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Abstract

The advancement in Internet-based communication technology has enabled mal-

ware to achieve its intent without the user’s consent. It penetrates or harms a com-

puter system’s integrity, availability, and confidentiality. Forbye, a modern malware,

is equipped with obfuscation techniques that maximize its capability to defeat anti-

malware detection systems and evade detection. The conventional anti-malware de-

tection techniques exhibit inherent delayed effectiveness due to their signature-based

detection and are inadequate to ascertain advanced malware. Therefore, there is need

for a proficient malware detection technique, which can precisely identify it.

The traditional Windows malware detection techniques can analyze malware with-

out executing them. These techniques discern the malware by analyzing the static fea-

tures of the Portable Executable (PE) files. However, they are incompetent against

the emerging advanced malware attacks. To address this, behavioural-based malware

detection technique emerges as an essential complement to defend against such sophis-

ticated malware. The behavioural-based detection technique monitors and captures the

activities of the malware during its runtime. It executes the input file (PE) in an isolated

environment and records its behaviours during execution. However, in real-life sce-

nario, it is tedious to examine all the recorded features. Hence, identifying significant

features from the original features set is the primary challenging task in this technique.

Several issues remain open in the development of an intricate malware detection system

that can resist the attacks caused by the malware. Many examinations illustrate that the

current malware detection systems are easily compromised by sophisticated malware.

There are various solutions proposed in literature to uncover malware. However, each

detection approach has its own limitation(s).

The present research work aims to propose a classic approach to detect and classify

Windows malware by extracting static features or behavioural features or a combination

of both (hybrid features) of the PE files. In this regard, initially, the Malware Detection

System (MDS) was designed based on the information extracted related to Portable

Executable Optional Header Fields (PEOHF) as static features. In addition, to iden-

tify the malicious activities of the malware, behaviour analysis of the PE files was also

performed by considering Application Programming Interface (API) or API with their

corresponding category (CAT-API) or System calls invoked by the input PE file during

execution. Concurrently, for precise classification operation, preserving the informative

features is highly necessary to detect and distinguish the unknown PE files as malware



or benign. With this in view, the performance of the Feature Selection Techniques

(FSTs) in recommending the best features is crucial for classifiers in discriminating

between benign and malware PEs was evaluated. Subsequently, a malware detection

technique based on visualization images was proposed where the images were gener-

ated using behavioural features suggested by the FST. Moreover, the effectiveness of

the hybrid features in the detection of malware was examined based on the significant

features recommended by the FSTs. Several sets of experiments were carried out to

evaluate and demonstrate the potency of the proposed approaches. The efficiency of all

the proposed approaches was assessed using real-world malware samples with 10-fold

cross-validation tests. Different evaluation metrics such as True Positive Rate (TPR),

False Positive Rate (FPR), Precision, Recall, F-Measure, and Accuracy were used to

evaluate the proposed approaches. Based on the obtained experimental results, it was

observed that the proposed approaches are effective in the detection and classification

of the Windows malware.

Keywords: Behavioural-based features; Cuckoo Sandbox; Feature Selection

Technique; Portable Executable Files; Static features; Windows

Malware Detection.
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Chapter 1

Introduction

The growth in Internet technology has significantly and irreversibly influenced everyday

lives in recent years. As the Internet turns out to be progressively pervasive, cyber

threats have become gradually frequent and severe. The absence of adequate defensive

mechanisms on computers allows cybercriminals to initiate security attacks.

In the near foreseeable future, almost all electronic devices will be connected to the

Internet creating a vast potential of functionality. Devices will access remotely, and

consequently, these devices will become prominent targets for cybercriminals. The mo-

tivations behind cybercrime are exemplary in that they support the attack and discard

the defence. Cybercrime creates exceptional yields at minimal risk and minimal effort

for programmers as the two most basic exploitation methods used by cybercriminals are

social engineering and vulnerability. Cybercriminals deceive the user into granting ac-

cess by employing social engineering methods. They use the vulnerability exploitation

method and exploit the programming or execution failure to gain access. They mostly

take advantage of the malware for their desired intent.

Malware is well-known as malicious software designed to disrupt the normal op-

erations of computers or computer networks. It accomplishes this through illegitimate

actions without the consent of the user. In early years, malware was created to highlight

the vulnerabilities of the computers. Unfortunately, the growth of malware has expe-

ditiously turned into a very profitable business in current days. So, malware authors

started to use malicious code to compromise a large number of computers for mone-

tary benefits. Malware can perform various types of attacks on modern computers and

communication infrastructure by getting downloaded into the computer as a genuine

application and emerging as a greater threat in the real world (Egele et al., 2012).

A few examples of recent malware samples affecting Windows machines are As-

taroth, AZORult, Emotet, Petya, Trickbot, and Wannacry. Astaroth is a sophisticated

malware that targets the Windows machines to fetch sensitive information like creden-

tials, keystrokes, and other data, which it exfiltrates and sends to a remote attacker.

AZORult is a trojan malware that compromises system security with backdoor capabil-

ities and executes malicious commands to fetch the computer details such as a globally

unique identifier, user name, and operating system version. Emotet is a banking trojan

malware that obtains financial information by injecting malicious code into the Win-



dows machines. Petya ransomware targets Windows systems and encrypt a hard drive’s

file system table and prevents Windows from booting. WannaCry is a ransomware

worm that can infect Windows machines by encrypting files on the hard drive and mak-

ing them impossible for users to access. To confront such sophisticated malware, it

is crucial to develop a sophisticated Malware Detection System (MDS) which adopts

effective anti-malware defensive solutions.

Most of the existing malware detection approaches depend on automatic malware

analysis tools (Rieck et al., 2008), and these are signature-based techniques. These

techniques can be easily evaded since current malware are well- equipped with polymor-

phism techniques (Moser et al., 2007; Bailey et al., 2007). The complement approach

is the behaviour-based malware detection approach, which checks the behaviour of the

executable file (PE file) and gathers its information at runtime to identify whether the

executable is malware or not (Ahmadi et al., 2013). More often, a malware analyst can

notice that the unknown malware that emerges regularly exhibits slight change in its

version compared with the earlier version. To tackle such malware, behaviour-based

detection approach is a great choice as it can perform precise detection and classifica-

tion.

1.1 MALWARE CHARACTERIZATION

Malware employs one or more anti-malware analysis techniques to evade these defen-

sive solutions and makes it slow and tedious. However, malware can be characterized

based on their concealment strategies. The common techniques adopted by malware to

evade the detection include:

Obfuscation: Malware developers use the obfuscation technique to make malware

tougher against reverse engineering (OKane et al., 2011). They use actions such as in-

sertion of unnecessary jumps, addition of garbage instructions, and modify the actual

program to a different form while retaining its functionality. Earlier techniques were

developed to handle the infringement of the intellectual property of the software prod-

ucts, but currently, malware developers use them to prevent detection (You and Yim,

2010).

Polymorphism: The malware utilizes this technique to encrypt itself to a new vari-

ant by using the encryption algorithm (Sharma and Sahay, 2014). The polymorphic

malware mutates its syntaxes each time while performing malicious events without

change in semantics. Polymorphic malware can generate unlimited number of decryp-
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tors by altering the instructions in the next variant of malware and evade detection.

Metamorphism: The malware uses this technique and transforms itself into a new

instance of malware, rather than generating a new decryptor (Borello and Mé, 2008).

This malware has no resemblance to the original one. This characteristic makes them

sophisticated helps in evading the detection techniques.

Remote execution malware: The malware designed using this technique is capable

of being triggered arbitrarily over the network and is referred to as remote execution

malware (Saeed et al., 2013). Cybercriminals use these to achieve their intention using

the Internet.

1.2 MALWARE TYPES

Malware are classified based on their behavioural characteristics. The taxonomy of

these discriminative malware is important to perceive their threat level and to get forti-

fied. The infamous malware are Worm, Virus, Trojan Horse, Spyware, Rootkit, etc.

Worm A worm is a self-replicating malicious program, which exploits the vulnera-

bilities of the target system.

Virus A virus is a program, that propagates by interpolating a copy of itself to an-

other program and becomes a part of it.

Trojan A type of malicious program used to mislead legitimate users. It attracts the

users to execute it on their systems and performs various types of malicious activities.

Spyware A type of malicious software which secretly monitors and collects various

types of personal information of the user.

Rootkit A rootkit is a kind of malware, which allows an unauthorized entity to

access and attain control of the host system without being detected.

1.3 MALWARE DETECTION APPROACH

Malware analysis is performed to identify the malicious elements in the input file(s) by

either using the static approach or the dynamic approach or a combination of both.

However, there has been great concern regarding the timely discovery of unknown

malware in recent years and is still a critical issue. Existing techniques (Bazrafshan

et al., 2013) related to malware detection are mainly classified into three types: (a)

Static features-based approach, (b) Behavioural features-based approach, and (c) Hy-
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brid features-based approach.

1.3.1 Static Features-based Approach

Static features-based malware detection approach in many ways is the backbone for

most of today’s existing anti-malware defensive solutions. This approach relies on the

patterns (features) extracted from source files or signatures or database description. The

static features of the PE files can be N-grams (byte sequences) (Kolter and Maloof,

2006; Ye et al., 2010), or Operational code (Opcode) (Santos et al., 2010), or Printable

String Information (PSI) (Ye et al., 2009), or Dynamic Link Library (DLL) related

information, or Optional Header (OH), or Disk Operating System Header (DOSH), or

File Header (FH), or a combination of any of these extracted from the source PE files

(Shabtai et al., 2009; Masud et al., 2008).

Signature-based technique is one of the static features-based techniques. It cate-

gorizes the known malware accurately by relying on the identification of a unique se-

quence of bytes in the binary code. To detect whether the input file is malware or not,

static features-based anti-malware defensive solution computes signature (for example,

Hash digest) for the input files and compares it with the signature database. If a match

is found, then it declares it as malware, otherwise as benign or unknown malware. Later

the unknown malware is analyzed to generate a new signature and update the database.

While investigating the unknown malware and the creation of a unique signature to

update the signature database, the unknown malware might attack modern computers

and communication infrastructure that are vulnerable. Thus, static features-based mal-

ware detection approach is inefficient and incapable of identifying unknown malware

that uses code obfuscation techniques. Thus, signature-based techniques achieve poor

performance when attempting to detect unseen malware.

1.3.1.1 N-grams

N-gram represents a sequence of ‘N’ consecutive bytes constructed from the byte se-

quence extracted from a source file. In other words, the extracted data is represented

in overlapping substrings obtained based on the sliding window approach known as

N-grams (Raff et al., 2018), and the N-grams concept is widely used in information

retrieval. Although this type of feature does not provide meaningful information, it

achieves high accuracy in identifying unknown malware.
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1.3.1.2 Operational code

Opcode (Santos et al., 2013) is a part of the machine language instruction that specifies

the operation to be performed. Opcodes are used for representing an PE file by stream-

lining it into a series of Opcodes. Moreover, it is used for statically analyzing the PE

files and acts as a predictor for detecting malware with obfuscated characteristics.

1.3.1.3 Printable String Information

Printable String Information (Ye et al., 2009) is un-encoded strings present in the PE

file, which can reveal information regarding the nature of the file as benign or malware.

These strings can be a part of the file or information on system resources used. PSIs

that are extracted from the PE files are used as static features in prediction and detection

of unseen malware.

1.3.1.4 Dynamic Link Library

A Dynamic Link Library is executable code in the form of a computer library that con-

tains a set of functions that are called by a PE file either at startup or whenever required.

Specifically, DLLs are imported from the host operating system during execution. Iden-

tifying and understanding the DLLs invoked by the malware can define the nature of

the malware and its purpose.

1.3.1.5 Portable Executable File Header Information

The PE file (Kumar et al., 2019) is represented as a common file format for all versions

of the Windows operating system. It mainly constitutes of a MS-DOS Header, PE

Header, Section Header, and Sections as depicted in Figure 1.1.

Figure 1.1: A general layout of the PE file depicting members of the PE Header (Belaoued and
Mazouzi, 2015)

The PE file always starts with an MS-DOS Header. The purpose of the Disk Oper-

ating System (DOS) is to check whether the PE file is valid or not. If the file runs under
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the DOS environment, then the MS-DOS stub is a built-in executable used to display

the error message. The next field is the PE Header and its structure provides essential

information used by the PE loader. After the PE Header, there exist several Sections

which store the data in terms of blocks. In each Section, the data is organized based on

common attributes. The PE Header format is a IMAGE NT HEADERS data structure,

which consists of the PE-Signature, FH, and the OH. The OH is composed of several

fields as shown in Figure 1.1.

The major disadvantage of the static features-based approach is that it fails to counter

packed malware or unseen malware or new malware. Further, static features-based de-

tection techniques often require a human analyst to analyze the code to understand the

malware functionality. A large number of new malware keep emerging and the manual

analysis of these samples is a tedious task. Hence, behaviour-based detection techniques

are needed.

1.3.2 Behavioural Features-based Approach

In behavioural features-based malware detection approach, the malware is analyzed

by observing its behaviour during runtime. The behaviour of the malware (PE file)

is determined by recording the system calls and API calls invoked by the malware,

generally in an isolated environment (sandbox). Further, the recorded behaviour of the

malware is analyzed automatically using the sandbox technology, which understands

and identifies the intention of the malware within the system and its harmful effects.

Finally, it produces the execution time behaviour-based analysis report.

1.3.2.1 Sandbox Technology

The sandbox technology (Lindorfer et al., 2011; Guarnieri et al., 2012) is an effective

measure to the challenge posed by various types of malware attacks. It provides a

safe testing environment to perform dynamic malware analysis with minimal risk of

infecting other machines. While analyzing the behaviour of a user mode process, every

sandbox looks at the system calls and API calls. System calls are a routine that allow

the operating system to interact with the user-level process to perform their desired task.

