
EFFICIENT MINING OF FREQUENT COLOSSAL

ITEMSETS FROM HIGH DIMENSIONAL DATA

Thesis
Submitted in partial fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

Mr. Manjunath K Vanahalli

DEPARTMENT OF INFORMATION TECHNOLOGY

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA
SURATHKAL, MANGALORE - 575025

March 2020

Declaration

I hereby declare that the Research Thesis entitled “Efficient Mining of Frequent Colos-

sal Itemsets from High Dimensional Data” which is being submitted to the National

Institute of Technology Karnataka, Surathkal in partial fulfilment of the requirements

for the award of the Degree of Doctor of Philosophy in Information Technology is a

bonafide report of the research work carried out by me. The material contained in

this thesis has not been submitted to any University or Institution for the award of any

degree.

Mr. Manjunath K Vanahalli
Register No.: 145063IT14F02
Department of Information Technology

Place: NITK Surathkal

Date:

Certificate

This is to certify that the Research Thesis entitled “Efficient Mining of Frequent Colos-

sal Itemsets from High Dimensional Data” submitted by Mr. Manjunath K Vanahalli

(Register Number: 145063IT14F02) as the record of the research work carried out by

him, is accepted as the Research Thesis submission in partial fulfilment of the require-

ments for the award of degree of Doctor of Philosophy.

Dr. Nagamma Patil
Research Guide
Assistant Professor
Department of Information Technology
NITK Surathkal - 575025

Chairman - DRPC
(Signature with Date and Seal)

Acknowledgements

First and foremost, I would like to extend my sincere gratitude to my research guide, Dr.

Nagamma Patil, for her dedicated help, advice, inspiration, encouragement, enthusiasm,

and continuous support, throughout my research career.

I express my sincere thanks to members of my RPAC committee, Dr. Shashidhar G

Koolagudi, Dept. of CSE and Dr. R. Madhusudhan, Dept. of MACS, for their valuable

feedback and constructive suggestions during my research work.

I thank all of Department of Information Technology, NITK - all faculties and staff

for numerous opportunity of learning and all the support at times of need. I thank NITK

Surathkal as a whole for providing me with necessary platform for my research and for

the opportunity of attaining my Ph.D.

I thank my wonderful Parents - Suma K Vanahalli and Krishna G Vanahalli, for the

love, patience, care and moral support they have showered on me throughout my life,

even more importantly, during the period of my research. I would like to thank my

Sister - Anita Lokesh and Brother-in-law Lokesh G for their support and care.

I thank my wonderful Wife - Shylaja for the love, patience, care and moral support

she has showered on me. I thank my Mother-in-law - Uma Devi and her family for their

support and care. I thank all my family members for their prayers and support.

I express my heartfelt thanks to my friends - Sanjay S Bankapur, Shridhar G Do-

manal, Karthik N, Ashwin T S, Gokul S Krishnan, Girish G N, Ranjit P Kolkar, Archana

Bhat and Shruti J R for their support and care. I thank all my close friends who has been

a great support during the period of my research. I also thank my labmates, fellow re-

search scholars, ALs and non-teaching staff for their support.

(Mr. Manjunath K Vanahalli)

Abstract

The basic and major step of Association Rule Mining (ARM) is itemset mining.

ARM and itemset mining have a great and vast range of applications. The conven-

tional featured enumeration based itemset mining algorithms focus on mining frequent

itemsets, frequent closed itemsets, and frequent maximal itemsets from transactional

datasets. The transactional datasets consist of a smaller number of attributes (features)

and a large number of rows (samples). The abundant data across a variety of domains,

including bioinformatics has led to the formation of a new form of dataset known as

high dimensional dataset, whose data characteristics are different from that of trans-

actional datasets. The high dimensional datasets consist of a large number of features

and a smaller number of rows. The amount of information that can be extracted from

high dimensional datasets is potentially huge, but extraction of information from these

datasets is a non-trivial task. The result of Frequent Itemset Mining (FIM) and Fre-

quent Closed Itemset Mining (FCIM) algorithms include small and mid-sized itemsets,

which do not enclose valuable and complete information for decision making. In ap-

plications dealing with high dimensional datasets such as bioinformatics, ARM gives

greater importance to the large-sized itemsets known as colossal itemsets.

The recent research focused on mining frequent colossal itemsets and frequent

colossal closed itemsets, which are more influential in decision making and are sig-

nificant for many applications, especially in the field of bioinformatics. The prepro-

cessing technique of existing frequent colossal itemset mining and frequent colossal

closed itemset mining algorithms fail to prune the complete set of insignificant features

and rows. An Effective Improved Preprocessing (EIP) technique has been proposed to

prune the complete set of insignificant features and rows, which confines an increase in

the mining search space. The existing frequent colossal itemset mining algorithm mine

limited set of frequent colossal itemsets leading to the generation of an incomplete set

of association rules, which consequently affects the decision making. Frequent colossal

itemset mining algorithm has been proposed to achieve better accuracy than existing

algorithms in terms of mining number of frequent colossal itemsets from the high di-

mensional dataset.

The existing algorithms for mining Frequent Colossal Closed Itemsets (FCCI) from

the high dimensional dataset do not enclose an efficient pruning strategy and closeness

checking method. To overcome the drawbacks of the existing works, an algorithm en-

closed with efficient Rowset Cardinality Table (RCT) based closeness checking method

and pruning strategy has been proposed to efficiently mine FCCI from high dimensional

dataset.

The existing algorithms are inefficient in mining FCCI from the datasets consisting

of a large number of features and rows, as they are inefficient in handling the changing

characteristics of data subset during the mining process. The combination of different

enumeration methods is required to efficiently handle different characteristics possessed

by different datasets. A dynamic switching algorithm has been proposed to efficiently

mine FCCI form the dataset consisting of a large number of features and rows. The

dynamic switching algorithm efficiently handles the changing characteristics of the data

subset during the mining process. The dynamic switching algorithm is enclosed with

Itemset Support Table (IST) based closeness checking method and pruning strategy.

The existing algorithms for mining FCCI from high dimensional datasets are se-

quential and computationally expensive. Distributed and parallel computing is a good

strategy to overcome the inefficiency of the existing sequential algorithms. The in-

efficiency of the existing sequential algorithms has been overcome by proposing the

parallel row enumerated algorithm to efficiently mine FCCI from the high dimensional

dataset. Traversing the row enumerated tree is the best solution for mining FCCI from

the high dimensional dataset. The intrinsic nature of the row enumerated tree is typi-

cally unbalanced, as the number of nodes in each row enumerated tree branch vary. The

distributed and parallel algorithm with load balancing has been designed to address the

inefficiency of existing works.

Keywords: Bioinformatics; High Dimensional Dataset; Data Characteristics;

Preprocessing; Frequent Colossal Itemsets; Frequent Colossal

Closed Itemsets; Rowset Cardinality Table; Itemset Support Ta-

ble; Dynamic Switching; Pruning Strategy; Closeness Checking;

Parallel algorithm; Load Balancing.

Contents

1 Introduction 1

1.1 Knowledge Discovery in Databases 1

1.2 Data Mining Tasks . 2

1.3 Association Rule Mining and Itemset Mining 2

1.4 Research Motivation . 5

1.5 Preliminaries . 5

1.6 Major Contributions of the Thesis 7

1.7 Organization of the Thesis . 8

1.8 Summary . 9

2 Literature Survey 11

2.1 Applications of Itemset Mining and Association Rule Mining 12

2.2 Sequential Mining of Frequent Itemsets from the Transactional Dataset 12

2.3 Parallel and Distributed Mining of Frequent Itemsets from Transac-
tional Datasets . 15

2.4 Sequential Mining of Frequent Closed Itemsets from the Transactional
Dataset . 17

2.5 Parallel and Distributed Mining of Frequent Closed Itemsets from Trans-
actional Datasets . 19

2.6 Mining of Frequent Closed Itemsets from the High Dimensional Dataset 21

2.7 Mining of Frequent Colossal Itemsets and Frequent Colossal Closed
Itemsets from the High Dimensional Dataset 23

2.8 Research Gaps . 32

2.9 Problem Statement . 33

2.10 Research Objectives . 33

2.11 Proposed Methodology . 33

2.12 Summary . 35

3 Effective Improved Preprocessing Technique to Prune Insignificant fea-
tures and rows from the High Dimensional Dataset 37

3.1 Proposed Effective Improved Preprocessing Technique 37

3.2 Algorithm for Proposed Effective Improved Preprocessing Technique 41

3.3 Results and Discussion . 43

3.4 Summary . 55

4 Mining Frequent Colossal Itemsets and Frequent Colossal Closed Item-
sets from the High Dimensional Dataset 57

4.1 Search Strategies . 57

4.1.1 Top-Down Traversal of Row Enumerated Tree 57

4.1.2 Bottom-Up Traversal of Row Enumerated Tree 59

4.2 Proposed Frequent Colossal Itemset Mining from the High Dimen-
sional Dataset . 60

4.3 Proposed Frequent Colossal Closed Itemset Mining using Prune Table 62

4.4 Proposed Method for Mining Frequent Colossal Closed Itemsets from
the High Dimensional Dataset using Rowset Cardinality Table . . . 65

4.4.1 Rowset Cardinality Table 65

4.4.2 Proposed Closeness Checking 68

4.4.3 Proposed Pruning Strategy 69

4.4.4 BitSet Frequent Colossal Closed Itemset Mining (BSFCCIM)
algorithm . 70

4.4.5 Complexity Analysis . 72

4.5 Results and Discussion . 72

4.5.1 Results of Frequent Colossal Itemset Mining from the High Di-
mensional Dataset . 73

4.5.2 Results of Frequent Colossal Closed Itemset Mining using Prune
Table . 75

4.5.3 Results of BitSet Frequent Colossal Closed Itemset Mining (BS-
FCCIM) algorithm . 77

4.6 Summary . 81

5 Dynamic Switching Algorithm for Mining Frequent Colossal Closed Item-
sets 83

5.1 Search Strategies . 83

5.1.1 Top-Down Traversal of Feature Enumerated Tree 83

5.1.2 Bottom-Up Traversal of Feature Enumerated Tree 85

ii

5.2 Proposed Dynamic Switching Method for Mining Frequent Colossal
Closed Itemsets . 86

5.2.1 Itemset Support Table . 88

5.2.2 Proposed IST based Closeness Checking 89

5.2.3 Proposed IST based Pruning Strategy 91

5.2.4 Proposed Dynamic Switching Frequent Colossal Closed Item-
set Mining (DSFCCIM) algorithm 92

5.2.4.1 RowEnum Procedure 94

5.2.4.2 FeatureEnum Procedure 95

5.2.5 Complexity Analysis . 96

5.3 Results and Discussions . 97

5.4 Summary . 105

6 Distributed and Parallel Mining of Frequent Colossal Closed itemsets
from the High Dimensional Dataset 107

6.1 Distributed Row Enumerated Frequent Colossal Closed Itemset Mining
(DREFCCIM) algorithm . 107

6.2 Parallel Row Enumerated Method for Mining Frequent Colossal Closed
Itemsets from the High Dimensional Dataset 110

6.2.1 Effective Improved Parallel Preprocessing (EIPP) Technique 110

6.2.2 Parallel Frequent Colossal Closed Itemset Mining (PFCCIM)
algorithm . 112

6.3 Distributed and Parallel Mining of Frequent Colossal Closed Itemsets
with Load Balancing . 115

6.4 Results and Discussion . 122

6.4.1 Results of DREFCCIM Algorithm 122

6.4.2 Results of PFCCIM Algorithm 126

6.4.2.1 Runtime Analysis 127

6.4.2.2 Speed-up Analysis 133

6.4.2.3 Statistical Significance Analysis 136

6.4.3 Results of BDPFCCIM Algorithm 139

6.4.3.1 Runtime Analysis 141

iii

6.4.3.2 Speed-up Analysis 150

6.4.3.3 Statistical Significance Analysis 156

6.5 Summary . 158

7 Conclusions and Future Work 161

7.1 Conclusions . 161

7.2 Future Work . 164

References 165

iv

List of Tables

1.1 High Dimensional Dataset D . 6

2.1 Comparison of Itemset Mining Algorithms. 26

3.1 bitTable corresponding to High Dimensional Dataset D 38

3.2 bitTable after pruning insignificant features {c, k} 38

3.3 bitTable after pruning insignificant row {8} 39

3.4 bitTable after pruning insignificant feature {e} 39

3.5 bitTable after pruning insignificant row {7} 40

3.6 Preprocessed bitTable when minsup=3 and mincard=3 41

3.7 High Dimensional Biological-Datasets 43

3.8 Comparison of Proposed EIP Technique and Preprocessing Technique
used in DisClose, BVBUC, PF, CP-Miner and PCP-Miner for Ovarian
Cancer dataset with minsup set to 20 and 30. 44

3.9 Comparison of Proposed EIP Technique and Preprocessing Technique
used in DisClose, BVBUC, PF, CP-Miner and PCP-Miner for Ovarian
Cancer dataset with minsup set to 40 and 50. 44

3.10 Comparison of Proposed EIP Technique and Preprocessing Technique
used in DisClose, BVBUC, PF, CP-Miner and PCP-Miner for Lung
Cancer dataset with minsup set to 20 and 30. 45

3.11 Comparison of Proposed EIP Technique and Preprocessing Technique
used in DisClose, BVBUC, PF, CP-Miner and PCP-Miner for Lung
Cancer dataset with minsup set to 40 and 50. 45

3.12 Comparison of Proposed EIP Technique and Preprocessing Technique
used in DisClose, BVBUC, PF, CP-Miner and PCP-Miner for Prostate
Cancer dataset with minsup set to 20 and 30. 46

3.13 Comparison of Proposed EIP Technique and Preprocessing Technique
used in DisClose, BVBUC, PF, CP-Miner and PCP-Miner for Prostate
Cancer dataset with minsup set to 40 and 50. 46

3.14 Comparison of Proposed EIP Technique and Preprocessing Technique
used in DisClose, BVBUC, PF, CP-Miner and PCP-Miner for MLL
dataset with minsup set to 5 and 10. 48

3.15 Comparison of Proposed EIP Technique and Preprocessing Technique
used in DisClose, BVBUC, PF, CP-Miner and PCP-Miner for MLL
dataset with minsup set to 15 and 20. 49

3.16 Comparison of Proposed EIP Technique and Preprocessing Technique
used in DisClose, BVBUC, PF, CP-Miner and PCP-Miner for MLL
dataset with minsup set to 25 and 30. 49

3.17 Comparison of Proposed EIP Technique and Preprocessing Technique
used in DisClose, BVBUC, PF, CP-Miner and PCP-Miner for Central
Nervous System embryonal tumor dataset with minsup set to 5 and 10. 50

3.18 Comparison of Proposed EIP Technique and Preprocessing Technique
used in DisClose, BVBUC, PF, CP-Miner and PCP-Miner for Central
Nervous System embryonal tumor dataset with minsup set to 15 and 20. 50

3.19 Comparison of Proposed EIP Technique and Preprocessing Technique
used in DisClose, BVBUC, PF, CP-Miner and PCP-Miner for Central
Nervous System embryonal tumor dataset with minsup set to 25 and 30. 51

3.20 Comparison of Proposed EIP Technique and Preprocessing Technique
used in DisClose, BVBUC, PF, CP-Miner and PCP-Miner for DLBCL
(Including Follicular Lymphoma) dataset with minsup set to 5 and 10. 51

3.21 Comparison of Proposed EIP Technique and Preprocessing Technique
used in DisClose, BVBUC, PF, CP-Miner and PCP-Miner for DLBCL
(Including Follicular Lymphoma) dataset with minsup set to 15 and 20. 52

3.22 Comparison of Proposed EIP Technique and Preprocessing Technique
used in DisClose, BVBUC, PF, CP-Miner and PCP-Miner for DLBCL
(Including Follicular Lymphoma) dataset with minsup set to 25 and 30. 52

3.23 Comparison of Proposed EIP Technique and Preprocessing Technique
used in DisClose, BVBUC, PF, CP-Miner and PCP-Miner for Lung
Cancer Test dataset with minsup set to 10 and 15. 53

3.24 Comparison of Proposed EIP Technique and Preprocessing Technique
used in DisClose, BVBUC, PF, CP-Miner and PCP-Miner for ALL-
AML dataset with minsup set to 10 and 15. 54

3.25 Comparison of Proposed EIP Technique and Preprocessing Technique
used in DisClose, BVBUC, PF, CP-Miner and PCP-Miner for DLBCL
dataset with minsup set to 15 and 20. 54

4.1 Prune Table (PT) of row enumerated node 13 (PT13) and 34 (PT34) 62

4.2 Rowset Cardinality Table of row enumerated nodes 12, 13, 14 and 23 66

4.3 Rowset Cardinality Table of row enumerated node 123, RCT123 . . 69

5.1 Itemset Support Table of feature enumerated nodes ab, bd, dg and ah 89

5.2 Itemset Support Table of feature enumerated abd, ISTabd 91

vi

6.1 Wilcoxon Signed-Rank Test for PFCCIM (2 threads) against PFCCIM
(4 threads) and PFCCIM (8 threads) for Ovarian Cancer, Lung Cancer,
Prostate Cancer, Central Nervous System embryonal tumor, and DL-
BCL (including the Follicular Lymphoma) Dataset. 138

6.2 Wilcoxon Signed-Rank Test for PFCCIM (2 threads) against DisClose
for Ovarian Cancer, Lung Cancer, Prostate Cancer, Central Nervous
System embryonal tumor, and DLBCL (including the Follicular Lym-
phoma) Dataset. 138

6.3 Wilcoxon Signed-Rank Test for BDPFCCIM (2 compute nodes, 2 threads)
against BDPFCCIM (4 compute nodes, 2 threads) and BDPFCCIM (8
compute nodes, 2 threads) for MLL, central nervous system embryonal
tumor, DLBCL (including the Follicular Lymphoma) Datasets. . . . 157

6.4 Wilcoxon Signed-Rank Test for BDPFCCIM (2 compute nodes, 2 threads)
against DisClose for MLL, central nervous system embryonal tumor,
DLBCL (including the Follicular Lymphoma) Datasets. 158

vii

List of Figures

1.1 Steps in the KDD Process. 1

1.2 Different Types of Itemset Mining. 3

2.1 Proposed Methodology . 34

4.1 Top-Down Traversal of Row Enumerated Tree 58

4.2 Bottom-Up Traversal of Row Enumerated Tree 59

4.3 Bottom-Up Row Enumerated Tree with Rowset Cardinality Table for
respective row enumerated nodes 67

4.4 Accuracy of Proposed and BVBUC algorithm for Lung Cancer Test
Dataset When the minsup is set to 5 and 10 74

4.5 Accuracy of Proposed and BVBUC algorithm for ALL-AML Dataset
When the minsup is set to 5 and 10 74

4.6 Runtime of Proposed Frequent Colossal Closed Itemset Mining Algo-
rithm and DisClose Algorithm for DLBCL Dataset 76

4.7 Runtime of Proposed Frequent Colossal Closed Itemset Mining Algo-
rithm and DisClose Algorithm for Lung Cancer Test Dataset 77

4.8 Different minsup and mincard at which number of significant rows is
zero after applying the proposed EIP technique and preprocessing tech-
nique of DisClose algorithm for different datasets 78

4.9 Runtime of BSFCCIM Algorithm and DisClose Algorithm for MLL
Dataset . 79

4.10 Runtime of BSFCCIM Algorithm and DisClose Algorithm for Central
Nervous System embryonal tumor Dataset 80

4.11 Runtime of BSFCCIM Algorithm and DisClose Algorithm for DLBCL
(Including Follicular Lymphoma) Dataset 80

5.1 Top-Down Traversal of Feature Enumerated Tree 84

5.2 Bottom-Up Traversal of Feature Enumerated Tree 85

5.3 Combination of bottom-up row and feature enumerated tree 88

5.4 Bottom-Up Feature Enumerated Tree with Itemset Support Table for
respective nodes . 90

5.5 Runtime for Ovarian Cancer Dataset with proposed EIP technique for
DSFCCIM algorithm . 98

5.6 Runtime for Lung Cancer Dataset with proposed EIP technique for DS-
FCCIM algorithm . 99

5.7 Runtime for Prostate Cancer Dataset with proposed EIP technique for
DSFCCIM algorithm . 99

5.8 Runtime for Central Nervous System embryonal tumor Dataset with
proposed EIP technique for DSFCCIM algorithm 100

5.9 Runtime for DLBCL (Including Follicular Lymphoma) Dataset with
proposed EIP technique for DSFCCIM algorithm 100

5.10 Runtime for Ovarian Cancer Dataset with proposed EIP technique for
algorithms DSFCCIM and DisClose 102

5.11 Runtime for Lung Cancer Dataset with proposed EIP technique for al-
gorithms DSFCCIM and DisClose 102

5.12 Runtime for Prostate Cancer Dataset with proposed EIP technique for
algorithms DSFCCIM and DisClose 103

5.13 Runtime for Central Nervous System embryonal tumor Dataset with
proposed EIP technique for algorithms DSFCCIM and DisClose . . 104

5.14 Runtime for DLBCL (Including Follicular Lymphoma) Dataset with
proposed EIP technique for algorithms DSFCCIM and DisClose . . 104

6.1 The job of traversing the branches of the bottom-up row enumerated
tree is distributed among six compute nodes 108

6.2 Parallel Bottom-Up Traversal of Row Enumerated Tree 113

6.3 Number of nodes generated in each branch of row enumerated tree
when mfinal is 6 . 116

6.4 Number of nodes generated in each branch of the generalized row enu-
merated tree. 117

6.5 The branch distribution of row enumerated tree, when the available
number of compute nodes are 2. 118

6.6 The branch distribution of row enumerated tree, when the available
number of compute nodes are 4. 119

6.7 Runtime of DREFCCIM (2 compute nodes) and DisClose for DLBCL
Dataset . 122

6.8 Runtime of DREFCCIM (2 compute nodes) and DisClose for Lung
Cancer Test Dataset . 123

6.9 Runtime of DREFCCIM (2 compute nodes), DREFCCIM (4 compute
nodes) and DREFCCIM (8 compute nodes) for DLBCL Dataset . . 124

x

6.10 Runtime of DREFCCIM (2 compute nodes), DREFCCIM (4 compute
nodes) and DREFCCIM (8 compute nodes) for Lung Cancer Test Dataset 124

6.11 Speedup of DREFCCIM (4 and 8 compute nodes) with respect to DREFC-
CIM (2 compute nodes) for DLBCL Dataset 125

6.12 Speedup of DREFCCIM (4 and 8 compute nodes) with respect to DREFC-
CIM (2 compute nodes) for Lung Cancer Test Dataset 125

6.13 Runtime of PFCCIM (2 threads) and DisClose for Ovarian Cancer Dataset 126

6.14 Runtime of PFCCIM (2 threads) and DisClose for Lung Cancer Dataset 127

6.15 Runtime of PFCCIM (2 threads) and DisClose for Prostate Cancer Dataset 128

6.16 Runtime of PFCCIM (2 threads) and DisClose for Central Nervous Sys-
tem embryonal tumor Dataset . 128

6.17 Runtime of PFCCIM (2 threads) and DisClose for DLBCL (Including
Follicular Lymphoma) Dataset . 129

6.18 Runtime of PFCCIM (2 threads), PFCCIM (4 threads) and PFCCIM (8
threads) for Ovarian Cancer Dataset 130

6.19 Runtime of PFCCIM (2 threads), PFCCIM (4 threads) and PFCCIM (8
threads) for Lung Cancer Dataset 131

6.20 Runtime of PFCCIM (2 threads), PFCCIM (4 threads) and PFCCIM (8
threads) for Prostate Cancer Dataset 131

6.21 Runtime of PFCCIM (2 threads), PFCCIM (4 threads) and PFCCIM (8
threads) for Central Nervous System embryonal tumor Dataset . . . 132

6.22 Runtime of PFCCIM (2 threads), PFCCIM (4 threads) and PFCCIM (8
threads) for DLBCL (Including Follicular Lymphoma) Dataset . . . 132

6.23 Speedup of PFCCIM (4 threads and 8 threads) with respect to PFCCIM
(2 threads) for Ovarian Cancer Dataset 133

6.24 Speedup of PFCCIM (4 threads and 8 threads) with respect to PFCCIM
(2 threads) for Lung Cancer Dataset 134

6.25 Speedup of PFCCIM (4 threads and 8 threads) with respect to PFCCIM
(2 threads) for Prostate Cancer Dataset 134

6.26 Speedup of PFCCIM (4 threads and 8 threads) with respect to PFCCIM
(2 threads) for Central Nervous System embryonal tumor Dataset . . 135

6.27 Speedup of PFCCIM (4 threads and 8 threads) with respect to PFCCIM
(2 threads) for DLBCL (Including Follicular Lymphoma) Dataset . . 135

6.28 Runtime of BDPFCCIM (2 Compute Nodes) (2 threads) and DisClose
for MLL Dataset . 139

xi

6.29 Runtime of BDPFCCIM (2 Compute Nodes) (2 threads) and DisClose
for Central Nervous System embryonal tumor Dataset 140

6.30 Runtime of BDPFCCIM (2 Compute Nodes) (2 threads) and DisClose
for DLBCL (including Follicular Lymphoma) Dataset 140

6.31 Runtime of BDPFCCIM (2 Compute Nodes) (2 threads), BDPFCCIM
(2 Compute Nodes) (4 threads) and BDPFCCIM (2 Compute Nodes) (8
threads) for MLL Dataset . 141

6.32 Runtime of BDPFCCIM (2 Compute Nodes) (2 threads), BDPFCCIM
(2 Compute Nodes) (4 threads) and BDPFCCIM (2 Compute Nodes) (8
threads) for Central Nervous System embryonal tumor Dataset . . . 142

6.33 Runtime of BDPFCCIM (2 Compute Nodes) (2 threads), BDPFCCIM
(2 Compute Nodes) (4 threads) and BDPFCCIM (2 Compute Nodes) (8
threads) for DLBCL (including Follicular Lymphoma) Dataset . . . 142

6.34 Runtime of BDPFCCIM (4 Compute Nodes) (2 threads) and DisClose
for MLL Dataset . 143

6.35 Runtime of BDPFCCIM (4 Compute Nodes) (2 threads) and DisClose
for Central Nervous System embryonal tumor Dataset 144

6.36 Runtime of BDPFCCIM (4 Compute Nodes) (2 threads) and DisClose
for DLBCL (including Follicular Lymphoma) Dataset 144

6.37 Runtime of BDPFCCIM (4 Compute Nodes) (2 threads), BDPFCCIM
(4 Compute Nodes) (4 threads) and BDPFCCIM (4 Compute Nodes) (8
threads) for MLL Dataset . 145

6.38 Runtime of BDPFCCIM (4 Compute Nodes) (2 threads), BDPFCCIM
(4 Compute Nodes) (4 threads) and BDPFCCIM (4 Compute Nodes) (8
threads) for Central Nervous System embryonal tumor Dataset . . . 145

6.39 Runtime of BDPFCCIM (4 Compute Nodes) (2 threads), BDPFCCIM
(4 Compute Nodes) (4 threads) and BDPFCCIM (4 Compute Nodes) (8
threads) for DLBCL (including Follicular Lymphoma) Dataset . . . 146

6.40 Runtime of BDPFCCIM (8 Compute Nodes) (2 threads) and DisClose
for MLL Dataset . 146

6.41 Runtime of BDPFCCIM (8 Compute Nodes) (2 threads) and DisClose
for Central Nervous System embryonal tumor Dataset 147

6.42 Runtime of BDPFCCIM (8 Compute Nodes) (2 threads) and DisClose
for DLBCL (including Follicular Lymphoma) Dataset 147

6.43 Runtime of BDPFCCIM (8 Compute Nodes) (2 threads), BDPFCCIM
(8 Compute Nodes) (4 threads) and BDPFCCIM (8 Compute Nodes) (8
threads) for MLL Dataset . 148

xii

6.44 Runtime of BDPFCCIM (8 Compute Nodes) (2 threads), BDPFCCIM
(8 Compute Nodes) (4 threads) and BDPFCCIM (8 Compute Nodes) (8
threads) for Central Nervous System embryonal tumor Dataset . . . 148

6.45 Runtime of BDPFCCIM (8 Compute Nodes) (2 threads), BDPFCCIM
(8 Compute Nodes) (8 threads) and BDPFCCIM (8 Compute Nodes) (8
threads) for DLBCL (including Follicular Lymphoma) Dataset . . . 149

6.46 Speedup of BDPFCCIM (2 Compute Nodes) (2 threads), BDPFCCIM
(2 Compute Nodes) (4 threads) and BDPFCCIM (2 Compute Nodes) (8
threads) with respect to DisClose Algorithm for MLL Dataset . . . 150

6.47 Speedup of BDPFCCIM (2 Compute Nodes) (2 threads), BDPFCCIM
(2 Compute Nodes) (4 threads) and BDPFCCIM (2 Compute Nodes) (8
threads) with respect to DisClose Algorithm for Central Nervous Sys-
tem embryonal tumor Dataset . 151

6.48 Speedup of BDPFCCIM (2 Compute Nodes) (2 threads), BDPFCCIM
(2 Compute Nodes) (4 threads) and BDPFCCIM (2 Compute Nodes)
(8 threads) with respect to DisClose Algorithm for DLBCL (including
Follicular Lymphoma) Dataset . 151

6.49 Speedup of BDPFCCIM (4 Compute Nodes) (2 threads), BDPFCCIM
(4 Compute Nodes) (4 threads) and BDPFCCIM (4 Compute Nodes) (8
threads) with respect to DisClose Algorithm for MLL Dataset . . . 152

6.50 Speedup of BDPFCCIM (4 Compute Nodes) (2 threads), BDPFCCIM
(4 Compute Nodes) (4 threads) and BDPFCCIM (4 Compute Nodes) (8
threads) with respect to DisClose Algorithm for Central Nervous Sys-
tem embryonal tumor Dataset . 152

6.51 Speedup of BDPFCCIM (4 Compute Nodes) (2 threads), BDPFCCIM
(4 Compute Nodes) (4 threads) and BDPFCCIM (4 Compute Nodes)
(8 threads) with respect to DisClose Algorithm for DLBCL (including
Follicular Lymphoma) Dataset . 153

6.52 Speedup of BDPFCCIM (8 Compute Nodes) (2 threads), BDPFCCIM
(8 Compute Nodes) (4 threads) and BDPFCCIM (8 Compute Nodes) (8
threads) with respect to DisClose Algorithm for MLL Dataset . . . 153

6.53 Speedup of BDPFCCIM (8 Compute Nodes) (2 threads), BDPFCCIM
(8 Compute Nodes) (4 threads) and BDPFCCIM (8 Compute Nodes) (8
threads) with respect to DisClose Algorithm for Central Nervous Sys-
tem embryonal tumor Dataset . 154

6.54 Speedup of BDPFCCIM (8 Compute Nodes) (2 threads), BDPFCCIM
(8 Compute Nodes) (4 threads) and BDPFCCIM (8 Compute Nodes)
(8 threads) with respect to DisClose Algorithm for DLBCL (including
Follicular Lymphoma) Dataset . 154

xiii

List of Abbreviations

ARM Association Rule Mining

FCI Frequent Closed Itemsets

FMI Frequent Maximal Itemsets

FCCI Frequent Colossal Closed Itemsets

RNA Ribo Nucleic Acid

FP-growth Frequent-Pattern growth

FP-tree Frequent-Pattern tree

PC-tree Pattern Count tree

LOFP-tree Lexicographically Ordered Frequent Pattern tree

AFOP-tree Ascending Frequency Ordered Prefix tree

CP-tree Compact Pattern tree

PIETM Principle of Inclusion-Exclusion and Transaction Mapping

GA-Apriori Genetic Algorithm based Apriori

PSO-Apriori Particle Swarm Optimization based Apriori

BTP Balanced Tidset Parallel

CARM Cloud-Based Association Rule Mining

HD-mine High Distributed mine

FD-mine Fast Distributed mine

DFIMA Distributed Frequent Itemset Mining Algorithm

P2S Parallel-2-Steps

PATD Parallel Absolute Top Down

HPC High Performance Computing

SS Single Scan

GPU Graphics Processing Unit

LCM Linear time Closed itemset Miner

DBV-Miner Dynamic Bit Vector Miner

CFSP-Miner Closed Frequent Similar Pattern Miner

DFCIM Distributed Frequent Closed Itemsets Mining

FR-tree Frequent Row Tree

IP-List Itemset Pointer List

VTD Vertical Top-Down

FCCI Frequent Colossal Closed Itemsets

PF Pattern Fusion

CPM Colossal Pattern Miner

CR-tree Compact-Row tree

CP-tree Colossal Pattern tree

KDD Knowledge Discovery in Databases

FIM Frequent Itemset Mining

FCIM Frequent Closed Itemset Mining

FMIM Frequent Maximal Itemset Mining

FCCIM Frequent Colossal Closed Itemset Mining

EIP Effective Improved Preprocessing

minsup minimum support threshold

mincard minimum cardinality threshold

PT Prune Table

SFCCIM Set of Frequent Colossal Closed Itemsets

RCT Rowset Cardinality Table

BSFCCIM BitSet Frequent Colossal Closed Itemset Mining

MLL Mixed Lineage Leukemia

DLBCL Diffuse Large B-Cell Lymphoma

DSFCCIM Dynamic Switching Frequent Colossal Closed Itemset Mining

IST Itemset Support Table

xvi

Chapter 1

Introduction

In the following sections, a brief introduction, motivation for the present study, and the

research contributions has been explained.

1.1 Knowledge Discovery in Databases

Rapid development in information technology has provided the organization with the

ability to store, process, and retrieve a huge amount of data. Nevertheless, there is a

need to extract useful information from the data in an effective and efficient manner,

which helps the experts from different domains to make necessary decisions. This has

led to the importance of data mining and the necessity to provide efficient and effective

associated algorithms.

Knowledge Discovery in Databases (KDD) is the process of discovering useful

knowledge from a collection of data. The widely used data mining technique is a pro-

cess that includes data preparation, selection, data cleansing, and incorporating prior

Figure 1.1. Steps in the KDD Process.

knowledge on datasets and interpreting accurate solutions from the observed results.

Data mining is the analysis step of KDD and helps to extract useful information from

the collection of data (Fayyad et al. (1996)). Extracted useful information assists the

domain experts in decision making. Figure 1.1 summarizes the steps that compose the

KDD process (Fayyad et al. (1996), Jiawei Han and Pei (2011)).

1.2 Data Mining Tasks

There are numerous data mining tasks, and these tasks can be classified as follows:

• Summarization is the abstraction or generalization of the data. A set of task

relevant data is summarized and abstracted, resulting in a smaller collection that

gives a general overview of the data.

• Classification is the derivation of a function or model which determines the class

of an object based on its attributes. The function or model is derived based on the

analysis of a set of training data.

• Association is the discovery of togetherness or connection of objects. Such a

kind of togetherness or connection is termed as association rules. An association

rule reveals the associative relationship between the objects.

• Clustering is the process of grouping a set of data objects into multiple groups or

clusters so that objects within a cluster have high similarity, but very dissimilar to

the objects in the other clusters.

1.3 Association Rule Mining and Itemset Mining

Association Rule Mining (ARM) is one of the important data mining tasks which has

been well recognized over the past two decades. Itemset mining is the major and fun-

damental part of ARM. Figure 1.2 highlights the different types of itemset mining. Fre-

quent Itemset Mining (FIM), Frequent Closed Itemset Mining (FCIM), Frequent Max-

imal Itemset Mining (FMIM), Frequent Colossal Itemset Mining, Frequent Colossal

Closed Itemset Mining (FCCIM) are the different types of itemset mining. Many algo-

rithms have been designed for mining frequent itemsets from the transactional dataset.

The compressed forms of the frequent itemsets such as Frequent Closed Itemsets (FCI)

and Frequent Maximal Itemsets (FMI) were proposed due to the generation of redun-

dant rules from a large number of mined frequent itemsets. FMI are the lossy compres-

sion of frequent itemsets. Hence the research focused on mining FCI rather than mining

2

Figure 1.2. Different Types of Itemset Mining.

FMI. FCI are lossless compression of the frequent itemsets as there is no information

loss from the set of association rules generated by FCI.

Mining FCI has received great interest over the past two decades. Conventional

algorithms focus on mining FCI from transactional datasets consisting of a large num-

ber of rows (samples) and a smaller number of attributes (features). These conven-

tional algorithms are feature enumeration based algorithms as they tend to mine FCI

by searching the itemset space. An average increase in the transaction length leads to

an exponential increase in the running time of these algorithms. In the modern era,

abundant data across a variety of domains, including bioinformatics, has led to the for-

mation of high dimensional datasets, whose data characteristics are different from that

of transactional datasets. These high dimensional datasets have a smaller number of

rows and a considerably large number of features. The amount of information that can

be extracted from high dimensional datasets is potentially huge, but the extraction of

information from these datasets is a non-trivial task.

The conventional algorithms face an uphill task in mining FCI from the high di-

mensional dataset. The computational problems of these conventional algorithms were

solved by proposing row enumerated algorithms to mine FCI from the high dimensional

3

dataset. These row enumerated algorithms tend to mine FCI by searching the rowset

space. The result of FCI mining algorithms includes a large number of small and mid-

sized itemsets, which does not enclose valuable and complete information in many

applications. In the applications dealing with high dimensional datasets such as bioin-

formatics, ARM gives greater importance to the large-sized itemsets called as colossal

itemsets. The colossal itemsets are more influential in decision making and are signif-

icant in many applications. Alves et al. (2009) and Naulaerts et al. (2015) showed the

importance of discovering the colossal itemsets from high dimensional datasets such as

gene expression data. In bioinformatics, the strong associations between mined FCCI

helps in building the associative classifier for achieving higher classification accuracy.

Further, the associations between the mined FCCI will be used in gene expression data

analysis to uncover the gene networks. The existing FIM algorithms and FCIM algo-

rithms are inefficient in mining frequent colossal itemsets and Frequent Colossal Closed

Itemsets (FCCI) from the high dimensional dataset as they expend an exponential time

in mining a large number of small and mid-sized itemsets.

Zhu et al. (2007) were the first to introduce the concept of colossal itemsets and

designed the Pattern Fusion (PF) algorithm to mine them. The existing FCIM algo-

rithms prune the insignificant features before proceeding with the mining of FCI. The

insignificant features and insignificant rows have to be pruned before proceeding with

the mining of frequent colossal itemsets and FCCI. The existing frequent colossal item-

set mining algorithms and FCCI mining algorithms do not enclose an effective prepro-

cessing technique. The preprocessing technique used in the existing algorithms fails

to prune the complete set of insignificant features and insignificant rows, which leads

to an increase in the mining search space. Algorithms like Pattern Fusion (Zhu et al.

(2007)) and BVBUC (Sohrabi and Barforoush (2012)) mine limited set of frequent

colossal itemsets and FCCI leading to the generation of an incomplete set of associa-

tion rules, which consequently affects the decision making. Most of the mined frequent

colossal itemsets and FCCI by the BVBUC algorithm tend to provide incorrect support

information leading to the generation of an incorrect set of association rules, result-

ing in deficient decision making. The existing FCCI mining algorithms are inefficient

in handling the changing characteristics of the data subset during the mining process.

Also, the pruning strategies to cut down the row and feature enumerated search space

are inefficient. The closeness checking method of the rowset and itemset enclosed by

the existing algorithms are inefficient. This highlights the inefficiency of these existing

algorithms in mining FCCI from the high dimensional dataset.

4

1.4 Research Motivation

A typical business transaction dataset for market basket analysis has a relatively large

number of rows (transactions) compared to a smaller number of columns (features).

However, other application areas such as gene expression matrices analysis in bioin-

formatics, text mining, combinatorial chemistry, and multivariate imaging involve a

different form of dataset known as a high dimensional dataset. The data characteris-

tics of the high dimensional datasets are different from that of transactional datasets.

The high dimensional datasets have a smaller number of rows and a considerably large

number of features, while the transactional datasets have a large number of rows and a

considerably smaller number of features. The high dimensional datasets have attracted

interest from researchers to devise a new method to extract significant and important

information efficiently. The amount of information that can be extracted from high

dimensional datasets is potentially huge, but extraction of information and knowledge

from these datasets is a non-trivial task.

Applications that deal with high dimensional datasets include: Discovering relation-

ships between the data values within gene expression matrices or microarray datasets,

in order to assist in understanding the cause and effect of biological processes. Such

relationships can help in generating gene networks. In the field of bioinformatics, asso-

ciation rules play a significant role in reporting biological relevant associations between

environmental conditions and genes, and between different genes. They also provide

biological information about genes and gene expressions. ARM gives greater impor-

tance to the large-sized itemsets called as colossal itemsets. The colossal itemsets are

more influential in decision making and are significant in many applications. Hence it

is important to mine colossal itemsets from the high dimensional dataset.

1.5 Preliminaries

Let the high dimensional dataset D (R,F) consist of m number of rows, R = {r1, r2,
r3,...., rm} and n number of features, F = {f1, f2, f3,..., fn}. Each ri consists of a set

of features and has a unique row identifier rid. A non-empty subset of features, X ⊆ F

is defined as an itemset. An itemset consisting of l features is defined as l-itemset. Let

r(fj) signify the rows in which the jth feature of the dataset is present. A non-empty

subset of rids, Y ⊆ R is defined as a rowset. A rowset consisting of l rids is defined as

l-rowset. Let f(ri) signify the features occurring in the ith row of the dataset.

Example 1. Table 1.1 shows an example of a high dimensional dataset D consisting of

5

8 rows, where each row is described with unique row identifier (rid), R= {1, 2, 3, 4, 5,

6, 7, 8} and 11 features, F= {a, b, c, d, e, f, g, h, i, j, k}.

Definition 1 (Support). The number of rows in which an itemset X occurs is called the

support of an itemset, denoted by sup(X).

Example 2. In Table 1.1, the support of an itemset X= {b, d, g, h}, sup(X) is 2.

Definition 2 (Support Set). The rows in which an itemset X occurs is called support set

of an itemset, denoted by supset(X).

Example 3. In Table 1.1, the support set of an itemset X= {b, d, g, h}, supset(X) is 23.

Definition 3 (Cardinality). The number of items in an itemset X is known as the cardi-

nality of an itemset, denoted by card(X).

Example 4. In Table 1.1, the cardinality of an itemset X= {b, d, g, h}, card(X) is 4.

Definition 4 (Frequent Itemset). An itemset X is called frequent itemset if and only if

sup(X) ≥ minsup, where minsup is user specified least support threshold.

Example 5. In Table 1.1, the itemset X= {b, h} is frequent itemset with minimum sup-

port threshold set to 2, sup(X) ≥ 2.

Definition 5 (Frequent Closed Itemset). An itemset X is called frequent closed itemset

if and only if it is frequent and there exists no proper superset X′′, (X ⊂ X′′) such that

support of X is same as the support of X′′, sup(X)=sup(X′′).

Table 1.1. High Dimensional Dataset D

row id (rid) features

1 a, b, d, f, j

2 a, b, d, g, h

3 b, d, g, h

4 a, b, f, h, i, j

5 a, c, d, g, h, j

6 b, d, i

7 e, g

8 e, k

6

Example 6. In Table 1.1, the itemset X= {d, g, h} is frequent closed itemset with min-

imum support threshold set to 2 because dgh is frequent and there exists no proper

superset X′′ with the same support as X.

Definition 6 (Frequent Colossal Itemset). An itemset X is called frequent colossal item-

set if and only if it is frequent and card(X) ≥ mincard, where mincard is user specified

least cardinality threshold.

Example 7. In Table 1.1, the itemset X= {a, b, f, j} is frequent colossal itemset with

minimum support threshold set to 2 and minimum cardinality threshold set to 4, sup(X)

≥ 2 and card(X) ≥ 4.

Definition 7 (Frequent Colossal Closed Itemset). An itemset X is called frequent colos-

sal closed itemset if and only if it is frequent closed and card(X) ≥ mincard, where

mincard is user specified least cardinality threshold.

