
tions, respectively. The size of images for experimentation is considered as 256 × 256
pixels. The visual outcomes of different methods for the IKONOS dataset at reduced-
scale are presented in Fig.6.3. The corresponding quality metrics are reported in Table
6.1. Fig.6.3(a) and 6.3(b) show the PAN and MS images used for the experimental
purpose. Fig.6.3(c) presents the up-sampled MS image and termed as EXP. From the
pansharpened images, it is observed that the IHS method yields an outcome with spec-
tral distortion in the form of inconsistent color. The AVWP method results in spatial
and spectral distortions. The SR-CD, MTF-GLP and AWLP methods display fine spa-
tial details. The precise observation of the outcomes of variational methods indicates a
slight color distortion. The outcomes of DTV and V-L1 methods are moderately good as
these schemes are able to preserve edges. The comprehensive perception manifests that
the proposed method preserves more spatial details than the other considered methods.
For improved visualization of spatial details, a part of the image is zoomed (encircled
in a red box) and shown at the bottom left corner for every image. From Table 6.1,
comparative analysis infer that the proposed method outperforms over all the reported
methods on all the quality metrics considered.
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Figure 6.3: IKONOS dataset and experimental results by different methods (a) PAN
image (b) Reference MS image (c) EXP (up-sampled MS image) (d) IHS
(e) AWLP (f) MTF-GLP (g) AVWP (h) SR-LD (i) DTV (j) V-L1 (k) SR-CD
(l) Proposed method

The Pléiades dataset was collected by an aerial platform of an urban area of Toulouse
(France). The resolution of the four MS bands is 60 cm and the corresponding high res-
olution PAN image was simulated from the available green and red channels. The size
of the images used for the implementation of pan-sharpening methods at the reduced
resolution is 256 × 256 pixels.

Fig.6.4(a) shows the MS image covering an urban area, resampled to the size of the
PAN image. Fig.6.4(b) shows the corresponding PAN image. The visual outcomes of
EXP, IHS, AWLP, MTF-GLP, AVWP, SR-LD, DTV, V-L1, SR-CD, and the proposed
method are shown in Fig.6.4(c)-(l), respectively. The IHS method suffers from spectral
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Table 6.1: Reduced-resolution quality Metrics for IKONOS data set

Method Q4 SAM RMSE ERGAS CC

EXP 0.8251 5.6492 16.3371 5.1386 0.7917

IHS 0.8627 5.3537 15.6392 4.4137 0.8458

AWLP 0.9158 5.0845 15.1156 3.6324 0.9214

MTF-GLP 0.9231 5.1427 15.1093 3.5937 0.9276

AVWP 0.8885 5.2175 15.9173 4.5273 0.8721

SR-LD 0.8754 5.5146 16.1183 4.6259 0.8735

DTV 0.9237 4.6842 14.4131 3.6521 0.9283

V-L1 0.9314 4.7163 14.3275 3.7128 0.9351

SR-CD 0.9342 4.5739 14.9748 3.8862 0.9363

Proposed 0.9418 4.4753 14.1126 3.5861 0.9389

distortion in the regions containing grass. It can be seen from Fig.6.4(g) that the AVWP
method is not good in spatial resolution. The AWLP method and SR based methods
better preserve the color in various regions of the fused image. It is observed from the
results that AWLP, MTF-GLP, DTV, and SR-CD produce comprehensive visual quality.
The proposed method is superior in reducing the color distortion and retaining the sharp
spatial details than the other reported methods. Besides, the quantitative results for the
Pléiades dataset are presented in Table 6.2. Quantitative values of the metrics validate
the efficiency of the proposed method.