These tasks include reading data from files, delivering packets across the network, and

recording of entry from the registry. It provides an automated environment to closely

observe the progress of the malware and prepare a database to categorize them into

families.
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1.3.2.2 Function Call Monitoring

A function is a code block designed to perform specific operations. Functions are use-

ful whenever a particular task needs to be repeated and thereby, it gains the property

of reusability. It provides a semantically oriented approach, instead of focusing more

on the implementation details, and is easily adaptable for many platforms. To invoke

a function, the name of the function needs to be called. Function calls are captured

through the hooking process, which implements the analysis procedure and accom-

plishes tasks such as analyzing inputs and outputs, logging program execution, moni-

toring intermediate function calls, etc..

1.3.2.3 Application Programming Interface

Application Programming Interface is a collection of defined functions and methods

required for interfacing with the operating system or service running on the system. It

is generally used for importing functions from a DLL by establishing a reference to

a library. APIs are explicitly called within the user’s program or implicitly called by

the compiler. Many anti-malware defensive solutions extract API calls for creating the

behavioural pattern of the running PE files, and later analyze the captured data using

machine learning concepts to classify the running PE file as malware or benign (Qiao

et al., 2014).

1.3.2.4 System Calls

The programs within the operating system are executed in User mode or Kernel mode.

The user level programs (browsing, word processing, image applications, etc.) are ex-

ecuted mainly in User mode. In Kernel mode, the operating system executes its own

programs (for example, driver programs). The Kernel mode is also called as a system

mode. The User mode process does not have direct access to the Kernel mode. In or-

der to perform several tasks within the system, user level processes sometimes have to

access kernel level processes, and this is accomplished through a special API called as

system calls. Some kernel level malware such as Rootkits have the capability to gain

privilege to the system and extract very sensitive information present in it (Rieck et al.,

2011). However, many malware vitiate the User mode process and gain access to the

Kernel mode. The dynamic malware analysis technique makes use of the sequence of

system calls to observe the behaviour of the running PE file with the help of the API

hooking.
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1.3.2.5 Hooking

Hooking permits the malware analyst to track the specific runtime behaviour of the PE

file at a specific point so that appropriate action can be taken to prevent infection by

the malware. Hooking provides detailed behavioural analysis of the running PE file,

and at the same time, identifies any suspicious activities caused by the running PE file

(Sami et al., 2010). The resultant analysis report after the hooking process consists of

rich information (for example, parameters accessed and processed, monitored function

calls, etc.), which is referred to as Trace (Egele et al., 2012).

The major limitations of the behavioural features-based malware detection approach

is that it allows only one PE file to execute in a controlled monitoring environment

(Willems et al., 2007) to record all the activities performed by the PE file. The PE file

must be executed for a certain amount of time to record its behaviour, which consumes

time to produce the behavioural report. Some malware exhibit their infection actions

only after certain conditions are met and for such type of malware, a controlled en-

vironment may not be suitable to acquire the execution time behaviour (Islam et al.,

2013).

1.3.3 Hybrid Features-based Approach

Static analysis and dynamic analysis are complementary to one another (Bounouh et al.,

2017). Dynamic analysis provides paramount insight of the malware, whereas static

analysis is unable to provide any significant information required to analyze an obscure

malware in real-time. MDS that merely relies either on static or dynamic analysis may

not be efficient enough to detect sophisticated malware. Therefore, hybrid features-

based malware detection techniques have emerged to perform more robust detection

and classification while combining static features with behavioural features.

1.4 FEATURE SELECTION TECHNIQUE AND CATEGORIZATION

The FST is a process of identifying a set of relevant significant features from the original

feature set that increases the effectiveness of the machine learning-based classifiers and

is also able to recognize noisy features. The FST in machine learning is broadly clas-

sified as filter-based approach and wrapper-based approach. The filter-based approach

provides a score to each feature independently without using any learning algorithm,

whereas the wrapper-based approach uses a learning algorithm to score the features.

The main reasons to incorporate the FST in the proposed approaches are because of its

following advantages:
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• The FST can reduce the curse of dimensionality and make the classifiers to train

faster with less time;

• It can reduce the over-fitting problem by discarding the redundant features and

lessen the chance to make a decision based on irrelevant features; and

• It can improve the prediction ability of the machine learning-based classifiers by

recommending the best subset of features based on their highest computed score.

In the present work (proposed work), both the filter-based FST and the wrapper-

based FST were used to examine their efficiency in recommending significant features

that would enhance the predictive performance of the machine learning-based classi-

fiers. The explanation regarding the FSTs utilized in the proposed work is provided in

the respective chapters. Further, a set of experiments were conducted to evaluate the

performance of the chosen FSTs.

1.5 MOTIVATION

People in modern times rely more on Internet-based services and hence, the Internet

has become an essential part of the daily life. Most commonly, people who use the

Internet for services like online banking, email, online shopping, and advertisement

can accomplish their commercial/personal tasks easily as well as rapidly. However, in

the real world, hackers with malevolent intent may utilize the Internet to exploit legit-

imate users’ private information like bank transactions details, user login credentials,

etc. Malignant users make use of malware to fulfil their desired goals.

Malware is destructive in today’s digital world. Due to its proliferation, most of

modern computers and communication infrastructure are getting compromised very

easily. Figure 1.2, which is referred from a public source (Andreas, 2019), depicts

the statistics of the rapid growth of malware over the last ten years. As per the infor-

mation provided, most anti-malware defensive solutions register on average 350,000

new malicious programs every day (Andreas, 2019). Due to the evolution of new mal-

ware, many financial organizations such as banks, fund exchange related companies,

crypto-currency exchange, etc. are subjected to attacks by cybercriminals. A report

provided by Kaspersky reveals that attacks on corporate users had increased to nearly

25% in 2018 than on home users compared with 2017 (Eugene, 2019). The attackers

use legitimate software to collect sensitive information from the attacked network.
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Figure 1.2: Statistics showing the growth of malware in millions (m) in last ten years (Andreas,
2019)

Based on the statistical study, the following reasons motivated the present research

work:

• Static features-based malware detection approaches examine syntactic markers to

discern malware. These markers are ineffective in thwarting the attacks caused

by current malware equipped with various evasion techniques.

• The effectiveness of the attacks by the malware is creating havoc with the help of

relatively simple programs.

• The existing anti-malware solutions rely mostly on signature databases that re-

quire frequent updating. The malware signatures need to be distributed to the

user systems to spot the malware efficiently.

• Today’s cybercriminals are well-mastered with almost all types of non-Windows

platforms (Linux, Android, etc.) and expertise to create malicious programs for

these platforms. However, the AVTest Institute reported that from 2017 to 2018

over 67% of all malware attacks were aimed at the Windows’ systems (see Figure

1.3).

In order to safeguard legitimate users from these threats, security vendors have de-

veloped anti-malware defensive solutions to detect the malware and to quarantine them.
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Figure 1.3: Statistics depicts the distribution of Windows malware during 2017-2018 (Andreas,
2018)

Many of these anti-malware defensive solutions identify the malware on signature-

based technique. However, the signature-based technique is time-consuming and shows

poor performance when attempting to classify unknown malware which use various

code obfuscation techniques. This growing evasion capability of new malware needs to

be countered by analyzing it dynamically in a sandbox environment, which provides an

isolated environment. This has motivated the proposed research work so as to fulfil the

defined research objectives.

1.6 MAJOR CONTRIBUTIONS OF THE THESIS

The major contributions of the thesis are as follows:

The static features-based MDS was proposed that employs PEOHF features with

their correspondent values to detect Windows malware. A set of experiments were

conducted to show the robustness of the proposed approach in precisely detecting and

discriminating the malware. The predictive performance of the classifiers depends on

the features used for classification. The Single-Stage-Feature-Selector was utilized to

obtain the best PEOHF features, and a comparative analysis of the different FSTs was

performed to identify the best FST with the potency to recommend the most signifi-

cant PEOHF features. From the experimental observations, it was found that the best

FSTs were Distinguishing Feature Selector (DFS) and Mutual Information (MI), since

the features suggested by them resulted in obtaining better detection accuracy by the

classifier.

The behavioural features-based malware detection technique based on the Cuckoo

Sandbox generated report was proposed. The Cuckoo Sandbox was used to examine
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the execution time behaviour of the PE files, and provide behavioural analysis report

in JavaScript Object Notation (JSON) format. However, the JSON reports necessitate

more storage space and more processing time. Hence, the reports were converted into

Malware Instruction Set (MIST) format. The system calls sequence triggered by the PE

files during their execution was extracted from the MIST report. The collected system

calls were structured in the form of N-grams, and the generated N-grams were treated

as features. The Information Gain (IG) FST suggested features were used to train a

classifier. A comprehensive set of experiments were conducted to perceive the best

fit classifier among the chosen six classifiers and simultaneously measured to find for

which N-gram size the best detection rate could be achieved. The machine learning-

based classifier Spegagos ensured better classification for both N-gram lengths of three

and four bytes.

The some of the FSTs are computational resources demanded and takes more time

to generate feature scores for larger datasets, if the processing is accomplished in the

sequential mode. To address this issue, a multiprocessing model was proposed, which

demonstrated IG score computation for N-gram features rapidly for larger N-gram

datasets. The proposed model was designed, implemented, and compared with the

sequential mode of the IG score computation. The obtained results manifested that the

multiprocessing model was 80% faster than the sequential model.

The effectiveness of the behavioural features suggested by the Linear Support Vec-

tor Classification (LSVC) in identifying unknown malware was investigated. The two

different types of behavioural features, namely, API calls and API calls along with their

correspondent category (Category+API calls) were considered to know which type of

features provided better malware detection rate. The highest detection accuracy was

obtained with API calls as the behavioural feature.

A Convolutional Neural Network (CNN) based malware detector was proposed to

show that the malware detection problem could be transformed into an image classi-

fication problem. It uses the runtime behavioural features (N-grams) generated by the

sequence of the CAT-API of the PE files. However, in the present instance, the signifi-

cant N-grams advised by the FST were used to create the images. The generated images

were employed to examine the proficiency of the proposed approach. The experiments

manifested that feature selection at the input level of the CNN is necessary to prevent

the Neural Network from learning the association between the irrelevant features.
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The hybrid features-based detection approach addresses the limitations of both the

static and dynamic malware analysis by using a combination of both the features. How-

ever, its effectiveness depends on the types of features used to identify the malware.

In this regard, the Hybrid Features-based Malware Detection System (HFMDS) was

proposed. The LSVC was applied onto static features set as well as dynamic features

set individually to obtain potential features that would increase the performance of the

classifier. The LSVC recommended features were treated as final features to evaluate

the effectiveness of the proposed HFMDS. The empirical results demonstrated that the

proposed HFMDS is efficient in analyzing and detecting malware by achieving high-

est accuracy for a blend of hybrid features comprising of APICAT with other header

features such as OH, DOSH, and FH.

An empirical study was performed to estimate the stability of the Random For-

est classifier by considering the hybrid features recommended by the filter-based FST.

The stability of the Random Forest classifier depends on the number of Decision Trees

required to achieve consistent accuracy. To realize this, a set of experiments were con-

ducted and the obtained empirical results demonstrated that from 160 Decision Trees

(DTs) onwards, there was not much improvement in detection accuracy. Thus, there

was no significance in increasing the number of DTs beyond 160.

1.7 ORGANIZATION OF THE THESIS

The remaining chapters of this thesis are organized as follows:

Chapter 2 presents the existing research works related to Windows malware as-

certaining techniques. It highlights the literature review on static features-based, be-

havioural features-based, hybrid features-based, and visualization-based approaches in

detection and discrimination of malware. Based on the literature outcomes, it defines

the problem statement and research objectives.

Chapter 3 discusses the effectiveness of the proposed malware detection approach

in recognition and classification of PE files as benign or malware based on the OH fea-

tures along with their corresponding values as static features. Further, the obtained ex-

perimental results demonstrate the comparative analysis of the efficiency of the chosen

filter-based FSTs. Finally, it shows that the significant PEOHF features recommended

by the FSTs yield better detection accuracy by the classifier.

Chapter 4 discusses the proposed malware detection approaches based on behavioural
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features. It describes the steps involved in generating the sequence of N-grams of spec-

ified length using the extracted system calls from the MIST reports. It also explains

the steps followed to calculate a score for each N-gram by adopting the IG FST. Fur-

ther, it demonstrates how for an N-gram length of specific bytes and specific topmost

N-grams, the classifier achieved better accuracy. Additionally, the comparative analysis

between the sequential model and the multiprocessing model in calculating the features

(N-grams) score is discussed. Further, a MDS that was designed to explore the effec-

tiveness of the LSVC is discussed. It considers two different types of dynamic features,

namely, API calls and CAT-API, to know which type of features recommended by the

LSVC provides better malware detection rate by the classifier. The proposed CNN-

based Windows malware detection approach is discussed. It uses the runtime behaviour

features suggested by the FST to create images, and the generated images are used in

the precise detection and classification of malware as per their respective families.

Chapter 5 discusses the proposed hybrid features-based malware detection approach

to identify unknown malware. It uses LSVC as a feature selector to choose prominent

hybrid features. Further, its performance is verified to know which combination of static

and dynamic features encourage the classifier to attain high accuracy. Additionally,

an investigation in to the number of Decision Trees required by the Random Forest

classifier to achieve consistent detection accuracy in the classification of PE files as

malware or benign using hybrid features is discussed.

Finally, Chapter 6 provides conclusions to the entire thesis work and offers future

directions.

1.8 SUMMARY

This chapter introduces malware detection techniques, which gives an insight into the

characteristics, challenges, and motivation in the detection of malware. It provides an

overview of the existing malware detection techniques. It gives a brief overview of the

FSTs and their categorization. This chapter also presents an outline of the contribution

and structure of the thesis.
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Chapter 2

Literature Survey

This chapter reviews previous works related to Windows malware detection techniques

used to identify malicious elements in the PE files. Some of them are static features-

based approaches, while some are dynamic features-based (behavioural features-based)

or a combination of both. However, there has been great concern regarding the timely

discovery of unknown malware in recent years and remains a critical issue. Windows

malware detection approaches such as static features-based techniques, behavioural

features-based techniques, visualization-based techniques, and Deep Learning-based

techniques are consecutively discussed in this chapter.