Example 8. In Table 1.1, the itemset X= {b, d, g, h}, is frequent colossal closed itemset

with minimum support threshold set to 2 and minimum cardinality threshold set to 4,

sup(X) ≥ 2 and card(X) ≥ 4.

Definition 8 (Closure). Given an itemset X ⊆ F and a rowset Y ⊆ R in a high dimen-

sional dataset D (R,F), we define

r(X) = {ri ∈ R | ∀fj ∈ X, fj is present in ri of D} (1.1)

f(Y) = {fj ∈ F | ∀ri ∈ Y, fj is present in ri of D} (1.2)

The closure of an itemset X, C(X) and closure of a rowset Y, C(Y) is defined as

follows

C(X) = f(r(X)) (1.3)

C(Y) = r(f(Y)) (1.4)

1.6 Major Contributions of the Thesis

The salient contributions of the research work are listed as follows:

• An Effective Improved Preprocessing (EIP) technique has been proposed to prune

the complete set of insignificant features and insignificant rows from the high di-

mensional dataset by effective utilization of minimum support threshold (minsup)

and minimum cardinality threshold (mincard) respectively.

7

• Frequent colossal itemset mining algorithm has been proposed to achieve better

accuracy than existing algorithms in terms of mining number of frequent colossal

itemsets from the high dimensional dataset.

• An efficient Rowset Cardinality Table (RCT) based closeness checking method

has been proposed to check the closeness of a rowset during the row enumeration

method. An efficient RCT based pruning strategy has been proposed to cut down

the row enumerated mining search space.

• The algorithm integrated with an efficient RCT based closeness checking method

and pruning strategy has been proposed to mine the complete set of FCCI from

the high dimensional dataset.

• An efficient Itemset Support Table (IST) based closeness checking method has

been proposed to check the closeness of an itemset during the feature enumeration

method. An efficient IST based pruning strategy has been proposed to cut down

the feature enumerated mining search space.

• The dynamic switching algorithm integrated with efficient closeness checking

methods and pruning strategies has been proposed to efficiently mine FCCI from

the dataset consisting of a large number of features and a large number of rows.

The dynamic switching algorithm efficiently handles the changing characteristics

of the data subset during the mining process.

• The parallel row enumerated algorithm has been proposed to efficiently mine

FCCI from the high dimensional dataset.

• The distributed and parallel algorithm with load balancing has been designed to

address the unbalanced intrinsic nature of the row enumerated tree.

1.7 Organization of the Thesis

Chapter 2 describes a survey of related literature on the techniques used for mining

different types of itemset mining, followed by the problem statement and research ob-

jectives.

Chapter 3 briefly highlights the proposed effective improved preprocessing tech-

nique.

The mining of frequent colossal itemsets from the high dimensional dataset and

the performance of the proposed frequent colossal closed itemset mining algorithm en-

8

closed with RCT based closeness checking method and pruning strategy is explained in

chapter 4.

Chapter 5 discusses the dynamic switching algorithm for mining FCCI from the

dataset consisting of a large number of rows and a large number of features.

The parallel row enumerated algorithm for mining FCCI from the high dimensional

dataset is highlighted in chapter 6. Chapter 6 also describes about handling the unbal-

anced intrinsic nature of the row enumerated tree.

Conclusions and a look into the future directions are presented in chapter 7.

1.8 Summary

This chapter describes about knowledge discovery in databases and the steps involved

in the KDD process. The data mining tasks, such as summarization, classification, as-

sociation, and clustering, have been briefly discussed in this chapter. Also, the different

types of itemset mining and the importance of association rule mining have been ex-

plained. The preliminaries related to the field of itemset mining have been discussed

with examples. The research contributions are listed out in this chapter. The chapter

also highlights about the organization of the thesis.

In the next chapter, the literature survey related to the field of itemset mining has

been presented.

9

Chapter 2

Literature Survey

In this chapter some of the major existing works in the area of itemset mining has been

reviewed. The chapter begins with section 2.1, which highlights the great and vast range

of applications of itemset mining and Association Rule Mining (ARM). They are used

to address the unique problems across a wide variety of data domains.

Section 2.2 focuses on sequential mining of frequent itemsets from the transactional

dataset. Many efficient sequential Frequent Itemset Mining (FIM) algorithms were de-

veloped over the years. The inefficiency of sequential FIM algorithms in handling the

large transactional datasets and the exponential increase in the running time due to the

average increase in the transactional length led to the development of distributed and

parallel FIM algorithms.

Section 2.3 highlights the distributed and parallel mining of frequent itemsets from

the transactional dataset. FIM algorithms on a cluster, grid computing systems, cloud

computing environment and Hadoop clusters were developed to overcome the inef-

ficiency of sequential FIM algorithms. The researchers also developed parallel and

distributed FIM algorithms using MapReduce, Spark and by exploiting the parallelism

in the Graphics Processing Unit (GPU). The generation of redundant association rules

from a large number of mined frequent itemsets resulted in the proposal of Frequent

Closed Itemsets (FCI) and Frequent Maximal Itemsets (FMI).

Section 2.4 emphasizes on sequential mining of FCI from the transactional dataset.

The problem of generating redundant association rules was handled by developing ef-

ficient sequential algorithms to mine FCI. The research focused on mining FCI rather

than FMI, which is the lossy compression of frequent itemsets. The sequential algo-

rithms are inefficient in mining FCI from the large transactional dataset; this led to the

designing of parallel and distributed frequent closed itemset mining algorithms. Sec-

tion 2.5 highlights the parallel and distributed mining of FCI from the large transactional

dataset.

The conventional parallel and sequential algorithms developed for mining FCI from

the transactional dataset face an uphill task in mining FCI from the high dimensional

dataset due to its data characteristics. The inefficiency and the uphill task of these

algorithms were overcome by designing row enumerated algorithms to mine FCI from

the high dimensional dataset; this has been emphasized in section 2.6. The result of

FCI mining algorithms includes very large number of small and mid-sized itemsets,

which do not enclose the valuable and complete information in many applications. In

applications dealing with high dimensional datasets such as bioinformatics, ARM gives

greater importance to the large-sized itemsets known as colossal itemsets. Section 2.7

exhibits the mining of frequent colossal itemsets and Frequent Colossal Closed Itemsets

(FCCI) from the high dimensional dataset.

2.1 Applications of Itemset Mining and Association Rule Mining

FIM has a great and vast range of applications, including customer analysis, software

bug detection, web analysis, event detection, spatiotemporal analysis, text analysis, tox-

icological analysis, Ribo Nucleic Acid (RNA) analysis and chemical compound pred-

ication (Aggarwal (2014); Amancio (2015a,b); Chen et al. (2017); Li et al. (2001);

Naulaerts et al. (2015); Parsons et al. (2004); Silva et al. (2016); Viana et al. (2013);

Xue et al. (2016); Yin and Han (2003); Zhong et al. (2012)). FIM helps in mining

crucial motifs in a variety of biological and chemical applications (Aggarwal (2014);

Naulaerts et al. (2015)). It is useful in designing methods for clustering high dimen-

sional data (Aggarwal (2014); Parsons et al. (2004)). The associative classification,

which is the integration of ARM and classification helps in the prediction of the sub-

cellular location of proteins and in achieving high accuracy (Naulaerts et al. (2015);

Yoon and Lee (2012)). ARM plays a vital role in providing visual representations of

the underlying text collection (Aggarwal (2014); Li et al. (2001); Yin and Han (2003)).

The ARM has been extensively used in gene expression data analysis to uncover the

gene networks (Naulaerts et al. (2015)).

2.2 Sequential Mining of Frequent Itemsets from the Transactional Dataset

Many sequential algorithms have been designed in the last two decades for mining fre-

quent itemsets from the transactional dataset. Agrawal et al. (1994) proposed three al-

gorithms namely, Apriori, AprioriTID, and AprioriHybrid for mining frequent itemsets.

Generate and Test approach has been utilized by AprioriTID and Apriori algorithms,

where l-itemsets are used to generate and test (l+1)-itemsets. These two algorithms

utilize Apriori property, which states that all nonempty subsets of a frequent itemset

must also be frequent. The interesting feature of AprioriTID algorithm compared to the

Apriori algorithm is that the transactional dataset is not utilized for calculating the sup-

port after the first pass. The AprioriHybrid algorithm is designed by selecting the best

12

features of AprioriTID and Apriori algorithm. The AprioriHybrid algorithm switches

from Apriori to AprioriTID algorithm after a specific number of passes depending on

the count of the candidate set.

The disadvantage of a generation of a large number of candidate sets in generate and

test approach and repeated scans of the transactional dataset by Apriori algorithm led to

the pattern growth approach. Han et al. (2000) were the first to design an algorithm to

mine frequent itemsets based on pattern growth approach. The Frequent-Pattern growth

(FP-growth) algorithm efficiently mines the frequent itemsets by three techniques: (i)

by compressing the transactional dataset in smaller and highly condensed data structure,

(ii) by averting the costly formation of huge number of candidate sets by adopting the

Frequent-Pattern tree (FP-tree) based mining, and (iii) the mining task are decomposed

into group of smaller task to mine the itemsets from conditional dataset by following

the partition based divide and conquer method.

Ananthanarayana et al. (2000) proposed the Pattern Count tree (PC-tree). The PC-

tree is constructed with a single transactional dataset scan, and it can be dynamically

updated. PC-tree portrays the compact and complete transactional dataset. PC-tree

helps in the generation of Lexicographically Ordered Frequent Pattern tree (LOFP-tree),

which is a unique form of an ordered tree. Liu et al. (2003a) proposed a frequent itemset

mining algorithm by using the condensed Ascending Frequency Ordered Prefix tree

(AFOP-tree). The AFOP-tree is used to organize the conditional datasets, and it also

helps in saving the space by storing the single branches in arrays. The algorithm uses

the top-down search strategy to traverse the AFOP-tree to mine the frequent itemsets.

Liu et al. (2003b) revisited the problem of mining frequent itemsets from the trans-

actional dataset. The authors discussed four different dimensions which help to increase

the efficiency of the mining; (i) the itemset search order can be either ascending fre-

quency order or lexicographical order, (ii) the conditional dataset can be represented

by either array based structure or tree based structure, (iii) the construction strategy of

conditional dataset can be either pseudo or physical, (iv) the tree is traversed either by

top-down or bottom-up search strategy. Qiu et al. (2004) proposed an efficient QFP-

growth algorithm, which inherits the advantages of FP-growth and avoids the bottleneck

of creating a large number of conditional FP-trees. The QFP-growth avoids the creation

of a large number of conditional FP-tress by constructing the dynamic temporary root

to improve its efficiency.

13

Dong and Han (2007) designed BitTableFI algorithm for mining frequent itemsets.

This algorithm uses the BitTable data structure vertically and horizontally to condense

the transactional dataset for fast support count and generation of candidate itemsets.

Index-BitTableFI algorithm was designed by Song et al. (2008). Corresponding com-

puting method and index array were proposed by the authors to utilize the BitTable

horizontally. The implementation of hybrid search helped in reducing the search space

to a great extent.

Tanbeer et al. (2009) presented a Compact Pattern tree (CP-tree), a novel tree data

structure whose mining performance is the same as that of FP-growth. The CP-tree cap-

tures the information about the transaction dataset by one scan. The dynamic tree re-

structuring concept was introduced by CP-tree to generate a highly compact frequency-

descending tree structure. Lin et al. (2014) proposed the Principle of Inclusion-Exclusion

and Transaction Mapping (PIETM) algorithm. The PIETM algorithm uses the feature

enumerated bottom-up search strategy for mining frequent itemsets. PIETM algorithm

uses the Inclusion-Exclusion principle to determine the support of the candidate item-

sets instead of scanning the dataset. Mapping and storing the transaction id(s) are done

in an interval list which provides appropriate information for mining frequent itemsets.

Aryabarzan et al. (2018) proposed the NegNodeset data structure whose basis is the

same as the set of nodes in a prefix tree. The proposed negFIN algorithm utilizes a

NegNodeset data structure for mining frequent itemsets. Bitmap representation based

encoding model is employed by the NegNodeset data structure for prefix tree nodes.

The negFIN algorithm mines the frequent itemsets by employing a feature set enumer-

ation tree and prunes the tree search space by using a promotion method.

Djenouri and Comuzzi (2017) proposed a framework for mining frequent item-

set using bio-inspired approaches which examine the recursive property of frequent

itemsets. The combination of the bio-inspired stochastic search process and recursive

property of frequent itemsets is considered for efficiently traversing the itemset search

space. The framework involved bio-inspired algorithms such as Genetic Algorithm

based Apriori (GA-Apriori) algorithm and Particle Swarm Optimization based Apriori

(PSO-Apriori) algorithm for mining frequent itemsets. The section describes about se-

quential FIM algorithms. These sequential FIM algorithms face an uphill task if the

user-specified minimum support threshold is set very low. The inefficiency of sequen-

tial FIM algorithms in handling the large transactional datasets and the exponential

increase in the running time due to the average increase in the transactional length led

14

to the development of parallel and distributed FIM algorithms.

2.3 Parallel and Distributed Mining of Frequent Itemsets from Transactional
Datasets

The section illustrates the parallel and distributed mining of frequent itemsets from

the transactional dataset. Javed and Khokhar (2004) proposed the FP-growth based

parallel FIM algorithm for shared nothing multiprocessor platforms or message passing

systems. The proposed algorithm does not explicitly replicate the entire counting data

structure on each processor. The algorithm efficiently partitions the FP-tree and the list

of frequent elements among the processors; this helps in synchronization and also helps

in reducing the communication overheads.

Zhou and Yu (2008b) and Yu and Zhou (2010) designed transaction set based par-

allel algorithm for mining frequent itemsets on clusters and grid computing system.

FP-tree inspired transaction identification based parallel FP-tree is utilized by the paral-

lel algorithm to mine the frequent itemsets from the transactional dataset. The execution

time is efficiently decreased by reducing both the tree insertion cost and communication

cost. Zhou and Yu (2008a) proposed FP-tree based parallel and distributed balanced

transactions set algorithm to mine frequent itemsets from the transactional dataset on

the grid computing system. The transactions are efficiently exchanged by using the

transaction identification set instead of scanning the dataset. The Balanced Tidset Par-

allel (BTP) algorithm considers the tree width and depth to balance the load on the grid

computing system.

Lin and Deng (2010) designed a parallel and distributed Cloud-Based Association

Rule Mining (CARM) algorithm. The CARM algorithm preserves the data privacy

and efficiently utilizes the nodes in a cloud computing environment to mine frequent

itemsets. High Distributed mine (HD-mine) and Fast Distributed mine (FD-mine) are

the two parts of the proposed CARM algorithm. HD-Mine handles the complex mining

task by coordinating the available nodes in the computing environment, and FD-mine

is used for quick mining of frequent itemsets from transactional datasets. Lin and Lo

(2013) proposed four algorithms to handle the many task computing issues rather than

boosting the performance of the single task. The authors proposed CARM inspired

algorithms to mine frequent itemsets and to provide reliable, scalable and fast mining

service in many task computing environments.

15

Zhang et al. (2015) proposed a distributed algorithm using spark for mining frequent

itemsets. The amount of candidate itemsets is significantly reduced by Distributed Fre-

quent Itemset Mining Algorithm (DFIMA) with the help of matrix-based approach. To

enhance the iterative computational efficiency, the DFIMA has been implemented us-

ing a memory-based distributed framework such as a spark. The matrix-based pruning

technique adopted by the DFIMA significantly helps in reducing the number of dataset

scans.

Salah et al. (2017) discussed the parallel FIM problem for very large datasets. The

authors also highlighted the effectiveness and impact of adopting data placement strate-

gies in a distributed environment. Parallel-2-Steps (P2S) and Parallel Absolute Top

Down (PATD) are the highly scalable parallel FIM algorithms proposed by the authors.

Simple and efficient parallel jobs of the P2S algorithm help in mining frequent itemsets

from the large transactional dataset. The mining of frequent itemsets from the large

dataset is kept very compact and simple by PATD algorithm. The PATD algorithm is

equipped with one parallel job, which helps in reducing the communication cost, run-

ning time and the overhead of energy power consumption in a massively distributed

environment.

Djenouri et al. (2018) address the FIM problem by employing the High Performance

Computing (HPC) approach. The authors proposed a Single Scan (SS) algorithm and

three HPC versions of the algorithm. The first HPC version of SS algorithm called as

GSS was implemented on Graphics Processing Unit (GPU) architecture by efficiently

mapping the input data and thread blocks. The second HPC version of SS algorithm

called as CSS was implemented on a cluster computing environment by scheduling the

workers to independent jobs. The third HPC version of SS algorithm called as CGSS

was implemented using multiple GPU cluster nodes, which helps in accelerating the

mining process. The authors proposed three partitioning strategies to scale down the

imbalance among the cluster nodes and the GPU thread divergence.

Xun et al. (2016) and Xun et al. (2017) designed two parallel algorithms for min-

ing frequent itemsets from the transactional dataset. The Map-Reduce programming

model has been utilized to design the FiDoop parallel algorithm for mining the fre-

quent itemsets. Ultra-metric tree of the frequent itemsets has been incorporated by

the FiDoop algorithm to avoid the generation of conditional pattern base and to have

compressed storage. The mining tasks are completed with the help of three MapRe-

duce jobs. The FiDopp-HD parallel algorithm was designed by the authors to improve

16

the mining speedup for large datasets. The FiDoop-HD is an extension of the FiDoop

algorithm. The mining and communication overhead problem was addressed by the

FiDoop-HD algorithm.

Chon et al. (2018) designed an algorithm to mine the frequent itemsets from the

large scale dataset. The GMiner algorithm is a GPU-based fast parallel algorithm. The

GPU’s computational power is explored by the parallel GMiner algorithm to achieve

fast mining performance. The itemsets are mined from the initial level of the feature

enumeration tree, this counter intuitive way of performing the mining tasks improves

the efficiency of the algorithm. An array consisting of relative memory addresses is

split to handle the workload skewness problem effectively.

The generations of redundant association rules from a large number of mined fre-

quent itemsets resulted in the proposal of Frequent Closed Itemsets (FCI) and Frequent

Maximal Itemsets (FMI). The research focused on mining FCI rather than FMI, which

is the lossy compression of frequent itemsets. Frequent closed itemsets are lossless

compression of the frequent itemsets as there is no information loss from the set of

association rules generated by frequent closed itemsets.

2.4 Sequential Mining of Frequent Closed Itemsets from the Transactional Dataset

This section emphasizes on sequential mining of FCI from the transactional dataset.

The problem of generating redundant association rules was handled by developing effi-

cient sequential algorithms to mine FCI. Pasquier et al. (1999) were the first to propose

Frequent Closed Itemsets (FCI). The closure mechanism was utilized to design a Fre-

quent Closed Itemset Mining (FCIM) algorithm called as A-Close. Galois connection-

based closure mechanism was used by an A-Close algorithm. Frequent itemset mining

problem was reduced to frequent closed itemsets mining problem as a reduced set of

association rules are generated without information loss.

Pei et al. (2000) designed a CLOSET algorithm for mining FCI from the trans-

actional dataset. Three techniques were enclosed with CLOSET algorithm (i) FCIM

without generate and test approach, but with the help of compressed structure called a

Frequent Pattern tree (FP-tree). (ii) Quick identification of FCI with the help of single

prefix path compression technique. (iii) Scalability of the algorithm to mine FCI from

the large database is achieved by exploring a partition-based projection mechanism.

17

Wang et al. (2003) proposed CLOSET+ algorithm for mining FCI from the trans-

actional dataset. The CLOSET+ algorithm is the extension of the CLOSET algorithm.

The extensive study of different strategies by the authors led to the design of CLOSET+

algorithm. The authors highlight the pros and cons of different strategies such as phys-

ical vs. pseudo-projection of the conditional database, horizontal vs. vertical formats,

tree vs. other data structure, depth-first vs. breadth-first search, top-down vs. bottom-up

traversal.

Zaki and Hsiao (2002) and Zaki and Hsiao (2005) designed an efficient CHARM al-

gorithm for mining FCI from the transactional dataset. An efficient hybrid dual itemset

tidset search tree helps the CHARM algorithm to skip the feature enumeration levels.

During the computation, the non-closed sets are removed by the algorithm with the help

of a fast hash-based approach. The authors also designed the CHARM-L algorithm to

provide a frequent closed lattice. The frequent closed lattice is helpful in the generation

of rules and their visualization.

Uno et al. (2003), Uno et al. (2004) and Uno et al. (2005) designed the three versions

of the Linear time Closed itemset Miner (LCM) algorithm. The mined FCI are used

to establish the tree-shaped traversal routes. The parent-child relationship is defined

between the FCI in the LCM algorithm (Uno et al. (2003)). The LCM second version

(Uno et al. (2004)) was designed to improve the performance of LCM first version

algorithm. The LCM second version algorithm is additionally enclosed with the pruning

strategy and database reduction technique. Different data structures have disadvantages

and advantages depending on the transactional dataset from which the FCI has to be

mined. The combination data structures like array list, prefix tree, and the bitmap has

been utilized to design the third version of the LCM algorithm (Uno et al. (2005)).

Lucchese et al. (2006) designed the scalable algorithm called as a DCI CLOSED

algorithm for mining FCI from the transactional dataset. The divide and conquer ap-

proach is adopted by the algorithm. The algorithm also exploits the bitwise vertical

representation of the transactional dataset. Lexicographic order is not followed by the

DCI CLOSED algorithm for mining the FCI. The DCI CLOSED algorithm is enclosed

with an efficient pruning strategy. The Dynamic Bit Vector Miner (DBV-Miner) was

proposed by Vo et al. (2012). Dynamic bit vector approach is used by the DBV-Miner

algorithm for improving the computation. The pruning strategy enclosed by the algo-

rithm utilizes the subsumption concept. The lookup table provides the details for the

faster computation of an itemset support.

18

Fumarola et al. (2016) proposed the CloFAST algorithm for mining FCI. Vertical

identifier list and sparse identifier list play a vital role in deciding the data representa-

tion of the dataset. The support count of the FCI is efficiently counted by considering

the theoretical properties of the vertical identifier list and sparse identifier list. They

also help in the closure checking of itemsets and pruning the mining search space.

Rodrı́guez-González et al. (2018) proposed the Closed Frequent Similar Pattern Miner

(CFSP-Miner) algorithm. The tree consisting of a complete set of the closed frequent

similar patterns is utilized by the CFSP-Miner algorithm. The tree is defined by the

parent-child relationship. CFSP-Miner algorithm is enclosed with an efficient pruning

strategy to snip down the mining search space.

The sequential FCIM algorithms face an uphill task, if the user specified minimum

support threshold is set very low. The inefficiency of sequential FCIM algorithms in

handling the large transactional datasets and the exponential increase in the running

time due to the average increase in the transactional length led to the development of

parallel and distributed FCIM algorithms.

2.5 Parallel and Distributed Mining of Frequent Closed Itemsets from Transac-
tional Datasets

The section illustrates the parallel and distributed mining of FCI from the transactional

dataset. Lucchese et al. (2007) designed the first parallel algorithm for mining FCI from

the transactional dataset. The parallel MT CLOSED algorithm works with the multi-

threading concept. The FCIM problem is decomposed into many independent tasks to

achieve parallelization. The load misbalancing problem is addressed by considering

both the dynamic and static scheduling policy.

Fu and Foghlu (2008) designed the first distributed algorithm for mining FCI from

the large transactional dataset. Frequent closed mining search space is partitioned into

several independent non-overlapping subspaces. These subspaces are utilized to mine

the FCI. The algorithm depends upon the density priority to mine FCI. Liu et al. (2007)

accomplished the FCIM problem in the distributed environment. The authors designed

the Distributed Frequent Closed Itemsets Mining (DFCIM) algorithm for mining FCI

with the exact support count. The controlling of the mined FCI is done through the

Frequent Closed Itemset trees (FCItrees) data structure.

Negrevergne et al. (2010) proposed a parallel LCM algorithm for mining FCI from

the transactional dataset. To efficiently achieve dynamic work sharing, the parallel

19

algorithm utilizes the tuple space, which is a powerful parallelism interface. Tuple space

concept-based Melinda, which is a parallel environment was presented by the authors.

Melinda helps in the utilization of computation distribution models which are internally

very efficient. Wang et al. (2012) designed the Map-Reduce based parallel AFOPT-

close algorithm for mining the FCI from the large transaction dataset. An efficient

parallel closure method was presented by the authors to check the closeness of the

global frequent itemsets. Filtering the redundant itemsets was done on the basis of a

new definition of local closed itemsets and global closed itemsets.

The incremental approach based parallel and distributed algorithm was proposed

by Sreedevi et al. (2014) for mining FCI from the large transactional dataset. The

vertical data format has been utilized by the algorithm. The communication cost be-

tween the processors has been efficiently reduced by the algorithm. Parallel and generic

PARAMINER algorithm was designed by Negrevergne et al. (2014) for mining FCI.

The feature enumeration mining search space is explored by the PARAMINER algo-

rithm. For efficient parallel execution of the PARAMINER algorithm on the multi-core

architecture, the authors designed a novel technique for the dataset reduction.

The conventional sequential algorithms discussed in section 2.4 and conventional

parallel algorithms discussed in this section focus on mining FCI from transactional

datasets consisting of a large number of rows (samples) and a smaller number of fea-

tures (attribute). These conventional parallel and sequential algorithms are feature enu-

meration based algorithms as they tend to mine FCI by searching the itemset space.

There will be an exponential increase in the running time of these conventional parallel

and sequential algorithms as the average transaction length increases. In the modern

era, the abundant data across a variety of domains, including bioinformatics have led to

the new form of dataset known as a high dimensional dataset, whose data characteristics

are different from that of transactional datasets. The high dimensional datasets have a

smaller number of rows and a considerably large number of features. The amount of in-

formation that can be extracted from high dimensional datasets is potentially huge, but

extraction of information and knowledge from these datasets is a non-trivial task. The

conventional parallel and sequential algorithms face an uphill task in mining FCI from

the high dimensional dataset. The inefficiency and the uphill task of these algorithms

were overcome by developing row enumerated algorithms to mine FCI from the high

dimensional dataset.

20

2.6 Mining of Frequent Closed Itemsets from the High Dimensional Dataset

This section emphasizes on the mining of FCI from the high dimensional dataset. Ef-

ficient row enumerated algorithms were designed by the researches to handle differ-

ent data characteristics of the high dimensional datasets compared to the transactional

datasets. Pan et al. (2003) designed the first row enumerated algorithm for mining

FCI from the high dimensional dataset. Row enumerated CARPENTER algorithm was

designed to handle the data characteristics of the high dimensional datasets. The CAR-

PENTER algorithm is enclosed with a pruning strategy to snip the row enumerated

mining search space. The transposed table of the high dimensional dataset is utilized

by the row enumerated algorithm. The lexicographic order plays a vital role in the

systematic search for the closed itemsets. The CARPENTER algorithm utilizes the

bottom-up row enumerated tree for mining FCI. The X conditional transposed table is

generated at every row enumerated node.

Pan et al. (2004) designed a combination of feature and row enumerated COBBLER

algorithm for mining FCI from the dataset consisting of a large number of features and

a large number of rows. Data characteristics during the mining process are considered

by the COBBLER algorithm to switch between row enumeration method and feature

enumeration method. The mining process is made efficient by processing each portion

of the dataset using the most suitable enumeration method. The transposed table con-

cept is utilized by the dynamic switching algorithm. The X conditional transposed table

is generated at every feature and row enumerated node.

Cong et al. (2004) proposed RERII and REPT algorithms for mining FCI from the

microarray dataset. These two efficient algorithms mine the FCI by exploring the row

enumerated mining search space. Vertical representation of the data is considered by the

RERII for mining FCI, while REPT consider the concept of FP-tree. RERII and REPT

algorithms are enclosed by an efficient pruning strategy. Liu et al. (2006) designed the

first top-down row enumerated algorithm for mining FCI from the high dimensional

dataset. The TD-Close algorithm efficiently prunes the row enumerated mining search

space by utilizing a user specified minimum support threshold. The TD-Close algorithm

is enclosed with an efficient transposed table based closure checking method to check

the closeness of itemsets.

Liu et al. (2009) designed a TTD-Close algorithm to enhance the performance of the

TD-Close algorithm. An efficient data structure is designed by the authors to improve

21

the performance of the algorithm. The trace-based closure method has been enclosed

in the algorithm to check the closeness of the itemsets. The divide and conquer tech-

nique has been utilized to partition the mining search space into separate subspace. The

efficient pruning strategy has been enclosed by the TTD-Close algorithm to prune the

row enumerated mining search space. The TTD-Close algorithm refers to the Frequent

Row Tree (FR-tree) with Itemset Pointer List (IP-List) for mining FCI.

Huang et al. (2013) designed an efficient TBtop algorithm for mining top-k FCI

from the microarray dataset. The k indicates the specified number of FCI to be mined

from the microarray dataset. The TBtop algorithm utilizes the top down row enumer-

ated breadth first search strategy for mining FCI. TBtop algorithm compresses the row

enumerated tree using FR-tree and IP-list. Singh et al. (2014) proposed a modified ver-

sion of the CARPENTER algorithm for mining FCI from the high dimensional dataset.

The different data structure is considered by the authors in the modified version of the

CARPENTER algorithm. This data structure helps in giving better time complexity

than the CARPENTER algorithm.

Vimieiro and Moscato (2014) focused on the computational challenges of mining

the disjunctive closed itemsets from the high dimensional dataset. The Disclosed algo-

rithm mines the disjunctive closed itemsets by utilizing the top down row enumerated

depth first search strategy. Disclosed algorithm shows that itemsets can be mined indi-

rectly from sets of samples. This allows to take advantage of the scarcity of samples

in microarray data sets, or any data with similar characteristics. Sohrabi and Ghods

(2015) designed an efficient Vertical Top-Down (VTD) algorithm for mining FCI from

the high dimensional dataset. The top down row enumerated approach of the VTD

algorithm utilizes the minimum support threshold to cut down mining search space.

The result of FCI mining algorithms includes small and mid-sized itemsets, which

do not enclose the valuable and complete information for decision making. In applica-

tions dealing with high dimensional datasets such as bioinformatics, ARM gives greater

importance to the large-sized itemsets known as colossal itemsets. The colossal item-

sets are more influential in decision making and provide more suitable information for

many applications. The importance of discovering the colossal itemsets from high di-

mensional datasets such as gene expression data was shown by Alves et al. (2009) and

Naulaerts et al. (2015).

22

2.7 Mining of Frequent Colossal Itemsets and Frequent Colossal Closed Itemsets
from the High Dimensional Dataset

Section 2.7 exhibits the mining of frequent colossal itemsets and Frequent Colossal

Closed Itemsets (FCCI) from the high dimensional dataset. The existing frequent colos-

sal itemset mining algorithms and FCCI mining algorithms are classified into feature

enumeration and row enumeration based algorithms. Feature enumeration based fre-

quent colossal itemset mining algorithms and FCCI mining algorithms are best suited

for transactional datasets due to their data characteristics. Similarly, row enumeration

based frequent colossal itemset mining algorithms and FCCI mining algorithms are best

for high dimensional datasets due to their data characteristics.

Zhu et al. (2007) proposed the concept of large cardinality itemsets called as colos-

sal itemsets. The authors proposed the Pattern Fusion (PF) algorithm for mining fre-

quent colossal itemsets and FCCI itemsets. Pattern Fusion traverses the tree according

to the feature enumeration method. Pattern fusion algorithm randomly discovers colos-

sal itemsets by merging the selected small cardinality frequent itemsets called as core

patterns. Pattern fusion algorithm mine the large cardinality itemsets by approximating

the number of colossal closed itemsets generated rather than traversing each node of

the tree. Approximating the number of colossal closed itemsets generated might lead to

missing some of the significant frequent colossal itemsets and FCCI. Pattern fusion al-

gorithm will not be able to mine the complete set of frequent colossal itemsets and FCCI

leading to the generation of an incomplete set of association rules, which consequently

affects the decision making.

Dabbiru and Shashi (2010) proposed a Colossal Pattern Miner (CPM) algorithm

for quick mining of colossal itemsets by skipping the level-wise traversal of pattern,

which is exhaustive. CPM algorithm is a feature enumeration based algorithm. The

new agglomerative strategy skips the mid-sized itemsets to efficiently mine the colossal

itemsets. The neighbour core itemsets are merged to mine the colossal itemsets. Sohrabi

and Barforoush (2012) proposed the first row enumerated BVBUC algorithm for mining

frequent colossal itemsets and FCCI from the high dimensional dataset. The authors

state that the largest frequent itemset of each branch in the row enumerated tree is

generated at the minimum support threshold level. The BVBUC algorithm mine the

itemsets from the nodes belonging to the minimum support threshold level of a row

enumerated tree and prune their descendants.

23

BVBUC algorithm will not be able to mine complete set of frequent colossal item-

sets and FCCI leading to the generation of an incomplete set of association rules, which

consequently affects the decision making. Most of the mined frequent colossal item-

sets and FCCI tend to provide incorrect support information leading to the generation

of an incorrect set of association rules, resulting in deficient decision making. Okubo

and Haraguchi (2012) designed an algorithm for mining top-N frequent colossal item-

sets. A clique in pattern graph with a certain condition is referred to the mined colossal

itemsets. The depth-first branch and bound method is the main base for the algorithm.

This is the first algorithm designed to mine the top-N colossal itemsets. Zhu (2014)

discussed the importance of mining FCCI from the high dimensional dataset.

Zulkurnain et al. (2012) proposed a pure row enumeration based DisClose algorithm

to mine FCCI from the high dimensional dataset. The DisClose algorithm uses row enu-

merated Compact-Row tree (CR-tree) data structure to mine FCCI. The algorithm refers

to the itemset generator, rowset generator, and unique rowset generator for checking the

closeness of an itemset. The transposed table concept is utilized by the DisClose algo-

rithm. Prasanna and Seetha (2015) developed a DPMine algorithm for mining colossal

itemset sequences from biological datasets. Doubleton itemsets are effectively mined

by the DPMine algorithm. The DPT+ is enriched with doubleton itemsets. D-struct,

an integrated data structure has been utilized by the DPMine algorithm. The top-down

feature enumeration tree has been referred as DPT+ tree.

Nguyen et al. (2016) and Nguyen et al. (2017b) solved the colossal itemset mining

problem by designing the Colossal Pattern tree (CP-tree), CP-Miner and PCP-Miner

algorithm. Colossal itemsets are efficiently mined by referring an efficient sorting strat-

egy. The count of significant candidates and subset checking time are reduced with the

help of sorting strategy. The PCP-Miner utilizes the sorting strategy to efficiently mine

frequent colossal itemsets. The CP-Miner and PCP-Miner lack the capability to mine

FCCI from the high dimensional dataset. The theorem has been developed by Nguyen

et al. (2017a) for pruning candidate itemsets efficiently with bottom-up manner. Based

on the theorem developed by the authors, an efficient algorithm has been proposed for

colossal itemset mining with itemset constraints.

The preprocessing technique used in the existing frequent colossal itemset mining

algorithms and FCCI mining algorithms fails to prune the complete set of insignificant

features and insignificant rows, leading to an increase in the feature and row enumerated

mining search space. The existing FCCI mining algorithms are sequential and adopt the

24

sequential row enumeration based approach. Moreover, the closeness checking methods

enclosed by the existing FCCI mining algorithms to check the closeness of an itemset

and rowset are in efficient. The pruning strategies enclosed by the existing FCCI mining

algorithms are inefficient in cutting down the feature and row enumerated mining search

space. This highlights the inefficiency of these algorithms in mining FCCI from the high

dimensional dataset. Table 2.1 highlights the comparison of itemset mining algorithms.

25

Ta
bl

e
2.

1.
C

om
pa

ri
so

n
of

It
em

se
tM

in
in

g
A

lg
or

ith
m

s.

B
eg

in
of

C
om

pa
ri

so
n

Pa
pe

r
Fe

at
ur

e

E
nu

m
er

at
io

n

R
ow

E
nu

m
er

at
io

n

Su
ita

bl
e

fo
r

Tr
an

sa
ct

io
n

D
at

as
et

Su
ita

bl
e

fo
r

H
ig

h

D
im

en
si

on
al

D
at

as
et

s

Se
qu

en
tia

l

A
pp

ro
ac

h

Pa
ra

lle
l/

D
is

tr
ib

ut
ed

A
pp

ro
ac

h

Su
ita

bl
e

fo
r

M
in

in
g

A
gr

aw
al

et
al

.(
19

94
)

Y
es

N
o

Y
es

N
o

Y
es

N
o

Fr
eq

ue
nt

It
em

se
ts

H
an

et
al

.(
20

00
)

Y
es

N
o

Y
es

N
o

Y
es

N
o

X

A
na

nt
ha

na
ra

ya
na

et
al

.

(2
00

0)
Y

es
N

o
Y

es
N

o
Y

es
N

o
X

L
iu

et
al

.(
20

03
a)

Y
es

N
o

Y
es

N
o

Y
es

N
o

X

L
iu

et
al

.(
20

03
b)

Y
es

N
o

Y
es

N
o

Y
es

N
o

X

Q
iu

et
al

.(
20

04
)

Y
es

N
o

Y
es

N
o

Y
es

N
o

X

D
on

g
an

d
H

an
(2

00
7)

Y
es

N
o

Y
es

N
o

Y
es

N
o

X

So
ng

et
al

.(
20

08
)

Y
es

N
o

Y
es

N
o

Y
es

N
o

X

Ta
nb

ee
re

ta
l.

(2
00

9)
Y

es
N

o
Y

es
N

o
Y

es
N

o
X

L
in

et
al

.(
20

14
)

Y
es

N
o

Y
es

N
o

Y
es

N
o

X

A
ry

ab
ar

za
n

et
al

.

(2
01

8)
Y

es
N

o
Y

es
N

o
Y

es
N

o
X

26

C
on

tin
ua

tio
n

of
Ta

bl
e

2.
1

Pa
pe

r
Fe

at
ur

e

E
nu

m
er

at
io

n

R
ow

E
nu

m
er

at
io

n

Su
ita

bl
e

fo
r

Tr
an

sa
ct

io
n

D
at

as
et

Su
ita

bl
e

fo
r

H
ig

h

D
im

en
si

on
al

D
at

as
et

s

Se
qu

en
tia

l

A
pp

ro
ac

h

Pa
ra

lle
l/

D
is

tr
ib

ut
ed

A
pp

ro
ac

h

Su
ita

bl
e

fo
r

M
in

in
g

D
je

no
ur

ia
nd

C
om

uz
zi

(2
01

7)
Y

es
N

o
Y

es
N

o
Y

es
N

o
X

Ja
ve

d
an

d
K

ho
kh

ar

(2
00

4)
Y

es
N

o
Y

es
N

o
N

o
Y

es
X

Z
ho

u
an

d
Y

u
(2

00
8b

)
Y

es
N

o
Y

es
N

o
N

o
Y

es
X

Z
ho

u
an

d
Y

u
(2

00
8a

)
Y

es
N

o
Y

es
N

o
N

o
Y

es
X

L
in

an
d

D
en

g
(2

01
0)

Y
es

N
o

Y
es

N
o

N
o

Y
es

X

Y
u

an
d

Z
ho

u
(2

01
0)

Y
es

N
o

Y
es

N
o

N
o

Y
es

X

L
in

an
d

L
o

(2
01

3)
Y

es
N

o
Y

es
N

o
N

o
Y

es
X

Z
ha

ng
et

al
.(

20
15

)
Y

es
N

o
Y

es
N

o
N

o
Y

es
X

X
un

et
al

.(
20

16
)

Y
es

N
o

Y
es

N
o

N
o

Y
es

X

Sa
la

h
et

al
.(

20
17

)
Y

es
N

o
Y

es
N

o
N

o
Y

es
X

D
je

no
ur

ie
ta

l.
(2

01
8)

Y
es

N
o

Y
es

N
o

N
o

Y
es

X

C
ho

n
et

al
.(

20
18

)
Y

es
N

o
Y

es
N

o
N

o
Y

es
X

X
un

et
al

.(
20

17
)

Y
es

N
o

Y
es

N
o

N
o

Y
es

X

Pa
sq

ui
er

et
al

.(
19

99
)

Y
es

N
o

Y
es

N
o

Y
es

N
o

FC
I

27

C
on

tin
ua

tio
n

of
Ta

bl
e

2.
1

Pa
pe

r
Fe

at
ur

e

E
nu

m
er

at
io

n

R
ow

E
nu

m
er

at
io

n

Su
ita

bl
e

fo
r

Tr
an

sa
ct

io
n

D
at

as
et

Su
ita

bl
e

fo
r

H
ig

h

D
im

en
si

on
al

D
at

as
et

s

Se
qu

en
tia

l

A
pp

ro
ac

h

Pa
ra

lle
l/

D
is

tr
ib

ut
ed

A
pp

ro
ac

h

Su
ita

bl
e

fo
r

M
in

in
g

Pe
ie

ta
l.

(2
00

0)
Y

es
N

o
Y

es
N

o
Y

es
N

o
X

Z
ak

ia
nd

H
si

ao
(2

00
2)

Y
es

N
o

Y
es

N
o

Y
es

N
o

X

W
an

g
et

al
.(

20
03

)
Y

es
N

o
Y

es
N

o
Y

es
N

o
X

Z
ak

ia
nd

H
si

ao
(2

00
5)

Y
es

N
o

Y
es

N
o

Y
es

N
o

X

U
no

et
al

.(
20

03
)

Y
es

N
o

Y
es

N
o

Y
es

N
o

X

U
no

et
al

.(
20

04
)

Y
es

N
o

Y
es

N
o

Y
es

N
o

X

U
no

et
al

.(
20

05
)

Y
es

N
o

Y
es

N
o

Y
es

N
o

X

L
uc

ch
es

e
et

al
.(

20
06

)
Y

es
N

o
Y

es
N

o
Y

es
N

o
X

Vo
et

al
.(

20
12

)
Y

es
N

o
Y

es
N

o
Y

es
N

o
X

Fu
m

ar
ol

a
et

al
.(

20
16

)
Y

es
N

o
Y

es
N

o
Y

es
N

o
X

R
od

rı́
gu

ez
-G

on
zá

le
z

et
al

.(
20

18
)

Y
es

N
o

Y
es

N
o

Y
es

N
o

X

L
uc

ch
es

e
et

al
.(

20
07

)
Y

es
N

o
Y

es
N

o
N

o
Y

es
X

Fu
an

d
Fo

gh
lu

(2
00

8)
Y

es
N

o
Y

es
N

o
N

o
Y

es
X

L
iu

et
al

.(
20

07
)

Y
es

N
o

Y
es

N
o

N
o

Y
es

X

28

C
on

tin
ua

tio
n

of
Ta

bl
e

2.
1

Pa
pe

r
Fe

at
ur

e

E
nu

m
er

at
io

n

R
ow

E
nu

m
er

at
io

n

Su
ita

bl
e

fo
r

Tr
an

sa
ct

io
n

D
at

as
et

Su
ita

bl
e

fo
r

H
ig

h

D
im

en
si

on
al

D
at

as
et

s

Se
qu

en
tia

l

A
pp

ro
ac

h

Pa
ra

lle
l/

D
is

tr
ib

ut
ed

A
pp

ro
ac

h

Su
ita

bl
e

fo
r

M
in

in
g

N
eg

re
ve

rg
ne

et
al

.

(2
01

0)
Y

es
N

o
Y

es
N

o
N

o
Y

es
X

W
an

g
et

al
.(

20
12

)
Y

es
N

o
Y

es
N

o
N

o
Y

es
X

Sr
ee

de
vi

et
al

.(
20

14
)

Y
es

N
o

Y
es

N
o

N
o

Y
es

X

N
eg

re
ve

rg
ne

et
al

.