Table 6.2: Reduced-resolution quality Metrics for Pléiades data set

Method Q4 SAM RMSE ERGAS CC

EXP 0.7841 4.6853 13.7956 5.9562 0.8257
IHS 0.8495 4.9357 13.4531 5.1048 0.8573

AWLP 0.9413 4.4138 12.4176 3.5182 0.9587
MTF-GLP 0.9478 4.1735 12.3362 3.3174 0.9564

AVWP 0.9247 5.1123 12.4175 3.7293 0.9381
SR-LD 0.9483 4.3352 11.9731 3.4832 0.9653
DTV 0.9571 4.2673 10.9318 3.4536 0.9617
V-L1 0.9583 4.2759 10.6572 3.4369 0.9776

SR-CD 0.9654 4.0381 10.4729 3.4371 0.9743
Proposed 0.9673 4.1736 10.2358 3.4152 0.9782
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Figure 6.4: Pléiades dataset and experimental results by different methods (a) PAN im-
age (256 × 256) (b) Reference MS image (c) EXP (up-sampled MS image)
(d) IHS (e) AWLP (f) MTF-GLP (g) AVWP (h) SR-LD (i) DTV (j) V-L1
(k) SR-CD (l) Proposed method

6.3.3 Full-Resolution Assessment

QuickBird dataset produces the PAN and 4-band MS images at 0.7-m and 2.8-m spa-
tial resolution, respectively. The QNR protocol (Alparone et al., 2008) is used for the
quantitative evaluations. Fig.6.5 presents pansharpening results at full-resolution for the
QuickBird dataset. The estimated value of quality metrics in terms of spectral distortion
index Dλ , spatial distortion index Ds and QNR are reported in Table 6.3.

Fig. 6.5(a) and 6.5(b) shows the full-resolution PAN and up-sampled MS images
of size 512 × 512 pixels. The outcomes of methods IHS, AVWP, and V-L1 exhibit
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Figure 6.5: QuickBird dataset and experimental results by different methods (a) PAN
image (400 × 400) (b) up-sampled MS image (c) IHS (d) AWLP (e) MTF-
GLP (f) AVWP (g) SR-LD (h) DTV (i) V-L1 (j) SR-CD (k) Proposed
method

slight color change and blurring artifacts at the red colored soil and highway portion
of the image. The conventional methods AWLP and MTF-GLP outcomes preserve the
spectral information. The outcome of the DTV method shows tiny blocking artifacts.
The pansharpened outcomes of SR-LD and SR-CD methods exhibit acceptable sharp-
ness in preserving spatial details. Moreover, the proposed method yields less spectral
distortion and retains sharp edges compared to the other reported methods. The smaller
value of Dλ and Ds implies less spectral distortion and spatial distortion, respectively
obtained by the proposed pan-sharpening method. The higher value of QNR indicates
enhanced global quality of the fused image. The proposed method gives the optimal
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values for Dλ , Ds and QNR as reported in Table 6.3. Hence, the overall performance
and efficacy of the proposed method is demonstrated by visual outcomes as well as
quantitative results.

Table 6.3: Full-resolution quality Metrics for QuickBird dataset

Method Dλ Ds QNR

EXP 0 0.1457 0.8544

IHS 0.0410 0.0576 0.9037

AWLP 0.0406 0.0480 0.9135

MTF-GLP 0.0372 0.0414 0.9229

AVWP 0.0428 0.0507 0.9087

SR-LD 0.0356 0.0513 0.9149

DTV 0.0338 0.0481 0.9197

V-L1 0.0315 0.0489 0.9211

SR-CD 0.0298 0.0453 0.9262

Proposed 0.0283 0.0409 0.9319

6.3.4 Comparative Analysis of Computational Cost

The efficiency of all the considered methods is evaluated in terms of algorithm exe-
cution time measured in seconds. The average execution time is measured for the test
datasets presented in Fig.6.3- Fig.6.5. The CS and MRA methods are recognized for the
minimal possible computational cost. The execution time for all the compared meth-
ods is reported in Table 6.4. It can be observed from Table 6.4, that IHS, AWLP, and
MTF-GLP methods consume the least execution time among all the reported meth-
ods. Since the dictionary training process is laborious, obviously the SR based methods
consume exceptionally longer time. The proposed method is not as computationally
efficient as some of the the variational methods like AVWP, DTV, and V-L1. However,
the proposed method reduces the blocking artifacts and preserves spectral information
at the cost of execution time. From the perspective of accuracy and convergence speed,
Fig.6.6 presents the relative error versus the iteration count for the proposed method.
The relative error is evaluated as

relative error =
||X̂i−Xr||
||Xr||

(6.28)
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Table 6.4: Average execution time comparison of different methods (in seconds)