2.1 STATIC FEATURES-BASED MALWARE DETECTION TECHNIQUES

Most of the conventional malware detection techniques are equipped with static features-

based detection approach to classify the source PE file. The static features-based mal-

ware detection approach examines the source files without executing them. The static

features of the PE files can be consecutive byte sequence of size ’N’ bytes (N-grams)

(Reddy and Pujari, 2006; Raff et al., 2018), Opcodes (Santos et al., 2013; Ding et al.,

2014), PSI (Ye et al., 2009; Lee et al., 2011), Import Function (IF) (DLL related infor-

mation) (Narouei et al., 2015; Baldangombo et al., 2013), OH (Belaoued and Mazouzi,

2015), DOSH (Bai et al., 2014), FH (Kumar et al., 2019), and Section Header (SH) (Bai

et al., 2014) or an amalgamation of any of these features.

The authors Schultz et al. (2001) pioneered the concept of data mining to detect

unknown malware. They concentrated on mining consecutive byte sequence that rep-

resented a snippet of the program, while strings formed the PE files. Their approach

employed machine learning-based classifiers to detect and classify unknown malware.

Correspondingly, the obtained results demonstrated that all the machine learning-based

classifiers were more accurate than traditional methods. Further, based on the com-

parative analysis performed, they claimed that the Naive Bayes classifier yielded better

detection accuracy.

Kolter and Maloof (2006) proposed a detection method to classify malware, which

appeared in the wild using machine learning-based classifiers and enhanced the results

attained by (Schultz et al., 2001). They encoded all the PE files by employing the

N-gram technique and used the IG FST to select supreme N-grams and to appraise

the performance of the different classifiers. The experimental results proved that the



Boosted Decision Tree classifier achieved better detection rate.

Vinod et al. (2011) considered mnemonic N-grams and PE Headers as static features

to distinguish between benign and malware PE files. The extracted features were pre-

liminarily processed by utilizing a scatter criterion to eliminate the irrelevant features

set, and thereby reduced the dimensionality of the original features set. Thus, their

approach was successful in overcoming the computational complexity issues, which

occur during the training and prediction phase. The authors approach accomplished

detection accuracy of 96.80% with FPR of 0.138 ensuring that malware with evasion

characteristics could be recognized.

Yan et al. (2013) proposed a framework to explore distinguishing features for au-

tomated malware classification. They extracted bits of characteristic, DLL, and sys-

tem calls information from the PE files. The extracted information was represented as

Boolean features to make a systematic study and gain insight as to which of these could

highly discern the malware families.

Belaoued and Mazouzi (2015) designed and implemented a real-time PE malware

detector that analyzed the PE optional header information to discern and discriminate

unknown malware. They used two different FSTs such as the Chi-Square and Phi coeffi-

cient to eliminate noisy features that have Chi-Square score < 3.84. David et al. (2017)

examined the importance of the different fields of the PE header and showed that the

structural analysis of the header fields provided the required information to ascertain

the malware.

Kumar et al. (2019) highlighted the importance of an integrated feature set to detect

unseen malware. The authors used both the derived features and the raw static fea-

tures and developed a discriminative model based on the machine learning approach. It

achieved precision of 98.40% and the experimental results demonstrated enhancement

in classification accuracy.

The main limitation of the static features-based malware detection techniques is

that they are susceptible to inaccurate detection of sophisticated malware that adopts

obfuscation methods such as garbage instruction insertion, code reordering, compres-

sion, encryption, etc. (Santos et al., 2013). Moser et al. (2007) substantiated that static

features alone are insufficient to uncover unseen malware. Thus, to address these is-

sues, they believed that the dynamic features-based malware detection approach as a

complemented approach.
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Table 2.1 shows the summary of the malware detection approaches that use the static

features of the PE files.

In the present work, we have proposed the behavioural features-based malware de-

tection techniques to uncover the malware using the sandbox technique. We have used

Cuckoo Sandbox in our proposed approach to analyze the behaviour of the PE file

dynamically. Further, the analyzed reports of the Cuckoo Sandbox are employed to

acquire the logged behavioural features of the PE files during execution. The acquired

behavioural features are then evaluated using FSTs to obtain the best features to train

the classifier to perform prediction and classification of PE files as benign or malware.

2.2 BEHAVIOURAL FEATURES-BASED MALWARE DETECTION TECH-
NIQUES

Generally, dynamic features-based malware detection technique executes the source

file in a sandbox to gather a runtime behavioural report, which is then analyzed to

determine whether the source file is malware or benign. The reason is that the sandbox

expedites quick inspection of the source file and ensures a clean environment after the

completion of the analysis task of each input file without infecting the host system.

Dynamic features can be API calls (Mohaisen et al., 2015), System calls (Lin et al.,

2018), resource consumption, or any other function-based features captured while the

source file is in the process of execution. Several dynamic malware detection techniques

using the sandbox technology have been proposed (Bayer et al., 2006; Lengyel et al.,

2014; Qiao et al., 2014; Sethi et al., 2018). An open source malware analysis tool called

the CW-sandbox (Willems et al., 2007) captures System calls invoked by the source file

while it is being executed and produces a precise runtime behaviour report of it. Yet, the

CW-sandbox is deficient in discerning kernel mode rootkits. Later, Rieck et al. (2011)

made an effort to create a proficient malware detection approach involving the System

call sequence invoked by the source file, which provides insights and timely defence

against malware.

Qiao et al. (2014) proposed a mechanized malware investigation system called the

CBM. The behavioural report produced by it was utilized to transform the captured API

call sequence into a byte-based consecutive information. The prime use of this approach

was to diminish storage prerequisite and computational cost, and provide support for

local deployment. It resulted in accomplishing high exactness for malware clustering.
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David and Netanyahu (2015) proposed an approach, namely, the DeepSign. It em-

ployed the Deep Learning-based technique to generate the malware signature automat-

ically. The authors used the Cuckoo Sandbox generated report to analyze the behaviour

of the malware and its intent. Their approach yielded detection accuracy of 96.40%.

Fujino et al. (2015) presented a framework to extract identical malware samples by

dynamically employing the concept of ”API call topics”. The authors employed the

non-negative matrix factorization clustering approach to obtain ”API call topics” from

a vast collection of API calls to discern similar malware samples.

Salehi et al. (2017) presented an efficient and adaptable technique named MAAR

to spot sophisticated malware. It examined the activities of the input file within the

system during its execution and extracted features related to API calls and their cor-

responding arguments and returned values. Further, the most critical or distinguishing

features prescribed by the FST were utilized to group benign and malware PE files

and to achieve high detection accuracy with FPR <1. When the MAAR was analyzed

on a bigger dataset involving new families of malware, it accomplished a precision of

96.30%. Pektaş and Acarman (2018) addressed the challenges of detecting and clas-

sifying malware by using behaviour-based artefacts. The Voting Expert algorithm was

used to extract the malware’s API patterns over the API calls.

Although behavioural features-based malware analysis technique ensured promis-

ing results, there were certain limitations such as: 1) It permitted only one source file to

run at a time in a restraint examination environment to capture the execution time be-

haviour of the source file within the host system (Willems et al., 2007); 2) Each source

file was required to be executed in a certain amount of time to gather the execution time

behaviour. Hence, it expend time in providing a behavioural report; and 3) Some so-

phisticated malware disclose their purpose after particular constraints are met, and for

these obscure malware, a controlled domain was not reasonable to record its execution

time behaviour (Islam et al., 2013). An alternate approach is the hybrid features-based

malware detection technique, which consolidates both the static features and dynamic

features to examine the input file.

In the proposed hybrid features-based malware detection approach, we simultane-

ously analyze the PE files statically and dynamically to acquire both static and be-

havioural features of the PE files. The PE files that are unable to examine during the

execution time due to their obfuscation techniques can be analyzed statically to under-
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stand the intent. Thereby the proposed hybrid features-based malware detection ap-

proach overcomes the drawbacks of the behavioural features-based malware detection

approach.

Table 2.2 provides a summary of behavioural features-based malware detection ap-

proaches.

2.3 HYBRID FEATURES-BASED MALWARE DETECTION TECHNIQUES

Hybrid features-based malware analysis performs more potent identification and char-

acterization, while integrating the static and dynamic features of the source file.

Shijo and Salim (2015) proposed a methodology that used both the static and dy-

namic features of the PE files for automated detection and categorization of the mal-

ware. In this, the PSIs were used as static features, and the API calls called by the

source PE files during runtime were considered as dynamic features. Further, the N-

gram technique was employed to derive feature vectors. They used two different sizes

of N-grams of 3 and 4 bytes. The experimental outcomes showed that the precision

rate with static features was 95.88%, the dynamic feature was 97.16%, and the blend of

both static and dynamic features was 98.70%.

Islam et al. (2013) exhibited a technique that used the advantages of both static as

well as dynamic features. As static features, function length frequency and PSI were

used. As dynamic features, API calls with their parameters were used. The investiga-

tions were conducted with 541 benign PE files and 2398 malware PE files. The output

exhibited that the blend of both static and dynamic features enhanced the detection rate

and accomplished detection rate of 97.05%.

Bounouh et al. (2017) proposed a malware classification approach using hybrid fea-

tures. They mainly focused on distinguishing the respective families of the malware,

rather than discriminating between malware and benign files. To this end, they used

static features such as PSI and function length frequencies, and behavioural features

as a set of actions on the system resources. Their approach was significant in achiev-

ing better precision of 0.994 and scalability by reducing the feature space for larger

samples.
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Damodaran et al. (2017) compared malware detection techniques in view of static,

dynamic, and hybrid features. They used the Hidden Markov Model to train both

the static and dynamic features and validated the experiments using the 5-fold cross-

validation tests and attained 0.98 Area Under the Curve (AUC) score.

Table 2.3 shows a summary of hybrid features-based malware detection approaches.

2.4 VISUALIZATION-BASED MALWARE DETECTION TECHNIQUES

Visualization is a predominantly used technique in computer security domain. It enables

the human analyst to visually discern the features of the malware. Recently, several

studies were proposed by employing the visualization technique for malware analysis

(Han et al., 2015; Ni et al., 2018).

Yoo (2004) utilized self-organizing maps to visually recognize and discriminate

malware. Quist and Liebrock (2009) proposed a visualization approach to comprehen-

sively monitor the flow of program execution. Further, the authors applied the node-

link visualization technique to determine the functional areas, which were obfuscated.

Trinius et al. (2009) presented a parameterized technique to abstract the behavioural

reports generated by the sandbox. Further, the behaviour of the malware was visualized

using the Tree-Map and Thread Graph to detect and classify the malware by gathering

information related to API calls and performed operations within the sandbox.

Goodall et al. (2010) described a prototype system that gathered the output of mul-

tiple malware detection tools into a visual environment to automatically detect the dif-

ferent vulnerabilities in the software code. Nataraj et al. (2011) proposed a framework

to visually spot malware based on binary texture analysis. Initially, the malware bina-

ries (executable files) were visualized as grayscale images. Later, the authors applied

the K-Nearest Neighbours’ approach with Euclidian distance method to classify the

malware.

Kancherla and Mukkamala (2013) presented a visualization approach for malware

detection by converting the executable files into a grayscale image called byteplot to ex-

tract intensity-based and texture-based features. Han et al. (2015) proposed an approach

for malware family classification based on visualization images and entropy graphs.

The obtained empirical results demonstrated that the authors’ proposed approach could

classify a malware family with low FPR.

24



Ta
bl

e
2.

3:
Su

m
m

ar
y

of
hy

br
id

fe
at

ur
es

-b
as

ed
m

al
w

ar
e

de
te

ct
io

n
ap

pr
oa

ch
es

A
ut

ho
rs

Fe
at

ur
e

Ty
pe

Fe
at

ur
es

E
xt

ra
ct

or
(s

)
R

em
ar

ks
A

PI
FL

F
E

xe
T

D
L

L
O

pc
od

e
PS

I
PE

H
Fs

St
at

ic
Fe

at
ur

es
B

eh
av

io
ur

al
Fe

at
ur

es

Sa
nt

os
et

al
.

(2
01

3)
×

×
√

×
√

×
×

�
Sa

nd
bo

x
us

in
g

Q
em

u
an

d
W

in
e

•
Im

pl
em

en
te

d
a

m
ac

hi
ne

le
ar

ni
ng

-b
as

ed
m

al
-

w
ar

e
de

te
ct

io
n

ap
pr

oa
ch

by
em

pl
oy

in
g

bo
th

st
at

ic
fe

at
ur

es
an

d
be

ha
vi

ou
ra

l-
ba

se
d

fe
a-

tu
re

s.

G
an

do
tr

a
et

al
.(

20
14

)
×

√
√

×
×

×
√

Py
th

on
Sc

ri
pt

C
uc

ko
o

Sa
nd

bo
x

•
T

he
ef

fe
ct

of
us

in
g

on
ly

st
at

ic
fe

at
ur

es
-

ba
se

d,
on

ly
be

ha
vi

ou
ra

l
fe

at
ur

es
-b

as
ed

,
an

d
co

m
bi

na
tio

n
of

bo
th

st
at

ic
an

d
be

ha
vi

ou
ra

l
fe

at
ur

es
-b

as
ed

an
al

ys
is

,
ar

e
di

sc
us

se
d

to
sh

ow
bl

en
d

of
bo

th
fe

at
ur

es
co

ul
d

pr
ov

id
e

be
tte

ra
cc

ur
ac

y.

Sh
ijo

an
d

Sa
lim

(2
01

5)
√

×
×

×
×

√
×

St
ri

ng
s

U
til

ity
C

uc
ko

o
Sa

nd
bo

x

•
E

lu
ci

da
te

d
th

e
co

m
bi

ne
d

st
at

ic
an

d
dy

na
m

ic
fe

at
ur

es
w

ill
in

cr
ea

se
th

e
de

te
ct

io
n

ac
cu

ra
cy

w
he

n
co

m
pa

re
d

w
ith

st
an

da
lo

ne
,s

ta
tic

,a
nd

dy
na

m
ic

m
et

ho
ds

.