(2
01

4)
Y

es
N

o
Y

es
N

o
N

o
Y

es
X

Pa
n

et
al

.(
20

03
)

N
o

Y
es

N
o

Y
es

Y
es

N
o

X

Pa
n

et
al

.(
20

04
)

Y
es

Y
es

N
o

Y
es

Y
es

N
o

X

C
on

g
et

al
.(

20
04

)
N

o
Y

es
N

o
Y

es
Y

es
N

o
X

L
iu

et
al

.(
20

06
)

N
o

Y
es

N
o

Y
es

Y
es

N
o

X

M
ia

o
et

al
.(

20
06

)
N

o
Y

es
N

o
Y

es
Y

es
N

o
X

L
iu

et
al

.(
20

09
)

N
o

Y
es

N
o

Y
es

Y
es

N
o

X

H
ua

ng
et

al
.(

20
13

)
N

o
Y

es
N

o
Y

es
Y

es
N

o
X

Si
ng

h
et

al
.(

20
14

)
N

o
Y

es
N

o
Y

es
Y

es
N

o
X

V
im

ie
ir

o
an

d
M

os
ca

to

(2
01

4)
N

o
Y

es
N

o
Y

es
Y

es
N

o
X

29

C
on

tin
ua

tio
n

of
Ta

bl
e

2.
1

Pa
pe

r
Fe

at
ur

e

E
nu

m
er

at
io

n

R
ow

E
nu

m
er

at
io

n

Su
ita

bl
e

fo
r

Tr
an

sa
ct

io
n

D
at

as
et

Su
ita

bl
e

fo
r

H
ig

h

D
im

en
si

on
al

D
at

as
et

s

Se
qu

en
tia

l

A
pp

ro
ac

h

Pa
ra

lle
l/

D
is

tr
ib

ut
ed

A
pp

ro
ac

h

Su
ita

bl
e

fo
r

M
in

in
g

So
hr

ab
ia

nd
G

ho
ds

(2
01

5)
N

o
Y

es
N

o
Y

es
Y

es
N

o
X

Z
hu

et
al

.(
20

07
)

Y
es

N
o

Y
es

N
o

Y
es

N
o

Fr
eq

ue
nt

C
ol

os
sa

l

It
em

se
ts

an
d

FC
C

I

D
ab

bi
ru

an
d

Sh
as

hi

(2
01

0)
Y

es
N

o
Y

es
N

o
Y

es
N

o

Fr
eq

ue
nt

C
ol

os
sa

l

It
em

se
ts

So
hr

ab
ia

nd

B
ar

fo
ro

us
h

(2
01

2)
N

o
Y

es
N

o
Y

es
Y

es
N

o

Fr
eq

ue
nt

C
ol

os
sa

l

It
em

se
ts

Z
ul

ku
rn

ai
n

et
al

.

(2
01

2)
N

o
Y

es
N

o
Y

es
Y

es
N

o
FC

C
I

30

C
on

tin
ua

tio
n

of
Ta

bl
e

2.
1

Pa
pe

r
Fe

at
ur

e

E
nu

m
er

at
io

n

R
ow

E
nu

m
er

at
io

n

Su
ita

bl
e

fo
r

Tr
an

sa
ct

io
n

D
at

as
et

Su
ita

bl
e

fo
r

H
ig

h

D
im

en
si

on
al

D
at

as
et

s

Se
qu

en
tia

l

A
pp

ro
ac

h

Pa
ra

lle
l/

D
is

tr
ib

ut
ed

A
pp

ro
ac

h

Su
ita

bl
e

fo
r

M
in

in
g

Pr
as

an
na

an
d

Se
et

ha

(2
01

5)
Y

es
N

o
Y

es
N

o
Y

es
N

o

Fr
eq

ue
nt

C
ol

os
sa

l

It
em

se
ts

N
gu

ye
n

et
al

.(
20

16
)

N
o

Y
es

N
o

Y
es

Y
es

N
o

Fr
eq

ue
nt

C
ol

os
sa

l

It
em

se
ts

N
gu

ye
n

et
al

.(
20

17
b)

N
o

Y
es

N
o

Y
es

Y
es

N
o

Fr
eq

ue
nt

C
ol

os
sa

l

It
em

se
ts

N
gu

ye
n

et
al

.(
20

17
a)

N
o

Y
es

N
o

Y
es

Y
es

N
o

Fr
eq

ue
nt

C
ol

os
sa

l

It
em

se
ts

E
nd

of
Ta

bl
e

31

2.8 Research Gaps

Based on the literature review given above, the following research gaps have been iden-

tified.

• The preprocessing technique used in the existing frequent colossal itemset min-

ing algorithms and FCCI mining algorithms fails to prune the complete set of

insignificant features and insignificant rows, leading to an increase in the feature

and row enumerated mining search space. Hence, there is a need for develop-

ing the preprocessing technique, which prunes the complete set of insignificant

features and insignificant rows from the high dimensional dataset.

• The Pattern Fusion algorithm attempts to mine the frequent colossal itemsets by

approximation method. The BVBUC algorithm attempts to mine the frequent

colossal itemsets from the nodes belonging to the minimum support threshold

level of row enumerated tree and prune their descendants. These algorithms fail

to mine complete set of frequent colossal itemsets, as they tend to miss some of

the significant frequent colossal itemsets. Most of the frequent colossal itemsets

mined by BVBUC algorithm provide incorrect support information. The draw-

backs can be addressed by utilizing both minimum support threshold (minsup)

and minimum cardinality threshold (mincard).

• The closure methods enclosed by the existing FCCI mining algorithms such as

Pattern Fusion, BVBUC and DisClose algorithm are inefficient in checking the

closeness of an itemset and rowset. The pruning strategies enclosed by these

existing FCCI mining algorithms are inefficient in cutting down the feature and

row enumerated mining search space. Algorithms such as CARPENTER, TD-

Close and TTD-Close encounter challenges in mining FCCI due to the presence

of an explosive number of small and mid-sized itemsets. Hence, there is a need to

develop an efficient frequent colossal closed itemset mining algorithm enclosed

with efficient closeness checking methods and efficient pruning strategies.

• The existing algorithms are computationally expensive in mining FCCI from

datasets that have a large number of rows and a large number of features, as

these algorithms adopt either pure row enumeration approach or feature enumer-

ation approach. Different data subsets are handled by the algorithms during the

mining process. The characteristics of the data subset will change from one sub-

set to another during the mining process. Hence, there is a need for developing a

32

new algorithm with combination of different enumeration methods to efficiently

handle the changing characteristics of the data subset during the mining process.

• There is a greater importance to the colossal itemsets and these are critical to

many applications especially in the field of bioinformatics. The problem of FIM

and FCIM have been addressed by designing distributed and parallel algorithms.

The state-of-the-art algorithms for mining FCCI from the high dimensional dataset

are sequential and computationally expensive. Therefore, there is a need to ex-

plore the distributed and parallel approach to solve the problem of mining FCCI

from the high dimensional dataset.

2.9 Problem Statement

“ To design efficient algorithms for mining frequent colossal itemsets and frequent

colossal closed itemsets from high dimensional datasets using efficient search and prun-

ing strategy ”

2.10 Research Objectives

1. To design an algorithm for mining frequent colossal itemsets from high dimen-

sional datasets.

2. To design an algorithm for mining frequent colossal closed itemsets from high

dimensional datasets.

3. To design an efficient dynamic switching algorithm for mining frequent colossal

closed itemsets from datasets consisting of a larger number of features and rows.

4. To design an algorithm which adopts the parallel approach to mine frequent colos-

sal closed itemsets.

5. To improve the efficiency of parallel algorithm with efficient load balancing for

mining frequent colossal closed itemsets.

2.11 Proposed Methodology

The research focuses on designing algorithms for mining frequent colossal itemsets and

FCCI from the high dimensional dataset. Figure 2.1 shows the proposed methodology

for mining frequent colossal itemsets and FCCI from the high dimensional dataset. The

high dimensional dataset is provided as an input. An effective preprocessing technique

33

		High	Dimensional
Dataset

Preprocessing
Minimum Cardinality

Threshold
(mincard)

Search	Strategy

Colossal	Frequent	Itemsets
and

Colossal	Closed	Frequent	Itemsets

Pruning	Strategy

Mining	Frequent	Colossal
Closed	Itemsets

Minimum	Support
Threshold
(minsup)

Mining	Frequent	Colossal
Itemsets

Sequential
Approach

Dynamic
Switching
Approach

Parallel
Approach

Distributed
and	Parallel
Approach

Closeness
Checking
Method

Figure 2.1. Proposed Methodology

has been proposed to prune the complete set of insignificant features and rows from

the high dimensional dataset by effective utilization of minimum support threshold and

minimum cardinality threshold respectively. It is very important to choose efficient

34

search strategies to mine frequent colossal itemsets and FCCI. Bottom-up row enumer-

ation approach is chosen for mining frequent colossal itemset and FCCI from the high

dimensional dataset. An efficient pruning strategy has been proposed to cut down the

row enumerated mining search space by efficient utilization of minimum cardinality

threshold. The proposed pruning strategy provides the prior information regarding the

cardinality of the itemsets to be mined at descendant row enumerated nodes without

traversing them. An efficient closeness checking method has been proposed to check

the closeness of rowset during the row enumeration method.

The algorithms based on either pure row or feature enumeration methods are in-

efficient in mining FCCI from datasets consisting of a large number of rows and a

large number of features. The algorithm with a combination of different enumeration

methods has been required to handle the changing characteristics of a data subset ef-

ficiently. A dynamic switching algorithm has been proposed to mine FCCI from the

dataset consisting of a large number of features and rows. The dynamic switching al-

gorithm is integrated with efficient pruning strategies, closeness checking methods to

check the closeness of rowset and an itemset. It is also enclosed with efficient switch-

ing conditions that dynamically switches between bottom-up row enumeration method

and bottom-up feature enumeration method to handle the changing characteristics of

the data subset during the mining process. The balanced distributed parallel row enu-

merated algorithm has been proposed to mine FCCI from the high dimensional dataset.

The load of traversing the branches of row enumerated tree among the compute nodes

has been balanced by the proposed distributed and parallel algorithm.

2.12 Summary

This chapter provided a review of existing frequent itemset mining, frequent closed

itemset mining, frequent colossal itemset mining and frequent colossal closed itemset

mining algorithms. The problem statement and research objectives were framed based

on the outcome of the literature review. The proposed methodology and a short descrip-

tion of the research work were presented.

In the next chapter, the proposed effective improved preprocessing technique has

been discussed.

35

Chapter 3

Effective Improved Preprocessing Technique to Prune

Insignificant features and rows from the High

Dimensional Dataset

The preprocessing of the dataset is an important step in the field of itemset mining.

The dataset should be preprocessed before the mining of frequent colossal itemsets

and Frequent Colossal Closed Itemsets (FCCI). The preprocessing technique used in

the existing frequent colossal itemset mining algorithms and FCCI mining algorithms

fails to prune the complete set of insignificant features and insignificant rows. In this

chapter, the proposed Effective Improved Preprocessing (EIP) technique based on min-

imum support threshold and minimum cardinality threshold has been discussed, which

prunes the complete set of insignificant features and insignificant rows from the high

dimensional dataset.

3.1 Proposed Effective Improved Preprocessing Technique

An Effective Improved Preprocessing (EIP) technique has been proposed to prune the

complete set of insignificant features and insignificant rows by effective utilization of

minimum support threshold (minsup) and minimum cardinality threshold (mincard), re-

spectively. The proposed EIP technique incorporates the bitset approach for fast com-

putation. The bitTable as shown in Table 3.1 is constructed with the same dataset char-

acteristics as that of high dimensional dataset D shown in Table 1.1. If a row of high

dimensional dataset D consists of feature fj , then the jth bit of the corresponding row

in bitTable is set to 1, else it is set to 0. The rs in Table 3.1 indicates the number of

features present in the respective row. For example, the number of features present in

5th row is 6. The cs in Table 3.1 indicates the support of the respective feature in the

bitTable. For example, the support of the feature 'd' in bitTable is 5. The features of

the high dimensional dataset which do not satisfy the criteria of minsup are described

as insignificant features. The rows of the high dimensional dataset which do not satisfy

the criteria of mincard are described as insignificant rows. The preprocessing technique

used in the existing FCIM algorithms prunes the insignificant features before proceed-

ing with mining of FCI. Let F′ be the set of insignificant features in the dataset. The

features {c, k} are the insignificant features with minsup value set to 2, F′ = {c, k}.

Table 3.1. bitTable corresponding to High Dimensional Dataset D

rid a b c d e f g h i j k rs

1 1 1 0 1 0 1 0 0 0 1 0 5

2 1 1 0 1 0 0 1 1 0 0 0 5

3 0 1 0 1 0 0 1 1 0 0 0 4

4 1 1 0 0 0 1 0 1 1 1 0 6

5 1 0 1 1 0 0 1 1 0 1 0 6

6 0 1 0 1 0 0 0 0 1 0 0 3

7 0 0 0 0 1 0 1 0 0 0 0 2

8 0 0 0 0 1 0 0 0 0 0 1 2

cs 4 5 1 5 2 2 4 4 2 3 1

Table 3.2. bitTable after pruning insignificant features {c, k}

rid a b d e f g h i j rs

1 1 1 1 0 1 0 0 0 1 5

2 1 1 1 0 0 1 1 0 0 5

3 0 1 1 0 0 1 1 0 0 4

4 1 1 0 0 1 0 1 1 1 6

5 1 0 1 0 0 1 1 0 1 5

6 0 1 1 0 0 0 0 1 0 3

7 0 0 0 1 0 1 0 0 0 2

8 0 0 0 1 0 0 0 0 0 1

cs 4 5 5 2 2 4 4 2 3

F1 = (F − F ′) = {a, b, d, e, f, g, h, i, j} (3.1)

The equation 3.1 highlights the pruning of insignificant features {c, k} from the

bitTable as shown in Table 3.1. Table 3.2 shows the bitTable after pruning the insignifi-

cant features {c, k}. The insignificant features and insignificant rows have to be pruned

before proceeding with mining of frequent colossal itemsets and FCCI. Hence, the pre-

processing technique in the existing colossal itemset mining algorithms Nguyen et al.

(2017b, 2016, 2017a) and FCCI mining algorithm Zulkurnain et al. (2012) prune the

38

Table 3.3. bitTable after pruning insignificant row {8}

rid a b d e f g h i j rs

1 1 1 1 0 1 0 0 0 1 5

2 1 1 1 0 0 1 1 0 0 5

3 0 1 1 0 0 1 1 0 0 4

4 1 1 0 0 1 0 1 1 1 6

5 1 0 1 0 0 1 1 0 1 5

6 0 1 1 0 0 0 0 1 0 3

7 0 0 0 1 0 1 0 0 0 2

cs 4 5 5 1 2 4 4 2 3

Table 3.4. bitTable after pruning insignificant feature {e}

rid a b d f g h i j rs

1 1 1 1 1 0 0 0 1 5

2 1 1 1 0 1 1 0 0 5

3 0 1 1 0 1 1 0 0 4

4 1 1 0 1 0 1 1 1 6

5 1 0 1 0 1 1 0 1 5

6 0 1 1 0 0 0 1 0 3

7 0 0 0 0 1 0 0 0 1

cs 4 5 5 2 4 4 2 3

insignificant rows after pruning the insignificant features. Let R′ be the set of insignifi-

cant rows from the dataset. The 8th row is insignificant with mincard value set to 2, R′

= {8}.

R1 = (R−R′) = {1, 2, 3, 4, 5, 6, 7} (3.2)

The equation 3.2 highlights the pruning of insignificant row {8} from the bitTable

shown in Table 3.2. Table 3.3 shows the bitTable after pruning the insignificant row

{8}. The pruning of insignificant rows affects the support of features (sup(fj), ∀ fj ∈
F1). The pruning of insignificant row {8} will reduce the support of feature {e} and

eventually converts it to an insignificant feature, F′ = {e}. The preprocessing technique

39

in the existing colossal itemset mining algorithms Nguyen et al. (2017b, 2016, 2017a)

and FCCI mining algorithm Zulkurnain et al. (2012) prune the insignificant features and

insignificant rows just once, and after that fails to take advantage of the reduction in the

support of features due to the pruning of insignificant rows. Hence, the preprocessing

technique used in the existing colossal itemset mining algorithms and FCCI mining

algorithms fails to prune the complete set of insignificant features and insignificant

rows. To overcome this drawback of existing preprocessing techniques, the proposed

Effective Improved Preprocessing (EIP) technique takes advantage of the reduction in

the support of features due to the pruning of insignificant rows and continues to prune

the insignificant features.

F2 = (F1 − F ′) = {a, b, d, f, g, h, i, j} (3.3)

The equation 3.3 highlights the pruning of insignificant feature {e} from the bit-

Table as shown in Table 3.3. Table 3.4 shows the bitTable after pruning the insignificant

feature {e}. Pruning the insignificant features affects the cardinality of rows (card(rid),

∀ rid ∈ R1). The pruning of insignificant feature {e} will reduce the cardinality of the

7th row and eventually converting it to insignificant row, R′ = {7}. The proposed EIP

technique takes advantage of the reduction in the cardinality of rows due to the pruning

of insignificant features and continues to prune the insignificant rows. The proposed

EIP technique prunes the insignificant features and insignificant rows alternatively in

an iterative manner until all the features and rows in the bitTable satisfy the criteria of

minsup and mincard respectively, whereas, the existing preprocessing technique prune

the insignificant features and insignificant rows just once.

Table 3.5. bitTable after pruning insignificant row {7}

rid a b d f g h i j rs

1 1 1 1 1 0 0 0 1 5

2 1 1 1 0 1 1 0 0 5

3 0 1 1 0 1 1 0 0 4

4 1 1 0 1 0 1 1 1 6

5 1 0 1 0 1 1 0 1 5

6 0 1 1 0 0 0 1 0 3

cs 4 5 5 2 3 4 2 3

40

R2 = (R1 −R′) = {1, 2, 3, 4, 5, 6} (3.4)

The equation 3.4 highlights the pruning of insignificant row {7} from the bitTable

shown in Table 3.4. Table 3.5 shows the bitTable after pruning the insignificant row

7. All the features and rows in the bitTable shown in Table 3.5 satisfy the criteria of

minsup and mincard, hence the reduction terminates. Table 3.5 shows the bitTable after

applying proposed EIP technique on high dimensional dataset shown in Table 1.1, with

the minsup and mincard values set to 2. Table 3.3 shows the bitTable after applying

preprocessing technique of the existing algorithms on high dimensional dataset shown

in Table 1.1, with the minsup and mincard values set to 2. It is observed that proposed

EIP technique prunes the complete set of insignificant features and insignificant rows,

which is a limitation of the preprocessing technique in existing algorithms. Table 3.6

shows the bitTable after applying proposed EIP technique on high dimensional dataset

shown in Table 1.1, with the minsup and mincard values set to 3. After applying pro-

posed EIP technique, let Ffinal be the set of significant features and Rfinal be the set of

significant rows.

Table 3.6. Preprocessed bitTable when minsup=3 and mincard=3

rid a b d g h j rs

1 1 1 1 0 0 1 4

2 1 1 1 1 1 0 5

3 0 1 1 1 1 0 4

4 1 1 0 0 1 1 4

5 1 0 1 1 1 1 5

cs 4 4 4 3 4 3

3.2 Algorithm for Proposed Effective Improved Preprocessing Technique

The proposed EIP technique is divided into two tasks, Minimum Support Threshold

Preprocessing (MSTP) task to prune the insignificant features and Minimum Cardinality

Threshold Preprocessing (MCTP) task to prune the insignificant rows. Algorithm 1.1

shows the proposed EIP technique. Procedure 1.1a and Procedure 1.1b shows the MSTP

task and MCTP task respectively. The proposed EIP technique invokes the MSTP and

MCTP tasks in an iterative manner until all the features and rows in the bitTable satisfy

41

Algorithm 1.1. Proposed Effective Improved Preprocessing (EIP) Technique
Input: bitTable, minsup, mincard.
Output: preprocessed bitTable

Initialisation : flag = 1
1: while (flag==1) do
2: MSTP task()
3: flag=0
4: MCTP task()
5: end while

Procedure 1.1a. MSTP task()
1: for (j=0;j<no of features;) do
2: count=0
3: for (i=0;i<no of samples;i++) do
4: if (bitTable[i][j]==1) then
5: count++
6: end if
7: end for
8: if (count<minsup) then
9: delete jth feature

10: no of features=no of features-1
11: else
12: j++
13: end if
14: end for

Procedure 1.1b. MCTP task()
1: for (i=0;i<no of samples;) do
2: count=0
3: for (j=0;j<no of features;j++) do
4: if (bitTable[i][j]==1) then
5: count++
6: end if
7: end for
8: if (count<mincard) then
9: delete ith sample

10: no of samples=no of samples-1
11: flag=1
12: else
13: i++
14: end if
15: end for

the criteria of minsup and mincard respectively.

42

3.3 Results and Discussion

This section demonstrates the effectiveness of the proposed EIP technique. The ex-

periments have been conducted on ovarian cancer, lung cancer, prostate cancer, Mixed

Lineage Leukemia (MLL), Central Nervous System embryonal tumor, Diffuse Large B-

Cell Lymphoma (DLBCL) including Follicular Lymphoma, Lung Cancer Test, Acute

Lymphoblastic Leukemia-Acute Myeloid Leukemia (ALL-AML), and Diffuse Large B-

Cell Lymphoma (DLBCL) high dimensional datasets. The data characteristics of these

high dimensional datasets are shown in Table 3.7. The proposed EIP technique has

been compared with the preprocessing technique of CP-Miner, PCP-Miner, BVBUC,

DisClose, and Pattern Fusion (PF). The experiments have been carried out on a com-

puter with a specification of 3.4GHz core i7-3770 CPU, 8GB RAM, and 1TB hard disk.

For different values of minsup and mincard, the proposed EIP technique is com-

pared with preprocessing technique of PCP-Miner, CP-Miner, BVBUC, DisClose and

Pattern Fusion (PF) algorithms for ovarian cancer, lung cancer, prostate cancer, MLL,

Table 3.7. High Dimensional Biological-Datasets

Dataset
Number of

rows
(samples)

Number of
features

Ovarian Cancer 253 15154

Lung Cancer 181 12533

Prostate Cancer 102 12600

Mixed Lineage Leukemia
(MLL)

72 12582

Central Nervous System
embryonal tumor

60 7129

Diffuse Large B-Cell
Lymphoma (DLBCL) including

Follicular Lymphoma
77 7129

Lung Cancer Test 32 12533

Acute Lymphoblastic
Leukemia-Acute Myeloid
Leukemia (ALL-AML)

38 7129

Diffuse Large B-Cell
Lymphoma (DLBCL)

58 7129

43

Table 3.8. Comparison of Proposed EIP Technique and Preprocessing Technique used in DisClose,
BVBUC, PF, CP-Miner and PCP-Miner for Ovarian Cancer dataset with minsup set to 20 and 30.

→ minsup 20 30

↓ mincard EIP DisClose
BVBUC CP-Miner

EIP DisClose
BVBUC CP-Miner

PF PCP-Miner PF PCP-Miner

2000
Rows 206 220 253 253 200 217 253 253

Features 13523 13589 13589 13589 12304 12500 12500 12500

3000
Rows 174 192 253 253 166 185 253 253

Features 13417 13589 13589 13589 11884 12500 12500 12500

4000
Rows 134 152 253 253 126 145 253 253

Features 12906 13589 13589 13589 11194 12500 12500 12500

5000
Rows 103 125 253 253 0 99 253 253

Features 12380 13589 13589 13589 0 12500 12500 12500

6000
Rows 0 69 253 253 0 60 253 253

Features 0 13589 13589 13589 0 12500 12500 12500

Table 3.9. Comparison of Proposed EIP Technique and Preprocessing Technique used in DisClose,
BVBUC, PF, CP-Miner and PCP-Miner for Ovarian Cancer dataset with minsup set to 40 and 50.

→ minsup 40 50

↓ mincard EIP DisClose
BVBUC CP-Miner

EIP DisClose
BVBUC CP-Miner

PF PCP-Miner PF PCP-Miner

2000
Rows 190 205 253 253 175 202 253 253

Features 11079 11427 11427 11427 9818 10246 10246 10246

3000
Rows 155 169 253 253 134 160 253 253

Features 10445 11427 11427 11427 7936 10246 10246 10246

4000
Rows 81 129 253 253 0 122 253 253

Features 6468 11427 11427 11427 0 10246 10246 10246

5000
Rows 0 89 253 253 0 78 253 253

Features 0 11427 11427 11427 0 10246 10246 10246

44

Table 3.10. Comparison of Proposed EIP Technique and Preprocessing Technique used in DisClose,
BVBUC, PF, CP-Miner and PCP-Miner for Lung Cancer dataset with minsup set to 20 and 30.

→ minsup 20 30

↓ mincard EIP DisClose
BVBUC CP-Miner

EIP DisClose
BVBUC CP-Miner

PF PCP-Miner PF PCP-Miner

2000
Rows 160 180 181 181 154 179 181 181

Features 7733 7752 7752 7752 6573 6594 6594 6594

3000
Rows 145 177 181 181 140 173 181 181

Features 7692 7752 7752 7752 6543 6594 6594 6594

4000
Rows 0 136 181 181 0 74 181 181

Features 0 7752 7752 7752 0 6594 6594 6594

5000
Rows 0 7 181 181 0 0 181 181

Features 0 7752 7752 7752 0 6594 6594 6594

Table 3.11. Comparison of Proposed EIP Technique and Preprocessing Technique used in DisClose,
BVBUC, PF, CP-Miner and PCP-Miner for Lung Cancer dataset with minsup set to 40 and 50.

→ minsup 40 50

↓ mincard EIP DisClose
BVBUC CP-Miner

EIP DisClose
BVBUC CP-Miner

PF PCP-Miner PF PCP-Miner

2000
Rows 150 177 181 181 145 176 181 181

Features 5817 5834 5834 5834 5210 5225 5225 5225

3000
Rows 135 169 181 181 131 166 181 181

Features 5616 5834 5834 5834 4980 5225 5225 5225

4000
Rows 0 0 181 181 0 0 181 181

Features 0 5834 5834 5834 0 5225 5225 5225

5000
Rows 0 0 181 181 0 0 181 181

Features 0 5834 5834 5834 0 5225 5225 5225

45

Table 3.12. Comparison of Proposed EIP Technique and Preprocessing Technique used in DisClose,
BVBUC, PF, CP-Miner and PCP-Miner for Prostate Cancer dataset with minsup set to 20 and 30.

→ minsup 20 30

↓ mincard EIP DisClose
BVBUC CP-Miner

EIP DisClose
BVBUC CP-Miner

PF PCP-Miner PF PCP-Miner

2000
Rows 96 102 102 102 94 101 102 102

Features 7063 7079 7079 7079 6321 6350 6350 6350

3000
Rows 90 100 102 102 86 95 102 102

Features 6989 7079 7079 7079 6212 6350 6350 6350

4000
Rows 86 95 102 102 81 92 102 102

Features 6629 7079 7079 7079 6100 6350 6350 6350

5000
Rows 68 80 102 102 65 78 102 102

Features 6358 7079 7079 7079 5849 6350 6350 6350

6000
Rows 0 10 102 102 0 3 102 102

Features 0 7079 7079 7079 0 6350 6350 6350

Table 3.13. Comparison of Proposed EIP Technique and Preprocessing Technique used in DisClose,
BVBUC, PF, CP-Miner and PCP-Miner for Prostate Cancer dataset with minsup set to 40 and 50.

→ minsup 40 50

↓ mincard EIP DisClose
BVBUC CP-Miner

EIP DisClose
BVBUC CP-Miner

PF PCP-Miner PF PCP-Miner

2000
Rows 92 101 102 102 91 100 102 102

Features 5863 5892 5892 5892 5480 5510 5510 5510

3000
Rows 83 92 102 102 79 89 102 102

Features 5742 5892 5892 5892 5388 5510 5510 5510

4000
Rows 77 86 102 102 65 83 102 102

Features 5684 5892 5892 5892 5294 5510 5510 5510

5000
Rows 0 67 102 102 0 61 102 102

Features 0 5892 5892 5892 0 5510 5510 5510

6000
Rows 0 0 102 102 0 0 102 102

Features 0 5892 5892 5892 0 5510 5510 5510

46

Central Nervous System embryonal tumor, DLBCL including Follicular Lymphoma,

Lung Cancer Test, ALL-AML, and DLBCL high dimensional datasets, this compari-

son have been tabulated from Table 3.8 - Table 3.25. Table 3.8 - Table 3.25 highlight

the final set of significant features and significant rows after preprocessing. From the

experimental results, it can be inferred that the proposed EIP technique prunes all in-

significant features and insignificant rows in all cases when compared to the existing

preprocessing techniques.

The preprocessing technique of BVBUC algorithm and PF algorithm prunes the in-

significant features just once; hence it has been observed from the experimental results

that for a given dataset, minsup and different values of mincard, the number of insignif-

icant features pruned by the preprocessing technique of BVBUC and PF algorithm will

remain same. For example, the number of significant features after applying the pre-

processing technique of BVBUC algorithm and PF algorithm for ovarian cancer dataset

with minsup value of 20 and different values of mincard will be 13589, as shown in

Table 3.8. This indicates that the number of insignificant features pruned by the pre-

processing technique of BVBUC and PF algorithm will remain same. Table 3.8 and

Table 3.9 highlight that similar results have been observed for minsup values of 30, 40

and 50. The number of significant features after applying the preprocessing technique

of BVBUC algorithm and PF algorithm for lung cancer dataset with minsup value of

20 and different values of mincard will be 7752, as shown in Table 3.10. This indi-

cates that the number of insignificant features pruned by the preprocessing technique

of BVBUC and PF algorithm will remain same. Table 3.10 - Table 3.25 highlight that

similar results have been observed for other experimental high dimensional datasets.

The experimental results show that, for a given dataset, minsup and different values

of mincard the preprocessing technique of BVBUC algorithm and PF algorithm fails to

prune insignificant rows. For example, the number of significant rows after applying

the preprocessing technique of BVBUC algorithm and PF algorithm for ovarian cancer

dataset with minsup value of 20 and different values of mincard will be 253, as shown

in Table 3.8. This indicates that the preprocessing technique of BVBUC algorithm and

PF algorithm fails to prune insignificant rows. Table 3.8 and Table 3.9 highlight that

similar results have been observed for minsup values of 30, 40 and 50. The number of

significant rows after applying the preprocessing technique of BVBUC algorithm and

PF algorithm for lung cancer dataset with minsup value of 20 and different values of

mincard will be 181, as shown in Table 3.10. This indicates that the preprocessing tech-

47

nique of BVBUC algorithm and PF algorithm fails to prune insignificant rows. Table

3.10 - Table 3.25 highlight that similar results have been observed for other experimen-

tal high dimensional datasets.

The preprocessing technique of PCP-Miner algorithm and CP-Miner algorithm prunes

the insignificant features and then rows which do not contain any features, only once.

The experimental results show that the number of rows pruned by the preprocessing

technique of PCP-Miner and CP-Miner algorithm in all the experimental high dimen-

sional datasets for a given minsup and mincard is zero. This illustrates that the number

of rows in all experimental high dimensional datasets that do not contain any features

is zero.

The number of insignificant features pruned by the preprocessing technique of PCP-

Miner, CP-Miner and DisClose algorithm for a given dataset, minsup and different val-

Table 3.14. Comparison of Proposed EIP Technique and Preprocessing Technique used in DisClose,
BVBUC, PF, CP-Miner and PCP-Miner for MLL dataset with minsup set to 5 and 10.

→ minsup 5 10

↓ mincard EIP DisClose
BVBUC CP-Miner

EIP DisClose
BVBUC CP-Miner

PF PCP-Miner PF PCP-Miner

2000
Rows 72 72 72 72 72 72 72 72

Features 11144 11144 11144 11144 9360 9360 9360 9360

2500
Rows 72 72 72 72 72 72 72 72

Features 11144 11144 11144 11144 9360 9360 9360 9360

3000
Rows 70 71 72 72 66 69 72 72

Features 11133 11144 11144 11144 9142 9360 9360 9360

3500
Rows 60 65 72 72 55 62 72 72

Features 10911 11144 11144 11144 8787 9360 9360 9360

4000
Rows 44 53 72 72 0 44 72 72

Features 10499 11144 11144 11144 0 9360 9360 9360

4500
Rows 20 32 72 72 0 28 72 72

Features 8339 11144 11144 11144 0 9360 9360 9360

5000
Rows 0 16 72 72 0 12 72 72

Features 0 11144 11144 11144 0 9360 9360 9360

48

Table 3.15. Comparison of Proposed EIP Technique and Preprocessing Technique used in DisClose,
BVBUC, PF, CP-Miner and PCP-Miner for MLL dataset with minsup set to 15 and 20.

→ minsup 15 20

↓ mincard EIP DisClose
BVBUC CP-Miner

EIP DisClose
BVBUC CP-Miner

PF PCP-Miner PF PCP-Miner

2000
Rows 72 72 72 72 72 72 72 72

Features 7670 7670 7670 7670 6253 6253 6253 6253

2500
Rows 70 71 72 72 67 70 72 72

Features 7583 7670 7670 7670 5868 6253 6253 6253

3000
Rows 64 68 72 72 59 65 72 72

Features 7191 7670 7670 7670 5396 6253 6253 6253

3500
Rows 0 51 72 72 0 41 72 72

Features 0 7670 7670 7670 0 6253 6253 6253

4000
Rows 0 28 72 72 0 15 72 72

Features 0 7670 7670 7670 0 6253 6253 6253

Table 3.16. Comparison of Proposed EIP Technique and Preprocessing Technique used in DisClose,
BVBUC, PF, CP-Miner and PCP-Miner for MLL dataset with minsup set to 25 and 30.

→ minsup 25 30

↓ mincard EIP DisClose
BVBUC CP-Miner

EIP DisClose
BVBUC CP-Miner

PF PCP-Miner PF PCP-Miner

1000
Rows 72 72 72 72 72 72 72 72

Features 5066 5066 5066 5066 4186 4186 4186 4186

1500
Rows 70 71 72 72 68 70 72 72

Features 4946 5066 5066 5066 4097 4186 4186 4186

2000
Rows 66 70 72 72 59 68 72 72

Features 4817 5066 5066 5066 3806 4186 4186 4186

2500
Rows 60 64 72 72 0 60 72 72

Features 4479 5066 5066 5066 0 4186 4186 4186

3000
Rows 0 57 72 72 0 29 72 72

Features 0 5066 5066 5066 0 4186 4186 4186

49

Table 3.17. Comparison of Proposed EIP Technique and Preprocessing Technique used in DisClose,
BVBUC, PF, CP-Miner and PCP-Miner for Central Nervous System embryonal tumor dataset with

minsup set to 5 and 10.

→ minsup 5 10

↓ mincard EIP DisClose
BVBUC CP-Miner

EIP DisClose
BVBUC CP-Miner

PF PCP-Miner PF PCP-Miner

1000
Rows 60 60 60 60 60 60 60 60

Features 6000 6000 6000 6000 4550 4550 4550 4550

1500
Rows 58 59 60 60 55 58 60 60

Features 5932 6000 6000 6000 4471 4550 4550 4550

2000
Rows 52 55 60 60 50 55 60 60

Features 5796 6000 6000 6000 4315 4550 4550 4550

2500
Rows 11 23 60 60 0 13 60 60

Features 3709 6000 6000 6000 0 4550 4550 4550

3000
Rows 0 6 60 60 0 3 60 60

Features 0 6000 6000 6000 0 4550 4500 4500

Table 3.18. Comparison of Proposed EIP Technique and Preprocessing Technique used in DisClose,
BVBUC, PF, CP-Miner and PCP-Miner for Central Nervous System embryonal tumor dataset with

minsup set to 15 and 20.

→ minsup 15 20

↓ mincard EIP DisClose
BVBUC CP-Miner

EIP DisClose
BVBUC CP-Miner

PF PCP-Miner PF PCP-Miner

500
Rows 60 60 60 60 60 60 60 60

Features 3511 3511 3511 3511 2858 2858 2858 2858

1000
Rows 58 59 60 60 57 58 60 60

Features 3481 3511 3511 3511 2766 2858 2858 2858

1500
Rows 52 56 60 60 50 54 60 60

Features 3198 3511 3511 3511 2642 2858 2858 2858

2000
Rows 0 38 60 60 0 27 60 60

Features 0 3511 3511 3511 0 2858 2858 2858

50

Table 3.19. Comparison of Proposed EIP Technique and Preprocessing Technique used in DisClose,
BVBUC, PF, CP-Miner and PCP-Miner for Central Nervous System embryonal tumor dataset with

minsup set to 25 and 30.

→ minsup 25 30

↓ mincard EIP DisClose
BVBUC CP-Miner

EIP DisClose
BVBUC CP-Miner

PF PCP-Miner PF PCP-Miner

500
Rows 60 60 60 60 60 60 60 60

Features 2455 2455 2455 2455 2144 2144 2144 2144

1000
Rows 55 57 60 60 52 55 60 60

Features 2295 2455 2455 2455 2016 2144 2144 2144

1500
Rows 0 50 60 60 0 47 60 60

Features 0 2455 2455 2455 0 2144 2144 2144

2000
Rows 0 12 60 60 0 0 60 60

Features 0 2455 2455 2455 0 2144 2144 2144

Table 3.20. Comparison of Proposed EIP Technique and Preprocessing Technique used in DisClose,
BVBUC, PF, CP-Miner and PCP-Miner for DLBCL (Including Follicular Lymphoma) dataset with

minsup set to 5 and 10.

→ minsup 5 10

↓ mincard EIP DisClose
BVBUC CP-Miner

EIP DisClose
BVBUC CP-Miner

PF PCP-Miner PF PCP-Miner

1000
Rows 77 77 77 77 77 77 77 77

Features 5904 5904 5904 5904 4751 4751 4751 4751

1500
Rows 75 76 77 77 74 76 77 77

Features 5826 5904 5904 5904 4616 4751 4751 4751

2000
Rows 74 75 77 77 73 75 77 77

Features 5786 5904 5904 5904 4542 4751 4751 4751

2500
Rows 58 65 77 77 48 57 77 77

Features 5609 5904 5904 5904 4154 4751 4751 4751

3000
Rows 0 17 77 77 0 11 77 77

Features 0 5904 5904 5904 0 4751 4751 4751

51

Table 3.21. Comparison of Proposed EIP Technique and Preprocessing Technique used in DisClose,
BVBUC, PF, CP-Miner and PCP-Miner for DLBCL (Including Follicular Lymphoma) dataset with

minsup set to 15 and 20.

→ minsup 15 20

↓ mincard EIP DisClose
BVBUC CP-Miner

EIP DisClose
BVBUC CP-Miner

PF PCP-Miner PF PCP-Miner

1000
Rows 77 77 77 77 75 76 77 77

Features 3928 3928 3928 3928 3342 3409 3409 3409

1500
Rows 73 75 77 77 71 74 77 77

Features 3852 3928 3928 3928 3192 3409 3409 3409

2000
Rows 71 73 77 77 68 71 77 77

Features 3755 3928 3928 3928 3015 3409 3409 3409

2500
Rows 0 44 77 77 0 38 77 77

Features 0 3928 3928 3928 0 3409 3409 3409

Table 3.22. Comparison of Proposed EIP Technique and Preprocessing Technique used in DisClose,
BVBUC, PF, CP-Miner and PCP-Miner for DLBCL (Including Follicular Lymphoma) dataset with

minsup set to 25 and 30.

→ minsup 25 30

↓ mincard EIP DisClose
BVBUC CP-Miner

EIP DisClose
BVBUC CP-Miner

PF PCP-Miner PF PCP-Miner

1000
Rows 74 76 77 77 72 75 77 77

Features 2993 3066 3066 3066 2714 2822 2822 2822

1500
Rows 70 73 77 77 67 71 77 77

Features 2847 3066 3066 3066 2597 2822 2822 2822

2000
Rows 65 69 77 77 61 67 77 77

Features 2722 3066 3066 3066 2425 2822 2822 2822

2500
Rows 0 26 77 77 0 6 77 77

Features 0 3066 3066 3066 0 2822 2822 2822

52

ues of mincard will remain the same. For example, the number of significant features

after applying the preprocessing technique of PCP-Miner, CP-Miner and DisClose for

ovarian cancer dataset with minsup value of 20 and different values of mincard will be

13589, as shown in Table 3.8. This indicates that the number of insignificant features

pruned by the preprocessing technique of BVBUC and PF algorithm will remain same.

Table 3.8 and Table 3.9 highlight that similar results have been observed for minsup

values of 30, 40 and 50. The number of significant features after applying the prepro-

cessing technique of PCP-Miner, CP-Miner and DisClose for lung cancer dataset with

minsup value of 20 and different values of mincard will be 7752, as shown in Table

3.10. This indicates that the number of insignificant features pruned by the prepro-

cessing technique of BVBUC and PF algorithm will remain same. Table 3.10 to Table

3.25 highlight that similar results have been observed for other experimental high di-

mensional datasets. The pruning of insignificant features remains the same because the

preprocessing technique of PCP-Miner, CP-Miner and DisClose algorithm prune the

insignificant features just once and fail to take advantage of the reduction in the support

of features due to the pruning of insignificant rows.

The experimental results highlight that the proposed EIP technique takes advantage

of the reduction in the cardinality of rows due to the pruning of insignificant features

and the reduction in the support of features due to the pruning of insignificant rows.

Table 3.23. Comparison of Proposed EIP Technique and Preprocessing Technique used in DisClose,
BVBUC, PF, CP-Miner and PCP-Miner for Lung Cancer Test dataset with minsup set to 10 and 15.

→ minsup 10 15

↓ mincard EIP DisClose
BVBUC CP-Miner

EIP DisClose
BVBUC CP-Miner

PF PCP-Miner PF PCP-Miner

500
Rows 32 32 32 32 32 32 32 32

Features 6825 6825 6825 6825 4873 4873 4873 4873

1000
Rows 32 32 32 32 32 32 32 32

Features 6825 6825 6825 6825 4873 4873 4873 4873

1500
Rows 32 32 32 32 32 32 32 32

Features 6825 6825 6825 6825 4873 4873 4873 4873

2000
Rows 31 31 32 32 30 31 32 32

Features 6810 6825 6825 6825 4727 4873 4873 4873

53

Table 3.24. Comparison of Proposed EIP Technique and Preprocessing Technique used in DisClose,
BVBUC, PF, CP-Miner and PCP-Miner for ALL-AML dataset with minsup set to 10 and 15.

→ minsup 10 15

↓ mincard EIP DisClose
BVBUC CP-Miner

EIP DisClose
BVBUC CP-Miner

PF PCP-Miner PF PCP-Miner

1000
Rows 38 38 38 38 36 36 38 38

Features 4179 4179 4179 4179 3265 3265 3265 3265

2000
Rows 20 26 38 38 20 22 38 38

Features 3233 4179 4179 4179 3233 3265 3265 3265

3000
Rows 20 22 38 38 19 20 38 38

Features 3233 4179 4179 4179 3212 3265 3265 3265

4000
Rows 0 0 38 38 0 0 38 38

Features 0 4179 4179 4179 0 3265 3265 3265

Table 3.25. Comparison of Proposed EIP Technique and Preprocessing Technique used in DisClose,
BVBUC, PF, CP-Miner and PCP-Miner for DLBCL dataset with minsup set to 15 and 20.

→ minsup 15 20

↓ mincard EIP DisClose
BVBUC CP-Miner

EIP DisClose
BVBUC CP-Miner

PF PCP-Miner PF PCP-Miner

500
Rows 58 58 58 58 58 58 58 58

Features 3572 3572 3572 3572 2898 2898 2898 2898

1000
Rows 58 58 58 58 58 58 58 58

Features 3572 3572 3572 3572 2898 2898 2898 2898

1500
Rows 55 57 58 58 52 55 58 58

Features 3505 3572 3572 3572 2683 2898 2898 2898

2000
Rows 0 40 58 58 0 30 58 58

Features 0 3572 3572 3572 0 2898 2898 2898

The proposed EIP technique prunes the insignificant features, and insignificant rows

alternatively in an iterative manner until all the features and rows satisfy the criteria

of minsup and mincard respectively. Further, the number of significant features and

significant rows after the proposed EIP technique is zero, when the (minsup, mincard)

54

values reach (20, 6000), (30, 5000), (40, 5000), (50, 4000) for the ovarian cancer dataset

as shown in Table 3.8 and Table 3.9. This indicates that there are no frequent colossal

itemsets and FCCI. In such cases, the proposed EIP technique yields the final results

without the need for the proposed frequent colossal itemset mining algorithm and FCCI

mining algorithm. However, the existing FCCI mining algorithms have to go through

an enormous number of row combinations to fetch the same final results even after

applying their respective preprocessing techniques.