Method Time(sec.) Method Time(sec.)

EXP 0 SR-LD 1486.0617

IHS 0.0119 DTV 39.7352

AWLP 0.1935 V-L1 116.2947

MTF-GLP 0.1385 SR-CD 652.3795

AVWP 95.3526 Proposed 218.6472

where, X̂i is the pan-sharpened image obtained at ith iteration and Xr is the reference
MS image. The relative error attains to the least possible value for all the datasets on
completing 25 iterations. The visual and quantitative results validate that the proposed
method is superior to the reported methods namely, AVWP, DTV, and V-L1 in terms of
maintaining a trade-off between spatial and spectral qualities. From the execution time
perspective, the proposed method is efficient than the considered SR based methods.

Figure 6.6: Convergence speed of the proposed method for the datasets utilized in ex-
perimentation
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6.4 Conclusion

In recent years, the variational method emerge as an attractive alternative for the pan-
sharpening of multispectral images. This work proposed a variational pan-sharpening
model based on total generalized variation (TGV) and inter-band correlation. The
conventional total variation based geometric terms result in a staircase effect in the
pansharpened image. This work investigates a second-order TGV based spatial differ-
ence term to reduce the geometric structural difference between HRMS image and PAN
image. Further, the inter-band correlation term, explored from spectral angle mapper
(SAM) is used to reduce the spectral distortion. Moreover, an efficient optimization al-
gorithm called ADMM with an operator splitting framework is utilized to solve the pro-
posed pan-sharpening model. For comprehensive performance analysis of the proposed
method, the experiments are performed on reduced and full-resolution data. Further-
more, the proposed method is competitive with most of the SR and variational methods
and leads to satisfactory results compared to AVWP, DTV, and V-L1 methods. The pro-
posed work can be further extended to reduce the execution time and to exploit more
reliable terms to efficiently characterize the relation between source and fused images.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

Remote sensing image data captured by the satellite sensors are having phenomenal
importance for applications such as urban planning, land cover classification, change
detection, and Google Maps. The hardware constraints limit the sensors in producing
images with high-spatial and spectral resolution characteristics. This thesis explores the
problem of pan-sharpening (PS), a remote sensing image fusion technique that com-
bines the spatial characteristics of panchromatic (PAN) image and spectral features of
multispectral (MS) image bands into a high-resolution multispectral (HRMS) image.

The literature review indicates that the existing pan-sharpening methods are still
striving to produce the fused image with an adequate balance between spatial and spec-
tral qualities. The component substitution (CS) methods are global, i.e. these meth-
ods do not consider the local discrepancies between source images used for the fusion
process. Hence, the spectral mismatch between PAN and MS images results in color
distortion in the pan-sharpened image. In most of the multi resolution analysis (MRA)
based methods, the mechanism used to extract the spatial details affects the quality of
fused outcome. Further, a set of inappropriate coefficients used to inject spatial details
into MS bands induces blurring artifacts in the pan-sharpened outcome. The amount
of overlap between the image patches, the dictionary construction mechanism, and the
size of the patch used in sparse coding process are the critical issues that regulate the
performance of sparse representation (SR) based PS techniques.