A
w

an
an

d
Sa

qi
b

(2
01

6)
√

×
×

×
×

√
√

ID
A

Pr
o

D
is

as
se

m
bl

er
C

uc
ko

o
Sa

nd
bo

x

•
Pr

es
en

te
d

a
hy

br
id

fe
at

ur
es

ba
se

d
m

al
w

ar
e

de
te

ct
io

n
te

ch
ni

qu
e

th
at

ex
pl

oi
ts

th
re

e
di

ff
er

-
en

tP
E

fil
e

fe
at

ur
es

to
cl

as
si

fy
th

e
PE

fil
e

as
m

al
w

ar
e

or
be

ni
gn

.

B
ou

no
uh

et
al

.(
20

17
)
×

√
√

×
×

√
×

H
ex

di
ve

to
ol

an
d

ID
A

Pr
o

D
is

as
se

m
bl

er
A

nu
bi

s

•
M

al
w

ar
e

de
te

ct
io

n
us

in
g

a
hy

br
id

fe
at

ur
es

w
as

pr
op

os
ed

to
de

m
on

st
ra

te
th

e
cl

as
si

fic
a-

tio
n

of
m

al
w

ar
e

in
to

re
sp

ec
tiv

e
fa

m
ili

es
th

an
m

er
el

y
di

sc
ri

m
in

at
in

g
th

e
PE

fil
es

as
be

ni
gn

or
m

al
w

ar
e.

�
:I

nf
or

m
at

io
n

no
te

xp
lic

itl
y

m
en

tio
ne

d,
FL

F:
Fu

nc
tio

n
L

en
gt

h
Fr

eq
ue

nc
y,

E
xe

T:
E

xe
cu

ta
bl

e
Tr

ac
es

,P
E

H
Fs

:P
or

ta
bl

e
E

xe
cu

ta
bl

e
H

ea
de

rF
ea

tu
re

s

25



Arefkhani and Soryani (2015) introduced local sensitive hashes as a new method

based on image processing for malware clustering. They tested three different hashes

such as AHash, DHash, and PHash, and from the obtained confusion matrices, they

reasonably inferred that PHash was the least confusing of the three.

Zhang et al. (2016) showed that the malware detection problem could be trans-

formed into an image classification problem. They first disassembled the executable

files into Opcode sequence and then, converted them into images to recognize whether

the source file was malware or benign by using CNN.

Ni et al. (2018) described a malware classification algorithm that performed its task

by considering visualization images and Deep Learning-based techniques. First, it con-

verted the disassembled executable files into grayscale images based on the SimHash

algorithm and then, used the CNN to ascertain the malware family.

2.5 MALWARE DETECTION USING DEEP LEARNING

Deep Learning-based techniques have become more effective in solving complex clas-

sification problems by learning essential characteristics from the input files. Recently,

Deep Learning was also used in malware detection and classification (Kan et al., 2018;

Kumar et al., 2018).

Saxe and Berlin (2015) designed a Deep Feed-Forward Neural Network model to

classify malware using the static features of the PE files. Kolosnjaji et al. (2016) con-

structed a Neural Network through a combination of Recurrent Neural Network and

CNN to perform hierarchical feature extraction. Further, they utilized the N-gram tech-

nique for effective detection and classification of the malware.

Tobiyama et al. (2016) used two stages of the Deep Neural Network in their pro-

posed malware detection method for infection detection. They generated an image via

the extracted behavioural features from the trained Recurrent Neural Network. Later,

the CNN was used to classify the feature images.

Yakura et al. (2018) proposed a method to derive more significant byte sequences

in a malware. To achieve this, they used the CNN with attention mechanism for the

images generated from the binaries and showed that higher detection accuracy can be

achieved. Rhode et al. (2018) presented Opcode sequences-based malware detection

method using the Long Short Term Memory and Recurrent Neural Network for early-

stage malware prediction.
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Table 2.4: Summary of the visualization-based and Deep Learning-based malware detection
approaches

Authors
Static

Features
Dynamic
Features

Feature
Selection

Technique

Feature(s) Model Type

Kancherla and
Mukkamala

(2013)
� � ×

Wavelet-based,

Gabor-based, and

Intensity-based Features

Support Vector Machine

Saxe and
Berlin (2015)

X × ×
Byte/entropy, PSI,

PE Import, and

PE Metadata Features

Feed Forward Neural

Network

Zhang et al.
(2016)

X × ×
Asm file features,

Bytes file features, and

Basic file property features

CNN

Kolosnjaji
et al. (2016)

× X × System call Traces
CNN and Recurrent Neural

Network

Tobiyama
et al. (2016)

× X × API call Sequence
CNN and Recurrent Neural

Network

Kolosnjaji
et al. (2017)

X × ×
PE Metadata, PE Import,

and Opcode Features

CNN and Feed Forward Neural

Network

Rhode et al.
(2018)

× X × Machine activity metrics
Long Short Term Memory and

Recurrent Neural Network

Yakura et al.
(2018)

X × × � CNN

Cui et al.
(2018)

� � × � CNN

�: Information not explicitly mentioned

Yan et al. (2018) proposed MalNet, a malware detection method that automatically

learns essential features from the raw data. It uses a combination of CNN and Long

Short Term Memory network to learn important features from the grayscale images

generated from the Opcode sequences.

Cui et al. (2018) presented an approach to boost the automatic detection and dis-

crimination of malware using Deep Learning. As part of the implementation, the au-

thors initially converted the PE files into grayscale images. Further, the CNN was used

to discern and classify these images. Additionally, they used the Bat algorithm to ad-

dress the data imbalance problem.

HaddadPajouh et al. (2018) explored the significance of the Recurrent Neural Net-

work in identifying the Internet of Things malware. They implemented three different

Long Short Term Memory structures to spot the Internet of Things malware based on

Opcode sequence and showed that their approach could achieve better detection accu-

racy.
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Table 2.4 shows a summary of the visualization-based and Deep Learning-based

malware detection approaches.

2.6 OUTCOME OF LITERATURE SURVEY

It was observed from the literature that many malware analysis techniques have been

proposed, which employ either static features (Section 2.1) or behavioural features (Sec-

tion 2.2) or hybrid features (Section 2.3) to ascertain malware and involves either ma-

chine learning-based or Deep Learning-based classifiers to precisely classify the input

file. As discussed in Section 2.1, the previous works employed static features such as

Opcode sequence, byte sequence, API call sequence, PSI, and PE header features in de-

tection and discrimination of the PE files as malware or benign. Though several works

in literature emphasize that the static features-based malware detection approaches are

proficient to precisely detect malware, they are nevertheless said to be ineffective with

regard to obfuscated malware. Moreover, promising results were presented in literature

towards detection of malware when the features extracted from PE files were repre-

sented as N-grams. Further, some works highlighted the infeasibility of the malware

analysis approaches due to the large dimensionality of the original features set.

Section 2.2 discusses the various behavioural-based malware detection approaches

available in literature. Most of the behavioural-based malware detection approaches

proposed the sandbox technique. However, it was noted that obfuscated malware could

evade the sandbox technique. Thus, Section 2.3 highlights previous works regarding

hybrid features-based malware detection approaches. In Section 2.3, it was found that

blending both the static features and behavioural features could enhance the detection

accuracy of the malware.

Based on the discussed literature in Section 2.4 and Section 2.5, it was noticed that

the Deep Learning-based malware detection approach was gaining prominence. It was

also noted from the previous research works discussed in Section 2.4 that most of the

proposed approaches incorporated the visualization-based technique that converted the

PE files to an images. Only a few research works mentioned the feature type used to

construct an image in the context of detection of malware. It is also observed that the

effect of feature selection at an input level of Deep Learning-based classifiers is not

well-studied.

From the literature survey, it was evident that most of the proposed behavioural-

based malware detection approaches used the Cuckoo Sandbox to gather the system-
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level behaviour of the PE files. It was observed that the WEKA tool is popular among

researchers to carry out the classification process using the different classifiers stated in

them. Further, evaluation metrics such as Accuracy, TPR, FPR, Precision, Recall, and

F-Measure were widely used in the literature.

TPR =
TP

(TP + FN)
FPR =

FP

(FP + TN)

Precision =
TP

(TP + FP )
Recall =

TP

(TP + FN)

F-Measure = 2 ∗

(
Precision ∗ Recall
Precision + Recall

)

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(2.1)

Here, True Positive (TP) and True Negative (TN) represent malware samples pre-

cisely classified as malware, and benign samples accurately classified as benign. A

False Positive (FP) and False Negative (FN) represent benign samples incorrectly clas-

sified as malware, and malware samples incorrectly classified as benign.

2.6.1 Problem Statement

In order to address these issues, the research problem is defined as, ”Design and develop

an efficient (new or enhanced) Windows malware detection approach”.

2.6.2 Research Objectives

The research objectives are:

1. To design and develop an efficient static features-based Windows malware detec-

tion approach;

2. To design and develop an efficient dynamic (behavioural) features-based Win-

dows malware detection approach; and

3. Verify the robustness of the proposed approach using publicly available Windows

malware samples, and also to measure its efficiency (detection rate) in terms of

Accuracy, Recall, and Precision.

29



2.7 EXPERIMENTAL SETUP

To achieve the research objectives, all experiments were conducted on a host system

that had the Ubuntu 14.04.5 LTS operating system, Intel i7-3770 CPU 3.40 Ghz, and 8

GB RAM. Further, to appraise the detection and classification ability of the proposed

Windows malware detection approaches as well as the performance of the machine

learning-based and Deep Learning-based classifiers, different evaluation metrics were

utilized and defined as per Eq. 2.1.

As discussed in Chapter 1, for the behavioural analysis of the PE files necessitates

it to be executed in a controlled environment to monitor its runtime activities. In this

regard, the Cuckoo Sandbox was employed to generate the behavioural report in the

proposed works. Most of the previous research works utilized the same to perform the

behaviour analysis of the PE file (see Table 2.2).

2.8 SUMMARY

In this chapter, the existing state-of-the-art approaches concerned with Windows mal-

ware detection based on static features, behavioural features, and hybrid features were

discussed. Discussions about recent malware detection techniques existing in literature

that used the visualization-based and Deep Learning-based approaches were also pre-

sented in this chapter. The problem statement and research objectives related to design-

ing and implementation of malware detection techniques that rely on static features and

behavioural-based features were highlighted. Finally, the experimental set-up employed

in the present research works to accomplish the research objectives was described.
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Chapter 3

Analysis of Static Features-based Malware Detection

Approach

The PE file is represented as a native file format for all variants of the Windows oper-

ating system. Today, majority of the malware target PE files to acquire the necessary

information. PE features are extracted from certain parts of the PE files, and these es-

sential features indicate whether the PE file was created or infected to perform malicious

activity.

Most of the existing anti-malware defensive solutions employ various malware de-

tection techniques and determine the type of file before they parse to detect the embed-

ded malicious data. They deliberately analyze static features such as binary sequence,

header information, function calls, and any other information to determine whether

the PE file is benign or malware. However, in a real scenario, it becomes tedious to

examine all the gathered features to acquire the most predominant features for the clas-

sification operation. Under such circumstances, FST plays a vital role in minimizing

the dimensionality of the original features set, which consequently boosts the predictive

performance of the classifiers (Li et al., 2017).

3.1 PERFORMANCE EVALUATION OF FILTER-BASED FEATURE SELEC-

TION TECHNIQUES IN CLASSIFYING PE FILES

In the present work, an MDS was designed, implemented, and tested to detect malware

based on extracted information related to the PEOHF. Subsequently, the performance

of the FSTs in selecting the most relevant PEOHF features crucial for discriminating

between benign and malware PE files was also analyzed. The Single-Stage-Feature-

Selector was employed to acquire significant features by adapting the filter-based FST.

Different FSTs such as DFS (Uysal and Gunal, 2012), MI (Santos et al., 2010), Cate-

gorical Proportional Difference (CPD) (Simeon and Hilderman, 2008), and Darmstadt

Indexing Approach (DIA) (Jin and Srihari, 2007) were used to select the most signifi-

cant features. Two sets of experiments were conducted on the Balanced Dataset (BD)

and the Unbalanced Dataset (UBD) to evaluate the performance of these four filter-

based FSTs.



3.1.1 Methodology

An overview of the proposed MDS, which has two phases, namely, the Training phase

and the Prediction phase is shown in Figure 3.1. The Training phase is used to build a

training file needed to train the classifier. The Prediction phase measures the detection

ability of the trained classifier. However, the main objective of the proposed approach

is to measure the performance ability of the chosen four filter-based FSTs.

Figure 3.1: Proposed Malware Detection System architecture overview

To train and evaluate the performance of the proposed MDS, a dataset of PE files

was collected separately from various sources (see Section 3.1.3) as BD and UBD for

further processing. Both the datasets were used for the purpose of analysis of the chosen

four filter-based FSTs. Each of these was individually supplied onto the PE-File-Parser

to initiate the analysis task.

3.1.1.1 Training Phase

In the Training phase, the MDS is provided with a training set of benign and malware

PE files. Each PE file is parsed to extract the features related to the OH fields. The

representative features of the PE files are processed using the FST to obtain the most

informative features to prepare a training file. To accomplish this task, the training phase

utilizes the PE-File-Parser, Single-Stage-Feature-Selector, and Training-File-Creator as

its essential components.
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3.1.1.2 PE-File-Parser

The prime goal of the PE-File-Parser is to extract PEOHF names with their correspond-

ing values as features from the dataset of PE files and to produce the output as benign

and malware PEOHF files. This task is accomplished by employing its subcomponent

PE-Optional-Header Extractor, which uses a python module called pefile (Ero, 2017) to

acquire the OH features from the input PE files. However, the extracted set of features

size is quite large due to the presence of noisy or irrelevant features. Therefore, the

Single-Stage-Feature-Selector is utilized to identify the most crucial features required

to prepare a training file and simultaneously reduce the dimensionality of the feature

set.