The number of significant features and significant rows after the proposed EIP tech-

nique is zero, when the (minsup, mincard) values reach (5, 5000), (10, 4000), (15,

3500), (20, 3500), (25, 3000), (30, 2500) for the MLL dataset as shown in Table 3.14,

Table 3.15, and Table 3.16. This indicates that there are no frequent colossal itemsets

and FCCI. In such cases, the proposed EIP technique yields the final results without

the need for the proposed frequent colossal itemset mining algorithm and FCCI mining

algorithm. However, the existing FCCI mining algorithms have to go through an enor-

mous number of row combinations to fetch the same final results even after applying

their respective preprocessing techniques. Similarly, the same kind of results have been

observed when the proposed EIP technique is compared with existing preprocessing

techniques for the lung cancer dataset (as shown in Table 3.10 and Table 3.11), prostate

cancer dataset (as shown in Table 3.12 and Table 3.13), Central Nervous System em-

bryonal tumor dataset (as shown in Table 3.17, Table 3.18 and Table 3.19), DLBCL

including Follicular Lymphoma dataset (as shown in Table 3.20, Table 3.21 and Table

3.22), lung cancer test dataset (as shown in Table 3.23), ALL-AML dataset (as shown in

Table 3.24, and DLBCL dataset (as shown in Table 3.25). The proposed EIP technique

outperforms the existing preprocessing techniques effectively by pruning the complete

set of insignificant features and insignificant rows. Further it has been observed for all

the experimental high dimensional datasets that as the minsup and mincard increases

the number of significant features and significant rows decreases.

3.4 Summary

In this chapter, the Effective Improved Preprocessing (EIP) technique has been pro-

posed to prune the complete set of insignificant features and insignificant rows from the

high dimensional dataset. The preprocessing technique of the existing frequent colos-

sal itemset mining algorithms and FCCI mining algorithms do not prune the complete

set of insignificant features and insignificant rows from the high dimensional dataset.

The proposed EIP effectively utilizes minsup and mincard to prune the complete set

55

of insignificant features and insignificant rows from the high dimensional dataset. The

proposed EIP technique takes advantage of the reduction in the cardinality of rows due

to the pruning of insignificant features and the reduction in the support of features due

to the pruning of insignificant rows. The experiments have been conducted on high

dimensional datasets for different values of minsup and mincard. It is evident from

the experimental results that the proposed EIP technique outperforms the existing pre-

processing technique in terms of pruning the complete set of insignificant features and

insignificant rows, which further helps in reducing the search space.

In the next chapter, the proposed frequent colossal itemset mining and FCCI mining

algorithm have been discussed.

56

Chapter 4

Mining Frequent Colossal Itemsets and Frequent

Colossal Closed Itemsets from the High Dimensional

Dataset

In this chapter, the proposed frequent colossal itemset mining algorithm has been dis-

cussed. The chapter also discusses the proposed algorithm enclosed with an efficient

Rowset Cardinality Table (RCT) based closeness checking method and pruning strat-

egy, which efficiently mine FCCI from the high dimensional dataset.

4.1 Search Strategies

Frequent colossal itemsets and FCCI are efficiently mined from the high dimensional

dataset by choosing an efficient search strategy to traverse an enumerated tree. Bottom-

up or top-down search strategy is used to traverse an enumerated tree. An enumerated

tree can either be a row enumerated tree or a feature enumerated tree.

The proposed work mine frequent colossal itemsets and FCCI from the high dimen-

sional dataset by traversing a row enumerated tree due to the data characteristics of the

high dimensional datasets. In this section, the reason for the selection of a bottom-up

search strategy to traverse the row enumerated tree has been explained.

4.1.1 Top-Down Traversal of Row Enumerated Tree

The top-down traversing of the row enumerated space implies that the search starts from

the larger rowset value and builds the smaller rowset values during the process. Figure

4.1 shows the top-down row enumerated tree for the preprocessed bitTable 3.5, with

each row enumerated node representing the rowset and the corresponding bitset result

is indicated under the corresponding row enumerated node. The bitset at each row

enumerated node helps in determining the cardinality of an itemset and is obtained by

performing bitwise AND operations of bitset that corresponds to the rids in the rowset.

For example, the bitset at row enumerated node 123 (01100000) shown in Figure 4.1

is obtained by performing the bitwise AND operations of bitset that corresponds to the

rids 1 (11110001), 2 (11101100) and 3 (01101100). The top-down traversal of the

row enumerated tree is inefficient in mining colossal itemsets as the large cardinality

itemsets are present at the final levels of top-down row enumerated tree. The top-down

traversal of the row enumerated tree expends a huge amount of time in traversing small

and mid-sized itemsets at the initial levels of the row enumerated tree.

The top-down traversal of the row enumerated tree is inefficient with bitset approach

as the bitset result at a parent row enumerated node cannot be utilized to generate bit-

set result at the child row enumerated node. The number of bitwise AND operations

required to obtain the bitset result at the row enumerated node is (|rowset| - 1). For

example, in Figure 4.1, the bitset result at node 1236 requires 3 bitwise AND opera-

tions. The top-down approach fails to take advantage of the anti-monotone property

of minimum cardinality threshold. These disadvantages of top-down traversal of row

enumerated tree make it as an inefficient search strategy for mining frequent colossal

itemsets and FCCI from the high dimensional dataset.

Figure 4.1. Top-Down Traversal of Row Enumerated Tree

58

4.1.2 Bottom-Up Traversal of Row Enumerated Tree

The bottom-up traversing of the row enumerated space implies that the search starts

from the smaller rowset value and builds the larger rowset values during the process.

Figure 4.2 shows the bottom-up row enumerated tree for the preprocessed bitTable 3.5,

with each row enumerated node representing the rowset and the corresponding bitset

result is indicated under the corresponding row enumerated node.

The bottom-up traversal of the row enumerated tree is efficient in mining colossal

itemsets as the large cardinality itemsets are present at the initial levels of bottom-up

row enumerated tree. The bottom-up approach also has a benefit of utilizing the bitset

result of the parent row enumerated node to obtain the bitset result at the child row

enumerated nodes, thus exponentially reducing the number of bitwise AND operations

Figure 4.2. Bottom-Up Traversal of Row Enumerated Tree

59

to be performed. Only one bitwise AND operation is required to obtain the bitset result

at each node in bottom-up row enumerated tree, as compared to (|rowset| - 1) in top-

down row enumerated tree. For example, in Figure 4.2, the bitset result at node 1236

requires one bitwise AND operation. The bitset result of node 123 and node 6 are

utilized to generate the bitset result of node 1236.

The bottom-up approach efficiently take advantage of the anti-monotone property of

minimum cardinality threshold to cut down the row enumerated search space. It means

that, if an itemset at a node represented by l-rowset is not colossal, then an itemset

at a child row enumerated node represented by (l+1)-rowset is also not colossal. For

example, with minsup value set to 2 and mincard value set to 3, the descendants of

row enumerated node 123 can be pruned as the itemsets in descendant row enumerated

nodes are not colossal. Both bottom-up and top-down traversal of row enumerated

tree have advantages and disadvantages. The proposed methods adopt the bottom-up

traversal of row enumerated tree for mining frequent colossal itemsets and FCCI from

the high dimensional dataset.

4.2 Proposed Frequent Colossal Itemset Mining from the High Dimensional
Dataset

The existing frequent colossal itemset mining algorithms mine limited set of frequent

colossal itemsets from the high dimensional dataset leading to the generation of an

incomplete set of association rules. Frequent colossal itemset mining algorithm has

been proposed to achieve better accuracy than existing algorithms in terms of mining

number of frequent colossal itemsets from the high dimensional dataset.

The proposed frequent colossal itemset mining algorithm for the high dimensional

dataset adopts the bottom-up traversal of row enumerated tree. The BVBUC algorithm

mine the itemsets from the nodes belonging to the minsup level of row enumerated

tree and prune their descendant row enumerated nodes. The proposed frequent colossal

itemset mining algorithm mines the itemsets from the nodes belonging to the minsup

level of row enumerated tree and from its descendant row enumerated nodes which

contribute to the mining of frequent colossal itemsets.

The algorithm 4.1 highlights the proposed frequent colossal itemset mining algo-

rithm. The proposed algorithm mine the frequent colossal itemsets by performing the

depth-first traversal of bottom-up row enumerated tree. The preprocessed bitTable, min-

imum support threshold (minsup), and minimum cardinality threshold (mincard) are

60

Algorithm 4.1. Proposed Frequent Colossal Itemset Mining Algorithm
Input: preprocessed bitTable, minsup, mincard.
Output: frequent colossal itemsets

Initialisation: frequent colossal itemsets = ∅
r = initial row in row enumeration
All bits in bitset result initialized to 1

1: Colossal Itemsets(r,bitset result)

Procedure 4.1a. Colossal Itemsets(rcomb,bitset result)
1: if node rcomb does not reach till minsup
2: return
3: calculate bitset result at node rcomb
4: if (|bit result|< mincard)
5: return
6: if (|rcomb|≥ minsup)
7: Add bitset result to frequent colossal itemsets
8: for each node rcomb in row enumeration
9: Colossal Itemsets(rcomb,bitset result)

provided as an input to the proposed frequent colossal itemset mining algorithm. The

proposed algorithm provides set of frequent colossal itemsets as an output. The set of

frequent colossal itemsets is initialized to null. Let 'r' be the initial row in row enu-

meration and all the bits in bitset result are initialized to 1. The step 1 of procedure

4.1a indicates that, if the row enumerated node rcomb does not reach till minsup then,

that row enumerated node and its subtree if exists are pruned to cut down the search

space. For example, the row enumerated node 4 and 5 along with its subtree in Figure

4.2 are pruned when the minsup value is set to 4. The bit result is calculated at row

enumerated node rcomb. The step 4 of procedure 4.1a indicates that, if the length of

an itemset mined at row enumerated node rcomb is less than mincard then, the subtree

of the row enumerated node rcomb is pruned to cut down the search space. The mined

itemset is added to the set of frequent colossal itemsets if it is frequent and colossal.

The algorithm continues with depth-first traversal of bottom-up row enumerated tree.

The proposed algorithm does not stop mining colossal itemsets at the minsup level of

row enumerated tree but continues mining colossal itemsets from higher levels of row

enumerated tree which contributes to the mining of frequent colossal itemsets. The pro-

posed algorithm achieves better accuracy than existing algorithms in terms of mining

number of frequent colossal itemsets.

61

4.3 Proposed Frequent Colossal Closed Itemset Mining using Prune Table

The existing algorithms are inefficient in mining the FCCI from the high dimensional

dataset. The pruning strategy of the existing frequent colossal closed itemset mining

algorithms is inefficient. To overcome the drawback of existing algorithms, the frequent

colossal closed itemset mining algorithm enclosed with an efficient pruning strategy has

been proposed. The proposed frequent colossal closed itemset mining algorithm adopts

the bottom-up row enumerated tree and bitset approach for mining FCCI from the high

dimensional dataset. The proposed frequent colossal closed itemset mining algorithm

has been enclosed with a pruning strategy to efficiently cut down the row enumerated

search space. The pruning strategy takes advantage of the Prune Table (PT) to efficiently

cut down the row enumerated search space.

Definition 9 (Prune Table). Given a rowset Y={ri1, ri2,......, rik} representing a row

enumerated node in an order such that ri1<ri2<.....<rik, the Prune Table (PTY) con-

tains the cardinality for all rids’ of the preprocessed bitTable which are greater than

the largest rid in Y i.e. ∀ ri ∈ Rfinal, ri > rik at that particular row enumerated node

Example 9. Table 4.1a and 4.1b shows the Prune Table at row enumerated node 13

and 34 respectively in the Figure 4.2.

Table 4.1. Prune Table (PT) of row enumerated node 13 (PT13) and 34 (PT34)

(a) PT13

rid card

4 1

5 1

6 2

(b) PT34

rid card

5 1

6 1

The Prune Table PTY is obtained by the following steps.

1. Obtain the indices of all the ones appearing in the bitset result at that particular

row enumerated node

2. For all rids' of the preprocessed bitTable which are greater than the largest rid in

Y, calculate the number of ones from the preprocessed bitTable appearing at the

indices obtained from the step 1.

Example 10. Obtaining Prune Table for row enumerated nodes 13 (PT13) and 34

(PT34) as shown in Figure 4.2.

62

• Prune Table PT13 is shown in Table 4.1a, the indices of all the ones appearing in

the bitset result (01100000) at row enumerated node 13 are {2,3}.

• For all rids' {4,5,6}, which are greater than the largest rid {3} at row enumerated

node 13, the number of ones appearing at the indices {2,3} from the preprocessed

bitTable as shown in Table 3.5 are {1,1,2} respectively.

• Prune Table PT34 is shown in Table 4.1b, the indices of all the ones appearing in

the bitset result (01000100) at row enumerated node 34 are {2,6}.

• For all rids' {5,6}, which are greater than the largest rid {4} at row enumerated

node 34, the number of ones appearing at the indices {2,6} from the preprocessed

bitTable as shown in Table 3.5 are {1,1} respectively.

The Prune Table provides the prior information regarding the cardinality of the item-

sets to be mined at the immediate child nodes without traversing them. For example,

with minsup and mincard values set to 2, the Prune Table at row enumerated node 13

(PT13) gives the prior information regarding the cardinality of itemsets to be mined at

immediate child row enumerated nodes (134, 135, 136). The cardinality of rid 4 and rid

5 in PT13 does not satisfy the mincard, which indicates the proposed algorithm to prune

the descendants of row enumerated node 13 related to rid 4 and rid 5 without traversing

the descendants. The use of Prune Table provides a computational boost to the proposed

frequent colossal closed itemset mining algorithm as it provides the prior information

regarding the cardinality of the itemsets to be mined, which is a major limitation in the

existing algorithms.

The algorithm 4.2 shows the proposed frequent colossal closed itemset mining algo-

rithm. The proposed algorithm mine the FCCI by performing the depth-first traversal of

bottom-up row enumerated tree. The preprocessed bitTable, minimum support thresh-

old, and minimum cardinality threshold are provided as an input to the proposed algo-

Algorithm 4.2. Proposed Frequent Colossal Closed Itemset Mining algorithm
Input: preprocessed bitTable, minsup, mincard.
Output: Set of Frequent Colossal Closed Itemsets, SFCCI

Initialisation: SFCCI= ∅
R′

final = set of rows to be enumerated
rcomb = initial node in row enumeration
All bits’ in bitset result are initialized to 1

1: Colossal Closed(rcomb,bitset result,R′
final,SFCCI)

63

Procedure 4.2a. Colossal Closed(rcomb,bitset result,R′
final,SFCCI))

1: if node rcomb does not reach till minsup
2: return
3: calculate bitset result at the node rcomb
4: Pruning: ∀ ri ∈ R′

final, if PTrcomb[ri][card]<mincard
5: delete ri from R′

final

6: checking the closeness of an itemsets, if closenesscheck(itemset)==True
7: Add itemset to SFCCI
8: for each row enumerated node(rcomb) in R′

final

9: Colossal Closed(rcomb,bitset result,R′
final,SFCCI)

rithm. The proposed algorithm provides a set of frequent colossal closed itemsets as an

output. The SFCCI, Set of Frequent Colossal Closed Itemsets is initialized to null. Let

R′
final be the set of rows to be enumerated, rcomb be the initial row enumerated node,

and all the bits in bitset result be initialized to 1.

The 'Colossal Closed' procedure as shown in procedure 4.2a is invoked to mine the

FCCI from the preprocessed bitTable. The step 1 in 'Colossal Closed' procedure indi-

cates that, if the row enumerated node rcomb does not reach till minsup then, that row

enumerated node and its subtree if exists is pruned to cut down the search space. The

step 3 highlights about obtaining the bitset result at the row enuemrated node rcomb.

Step 4 indicates the proposed PT based pruning strategy. R′
final indicates the number

of rows to be enumerated at a node rcomb, and if the cardinality of any of the rows

in R′
final occurring in PTrcomb is less than mincard then those rows are removed from

R′
final as they would not generate colossal itemsets. For example, rid 4 and rid 5 are

removed from R′
final at row enumerated node 13 because the cardinality of rid 4 and

rid 5 in PT13 as shown in Table 4.1a is less than mincard(2). Removal of rid 4 and rid

5 from R′
final leads to the pruning of row enumerated nodes 134, 1345, 13456, 1346,

135 and 1356 shown in Figure 4.2. The proposed pruning strategy utilizes the Prune

Table (PT) as it provides the prior information regarding the cardinality of the itemsets

to be mined at the immediate child nodes without traversing them. Step 6 highlights

the existing closeness checking of itemset obtained at row enumerated node rcomb. If

the itemset satisfies the closeness checking then the itemset is added to the SFCCI. The

algorithm continues with depth-first traversal of bottom-up row enumerated tree.

64

4.4 Proposed Method for Mining Frequent Colossal Closed Itemsets from the
High Dimensional Dataset using Rowset Cardinality Table

The existing algorithms are inefficient in mining the FCCI from the high dimensional

dataset. The closeness checking method of rowset and pruning strategy of the existing

frequent colossal closed itemset mining algorithms are inefficient. To overcome the

drawback of existing algorithms, the following approaches have been proposed:

• Rowset Cardinality Table (RCT).

• An efficient RCT based closeness checking method to check the closeness of a

rowset.

• An efficient RCT based pruning strategy to cut down the search space by efficient

utilization of minimum cardinality threshold.

• The BitSet Frequent Colossal Closed Itemset Mining (BSFCCIM) algorithm en-

trenched with the efficient RCT based closeness checking method and pruning

strategy has been proposed to efficiently mine FCCI from the high dimensional

dataset.

The proposed Rowset Cardinality Table (RCT) is generated at a row enumerated

node. The RCT based closeness checking method has been proposed to check whether

a rowset is closed or not. The proposed RCT based closeness checking method will not

scan through the previously mined FCCI to check the existence and closeness of newly

mined frequent colossal itemset. It is not required to store the complete set of previously

mined FCCI in main memory as the closeness of rowset indicates the closeness of item-

sets mined at that particular rowset. The proposed pruning strategy utilizes the RCT at

the row enumerated node to efficiently cut down the search space. For mining FCCI

from the high dimensional dataset, the proposed algorithm utilizes the bottom-up row

enumerated tree, as the large cardinality itemsets are present at the initial level of the

bottom-up row enumerated tree. The bitset approach is computationally fast, hence the

proposed algorithm utilizes the bitset approach. The proposed BSFCCIM algorithm is

entrenched with efficient RCT based closeness checking method and pruning strategy.

4.4.1 Rowset Cardinality Table

The proposed closeness checking method takes advantage of the Rowset Cardinality

Table (RCT) in bottom-up row enumerated tree to check the closeness of a rowset. If

the rowset is closed then the itemset mined at that rowset is also closed. The RCT helps

65

in closeness checking of a rowset without the need to scan through the previously mined

FCCI itemsets. The proposed pruning strategy utilizes the RCT to efficiently cut down

the row enumerated search space. The RCT provides the prior information regarding the

cardinality of the itemsets to be mined at the descendant nodes without traversing them.

The RCT for every row enumerated node is shown in Figure 4.3. Each row enumerated

node refers their respective proposed Rowset Cardinality Table as shown in Figure 4.3

for closeness checking of a rowset and pruning the descendant row enumerated nodes

which do not contribute to the mining of colossal itemsets.

Definition 10 (Rowset Cardinality Table). Given a rowset Y, representing a row enu-

merated node, the Rowset Cardinality Table (RCTY) at row enumerated node Y contains

the updated cardinality for each row in (Rfinal - Y) depending upon the cardinality of the

bitset result obtained at row enumerated node Y.

The Rowset Cardinality Table (RCTY) at node Y is obtained by the following steps.

1. Obtain the indices of all the ones appearing in the bitset result obtained at row

enumerated node Y.

2. For each row in (Rfinal - Y), calculate the number of ones from the preprocessed

bitTable appearing at the indices obtained from the step 1.

Example 11. Table 4.2a, 4.2b, 4.2c and 4.2d shows the Rowset Cardinality Table at

row enumerated nodes 12, 13, 14 and 23 respectively in the Figure 4.3

Table 4.2. Rowset Cardinality Table of row enumerated nodes 12, 13, 14 and 23

(a) RCT12

rid card

3 2

4 2

5 2

6 2

(b) RCT13

rid card

2 2

4 1

5 1

6 2

(c) RCT14

rid card

2 2

3 1

5 2

6 1

(d) RCT23

rid card

1 2

4 2

5 3

6 2

Example 12. Obtaining Rowset Cardinality Table for row enumerated nodes 14 (RCT14)

and 23 (RCT23) as shown in Figure 4.3.

• Rowset Cardinality Table for row enumerated node 14, RCT14 is shown in Table

4.2c. The indices of all the ones appearing in the bitset result (11010001) at row

enumerated node 14 are {1,2,4,8}.

66

Figure 4.3. Bottom-Up Row Enumerated Tree with Rowset Cardinality Table for respective row enumer-
ated nodes

• For each row in (R2 - Y) = {2,3,5,6}, the number of ones appearing at the indices

{1,2,4,8} from the preprocessed bitTable as shown in Table 3.5 are {2,1,2,1}
respectively.

• Rowset Cardinality Table for row enumerated node 23, RCT23 is shown in Table

4.2d. The indices of all the ones appearing in the bitset result (01101100) at row

67

enumerated node 23 are {2,3,5,6}.

• For each row in (R2 - Y) = {1,4,5,6}, the number of ones appearing at the indices

{2,3,5,6} from the preprocessed bitTable as shown in Table 3.5 are {2,2,3,2}
respectively.

4.4.2 Proposed Closeness Checking

The RCT based closeness checking method is proposed to speed up the closeness check-

ing of a rowset during the traversal of bottom-up row enumerated tree. The closeness

of the rowset indicates that the itemset occurring in that rowset is also closed. The pro-

posed efficient closeness checking method will not scan through the previously mined

FCCI to check the existence and closeness of newly mined frequent colossal itemset.

Lemma 1. A rowset Y ⊆ Rfinal during the row enumeration is closed iff the cardinality

of all the rows in the RCTY is less than the cardinality of an itemset X ⊆ Ffinal mined at

rowset Y.

Proof. According to definition 8 (equations 1.1, 1.2, 1.3 and 1.4), if rowset Y is closed,

then Y=r(X). It is necessary to prove that Y=r(X) with the help of RCTY. The RCTY (rid)

returns the updated cardinality value corresponding to the rid in RCTY . (For all)∀ rid ∈
(Rfinal - Y), if RCTY (rid) is less than the cardinality of an itemset X mined at the rowset

Y, then an itemset X has not occurred in (Rfinal - Y). This indicates that an itemset X has

occurred only in Y, hence Y=r(X) proved. Therefore, rowset Y is closed.

Lemma 2. A rowset Y ⊆ Rfinal during the row enumeration is not closed iff the cardi-

nality of any one of the rows in the RCTY is equal to the cardinality of an itemset X ⊆
Ffinal mined at a rowset Y.

Proof. According to definition 8, if rowset Y is not closed, then Y 6=r(X). It is necessary

to prove that Y 6=r(X) with the help of RCTY. The RCTY (rid) returns the updated

cardinality value corresponding to the rid in RCTY . According to the steps followed

for obtaining RCTY at rowset Y, the updated cardinality for each rid in RCTY will

never be greater than the cardinality of an itemset X mined at rowset Y. (For any)∀ rid ∈
(Rfinal - Y), if RCTY (rid) is equal to the cardinality of an itemset X mined at the rowset

Y, then an itemset X has occurred in (Rfinal - Y). Hence, Y 6=r(X) proved. Therefore,

rowset Y is not closed.

68

The RCT based closeness checking method is based on lemma 1 and lemma 2. If the

rowset is closed then the itemset occurring in that rowset is also closed. An itemset abd

is obtained from rowset 12 during row enumeration. The rowset 12 is closed because the

cardinality of all the rows in RCT12 as shown in Table 4.2a is less than the cardinality

of abd. Hence abd is also closed. An itemset bd is obtained from rowset 13 during row

enumeration. The rowset 13 is not closed because the cardinality of rid 2 and rid 6 in

RCT13 as shown in table 4.2b is equal to the cardinality of bd.

4.4.3 Proposed Pruning Strategy

The RCT based pruning strategy is proposed to efficiently cut down the row enumerated

search space. The proposed pruning strategy utilizes RCT at every row enumerated

node as it provides the prior information regarding the cardinality of an itemset to be

mined at descendant row enumerated nodes without traversing them, unlike existing

FCCI mining algorithms which does not provide any prior information regarding the

same.

Table 4.3. Rowset Cardinality Table of row enumerated node 123, RCT123

rid card

4 1

5 1

6 2

Given a rowset Y, if the cardinality of any rids' in RCTY is less than the mincard,

then the descendant row enumerated nodes with respect to those rids' can be pruned as

they do not contribute to the mining of colossal itemsets. For example, with minsup

and mincard values set to 2, the RCT123 for a row enumerated node 123 as shown in

Table 4.3 gives the prior information regarding the cardinality of itemsets to be mined at

descendant row enumerated nodes (1234, 1235 and 1236). The cardinality of rid 4 and

rid 5 in RCT123 are less than mincard, which leads to the pruning of row enumerated

nodes 1234, 12345, 123456, 12346, 1235 and 12356 as they do not contribute to the

mining of colossal itemsets. The existing algorithms lack the ability to retrieve the

prior information regarding the cardinality of an itemset to be mined at descendant

row enumerated nodes, while the proposed RCT based pruning strategy overcomes this

drawback.

69

4.4.4 BitSet Frequent Colossal Closed Itemset Mining (BSFCCIM) algorithm

The BSFCCIM algorithm mines the complete set of FCCI from the high dimen-

sional dataset. Algorithm 4.3 highlights the BSFCCIM algorithm, which invokes pro-

cedure 4.3a to mine FCCI. The procedure 4.3a shows that the BSFCCIM procedure

consists of RCT based efficient closeness checking method and efficient pruning strate-

gies. The BSFCCIM algorithm mines the FCCI by performing the depth-first traversal

of bottom-up row enumerated tree. The preprocessed bitTable, minsup, and mincard

are provided as input to the BSFCCIM algorithm. The FCCI, set of frequent colossal

closed itemsets is initialized to null. R′
final is the set of rows to be enumerated. The

rcomb is the initial row enumerated node considered during the depth-first traversal

of bottom-up row enumerated tree. The BSFCCIM procedure is invoked to mine the

frequent colossal closed itemsets from preprocessed bitTable.

• Pruning Strategy 1: If the row enumerated node rcomb or its descendant row

enumerated nodes does not reach till minsup then, the rcomb and its descendants

if existing, is pruned to cut down the row enumerated search space. For example,

Algorithm 4.3. BSFCCIM algorithm
Input: preprocessed bitTable, minsup, mincard.
Output: Complete set of Frequent Colossal Closed Itemsets,FCCI

Initialisation: FCCI= ∅
R′

final = set of rows to be enumerated
rcomb = initial node in row enumeration
All bit's in bitset result are initialized to 1

1: BSFCCIM(rcomb,bitset result,R′
final,FCCI)

Procedure 4.3a. BSFCCIM(rcomb,bitset result,R′
final,FCCI)

1: Pruning 1: if node rcomb or its descendants does not reach till minsup
2: return
3: calculate bitset result at the node rcomb
4: Pruning 2: ∀ rid ∈ R′

final, if RCTrcomb(rid)<mincard
5: delete rid from R′

final
6: Optimization: if |rcomb| <minsup
7: discard closeness checking
8: else
9: if Closeness Checking(itemset,rcomb) == True

10: Add itemset to FCCI
11: for each row combination(rcomb) in R′

final
12: BSFCCIM(rcomb,bitset result,R′

final,FCCI)

70

the row enumerated node 6 shown in Figure 4.2 will be pruned during the mining

process if the minsup value is set to 2, as it will not reach to minsup level. The

row enumerated nodes 46, 5, 56, 6 shown in Figure 4.2 are pruned during the

mining process if the minsup value is set to 3.

• The bitset result is calculated at row enumerated node rcomb. For example, the

bitset result at row enumerated node 12 shown in Figure 4.2 is 11100000 (abd).

• Pruning Strategy 2: Pruning strategy 2 in BSFCCIM algorithm highlight the

proposed RCT based pruning strategy. The RCT based pruning strategy provides

an added computational boost to the proposed BSFCCIM algorithm as it provides

the prior information regarding the cardinality of the itemsets to be mined at de-

scendant row enumerated nodes, whereas the existing FCCI mining algorithms

does not provide the prior information regarding the same.

• Optimization: If the number of rids' in rcomb is less than minsup then the close-

ness checking of the rowset rcomb is not required. The optimization in BSFCCIM

helps to skip closeness checking for (minsup-1) number of levels. For example,

the closeness checking of all the 1-rowsets and 2-rowsets is not required when

the minsup value is set to 3.

• Closeness Checking: The procedure 4.3b and step 9 in procedure 4.3a highlight

the proposed RCT based closeness checking method of a rowset. The proposed

RCT based closeness checking method is based on lemma 1 and lemma 2. If the

rowset satisfies the closeness checking then the itemset mined from that rowset is

added to FCCI. The algorithm continues with depth-first traversal of bottom-up

row enumerated tree.

Procedure 4.3b. Closeness Checking(itemset,rcomb)
1: Let Rfinal be set of rows in preprocessed table
2: (for any)∀ rid ∈ (Rfinal - rcomb), if RCTrcomb(rid)==card(itemset)
3: flag closed = false
4: break
5: if flag closed == false
6: return False
7: else
8: return True

71

4.4.5 Complexity Analysis

For the high dimensional dataset, let Rfinal be the number of rows and Ffinal be the

number of features after applying the proposed preprocessing technique. The space

complexity of the bitTable is O(RfinalFfinal). The rowset closeness checking method

and pruning strategy of the proposed BSFCCIM algorithm will take advantage of the

RCT at the respective row enumerated node. During the row enumeration approach,

the RCT at any particular row enumerated node Y will be in the memory until the

completion of rowset closeness checking method and pruning strategy. Hence there

will be only one RCT in the memory during the row enumeration approach and requires

O(Rfinal−|Y|) to be in the memory. The space complexity during the row enumeration

approach is O(RfinalFfinal + (Rfinal − |Y|)).

The proposed BSFCCIM algorithm with row enumeration approach traverse all the

row enumerated nodes in the worst case. The total number of row enumerated nodes that

need to be traversed in the worst case is u, u=
∑Rfinal

l=1
RfinalCl. The time required for the

RCT based rowset closeness checking method and pruning strategy is O(Rfinal − |Y|).
The time complexity is O(u(Rfinal − |Y|)) during the row enumeration approach. Let

the total number of row enumerated nodes that need to be traversed in average case be,

c, such that c=
∑k

l=1
kCl, where k is the level in the bottom-up row enumerated tree up

to which all the mined itemsets are colossal; all the nodes that are present in the levels

higher than k will not be traversed as these levels do not contribute for the mining of

colossal itemsets; k << Rfinal and c << u. The time complexity is O(c(Rfinal − |Y|))
during the row enumeration approach in the average case.

4.5 Results and Discussion

This section emphasizes on the better accuracy achieved by the proposed frequent colos-

sal itemset mining algorithm compared to the existing algorithm in terms of a number

of frequent colossal itemsets mined from the high dimensional dataset. This section

also highlights the efficiency of the proposed frequent colossal closed itemset mining

algorithm and BSFCCIM algorithm. The experiments were conducted on a computer

with a specification of 3.4GHz core i7-3770 CPU, 8GB RAM, and 1TB hard disk.

72

4.5.1 Results of Frequent Colossal Itemset Mining from the High Dimensional Dataset

The proposed frequent colossal itemset mining algorithm has been applied on lung can-

cer test and Acute Lymphoblastic Leukemia-Acute Myeloid Leukemia (ALL-AML)

datasets. The details of the high dimensional datasets have been explained in section

3.3 of chapter 3. The proposed frequent colossal itemset mining algorithm has been

compared with existing BVBUC algorithm. Pattern Fusion algorithm is based on fea-

ture enumeration approach, and it is best suited to mine the frequent colossal itemsets

from transactional datasets. Feature enumeration based Pattern Fusion algorithm face

an uphill task in mining frequent colossal itemsets from the high dimensional dataset.

The BVBUC algorithm is designed to mine the frequent colossal itemsets from the

high dimensional dataset. Hence it is chosen as a representative for the performance

evaluation. The BVBUC algorithm mine the itemsets from the nodes belonging to the

minimum support threshold level of a row enumerated tree and prune their descendant

row enumerate nodes. The BVBUC algorithm will not be able to mine complete set of

frequent colossal itemsets from the high dimensional dataset. The proposed frequent

colossal itemset mining algorithm and BVBUC algorithm has been implemented in

C++. Equation 4.1 shows the percentage of frequent colossal itemsets mined by the

BVBUC algorithm. Equation 4.2 shows the percentage of frequent colossal itemsets

mined by the proposed algorithm. In both the equations FP-growth (Han et al. (2000))

is used as a base method to find the number of frequent colossal itemsets.

% of frequent colossal itemsets mined by BV BUC = (
EBV BUC

TFP

)× 100 (4.1)

% of frequent colossal itemsets mined by Proposed = (
PProposed

TFP

)× 100 (4.2)

where:

TFP = number of frequent colossal itemsets mined by FP-growth for given

minsup and mincard

EBV BUC = number of frequent colossal itemsets mined by BVBUC for given

minsup and mincard

PProposed = number of frequent colossal itemsets mined by proposed algorithm for

given minsup and mincard

73

Figure 4.4 and Figure 4.5 shows the accuracy of proposed frequent colossal item-

set mining algorithm and BVBUC algorithm. Figure 4.4a and Figure 4.4b shows the

accuracy in terms of a number of frequent colossal itemsets mined from lung cancer

test dataset when minsup value is set to 5 and 10 respectively. Figure 4.5a and Figure

4.5b shows the accuracy in terms of a number of frequent colossal itemsets mined from

ALL-AML dataset when minsup value is set to 5 and 10 respectively. The x-axis in the

Figure 4.4 and Figure 4.5 indicates the different values of mincard. The y-axis in the the

Figure 4.4 and Figure 4.5 indicates the percentage of frequent colossal itemsets mined

by the respective algorithm.

The proposed algorithm achieves better accuracy than BVBUC algorithm in terms

of mining number of frequent colossal itemsets. The proposed algorithm achieved an

accuracy of 67% and 68% for the lung cancer test dataset, as shown in Figure 4.4a,

when the (minsup, mincard) values are set to (5, 500) and (5, 1000) respectively. The

proposed algorithm outperforms the BVBUC algorithm by 30% and 29% for the lung

500 1000 1500 2000

Cardinality

0

20

40

60

80

100

%
 o

f
C

o
lo

s
s
a

l
It
e

m
s
e

ts
 M

in
e

d

Proposed BVBUC

(a) minsup=5

500 1000 1500 2000

Cardinality

0

20

40

60

80

100

%
 o

f
C

o
lo

s
s
a

l
It
e

m
s
e

ts
 M

in
e

d

Proposed BVBUC

(b) minsup=10

Figure 4.4. Accuracy of Proposed and BVBUC algorithm for Lung Cancer Test Dataset When the minsup
is set to 5 and 10

500 1000 1500 2000

Cardinality

0

20

40

60

80

100

%
 o

f
C

o
lo

s
s
a

l
It
e

m
s
e

ts
 M

in
e

d

Proposed BVBUC

(a) minsup=5

500 1000 1500 2000

Cardinality

0

20

40

60

80

100

%
 o

f
C

o
lo

s
s
a

l
It
e

m
s
e

ts
 M

in
e

d

Proposed BVBUC

(b) minsup=10

Figure 4.5. Accuracy of Proposed and BVBUC algorithm for ALL-AML Dataset When the minsup is set
to 5 and 10

74

cancer test dataset, when the (minsup, mincard) values are set to (5, 500) and (5, 1000)

respectively. Similar results have been observed for different values of mincard. The

proposed algorithm achieved an accuracy of 69% and 70% for the lung cancer test

dataset, as shown in Figure 4.4b, when the (minsup, mincard) values are set to (10,

500) and (10, 1000) respectively. The proposed algorithm outperforms the BVBUC

algorithm by 20% and 19% for the lung cancer test dataset, when the (minsup, min-

card) values are set to (10, 500) and (10, 1000) respectively. Similar results have been

observed for different values of mincard.

The proposed algorithm achieved an accuracy of 66% and 67% for the ALL-AML

dataset as shown in Figure 4.5a, when the (minsup, mincard) values are set to (5, 500)

and (5, 1000) respectively. The proposed algorithm outperforms the BVBUC algorithm

by 28% and 28% for the ALL-AML dataset, when the (minsup, mincard) values are set

to (5, 500) and (5, 1000) respectively. Similar results have been observed for different

values of mincard. The proposed algorithm achieved an accuracy of 68% and 70% for

the ALL-AML dataset as shown in Figure 4.5b, when the (minsup, mincard) values

are set to (10, 500) and (10, 1000) respectively. The proposed algorithm outperforms

the BVBUC algorithm by 20% and 21% for the ALL-AML dataset, when the (min-

sup, mincard) values are set to (10, 500) and (10, 1000) respectively. Similar results

have been observed for different values of mincard. The proposed frequent colossal

itemset mining algorithm achieves better accuracy as it mines the itemsets from the

nodes belonging to the minsup level of row enumerated tree and from its descendant

row enumerated nodes which contribute to the mining of frequent colossal itemsets.

4.5.2 Results of Frequent Colossal Closed Itemset Mining using Prune Table

The proposed frequent colossal closed itemset mining algorithm has been applied on

Diffuse Large B-Cell Lymphoma (DLBCL) and lung cancer test datasets. The details

of the high dimensional datasets have been explained in section 3.3 of chapter 3. The

proposed frequent colossal closed itemset mining algorithm has been compared with

the DisClose algorithm. The DisClose algorithm outperforms the other existing FCCI

mining algorithms. Hence it is chosen as representative for the experimental evaluation.

The Pattern Fusion and BVBUC algorithm fail to mine the complete set of FCCI from

the high dimensional dataset. Hence the Pattern Fusion and BVBUC algorithm cannot

be considered for the experimental runtime evaluation. The proposed frequent colossal

closed itemset mining algorithm and DisClose algorithm have been implemented in

C++.

75

1000 1500 2000 2500 3000

mincard

0

100

200

300

400

500
T
im

e
 (

s
)

Proposed DisClose

(a) minsup=5

1000 1500 2000 2500 3000

mincard

0

100

200

300

400

500

T
im

e
 (

s
)

Proposed DisClose

(b) minsup=10

1000 1500 2000 2500 3000

mincard

0

100

200

300

400

500

T
im

e
 (

s
)

Proposed DisClose

(c) minsup=15

1000 1500 2000 2500 3000

mincard

0

100

200

300

400

500

T
im

e
 (

s
)

Proposed DisClose

(d) minsup=20

Figure 4.6. Runtime of Proposed Frequent Colossal Closed Itemset Mining Algorithm and DisClose
Algorithm for DLBCL Dataset

Figure 4.6 and Figure 4.7 shows the runtime of the proposed frequent colossal

closed itemset mining algorithm and DisClose algorithm at different minsup and dif-

ferent mincard for DLBCL and lung cancer test dataset, respectively. The x-axis in

Figure 4.6 and Figure 4.7 indicates the different values of mincard. The y-axis in Fig-

ure 4.6 and Figure 4.7 indicates the runtime. It has been observed from the experimental

results that the runtime of proposed frequent colossal closed itemset mining algorithm

reduces as the minsup and mincard increases. The experimental results as shown in

Figure 4.6 and Figure 4.7 indicate that the proposed frequent colossal closed itemset

mining algorithm is not obligatory to gauge the final result when the number of signifi-

cant rows and significant features reach zero after applying the proposed EIP technique

for a given dataset, minsup and mincard.

The experimental results highlight that the proposed frequent colossal closed item-

set mining algorithm outperforms Disclose algorithm in terms of runtime. The proposed

frequent colossal closed itemset mining algorithm outperforms the DisClose algorithm

by (17, 25, 41, 58) seconds for the DLBCL dataset, as shown in Figure 4.6, when the

(minsup, mincard) values are set to (5, 1000), (10, 1000), (15, 1000) and (20, 1000)

respectively. Similar results have been observed for different values of (minsup, min-

card). The proposed frequent colossal closed itemset mining algorithm outperforms

76

1000 2000 3000 4000 5000

mincard

0

50

100

150

200

250

300

T
im

e
 (

s
)

Proposed DisClose

(a) minsup=5

1000 2000 3000 4000 5000

mincard

0

50

100

150

200

250

300

T
im

e
 (

s
)

Proposed DisClose

(b) minsup=10

1000 2000 3000 4000 5000

mincard

0

50

100

150

200

250

300

T
im

e
 (

s
)

Proposed DisClose

(c) minsup=15

1000 2000 3000 4000 5000

mincard

0

50

100

150

200

250

T
im

e
 (

s
)

Proposed DisClose

(d) minsup=20

Figure 4.7. Runtime of Proposed Frequent Colossal Closed Itemset Mining Algorithm and DisClose
Algorithm for Lung Cancer Test Dataset

the DisClose algorithm by (14, 17, 27, 25) seconds for the lung cancer test dataset,

as shown in Figure 4.7, when the (minsup, mincard) values are set to (5, 1000), (10,

1000), (15, 1000) and (20, 1000) respectively. Similar results have been observed for

different values of (minsup, mincard). The PT based pruning strategy enriched in pro-

posed frequent colossal closed itemsets mining algorithm is efficient in cutting down

the row enumerated search space. Figure 4.6 and Figure 4.7 highlights that the runtime

decreases as the minsup and mincard increases.

4.5.3 Results of BitSet Frequent Colossal Closed Itemset Mining (BSFCCIM) algorithm

The proposed BSFCCIM algorithm has been applied on Mixed Lineage Leukemia

(MLL), Central Nervous System embryonal tumor and Diffuse Large B-Cell Lym-

phoma (DLBCL) including Follicular Lymphoma datasets. The details of the high

dimensional datasets have been explained in section 3.3 of chapter 3. The proposed

BSFCCIM algorithm has been compared with the DisClose algorithm. The DisClose

algorithm outperforms the other existing FCCI mining algorithms. Hence it is chosen as

representative for the experimental evaluation. The Pattern Fusion and BVBUC algo-

rithm fail to mine the complete set of FCCI from the high dimensional dataset. Hence

the Pattern Fusion and BVBUC algorithm cannot be considered for the experimental

77

runtime evaluation. The proposed BSFCCIM algorithm and DisClose algorithm have

been implemented in C++.

The Figure 4.8a, Figure 4.8b and Figure 4.8c highlights the minsup and mincard

at which the number of significant rows has been zero after applying proposed EIP

technique and preprocessing technique of DisClose algorithm for MLL, central ner-

vous system embryonal tumor and DLBCL (including Follicular Lymphoma) datasets

respectively. The x-axis in the Figure 4.8 indicates the different values of minsup. The

y-axis in the Figure 4.8 indicate the different values of mincard. The Figure 4.8a, Figure

4.8b and Figure 4.8c also shows that, after preprocessing the number of significant rows

reach zero for lesser mincard as the minsup increases.