In this thesis, the pan-sharpening problem is investigated in the perspective of bal-
ancing the trade-off between spatial features enhancement and spectral details preserva-
tion in the fused image. The proposed work explores SR based methods and variational
models in order to overcome the drawbacks of conventional PS methods. Two SR based
techniques using multi-scale learned dictionary (MSLD) and dual dictionaries are pro-
posed. The concept of scale-invariance between the PAN image patches at two different
resolutions is deployed to extract the spatial details that are missing in MS image bands.
A multi-scale learned dictionary is attractive because of its ease in performing the sparse



coding. The experimental results demonstrate the capability of the MSLD and dual dic-
tionary based PS methods towards enhancing the spatial features, thus maintaining the
quality spatial details and accompanied a significant reduction in spectral distortion.
However, the dictionary construction and subsequent update process, in most of these
SR based methods are computationally intensive.

Most of the SR based pan-sharpening methods adapted patch-partition based pro-
cessing strategy. An increase in the amount of overlapping between adjacent patches
increases the smoothing of some details in the resultant fused image, thereby it results
in redundant representation. To mitigate some of these drawbacks of SR based methods,
a pan-sharpening technique based on an alternative framework, namely convolutional
sparse representation (CSR), is proposed in this thesis. A novel pan-sharpening algo-
rithm based on cartoon plus texture decomposition (CPT) and the convolutional sparse
representation is developed. The fusion rules are appropriately chosen to holistically
transfer spatial and spectral features into the resultant fused image. In the reconstructed
HRMS image, to ensure the presence of essential spatial details, gradient based fu-
sion rule is deployed to fuse cartoon and texture components. As an extension of this
approach, the thesis presents another pan-sharpening method that combines discrete
wavelet transform (DWT) and CSR framework. The source images are decomposed
using DWT, and the resultant components are fused based on CSR based models. The
CSR based pan-sharpened images possess a promising spectral quality that is more
suitable for the applications like land-use clssification, object detection and extraction.
Further, a variational pan-sharpening model based on total generalized variation (TGV)
and inter-band correlation is proposed to reduce the geometric structural difference be-
tween HRMS image and PAN image and to reduce the spectral distortion. On formu-
lating optimization framework driven objective function, an efficient algorithm called
alternating direction method of multipliers (ADMM) with an operator splitting frame-
work is utilized to solve the proposed pan-sharpening model.

For the comprehensive analysis of all the proposed methods, the experimentation
is performed on the datasets acquired from different geographical terrains. The visual
analysis is performed on reduced and full-resolution data. The quality metrics pre-
scribed by the Wald’s protocol and quality with no reference (QNR) protocols are used
for quantitative assessment. The experimental results obtained using the proposed SR
based methods lead to moderate reduction in computational cost compared to traditional
SR based methods. The pan-sharpening methods developed using CSR mechanism
yields the fused outcomes with an enhanced spatial and spectral quality.
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7.2 Future Work

With a motivation to enhance the quality of HRMS image, the pan-sharpening ap-
proaches presented in this thesis can be further explored while investigating the fol-
lowing issues.

• Recently, deep learning (DL) has achieved great success in various fields, such
as image processing, pattern recognition, and computer vision. Deep learning
has become a potentially interesting topic for remote sensing data analysis. A
further investigation can be carried out to explore the application of DL for pan-
sharpening.

• The spectral range mismatch and unavoidable misregistration between PAN and
MS images are the critical problems in remote sensing imagery. The robust pan-
sharpening methods need to be designed that minimize the effects of these un-
warranted features.

• The learned dictionaries usually consist of a large number of atoms to accurately
reconstruct the image patches. Various existing dictionaries are analyzed during
this research work in terms of the number of atoms, adaptability, and computa-
tional complexity. However, learning a dictionary having acceptable representa-
tion capability with a small fixed number of atoms is desirable for sparse repre-
sentation based pan-sharpening methods and still a challenging problem.

• Most of the existing algorithms are more suitable for the pan-sharpening of mul-
tispectral images. The possible extension of these algorithms with appropriate
modifications can be investigated for the pan-sharpening of hyperspectral images.
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