3.1.1.3 Single-Stage-Feature-Selector

It plays a crucial role in preserving the informative features and to detect the unknown

malware accurately from a number of other benign PE files. To perform this desired

operation, it uses the Contingency-Table-Creator as one of its subcomponents.

In the Single-Stage-Feature-Selector, the task of the Contingency-Table-Creator is

to create a Contingency Table (CT) that provides the frequency distribution of each

feature such as the presence and absence in Benign PEOHF and Malware PEOHF files

as an integer count. The FST utilizes the CT to generate a score for each feature, and

based on the score, the features are selected as prominent features. In this regard, the

four filter-based FSTs chosen in the present work are DFS, MI, CPD, and DIA. Further,

to demonstrate their efficiency, the four Final Feature Sets (FFSs) are constructed by

selecting the topmost features of different thresholds. However, each FFS consists of

features suggested by individual FSTs such as DFS, MI, CPD, and DIA. Finally, a

training file is built using the FFS with the PEOHF files corresponding to the training

samples. Lastly, the classifier is trained using the constructed training file.

3.1.1.4 Final Feature Set

FFS is a set that consists of distinct benign and malware features of the benign and

malware PE files. These features are obtained after carrying out all the processing steps

with no further elimination of features. Therefore, it is named as FFS. The features

available in the FFS are used to prepare a training file as well as testing files crucial in
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measuring the efficiency of the classifiers.

3.1.1.5 Training-File-Creator

The Training-File-Creator creates a training file essential to train the classifiers. It

parses the training dataset of the benign and malware PEOHF files with FFS features in

order to create a training file.

3.1.1.6 Prediction Phase

In the Prediction phase, the Testing-File-Creator is used to create a testing file necessary

to appraise the predictive performance of the trained classifiers. It makes use of the

FFS features and the output of the PE-File-Parser to deliver a testing file. The generated

testing file is sent to the trained classifier to ascertain whether the test input file is benign

or malware.

3.1.2 Filter-based Feature Selection Techniques

This section provides a description of the four filter-based FSTs used in the present

work for the purpose of performance analysis. The minimization of the immense di-

mensionality of the feature set is of the greatest concern in malware classification. The

FST identifies the features that have high classification potential and filters features that

are noisy or irrelevant. This results in massive reduction of computational cost. The

following are the different filter-based FSTs utilized in the present work:

(i) Distinguishing Feature Selector

DFS (Uysal and Gunal, 2012) evaluates the contribution of the features in a represen-

tative vector to the class discrimination in a probabilistic approach and computes the

score for each feature as per Eq. 3.1,

DFS(f) =
N∑
i=1

P (ci|f)

P (f̄ |ci) + P (f |c̄i) + 1
(3.1)

Where, N is the total number of categories, P (ci|f) denotes the conditional prob-

ability of category ci when the feature f is present, P (f̄ |ci) signifies the conditional

probability of the category ci when the feature f is absent, and P (f |c̄i) is the condi-

tional probability of feature f given the category other than ci.
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(ii) Mutual Information

MI (Singh et al., 2014) calculates the mutual dependence of any two random variables.

It measures the decline in uncertainty about one random variable as a function of the

other. If the MI score between two random variables is zero, then the variables are

independent, and those with the highest score will have a large reduction in uncertainty.

The MI score for a feature and the category pair is computed as per Eq. 3.2.

MI(f, ck) =
∑

vf∈{1,0}

∑
vck∈{1,0}

P (f = vf , ck = vck) ln
P (f = vf , ck = vck)

P (f = vf )P (ck = vck)
(3.2)

Where, f indicates the feature that takes the value vf = {1, 0}. If the value of

vf = 0, then the file does not contain the feature f , and if vf = 1, it indicates that the

file contains the feature f . ck is the category that takes the value one, i.e., vck = 1, when

the file is present in a category ck, otherwise, the value is zero, i.e., vck = 0 indicates

the absence of the file in the category ck.

(iii) Categorical Proportional Difference

CPD (Simeon and Hilderman, 2008) calculates the degree to which a feature distin-

guishes a specific category from other categories. The attainable values for CPD are

limited to the interval (-1, 1). The CPD score near to -1 denotes that the feature is

present in most of the files in all the categories. If the score is equal to one, it represents

that the feature is present in the file of only one category. The CPD score for the feature

f in the category ck is formulated as per Eqs. 3.3 and 3.4.

CPD(f, ck) =
Nf,ck −Nf,ck

Nf

(3.3)

The CPD for the feature f is the ratio associated with the category ck for which the

value is the highest.

CPD(f) = maxk{CPD(f, ck)} (3.4)
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(iv) Darmstadt Indexing Approach

DIA (Jin and Srihari, 2007) FST considers the properties of the features, categories, and

pair-wise relationships as a dimension. The DIA score for the feature f is calculated as

per Eq. 3.5.

DIA(f, ck) =
Nf,ck

Nf

(3.5)

Where, Nf,ck are the files containing feature f in the category ck, and Nf denotes

the number of files containing the feature f .

3.1.3 Experimental Results and Analysis

The experimental data consists of two datasets, BD and UBD. BD consists of an equiv-

alent number of benign and malware PE files. In UBD, the malware PE files are twice

the count of the benign PE files as shown in Table 3.1. The benign PE files include the

Windows system files collected from a freshly installed Windows XP virtual machine.

The malware PE files are downloaded from the public source VirusShare (VirusShare,

2011). To ensure that all the files in the dataset are correctly labelled, both the datasets

are scanned with more than 40 anti-malware engines available on VirusTotal (VirusTo-

tal, 2004a).
Table 3.1: Experiment Dataset details

Dataset Type No. of Benign PE files No. of Malware PE files

Balanced Dataset (BD) 200 200 (trojan(100) + backdoor(100))

Unbalanced Dataset (UBD) 200 400 (trojan(100) + backdoor(100) + rootkit(200))

As explained earlier (in Section 3.1.1), the PE-File-Parser receives both the benign

and malware PE files to extract the information related to the OH Fields as features.

Each extracted feature is indicated by its name and its corresponding value. The derived

features are gathered to form an original feature set. Further, to attain the best features,

the FSTs were applied separately onto the original feature set to get the score for each

feature separately, and the topmost K number of features was chosen based on the

highest score. Four different FSTs such as DFS, MI, CPD, and DIA were used with the

intention of identifying the best one. Experiments were conducted for different values

of K such as 25, 50, 75, and 100. These best features were processed to prepare a

training file as well as testing files, which were supplied to the classifiers in order to
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determine which classifier achieved the best malware detection rate with low FPR.

The main aim was to perform a comparative analysis of the four different FSTs

and to identify the best FST with the potency to recommend the most significant fea-

tures. The classifier predictive performance depends on the features used in the training

file. From that perspective, the FFS generated consists of features recommended by the

Single-Stage-Feature-Selector. The FFS features are employed as final features since

there is no further feature elimination, and these features are used to prepare the train-

ing as well as the testing files desirable to measure the efficiency of the classifiers.

Six different classifiers such as the Sequential Minimal Optimization (SMO), Simple

Logistic, Logistic, J48, RF, and Random Tree available in WEKA were used to know

which classifier outperformed for the derived FFS. The performance of each classifier

was evaluated using evaluation metrics such as TPR, FPR, and Accuracy.

Two sets of experiments were carried out in the present work. In the first set of

experiments, the BD was considered. The PE-File-Parser processed both the benign

and malware PE files to extract the entire PEOHFs’ information as features. The ex-

tracted data was then stored into an appropriate output file, and a separate output file

was maintained for each individual PE file. Each extracted data was treated as an indi-

vidual feature, which is a prerequisite task. Since 200 malware PEOHF and 200 benign

PEOHF files produced by the PE-File-Parser were considered, these files were directly

sent as input to the chosen FSTs separately. At first, the DFS FST was executed on 1323

distinct features to generate the DFS score using Eq. 3.1. Since all these 1323 features

cannot be used to train the classifier, the predominant features were identified and se-

lected as crucial features based on their highest score. To evaluate the performance of

each FST, the topmost K number of features were selected in increments of 25, i.e.,

K=25, K=50, K=75, and K=100. Accordingly, the corresponding FFSs were prepared.

Similarly, the other three FSTs were applied on the 1323 features separately to get the

corresponding scores using Eq. 3.2, Eq. 3.4, and Eq. 3.5. Subsequently, the topmost K

number of features was selected in increments of 25, i.e., 25, 50, 75, and 100 and the

FFSs were constructed separately. The first 25 features that are recommended by each

FST of BD and UBD, respectively, have tabulated in Appendix A and Appendix B. The

features mentioned mainly enhance the prediction performance of the classifier during

the classification of the PE as benign or malware.
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From the experimental results depicted in Table 3.2, it was noticed that the SMO,

Simple Logistic, and J48 classifiers outperformed by achieving maximum identical ac-

curacy of 98.677% with 0.013 FPR (see Table 3.4) for all the topmost K number of

features such as 25, 50, 75, and 100 recommended by the DFS and MI FSTs. The

performance was not much appreciable when the same training file and testing files

were supplied to other classifiers such as Logistic, RF, and Random Tree. The accuracy

achieved by each of them is tabulated in Table 3.2. At the same time, it was noticed

that the features recommended by the CPD and DIA FSTs for the topmost K number

of features (K=25, K=50, K=75, and K=100) underperformed by achieving reduced

accuracy.

The second sets of experiments were conducted with the UBD mentioned in Table

3.1. The operational steps performed in this set of experiments were similar to the first

set of experiments, except for the number of files. In the second set of experiments, the

PE-File-Parser was fed 200 benign and 400 malware PE files in order to extract all the

PE OH Fields using the PE-Optional-Header-Extractor. The PE-File-Parser produced

benign (200) and malware (400) PEOHF files and these files were supplied as input

to the FSTs chosen in this experimental work. The DFS FST was executed on 1877

features to compute a score for each feature using Eq. 3.1.

Furthermore, the same original features set of 1877 features was supplied as input

to the other FSTs consecutively to determine the score for the features using Eq. 3.2,

Eq. 3.4, and Eq. 3.5. The uppermost K number of features was selected in increments

of 25 up to 100 to prepare a separate FFS, and each of them was used to build a training

file as well as testing files to measure the efficiency of the classifiers. The accuracy

produced by the different classifiers is presented in Table 3.2. In the case of UBD, the

SMO and Simple Logistic classifiers outperformed by accomplishing highest equivalent

accuracy of 99.308% with 0.014 FPR (see Table 3.4) for all the topmost number of

features (K=25, K=50, K=75, and K=100) recommended by the DFS and MI FSTs.

The other classifiers such as J48, Logistic, RF, and Random Tree underachieved for the

same topmost number of features (K=25, K=50, K=75, and K=100) and the accuracy

accomplished by each of them is also tabulated in Table 3.2. FSTs such as the CPD and

DIA were found to be inefficient and performed similar to the first set of experiments.
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The two sets of experiments were computed substantially and analyzed thoroughly

to decide the best FST based on the accuracy produced by the classifier. In this di-

rection, the obtained and analyzed results proved that FST certainly provided the most

significant features based on the computed score, but all the features may not contribute

to the detection of the malware.

3.1.3.1 Evaluation on Balanced and Unbalanced Datasets

In order to measure the accuracy variation between BD and UBD, the difference was

calculated. Table 3.2 demonstrates that the difference in classifier accuracy is not of

much significance.

It was noticed that the SMO classifier produced an accuracy of 98.677% for BD

and 99.308% for UBD with 25 features recommended by the DFS. The difference was

0.631% (i.e., |98.677 − 99.308|). Further, the SMO classifier accuracy difference be-

tween BD and UBD was 0.458%, 0.631%, and 0.631%, respectively, for the other three

FFSs of sizes 50, 75, and 100 features suggested by the DFS. This indicates that the

classifier accuracy did not decline for the UBD and justified that the accuracy varia-

tion was in the range of 0.458% to 0.631%. Similarly, when the same 25, 50, 75, and

100 features were applied to the Simple Logistic, Logistic, J48, RF, and Random Tree

classifiers, their counselled range was 0.458% to 0.631%, 0.468% to 1.974%, 0% to

0.458%, 0.631% to 1.16%, and 0.143% to 1.16%, respectively. The accuracy differ-

ence in the range of 0% to 0.631% indicated better classification and specified that the

efficiency of the classifiers did not minimize much and was good enough for both the

BD and UBD. Other FST such as the MI was also efficient and guaranteed that the

classifier performed well in the range of 0.458% to 0.631%.