After applying the proposed EIP technique, the number of significant rows and sig-

nificant features in the MLL dataset is zero when the minsup value reach 5, and mincard

value reach 5000, as shown in Figure 4.8a. This indicates that BSFCCIM algorithm is

5 10 15 20 25 30

minsup

2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000

m
in
c
a
rd

Proposed DisClose

(a) Different minsup and mincard at which number of signifi-
cant rows is zero after applying the proposed EIP technique and
preprocessing technique of DisClose algorithm for MLL dataset

5 10 15 20 25 30

minsup

1000

1500

2000

2500

3000

3500

4000

4500

m
in
c
a
rd

Proposed DisClose

(b) Different minsup and mincard at which number of significant
rows is zero after applying the proposed EIP technique and pre-
processing technique of DisClose algorithm for Central Nervous
System embryonal tumor Dataset

5 10 15 20 25 30

minsup

1500

2000

2500

3000

3500

4000

4500

5000

m
in
c
a
rd

Proposed DisClose

(c) Different minsup and mincard at which number of significant
rows is zero after applying the proposed EIP technique and pre-
processing technique of DisClose algorithm for DLBCL (Includ-
ing Follicular Lymphoma) Dataset

Figure 4.8. Different minsup and mincard at which number of significant rows is zero after applying the
proposed EIP technique and preprocessing technique of DisClose algorithm for different datasets

78

not obligatory to gauge the final result for MLL dataset when the minsup value reach 5,

and mincard value reach 5000, whereas DisClose algorithm has to enumerate through

huge row space to gauge the final result at the same minsup and mincard. After apply-

ing the proposed EIP technique, the number of significant rows and significant features

in the Central Nervous System embryonal tumor dataset is zero when the minsup value

reach 5, and mincard value reach 3000, as shown in Figure 4.8b. This indicates that

proposed BSFCCIM algorithm is not obligatory to gauge the final result for Central

Nervous System embryonal tumor dataset when the minsup value reach 5, and mincard

value reach 3000. But, the DisClose algorithm is not obligatory to gauge the final re-

sult for Central Nervous System embryonal tumor dataset when the minsup value reach

5, and mincard value reach 4000. Similarly, the proposed BSFCCIM algorithm is not

obligatory to gauge the final result for DLBCL (including Follicular Lymphoma) dataset

when the minsup value reach 5, and mincard value reach 3000, as shown in Figure 4.8c.

Figure 4.9, Figure 4.10 and Figure 4.11 shows the runtime of the proposed BS-

FCCIM algorithm and DisClose algorithm at different minsup and different mincard

for MLL, central nervous system embryonal tumor and DLBCL (including Follicular

Lymphoma) datasets respectively. The x-axis in the Figure 4.9, Figure 4.10 and Figure

500 1500 2500 3500 4500 5500

mincard

0

100

200

300

400

500

600

700

T
im

e
 (

s
)

BSFCCIM DisClose

(a) minsup=5

500 1500 2500 3500 4500 5500

mincard

0

100

200

300

400

500

600

700

T
im

e
 (

s
)

BSFCCIM DisClose

(b) minsup=10

500 1500 2500 3500 4500 5500

mincard

0

200

400

600

T
im

e
 (

s
)

BSFCCIM DisClose

(c) minsup=15

500 1500 2500 3500 4500 5500

mincard

0

200

400

600

T
im

e
 (

s
)

BSFCCIM DisClose

(d) minsup=20

Figure 4.9. Runtime of BSFCCIM Algorithm and DisClose Algorithm for MLL Dataset

79

500 1500 2500 3500

mincard

0

100

200

300

400

500

600
T
im

e
 (

s
)

BSFCCIM DisClose

(a) minsup=5

500 1500 2500 3500

mincard

0

100

200

300

400

500

600

T
im

e
 (

s
)

BSFCCIM DisClose

(b) minsup=10

500 1500 2500 3500

mincard

0

100

200

300

400

500

600

T
im

e
 (

s
)

BSFCCIM DisClose

(c) minsup=15

500 1500 2500 3500

mincard

0

100

200

300

400

500

600

T
im

e
 (

s
)

BSFCCIM DisClose

(d) minsup=20

Figure 4.10. Runtime of BSFCCIM Algorithm and DisClose Algorithm for Central Nervous System
embryonal tumor Dataset

500 1500 2500 3500

mincard

0

200

400

600

T
im

e
 (

s
)

BSFCCIM DisClose

(a) minsup=5

500 1500 2500 3500

mincard

0

200

400

600

T
im

e
 (

s
)

BSFCCIM DisClose

(b) minsup=10

500 1500 2500 3500

mincard

0

200

400

600

T
im

e
 (

s
)

BSFCCIM DisClose

(c) minsup=15

500 1500 2500 3500

mincard

0

200

400

600

T
im

e
 (

s
)

BSFCCIM DisClose

(d) minsup=20

Figure 4.11. Runtime of BSFCCIM Algorithm and DisClose Algorithm for DLBCL (Including Follicular
Lymphoma) Dataset

80

4.11 indicates different values of mincard. The y-axis in the Figure 4.9, Figure 4.10

and Figure 4.11 indicates the runtime. It has been observed from the experimental re-

sults that the runtime of the proposed BSFCCIM algorithm reduces as the mincard and

minsup increases. It has been observed from the experimental results that the proposed

BSFCCIM algorithm outperforms Disclose algorithm in terms of runtime for all the

experimental high dimensional datasets.

The proposed BSFCCIM algorithm outperforms the DisClose algorithm by (197,

213, 179, 208) seconds for the MLL dataset, as shown in Figure 4.9, when the (minsup,

mincard) values are set to (5, 500), (10, 500), (15, 500) and (20, 500) respectively. Sim-

ilar results have been observed for different values of (minsup, mincard). The proposed

BSFCCIM algorithm outperforms the DisClose algorithm by (184, 209, 212, 143) sec-

onds for the central nervous system embryonal tumor dataset, as shown in Figure 4.10,

when the (minsup, mincard) values are set to (5, 500), (10, 500), (15, 500) and (20,

500) respectively. Similar results have been observed for other experimental high di-

mensional datasets for different values of (minsup, mincard). The proposed RCT based

closeness checking method and pruning strategy enclosed in the proposed BSFCCIM

algorithm helps it to efficiently mine the FCCI from the high dimensional dataset com-

pared to the DisClose algorithm. The proposed RCT based closeness checking method

helps to efficiently check the closeness of the rowset and RCT based pruning strategy

helps to efficiently prune the row enumerated search space.

4.6 Summary

In this chapter, frequent colossal itemset mining algorithm has been proposed to achieve

better accuracy than existing algorithms in terms of mining number of frequent colos-

sal itemsets from the high dimensional dataset. The proposed frequent colossal item-

set mining algorithm outperforms the existing algorithms by achieving better accuracy

in mining a greater number of frequent colossal itemsets from the high dimensional

dataset. The proposed algorithm outperforms the BVBUC algorithm by 30% and 29%

for the lung cancer test dataset, when the (minsup, mincard) values are set to (5, 500)

and (5, 1000) respectively.

The BitSet Frequent Colossal Closed Itemset Mining (BSFCCIM) algorithm en-

closed with RCT based closeness checking method and pruning strategy has been pro-

posed to mine the FCCI from the high dimensional dataset. The experiments have

been conducted on various high dimensional datasets. It is observed from the experi-

81

ment results that the proposed BSFCCIM algorithm outperforms the existing DisClose

algorithm in terms of runtime. The proposed BSFCCIM algorithm outperforms the

DisClose algorithm by (197, 213, 179, 208) seconds for the MLL dataset, when the

(minsup, mincard) values are set to (5, 500), (10, 500), (15, 500) and (20, 500) re-

spectively. Similar results have been observed for other experimental high dimensional

datasets.

In the next chapter, the dynamic switching frequent colossal closed itemset mining

algorithm has been discussed.

82

Chapter 5

Dynamic Switching Algorithm for Mining Frequent

Colossal Closed Itemsets

The existing algorithms are computationally expensive in mining FCCI from datasets

consisting of a large number of rows and a large number of features, as they are either

pure row or feature enumeration based algorithms. The existing frequent colossal closed

itemset mining algorithms are inefficient in handling the changing characteristics of

the data subset during the mining process. To overcome the drawbacks, an efficient

Dynamic Switching Frequent Colossal Closed Itemset Mining (DSFCCIM) algorithm

has been proposed. The proposed DSFCCIM algorithm efficiently switches between

bottom-up row enumerated approach and bottom-up feature enumerated approach based

on data characteristics during the mining process.

5.1 Search Strategies

A pure row or feature enumerated approach is inefficient as the characteristics of the

data subset changes from one subset to another. A combination of search strategies is

required to efficiently handle the different characteristics possessed by different data

subsets during the mining process. An enumerated tree can either be a row enumer-

ated tree or a feature enumerated tree. The proposed DSFCCIM algorithm efficiently

switches between bottom-up row enumerated approach and bottom-up feature enumer-

ated approach based on data characteristics during the mining process. The reason for

the selection of a bottom-up search strategy to traverse the row enumerated tree is ex-

plained in section 4.1 of chapter 4. This section presents the motivation for the selection

of a bottom-up search strategy to traverse the feature enumerated tree.

5.1.1 Top-Down Traversal of Feature Enumerated Tree

The feature enumerated tree can be traversed by either bottom-up or top-down search

strategy. The top-down traversing of the feature enumerated space implies that the

search starts from larger itemset and builds smaller itemsets during the process. Figure

5.1 shows the top-down feature enumerated tree for the preprocessed bitTable 3.6, with

each feature enumerated node representing the itemset and the corresponding bitset re-

sult is indicated under the corresponding feature enumerated node. The bitset at each

feature enumerated node helps in determining the support of an itemset and is obtained

by performing bitwise AND operations of bitset that corresponds to the features in the

itemset. For example, the bitset at feature enumerated node abd (11000), as shown in

Figure 5.1 is obtained by performing the bitwise AND operations of bitset that corre-

sponds to the features a (11011), b (11110) and d (11101). The top-down traversal of

the feature enumerated tree is inefficient with bitset approach as the bitset result at a

parent feature enumerated node cannot be utilized to generate bitset result at the child

feature enumerated node. The number of bitwise AND operations required to obtain

the bitset result at the feature enumerated node is (|itemset|- 1). For example, in Figure

5.1, the bitset result at feature enumerated node abdg requires 3 bitwise AND opera-

tions. The top-down approach fails to take advantage of the anti-monotone property

of minimum support threshold. These disadvantages of top-down traversal of feature

enumerated tree make it as an inefficient search strategy for mining FCCI from dataset

Figure 5.1. Top-Down Traversal of Feature Enumerated Tree

84

consisting of a large number of rows and a large number of features.

5.1.2 Bottom-Up Traversal of Feature Enumerated Tree

The bottom-up traversing of the feature enumerated space implies that the search starts

from the smaller itemset and builds larger itemsets during the process. Figure 5.2 shows

the bottom-up feature enumerated tree for the bitTable 3.6, with each feature enumer-

ated node representing the itemset and the corresponding bitset result is indicated under

the corresponding feature enumerated node. The bottom-up approach has a benefit of

utilizing the bitset result of the parent feature enumerated node to obtain the bitset re-

sult at the child feature enumerated node, thus exponentially reducing the number of

bitwise AND operations to be performed. Only one bitwise AND operation is required

to obtain the bitset result at each feature enumerated node as compared to (|itemset|-1)

Figure 5.2. Bottom-Up Traversal of Feature Enumerated Tree

85

in the top-down traversal of feature enumerated tree. For example, in Figure 5.2, the

bitset result at feature enumerated node bdgh requires one bitwise AND operation. The

bitset result of feature enuemrated node bdg and h are utilized to generate the bitset

result of feature enumerated node bdgh.

The anti-monotone property of minimum support threshold is utilized by the bottom-

up search strategy to cut down the feature enumerated search space. It means that, if

an bitset result at a feature enumerated node represented by l-itemset is not frequent,

then the bitset result at a child feature enumerated node represented by (l+1)-itemset is

also not frequent. For example, with minsup value set to 2 and mincard value set to

3, the descendants of feature enumerated node abdg can be pruned as the bitset result

in descendant feature enumerated nodes are not frequent. The top-down approach fails

to utilize the pruning power of minsup. The bottom-up approach will not be able to

efficiently utilize the pruning power of mincard threshold. This disadvantage will not

impede the efficiency of the bitset approach, as huge number of bitwise AND opera-

tions are required in the top-down approach compared to a bottom-up approach. Both

bottom-up and top-down traversal of the feature enumerated tree have advantage and

disadvantage. Depending on the advantages and disadvantages, the proposed algorithm

traverses the feature enumerated tree in a bottom-up strategy using bitset approach. The

DSFCCIM algorithm dynamically switches between the bottom-up row enumerated

tree and bottom-up feature enumerated tree based on the data characteristics during the

mining process.

5.2 Proposed Dynamic Switching Method for Mining Frequent Colossal Closed
Itemsets

The existing frequent colossal closed itemset mining algorithms are inefficient in han-

dling the changing characteristics of the data subset during the mining process. The

closeness checking methods and pruning strategies enclosed by the existing frequent

colossal closed itemset mining algorithms are inefficient. Moreover, these algorithms

are either pure row enumeration or pure feature enumeration based algorithms, which

are inefficient in mining FCCI from datasets consisting of a large number of rows and

a large number of features. Hence there is a need to develop an algorithm with a com-

bination of different enumeration methods to handle the changing characteristics of a

data subset efficiently.

To surmount the drawbacks, an efficient Dynamic Switching Frequent Colossal

86

Closed Itemset Mining (DSFCCIM) algorithm integrating the following proposed tech-

niques has been designed.

• An Effective Improved Preprocessing (EIP) technique. The details and the effec-

tiveness of the proposed EIP technique have been described in Chapter 3.

• An efficient Rowset Cardinality Table (RCT) based closeness checking method to

check the closeness of a rowset during row enumeration method. The RCT based

closeness checking method has been explained in subsection 4.4.2 of chapter 4.

• An efficient RCT based pruning strategy to cut down the row enumerated mining

search space by efficient utilization of the minimum cardinality threshold. The

RCT based pruning strategy has been explained with examples in the subsection

4.4.3 of chapter 4.

• An efficient switching condition that dynamically switches between the bottom-

up row enumeration method and bottom-up feature enumeration method to handle

the changing characteristics of the data subset during the mining process.

• An efficient Itemset Support Table (IST) based closeness checking method was

proposed to check the closeness of an itemset during feature enumeration method.

• An efficient IST based pruning strategy has been proposed to cut down the feature

enumerated mining search space by efficient utilization of the minimum support

threshold. The IST at the feature enumerated node provides prior information re-

garding the support of the itemsets to be mined at descendant feature enumerated

nodes without traversing them, unlike existing FCCI mining algorithms which do

not provide any prior information regarding the same.

The proposed DSFCCIM algorithm dynamically switches between the bottom-up

row enumeration method and bottom-up feature enumeration method to handle the

changing characteristics of a data subset during the mining process. Figure 5.3a shows

an example of dynamic switching from bottom-up row enumerated tree to bottom-up

feature enumerated tree. Figure 5.3b shows an example of dynamic switching from

bottom-up feature enumerated tree to bottom-up row enumerated tree. The Itemset Sup-

port Table (IST), IST based closeness checking method, IST based pruning strategy and

the proposed DSFCCIM algorithm have been explained in the following subsections.

87

(a) Dynamic Switching from bottom-up row enumerated tree to
bottom-up feature enumerated tree

(b) Dynamic Switching from bottom-up feature enumerated tree
to bottom-up row enumerated tree

Figure 5.3. Combination of bottom-up row and feature enumerated tree

5.2.1 Itemset Support Table

The proposed closeness checking method takes advantage of the Itemset Support Table

(IST) in the feature enumerated tree to check the closeness of an itemset. The IST helps

in closeness checking of an itemset without the need to scan through the previously

mined FCCI itemsets. The proposed pruning strategy utilizes the IST to efficiently

cut down the feature enumerated search space. The IST provides prior information

regarding the support of the itemsets to be mined at the descendant feature enumerated

nodes without traversing them. The IST for every feature enumerated node is shown

in Figure 5.4. Each feature enumerated node refers their respective proposed Itemset

Support Table as shown in Figure 5.4 for closeness checking of an itemset and pruning

the descendant feature enumerated nodes which do not contribute for the mining of

frequent itemsets.

Definition 11 (Itemset Support Table). Given a itemset X={fi1, fi2,......, fik} represent-

ing a feature enumerated node in a lexicographical order, the Itemset Support Table

(ISTX) at node X contains the updated support for each gene feature in (Ffinal - X)

depending on the support of the bitset result obtained at feature enumerated node X.

The Itemset Support Table (ISTX) at feature enumerated node X is obtained by the

following steps.

1. Obtain the indices of all the ones appearing in the bitset result obtained at feature

enumerated node X.

2. For each feature in (Ffinal - X), calculate the number of ones from the preprocessed

bitTable appearing at the indices obtained from the step 1.

88

Example 13. Tables 5.1a, 5.1b, 5.1c and 5.1d show the Itemset Support Table at feature

enumerated nodes ab, bd, dg and ah respectively in Figure 5.4.

Table 5.1. Itemset Support Table of feature enumerated nodes ab, bd, dg and ah

(a) ISTab

feature sup

d 2

g 1

h 2

j 2

(b) ISTbd

feature sup

a 2

g 2

h 2

j 1

(c) ISTdg

feature sup

a 2

b 2

h 3

j 1

(d) ISTah

feature sup

b 2

d 2

g 2

j 2

Example 14. Obtaining Itemset Support Table for feature enumerated nodes ab (ISTab)

and dg (ISTdg) in Figure. 5.4.

• Itemset Support Table for feature enumerated node ab, ISTab is shown in Table

5.1a. The indices of all the ones appearing in the bitset result (11010) at feature

enumerated node ab are {1,2,4}.

• For each feature in {d,g,h,j}, the number of ones appearing at the indices {1,2,4}
from the preprocessed bitTable as shown in Table 3.6 are {2,1,2,2} respectively.

• Itemset Support Table for feature enumerated node dg, ISTdg is shown in Table

5.1c, the indices of all the ones appearing in the bitset result (01101) at node

feature enumerated dg are {2,3,5}.

• For each row in {a,b,h,j}, the number of ones appearing at the indices {2,3,5}
from the preprocessed bitTable as shown in Table 3.6 are {2,2,3,1} respectively.

5.2.2 Proposed IST based Closeness Checking

The IST based closeness checking method is proposed to speed up the closeness check-

ing of an itemset during the traversal of a feature enumerated tree. The proposed effi-

cient closeness checking method will not scan through the previously mined FCCI to

check for the existence and closeness of newly mined frequent colossal itemset.

Lemma 3. An itemset X ⊆ Ffinal during the feature enumeration, occurring in Y rows is

closed iff the support of all the features in the ISTX is less than |Y|.

89

Figure 5.4. Bottom-Up Feature Enumerated Tree with Itemset Support Table for respective nodes

Proof. According to definition 8 (equations 1.1, 1.2, 1.3 and 1.4), if X is closed, then

X=f (Y). So it is necessary to prove that X=f (Y) using ISTX . The ISTX(feature) pro-

vides the updated support value corresponding to the feature in ISTX . (For all)∀ feature

∈ (Ffinal - X), if ISTX(feature) < |Y|, then Y does not contain features from (Ffinal - X).

This indicates that Y contains only an itemset X, thus proving X=f (Y). Therefore, X is

closed.

90

Lemma 4. An itemset X ⊆ Ffinal during the feature enumeration, occurring in Y rows is

not closed iff the support of any one of the features in ISTX is equal to |Y|.

Proof. According to definition 8 (equations 1.1, 1.2, 1.3 and 1.4), if X is not closed,

then X 6=f (Y). So it is necessary to prove that X 6=f (Y) using ISTX . The ISTX(feature)

provides the updated support value corresponding to the feature in ISTX . According to

the steps followed for obtaining ISTX , the updated support for each feature in ISTX

will never be greater than |Y|. (For any)∀ feature ∈ (Ffinal - X), if ISTX(feature) is equal

to |Y|, then Y contain features from (Ffinal - X). Hence, X 6=f (Y) is proved. Therefore, X

is not closed.

The IST based closeness checking is based on Lemma 3 and Lemma 4. For Exam-

ple, an itemset ab occurring in 124 during feature enumeration is closed. An itemset

ab is closed because the support of all the features in ISTab shown in Table 5.1a is less

than |124|. An itemset dg occurring in 235 during feature enumeration is not closed.

An itemset dg is not closed because the support of feature h in ISTdg shown in Table

5.1c is equal to |235|.

5.2.3 Proposed IST based Pruning Strategy

The IST based pruning strategy is proposed to efficiently cut down the feature enumer-

ated search space. The proposed pruning strategy utilizes IST at every feature enu-

merated node as it provides prior information regarding the support of an itemset to be

mined at descendant feature enumerated nodes without traversing them, unlike the ex-

isting FCCI mining algorithms which does not provide any prior information regarding

the same.

Table 5.2. Itemset Support Table of feature enumerated abd, ISTabd

feature sup

g 1

h 1

j 1

Given an itemset X, if the support of any features in ISTX is less than the minsup,

then the descendant feature enumerated nodes corresponding to those features can be

pruned as they do not contribute for the mining of frequent itemsets. For example,

with minsup and mincard values set to 2, the ISTabd as shown in Table 5.2 gives prior

91

information regarding the support of itemsets to be mined at descendant feature enu-

merated nodes (abdg, abdh and abdj). The support of feature g, h and j in ISTabd are

less than minsup, which leads to the pruning of feature enumerated nodes abdg, abdgh,

abdghj, abdgj, abdh, abdhj and abdj as they do not contribute for the mining of the

frequent itemsets. The existing FCCI mining algorithms lack the ability to retrieve the

prior information regarding the support of an itemset to be mined at descendant feature

enumerated nodes, while the proposed pruning strategy overcomes this drawback.

5.2.4 Proposed Dynamic Switching Frequent Colossal Closed Itemset Mining (DSFC-
CIM) algorithm

The DSFCCIM algorithm is shown in Algorithm 5.1. Procedure 5.1a and Procedure

5.1b show the RowEnum procedure and FeatureEnum procedure respectively. The pro-

posed DSFCCIM algorithm mines FCCI by performing a depth-first traversal of both

row enumerated tree and feature enumerated tree. The preprocessed bitTable, minsup,

and mincard are provided as an input to the algorithm. The FCCI, set of frequent colos-

sal closed items is initialized to null. R′
final and F ′

final are the set of rows and features to be

enumerated respectively. The rcomb and fcomb are the first row and feature considered

during the depth-first traversal of the row enumeration space and feature enumeration

space respectively. The proposed DSFCCIM algorithm is enclosed with three switching

conditions, which are as follows:

1. The switching condition at the beginning of the proposed DSFCCIM algorithm,

as given in Equation 5.1.

2. The switching condition at row enumerated node during the row enumeration, as

given in Equation 5.2.

3. The switching condition at feature enumerated node during the feature enumera-

tion, as given in Equation 5.3.

The algorithm adopts either RowEnum procedure or FeatureEnum procedure de-

pending on the switching condition. The switching condition in DSFCCIM algorithm

is shown in Equation 5.1. RfinalCl is the number of different row enumerated node combi-

nations of Rfinal distinct rows taken l at a time. FfinalCl is the number of different feature

enumerated node combinations of Ffinal distinct features taken l at a time. The algo-

rithm chooses the RowEnum procedure if the switching condition holds true else it will

92

choose the FeatureEnum procedure.

Rfinal∑
l=1

RfinalCl ≤
Ffinal∑
l=1

FfinalCl (5.1)

Algorithm 5.1. DSFCCIM algorithm
Input: preprocessed bitTable, minsup, mincard.
Output: Set of Frequent Colossal Closed Itemsets,

FCCI
Initialisation: FCCI= ∅

R′
final = set of rows to be enumerated

F ′
final = set of features to be enumerated

rcomb = initial node in row enumeration
fcomb = initial node in feature enumeration
All bits in rbitset result and fbitset result
initialized to 1

1: SwitchingCondition() //check for switch condition
2: if mining FCCI in row enumeration first
3: RowEnum(rcomb,rbitset result,R′

final,FCCI)
4: if mining FCCI in feature enumeration first
5: FeatureEnum(fcomb,fbitset result,F ′

final,FCCI)

Procedure 5.1a. RowEnum(rcomb,rbitset result,R′
final,FCCI)

1: Pruning 1: if node rcomb or its descendants does not reach till minsup
2: return
3: calculate rbitset result at the node rcomb
4: Pruning 2: ∀ rid ∈ R′

final, if RCTrcomb(rid)<mincard
5: delete rid from R′

final
6: Optimization: if |rcomb| <minsup
7: discard closeness checking
8: else
9: if Closeness Checking(rcomb) == True

10: Add itemset mined at rcomb to FCCI
11: SwitchingCondition() //check for switch condition
12: if row enumeration
13: for each row combination(rcomb) in R′

final
14: RowEnum(rcomb,rbitset result,R′

final,FCCI)
15: if switch to feature enumeration
16: F''= itemset (mined at rcomb)
17: for each feature enumeration(fcomb) in F''
18: FeatureEnum(fcomb,fbitset result,F'',FCCI)

93

5.2.4.1 RowEnum Procedure

• Pruning Strategy 1: If the row enuemrated node rcomb or its descendants do

not reach till minsup, then the rcomb and its descendants (if existing) are pruned

to cut down the row enumerated search space. For example, the row enumerated

nodes 46, 5, 56, 6 shown in Figure 4.2 are pruned during the mining process, if

the minsup value is set to 3.

• The rbitset result is calculated at the row enumerated node rcomb. For example,

the rbitset result at row enumerated node 12 shown in Figure 4.2 is 11100000

(abd).

• Pruning Strategy 2: Pruning strategy 2 in RowEnum procedure highlight the

proposed RCT based pruning strategy. The RCT based pruning strategy provides

an added computational boost to the proposed DSFCCIM algorithm as it provides

prior information regarding the cardinality of the itemsets to be mined.

• Optimization: If the number of rids' in rcomb is less than minsup, then the close-

ness checking of the rowset rcomb is not required. For example, the closeness

checking of all the 2-rowsets is not required when the minsup value is set to 3.

The optimization in RowEnum procedure helps to skip closeness checking for

(minsup-1) number of levels.

Switching condition is checked at every row enumerated node. The concept of the

switching condition is to check the number of nodes to be traversed in the subtree at a

row enumerated node. Row enumeration or feature enumeration is selected depending

on a smaller number of nodes to be traversed in the subtree at a node. Let m be the

number of rows to be enumerated at row enumerated node rcomb and n be the number

of features in an itemset occurring at the row enumerated node rcomb, then the switch-

ing condition at the row enumerated node rcomb during row enumeration is shown in

Equation 5.2. mCl is the number of different row enumerated node combinations of

m distinct rows taken l at a time. nCl is the number of different feature enumerated

node combinations of n distinct features taken l at a time. The algorithm switches to the

feature enumeration space if the switching condition holds true, else it continues with a

depth-first traversal of row enumeration space.

n∑
l=1

nCl ≤
m∑
l=1

mCl (5.2)

94

Procedure 5.1b. FeatureEnum(fcomb,fbitset result,F ′
final,FCCI)

1: Pruning 1: if node fcomb or its descendants does not reach till mincard
2: return
3: calculate fbitset result at the node fcomb
4: Pruning 2: ∀ feature ∈ F ′

final, if ISTfcomb(feature)<minsup
5: delete feature from F ′

final
6: Optimization: if |fcomb| <mincard
7: discard closeness checking
8: else
9: if Closeness Checking(itemset) == True

10: Add itemset to FCCI
11: SwitchingCondition() //check for switch condition
12: if feature enumeration
13: for each feature enumeration(fcomb) in F ′

final
14: FeatureEnum(fcomb,fbitset result,F ′

final,FCCI)
15: if switch to row enumeration
16: R''= rowset (obtained at fcomb)
17: for each row combination(rcomb) in R''
18: RowEnum(rcomb,rbitset result,R'',FCCI)

5.2.4.2 FeatureEnum Procedure

• Pruning Strategy 1: If the feature enumerated node fcomb or its descendeants

do not reach till mincard, then the fcomb and its descendants (if existing) are

pruned to cut down the feature enumerated search space. For example, the feature

enumerated nodes gj, h, hj, j as shown in Figure 5.2 are pruned during the mining

process, if the mincard value is set to 3.

• The fbitset result is calculated at the feature enumerated node fcomb. For exam-

ple, the fbitset result at feature enumerated node ab as shown in Figure 5.2 is

11010 (124).

• Pruning Strategy 2: Pruning strategy 2 in FeatureEnum procedure highlight the

proposed IST based pruning strategy. The IST based pruning strategy provides an

added computational boost to the proposed DSFCCIM algorithm as it provides

prior information regarding the support of the itemsets to be mined.

• Optimization: If the number of features in fcomb is less than mincard, then

the closeness checking of the itemset fcomb is not required. For example, the

closeness checking of all the 2-itemsets is not required when the mincard value

is set to 3. The optimization in FeatureEnum procedure helps to skip closeness

checking for (mincard-1) number of levels.

95

Switching condition is checked at every feature enumerated node. The concept of

the switching condition is to check the number of nodes to be traversed in the subtree at

a feature enumerated node. Let n be the number of features to be enumerated at feature

enumerated node fcomb and m be the number of rows in which an itemset fcomb has

occurred, then the switching condition at feature enumerated node fcomb during feature

enumeration is shown in Equation 5.3. mCl is the number of different row enumerated

node combinations of m distinct rows taken l at a time. nCl is the number of different

feature enumerated node combinations of n distinct features taken l at a time. The

algorithm switches to the row enumeration space if the switching condition holds true,

else it continues with depth-first traversal of feature enumeration space.

m∑
l=1

mCl ≤
n∑

l=1

nCl (5.3)

5.2.5 Complexity Analysis

For the dataset with a large number of rows and a large number of features, let Rfinal

be the number of rows and Ffinal be the number of features after applying the proposed

preprocessing technique. The space complexity of the bitTable is O(RfinalFfinal).

The rowset closeness checking method and pruning strategy of the proposed algo-

rithm with the row enumeration approach take advantage of the RCT at the respective

row enumerated node. During the row enumeration approach, the RCT at any par-

ticular row enumerated node Y will be in the memory until the completion of rowset

closeness checking method and pruning strategy. Hence there will be only one RCT

in the memory during the row enumeration approach and requires O(Rfinal − |Y|)
to be in the memory. The space complexity during the row enumeration approach is

O(RfinalFfinal + (Rfinal − |Y|)). The itemset closeness checking method and pruning

strategy of the proposed algorithm with the feature enumeration approach take advan-

tage of the IST at the respective feature enumerated node. During the feature enu-

meration approach, the IST at any particular feature enumerated node X will be in the

memory until the completion of itemset closeness checking method and pruning strat-

egy. Hence there will be only one IST in the memory during the feature enumeration

approach and requires O(Ffinal − |X|) to be in the memory. The space complexity

during the feature enumeration approach is O(RfinalFfinal + (Ffinal − |X|)).

The proposed algorithm with row enumeration approach traverse all the row enu-

96

merated nodes in the worst case. The total number of row enumerated nodes that need

to be traversed in the worst case is u, u=
∑Rfinal

l=1
RfinalCl. The time required for the RCT

based rowset closeness checking method and pruning strategy is O(Rfinal − |Y|). The

time complexity is O(u(Rfinal − |Y|)) during the row enumeration approach. The pro-

posed algorithm with feature enumeration approach traverse all the feature enumerated

nodes in the worst case. The total number of feature enumerated nodes that need to be

traversed in the worst case is v, v=
∑Ffinal

l=1
FfinalCl. The time required for the IST based

itemset closeness checking method and pruning strategy is O(Ffinal − |X|). The time

complexity is O(v(Ffinal − |X|)) during the feature enumeration approach.

Let the total number of row enumerated nodes that need to be traversed in average

case be, c, such that c=
∑k

l=1
kCl, where k is the level in the row enumerated tree up

to which all the mined itemsets are colossal; all the nodes that are present in the levels

higher than k will not be traversed as these levels do not contain any colossal itemsets;

k << Rfinal and c << u. The time complexity is O(c(Rfinal − |Y|)) during the row

enumeration approach in the average case. Let the total number of feature enumerated

nodes that need to be traversed in average case be, d, such that d=
∑s

l=1
sCl , where

s is the level in the feature enumerated tree up to which all the mined itemsets are

frequent; all the nodes that are present in the levels higher than s will not be traversed

as these levels do not contain any frequent itemsets; s << Ffinal and d << v. The

time complexity is O(d(Ffinal − |X|)) during the feature enumeration approach in the

average case.

5.3 Results and Discussions

This section demonstrates the efficiency of the proposed DSFCCIM algorithm. The pro-

posed DSFCCIM algorithm has been applied on ovarian cancer, lung cancer, prostate

cancer, central nervous system embryonal tumor and Diffuse Large B-Cell Lymphoma

(DLBCL) including Follicular Lymphoma datasets. The details of these datasets have

been explained in section 3.3 of chapter 3. The proposed DSFCCIM algorithm has been

compared with the DisClose algorithm. The DisClose algorithm outperforms the other

existing FCCI mining algorithms. Hence it is chosen as representative for the experi-

mental evaluation. The Pattern Fusion and BVBUC algorithm fail to mine the complete

set of FCCI from the high dimensional dataset. Hence the Pattern Fusion and BVBUC

algorithm cannot be considered for the experimental runtime evaluation. The proposed

DSFCCIM algorithm and DisClose algorithm have been implemented in C++. The ex-

periments were carried out on a computer with a specification of 3.4GHz core i7-3770

97

CPU, 8GB RAM, and 1TB hard disk.

Figure 5.5, Figure 5.6, Figure 5.7, Figure 5.8 and Figure 5.9 show the runtime com-

parison of proposed DSFCCIM algorithm with proposed EIP technique and DisClose

algorithm at different values of minsup and mincard for ovarian cancer, lung cancer,

prostate cancer, central nervous system embryonal tumor, and DLBCL (including Fol-

licular Lymphoma) datasets respectively. The x-axis in Figure 5.5, Figure 5.6, Figure

5.7, Figure 5.8 and Figure 5.9 indicates different values of mincard and the y-axis in-

dicates the runtime. Disclose algorithm was not able to record the runtime for ovarian

cancer dataset when the (minsup, mincard) values were (10,1000) and (20,1000), as

shown in Figure 5.5a and Figure 5.5b respectively.

After applying the proposed EIP technique, the number of significant rows and sig-

nificant features in the ovarian cancer dataset is zero when the minsup value reach 20,

and mincard value reach 6000. This indicates that DSFCCIM algorithm is not obliga-

tory to gauge the final result for ovarian cancer dataset when the minsup value reach 20,

and mincard value reach 6000, as shown in Figure 5.5b. However, DisClose algorithm

has to enumerate through huge row space to gauge the final result for ovarian cancer

dataset when the minsup value reach 20, and mincard value reach 6000. Figure 5.6

1000 2000 3000 4000 5000 6000

mincard

0.1

1

10

100

1000

10000

T
im

e
 (

s
)

DSFCCIM DisClose

(a) minsup=10

1000 2000 3000 4000 5000 6000

mincard

1

10

100

1000

10000

T
im

e
 (

s
)

DSFCCIM DisClose

(b) minsup=20

1000 2000 3000 4000 5000 6000

mincard

1

10

100

1000

10000

T
im

e
 (

s
)

DSFCCIM DisClose

(c) minsup=30

1000 2000 3000 4000 5000 6000

mincard

1

10

100

1000

10000

T
im

e
 (

s
)

DSFCCIM DisClose

(d) minsup=40

Figure 5.5. Runtime for Ovarian Cancer Dataset with proposed EIP technique for DSFCCIM algorithm

98

1000 2000 3000 4000 5000

mincard

1

10

100

1000

10000

T
im

e
 (

s
)

DSFCCIM DisClose

(a) minsup=10

1000 2000 3000 4000 5000

mincard

1

10

100

1000

10000

T
im

e
 (

s
)

DSFCCIM DisClose

(b) minsup=20

1000 2000 3000 4000 5000

mincard

1

10

100

1000

T
im

e
 (

s
)

DSFCCIM DisClose

(c) minsup=30

1000 2000 3000 4000 5000

mincard

1

10

100

1000

T
im

e
 (

s
)

DSFCCIM DisClose

(d) minsup=40

Figure 5.6. Runtime for Lung Cancer Dataset with proposed EIP technique for DSFCCIM algorithm

1000 2000 3000 4000 5000

mincard

10

100

1000

T
im

e
 (

s
)

DSFCCIM DisClose

(a) minsup=10

1000 2000 3000 4000 5000

mincard

10

100

1000

T
im

e
 (

s
)

DSFCCIM DisClose

(b) minsup=20

1000 2000 3000 4000 5000

mincard

1

10

100

1000

T
im

e
 (

s
)

DSFCCIM DisClose

(c) minsup=30

1000 2000 3000 4000 5000

mincard

1

10

100

1000

T
im

e
 (

s
)

DSFCCIM DisClose

(d) minsup=40

Figure 5.7. Runtime for Prostate Cancer Dataset with proposed EIP technique for DSFCCIM algorithm

99

500 1500 2500 3500

mincard

0

100

200

300

400

500

600
T
im

e
 (

s
)

DSFCCIM DisClose

(a) minsup=5

500 1500 2500 3500

mincard

0

100

200

300

400

500

600

T
im

e
 (

s
)

DSFCCIM DisClose

(b) minsup=10

500 1500 2500 3500

mincard

0

100

200

300

400

500

600

T
im

e
 (

s
)

DSFCCIM DisClose

(c) minsup=15

500 1500 2500 3500

mincard

0

100

200

300

400

500

600

T
im

e
 (

s
)

DSFCCIM DisClose

(d) minsup=20

Figure 5.8. Runtime for Central Nervous System embryonal tumor Dataset with proposed EIP technique
for DSFCCIM algorithm

500 1500 2500 3500

mincard

0

200

400

600

T
im

e
 (

s
)

DSFCCIM DisClose

(a) minsup=5

500 1500 2500 3500

mincard

0

200

400

600

T
im

e
 (

s
)

DSFCCIM DisClose

(b) minsup=10

500 1500 2500 3500

mincard

0

200

400

600

T
im

e
 (

s
)

DSFCCIM DisClose

(c) minsup=15

500 1500 2500 3500

mincard

0

200

400

600

T
im

e
 (

s
)

DSFCCIM DisClose

(d) minsup=20

Figure 5.9. Runtime for DLBCL (Including Follicular Lymphoma) Dataset with proposed EIP technique
for DSFCCIM algorithm

100

indicates that DSFCCIM algorithm is not obligatory to gauge the final result for lung

cancer dataset when the minsup value reach 20, and mincard value reach 4000. How-

ever, Disclose is not obligatory to gauge the final result for lung cancer dataset when

the minsup value reach 30, and mincard value reach 5000. Similar results have been

observed for other experimental datasets for different values of minsup and mincard.

Figure 5.5, Figure 5.6, Figure 5.7, Figure 5.8, and Figure 5.9 show that DSFCCIM

algorithm outperforms the Disclose algorithm in terms of runtime. The proposed DS-

FCCIM algorithm outperforms the DisClose algorithm by (2516, 2363, 2385, 1610)

seconds for the ovarian cancer dataset, as shown in Figure 5.5, when the (minsup, min-

card) values are set to (10, 2000), (20, 2000), (30, 2000) and (40, 2000) respectively.

Similar results have been observed for different values of (minsup, mincard). The pro-

posed DSFCCIM algorithm outperforms the DisClose algorithm by (291, 262, 251,

240) seconds for the prostate cancer dataset, as shown in Figure 5.7, when the (minsup,

mincard) values are set to (10, 2000), (20, 2000), (30, 2000) and (40, 2000) respec-

tively. Similar results have been observed for other experimental datasets for different

values of (minsup, mincard). The results illustrate that DSFCCIM algorithm is efficient

in handling the changing characteristics of data subset during the mining process. The

results also illustrate the efficiency of proposed RCT and IST based closeness checking

methods, and the efficiency of proposed RCT and IST based pruning strategies.

Figure 5.10, Figure 5.11, Figure 5.12, Figure 5.13, and Figure 5.14 show the run-

time comparison of proposed DSFCCIM algorithm with proposed EIP technique and

DisClose algorithm with proposed EIP technique at different values of minsup and min-

card for ovarian cancer, lung cancer, prostate cancer, central nervous system embryonal

tumor, and DLBCL (including Follicular Lymphoma) datasets respectively. The x-axis

in Figure 5.10, Figure 5.11, Figure 5.12, Figure 5.13, and Figure 5.14 indicates different

values of mincard and the y-axis indicates the runtime. After applying the proposed EIP

technique to the proposed DSFCCIM algorithm and DisClose algorithm, it is evident

that both DSFCCIM algorithm and DisClose algorithm are not obligatory to gauge the

final result for ovarian cancer dataset when the minsup value reach 20, and mincard

value reach 6000, as shown in Figure 5.10. After applying the proposed EIP technique

to the proposed DSFCCIM algorithm and DisClose algorithm, it is evident that both

DSFCCIM algorithm and DisClose algorithm are not obligatory to gauge the final re-

sult for lung cancer dataset when the minsup value reach 20, and mincard value reach

4000, as shown in Figure 5.11. Similar results have been observed for other experimen-

101

1000 2000 3000 4000 5000 6000

mincard

0.1

1

10

100

1000

10000
T
im

e
 (

s
)

DSFCCIM EIP+DisClose

(a) minsup=10

1000 2000 3000 4000 5000 6000

mincard

1

10

100

1000

10000

T
im

e
 (

s
)

DSFCCIM EIP+DisClose

(b) minsup=20

1000 2000 3000 4000 5000 6000

mincard

1

10

100

1000

10000

T
im

e
 (

s
)

DSFCCIM EIP+DisClose

(c) minsup=30

1000 2000 3000 4000 5000 6000

mincard

1

10

100

1000

10000

T
im

e
 (

s
)

DSFCCIM EIP+DisClose

(d) minsup=40

Figure 5.10. Runtime for Ovarian Cancer Dataset with proposed EIP technique for algorithms DSFCCIM
and DisClose

1000 2000 3000 4000 5000

mincard

1

10

100

1000

T
im

e
 (

s
)

DSFCCIM EIP+DisClose

(a) minsup=10

1000 2000 3000 4000 5000

mincard

1

10

100

1000

T
im

e
 (

s
)

DSFCCIM EIP+DisClose

(b) minsup=20

1000 2000 3000 4000 5000

mincard

1

10

100

1000

T
im

e
 (

s
)

DSFCCIM EIP+DisClose

(c) minsup=30

1000 2000 3000 4000 5000

mincard

1

10

100

1000

T
im

e
 (

s
)

DSFCCIM EIP+DisClose

(d) minsup=40

Figure 5.11. Runtime for Lung Cancer Dataset with proposed EIP technique for algorithms DSFCCIM
and DisClose

102

1000 2000 3000 4000 5000

mincard

10

100

1000

T
im

e
 (

s
)

DSFCCIM EIP+DisClose

(a) minsup=10

1000 2000 3000 4000 5000

mincard

10

100

1000

T
im

e
 (

s
)

DSFCCIM EIP+DisClose

(b) minsup=20

1000 2000 3000 4000 5000

mincard

1

10

100

1000

T
im

e
 (

s
)

DSFCCIM EIP+DisClose

(c) minsup=30

1000 2000 3000 4000 5000

mincard

1

10

100

1000

T
im

e
 (

s
)

DSFCCIM EIP+DisClose

(d) minsup=40

Figure 5.12. Runtime for Prostate Cancer Dataset with proposed EIP technique for algorithms DSFCCIM
and DisClose

tal datasets for different values of minsup and mincard.

Figure 5.10, Figure 5.11, Figure 5.12, Figure 5.13, and Figure 5.14 show that DS-

FCCIM algorithm with proposed EIP technique outperforms the Disclose algorithm

with proposed EIP technique in terms of runtime. The proposed DSFCCIM algorithm

with proposed EIP technique outperforms the DisClose algorithm with proposed EIP

technique by (1850, 1688, 1420, 726) seconds for the ovarian cancer dataset, as shown

in Figure 5.10, when the (minsup, mincard) values are set to (10, 2000), (20, 2000),

(30, 2000) and (40, 2000) respectively. Similar results have been observed for different

values of (minsup, mincard). The proposed DSFCCIM algorithm with proposed EIP

technique outperforms the DisClose algorithm with proposed EIP technique by (167,

134, 110, 71) seconds for the prostate cancer dataset, as shown in Figure 5.12, when

the (minsup, mincard) values are set to (10, 2000), (20, 2000), (30, 2000) and (40,

2000) respectively. Similar results have been observed for other experimental datasets

for different values of (minsup, mincard). Figure 5.10, Figure 5.11, Figure 5.12, Figure

5.13, and Figure 5.14 illustrate the efficiency of proposed RCT and IST based close-

ness checking methods, and the efficiency of proposed RCT and IST based pruning

strategies.