On the other hand, the classifier performance was inefficient for the top features

selected based on the highest score recommended by the CPD and DIA FSTs. The ex-

pected range to determine the better classifier accuracy was very high. Accordingly, as

per the observations from Table 3.2, the SMO classifier gained an accuracy of 53.968%

for BD and 67.474% for UBD with the highest difference of 13.506% for the top 25

features selected based on the CPD score. Subsequently, when the SMO classifier ac-

curacy was checked with the foremost 100 features based on the CPD score, it attained

69.550% for BD and 69.841% for UBD with least difference of 0.291%. The other
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Table 3.3: Comparison of TPR achieved by different classifiers on different feature lengths of
BD and UBD

No. of
Features

Classifiers
DFS MI CPD DIA

BD UBD BD UBD BD UBD BD UBD

25

SMO 0.987 0.993 0.987 0.993 0.540 0.675 0.519 0.673

Simple Logistic 0.987 0.993 0.987 0.993 0.561 0.675 0.519 0.675

Logistic 0.963 0.983 0.971 0.972 0.566 0.675 0.513 0.673

J48 0.987 0.991 0.987 0.991 0.529 0.675 0.503 0.675

Random Forest 0.981 0.993 0.987 0.991 0.566 0.675 0.513 0.675

Random Tree 0.981 0.993 0.987 0.990 0.566 0.675 0.521 0.673

50

SMO 0.987 0.991 0.987 0.993 0.632 0.678 0.534 0.676

Simple Logistic 0.987 0.993 0.987 0.993 0.627 0.675 0.534 0.675

Logistic 0.979 0.986 0.968 0.988 0.632 0.678 0.537 0.676

J48 0.984 0.991 0.984 0.991 0.503 0.675 0.503 0.675

Random Forest 0.987 0.993 0.987 0.991 0.635 0.678 0.534 0.678

Random Tree 0.976 0.983 0.974 0.991 0.635 0.678 0.537 0.676

75

SMO 0.987 0.993 0.987 0.993 0.638 0.685 0.577 0.676

Simple Logistic 0.987 0.993 0.987 0.988 0.619 0.682 0.574 0.675

Logistic 0.984 0.990 0.981 0.981 0.643 0.685 0.577 0.676

J48 0.987 0.991 0.987 0.991 0.569 0.682 0.550 0.675

Random Forest 0.981 0.991 0.976 0.993 0.643 0.685 0.577 0.678

Random Tree 0.984 0.986 0.984 0.983 0.635 0.685 0.577 0.676

100

SMO 0.987 0.991 0.987 0.995 0.698 0.696 0.619 0.675

Simple Logistic 0.987 0.991 0.987 0.990 0.680 0.690 0.616 0.675

Logistic 0.987 0.986 0.979 0.983 0.701 0.696 0.632 0.676

J48 0.984 0.991 0.984 0.991 0.545 0.689 0.545 0.675

Random Forest 0.984 0.993 0.981 0.991 0.701 0.696 0.632 0.678

Random Tree 0.976 0.984 0.979 0.981 0.696 0.696 0.630 0.676

classifiers’ performance was not remarkable and achieved very less accuracy with max-

imum distinguishable range. The observed accuracy difference range for the Simple

Logistic classifier was between 0.112% -15.622%, for the Logistic classifier it was be-

tween 0.051% - 15.978%, for the J48 classifier between 0.458% - 17.209%, for the RF

classifier between 0.556% - 16.151%, and lastly, for the Random Tree classifier be-

tween 0.143% - 15.185%. The evaluation on BD and UBD showed that the accuracy

difference range (i.e.,<1%) did not have much impact on the efficiency of the classifier.
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Table 3.4: Comparison of FPR achieved by different classifiers on different feature lengths of
BD and UBD

No. of
Features

Classifiers
DFS MI CPD DIA

BD UBD BD UBD BD UBD BD UBD

25

SMO 0.013 0.014 0.013 0.014 0.455 0.675 0.477 0.676

Simple Logistic 0.013 0.014 0.013 0.014 0.435 0.675 0.476 0.675

Logistic 0.037 0.025 0.029 0.033 0.429 0.675 0.483 0.676

J48 0.013 0.015 0.013 0.015 0.466 0.675 0.493 0.675

Random Forest 0.018 0.012 0.013 0.012 0.429 0.675 0.488 0.675

Random Tree 0.018 0.012 0.013 0.016 0.429 0.675 0.474 0.676

50

SMO 0.013 0.014 0.013 0.014 0.364 0.668 0.462 0.668

Simple Logistic 0.013 0.014 0.013 0.014 0.369 0.675 0.461 0.675

Logistic 0.021 0.018 0.032 0.022 0.364 0.668 0.458 0.668

J48 0.013 0.015 0.013 0.015 0.503 0.675 0.503 0.675

Random Forest 0.013 0.014 0.013 0.015 0.361 0.668 0.463 0.668

Random Tree 0.024 0.019 0.026 0.012 0.361 0.668 0.458 0.668

75

SMO 0.013 0.014 0.013 0.014 0.359 0.653 0.419 0.668

Simple Logistic 0.013 0.014 0.013 0.014 0.377 0.660 0.421 0.675

Logistic 0.016 0.013 0.018 0.023 0.353 0.653 0.419 0.668

J48 0.013 0.015 0.013 0.015 0.427 0.660 0.445 0.675

Random Forest 0.018 0.015 0.024 0.014 0.353 0.653 0.419 0.668

Random Tree 0.016 0.018 0.016 0.025 0.361 0.653 0.419 0.668

100

SMO 0.013 0.014 0.013 0.014 0.298 0.632 0.378 0.672

Simple Logistic 0.013 0.014 0.013 0.014 0.317 0.642 0.380 0.675

Logistic 0.016 0.015 0.021 0.017 0.296 0.632 0.364 0.668

J48 0.013 0.015 0.013 0.015 0.451 0.646 0.451 0.675

Random Forest 0.016 0.014 0.019 0.015 0.296 0.632 0.364 0.668

Random Tree 0.024 0.021 0.021 0.020 0.301 0.632 0.366 0.668

3.1.3.2 Analysis of Evaluation Metrics

The performance of the proposed MDS was analyzed in terms of popular evaluation

metrics such as the TPR and FPR. The TPR (FPR) indicated that the test input files

were correctly (incorrectly) classified. For any MDS, it is desired that the TPR should

be high and the FPR should be as low as possible. Table 3.3 and Table 3.4 summarize

the TPR and FPR for different topmost K number of features such as 25, 50, 75, and

100 recommended by different FSTs such as the DFS, MI, CPD, and DIA.
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From the statistics in Table 3.3, it can be easily inferred that MDS achieved high

TPR of 0.987 for features of different thresholds in terms of 25, 50, 75, and 100 rec-

ommended by the DFS and MI on the BD with SMO and Simple Logistic classifiers.

Similarly, maximum TPR of 0.993 was accomplished by the SMO and Simple Logistic

classifiers for all the foremost features of various thresholds (25, 50, 75, and 100) sug-

gested by the DFS and MI. On the other side, the features suggested by the CPD and

DIA attained very low TPR.

Main reason for False Positive is, some of the malware do not alter the PEOHFs,

rather, they alter other static features of the PE files such as DOS header, File Header,

etc. Such malware samples get misclassified. This is one of the limitations of the

static features-based detection. Misclassification also depends on Final Feature Set and

classifier. However, Lower FPR value represents the best FST. However, the classifiers

were evaluated with the features recommended by the DFS, MI, CPD, and DIA. Table

3.4 shows the FPR achieved by the classifiers. The SMO and Simple Logistic classifiers

attained the lowest FPR of 0.013 for all the topmost numbers of features (25, 50, 75, and

100) recommended by the DFS and MI on the BD. Correspondingly, the same classifiers

were successful in obtaining minimum FPR of 0.014 for the features suggested by the

DFS and MI for the UBD. Moreover, the same classifiers achieved slightly high FPR

for all the features of different thresholds (25, 50, 75, and 100) suggested by the CPD

and DIA FSTs. In comparison, it is evident that FSTs such as the DFS and MI were

able to influence the classifiers to attain highest TPR with lowest FPR.

3.2 SUMMARY

The proposed MDS is proficient in precisely distinguishing malware and benign PE files

based on the PEOHF features recommended by the Single-Stage-Feature-Selector. The

prime task of the present work was to investigate the effectiveness of the filter-based

FSTs such as the DFS, MI, CPD, and DIA in classifying the PE files as benign or mal-

ware. The experiments carried out were evaluated using different classifiers available

in the WEKA tool. From the experimental observation, it was found that the best FSTs

were DFS and MI, since the features suggested by them resulted in obtaining better clas-

sifier accuracy. The classifiers performed well on both the BD and UBD for different

feature lengths of 25, 50, 75, and 100. The accuracy difference calculation manifested
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that the range specification of <1% did not affect the efficiency of the classifiers on BD

and UBD.
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Chapter 4

Analysis of Behavioural Features-based Malware

Detection Approach

Static features-based detection techniques often require a human analyst to go through

the code to understand malware functionality. Unfortunately, the anti-malware defen-

sive solutions receive a large number of malware samples each day, thus making the

manual analysis a tedious task. Consequently, there is necessity of behavioural features-

based malware detection techniques.

This chapter describes the proposed behavioural-based Window malware detection

approaches in which various feature engineering techniques have been incorporated to

achieve better detection rate. The prime goal of the proposed approaches is to identify

and classify the malware with the crucial features recommended by the FST. Further,

to achieve malware detection, different experiments were conducted, and for all those

experiments carried out, the experimental system was the same as described in Section

2.7.

4.1 WINDOWS MALWARE DETECTION BASED ON CUCKOO SANDBOX

GENERATED REPORT USING MACHINE LEARNING ALGORITHM

Computerized malware examination frameworks (or sandboxes) are comprehensively

used to detect malware based on behavioural traits. These frameworks allow the un-

known malware to execute in an isolated environment and screen its runtime behaviour.

The main benefit of this work is that it can recognize the unseen malware based on the

observed activities gathered during the execution of the malware. Majority of the sand-

boxes observe at the system call interface. System calls are a routine that allows the

operating system to interact with the user-level process to perform their desired task.

4.1.1 System Architecture

The proposed work distinguishes between malware and benign files on the basis of

system calls’ sequence structured using a heuristic method called N-grams analysis. It

adopts the IG technique to compute the score for the each N-gram and extracts the top

N-grams based on the highest IG score in order to prepare a Final Feature Vector (FFV)



needed for classification. Figure 4.1 depicts an overview architecture of the proposed

work.

Figure 4.1: System Architecture of the proposed work

4.1.2 Behaviour analysis

Since the Cuckoo Sandbox functions at the hypervisor as a separate entity, it examines

the behaviour of the malware running on the Virtual Machines to obtain the behavioural

analysis report of the running PE files in the JSON file format.

4.1.3 Conversion process

The analysis reports obtained in the JSON file format are pre-processed to obtain MIST,

since it is a preferred format that uses a smaller file size and reduces processing time.

Since the proposed approach is specific to observation of monitored system calls, it is

concerned with the operation field of the MIST files to generate N-grams (4 bytes) files

as shown in Figure 4.2.

To generate the N-gram files, we follow the following steps:

• System calls extraction;

• N-gram generation;

• Sorting of N-grams; and

• Duplicate removal.

In first step system call extraction, only the operation field is selected, i.e., the sys-

tem calls of all the benign MIST files (1, 2, . . . .,10, 11, . . . . n) and all the malware
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Figure 4.2: Snippet of N-gram extraction using MIST file.

MIST files (1, 2, . . . .,10, 11, . . . . n) as shown in Figure 4.3, since there is a record

of all the system level behaviours. The extracted operation fields are stored in a text

file and grouped in sequence to form N-grams of variable lengths, i.e., N=2, N=3, N=4,

etc. The lengthier the N-grams size, the better the characteristics are represented. A

snippet of extraction is shown in Figure 4.2. The N-grams have been grouped of length

four bytes, while forming N-grams in the second step of the generation phase. In the

third step, the formed N-grams are placed in descending order to get the highest order

sequence of N-grams. Following this, any duplicates if observed are removed to get

unique N-grams. These can be employed for better feature selection and also for better

classification.

The above explanation is prerequisite for the feature selection approach, since it

cannot be performed without the N-gram formation. The formed Benign N-gram files

[B1, B2, B3,. . . ,Bn] and Malware N-gram files [M1, M2, M3, . . .,Mn] must undergo

the union operation considering each benign N-gram files [B1 ∪ B2 ∪ B3 ∪ . . . ∪ Bn]

and malware N-gram files [M1 ∪M2 ∪M3 ∪ . . . ∪Mn]. After this, the benign union

N-gram files and the malware union N-gram files must be placed in non-increasing order

and the duplicates must be removed, if observed to achieve unique benign N-gram files

and unique malware N-gram files. The occurrence of each unique benign N-gram in

the benign N-gram files is observed and tabulated in the N-gram frequency table for the

benign class, and in the same way, the occurrence of each unique malware N-gram in

the malware N-gram files is observed and tabulated in the N-gram frequency table for

the malware class.
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(a)

(b)

Figure 4.3: System call extraction phase

The feature CT is then prepared based on the values accommodated in the N-gram

frequency table for the benign category and malware category as depicted in Figure 4.4.

The feature CT is used to calculate the IG (Reddy and Pujari, 2006) using the Eq. 4.1.

IG(N − gram) =
∑

vN−gram∈{0,1}

∑
C∈{Ci}

P (vN−gram, C)

log
P (vN−gram, C)

P (vN−gram), P (C)

(4.1)

Where, C is one of the two categories - benign or malware and vN−gram is the value

of the N-gram. vN−gram = 1 indicates that the N-gram present either in the benign

N-gram files or malware N-gram files and vN−gram = 0, otherwise. P(vN−gram, C) is

the proportion of N-gram files in C in which the N-gram takes on the value vN−gram.

P(vN−gram) is the proportion of benign N-gram files or malware N-gram files in the

48



Figure 4.4: N-gram frequency table for benign class and malware class with feature CT

entire training set such that the N-gram takes the value vN−gram. P(C) is the proportion

of the dataset belonging to category C. The N-grams are organized in non-increasing

order based on the IG score and the topmost L number of N-grams is extracted as the

best features for the purpose of classification.

4.1.4 Instruction Converter

The instruction converter converts the extracted features into an Attribute-Relation File

Format (ARFF) file. ARFF is an ASCII text file that describes a list of instances sharing

a set of attributes. It is an important process because the classifiers of the WEKA tool

used in the present approach works with the ARFF file.

4.1.5 Experiment Results

The experimental data in the current work consists of 3000 benign MIST files and 3100

malware MIST files. The malware MIST files consist of four different families such

as Swizzor (1000), Basun (1000), AutoIt (1000), and Kelihos Trojan (100). Among

the considered four different malware families, the first three were collected from the

public source (Konrad, 2015) and the remaining 100 malware MIST files were obtained

by implementing the MIST conversion process for all the runtime behavioural reports

produced by the Cuckoo Sandbox by injecting the Kelihos Trojan. As explained earlier,

N-grams of different sizes such as 2bytes, 3bytes, and 4bytes were extracted to mea-

sure which N-gram size achieves the best detection rate. A separate experiment was
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conducted for each N-gram size. The N-grams were sorted in decreasing order based

on the IG score and any duplicate N-grams, if found, were removed. The class-wise

document frequency for each class was determined for each N-gram to prepare the CT.

The IG method was used to calculate the score for each N-gram and the top K N-grams

were determined based on the highest IG score. Experiments were conducted for differ-

ent values of K such as 200, 400, and 600. Further, the best features were drawn at each

K value for different N-gram lengths. The best features were pre-processed through the

instruction converter to prepare ARFF files for the selected N-grams. The ARFF files

were submitted to the WEKA tool for classification. A wide set of experiments were

conducted to determine which classifier achieved best malware detection rate with low

FPR. The performance of several classification algorithms stated in the WEKA tool was

evaluated.

The objective was to know the best classification algorithm among the several stated

in the WEKA tool. From that perspective, six classifiers were selected among the eight

different categories mentioned in the WEKA tool. The six classifiers chosen were the

Bayesian Logistic Regression, SPegasos, Ib1, Bagging, Part, and J48 classified under

Bayes, functions, lazy, meta, rules, and trees of WEKA. For the purpose of evaluation,

the values of TPR, FPR, Precision, Recall, F-measure, Receiver Operating Character-

istics (ROC) Area and Accuracy for all the chosen six classifiers was measured and

tabulated in Table 4.1 and Table 4.2.

Two sets of experiments were carried out: In the first set of experiments, N-grams

of three bytes were considered in order to select the top N-grams based on the highest

score of IG. The top N-grams were selected in terms of 200, 400, and 600. From the

experimental observation, as shown in Figure 4.5, the highest accuracy was 89.77% for

200 N-grams, 90.03% for 400 N-grams, and 89.88% for 600 N-grams as yielded by the

SPegasos classifier (see Figure 4.5a). The highest TPR of 0.898 for 200 N-grams, 0.9

for 400 N-grams, and 0.899 for 600 N-grams was produced by the SPegasos classifier

(see Figure 4.5b). The lowest FPR of 0.102 for 200 N-grams, 0.1 for 400 N-grams,

and 0.101 for 600 N-grams was given by the SPegasos classifier (see Figure 4.5c). The

ROC curves are mainly used to compare the classification capability of the different

algorithms. Among the number of classifiers tested in the present work, it was observed

that SPegasos classifier attained the best results.
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Figure 4.5: Graphical representation considering evaluation measures such as (a) Accuracy, (b)
True Positive Rate, (c) False Positive Rate, and (d) ROC area. When N-gram length is three
bytes

Similarly, in the second set of experiments, N-gram of length four bytes was ana-

lyzed, and the results for highest accuracy were 90.03% for 200 N-grams, 89.57% for

400 N-grams, and 89.95% for 600 N-grams with respect to the SPegasos classifier (see

Figure 4.6a). The highest TPR was 0.9 for 200 N-grams, 0.896 for 400 N-grams, and

0.9 for 600 N-grams obtained by the SPegasos classifier (see Figure 4.6b). The low-

est FPR was 0.1 for 200 N-grams, 0.104 for 400 N-grams, and 0.101 for 600 N-grams

produced by the SPegasos classifier (see Figure 4.6c). From the visual inspection of

Figure 4.5 and Figure 4.6, it can be concluded that the SPegasos classifier is the best

and ensures better classification for N-gram lengths of three and four bytes.

In order to detect the malicious activities of the malware, the behaviour analysis of

the PE file such as system calls invoked by the input PE file during execution have been

employed. The gathered system calls’ sequence was chunked into the N-gram, and each

N-gram was treated as a feature. The IG feature selection method was used to choose
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Figure 4.6: Graphical representation considering evaluation measures such as (a) Accuracy, (b)
True Positive Rate, (c) False Positive Rate, and (d) ROC area. When N-gram length is four bytes

the best features based on the highest IG score, and the selected features were used to

prepare the FFV needed by the classifier. The experiments were performed using differ-

ent classifiers available in the WEKA tool. From the experimental observations, it was

found that the machine learning-based classifier SPegagos ensured better classification

for N-gram lengths of three and four bytes.

4.2 INFORMATION GAIN SCORE COMPUTATION FOR N-GRAMS USING

MULTIPROCESSING MODEL

The FST is computational resources demanded and takes time to generate the scores for

large feature (N-gram) datasets, if the processing is to be accomplished in the sequential

mode. To address this issue, the present work presents a multiprocessing model that

computes scores rapidly for large N-gram datasets. For the purpose of demonstration,

the proposed multiprocessing model was implemented considering the IG FST. Further

to ensure the processing efficiency of the proposed model, a comparative analysis was
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conducted with the sequential mode of IG score computation.

4.2.1 Multiprocessing model to compute score

In the present work, the multiprocessing model to compute score for N-grams using

IG FST was designed, implemented, and validated with a larger N-gram dataset. The

Benign N-gram Files (BNFs) and Malware N-gram Files (MNFs) were both included

in the N-gram dataset, where each N-gram file consisted of more number of N-grams.

For each N-gram, the IG score was computed using the steps depicted in Figure 4.7.

The IG score generation steps were grouped into four phases:

1. Pre-processing Phase;

2. Chunks Construction Phase;

3. Chunks to Process Allocation Phase; and

4. IG score Computation Phase.

4.2.1.1 Pre-processing Phase

In this phase, the N-grams are generated by extracting the binary instructions from both

the benign and malware PE files available in the public source (Malwr, 2010). This step

is referred to as the intermediate stage. In this stage, the extracted instructions are con-

tinuously placed in a row. Later, N-grams of different feature lengths are generated such

as NGL = 2, NGL = 3, NGL = 4, etc. based on the length specified by the user to cre-

ate BNF and MNF. Subsequently, in order to get the highest order sequence and better

selection of N-grams, the created BNF and MNF are arranged in non-increasing order

by removing any duplicates, if found. The generation of BNF and MNF is illustrated in

Figure 4.8.

The generation of BNF and MNF is a very important step since it is the start-up

step or is defined as the input for the proposed multiprocessing model. The next step

involves the union operation on the BNFs (B1, B2, B3 . . . Bn) and MNFs (M1, M2,

M3 . . . Mn) individually on both the categories, benign and malware, to identify

and remove the redundant N-grams. After the union operation, the Unique Benign N-

gram File (UBNF) and Unique Malware N-gram File (UMNF) are obtained as shown

in Figure 4.7.
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Figure 4.7: Multiprocessing model to compute Information Gain score
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Figure 4.8: Generation of Benign N-gram Files and Malware N-gram Files

4.2.1.2 Chunks Construction Phase

The UBNF and UMNF consist of a large number of N-grams, and computing the IG

score for each N-gram in the UBNF and UMNF sequentially is computational resource

demanding. To reduce this, the multiprocessing model is proposed in the present work

that computes the IG score for each N-gram. In this phase, the UBNF is divided into

files of smaller benign N-gram files [Benign N-gram Chunk - (BNC)], namely, BNC1,

BNC2, BNC3, BNC4 . . . BNCn, and similarly, the UMNF is divided into smaller

malware N-gram files [Malware N-gram Chunk - (MNC)], namely, MNC1, MNC2,

MNC3, MNC4. . . MNCn as shown in Figure 4.1. A pair of chunks (BNC1, MNC1),

(BNC2, MNC2) . . . (BNCn, MNCn) is assigned to a created process. Each benign

chunk N-gram file and malware chunk N-gram file consists of a fixed number of N-

grams. The number of N-grams to be present in each BNC file and MNC file is a

constant value specified by the user, and accordingly, the generation of chunk files takes

place.

4.2.1.3 Chunks to Process Allocation Phase

In this phase, one chunk file from both the benign and malware categories is accessed

sequentially and assigned to the process. The distribution of the number of chunk pairs

to each process is calculated as per the equation given below:

Distribution of chunk pair to each process =

(Highest number of chunks made either
from benign or malware category)

No. of process

(4.2)
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4.2.1.4 IG Computation Phase

To compute the IG score, each process follows the following steps:

• On each pair of benign and malware chunk N-gram file, the union operation is
conducted to recognize the occurrence of the same N-gram;

• Similar occurrences of N-gram are removed, if observed after performing the
union operation; and

• Finally, a unique N-gram file is prepared.

Each N-gram from the unique N-gram file is accessed to check its existence in all

the BNF and MNF to compute the IG score using Eq. 4.1.

4.2.2 Experiment Results

The experimental datasets is of two types, benign dataset and malware dataset. The

benign dataset is a collection of non-malicious executable files, whereas the malware

dataset is a collection of malicious executable files obtained from a public source (Malwr,

2010). For the purpose of the experiments, ten benign files and ten malware files were

taken in to consideration. The length of the N-grams was fixed for four bytes to generate

the BNFs and MNFs. Three processes were created to demonstrate the multiprocessing

model to compute the IG score.

Furthermore, as per the explanation in Section 4.2.1, the generated BNFs and MNFs

underwent the union operation, and then, the N-grams were sorted in non-increasing or-

der and all duplicate N-grams were removed, if observed, to obtain UBNF and UMNF.

The generated UBNF and UMNF in this experiment consisted of 414606 N-grams of

the benign category and 2475931 N-grams of the malware category.

The multiprocessing model was implemented using the Python programming lan-

guage. It constructed the chunks separately from the UNBF and UNMF based on the

threshold value set by the user. Then, the IG score for each N-gram was computed. In

the present work, N-grams chunks with varying threshold values such as 10000, 15000,

20000, 25000, and 30000 were created to demonstrate the efficiency of the proposed

model. For the threshold value 10000, 42 benign chunk files and 248 malware chunk

files were obtained. For other threshold values like 15000, 20000, 25000, and 30000,

benign chunks files of 28, 21, 17, and 14, and malware chunk files of 166, 124, 100, and
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83, were constructed and are tabulated in Table 4.3. To demonstrate the efficiency of the

multiprocessing model against the sequential model, the first three pairs of the chunk

files from both the categories of benign and malware files were obtained for different

threshold values such as 10000, 15000, 20000, 25000, and 30000.

When the threshold value was set to 10000, each chunk file from both the benign

and malware categories consisted of a fixed number of 10000 N-grams. If three be-

nign chunk files and three malware chunk files were considered, then the number of

N-grams in the benign category was 30000, and similarly, the N-grams size of the mal-

ware category was also 30000. The time taken to compute the IG score of all the 60000

N-grams was 5244.857 seconds in the sequential model and 1065.764 seconds in the

multiprocessing model. In the same way, when the threshold value was set to 15000,

each chunk file from both the benign and malware categories consisted of a fixed num-

ber of 15000 N-grams. For the first three chunk files, the N-gram size of both the benign

and malware was 45000 and the computational time observed to compute the IG score

for all the 90000 N-grams by the sequential model was 7989.225 seconds, and for the

multiprocessing model was 1513.592 seconds. Similarly, on increasing the threshold

value to 20000, each benign chunk file and malware chunk file now consisted of a fixed

number of 20000 N-grams. For three benign chunk files and three malware chunk files,

the N-gram size increased to 120000 and the time taken to compute the IG score for

all the 120000 N-grams was 11006.653 seconds by the sequential model and 2081.264

seconds by the multiprocessing model. Correspondingly, the computational time taken

by the sequential model and the multiprocessing model to compute the IG score for

150000 N-grams and 180000 N-grams is tabulated in Table 4.3.

The computation time taken to compute the IG score by the multiprocessing model

for chunks of 60000 N-grams and 90000 N-grams is shown in Figs. 4.9a and 4.9b,

where the highlighted part in Figs. 4.9a and 4.9b denotes the computation time taken by

the process (FUNC1, FUNC2, and FUNC3 denotes Process1, Process2, and Process3,

respectively) to compute the IG score. Similarly, experiments were carried out for other

chunks such as 120000 N-grams, 150000 N-grams, and 180000 N-grams. Figure 4.10a

and Figure 4.10b represent the computational time taken to compute the IG score by the

sequential model for chunks of 60000 N-grams and 90000 N-grams.
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(a) Computation Time(sec) - Chunk of 60000 N-grams

(b) Computation Time(sec) - Chunk of 90000 N-grams

Figure 4.9: Information Gain score computation time - Multiprocessing model
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(a) Computation Time(sec) - Chunk of 60000 N-grams

(b) Computation Time(sec) - Chunk of 90000 N-grams

Figure 4.10: Information Gain score computation time - Sequential model.
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Figure 4.11: Comparison between multiprocessing model and sequential model to compute
Information Gain score

The highlighted part signifies the overall computation time required by the sequen-

tial model to generate the IG score. A similar demonstration was performed for other

chunks such as 120000 N-grams, 150000 N-grams, and 180000 N-grams in the sequen-

tial model. For each N-gram, the computation time needed to generate the IG score

by the sequential model as well as by the multiprocessing model was observed and is

depicted in Table 4.3.

Looking at Table 4.3, one can notice that there is radical improvement in the com-

putation time of the IG score by the proposed multiprocessing model. For the chunk

of 60000 N-grams, the computation time of the IG score got reduced by 79.68%, and

for other chunks such as 90000, 120000, 150000, and 180000 N-grams, the computa-

tional time was reduced by 81.05%, 81.09%, 80.44%, and 79.84%, respectively, against

the sequential model. On average, the proposed approach was 80% faster than the se-

quential model for the computation of the IG score. Analogizing the two parameters

from Figure 4.11 manifests that the multiprocessing model is faster than the sequential

model.

4.3 EMPIRICAL STUDY ON FEATURES RECOMMENDED BY LSVC IN

CLASSIFYING UNKNOWN WINDOWS MALWARE

To build an efficient and robust machine learning-based MDS, identifying crucial fea-

tures from the original feature set of a large size is essential. In order to identify and

eradicate noisy features from the original feature set, the LSVC was employed as fea-
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ture selector in the present work. In so as is known, the LSVC has not been widely

explored as a feature selector to select the dynamic features given by the Cuckoo Sand-

box report. Thus, the present work investigates the effectiveness of the behavioural

features suggested by the LSVC in identifying unknown Windows malware. The major

contributions of the present work are as follows:

• In the current work, the MDS has been designed, implemented, and evaluated

using publicly available Windows malware samples. It was evaluated with two

different types of dynamic features, namely, 1) API calls and 2) API calls with

their category (Category+API calls), to know which type of dynamic features

suggested by the LSVC can provide better malware detection rate.