103

500 1500 2500 3500

mincard

0

100

200

300

400

500

600
T
im

e
 (

s
)

DSFCCIM EIP+DisClose

(a) minsup=5

500 1500 2500 3500

mincard

0

100

200

300

400

500

600

T
im

e
 (

s
)

DSFCCIM EIP+DisClose

(b) minsup=10

500 1500 2500 3500

mincard

0

100

200

300

400

500

600

T
im

e
 (

s
)

DSFCCIM EIP+DisClose

(c) minsup=15

500 1500 2500 3500

mincard

0

100

200

300

400

500

600

T
im

e
 (

s
)

DSFCCIM EIP+DisClose

(d) minsup=20

Figure 5.13. Runtime for Central Nervous System embryonal tumor Dataset with proposed EIP technique
for algorithms DSFCCIM and DisClose

500 1500 2500 3500

mincard

0

200

400

600

T
im

e
 (

s
)

DSFCCIM EIP+DisClose

(a) minsup=5

500 1500 2500 3500

mincard

0

200

400

600

T
im

e
 (

s
)

DSFCCIM EIP+DisClose

(b) minsup=10

500 1500 2500 3500

mincard

0

200

400

600

T
im

e
 (

s
)

DSFCCIM EIP+DisClose

(c) minsup=15

500 1500 2500 3500

mincard

0

200

400

600

T
im

e
 (

s
)

DSFCCIM EIP+DisClose

(d) minsup=20

Figure 5.14. Runtime for DLBCL (Including Follicular Lymphoma) Dataset with proposed EIP technique
for algorithms DSFCCIM and DisClose

104

The switching condition depends on the number of row enumerated nodes or fea-

ture enumerated nodes to be traversed in the subtree. The switching condition directs

the DSFCCIM algorithm to start mining FCCI from all experimental datasets with the

row enumeration approach, due to the data characteristics of the respective datasets.

The characteristics of the data subset will change from one subset to another during

the mining process. The changed characteristics of the data subset during the mining

process decides the number of row enumerated nodes or feature enumerated nodes to be

traversed in the subtree. It is observed that the DSFCCIM algorithm continues mining

FCCI from all experimental datasets with row enumeration approach and do not switch

to feature enumeration approach. The row enumeration approach is the best approach

to continue mining FCCI from all experimental datasets because the number of row

enumerated nodes to be traversed in the subtree at any point of the mining process is

less than the number of feature enumerated nodes to be traversed.

5.4 Summary

In this chapter, Dynamic Switching Frequent Colossal Closed Itemset Mining (DSFC-

CIM) algorithm has been proposed to mine the FCCI from the dataset consisting of

a large number of rows and a large number of features. The proposed DSFCCIM al-

gorithm dynamically switches between bottom-up row enumerated tree and bottom-up

feature enumerated tree to efficiently handle the changing characteristics of the data

subset during the mining process. The proposed DSFCCIM algorithm is enclosed with

RCT based closeness checking method and pruning strategy; it is also enclosed with

IST based closeness checking method and pruning strategy. The experiments have been

conducted on various datasets. The proposed DSFCCIM algorithm outperforms the

DisClose algorithm by (2516, 2363, 2385, 1610) seconds for the ovarian cancer dataset,

when the (minsup, mincard) values are set to (10, 2000), (20, 2000), (30, 2000) and (40,

2000) respectively. It is observed from the experiment results that the proposed DSFC-

CIM algorithm outperforms the existing DisClose algorithm in terms of runtime for all

experimental datasets.

In the next chapter distributed and parallel mining of FCCI from the high dimen-

sional dataset has been discussed.

105

Chapter 6

Distributed and Parallel Mining of Frequent Colossal

Closed itemsets from the High Dimensional Dataset

The existing frequent colossal closed itemset mining algorithms for the high dimen-

sional dataset are sequential and computationally expensive. Distributed and parallel

computing is a good strategy to overcome the inefficiency of the existing sequential

frequent colossal closed itemset mining algorithms. In this chapter, distributed and

parallel algorithms have been proposed to efficiently mine FCCI from high dimen-

sional datasets. The unbalanced intrinsic nature of the bottom-up row enumerated tree

has been addressed by proposing the Balanced Distributed Parallel Frequent Colossal

Closed Itemset Mining (BDPFCCIM) algorithm.

6.1 Distributed Row Enumerated Frequent Colossal Closed Itemset Mining (DREFC-
CIM) algorithm

The existing algorithms are computationally expensive and sequential in mining Fre-

quent Colossal Closed itemsets (FCCI) from the high dimensional dataset. Distributed

computing is a good strategy to overcome the inefficiency of the existing sequential al-

gorithms. The Distributed Row Enumerated Frequent Colossal Closed Itemset Mining

(DREFCCIM) algorithm has been proposed to overcome the drawbacks of the existing

sequential algorithms. The proposed DREFCCIM algorithm mine the FCCI from the

high dimensional dataset by traversing the bottom-up row enumerated tree due to the

data characteristics of the high dimensional dataset.

The bottom-up row enumerated mining search space is efficiently cut down by the

pruning strategy enclosed in the proposed DREFCCIM algorithm. The pruning strategy

enclosed in the proposed DREFCCIM algorithm utilizes the Prune Table (PT) to effi-

ciently cut down the row enumerated search space. The Prune Table and Prune Table

based pruning strategy are explained in section 4.3 of chapter 4. The FCCI are mined

by traversing the bottom-up row enumerated tree. The job of traversing the branches of

the bottom-up row enumerated tree is distributed among the compute nodes. Figure 6.1

illustrates that the job of traversing the branches of the bottom-up row enumerated tree

is distributed among six compute nodes.

Algorithm 6.1 shows the proposed DREFCCIM algorithm. The proposed DREFC-

CIM algorithm mine the FCCI by performing the depth-first traversal of bottom-up row

Figure 6.1. The job of traversing the branches of the bottom-up row enumerated tree is distributed among
six compute nodes

enumerated tree. The preprocessed bitTable, minimum support threshold, and mini-

mum cardinality threshold are provided as an input to the proposed algorithm. The pro-

posed algorithm provides a set of frequent colossal closed itemsets as an output. The

distributed approach of the proposed DREFCCIM algorithm is achieved by using the

Message Passing Interface (MPI), which is the standardized message passing library.

The proposed algorithm initializes the MPI environment. The MPI communicator

helps in identifying the number of compute nodes. Each compute node has a unique

rank associated with the communicator, numbered from 0 to (n-1). The MPI communi-

108

Algorithm 6.1. DREFCCIM algorithm
Input: preprocessed bitTable, minsup, mincard.
Output: Set of Frequent Colossal Closed Itemsets, SFCCI

1: Initializing MPI environment, MPI Init(&argc, &argv)
2: Number of Compute nodes, MPI Comm size(MPI COMM WORLD,&np)
3: Rank of Compute nodes, MPI Comm rank(MPI COMM WORLD,&nrank)
4: if(nrank==0)
5: Master Node
6: Scheduling of rid(s) among the compute nodes
7: Send rid(s) to the respective compute nodes
8: Receive mined FCCI from Compute Nodes
9: else

10: Compute Node
11: Receive the respective rid(s) to be enumerated (R′

final)
12: rcomb = initial row enumerated node
13: Colossal Closed(rcomb,bitset result,R′

final,SFCCI)
14: Send mined FCCI to Master Node
15: MPI Finalize ()

Procedure 6.1a. Colossal Closed(rcomb,bitset result,R′
final,SFCCI))

1: if node rcomb does not reach till minsup
2: return
3: calculate bitset result at the node rcomb
4: Pruning: ∀ ri ∈ R′

final, if PTrcomb[ri][card]<mincard
5: delete ri from R′

final

6: checking the closeness of an itemsets, if closenesscheck(itemset)==True
7: Add itemset to SFCCI
8: for each row enumerated node(rcomb) in R′

final

9: Colossal Closed(rcomb,bitset result,R′
final,SFCCI)

cator also helps in knowing the identity of the sender and receiver. The scheduling of

the rid(s) (branches of the bottom-up row enumerated tree) among the compute nodes

is done by the master node, as shown in Figure 6.1. The master node sends rid(s) to

the respective compute nodes. The compute node receives the respective rid(s) to be

enumerated from the master node. Each compute node traverse the assigned branches

of the bottom-up row enumerated tree to mine FCCI.

The 'Colossal Closed' procedure as shown in procedure 6.1a is invoked to mine the

FCCI. The step 1 in 'Colossal Closed' procedure indicates that, if the row enumerated

node rcomb does not reach till minsup then, that row enumerated node and its subtree

if exists is pruned to cut down the search space. The step 3 highlights about obtaining

109

the bitset result at the row enuemrated node rcomb. Step 4 indicates the proposed PT

based pruning strategy. R′
final indicates the number of rows to be enumerated at a node

rcomb, and if the cardinality of any of the rows in R′
final occurring in PTrcomb is less than

mincard then those rows are removed from R′
final, as they would not generate colossal

itemsets. The proposed pruning strategy utilizes the Prune Table (PT) as it provides the

prior information regarding the cardinality of the itemsets to be mined at the immediate

child nodes without traversing them. Step 6 highlights the existing closeness checking

of itemset obtained at row enumerated node rcomb. If the itemset satisfies the closeness

checking then the itemset is added to the SFCCI. The algorithm continues with depth-

first traversal of bottom-up row enumerated tree.

6.2 Parallel Row Enumerated Method for Mining Frequent Colossal Closed Item-
sets from the High Dimensional Dataset

The existing preprocessing techniques are sequential and fail to prune the complete set

of insignificant features and insignificant rows. The existing frequent colossal closed

itemsets mining algorithms are sequential and computationally expensive. The pro-

posed work highlights an Effective Improved Parallel Preprocessing (EIPP) technique

to parallelly prune the complete set of insignificant features and insignificant rows from

the high dimensional dataset and an efficient Parallel Frequent Colossal Closed Item-

set Mining (PFCCIM) algorithm. The proposed PFCCIM algorithm is integrated with

RCT based closeness checking method to check the closeness of a rowset and RCT

based pruning strategy to cut down the row enumerated mining search space.

6.2.1 Effective Improved Parallel Preprocessing (EIPP) Technique

The proposed effective improved preprocessing technique parallelly prune the complete

set of insignificant features and insignificant rows from the high dimensional dataset.

The proposed Effective Improved Parallel Preprocessing (EIPP) technique incorporates

the bitset approach. The EIPP technique is the parallel model of the proposed Effective

Improved Preprocessing (EIP) technique, as explained in section 3.1 of chapter 3.

The proposed EIPP technique is divided into two tasks. First, Parallel Minimum

Support Threshold Preprocessing (PMSTP) task to prune the insignificant features par-

allelly. Second, Parallel Minimum Cardinality Threshold Preprocessing (PMCTP) task

to prune the insignificant rows parallelly. Algorithm 6.2 highlights the proposed EIPP

technique. PMSTP task, as shown in Procedure 6.2a and PMCTP task, as shown in

Procedure 6.2b are invoked by the proposed EIPP technique in an iterative manner un-

110

Algorithm 6.2. Effective Improved Parallel Preprocessing Technique
Input: bitTable, minsup, mincard.
Output: preprocessed bitTable

Initialisation : P flag = 1
1: while (P flag==1) do
2: PMSTP task()
3: P flag=0
4: PMCTP task()
5: end while

Procedure 6.2a. PMSTP task()
1: #pragma omp parallel for
2: for (j=0;j<no of features;);j++ do
3: supportj=0
4: #pragma omp parallel for reduction (+:supportj)
5: for (i=0;i<no of rows;i++) do
6: if (bitTable[i][j]==1) then
7: supportj = supportj + 1
8: end if
9: end for

10: if (supportj<minsup) then
11: delete jth feature
12: end if
13: end for

Procedure 6.2b. PMCTP task()
1: #pragma omp parallel for
2: for (i=0;i<no of rows;) do
3: cardinalityi=0
4: #pragma omp parallel for reduction (+:cardinalityj)
5: for (j=0;j<no of features;j++) do
6: if (bitTable[i][j]==1) then
7: cardinalityi = cardinalityi + 1
8: end if
9: end for

10: if (cardinalityi<mincard) then
11: delete ith row
12: P flag=1
13: end if
14: end for

til all the features and rows in the bitTable satisfy the criteria of minsup and mincard,

respectively.

111

6.2.2 Parallel Frequent Colossal Closed Itemset Mining (PFCCIM) algorithm

The existing algorithms for mining frequent colossal closed itemsets from the high

dimensional dataset are sequential and computationally expensive. To surmount the

drawbacks, an efficient Parallel Frequent Colossal Closed Itemset Mining (PFCCIM)

algorithm integrating the following proposed techniques has been designed.

• An efficient Rowset Cardinality Table (RCT) based closeness checking method

was proposed to check the closeness of a rowset. The proposed method checks

the closeness of newly mined frequent colossal itemsets irrespective of the pre-

viously mined FCCI. It is not required to store the complete set of previously

mined FCCI in the main memory as the closeness checking of a rowset indi-

cates the closeness of an itemset mined at that particular rowset. The advantage

of not having a dependency to check the closeness of a rowset by the proposed

RCT based closeness checking method will help to a great extent for designing

the proposed parallel row enumerated algorithm for mining FCCI from the high

dimensional dataset.

• An efficient RCT based pruning strategy was proposed to cut down the mining

search space by efficient utilization of minimum cardinality threshold. The RCT

at the row enumerated node provides prior information regarding the cardinality

of the itemsets to be mined at descendant nodes without traversing them, unlike

existing FCCI mining algorithms, which do not provide any prior information

regarding the same.

The concept of RCT with examples has been discussed in subsection 4.4.1 of chap-

ter 4. The RCT based closeness checking method to check the closeness of a rowset

has been explained in subsection 4.4.2 of chapter 4. The RCT based pruning strategy

to cut down the row enumerated search space has been explained with examples in the

subsection 4.4.3 of chapter 4.

The proposed PFCCIM algorithm mine FCCI from the high dimensional dataset

by utilizing the parallel bottom-up row enumeration approach as the large cardinality

itemsets are present at the initial levels of the bottom-up row enumerated tree. Figure

6.2 shows the parallel bottom-up traversal of the row enumerated tree. Figure 6.2 shows

that the team of threads is forked from the master thread for the parallel bottom-up

112

Figure 6.2. Parallel Bottom-Up Traversal of Row Enumerated Tree

traversal of the row enumerated tree. The row enumerated tree as shown in Figure 6.2

is constructed for the preprocessed bitTable shown in Table 3.5.

The FCCI are mined parallelly from the high dimensional dataset by PFCCIM al-

gorithm. The PFCCIM algorithm is shown in Algorithm 6.3. The Procedure 6.3a high-

lights the PFCCIM procedure consisting of an efficient closeness checking method and

an efficient pruning strategy. The PFCCIM algorithm mines the FCCI by performing

the parallel depth-first traversal of the bottom-up row enumerated tree. The prepro-

cesssed bitTable, minsup, and mincard are provided as input to the PFCCIM algorithm.

The FCCI, set of frequent colossal closed itemsets is initialized to null. R′′
final is the

set of rows to be enumerated. The rcomb is the initial row enumerated node consid-

ered during the parallel depth-first traversal of the bottom-up row enumerated tree. The

PFCCIM algorithm has been implemented using the Open Multi-Processing (OpenMP)

application programming interface. The PFCCIM procedure is parallelly invoked by

the multiple threads, which are forked from the master thread.

113

Algorithm 6.3. PFCCIM algorithm
Input: preprocessed bitTable, minsup, mincard.
Output: Set of Frequent Colossal Closed Itemsets,FCCI

Initialisation: FCCI= ∅
R′′

final = set of rows to be enumerated
rcomb = initial node in row enumeration

1: #pragma omp parallel
2: All bit's in bitset result are initialized to 1
3: #pragma omp for
4: for (i=rcomb; i<=no of rows; i++)
5: PFCCIM(rcomb, bitset result)

Procedure 6.3a. PFCCIM(rcomb, bitset result)
1: Pruning 1: if node rcomb or its descendants does not reach till minsup
2: return
3: calculate bitset result at the node rcomb
4: Pruning 2: ∀ rid ∈ R′′

final, if RCTrcomb(rid)<mincard
5: delete rid from R′′

final
6: Optimization: if |rcomb| <minsup
7: discard closeness checking
8: else
9: if Closeness Checking(itemset,rcomb) == True

10: Add itemset to FCCI
11: for each row combination(r combination) from rcomb
12: PFCCIM(r combination, bitset result)

• Pruning Strategy 1: If the node rcomb or its descendants do not reach till minsup

then, the rcomb and its descendants if existing, are pruned to cut down the search

space. For example, the row enumerated node 6 shown in Figure 6.2 will be

pruned during the mining process if the minsup value is set to 2, as it will not

reach to the minsup level. The row enumerated nodes 46, 5, 56, 6 shown Figure

in 6.2 will be pruned during the mining process if the minsup value is set to 3.

Procedure 6.3b. Closeness Checking(itemset,rcomb)
1: Let Rfinal be set of rows in preprocessed table
2: (for any)∀ rid ∈ (Rfinal - rcomb), if RCTrcomb(rid)==card(itemset)
3: flag closed = false
4: break
5: if flag closed == false
6: return False
7: else
8: return True

114

• The bitset result is calculated at node rcomb. For example, the bitset result at

row enumerated node 12 shown in Figure 6.2 is 11100000 (abd).

• Pruning Strategy 2: Pruning strategy 2 in the PFCCIM algorithm highlights the

proposed RCT based pruning strategy. This strategy provides an added computa-

tional boost to the proposed PFCCIM algorithm as it provides prior information

regarding the cardinality of the itemsets to be mined, whereas the existing FCCI

mining algorithms do not provide prior information regarding the same.

• Optimization: If the number of rids’ in rcomb is less than minsup, then the

closeness checking of the rowset rcomb is not required. For example, the close-

ness checking of all the 2-rowsets is not required when the minsup is set to 3. The

optimization in PFCCIM helps to skip closeness checking for (minsup-1) number

of levels.

• Closeness Checking: The procedure 6.3b and step 9 in procedure 6.3a highlight

the proposed RCT based closeness checking method. The proposed RCT based

closeness checking method is based on lemma 1 and lemma 2 as explained in

subsection 4.4.2 of chapter 4. If the rowset satisfies the closeness checking, then

the itemset mined from that rowset is added to FCCI. The algorithm continues

with depth-first traversal of the bottom-up row enumeration space.

6.3 Distributed and Parallel Mining of Frequent Colossal Closed Itemsets with
Load Balancing

The frequent colossal closed itemsets are mined from the high dimensional dataset by

traversing the bottom-up row enumerated tree due to the data characteristics of the high

dimensional dataset. The intrinsic nature of the row enumerated tree is typically un-

balanced, as the number of nodes in each branch of row enumerated tree vary. It is

important to properly distribute the branches of the row enumerated tree among the

compute nodes to traverse it and mine the FCCI. The load of traversing the branches

of row enumerated tree among the compute nodes should be balanced. The balanced

distributed parallel algorithm has been designed to solve the inefficiency of the exist-

ing works. The Balanced Distributed Parallel Frequent Colossal Closed Itemset Mining

(BDPFCCIM) algorithm has been proposed to mine FCCI from the high dimensional

dataset. The EIPP technique prunes the complete set of insignificant features and in-

significant rows. After applying the EIPP technique, let Ffinal be the set of significant

115

features, Rfinal be the set of significant rows, nfinal be the final number of significant

features and mfinal be the final number of significant rows.

The proposed BDPFCCIM algorithm efficiently distributes the branches of row enu-

merated tree to the compute nodes for traversing and mining FCCI. The branches of the

row enumerated tree assigned to the compute nodes are traversed using the parallel

bottom-up approach. The proposed algorithm is enclosed with an efficient RCT based

rowset closeness checking method. If the closeness checking method indicates that the

rowset is closed, then the itemset mined from that rowset is also closed. The proposed

algorithm is also enclosed with the pruning strategy to efficiently cut down the nodes

of the row enumerated tree, which do not produce FCCI. The pruning strategy utilizes

RCT to get the prior information regarding the cardinality of the itemsets to be mined

at the descendant nodes without traversing them. The concept of RCT with examples

has been discussed in subsection 4.4.1 of chapter 4. The RCT based closeness check-

ing method to check the closeness of a rowset has been explained in subsection 4.4.2

of chapter 4. The RCT based pruning strategy to cut down the row enumerated search

space has been explained with examples in the subsection 4.4.3 of chapter 4.

Figure 6.3. Number of nodes generated in each branch of row enumerated tree when mfinal is 6

Figure 4.2 highlights that the intrinsic nature of the row enumerated tree is unbal-

anced. The number of row enumerated nodes that need to be traversed without pruning

116

Figure 6.4. Number of nodes generated in each branch of the generalized row enumerated tree.

any of the row enumerated mining search space with respect to mincard is shown in

Figure 4.2, and it is clear that the number of nodes in each branch of the row enumer-

ated tree vary. Figure 6.3 shows the number of nodes generated in each branch of row

enumerated tree when mfinal is 6 and Figure 6.4 shows the number of nodes gener-

ated in each branch of the generalized row enumerated tree. It is important to properly

distribute the branches of row enumerated tree among the compute nodes to mine the

FCCI. The load of traversing the branches of row enumerated tree among the compute

nodes should be balanced.

5∑
i=0

5Ci >

4∑
i=0

4Ci +
3∑

i=0

3Ci +
2∑

i=0

2Ci +
1∑

i=0

1Ci +
0∑

i=0

0Ci (6.1)

4∑
i=0

4Ci >
3∑

i=0

3Ci +
2∑

i=0

2Ci +
1∑

i=0

1Ci +
0∑

i=0

0Ci (6.2)

The Equation 6.1 shows that the number of nodes generated from the first branch

(rowset 1) of the row enumerated tree will be more than the collective number of nodes

generated from the second branch (rowset 2) to the last branch (rowset 6) of the row

117

Figure 6.5. The branch distribution of row enumerated tree, when the available number of compute nodes
are 2.

enumerated tree. The equation 6.2 shows that the number of nodes generated from the

second branch (rowset 2) of the row enumerated tree is more than the collective number

of nodes generated from the third branch (rowset 3) to the last branch (rowset 6) of the

row enumerated tree. Let 'C' be the number of compute nodes available. The job of

traversing the first branch (rowset 1) of row enumerated tree will be distributed to '
C

2
'

number of compute nodes. The remaining '
C

2
' number of nodes will be assigned the job

of traversing the remaining branches (second branch (rowset 2) to last branch (rowset

n)) of the row enumerated tree. For example, if number of compute nodes available are

2, then the number of compute nodes assigned for traversing the first branch (rowset 1)

of row enumerated tree will be one, and the number nodes assigned for traversing the

second branch (rowset 2) to last branch (rowset 6) of row enumerated tree will be one.

Figure 6.5 shows the branch distribution of row enumerated tree, when the avail-

118

Figure 6.6. The branch distribution of row enumerated tree, when the available number of compute nodes
are 4.

able number of compute nodes are 2. Figure 6.6 shows the branch distribution of row

enumerated tree, when the available number of compute nodes are 4. The Figure 6.6

highlights that the first branch (rowset 1) of the row enumerated tree is distributed to two

compute nodes and a second branch (rowset 2) to the last branch (rowset 6) of the row

enumerated tree is distributed to two compute nodes. The traversal of the first branch

(rowset 1) of the row enumerated tree should be distributed among the two assigned

compute nodes with load balancing. The number of nodes generated by the first branch

(rowset 12) of the rowset 1 will be more than the collective number of nodes generated

from the second branch (rowset 13) to last branch (rowset 16) of the rowset 1. The load

of traversing the branches should be balanced among the two assigned compute nodes.

To balance the load among the compute nodes, the number of compute nodes assigned

for traversing the first branch (rowset 12) of the rowset 1 will be one and number of

compute nodes assigned for traversing the remaining branches (rowset 13 to rowset 16)

119

of rowset 1 will be one, as shown in Figure 6.6.

The traversal of the second branch (rowset 2) to the last branch (rowset 6) of the

row enumerated tree should be distributed among the two assigned compute nodes with

load balancing. The number of nodes generated from the second branch (rowset 2) of

the row enumerated tree is more than the collective number of nodes generated from

third branch (rowset 3) to the last branch (rowset 6) of the row enumerated tree. The

load of traversing the branches should be balanced among the two assigned compute

nodes. To balance the load among the compute nodes, the number of compute nodes

assigned to traverse the second branch (rowset 2) of the row enumerated tree will be

one and number of compute nodes assigned to traverse the remaining branches (rowset

3 to rowset 6) of the row enumerated tree will be one as shown in Figure 6.6. The

branches of the row enumerated tree assigned to the compute nodes are traversed using

the parallel bottom-up approach as shown in Figure 6.5 and Figure 6.6. The branches

of the row enumerated tree assigned to the compute nodes are traversed parallelly by

the team of threads forked by the master thread.

Algorithm 6.4 shows the proposed Balanced Distributed Parallel Frequent Colos-

sal Closed Itemset Mining (BDPFCCIM) algorithm. The rowset closeness checking

method and an efficient pruning strategy are enclosed in BDPFCCIM procedure, as

shown in Procedure 6.4a. The proposed BDPFCCIM algorithm distributes the branches

of the row enumerated tree between the compute nodes with load balancing and then

traverse the scheduled branches parallelly to mine the FCCI. The input for the proposed

BDPFCCIM algorithm is the preprocessed bitTable, mincard, minsup. The mined FCCI

from the high dimensional dataset is the output of the proposed algorithm. After ap-

plying the proposed EIPP technique, let Ffinal be the final set of significant features,

Rfinal be the final set of significant rows, nfinal be the final number of significant fea-

tures and mfinal be the final number of significant rows. The distributed approach of

the proposed BDPFCCIM algorithm is achieved by using Message Passing Interface

(MPI), the standardized message passing library and parallel approach of the proposed

BDPFCCIM algorithms is achieved by using the Open Multi-Processing (OpenMP)

application programming interface.

The proposed BDPFCCIM algorithm initializes the MPI environment. The MPI

communicator helps in identifying the number of compute nodes. Each node has a

unique rank associated with the communicator, numbered from 0 to (n-1). The MPI

communicator also helps in knowing the identity of the sender and receiver. The

120

Algorithm 6.4. BDPFCCIM algorithm
Input: preprocessed bitTable, mincard, minsup.
Output: FCCI from High Dimensional Dataset

1: Ffinal⇒ final set of significant features
2: Rfinal⇒ final set of significant rows
3: nfinal⇒ final number of significant features
4: mfinal⇒ final number of significant rows
5: Initializing MPI environment,
6: MPI Init(&argc, &argv)
7: Number of Compute nodes,
8: MPI Comm size(MPI COMM WORLD,&np)
9: Rank of Compute nodes,

10: MPI Comm rank(MPI COMM WORLD,&nrank)
11: if(nrank==0)
12: Master Node
13: Scheduling the branch traversal of row enumerated tree among compute nodes

with load balancing. (Scheduling of rid(s) among compute nodes)
14: Send rid(s) to respective compute nodes
15: else
16: Compute Node
17: Receive the respective rid(s) to be enumerated (R')
18: ridcomb = initial row enumerated node
19: All the bits’ of bitset result are set to 1.
20: #pragma omp parallel for
21: for(i=ridcomb; i ≤ no of rows (R'); i++)
22: BDPFCCIM(ridcomb, bitset result)
23: Send mined FCCI to Master Node
24: MPI Finalize ()

Procedure 6.4a. BDPFCCIM(ridcomb, bitset result)
1: R′′

final⇒ set of rows to be enumerated
2: Pruning 1: if node ridcomb or its descendants does not reach till minsup
3: return
4: calculate bitset result at the node ridcomb
5: Pruning 2: ∀ rid ∈ R′′

final, if RCTridcomb(rid)<mincard
6: delete rid from R′′

final
7: Optimization: if |ridcomb| <minsup
8: discard closeness checking
9: else

10: if Closeness Checking(itemset,ridcomb) == True
11: Add itemset to FCCI
12: for each row combination(r combination) from rcomb
13: BDPFCCIM(r combination, bitset result)

121

scheduling of branch traversal of the row enumerated tree between the compute nodes

with load balancing is done by the master node. The master node sends rid(s) to the

respective compute nodes. The compute node receives the respective rid(s) to be enu-

merated from the master node. Let ridcomb be the initial row to be enumerated. The

compute nodes traverse the scheduled branch of the row enumerated tree in parallel

manner by the team of threads, which are forked by the master thread. The proce-

dure 6.4a highlighting the BDPFCCIM procedure is parallelly invoked by the team of

threads. The BDPFCCIM procedure is enclosed with RCT based closeness checking

method to check the closeness of the rowset and RCT based pruning strategy to cut

down the row enumerated mining search space.

6.4 Results and Discussion

This section highlights the efficiency of the proposed distributed and parallel algorithms

in mining frequent colossal closed itemsets from the high dimensional dataset. This

section also highlights the speed-up of the distributed and parallel algorithms. The

statistical significance analysis has also been discussed in this section.

6.4.1 Results of DREFCCIM Algorithm

This subsection emphasizes on the efficiency and speed-up of the proposed DREFCCIM

algorithm. The proposed DREFCCIM algorithm has been applied on Diffuse Large

B-Cell Lymphoma (DLBCL) and lung cancer test datasets. The details of the high

dimensional datasets have been explained in section 3.3 of chapter 3. The proposed

DREFCCIM algorithm has been compared with the DisClose algorithm. The DisClose

algorithm outperforms the other existing FCCI mining algorithms. Hence it is chosen

as representative for the experimental evaluation.

1000 1500 2000 2500 3000

mincard

0

100

200

300

400

500

T
im

e
 (

s
)

DREFCCIM DisClose

(a) minsup=5

1000 1500 2000 2500 3000

mincard

0

100

200

300

400

500

T
im

e
 (

s
)

DREFCCIM DisClose

(b) minsup=15

Figure 6.7. Runtime of DREFCCIM (2 compute nodes) and DisClose for DLBCL Dataset

122

1000 2000 3000 4000 5000

mincard

0
50
100
150
200
250
300

T
im

e
 (

s
)

DREFCCIM DisClose

(a) minsup=5

1000 2000 3000 4000 5000

mincard

0
50
100
150
200
250
300

T
im

e
 (

s
)

DREFCCIM DisClose

(b) minsup=15

Figure 6.8. Runtime of DREFCCIM (2 compute nodes) and DisClose for Lung Cancer Test Dataset

The experiments have been conducted on a cluster consisting of a master node and

compute nodes. The master node and compute nodes have a specification of the Intel

Xeon processor with 8GB RAM. The distributed computing of the proposed DREFC-

CIM algorithm has been achieved by the utilization of the Message Passing Interface

(MPI) library.

Figure 6.7 and Figure 6.8 illustrate the runtime of the proposed DREFCCIM (2

compute nodes) algorithm and DisClose algorithm at different values of minsup and

mincard for DLBCL and lung cancer test dataset, respectively. The x-axis in Figure 6.7

and Figure 6.8 indicates the different values of mincard. The y-axis in Figure 6.7 and

Figure 6.8 illustrates the runtime. It has been observed from the experimental results

that the runtime of the proposed DREFCCIM algorithm reduces as the minsup and

mincard increases. The experimental results, as shown in Figure 6.7 and Figure 6.8,

indicate that the proposed DREFCCIM algorithm is not obligatory to gauge the final

result when the number of significant rows and significant features reach zero after

applying the proposed EIPP technique for a given dataset, minsup, and mincard. Also,

the experimental results highlight that the proposed DREFCCIM algorithm outperforms

the Disclose algorithm in terms of runtime. The PT based pruning strategy enriched in

the proposed DREFCCIM algorithm is efficient in cutting down the row enumerated

search space. The distribution of traversing the branches of the row enumerated tree to

the compute nodes by the proposed DREFCCIM algorithm makes it efficient compared

to the DisClose algorithm in mining FCCI from the high dimensional dataset.

Figure 6.9 and Figure 6.10 show the runtime comparison between DREFCCIM (2

compute nodes), DREFCCIM (4 compute nodes), and DREFCCIM (8 compute nodes)

at different values of minsup and mincard for DLBCL and lung cancer test dataset, re-

spectively. The x-axis in Figure 6.9 and Figure 6.10 indicates the different values of

123

1000 1500 2000 2500 3000

mincard

0
100
200
300
400
500

T
im

e
 (

s
)

DREFCCIM (2) DREFCCIM (4)
DREFCCIM (8)

(a) minsup=5

1000 1500 2000 2500 3000

mincard

0

100

200

300

400

T
im

e
 (

s
)

DREFCCIM (2) DREFCCIM (4)
DREFCCIM (8)

(b) minsup=15

Figure 6.9. Runtime of DREFCCIM (2 compute nodes), DREFCCIM (4 compute nodes) and DREFC-
CIM (8 compute nodes) for DLBCL Dataset

1000 2000 3000 4000 5000

mincard

0

100

200

300

T
im

e
 (

s
)

DREFCCIM (2) DREFCCIM (4)
DREFCCIM (8)

(a) minsup=5

1000 2000 3000 4000 5000

mincard

0

100

200
T
im

e
 (

s
)

DREFCCIM (2) DREFCCIM (4)
DREFCCIM (8)

(b) minsup=15

Figure 6.10. Runtime of DREFCCIM (2 compute nodes), DREFCCIM (4 compute nodes) and DREFC-
CIM (8 compute nodes) for Lung Cancer Test Dataset

mincard. The y-axis in Figure 6.9 and Figure 6.10 indicates the runtime. The DREFC-

CIM algorithm with 8 compute nodes outperforms the DREFCCIM algorithm with 4

and 2 compute nodes in terms of runtime, as shown in Figure 6.9 and Figure 6.10.

The proposed DREFCCIM algorithm with 8 compute nodes outperforms the Dis-

Close algorithm by (73, 94) seconds for the DLBCL dataset, as shown in Figure 6.7

and Figure 6.9, when the (minsup, mincard) values are set to (5, 1000) and (15, 1000)

respectively. Similar results have been observed for different values of (minsup, min-

card). The proposed DREFCCIM algorithm with 8 compute nodes outperforms the

DisClose algorithm by (56, 73) seconds for the lung cancer test dataset, as shown in

Figure 6.8 and Figure 6.10, when the (minsup, mincard) values are set to (5, 1000)

and (15, 1000) respectively. Similar results have been observed for different values of

(minsup, mincard).

Figure 6.11 and Figure 6.12 show the speed-up of the DREFCCIM (4 compute

nodes) and DREFCCIM (8 compute nodes) with respect to the DREFCCIM (2 com-

pute nodes) at different values of minsup and mincard for DLBCL and lung cancer test

124

1000 1500 2000 2500 3000

mincard

1

1.05

1.1

1.15

1.2

1.25

S
p
e
e
d
 U

p

DREFCCIM (4) DREFCCIM (8)

(a) minsup=5

1000 1500 2000 2500 3000

mincard

1.04
1.06
1.08
1.1

1.12
1.14
1.16
1.18

S
p
e
e
d
 U

p

DREFCCIM (4) DREFCCIM (8)

(b) minsup=15

Figure 6.11. Speedup of DREFCCIM (4 and 8 compute nodes) with respect to DREFCCIM (2 compute
nodes) for DLBCL Dataset

1000 2000 3000 4000 5000

mincard

1

1.1

1.2

1.3

1.4

1.5

S
p
e
e
d
 U

p

DREFCCIM (4) DREFCCIM (8)

(a) minsup=5

1000 2000 3000 4000 5000

mincard

1.05

1.1

1.15

1.2

1.25

1.3

1.35

S
p
e
e
d
 U

p

DREFCCIM (4) DREFCCIM (8)

(b) minsup=15

Figure 6.12. Speedup of DREFCCIM (4 and 8 compute nodes) with respect to DREFCCIM (2 compute
nodes) for Lung Cancer Test Dataset

dataset, respectively. The x-axis in Figure 6.11 and Figure 6.12 indicates the different

values of mincard. The y-axis in Figure 6.11 and Figure 6.12 indicates the speed-

up. The proposed DREFCCIM algorithm (8 compute nodes) achieves the speed-up of

(1.103, 1.121) with respect to the DREFCCIM algorithm (2 compute nodes) for DL-

BCL dataset, as shown in Figure 6.11, when the (minsup, mincard) values are set to

(5, 1000) and (15, 1000) respectively. Similar results have been observed for different

values of (minsup, mincard). The proposed DREFCCIM algorithm (8 compute nodes)

achieves the speed-up of (1.142, 1.171) with respect to the DREFCCIM algorithm (2

compute nodes) for lung cancer test dataset, as shown in Figure 6.12, when the (minsup,

mincard) values are set to (5, 1000) and (15, 1000) respectively. Similar results have

been observed for different values of (minsup, mincard).

The proposed DREFCCIM algorithm is not obligatory to gauge the final result for

the DLBCL dataset when the minsup reaches 5 and mincard reaches 3000. This indi-

cates that there is no speed-up factor when the (minsup, mincard) is (5, 3000), as shown

in Figure 6.11a. The proposed DREFCCIM algorithm is not obligatory to gauge the

125

final result for the DLBCL dataset when the minsup reaches 15 and mincard reaches

2000. This indicates that there is no speed-up factor when the (minsup, mincard) is (15,

2000), as shown in Figure 6.11b. Similar observations for the lung cancer test dataset

have been made from Figure 6.12a and Figure 6.12b regarding the speed-up factor. The

FCCI from the high dimensional dataset are mined by traversing the row enumerated

tree, which by nature, as shown in Figure 4.2, exhibits the varying number of nodes in

each branch of the row enumerated tree. This intrinsic nature of the row enumerated

tree will lead to the average speed-up.

6.4.2 Results of PFCCIM Algorithm

This section demonstrates the efficiency and speed-up of the proposed Parallel Frequent

Colossal Closed Itemset Mining (PFCCIM) algorithm. The proposed PFCCIM algo-

rithm has been applied on ovarian cancer, lung cancer, prostate cancer, central nervous

system embryonal tumor and Diffuse Large B-Cell Lymphoma (DLBCL) including Fol-

licular Lymphoma datasets. The details of these datasets have been explained in section

3.3 of chapter 3. The proposed PFCCIM algorithm has been compared with the Dis-

Close algorithm. The DisClose algorithm outperforms the other existing FCCI mining

1000 2000 3000 4000

mincard

100

1000

10000

T
im

e
 (

s
)

PFCCIM DisClose

(a) minsup=10

1000 2000 3000 4000

mincard

10

100

1000

10000

T
im

e
 (

s
)

PFCCIM DisClose

(b) minsup=20

1000 2000 3000 4000

mincard

1

10

100

1000

10000

T
im

e
 (

s
)

PFCCIM DisClose

(c) minsup=30

1000 2000 3000 4000

mincard

1

10

100

1000

10000

T
im

e
 (

s
)

PFCCIM DisClose

(d) minsup=40

Figure 6.13. Runtime of PFCCIM (2 threads) and DisClose for Ovarian Cancer Dataset

126

1000 2000 3000 4000

mincard

10

100

1000

10000

T
im

e
 (

s
)

PFCCIM DisClose

(a) minsup=10

1000 2000 3000 4000

mincard

1

10

100

1000

10000

T
im

e
 (

s
)

PFCCIM DisClose

(b) minsup=20

1000 2000 3000 4000

mincard

1

10

100

1000

T
im

e
 (

s
)

PFCCIM DisClose

(c) minsup=30

1000 2000 3000 4000

mincard

1

10

100

1000

T
im

e
 (

s
)

PFCCIM DisClose

(d) minsup=40

Figure 6.14. Runtime of PFCCIM (2 threads) and DisClose for Lung Cancer Dataset

algorithms. Hence it is chosen as representative for the experimental evaluation. The

parallelism of the proposed PFCCIM algorithm has been achieved by using the Open

Multi-Processing (OpenMP) application programming interface. The experiments were

carried out on a computer with a specification of 3.4GHz core i7-3770 CPU, 8GB RAM,

and 1TB hard disk.

6.4.2.1 Runtime Analysis

Figure 6.13, Figure 6.14, Figure 6.15, Figure 6.16, and Figure 6.17 show the runtime

comparison of the proposed PFCCIM (2 threads) algorithm and the DisClose algorithm

at different values of minsup and mincard for ovarian cancer, lung cancer, prostate can-

cer, central nervous system embryonal tumor, and DLBCL (including Follicular Lym-

phoma) datasets respectively. The x-axis in Figure 6.13 - Figure 6.17 indicates the dif-

ferent values of mincard, and the y-axis indicates the runtime. The Disclose algorithm

was not able to record the runtime for the ovarian cancer dataset when the (minsup,

mincard) was (10,1000) and (20,1000), as shown in Figure 6.13. After applying the

proposed preprocessing technique, the number of significant rows and significant fea-

tures in the ovarian cancer dataset is zero when the minsup reaches 20 and mincard

reaches 6000. This indicates that the proposed PFCCIM algorithm is not obligatory to

gauge the final result for the ovarian cancer dataset when the minsup reaches 20 and

127

1000 2000 3000 4000

mincard

10

100

1000
T
im

e
 (

s
)

PFCCIM DisClose

(a) minsup=10

1000 2000 3000 4000

mincard

10

100

1000

T
im

e
 (

s
)

PFCCIM DisClose

(b) minsup=20

1000 2000 3000 4000

mincard

10

100

1000

T
im

e
 (

s
)

PFCCIM DisClose

(c) minsup=30

1000 2000 3000 4000

mincard

1

10

100

1000

T
im

e
 (

s
)

PFCCIM DisClose

(d) minsup=40

Figure 6.15. Runtime of PFCCIM (2 threads) and DisClose for Prostate Cancer Dataset

500 1500 2500 3500

mincard

0

100

200

300

400

500

600

T
im

e
 (

s
)

PFCCIM DisClose

(a) minsup=5

500 1500 2500 3500

mincard

0

100

200

300

400

500

600

T
im

e
 (

s
)

PFCCIM DisClose

(b) minsup=10

500 1500 2500 3500

mincard

100

200

300

400

T
im

e
 (

s
)

PFCCIM DisClose

(c) minsup=15

500 1500 2500 3500

mincard

50

100

150

200

250

300

T
im

e
 (

s
)

PFCCIM DisClose

(d) minsup=20

Figure 6.16. Runtime of PFCCIM (2 threads) and DisClose for Central Nervous System embryonal tumor
Dataset

128

500 1500 2500 3500

mincard

0

100

200

300

400

500

600

700

T
im

e
 (

s
)

PFCCIM DisClose

(a) minsup=5

500 1500 2500 3500

mincard

0

100

200

300

400

500

600

T
im

e
 (

s
)

PFCCIM DisClose

(b) minsup=10

500 1500 2500 3500

mincard

100

200

300

400

500

T
im

e
 (

s
)

PFCCIM DisClose

(c) minsup=15

500 1500 2500 3500

mincard

100

200

300

400

500

T
im

e
 (

s
)

PFCCIM DisClose

(d) minsup=20

Figure 6.17. Runtime of PFCCIM (2 threads) and DisClose for DLBCL (Including Follicular Lymphoma)
Dataset

mincard reaches 6000, as shown in Figure 6.13b. However, the DisClose algorithm has

to enumerate through a huge row enumerated space to gauge the final result for ovarian

cancer dataset when the minsup value reach 20, and mincard value reach 6000. Figure

6.14 indicates that the proposed PFCCIM algorithm is not obligatory to gauge the fi-

nal result for the lung cancer dataset when the minsup reaches 20 and mincard reaches

4000. Similar observations for the central nervous system embryonal tumor, and DL-

BCL (including the Follicular Lymphoma) datasets have been made from Figure 6.16

and Figure 6.17.

It can be observed from Figure 6.13 - Figure 6.17 that the runtime reduces as the

minsup and mincard increases. The RCT based closeness checking method and pruning

strategy enclosed with proposed PFCCIM algorithm help to efficiently mine the FCCI

from the high dimensional dataset compared to DisClose algorithm. The proposed PFC-

CIM algorithm traverses the branches of the row enumerated tree in a parallel manner

to mine the FCCI. Figure 6.13 - Figure 6.17 show that PFCCIM algorithm outperforms

the Disclose algorithm in terms of runtime. The RCT based closeness checking method,

RCT based pruning strategy and mining the FCCI parallelly helps the proposed PFC-

CIM algorithm in outperforming the DisClose algorithm.

129

Figure 6.18, Figure 6.19, Figure 6.20, Figure 6.21 and Figure 6.22 highlight the

runtime comparison of the proposed PFCCIM algorithm with the number of threads set

to 2, 4, and 8 at different values of minsup and mincard for ovarian cancer, lung can-

cer, prostate cancer, central nervous system embryonal tumor, and DLBCL (including

Follicular Lymphoma) datasets respectively. The x-axis in Figure 6.18 - Figure 6.22

indicates the different values of mincard and the y-axis indicates the runtime. Figure

6.18, Figure 6.19, Figure 6.20, Figure 6.21 and Figure 6.22 highlight that the proposed

PFCCIM algorithm with 4 threads outperform the proposed PFCCIM algorithm with

2 threads in terms of runtime for ovarian cancer, lung cancer, prostate cancer, cen-

tral nervous system embryonal tumor, and DLBCL (including Follicular Lymphoma)

datasets respectively. It can also be observed that the proposed PFCCIM algorithm with

8 threads outperforms the proposed PFCCIM algorithm with 4 threads and 2 threads.

The proposed PFCCIM algorithm with 8 threads outperforms the DisClose algorithm

by (2646, 2450, 2597, 1794) seconds for the ovarian cancer dataset, as shown in Figure

6.13 and Figure 6.18, when the (minsup, mincard) values are set to (10, 2000), (20,

2000), (30, 2000) and (40, 2000) respectively. Similar results have been observed for

different values of (minsup, mincard). The proposed PFCCIM algorithm with 8 threads

outperforms the DisClose algorithm by (361, 321, 298, 282) seconds for the prostate

1000 2000 3000 4000

mincard

0

300

600

900

1200

T
im

e
 (

s
)

PFCCIM (2) PFCCIM (4)
PFCCIM (8)

(a) minsup=10

1000 2000 3000 4000

mincard

0

300

600

900

1200

T
im

e
 (

s
)

PFCCIM (2) PFCCIM (4)
PFCCIM (8)

(b) minsup=20

1000 2000 3000 4000

mincard

0
200
400
600
800
1000

T
im

e
 (

s
)

PFCCIM (2) PFCCIM (4)
PFCCIM (8)

(c) minsup=30

1000 2000 3000 4000

mincard

0

200

400

600

T
im

e
 (

s
)

PFCCIM (2) PFCCIM (4)
PFCCIM (8)

(d) minsup=40

Figure 6.18. Runtime of PFCCIM (2 threads), PFCCIM (4 threads) and PFCCIM (8 threads) for Ovarian
Cancer Dataset

130

1000 2000 3000 4000

mincard

0

200

400

600

T
im

e
 (

s
)

PFCCIM (2) PFCCIM (4)
PFCCIM (8)

(a) minsup=10

1000 2000 3000 4000

mincard

0

200

400

600

T
im

e
 (

s
)

PFCCIM (2) PFCCIM (4)
PFCCIM (8)

(b) minsup=20

1000 2000 3000 4000

mincard

0
100
200
300
400
500

T
im

e
 (

s
)

PFCCIM (2) PFCCIM (4)
PFCCIM (8)

(c) minsup=30

1000 2000 3000 4000

mincard

0

100

200

300

400

T
im

e
 (

s
)

PFCCIM (2) PFCCIM (4)
PFCCIM (8)

(d) minsup=40

Figure 6.19. Runtime of PFCCIM (2 threads), PFCCIM (4 threads) and PFCCIM (8 threads) for Lung
Cancer Dataset

1000 2000 3000 4000

mincard

0

100

200

300

T
im

e
 (

s
)

PFCCIM (2) PFCCIM (4)
PFCCIM (8)

(a) minsup=10

1000 2000 3000 4000

mincard

0

100

200

300

T
im

e
 (

s
)

PFCCIM (2) PFCCIM (4)
PFCCIM (8)

(b) minsup=20

1000 2000 3000 4000

mincard

0

100

200

T
im

e
 (

s
)

PFCCIM (2) PFCCIM (4)
PFCCIM (8)

(c) minsup=30

1000 2000 3000 4000

mincard

0

100

200

T
im

e
 (

s
)

PFCCIM (2) PFCCIM (4)
PFCCIM (8)

(d) minsup=40

Figure 6.20. Runtime of PFCCIM (2 threads), PFCCIM (4 threads) and PFCCIM (8 threads) for Prostate
Cancer Dataset

131

500 1500 2500 3500

mincard

0

100

200

300

400

T
im

e
 (

s
)

PFCCIM (2) PFCCIM (4)
PFCCIM (8)

(a) minsup=5

500 1500 2500 3500

mincard

0

100

200

300

T
im

e
 (

s
)

PFCCIM (2) PFCCIM (4)
PFCCIM (8)

(b) minsup=10

500 1500 2500 3500

mincard

0

100

200

T
im

e
 (

s
)

PFCCIM (2) PFCCIM (4)
PFCCIM (8)

(c) minsup=15

500 1500 2500 3500

mincard

0

100

T
im

e
 (

s
)

PFCCIM (2) PFCCIM (4)
PFCCIM (8)

(d) minsup=20

Figure 6.21. Runtime of PFCCIM (2 threads), PFCCIM (4 threads) and PFCCIM (8 threads) for Central
Nervous System embryonal tumor Dataset

500 1500 2500 3500

mincard

0

100

200

300

400

500

T
im

e
 (

s
)

PFCCIM (2) PFCCIM (4)
PFCCIM (8)

(a) minsup=5

500 1500 2500 3500

mincard

0

100

200

300

400

T
im

e
 (

s
)

PFCCIM (2) PFCCIM (4)
PFCCIM (8)

(b) minsup=10

500 1500 2500 3500

mincard

0

100

200

300

400

T
im

e
 (

s
)

PFCCIM (2) PFCCIM (4)
PFCCIM (8)

(c) minsup=15

500 1500 2500 3500

mincard

0

100

200

300

400

T
im

e
 (

s
)

PFCCIM (2) PFCCIM (4)
PFCCIM (8)

(d) minsup=20

Figure 6.22. Runtime of PFCCIM (2 threads), PFCCIM (4 threads) and PFCCIM (8 threads) for DLBCL
(Including Follicular Lymphoma) Dataset

132

cancer dataset, as shown in Figure 6.15 and Figure 6.20, when the (minsup, mincard)

values are set to (10, 2000), (20, 2000), (30, 2000) and (40, 2000) respectively. Sim-

ilar results have been observed for other experimental datasets for different values of

(minsup, mincard).

6.4.2.2 Speed-up Analysis

Figure 6.23, Figure 6.24, Figure 6.25, Figure 6.26, and Figure 6.27 show the speedup of

the proposed PFCCIM algorithm (4 threads and 8 threads) with respect to the proposed

PFCCIM algorithm (2 threads) at different values of minsup and mincard for ovarian

cancer, lung cancer, prostate cancer, central nervous system embryonal tumor, and DL-

BCL (including the Follicular Lymphoma) datasets respectively. The x-axis and y-axis

in Figure 6.23 - Figure 6.27 indicate the different values of mincard and the speed-up

respectively. The proposed PFCCIM algorithm (8 threads) achieves the speed-up of

(1.223, 1.284, 1.403, 1.435) with respect to the PFCCIM algorithm (2 threads) for the

ovarian cancer dataset, as shown in Figure 6.23, when the (minsup, mincard) values are

set to (10, 2000), (20, 2000), (30, 2000) and (40, 2000) respectively. Similar results

have been observed for different values of (minsup, mincard). The proposed PFCCIM

algorithm (8 threads) achieves the speed-up of (1.305, 1.275, 1.214, 1.303) with respect

1000 2000 3000 4000

mincard

1

1.1

1.2

1.3

1.4

1.5

1.6

S
p
e
e
d
 U

p

PFCCIM (4) PFCCIM (8)

(a) minsup=10

1000 2000 3000 4000

mincard

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7

S
p
e
e
d
 U

p

PFCCIM (4) PFCCIM (8)

(b) minsup=20

1000 2000 3000 4000

mincard

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7

S
p
e
e
d
 U

p

PFCCIM (4) PFCCIM (8)

(c) minsup=30

1000 2000 3000 4000

mincard

1.2

1.6

2

2.4

2.8

S
p
e
e
d
 U

p

PFCCIM (4) PFCCIM (8)

(d) minsup=40

Figure 6.23. Speedup of PFCCIM (4 threads and 8 threads) with respect to PFCCIM (2 threads) for
Ovarian Cancer Dataset

133

1000 2000 3000 4000

mincard

1

1.2

1.4

1.6

1.8

S
p
e
e
d
 U

p
PFCCIM (4) PFCCIM (8)

(a) minsup=10

1000 2000 3000 4000

mincard

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7

S
p
e
e
d
 U

p

PFCCIM (4) PFCCIM (8)

(b) minsup=20

1000 2000 3000 4000

mincard

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7

S
p
e
e
d
 U

p

PFCCIM (4) PFCCIM (8)

(c) minsup=30

1000 2000 3000 4000

mincard

1

1.2

1.4

1.6

1.8

S
p
e
e
d
 U

p

PFCCIM (4) PFCCIM (8)

(d) minsup=40

Figure 6.24. Speedup of PFCCIM (4 threads and 8 threads) with respect to PFCCIM (2 threads) for Lung
Cancer Dataset

1000 2000 3000 4000

mincard

1

1.1

1.2

1.3

1.4

1.5

1.6

S
p
e
e
d
 U

p

PFCCIM (4) PFCCIM (8)

(a) minsup=10

1000 2000 3000 4000

mincard

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7

S
p
e
e
d
 U

p

PFCCIM (4) PFCCIM (8)

(b) minsup=20

1000 2000 3000 4000

mincard

1

1.1

1.2

1.3

1.4

1.5

1.6

S
p
e
e
d
 U

p

PFCCIM (4) PFCCIM (8)

(c) minsup=30

1000 2000 3000 4000

mincard

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7

S
p
e
e
d
 U

p

PFCCIM (4) PFCCIM (8)

(d) minsup=40

Figure 6.25. Speedup of PFCCIM (4 threads and 8 threads) with respect to PFCCIM (2 threads) for
Prostate Cancer Dataset

134

500 1500 2500 3500

mincard

1

1.1

1.2

1.3

1.4

S
p
e
e
d
 U

p

PFCCIM (4) PFCCIM (8)

(a) minsup=5

500 1500 2500 3500

mincard

1

1.1

1.2

1.3

1.4

S
p
e
e
d
 U

p

PFCCIM (4) PFCCIM (8)

(b) minsup=10

500 1500 2500 3500

mincard

1

1.1

1.2

1.3

1.4

S
p
e
e
d
 U

p

PFCCIM (4) PFCCIM (8)

(c) minsup=15

500 1500 2500 3500

mincard

1

1.1

1.2

1.3

1.4

S
p
e
e
d
 U

p

PFCCIM (4) PFCCIM (8)

(d) minsup=20

Figure 6.26. Speedup of PFCCIM (4 threads and 8 threads) with respect to PFCCIM (2 threads) for
Central Nervous System embryonal tumor Dataset

500 1500 2500 3500

mincard

1

1.1

1.2

1.3

1.4

S
p
e
e
d
 U

p

PFCCIM (4) PFCCIM (8)

(a) minsup=5

500 1500 2500 3500

mincard

1

1.1

1.2

1.3

1.4

S
p
e
e
d
 U

p

PFCCIM (4) PFCCIM (8)

(b) minsup=10

500 1500 2500 3500

mincard

1

1.1

1.2

1.3

1.4

S
p
e
e
d
 U

p

PFCCIM (4) PFCCIM (8)

(c) minsup=15

500 1500 2500 3500

mincard

1

1.1

1.2

1.3

1.4

S
p
e
e
d
 U

p

PFCCIM (4) PFCCIM (8)

(d) minsup=20

Figure 6.27. Speedup of PFCCIM (4 threads and 8 threads) with respect to PFCCIM (2 threads) for
DLBCL (Including Follicular Lymphoma) Dataset

135

to the PFCCIM algorithm (2 threads) for the prostate cancer dataset, as shown in Figure

6.25, when the (minsup, mincard) values are set to (10, 2000), (20, 2000), (30, 2000)

and (40, 2000) respectively. Similar results have been observed for other experimental

datasets for different values of (minsup, mincard). The solution of mining FCCI from

the high dimensional dataset corresponds to the traversal of row enumerated tree. The

intrinsic nature of the row enumerated tree, as shown in Figure 4.2, is typically unbal-

anced. The number of nodes in each branch of row enumerated tree vary. The intrinsic

nature of the row enumerated tree will lead to the average speed-up.

The proposed PFCCIM algorithm is not obligatory to gauge the final result when

the number of significant rows and features are zero. The number of significant rows

and features for the lung cancer dataset is zero when the (minsup, mincard) reaches

(20, 4000), (30, 4000), and (40, 4000). This indicates that there is no speed-up factor

when the (minsup, mincard) reaches (20, 4000), (30, 4000), and (40, 4000), as shown

in Figure 6.24b, Figure 6.24c and Figure 6.24d respectively. The number of significant

rows and features for central nervous system embryonal tumor dataset is zero when the

(minsup, mincard) reaches (5, 3000), (10, 2500), (15, 2000) and (20, 2000). This in-

dicates that there is no speed-up factor when the (minsup, mincard) reaches (5, 3000),

(10, 2500), (15, 2000), and (20, 2000), as shown in Figure 6.26a, Figure 6.26b, Figure

6.26c and Figure 6.26d respectively. The number of significant rows and features for

DLBCL (including the Follicular Lymphoma) dataset is zero when the (minsup, min-

card) reaches (5, 3000), (10, 3000), (15, 2500) and (20, 2500). This indicates that there

is no speed-up factor when the (minsup, mincard) reaches (5, 3000), (10, 3000), (15,

2500), and (20, 2500), as shown in Figure 6.27a, Figure 6.27b, Figure 6.27c, and Figure

6.27d respectively.

6.4.2.3 Statistical Significance Analysis

The experiment results highlight the efficiency of the proposed PFCCIM algorithm over

the DisClose algorithm. Figure 6.18, Figure 6.19, Figure 6.20, Figure 6.21, and Fig-

ure 6.22 show that PFCCIM (8 threads) outperforms PFCCIM (4 threads) and PFC-

CIM (2 threads) at different values of minsup and mincard for ovarian cancer, lung

cancer, prostate cancer, central nervous system embryonal tumor, and DLBCL (includ-

ing the Follicular Lymphoma) datasets respectively. To further analyze the statistical

differences among the performance of PFCCIM (2 threads), PFCCIM (4 threads) and

PFCCIM (8 threads), the Wilcoxon Singed-Rank statistical significance test has been

performed. This test has been selected for the statistical significance analysis as the

136

runtime for PFCCIM (2 threads), PFCCIM (4 threads) and PFCCIM (8 threads) are not

normally disturbed and the runtime has been recorded for varying values of minsup and

mincard for ovarian cancer, lung cancer, prostate cancer, central nervous system em-

bryonal tumor, and DLBCL (including the Follicular Lymphoma) datasets, as shown in

Figure 6.18, Figure 6.19, Figure 6.20, Figure 6.21, and Figure 6.22 respectively.

Table 6.1 shows the Wilcoxon Signed-Rank test for PFCCIM (2 threads) against

PFCCIM (4 threads) and PFCCIM (8 threads) for ovarian cancer, lung cancer, prostate

cancer, central nervous system embryonal tumor, and DLBCL (including the Follic-

ular Lymphoma) datasets. Let a null hypothesis indicate that there is no significant

difference between the performance of PFCCIM (2 threads) when compared to that of

PFCCIM (4 threads) and PFCCIM (8 threads) for a significance level of 5%. When

p ≤ 0.05, the Wilcoxon Signed-Rank test rejects the null hypothesis, indicating that

there is a statistically significant differences among samples. When p > 0.05, the null

hypothesis is retained and it indicates that there is no statistically significant difference

among samples. Table 6.1 highlights that the null hypothesis was rejected for ovarian

cancer, lung cancer, prostate cancer, central nervous system embryonal tumor, and DL-

BCL (including the Follicular Lymphoma) datasets. Hence, the difference between the

performance of PFCCIM (2 threads), PFCCIM (4 threads) and PFCCIM (8 threads) is

statistically significant. From Figure 6.18 - Figure 6.22 and Table 6.1, it is evident that

PFCCIM (8 threads) significantly outperforms PFCCIM (4 threads) and PFCCIM (2

threads).

PFCCIM (2 threads), being the least efficient when compared to PFCCIM (4 threads)

and PFCCIM (8 threads), is considered for performing statistical significance analysis

against the DisClose algorithm. Wilcoxon Singed-Rank Test has been selected for the

statistical significance analysis as the runtime for PFCCIM (2 threads) and DisClose

algorithm are not normally disturbed and the runtime has been recorded for different

values of minsup and mincard for ovarian cancer, lung cancer, prostate cancer, central

nervous system embryonal tumor, and DLBCL (including the Follicular Lymphoma)

datasets as shown in Figure 6.13, Figure 6.14, Figure 6.15, Figure 6.16, and Figure 6.17

respectively. Table 6.2 shows the Wilcoxon Signed-Rank Test for PFCCIM (2 threads)

against DisClose for ovarian cancer, lung cancer, prostate cancer, central nervous sys-

tem embryonal tumor, and DLBCL (including the Follicular Lymphoma) datasets. Let

a null hypothesis indicates that there is no significant difference between PFCCIM (2

threads) and DisClose for a significance level of 5%. Table 6.2 highlights that the null

137

Table 6.1. Wilcoxon Signed-Rank Test for PFCCIM (2 threads) against PFCCIM (4 threads) and
PFCCIM (8 threads) for Ovarian Cancer, Lung Cancer, Prostate Cancer, Central Nervous System

embryonal tumor, and DLBCL (including the Follicular Lymphoma) Dataset.

Dataset Algorithm p-value*

Null
Hypothe-

sis
Decision

Significant
Difference

(if p <
0.05)

Ovarian Cancer
PFCCIM (4 threads) <0.001 Reject Yes

PFCCIM (8 threads) <0.001 Reject Yes

Lung Cancer
PFCCIM (4 threads) <0.002 Reject Yes

PFCCIM (8 threads) <0.002 Reject Yes

Prostate Cancer
PFCCIM (4 threads) <0.001 Reject Yes

PFCCIM (8 threads) <0.001 Reject Yes

Central Nervous
System embryonal

tumor

PFCCIM (4 threads) <0.003 Reject Yes

PFCCIM (8 threads) <0.003 Reject Yes
DLBCL (including

the Follicular
Lymphoma)

PFCCIM (4 threads) <0.005 Reject Yes

PFCCIM (8 threads) <0.005 Reject Yes
* p-values are up to three decimal point.

Table 6.2. Wilcoxon Signed-Rank Test for PFCCIM (2 threads) against DisClose for Ovarian Cancer,
Lung Cancer, Prostate Cancer, Central Nervous System embryonal tumor, and DLBCL (including the

Follicular Lymphoma) Dataset.

Dataset Algorithm p-value*

Null
Hypothe-

sis
Decision

Significant
Difference

(if p <
0.05)

Ovarian Cancer Disclose <0.001 Reject Yes

Lung Cancer Disclose <0.001 Reject Yes

Prostate Cancer Disclose <0.001 Reject Yes

Central Nervous
System embryonal

tumor
Disclose <0.002 Reject Yes

DLBCL (including
the Follicular
Lymphoma)

Disclose <0.001 Reject Yes

* p-values are up to three decimal point.

138

hypothesis was rejected for ovarian cancer, lung cancer, and prostate cancer dataset.

Hence, the difference between the performance of PFCCIM (2 threads) and that of the

DisClose algorithm is statistically significant. From Figure 6.13 - Figure 6.17 and Ta-

ble 6.2 it is evident that PFCCIM (2 threads) significantly outperforms the DisClose

algorithm.

6.4.3 Results of BDPFCCIM Algorithm

This section emphasizes on the efficiency and speed-up of the proposed Balanced Dis-

tributed Parallel Frequent Colossal Closed Itemset Mining (BDPFCCIM) algorithm.

The proposed BDPFCCIM algorithm has been applied on Mixed Lineage Leukemia

(MLL), Central Nervous System embryonal tumor and Diffuse Large B-Cell Lym-

phoma (DLBCL) including Follicular Lymphoma datasets. The details of the high

dimensional datasets have been explained in section 3.3 of chapter 3. The proposed

BDPFCCIM algorithm has been compared with the DisClose algorithm. The DisClose

algorithm outperforms the other existing FCCI mining algorithms. Hence it is chosen

as representative for the experimental evaluation.

The experiments have been conducted on a cluster consisting of a master node and

compute nodes. The master node and compute nodes has an Intel Xeon Phi processor

500 1500 2500 3500 4500

mincard

0

100

200

300

400

500

600

700

T
im

e
 (

s
)

BDPFCCIM DisClose

(a) minsup=5

500 1500 2500 3500 4500

mincard

0

100

200

300

400

500

600

700

T
im

e
 (

s
)

BDPFCCIM DisClose

(b) minsup=10

500 1500 2500 3500 4500

mincard

0
100
200
300
400
500
600

T
im

e
 (

s
)

BDPFCCIM DisClose

(c) minsup=15

500 1500 2500 3500 4500

mincard

0

100

200

300

400

500

T
im

e
 (

s
)

BDPFCCIM DisClose

(d) minsup=20

Figure 6.28. Runtime of BDPFCCIM (2 Compute Nodes) (2 threads) and DisClose for MLL Dataset

139

500 1500 2500 3500

mincard

0
100
200
300
400
500
600

T
im

e
 (

s
)

BDPFCCIM DisClose

(a) minsup=5

500 1500 2500 3500

mincard

0

100

200

300

400

500

T
im

e
 (

s
)

BDPFCCIM DisClose

(b) minsup=10

500 1500 2500 3500

mincard

0

100

200

300

400

T
im

e
 (

s
)

BDPFCCIM DisClose

(c) minsup=15

500 1500 2500 3500

mincard

0
50
100
150
200
250
300

T
im

e
 (

s
)

BDPFCCIM DisClose

(d) minsup=20

Figure 6.29. Runtime of BDPFCCIM (2 Compute Nodes) (2 threads) and DisClose for Central Nervous
System embryonal tumor Dataset

500 1500 2500 3500

mincard

0
100
200
300
400
500
600

T
im

e
 (

s
)

BDPFCCIM DisClose

(a) minsup=5

500 1500 2500 3500

mincard

0
100
200
300
400
500
600

T
im

e
 (

s
)

BDPFCCIM DisClose

(b) minsup=10

500 1500 2500 3500

mincard

0

100

200

300

400

500

T
im

e
 (

s
)

BDPFCCIM DisClose

(c) minsup=15

500 1500 2500 3500

mincard

0

100

200

300

400

500

T
im

e
 (

s
)

BDPFCCIM DisClose

(d) minsup=20

Figure 6.30. Runtime of BDPFCCIM (2 Compute Nodes) (2 threads) and DisClose for DLBCL (includ-
ing Follicular Lymphoma) Dataset

140

with 128 GB of RAM. The distributed approach of the proposed BDPFCCIM algorithm

has been achieved by using Message Passing Interface (MPI), the standardized message

passing library and parallel approach of the proposed BDPFCCIM algorithms has been

achieved by using the Open Multi-Processing (OpenMP) application programming in-

terface.

6.4.3.1 Runtime Analysis

Figure 6.28, Figure 6.29 and Figure 6.30 illustrate the runtime comparison between

the DisClose algorithm and the proposed BDPFCCIM algorithm (2 compute nodes, 2

threads) at different values of minsup and mincard for MLL, central nervous system

embryonal tumor and DLBCL (including Follicular Lymphoma) datasets respectively.

Figure 6.28, Figure 6.29 and Figure 6.30 illustrate that the proposed BDPFCCIM al-

gorithm (2 compute nodes, 2 threads) outperforms the DisClose algorithm in terms of

runtime. Figure 6.31, Figure 6.32, and Figure 6.33 illustrate the runtime comparison

between the proposed BDPFCCIM (2 compute nodes, 2 threads), BDPFCCIM (2 com-

pute nodes, 4 threads) and BDPFCCIM (2 compute nodes, 8 threads) at different minsup

and different mincard for MLL, central nervous system embryonal tumor and DLBCL

(including Follicular Lymphoma) datasets respectively. Also, it is observed from the

500 1500 2500 3500 4500

mincard

0

100

200

300

400

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(a) minsup=5

500 1500 2500 3500 4500

mincard

0

100

200

300

400

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(b) minsup=10

500 1500 2500 3500 4500

mincard

0

50

100

150

200

250

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(c) minsup=15

500 1500 2500 3500 4500

mincard

0

50

100

150

200

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(d) minsup=20

Figure 6.31. Runtime of BDPFCCIM (2 Compute Nodes) (2 threads), BDPFCCIM (2 Compute Nodes)
(4 threads) and BDPFCCIM (2 Compute Nodes) (8 threads) for MLL Dataset

141

500 1500 2500 3500

mincard

0

100

200

300
T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(a) minsup=5

500 1500 2500 3500

mincard

0

50

100

150

200

250

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(b) minsup=10

500 1500 2500 3500

mincard

0

50

100

150

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(c) minsup=15

500 1500 2500 3500

mincard

0

50

100

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(d) minsup=20

Figure 6.32. Runtime of BDPFCCIM (2 Compute Nodes) (2 threads), BDPFCCIM (2 Compute Nodes)
(4 threads) and BDPFCCIM (2 Compute Nodes) (8 threads) for Central Nervous System embryonal
tumor Dataset

500 1500 2500 3500

mincard

0

100

200

300

400

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(a) minsup=5

500 1500 2500 3500

mincard

0

100

200

300

400

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(b) minsup=10

500 1500 2500 3500

mincard

0

100

200

300

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(c) minsup=15

500 1500 2500 3500

mincard

0

50

100

150

200

250

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(d) minsup=20

Figure 6.33. Runtime of BDPFCCIM (2 Compute Nodes) (2 threads), BDPFCCIM (2 Compute Nodes)
(4 threads) and BDPFCCIM (2 Compute Nodes) (8 threads) for DLBCL (including Follicular Lym-
phoma) Dataset

142

Figure 6.31, Figure 6.32, and Figure 6.33 that the BDPFCCIM (2 compute nodes, 8

threads) outperforms BDPFCCIM (2 compute nodes, 4 threads) and BDPFCCIM (2

compute nodes, 2 threads) in terms of runtime.

Figure 6.34, Figure 6.35, and Figure 6.36 show the runtime comparison between

the DisClose algorithm and the proposed BDPFCCIM algorithm (4 compute nodes, 2

threads) at different minsup and different mincard for MLL, central nervous system em-

bryonal tumor and DLBCL (including Follicular Lymphoma) datasets respectively. Fig-

ure 6.34, Figure 6.35, and Figure 6.36 illustrate that proposed BDPFCCIM algorithm

(4 compute nodes, 2 threads) outperforms the DisClose algorithm in terms of runtime.

Figure 6.37, Figure 6.38, and Figure 6.39 show the runtime comparison between the

proposed BDPFCCIM (4 compute nodes, 2 threads), BDPFCCIM (4 compute nodes, 4

threads) and BDPFCCIM (4 compute nodes, 8 threads) at different minsup and differ-

ent mincard for MLL, central nervous system embryonal tumor and DLBCL (including

Follicular Lymphoma) datasets respectively. Figure 6.37, Figure 6.38, and Figure 6.39

illustrate that BDPFCCIM (4 compute nodes, 8 threads) outperforms BDPFCCIM (4

compute nodes, 4 threads) and BDPFCCIM (4 compute nodes, 2 threads) in terms of

runtime.

500 1500 2500 3500 4500

mincard

0

100

200

300

400

500

600

700

T
im

e
 (

s
)

BDPFCCIM DisClose

(a) minsup=5

500 1500 2500 3500 4500

mincard

0

100

200

300

400

500

600

700

T
im

e
 (

s
)

BDPFCCIM DisClose

(b) minsup=10

500 1500 2500 3500 4500

mincard

0
100
200
300
400
500
600

T
im

e
 (

s
)

BDPFCCIM DisClose

(c) minsup=15

500 1500 2500 3500 4500

mincard

0

100

200

300

400

500

T
im

e
 (

s
)

BDPFCCIM DisClose

(d) minsup=20

Figure 6.34. Runtime of BDPFCCIM (4 Compute Nodes) (2 threads) and DisClose for MLL Dataset

143

500 1500 2500 3500

mincard

0
100
200
300
400
500
600

T
im

e
 (

s
)

BDPFCCIM DisClose

(a) minsup=5

500 1500 2500 3500

mincard

0

100

200

300

400

500

T
im

e
 (

s
)

BDPFCCIM DisClose

(b) minsup=10

500 1500 2500 3500

mincard

0

100

200

300

400

T
im

e
 (

s
)

BDPFCCIM DisClose

(c) minsup=15

500 1500 2500 3500

mincard

0
50
100
150
200
250
300

T
im

e
 (

s
)

BDPFCCIM DisClose

(d) minsup=20

Figure 6.35. Runtime of BDPFCCIM (4 Compute Nodes) (2 threads) and DisClose for Central Nervous
System embryonal tumor Dataset

500 1500 2500 3500

mincard

0
100
200
300
400
500
600

T
im

e
 (

s
)

BDPFCCIM DisClose

(a) minsup=5

500 1500 2500 3500

mincard

0
100
200
300
400
500
600

T
im

e
 (

s
)

BDPFCCIM DisClose

(b) minsup=10

500 1500 2500 3500

mincard

0

100

200

300

400

500

T
im

e
 (

s
)

BDPFCCIM DisClose

(c) minsup=15

500 1500 2500 3500

mincard

0

100

200

300

400

500

T
im

e
 (

s
)

BDPFCCIM DisClose

(d) minsup=20

Figure 6.36. Runtime of BDPFCCIM (4 Compute Nodes) (2 threads) and DisClose for DLBCL (includ-
ing Follicular Lymphoma) Dataset

144

500 1500 2500 3500 4500

mincard

0

100

200

300

400

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(a) minsup=5

500 1500 2500 3500 4500

mincard

0

100

200

300

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(b) minsup=10

500 1500 2500 3500 4500

mincard

0

50

100

150

200

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(c) minsup=15

500 1500 2500 3500 4500

mincard

0

50

100

150

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(d) minsup=20

Figure 6.37. Runtime of BDPFCCIM (4 Compute Nodes) (2 threads), BDPFCCIM (4 Compute Nodes)
(4 threads) and BDPFCCIM (4 Compute Nodes) (8 threads) for MLL Dataset

500 1500 2500 3500

mincard

0

50

100

150

200

250

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(a) minsup=5

500 1500 2500 3500

mincard

0

50

100

150

200

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(b) minsup=10

500 1500 2500 3500

mincard

0

50

100

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(c) minsup=15

500 1500 2500 3500

mincard

0

50

100

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(d) minsup=20

Figure 6.38. Runtime of BDPFCCIM (4 Compute Nodes) (2 threads), BDPFCCIM (4 Compute Nodes)
(4 threads) and BDPFCCIM (4 Compute Nodes) (8 threads) for Central Nervous System embryonal
tumor Dataset

145

500 1500 2500 3500

mincard

0

100

200

300

400

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(a) minsup=5

500 1500 2500 3500

mincard

0

100

200

300

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(b) minsup=10

500 1500 2500 3500

mincard

0

50

100

150

200

250

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(c) minsup=15

500 1500 2500 3500

mincard

0

50

100

150

200

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(d) minsup=20

Figure 6.39. Runtime of BDPFCCIM (4 Compute Nodes) (2 threads), BDPFCCIM (4 Compute Nodes)
(4 threads) and BDPFCCIM (4 Compute Nodes) (8 threads) for DLBCL (including Follicular Lym-
phoma) Dataset

500 1500 2500 3500 4500

mincard

0

100

200

300

400

500

600

700

T
im

e
 (

s
)

BDPFCCIM DisClose

(a) minsup=5

500 1500 2500 3500 4500

mincard

0

100

200

300

400

500

600

700

T
im

e
 (

s
)

BDPFCCIM DisClose

(b) minsup=10

500 1500 2500 3500 4500

mincard

0
100
200
300
400
500
600

T
im

e
 (

s
)

BDPFCCIM DisClose

(c) minsup=15

500 1500 2500 3500 4500

mincard

0

100

200

300

400

500

T
im

e
 (

s
)

BDPFCCIM DisClose

(d) minsup=20

Figure 6.40. Runtime of BDPFCCIM (8 Compute Nodes) (2 threads) and DisClose for MLL Dataset

146

500 1500 2500 3500

mincard

0
100
200
300
400
500
600

T
im

e
 (

s
)

BDPFCCIM DisClose

(a) minsup=5

500 1500 2500 3500

mincard

0

100

200

300

400

500

T
im

e
 (

s
)

BDPFCCIM DisClose

(b) minsup=10

500 1500 2500 3500

mincard

0

100

200

300

400

T
im

e
 (

s
)

BDPFCCIM DisClose

(c) minsup=15

500 1500 2500 3500

mincard

0
50
100
150
200
250
300

T
im

e
 (

s
)

BDPFCCIM DisClose

(d) minsup=20

Figure 6.41. Runtime of BDPFCCIM (8 Compute Nodes) (2 threads) and DisClose for Central Nervous
System embryonal tumor Dataset

500 1500 2500 3500

mincard

0
100
200
300
400
500
600

T
im

e
 (

s
)

BDPFCCIM DisClose

(a) minsup=5

500 1500 2500 3500

mincard

0
100
200
300
400
500
600

T
im

e
 (

s
)

BDPFCCIM DisClose

(b) minsup=10

500 1500 2500 3500

mincard

0

100

200

300

400

500

T
im

e
 (

s
)

BDPFCCIM DisClose

(c) minsup=15

500 1500 2500 3500

mincard

0

100

200

300

400

500

T
im

e
 (

s
)

BDPFCCIM DisClose

(d) minsup=20

Figure 6.42. Runtime of BDPFCCIM (8 Compute Nodes) (2 threads) and DisClose for DLBCL (includ-
ing Follicular Lymphoma) Dataset

147

500 1500 2500 3500 4500

mincard

0

100

200

300

400

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(a) minsup=5

500 1500 2500 3500 4500

mincard

0
50
100
150
200
250
300

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(b) minsup=10

500 1500 2500 3500 4500

mincard

0

50

100

150

200

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(c) minsup=15

500 1500 2500 3500 4500

mincard

0

50

100

150

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(d) minsup=20

Figure 6.43. Runtime of BDPFCCIM (8 Compute Nodes) (2 threads), BDPFCCIM (8 Compute Nodes)
(4 threads) and BDPFCCIM (8 Compute Nodes) (8 threads) for MLL Dataset

500 1500 2500 3500

mincard

0

50

100

150

200

250

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(a) minsup=5

500 1500 2500 3500

mincard

0

50

100

150

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(b) minsup=10

500 1500 2500 3500

mincard

0

50

100

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(c) minsup=15

500 1500 2500 3500

mincard

0

50

100

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(d) minsup=20

Figure 6.44. Runtime of BDPFCCIM (8 Compute Nodes) (2 threads), BDPFCCIM (8 Compute Nodes)
(4 threads) and BDPFCCIM (8 Compute Nodes) (8 threads) for Central Nervous System embryonal
tumor Dataset

148

500 1500 2500 3500

mincard

0

100

200

300

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(a) minsup=5

500 1500 2500 3500

mincard

0

50

100

150

200

250

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(b) minsup=10

500 1500 2500 3500

mincard

0

50

100

150

200

250

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(c) minsup=15

500 1500 2500 3500

mincard

0

50

100

150

200

T
im

e
 (

s
)

BDPFCCIM (2) BDPFCCIM(4)
BDPFCCIM(8)

(d) minsup=20

Figure 6.45. Runtime of BDPFCCIM (8 Compute Nodes) (2 threads), BDPFCCIM (8 Compute Nodes)
(8 threads) and BDPFCCIM (8 Compute Nodes) (8 threads) for DLBCL (including Follicular Lym-
phoma) Dataset

Figure 6.40, Figure 6.41 and Figure 6.42 illustrate the runtime comparison between

the DisClose algorithm and the proposed BDPFCCIM algorithm (8 compute nodes, 2

threads) at different minsup and different mincard for MLL, central nervous system

embryonal tumor and DLBCL (including Follicular Lymphoma) datasets respectively.

Figure 6.40, Figure 6.41 and Figure 6.42 illustrate that the BDPFCCIM algorithm (8

compute nodes, 2 threads) outperforms the DisClose algorithm in terms of runtime.

Figure 6.43, Figure 6.44, and Figure 6.45 illustrate the runtime comparison between the

proposed BDPFCCIM (8 compute nodes, 2 threads), BDPFCCIM (8 compute nodes, 4

threads) and BDPFCCIM (8 compute nodes, 8 threads) at different minsup and different

mincard for MLL, central nervous system embryonal tumor and DLBCL (including

Follicular Lymphoma) datasets respectively. Figure 6.43, Figure 6.44, and Figure 6.45

illustrate that BDPFCCIM (8 compute nodes, 8 threads) outperforms BDPFCCIM (8

compute nodes, 4 threads) and BDPFCCIM (8 compute nodes, 2 threads).

The x-axis in Figure 6.28 - Figure 6.45 indicates the different values of mincard, and

the y-axis indicates the runtime. It has been observed from the experimental results that

the runtime of the proposed BDPFCCIM algorithm reduces as the mincard and minsup

increases. The experimental results, as shown in Figure 6.28 - Figure 6.45 indicate that

149

the proposed BDPFCCIM algorithm is not obligatory to gauge the final results when the

number of significant features and significant rows is zero after applying the proposed

EIPP technique. It has been observed from the experimental results that the proposed

BDPFCCIM algorithm outperforms the DisClose algorithm in terms of runtime. The

RCT based closeness checking method, RCT based pruning strategy, distributed and

parallel mining of FCCI helps the proposed BDPFCCIM algorithm to outperform the

existing DisClose algorithm. The experimental results as shown in Fig. 6.28 – Fig. 6.45

indicate that for different values minsup and mincard, the proposed BDPFCCIM with 8

compute nodes outperforms BDPFCCIM with 4 compute nodes and BDPFCCIM with

2 compute nodes.

6.4.3.2 Speed-up Analysis

Figure 6.46, Figure 6.47, and Figure 6.48 represent the speed-up of the proposed BDPFC-

CIM (2 compute nodes, 2 threads), BDPFCCIM (2 compute nodes, 4 threads), and

BDPFCCIM (2 compute nodes, 8 threads) with respect to the DisClose algorithm at

different values of minsup and different mincard for MLL, central nervous system em-

bryonal tumor and DLBCL (including Follicular Lymphoma) datasets respectively. The

500 1500 2500 3500 4500

mincard

0
1
2
3
4
5
6

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(a) minsup=5

500 1500 2500 3500 4500

mincard

0
1
2
3
4
5
6

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(b) minsup=10

500 1500 2500 3500 4500

mincard

0

1

2

3

4

5

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(c) minsup=15

500 1500 2500 3500 4500

mincard

0

1

2

3

4

5

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(d) minsup=20

Figure 6.46. Speedup of BDPFCCIM (2 Compute Nodes) (2 threads), BDPFCCIM (2 Compute Nodes)
(4 threads) and BDPFCCIM (2 Compute Nodes) (8 threads) with respect to DisClose Algorithm for MLL
Dataset

150

500 1500 2500 3500

mincard

0

1

2

3

4

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(a) minsup=5

500 1500 2500 3500

mincard

0
1
2
3
4
5
6

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(b) minsup=10

500 1500 2500 3500

mincard

0

2

4

6

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(c) minsup=15

500 1500 2500 3500

mincard

0

2

4

6

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(d) minsup=20

Figure 6.47. Speedup of BDPFCCIM (2 Compute Nodes) (2 threads), BDPFCCIM (2 Compute Nodes)
(4 threads) and BDPFCCIM (2 Compute Nodes) (8 threads) with respect to DisClose Algorithm for
Central Nervous System embryonal tumor Dataset

500 1500 2500 3500

mincard

0

1

2

3

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(a) minsup=5

500 1500 2500 3500

mincard

0

1

2

3

4

5

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(b) minsup=10

500 1500 2500 3500

mincard

0

1

2

3

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(c) minsup=15

500 1500 2500 3500

mincard

0

1

2

3

4

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(d) minsup=20

Figure 6.48. Speedup of BDPFCCIM (2 Compute Nodes) (2 threads), BDPFCCIM (2 Compute Nodes)
(4 threads) and BDPFCCIM (2 Compute Nodes) (8 threads) with respect to DisClose Algorithm for
DLBCL (including Follicular Lymphoma) Dataset

151

500 1500 2500 3500 4500

mincard

0

2

4

6
S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(a) minsup=5

500 1500 2500 3500 4500

mincard

0

2

4

6

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(b) minsup=10

500 1500 2500 3500 4500

mincard

0
1
2
3
4
5
6

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(c) minsup=15

500 1500 2500 3500 4500

mincard

0

2

4

6

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(d) minsup=20

Figure 6.49. Speedup of BDPFCCIM (4 Compute Nodes) (2 threads), BDPFCCIM (4 Compute Nodes)
(4 threads) and BDPFCCIM (4 Compute Nodes) (8 threads) with respect to DisClose Algorithm for MLL
Dataset

500 1500 2500 3500

mincard

0
1
2
3
4
5
6

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(a) minsup=5

500 1500 2500 3500

mincard

0

2

4

6

8

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(b) minsup=10

500 1500 2500 3500

mincard

0
2
4
6
8
10

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(c) minsup=15

500 1500 2500 3500

mincard

0
2
4
6
8
10
12

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(d) minsup=20

Figure 6.50. Speedup of BDPFCCIM (4 Compute Nodes) (2 threads), BDPFCCIM (4 Compute Nodes)
(4 threads) and BDPFCCIM (4 Compute Nodes) (8 threads) with respect to DisClose Algorithm for
Central Nervous System embryonal tumor Dataset

152

500 1500 2500 3500

mincard

0

1

2

3

4

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(a) minsup=5

500 1500 2500 3500

mincard

0
1
2
3
4
5
6

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(b) minsup=10

500 1500 2500 3500

mincard

0

1

2

3

4

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(c) minsup=15

500 1500 2500 3500

mincard

0
1
2
3
4
5
6

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(d) minsup=20

Figure 6.51. Speedup of BDPFCCIM (4 Compute Nodes) (2 threads), BDPFCCIM (4 Compute Nodes)
(4 threads) and BDPFCCIM (4 Compute Nodes) (8 threads) with respect to DisClose Algorithm for
DLBCL (including Follicular Lymphoma) Dataset

500 1500 2500 3500 4500

mincard

0

2

4

6

8

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(a) minsup=5

500 1500 2500 3500 4500

mincard

0

2

4

6

8

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(b) minsup=10

500 1500 2500 3500 4500

mincard

0

2

4

6

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(c) minsup=15

500 1500 2500 3500 4500

mincard

0

2

4

6

8

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(d) minsup=20

Figure 6.52. Speedup of BDPFCCIM (8 Compute Nodes) (2 threads), BDPFCCIM (8 Compute Nodes)
(4 threads) and BDPFCCIM (8 Compute Nodes) (8 threads) with respect to DisClose Algorithm for MLL
Dataset

153

500 1500 2500 3500

mincard

0

2

4

6
S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(a) minsup=5

500 1500 2500 3500

mincard

0

2

4

6

8

10

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(b) minsup=10

500 1500 2500 3500

mincard

0

3

6

9

12

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(c) minsup=15

500 1500 2500 3500

mincard

0

4

8

12

16

20

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(d) minsup=20

Figure 6.53. Speedup of BDPFCCIM (8 Compute Nodes) (2 threads), BDPFCCIM (8 Compute Nodes)
(4 threads) and BDPFCCIM (8 Compute Nodes) (8 threads) with respect to DisClose Algorithm for
Central Nervous System embryonal tumor Dataset

500 1500 2500 3500

mincard

0

1

2

3

4

5

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(a) minsup=5

500 1500 2500 3500

mincard

0

2

4

6

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(b) minsup=10

500 1500 2500 3500

mincard

0

1

2

3

4

5

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(c) minsup=15

500 1500 2500 3500

mincard

0

2

4

6

S
p
e
e
d
 U

p

BDPFCCIM (2) BDPFCCIM (4)
BDPFCCIM (8)

(d) minsup=20

Figure 6.54. Speedup of BDPFCCIM (8 Compute Nodes) (2 threads), BDPFCCIM (8 Compute Nodes)
(4 threads) and BDPFCCIM (8 Compute Nodes) (8 threads) with respect to DisClose Algorithm for
DLBCL (including Follicular Lymphoma) Dataset

154

proposed BDPFCCIM algorithm (2 compute nodes, 8 threads) achieves the speed-up of

(2.3131, 2.8280, 3.0355, 3.8017) with respect to the DisClose algorithm for the MLL

dataset, as shown in Figure 6.46, when the (minsup, mincard) values are set to (5, 500),

(10, 500), (15, 500) and (20, 500) respectively. Similar results have been observed for

other experimental datasets for different values of (minsup, mincard).

Figure 6.49, Figure 6.50, and Figure 6.51 represent the speed-up of the proposed

BDPFCCIM (4 compute nodes, 2 threads), BDPFCCIM (4 compute nodes, 4 threads),

and BDPFCCIM (4 compute nodes, 8 threads) with respect to the DisClose algorithm at

different minsup and different mincard for MLL, central nervous system embryonal tu-

mor and DLBCL (including Follicular Lymphoma) datasets respectively. The proposed

BDPFCCIM algorithm (4 compute nodes, 8 threads) achieves the speed-up of (2.7083,

3.3068, 3.7445, 4.7419) with respect to the DisClose algorithm for the MLL dataset,

as shown in Figure 6.49, when the (minsup, mincard) values are set to (5, 500), (10,

500), (15, 500) and (20, 500) respectively. Similar results have been observed for other

experimental datasets for different values of (minsup, mincard).

Figure 6.52, Figure 6.53, and Figure 6.54 represent the speed-up of the proposed

BDPFCCIM (8 compute nodes, 2 threads), BDPFCCIM (8 compute nodes, 4 threads)

and BDPFCCIM (8 compute nodes, 8 threads) with respect to the DisClose algorithm at

different minsup and different mincard for MLL, central nervous system embryonal tu-

mor and DLBCL (including Follicular Lymphoma) datasets respectively. The proposed

BDPFCCIM algorithm (8 compute nodes, 8 threads) achieves the speed-up of (2.8017,

3.5112, 4.1040, 6.4852) with respect to the DisClose algorithm for the MLL dataset,

as shown in Figure 6.52, when the (minsup, mincard) values are set to (5, 500), (10,

500), (15, 500) and (20, 500) respectively. Similar results have been observed for other

experimental datasets for different values of (minsup, mincard). The x-axis and y-axis

in Figure 6.46 - Figure 6.54 indicate the different values of mincard and the speed-up

respectively.

Figure 6.46, Figure 6.49, and Figure 6.52 shows that the gauging of the final FCCI

mining result by the proposed BDPFCCIM is not required for MLL datasets with the

minsup value set to 15 and mincard value set 3500. This indicates that the number of

significant rows after applying the proposed EIPP technique is zero and also indicates

that there is no speed-up factor. There is no speed-up factor when minsup value reaches

10 and mincard value reaches 2500 for central nervous system embryonal tumor dataset

as shown in Figure 6.47, Figure 6.50, and Figure 6.53. There is no speed-up factor when

155

minsup value reaches 15 and mincard value reaches 2500 for DLBCL (including Fol-

licular Lymphoma) dataset as shown in Figure 6.48, Figure 6.51, and Figure 6.54. The

speed-up factor as shown in Figure 6.46 - Figure 6.54 indicates the proposed BDPFC-

CIM (8 compute nodes) outperforms BDPFCCIM (4 compute nodes) and BDPFCCIM

(2 compute nodes).

6.4.3.3 Statistical Significance Analysis

The experiment results highlight the efficiency of the proposed BDPFCCIM algorithm

over the DisClose algorithm. To further analyze the statistical differences among the

performance of BDPFCCIM (2 compute nodes, 2 threads), BDPFCCIM (4 compute

nodes, 2 threads) and BDPFCCIM (8 compute nodes, 2 threads), the Wilcoxon Singed-

Rank statistical significance test has been performed. This test has been selected for

the statistical significance analysis as the runtime for BDPFCCIM (2 compute nodes, 2

threads), BDPFCCIM (4 compute nodes, 2 threads) and BDPFCCIM (8 compute nodes,

2 threads) are not normally disturbed and the runtime has been recorded for different

values of minsup and mincard for all the experimental datasets.

Table 6.3 shows the Wilcoxon Signed-Rank test for BDPFCCIM (2 compute nodes,

2 threads) against BDPFCCIM (4 compute nodes, 2 threads) and BDPFCCIM (8 com-

pute nodes, 2 threads) for MLL, central nervous system embryonal tumor, DLBCL

(including the Follicular Lymphoma) datasets. Let a null hypothesis indicate that there

is no significant difference between the performance of BDPFCCIM (2 compute nodes,

2 threads) when compared to that of BDPFCCIM (4 compute nodes, 2 threads) and

BDPFCCIM (8 compute nodes, 2 threads) for a significance level of 5%. When p ≤
0.05, the Wilcoxon Signed-Rank test rejects the null hypothesis, indicating that there is

a statistically significant differences among samples. When p > 0.05, the null hypoth-

esis is retained and it indicates that there is no statistically significant difference among

samples. Table 6.3 highlights that the null hypothesis was rejected for MLL, central ner-

vous system embryonal tumor, DLBCL (including the Follicular Lymphoma) datasets.

Hence, the difference between the performance of BDPFCCIM (2 compute nodes, 2

threads), BDPFCCIM (4 compute nodes, 2 threads) and BDPFCCIM (8 compute nodes,

2 threads) is statistically significant.

From Figure 6.28 - Figure 6.30, Figure 6.34 - Figure 6.36, Figure 6.40 - Figure 6.42

and Table 6.3, it is evident that BDPFCCIM (8 compute nodes, 2 threads) significantly

outperforms BDPFCCIM (4 compute nodes, 2 threads) and BDPFCCIM (2 compute

156

Table 6.3. Wilcoxon Signed-Rank Test for BDPFCCIM (2 compute nodes, 2 threads) against
BDPFCCIM (4 compute nodes, 2 threads) and BDPFCCIM (8 compute nodes, 2 threads) for MLL,
central nervous system embryonal tumor, DLBCL (including the Follicular Lymphoma) Datasets.

Dataset Algorithm p-value*

Null
Hypothe-

sis
Decision

Significant
Difference

(if p <
0.05)

MLL

BDPFCCIM (4
compute nodes, 2

threads)
<0.0006 Reject Yes

BDPFCCIM (8
compute nodes, 2

threads)
<0.006 Reject Yes

Central Nervous
System embryonal

tumor

BDPFCCIM (4
compute nodes, 2

threads)
<0.0009 Reject Yes

BDPFCCIM (8
compute nodes, 2

threads)
<0.0009 Reject Yes

DLBCL (including
the Follicular
Lymphoma)

BDPFCCIM (4
compute nodes, 2

threads)
<0.005 Reject Yes

BDPFCCIM (8
compute nodes, 2

threads)
<0.005 Reject Yes

nodes, 2 threads).

BDPFCCIM (2 compute nodes, 2 threads), being the least efficient when compared

to BDPFCCIM (4 compute nodes, 2 threads) and BDPFCCIM (8 compute nodes, 2

threads), is considered for performing statistical significance analysis against the Dis-

Close algorithm. Wilcoxon Singed-Rank Test has been selected for the statistical sig-

nificance analysis as the runtime for BDPFCCIM (2 compute nodes, 2 threads) and

DisClose algorithm are not normally disturbed and the runtime has been recorded for

different values of minsup and mincard for MLL, central nervous system embryonal

tumor, DLBCL (including the Follicular Lymphoma) datasets as shown in Figure 6.28,

Figure 6.29, and Figure 6.30 respectively. Table 6.4 shows the Wilcoxon Signed-Rank

Test for BDPFCCIM (2 compute nodes, 2 threads) against DisClose for for MLL, cen-

tral nervous system embryonal tumor, DLBCL (including the Follicular Lymphoma)

157

Table 6.4. Wilcoxon Signed-Rank Test for BDPFCCIM (2 compute nodes, 2 threads) against DisClose
for MLL, central nervous system embryonal tumor, DLBCL (including the Follicular Lymphoma)

Datasets.

Dataset Algorithm p-value*

Null
Hypothe-

sis
Decision

Significant
Difference

(if p <
0.05)

MLL Disclose <0.0001 Reject Yes

Central Nervous
System embryonal

tumor
Disclose <0.0001 Reject Yes

DLBCL (including
the Follicular
Lymphoma)

Disclose <0.0009 Reject Yes

datasets. Let a null hypothesis indicates that there is no significant difference between

BDPFCCIM (2 compute nodes, 2 threads) and DisClose for a significance level of

5%. Table 6.4 highlights that the null hypothesis was rejected for all the experimental

datasets. Hence, the difference between the performance of BDPFCCIM (2 compute

nodes, 2 threads) and that of the DisClose algorithm is statistically significant. From

Figure 6.28, Figure 6.29, Figure 6.30, and Table 6.4 it is evident that BDPFCCIM (2

compute nodes, 2 threads) significantly outperforms the DisClose algorithm.

6.5 Summary

Distributed and parallel computing is a good strategy to overcome the inefficiency of the

existing sequential frequent colossal closed itemset mining algorithms. In this chapter,

distributed and parallel algorithms have been proposed to efficiently mine FCCI from

high dimensional datasets. An efficient Parallel Frequent Colossal Closed Itemset Min-

ing (PFCCIM) algorithm has been proposed to parallelly mine FCCI from the high

dimensional dataset. The PFCCIM algorithm has been implemented using the Open

Multi-Processing (OpenMP) application programming interface. The experiments have

been conducted on various high dimensional datasets. The proposed PFCCIM algo-

rithm (8 threads) achieves the speed-up of (1.223, 1.284, 1.403, 1.435) with respect

to the PFCCIM algorithm (2 threads) for the ovarian cancer dataset, when the (minsup,

mincard) values are set to (10, 2000), (20, 2000), (30, 2000) and (40, 2000) respectively.

Similar results have been observed for other experimental high dimensional datasets.

The proposed PFCCIM algorithm (8 threads) achieves the speed-up of (4.214, 4.298,

6.125, 6.452) with respect to the DisClose algorithm for the ovarian cancer dataset,

158

when the (minsup, mincard) values are set to (10, 2000), (20, 2000), (30, 2000) and

(40, 2000) respectively. Similar results have been observed for other experimental high

dimensional datasets. It has been also observed that the results are statistically signifi-

cant.

The Balanced Distributed Parallel Frequent Colossal Closed Itemset Mining (BDPFC-

CIM) algorithm has been proposed to handle the unbalanced intrinsic nature of the row

enumerated tree. The BDPFCCIM algorithm has been implemented using the Mes-

sage Passing Interface (MPI) for distributing workloads and Open Multi-Processing

(OpenMP) for traversing the row enumerated tree in parallel. The proposed BDPFC-

CIM algorithm efficiently distributes the branches of row enumerated tree to the com-

pute nodes for traversing and mining FCCI. The branches of the row enumerated tree

assigned to the compute nodes are traversed using the parallel bottom-up approach. The

proposed BDPFCCIM algorithm (8 compute nodes, 8 threads) achieves the speed-up of

(2.8017, 3.5112, 4.1040, 6.4852) with respect to the DisClose algorithm for the MLL

dataset, when the (minsup, mincard) values are set to (5, 500), (10, 500), (15, 500)

and (20, 500) respectively. Similar results have been observed for other experimental

high dimensional datasets. It has been also observed that the results are statistically

significant.

The next chapter concludes our thesis with a summary of the work done and presents

some suggestions for further work in this area.

159

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The high dimensional datasets have attracted interest from researchers to devise a new

method to extract significant and important information efficiently. The amount of in-

formation that can be extracted from high dimensional datasets is potentially huge,

but extraction of information and knowledge from these datasets is a non-trivial task.

ARM gives greater importance to the large-sized itemsets called as colossal itemsets.

The colossal itemsets are more influential in decision making and are significant in

many applications. It is very important to mine colossal itemsets from the high di-

mensional dataset. The research work in this thesis is directed towards the mining of

frequent colossal itemsets and frequent colossal closed itemsets from the high dimen-

sional dataset.

The high dimensional dataset should be preprocessed before the mining of frequent

colossal itemsets and FCCI. The complete set of insignificant features and insignificant

rows have to be pruned from the high dimensional dataset. The EIP technique based

on minimum support threshold and minimum cardinality threshold has been proposed

to prune the complete set of insignificant features and insignificant rows from the high

dimensional dataset. The proposed EIP technique takes advantage of the reduction in

the cardinality of rows due to the pruning of insignificant features and the reduction

in the support of features due to the pruning of insignificant rows. The experiments

have been conducted on high dimensional datasets for different values of minsup and

mincard. The results show that the proposed EIP technique outperforms the existing

preprocessing technique in terms of pruning the complete set of insignificant features

and insignificant rows, which further helps in reducing the search space.

The existing frequent colossal itemset mining algorithms mine limited set of fre-

quent colossal itemsets from the high dimensional dataset leading to the generation

of an incomplete set of association rules. Frequent colossal itemset mining algorithm

has been proposed to achieve better accuracy than existing algorithms in terms of min-

ing number of frequent colossal itemsets from the high dimensional dataset. The pro-

posed frequent colossal itemset mining algorithm outperforms the existing algorithms

by achieving better accuracy in mining a greater number of frequent colossal itemsets

from the high dimensional dataset. Results show that the proposed algorithm outper-

forms the BVBUC algorithm by 30% and 29% for the lung cancer test dataset, when

the (minsup, mincard) values are set to (5, 500) and (5, 1000) respectively.

The pruning strategy of the existing frequent colossal closed itemset mining algo-

rithms is inefficient. The drawback has been overcome by proposing the frequent colos-

sal closed itemset mining algorithm enclosed with an efficient pruning strategy. The

proposed frequent colossal closed itemset mining algorithm has been enclosed with a

pruning strategy to efficiently cut down the row enumerated search space. The pruning

strategy takes advantage of the PT to efficiently cut down the row enumerated search

space. The experimental results highlight that the proposed frequent colossal closed

itemset mining algorithm outperforms the Disclose algorithm in terms of runtime. The

proposed frequent colossal closed itemset mining algorithm outperforms the DisClose

algorithm by (14, 17, 27, 25) seconds for the lung cancer test dataset, when the (minsup,

mincard) values are set to (5, 1000), (10, 1000), (15, 1000) and (20, 1000) respectively.

Similar results have been observed for other experimental high dimensional datasets.

The BitSet Frequent Colossal Closed Itemset Mining (BSFCCIM) algorithm en-

trenched with the efficient RCT based closeness checking method and pruning strategy

has been proposed to efficiently mine FCCI from the high dimensional dataset. The

proposed RCT based closeness checking method will not scan through the previously

mined FCCI to check the existence and closeness of newly mined frequent colossal

itemset. The proposed pruning strategy utilizes the RCT at the row enumerated node to

efficiently cut down the search space. The RCT provides the prior information regarding

the cardinality of the itemsets to be mined at the descendant nodes without traversing

them. It is observed from the experiment results that the proposed BSFCCIM algo-

rithm outperforms the existing DisClose algorithm in terms of runtime. The proposed

BSFCCIM algorithm outperforms the DisClose algorithm by (197, 213, 179, 208) sec-

onds for the MLL dataset, when the (minsup, mincard) values are set to (5, 500), (10,

500), (15, 500) and (20, 500) respectively. Similar results have been observed for other

experimental high dimensional datasets.

An efficient Dynamic Switching Frequent Colossal Closed Itemset Mining (DSFC-

CIM) algorithm has been proposed for mining FCCI from datasets consisting of a large

number of rows and a large number of features. The proposed DSFCCIM algorithm

efficiently switches between bottom-up row enumerated approach and bottom-up fea-

ture enumerated approach based on data characteristics during the mining process. The

162

proposed DSFCCIM algorithm is enclosed with RCT based closeness checking method

and pruning strategy; it is also enclosed with IST based closeness checking method and

pruning strategy. The proposed DSFCCIM algorithm outperforms the DisClose algo-

rithm by (2516, 2363, 2385, 1610) seconds for the ovarian cancer dataset, when the

(minsup, mincard) values are set to (10, 2000), (20, 2000), (30, 2000) and (40, 2000)

respectively. It is observed from the experiment results that the proposed DSFCCIM

algorithm outperforms the existing DisClose algorithm in terms of runtime.

Distributed and parallel computing is a good strategy to overcome the inefficiency

of the existing sequential frequent colossal closed itemset mining algorithms. Dis-

tributed and parallel algorithms have been proposed to efficiently mine FCCI from high

dimensional datasets. An efficient Parallel Frequent Colossal Closed Itemset Mining

(PFCCIM) algorithm has been proposed to parallelly mine FCCI from the high dimen-

sional dataset. The PFCCIM algorithm has been implemented using the Open Multi-

Processing (OpenMP) application programming interface. The experiments have been

conducted on various high dimensional datasets. The proposed PFCCIM algorithm (8

threads) achieves the speed-up of (1.223, 1.284, 1.403, 1.435) with respect to the PFC-

CIM algorithm (2 threads) for the ovarian cancer dataset, when the (minsup, mincard)

values are set to (10, 2000), (20, 2000), (30, 2000) and (40, 2000) respectively. Simi-

lar results have been observed for other experimental high dimensional datasets. It has

been also observed that the results are statistically significant.

The Balanced Distributed Parallel Frequent Colossal Closed Itemset Mining (BDPFC-

CIM) algorithm has been proposed to handle the unbalanced intrinsic nature of the row

enumerated tree. The BDPFCCIM algorithm has been implemented using the Mes-

sage Passing Interface (MPI) for distributing workloads and Open Multi-Processing

(OpenMP) for traversing the row enumerated tree in parallel. The proposed BDPFC-

CIM algorithm efficiently distributes the branches of row enumerated tree to the com-

pute nodes for traversing and mining FCCI. The branches of the row enumerated tree

assigned to the compute nodes are traversed using the parallel bottom-up approach. The

proposed BDPFCCIM algorithm (8 compute nodes, 8 threads) achieves the speed-up of

(2.8017, 3.5112, 4.1040, 6.4852) with respect to the DisClose algorithm for the MLL

dataset, when the (minsup, mincard) values are set to (5, 500), (10, 500), (15, 500)

and (20, 500) respectively. Similar results have been observed for other experimental

high dimensional datasets. It has been also observed that the results are statistically

significant.

163

7.2 Future Work

The work discussed in this thesis has inspired a number of promising directions for

future research outlined below.

• Exploring the balanced distributed and parallel dynamic switching algorithm for

mining FCCI from datasets that have a large number of features and a large num-

ber of rows. The intrinsic nature of the row and feature enumerated tree is typ-

ically unbalanced, as the number of nodes in each branch of row and feature

enumerated tree vary. It is important to properly distribute the branches of the

row and feature enumerated tree among the compute nodes to traverse it and

mine the FCCI. The branches of the row and feature enumerated tree assigned to

the compute nodes are traversed using the parallel bottom-up approach and the

algorithm efficiently switches between bottom-up row enumerated approach and

bottom-up feature enumerated approach based on data characteristics during the

mining process.

• To discover the strong associations between the mined FCCI and the class at-

tribute, which helps in building the associative classifier for achieving higher clas-

sification accuracy. The Class Association Rules (CAR) should be generated in

the form of ”IF-THEN” format by identifying the strong associations between the

mined FCCI and class attribute. The set of CAR helps is building the classifier.

• Further, the associations between the mined FCCI can be used in gene expression

data analysis to uncover the gene networks. A gene network is a set of related

genes where expression of one gene may influence the other gene activity. The

associations between the mined FCCI can help in understanding the relation be-

tween one gene and set of genes. The mined associations can be optimized by the

genetic algorithm to analyze the important interactions between genes from gene

expression data.

• Designing the associative clustering algorithm for exploring the dependencies

between functional genomics datasets. The associative clustering summarizes

dependencies between data sets as clusters of similar samples having similar de-

pendencies. Such a method is particularly needed for mining functional genomics

data where measurements are available about different aspects of the same set of

functioning genes.

164

References

Aggarwal, C. C., Applications of frequent pattern mining. In Frequent pattern mining.
Springer, 2014, 443–467.

Agrawal, R., R. Srikant, et al., Fast algorithms for mining association rules. In Proc.
20th int. conf. very large data bases, VLDBvolume1215. 1994.

Alves, R., D. S. Rodriguez-Baena, and J. S. Aguilar-Ruiz (2009). Gene association
analysis: a survey of frequent pattern mining from gene expression data. Briefings in
Bioinformatics, bbp042.

Amancio, D. R. (2015a). A complex network approach to stylometry. PLoS One, 10(8),
e0136076.

Amancio, D. R. (2015b). Probing the topological properties of complex networks mod-
eling short written texts. PloS one, 10(2), e0118394.

Ananthanarayana, V., D. Subramanian, and M. N. Murty, Scalable, distributed and
dynamic mining of association rules. In High Performance Computing—HiPC 2000.
Springer, 2000, 559–566.

Aryabarzan, N., B. Minaei-Bidgoli, and M. Teshnehlab (2018). negfin: An efficient
algorithm for fast mining frequent itemsets. Expert Systems with Applications, 105,
129–143.

Biological-Datasets (). http://datam.i2r.a-star.edu.sg/datasets/krbd/index.html.

Chen, Z., Q. Yan, H. Han, S. Wang, L. Peng, L. Wang, and B. Yang (2017). Machine
learning based mobile malware detection using highly imbalanced network traffic. In-
formation Sciences.

Chon, K.-W., S.-H. Hwang, and M.-S. Kim (2018). Gminer: A fast gpu-based frequent
itemset mining method for large-scale data. Information Sciences, 439, 19–38.

Cong, G., K.-L. Tan, A. K. Tung, and F. Pan, Mining frequent closed patterns in mi-
croarray data. In Data Mining, 2004. ICDM’04. Fourth IEEE International Conference
on. IEEE, 2004.

Dabbiru, M. and M. Shashi (2010). An efficient approach to colossal pattern mining.
International Journal Computer Science Network Security, 10(1), 304–312.

Djenouri, Y. and M. Comuzzi (2017). Combining apriori heuristic and bio-inspired
algorithms for solving the frequent itemsets mining problem. Information Sciences,
420, 1–15.

Djenouri, Y., D. Djenouri, A. Belhadi, and A. Cano (2018). Exploiting gpu and cluster
parallelism in single scan frequent itemset mining. Information Sciences.

Dong, J. and M. Han (2007). Bittablefi: An efficient mining frequent itemsets algo-
rithm. Knowledge-Based Systems, 20(4), 329–335.

Fayyad, U., G. Piatetsky-Shapiro, and P. Smyth (1996). From data mining to knowledge
discovery in databases. AI magazine, 17(3), 37.

Fu, H. and M. O. Foghlu, A distributed algorithm of density-based subspace frequent
closed itemset mining. In 2008 10th IEEE International Conference on High Perfor-
mance Computing and Communications. IEEE, 2008.

Fumarola, F., P. F. Lanotte, M. Ceci, and D. Malerba (2016). Clofast: closed sequential
pattern mining using sparse and vertical id-lists. Knowledge and Information Systems,
48(2), 429–463.

Han, J., J. Pei, and Y. Yin, Mining frequent patterns without candidate generation. In
ACM Sigmod Recordvolume29. ACM, 2000.

Huang, H., Y. Miao, and J. Shi, Top-down mining of top-k frequent closed patterns
from microarray datasets. In Conference Anthology, IEEE. IEEE, 2013.

Javed, A. and A. Khokhar (2004). Frequent pattern mining on message passing multi-
processor systems. Distributed and Parallel Databases, 16(3), 321–334.

Jiawei Han, M. and J. Pei (2011). Data mining: concepts and techniques: concepts and
techniques.

Li, W., J. Han, and J. Pei, Cmar: Accurate and efficient classification based on mul-
tiple class-association rules. In Data Mining, 2001. ICDM 2001, Proceedings IEEE
International Conference on. IEEE, 2001.

Lin, K.-C., I.-E. Liao, T.-P. Chang, and S.-F. Lin (2014). A frequent itemset mining
algorithm based on the principle of inclusion–exclusion and transaction mapping. In-
formation Sciences, 276, 278–289.

Lin, K. W. and D.-J. Deng (2010). A novel parallel algorithm for frequent pattern
mining with privacy preserved in cloud computing environments. International Journal
of Ad Hoc and Ubiquitous Computing, 6(4), 205–215.

Lin, K. W. and Y.-C. Lo (2013). Efficient algorithms for frequent pattern mining in
many-task computing environments. Knowledge-Based Systems, 49, 10–21.

Liu, C., Z. Zheng, K.-Y. Cai, and S. Zhang, Distributed frequent closed itemsets min-
ing. In 2007 Third International IEEE Conference on Signal-Image Technologies and
Internet-Based System. IEEE, 2007.

Liu, G., H. Lu, Y. Xu, and J. X. Yu, Ascending frequency ordered prefix-tree: Efficient
mining of frequent patterns. In Eighth International Conference on Database Systems
for Advanced Applications, 2003.(DASFAA 2003). Proceedings.. IEEE, 2003a.

Liu, G., H. Lu, J. X. Yu, W. Wang, and X. Xiao, Afopt: An efficient implementation of
pattern growth approach. In FIMI. Citeseer, 2003b.

166

Liu, H., J. Han, D. Xin, and Z. Shao, Mining frequent patterns on very high dimen-
sional data: a topdown row enumeration approach. In Proceeding of the 2006 SIAM
international conference on data mining (SDM’06), Bethesda, MD. SIAM, 2006.

Liu, H., X. Wang, J. He, J. Han, D. Xin, and Z. Shao (2009). Top-down mining of
frequent closed patterns from very high dimensional data. Information Sciences, 179(7),
899–924.

Lucchese, C., S. Orlando, and R. Perego (2006). Fast and memory efficient mining
of frequent closed itemsets. IEEE Transactions on Knowledge and Data Engineering,
18(1), 21–36.

Lucchese, C., S. Orlando, and R. Perego, Parallel mining of frequent closed patterns:
Harnessing modern computer architectures. In Data Mining, 2007. ICDM 2007. Sev-
enth IEEE International Conference on. IEEE, 2007.

Miao, Y., G. Chen, B. Song, and Z. Wang, Tp+ close: Mining frequent closed patterns
in gene expression datasets. In VLDB Workshop on Data Mining and Bioinformatics.
Springer, 2006.

Naulaerts, S., P. Meysman, W. Bittremieux, T. N. Vu, W. V. Berghe, B. Goethals, and
K. Laukens (2015). A primer to frequent itemset mining for bioinformatics. Briefings
in bioinformatics, 16(2), 216–231.

Negrevergne, B., A. Termier, J.-F. Méhaut, and T. Uno, Discovering closed frequent
itemsets on multicore: Parallelizing computations and optimizing memory accesses. In
High Performance Computing and Simulation (HPCS), 2010 International Conference
on. IEEE, 2010.

Negrevergne, B., A. Termier, M.-C. Rousset, and J.-F. Méhaut (2014). Para miner: a
generic pattern mining algorithm for multi-core architectures. Data Mining and Knowl-
edge Discovery, 28(3), 593–633.

Nguyen, T.-L., B. Vo, B. Huynh, V. Snasel, and L. T. Nguyen, Constraint-based method
for mining colossal patterns in high dimensional databases. In International Conference
on Information Systems Architecture and Technology. Springer, 2017a.

Nguyen, T.-L., B. Vo, and L. T. Nguyen, A new method for mining colossal patterns. In
Systems, Man, and Cybernetics (SMC), 2016 IEEE International Conference on. IEEE,
2016.

Nguyen, T.-L., B. Vo, and V. Snasel (2017b). Efficient algorithms for mining colossal
patterns in high dimensional databases. Knowledge-Based Systems, 122, 75–89.

Okubo, Y. and M. Haraguchi, Finding top-n colossal patterns based on clique search
with dynamic update of graph. In Formal Concept Analysis. Springer, 2012, 244–259.

Pan, F., G. Cong, A. K. Tung, J. Yang, and M. J. Zaki, Carpenter: Finding closed
patterns in long biological datasets. In Proceedings of the ninth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining. ACM, 2003.

167

Pan, F., A. K. Tung, G. Cong, and X. Xu, Cobbler: combining column and row enumer-
ation for closed pattern discovery. In Scientific and Statistical Database Management,
2004. Proceedings. 16th International Conference on. IEEE, 2004.

Parsons, L., E. Haque, and H. Liu (2004). Subspace clustering for high dimensional
data: a review. Acm Sigkdd Explorations Newsletter, 6(1), 90–105.

Pasquier, N., Y. Bastide, R. Taouil, and L. Lakhal, Discovering frequent closed itemsets
for association rules. In Database Theory—ICDT’99. Springer, 1999, 398–416.

Pei, J., J. Han, R. Mao, et al., Closet: An efficient algorithm for mining frequent closed
itemsets. In ACM SIGMOD workshop on research issues in data mining and knowledge
discoveryvolume4. 2000.

Prasanna, K. and M. Seetha (2015). Efficient and accurate discovery of colossal pat-
tern sequences from biological datasets: a doubleton pattern mining strategy (dpmine).
Procedia Computer Science, 54, 412–421.

Qiu, Y., Y.-J. Lan, and Q.-S. Xie, An improved algorithm of mining from fp-tree. In Ma-
chine Learning and Cybernetics, 2004. Proceedings of 2004 International Conference
onvolume3. IEEE, 2004.

Rodrı́guez-González, A. Y., F. Lezama, C. A. Iglesias-Alvarez, J. F. Martı́nez-Trinidad,
J. A. Carrasco-Ochoa, and E. M. de Cote (2018). Closed frequent similar pattern min-
ing: Reducing the number of frequent similar patterns without information loss. Expert
Systems with Applications, 96, 271–283.

Salah, S., R. Akbarinia, and F. Masseglia (2017). Data placement in massively dis-
tributed environments for fast parallel mining of frequent itemsets. Knowledge and
Information Systems, 53(1), 207–237.

Silva, F. N., D. R. Amancio, M. Bardosova, L. d. F. Costa, and O. N. Oliveira Jr (2016).
Using network science and text analytics to produce surveys in a scientific topic. Jour-
nal of Informetrics, 10(2), 487–502.

Singh, B., R. Singh, N. Kushwaha, and O. Vyas, An efficient approach for discover-
ing closed frequent patterns in high dimensional data sets. In Advanced Computing,
Networking and Informatics-Volume 1. Springer, 2014, 519–528.

Sohrabi, M. K. and A. A. Barforoush (2012). Efficient colossal pattern mining in high
dimensional datasets. Knowledge-Based Systems, 33, 41–52.

Sohrabi, M. K. and V. Ghods, Top-down vertical itemset mining. In Sixth International
Conference on Graphic and Image Processing (ICGIP 2014). International Society for
Optics and Photonics, 2015.

Song, W., B. Yang, and Z. Xu (2008). Index-bittablefi: An improved algorithm for
mining frequent itemsets. Knowledge-Based Systems, 21(6), 507–513.

168

Sreedevi, M., G. Vijay Kumar, and L. Reddy, Parallel and distributed approach for
incremental closed regular pattern mining. In IT in Business, Industry and Government
(CSIBIG), 2014 Conference on. IEEE, 2014.

Tanbeer, S. K., C. F. Ahmed, B.-S. Jeong, and Y.-K. Lee (2009). Efficient single-pass
frequent pattern mining using a prefix-tree. Information Sciences, 179(5), 559–583.

Uno, T., T. Asai, Y. Uchida, and H. Arimura, Lcm: An efficient algorithm for enumer-
ating frequent closed item sets. In FIMIvolume90. 2003.

Uno, T., M. Kiyomi, and H. Arimura, Lcm ver. 2: Efficient mining algorithms for
frequent/closed/maximal itemsets. In FIMIvolume126. 2004.

Uno, T., M. Kiyomi, and H. Arimura, Lcm ver. 3: collaboration of array, bitmap and
prefix tree for frequent itemset mining. In Proceedings of the 1st international workshop
on open source data mining: frequent pattern mining implementations. ACM, 2005.

Viana, M. P., D. R. Amancio, and L. d. F. Costa (2013). On time-varying collaboration
networks. Journal of Informetrics, 7(2), 371–378.

Vimieiro, R. and P. Moscato (2014). Disclosed: An efficient depth-first, top-down
algorithm for mining disjunctive closed itemsets in high-dimensional data. Information
Sciences, 280, 171–187.

Vo, B., T.-P. Hong, and B. Le (2012). Dbv-miner: A dynamic bit-vector approach for
fast mining frequent closed itemsets. Expert Systems with Applications, 39(8), 7196–
7206.

Wang, J., J. Han, and J. Pei, Closet+: Searching for the best strategies for mining fre-
quent closed itemsets. In Proceedings of the ninth ACM SIGKDD international confer-
ence on Knowledge discovery and data mining. ACM, 2003.

Wang, S.-Q., Y.-B. Yang, G.-P. Chen, Y. Gao, and Y. Zhang, Mapreduce-based closed
frequent itemset mining with efficient redundancy filtering. In Data Mining Workshops
(ICDMW), 2012 IEEE 12th International Conference on. IEEE, 2012.

Xue, B., D. Lipps, and S. Devineni (2016). Integrated strategy improves the prediction
accuracy of mirna in large dataset. PloS one, 11(12), e0168392.

Xun, Y., J. Zhang, and X. Qin (2016). Fidoop: Parallel mining of frequent itemsets us-
ing mapreduce. IEEE transactions on Systems, Man, and Cybernetics: systems, 46(3),
313–325.

Xun, Y., J. Zhang, X. Qin, and X. Zhao (2017). Fidoop-dp: data partitioning in frequent
itemset mining on hadoop clusters. IEEE Transactions on Parallel and Distributed
Systems, 28(1), 101–114.

Yin, X. and J. Han, Cpar: Classification based on predictive association rules. In Pro-
ceedings of the 2003 SIAM International Conference on Data Mining. SIAM, 2003.

169

Yoon, Y. and G. G. Lee (2012). Subcellular localization prediction through boosting as-
sociation rules. IEEE/ACM transactions on computational biology and bioinformatics,
9(2), 609–618.

Yu, K.-M. and J. Zhou (2010). Parallel tid-based frequent pattern mining algorithm
on a pc cluster and grid computing system. Expert Systems with Applications, 37(3),
2486–2494.

Zaki, M. J. and C.-J. Hsiao, Charm: An efficient algorithm for closed itemset mining.
In SDMvolume2. SIAM, 2002.

Zaki, M. J. and C.-J. Hsiao (2005). Efficient algorithms for mining closed itemsets and
their lattice structure. Knowledge and Data Engineering, IEEE Transactions on, 17(4),
462–478.

Zhang, F., M. Liu, F. Gui, W. Shen, A. Shami, and Y. Ma (2015). A distributed frequent
itemset mining algorithm using spark for big data analytics. Cluster Computing, 18(4),
1493–1501.

Zhong, N., Y. Li, and S.-T. Wu (2012). Effective pattern discovery for text mining.
IEEE transactions on knowledge and data engineering, 24(1), 30–44.

Zhou, J. and K.-M. Yu, Balanced tidset-based parallel fp-tree algorithm for the frequent
pattern mining on grid system. In Semantics, Knowledge and Grid, 2008. SKG’08.
Fourth International Conference on. IEEE, 2008a.

Zhou, J. and K.-M. Yu, Tidset-based parallel fp-tree algorithm for the frequent pattern
mining problem on pc clusters. In Advances in grid and pervasive computing. Springer,
2008b, 18–28.

Zhu, F., Mining long patterns. In Frequent Pattern Mining. Springer, 2014, 83–104.

Zhu, F., X. Yan, J. Han, P. S. Yu, and H. Cheng, Mining colossal frequent patterns by
core pattern fusion. In Data Engineering, 2007. ICDE 2007. IEEE 23rd International
Conference on. IEEE, 2007.

Zulkurnain, N. F., D. J. Haglin, and J. A. Keane, Disclose: discovering colossal closed
itemsets via a memory efficient compact row-tree. In Emerging Trends in Knowledge
Discovery and Data Mining. Springer, 2012, 141–156.

170

Publications
Journal Papers

1. Manjunath K Vanahalli, Nagamma Patil, “An Efficient Parallel Row Enumerated
Algorithm for Mining Frequent Colossal Closed Itemsets from High Dimensional
Datasets”, Information Sciences, Elsevier, Volume: 496, pp. 343-362. (SCI and
Scopus Indexed) (Impact Factor: 5.5)
DOI: https://doi.org/10.1016/j.ins.2018.08.009

2. Manjunath K Vanahalli, Nagamma Patil, “An Efficient Dynamic Switching Al-
gorithm for Mining Colossal Closed Itemsets from High Dimensional Datasets”,
Data and Knowledge Engineering, Elsevier. (SCI and Scopus Indexed) (Impact
Factor: 1.6) DOI: https://doi.org/10.1016/j.datak.2019.101721

3. Manjunath K Vanahalli, Nagamma Patil, “Distributed Load Balancing Frequent
Colossal Closed Itemset Mining Algorithm for High Dimensional Dataset”, Jour-
nal of Parallel and Distributed Computing, Elsevier. (SCI and Scopus Indexed)
(Impact Factor: 1.8) (Revision Submitted) (Under Review)

4. Manjunath K Vanahalli, Nagamma Patil, “An Efficient Colossal Closed Itemset
Mining Algorithm for Dataset with High Dimensionality”, Journal of King Saud
University - Computer and Information Sciences, Elsevier. (Scopus Indexed) (Re-
vision Submitted) (Under Review)

Conference Papers

1. Manjunath K Vanahalli, Nagamma Patil, “Association Analysis of Significant
Frequent Colossal Itemsets Mined from High Dimensional Datasets”, 3rd IEEE
International Conference on Electrical, Computer and Electronics Engineering
(UPCON-2016) (pp. 258-263), (IIT-BHU, India) (Scopus Indexed).
DOI: https://doi.org/10.1109/UPCON.2016.7894662

2. Manjunath K Vanahalli, Nagamma Patil, “Distributed Mining of Significant Fre-
quent Colossal Closed Itemsets from Long Biological Dataset”, 18th International
Conference on Intelligent Systems Design and Applications (ISDA-2018) (pp.
891-902) (VIT Vellore, India), (Scopus Indexed) (CORE C).
DOI: https://doi.org/10.1007/978-3-030-16657-1 83

3. Manjunath K Vanahalli, Nagamma Patil, “Colossal Closed Itemset Mining Algo-
rithm for Dataset with High Dimensionality”, 11th International Conference on
Computing, Communication and Networking, IIT Kharagpur (Scopus Indexed)
(Under Review).

Curriculum Vitae

Mr. Manjunath K Vanahalli
Full-Time Research Scholar
Department of Information Technology
National Institute of Technology Karnataka
P.O. Srinivasanagar, Surathkal
Mangalore-575 025

Permanent Address

Manjunath K Vanahalli
Door No. 41, Vinay Colony
Keshwapur, Hubli -580023
Dharwad District, Karnataka, India.
Email: manjunath.k.vanahalli@gmail.com
Mobile: +91-9538156995.

Academic Records

1. M.Tech in Computer Science and Engineering from Manipal University, Manipal,
Karnataka, India, 2013.

2. B.E. in Computer Science and Engineering from Basaveshwara Engineering Col-
lege, Bagalkot, Karnataka, India, 2010.

Research Interests

Data Mining
Bioinformatics
Distributed and Parallel Computing

	Introduction
	Knowledge Discovery in Databases
	Data Mining Tasks
	Association Rule Mining and Itemset Mining
	Research Motivation
	Preliminaries
	Major Contributions of the Thesis
	Organization of the Thesis
	Summary

	Literature Survey
	Applications of Itemset Mining and Association Rule Mining
	Sequential Mining of Frequent Itemsets from the Transactional Dataset
	Parallel and Distributed Mining of Frequent Itemsets from Transactional Datasets
	Sequential Mining of Frequent Closed Itemsets from the Transactional Dataset
	Parallel and Distributed Mining of Frequent Closed Itemsets from Transactional Datasets
	Mining of Frequent Closed Itemsets from the High Dimensional Dataset
	Mining of Frequent Colossal Itemsets and Frequent Colossal Closed Itemsets from the High Dimensional Dataset
	Research Gaps
	Problem Statement
	Research Objectives
	Proposed Methodology
	Summary

	Effective Improved Preprocessing Technique to Prune Insignificant features and rows from the High Dimensional Dataset
	Proposed Effective Improved Preprocessing Technique
	Algorithm for Proposed Effective Improved Preprocessing Technique
	Results and Discussion
	Summary

	Mining Frequent Colossal Itemsets and Frequent Colossal Closed Itemsets from the High Dimensional Dataset
	Search Strategies
	Top-Down Traversal of Row Enumerated Tree
	Bottom-Up Traversal of Row Enumerated Tree

	 Proposed Frequent Colossal Itemset Mining from the High Dimensional Dataset
	Proposed Frequent Colossal Closed Itemset Mining using Prune Table
	Proposed Method for Mining Frequent Colossal Closed Itemsets from the High Dimensional Dataset using Rowset Cardinality Table
	Rowset Cardinality Table
	Proposed Closeness Checking
	Proposed Pruning Strategy
	BitSet Frequent Colossal Closed Itemset Mining (BSFCCIM) algorithm
	Complexity Analysis

	Results and Discussion
	Results of Frequent Colossal Itemset Mining from the High Dimensional Dataset
	Results of Frequent Colossal Closed Itemset Mining using Prune Table
	Results of BitSet Frequent Colossal Closed Itemset Mining (BSFCCIM) algorithm

	Summary

	Dynamic Switching Algorithm for Mining Frequent Colossal Closed Itemsets
	Search Strategies
	Top-Down Traversal of Feature Enumerated Tree
	Bottom-Up Traversal of Feature Enumerated Tree

	Proposed Dynamic Switching Method for Mining Frequent Colossal Closed Itemsets
	Itemset Support Table
	Proposed IST based Closeness Checking
	Proposed IST based Pruning Strategy
	Proposed Dynamic Switching Frequent Colossal Closed Itemset Mining (DSFCCIM) algorithm
	RowEnum Procedure
	FeatureEnum Procedure

	Complexity Analysis

	Results and Discussions
	Summary

	Distributed and Parallel Mining of Frequent Colossal Closed itemsets from the High Dimensional Dataset
	Distributed Row Enumerated Frequent Colossal Closed Itemset Mining (DREFCCIM) algorithm
	Parallel Row Enumerated Method for Mining Frequent Colossal Closed Itemsets from the High Dimensional Dataset
	Effective Improved Parallel Preprocessing (EIPP) Technique
	Parallel Frequent Colossal Closed Itemset Mining (PFCCIM) algorithm

	Distributed and Parallel Mining of Frequent Colossal Closed Itemsets with Load Balancing
	Results and Discussion
	Results of DREFCCIM Algorithm
	Results of PFCCIM Algorithm
	Runtime Analysis
	Speed-up Analysis
	Statistical Significance Analysis

	Results of BDPFCCIM Algorithm
	Runtime Analysis
	Speed-up Analysis
	Statistical Significance Analysis

	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	References