• The 10-fold validation tests were conducted to measure the malware detection

rate of the proposed MDS. It is capable of identifying malware and benign Win-

dows PE files precisely using the dynamic features suggested by the LSVC. How-

ever, the obtained experimental results demonstrate that the proposed MDS is able

to attain highest detection accuracy with API calls alone as dynamic features.

4.3.1 Architecture Overview

An overview of the proposed MDS is shown in Figure 4.12. It utilizes dynamic mal-

ware analysis technique to spot malware. It mainly consists of two phases, namely, the

Training phase and the Prediction phase.

4.3.1.1 Training Phase

In the training phase, a set of benign and malware Windows PE files are executed one at

a time on the Cuckoo Sandbox to gather the runtime behavioural report of the PE files.

Each runtime behavioural report is pre-processed separately to obtain Category+API

calls. The gathered sequence of the Category+API calls is processed to generate N-

grams, and each N-gram is treated as an individual feature. In order to identify and

remove the noisy features from a set of acquired features, the LSVC is employed as

feature selector. The LSVC recommended features are used as the final features to

prepare a training file, essential to train the classifier. The main components of the
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Figure 4.12: The architecture of the proposed MDS

training phase are the Dynamic Feature Extractor, Feature Selector, Final Feature Set,

and Training File Creator.

Dynamic Feature Extractor

The prime task of the Dynamic Feature Extractor is to observe and record the execution

time behaviour of the PE file, while the source file is being executed on a controlled

monitoring environment. Its main sub-components are the Cuckoo Sandbox, MIST

Report Generator, and Feature Extractor.

Cuckoo Sandbox

The Cuckoo Sandbox is a Windows PE file runtime behaviour acquiring tool (Guarnieri

et al., 2012). It is used to obtain a runtime behavioural report of the PE files. It records

the details onto the behavioural report in the JSON file format. The behaviour report is

also called as the behaviour analysis report (Firdausi et al., 2010). The Cuckoo Sand-

box captures the API calls and classifies them into one of the categories on the basis of

the type of operations the API call performs, which includes network, process,

system, services, registry, misc, crypto, file, resources, etc.

(Miller et al., 2017). Figure 4.13 shows a snippet of the recorded API call "LdrLoadD

ll" classified under system category during the execution of "01B43C0C8D620E8

B88D846E4C9287CCD.bin". Moreover, the category of an API call in terms of the

type of operation performed is a better indicator to understand the actions undertaken
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Figure 4.13: Snippet of the Cuckoo Sandbox generated report in JSON file format

by the executable file. So, the focus is to extract details such as category API call with

corresponding arguments from the JSON file format, and then represent the acquired

particulars in the MIST format.

MIST Report Generator

The behavioural analysis report obtained in the JSON file format requires high storage

and more processing time. In order to address this issue, the MIST report generator has

been used in the present work (Rieck et al., 2011). It extracts system level behaviour

such as category API calls and their arguments from the JSON file format, and organizes

them in different levels of blocks as shown in Figure 4.14. MIST is the preferred format

because it uses a smaller file size and reduces the processing time.

Figure 4.14: MIST representation of API call reported in JSON file format shown in Figure 4.13

Feature Extractor

The job of the Feature Extractor is to extract API calls (operation field) and their cate-

gory from the MIST report (see Figure 4.14). In the present work, the Feature Extractor

is implemented using the Python programming language. The extracted data is rep-

resented in overlapping substrings, which are obtained based on the sliding window

approach known as N-grams (Raff et al., 2018) and are extensively used in information
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retrieval. Its major drawback is that the set of all the gathered N-grams (features) from

a set of byte strings of malware and benign PE files is enormous and applying them

directly for classification techniques degrades the performance of the classifier. There-

fore, the selection of the most relevant N-grams plays a crucial role. In order to choose

prominent features, the feature selector is employed.

4.3.1.2 Feature Selector

The LSCV (Belaoued and Mazouzi, 2015; Kawaguchi and Omote, 2015) is a wrapper-

based FST. It is used to identify the most significant features from a set of gathered fea-

tures. All the LSVC recommended features are treated as final features because there

can be no further elimination of the features. The final features are used to prepare a

training file as well as testing files to measure the efficiency of the classifiers. Suppose

p, q, d, and n is the input vector, class label, dimension, and number of samples, respec-

tively. The training data (pi, qi) is separated by the hyperplane decision function D(p)

based on the values of x and y. Where, p ∈ Pm, qi ∈ {+1,−1} and i = 1, 2, 3 . . . n.

The decision function D(p) is given by Eq. 4.3.

D(p) = {xTp}+ y =
n∑

i=1

xipi + y (4.3)

Where, x = [x1, x2, ....., xn]T is the weight vector of the hyperplane. The training

data with value qi = +1 gets classified under D(p)>0, and conversely, the training data

with value qi = −1 gets classified under D(p)<0.

For the LSVC, the recommended default parameters provided in sklearn.svm.Linear-

SVC python library were used (Pedregosa et al., 2011). Accordingly, the value of the

penalty parameter ’C’ was set to 1. The value of ’penalty’ specifies the norm used in

the penalization, i.e., ’l2’ and the value of ’dual’ is preferred to be false.

4.3.1.3 Training File Creator

The Training File Creator creates a training file essential to train the classifiers. It parses

the benign and malware N-gram files corresponding to the training dataset with the final

features in order to create a training file.
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4.3.2 Prediction Phase

In the prediction phase, the main task of the Testing-File-Creator is to create a testing

file necessary to appraise the predictive performance of the trained classifiers. It makes

use of the final features and N-grams of the testing file to deliver a testing file. The

generated testing file is sent to the trained classifier, which classifies whether the test

input file is benign or malware.

4.3.3 Experimental Analysis

To evaluate the performance of the proposed MDS, all the experiments were conducted

on a host system and its specifications are as mentioned in Section 2.7.

The experimental data consisted of 200 benign and 200 malware PE files. The be-

nign PE files included the Windows system files, which were collected from a freshly

installed Windows virtual machine. The Windows malware PE files used in the exper-

imental work were downloaded from a public source VirusShare (VirusShare, 2011).

Six different machine learning classifiers such as the SMO, Simple Logistic, Logistic,

J48, RF, and Random Tree, which were available in the WEKA (Frank et al., 2009)

tool were adopted. These classifiers were used throughout the experiments in 10-fold

cross-validation with default parameters settings. Further, the effectiveness of the pro-

posed MDS and the detection performance of the classifiers were estimated using five

evaluation metrics such as the TPR, FPR, Precision, Recall, and Accuracy as defined in

Eq. 2.1.

4.3.4 Results and Discussions

In the present work, the prime aim of the proposed MDS is to explore the accurate de-

tection and categorization of the malicious PE files using the final features suggested

by the LSVC. Two different types of behavioural features, namely, API calls and Cat-

egory+API calls for different N-grams of sizes 3 bytes, 4 bytes, and 5 bytes were used

to measure the accuracy. Two stages of experiments were conducted. The first stage

comprised of API calls’ sequence (N-grams) as features. The second stage consisted

of Category+API calls together as a single element. The sequence of combination of

Category and API call as a feature (N-gram) was taken into consideration. The features

suggested by the LSVC in both the experiments were used to appraise the efficiency of
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the classifier separately. Finally, a comparative analysis was made to know the impact

of the features recommended by the LSVC.

During the training file creation phase, the Cuckoo Sandbox stores the monitored

behaviour of the PE file in JSON file format, and the obtained data is pre-processed to

be converted into the MIST format. From the MIST format file, the API call sequence is

extracted, and then, the consecutive API calls are grouped to prepare N-grams of differ-

ent sizes such as 3 bytes, 4 bytes, and 5 bytes. Subsequently, a combination of Category

and API calls are extracted as a pair from the MIST format file and a separate N-gram

file is prepared for each individual MIST file. The duplicate N-grams are removed and

further LSVC is applied as feature selector to choose the distinct features and ignore

the noisy features. The LSVC assigns a separate score to each individual feature, and

then selects a set of features based on their score.

First, the experiments were conducted with concern to the monitored API calls

present in the MIST files. Initially, the length of the N-gram as NL=3 was selected

to prepare N-grams considering all the benign and malware N-gram files. Further, all

N-grams of size 3 bytes belonging to benign class and malware class were consolidated

individually. In total 4133 and 6555 distinct N-grams related to the benign and mal-

ware class, respectively, were obtained. All these benign and malware N-grams were

combined and any duplicates were eliminated to obtain unique N-grams. Consequently,

7645 N-grams were attained as features. However, it was tedious to consider all these

7645 N-grams as features to prepare a training file. Therefore, the relevant features (90)

were selected as final features by using the LSVC as feature selector. Finally, a training

file was constructed to train the classifier using the final features with the N-gram files

corresponding to the training files. Similarly, experiments were carried for N-grams

of length 4 bytes and 5 bytes, where the LSVC suggested 186 (4byte N-grams) best

features out of 26143 N-gram features and 124 (5byte N-grams) significant features out

of 35226 N-gram features. The LSVC suggested N-gram features were treated as final

features to train the classifier.

In another set of experiments, both the Category and API calls present in the MIST

files were considered to know their effectiveness. With respect to this, consecutive three

pairs of category and API call were grouped to form N-grams of size 3 bytes. After re-
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moving duplicate N-grams, 16188 N-grams were attained from all the N-gram files, and

the LSVC was applied to choose the distinct features. The LSVC recommended 134

N-grams as prominent features and these were used to train the classifier. Correspond-

ingly, experiments were conducted for N-grams of size 4 bytes (4-pairs of Category and

API call) and 5 bytes (5-pairs of Category and API call). In this case, the LSVC advised

156 best features among 29821 N-grams of size 4 bytes and 221 predominant features

among 42742 N-grams of size 5 bytes.

4.3.5 Analysis of Proposed Malware Detection System based on Evaluation Metrics

From the experimental observations, the detection rate and FPR obtained for N-grams

of size 3 bytes is depicted in Figure 4.15a and Table 4.4. In particular, the SMO clas-

sifier achieved maximum accuracy of 96.923% with 0.031 FPR for the combination of

Category+API call features. Further, the Simple Logistic classifier also performed well

by attaining accuracy of 93.846% with FPR 0.062. Relatively, the overall performance

of the other classifiers such as the Logistic, J48, RF, and Random Tree reported lowest

accuracy and their corresponding values were 88.717% with FPR 0.113, 87.692% with

FPR 0.123, 91.794% with FPR 0.082, and 88.717% with FPR 0.113.

The accuracy and FPR achieved by the different classifiers for N-grams of size 3

bytes for API call features are shown in Figure 4.15a and Table 4.4, respectively. It

can be seen from Figure 4.15a that the highest accuracy of 98.429% with 0.016 FPR

(see Table 4.4) was yielded by the SMO classifier. However, the performance of the

other classifiers was not remarkable. The second highest accuracy of 95.549% was

accomplished by the Logistic classifier with 0.045 FPR (see Table 4.4). The Simple

Logistic classifier recorded low accuracy of 94.764% with 0.052 FPR (see Table 4.4).

Moreover, other classifiers such as the J48, RF, and Random Tree underperformed by

achieving least accuracy of 87.958% with 0.120 FPR, 93.193% with 0.068 FPR, and

87.696% with 0.123 FPR, respectively.

A comparative analysis was made between the values accomplished by the evalu-

ation metrics on two different N-gram features such as the API calls alone and Cat-

egory+API calls of size 3 bytes. The highest TPR of 0.984, Precision of 0.985, and

Recall of 0.984 was recorded by the SMO classifier when only API calls were consid-

ered as N-gram features. The other classifiers like the Simple Logistic, J48, RF, and
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Figure 4.15: Comparative analysis in terms of accuracy obtained for API calls alone as N-gram
features and combination of Category+API call as N-gram features of different sizes (a) 3bytes,
(b) 4bytes, and (c) 5bytes

Random Tree performed poor and resulted in achieving less accuracy as demonstrated

in Table 4.4.

Experiments were also performed by considering N-grams size of 4 bytes and 5

bytes. Accordingly, the final features were constructed for both types of behavioural

feature, namely, API calls and Category+API calls. As illustrated in Figure 4.15b and

Table 4.5, the maximum detection accuracy of 98.429% with 0.016 FPR was accom-

plished for the final features comprised of only API calls. However, a combination

of final features consisting of Category+API calls also achieved nearly equivalent de-

tection rate of 98.177% with FPR of 0.018 when compared with API calls as N-gram

features. The second highest accuracy recorded was 96.335% with FPR of 0.036 by
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Table 4.4: Comparison analysis of evaluation metrics obtained for N-grams of size 3bytes

Classifiers TPR FPR Precision Recall
C+API API calls C+API API calls C+API API calls C+API API calls

SMO 0.969 0.984 0.031 0.016 0.969 0.985 0.969 0.984
Simple Logistic 0.938 0.948 0.062 0.052 0.939 0.948 0.938 0.948
Logistic 0.887 0.955 0.113 0.045 0.888 0.957 0.887 0.955
J48 0.877 0.880 0.123 0.120 0.877 0.880 0.877 0.880
Random Forest 0.918 0.932 0.082 0.068 0.922 0.932 0.918 0.932
Random Tree 0.887 0.877 0.113 0.123 0.888 0.878 0.887 0.877
C+API: Category+API call

Table 4.5: Comparison analysis of evaluation metrics obtained for N-grams of size 4bytes

Classifiers TPR FPR Precision Recall
C+API API calls C+API API calls C+API API calls C+API API calls

SMO 0.982 0.984 0.018 0.016 0.982 0.984 0.982 0.984
Simple Logisitic 0.964 0.953 0.036 0.047 0.964 0.953 0.964 0.953
Logistic 0.958 0.935 0.042 0.065 0.960 0.936 0.958 0.935
J48 0.924 0.911 0.076 0.089 0.925 0.914 0.924 0.911
Random Forest 0.938 0.921 0.063 0.079 0.939 0.924 0.938 0.921
Random Tree 0.901 0.893 0.099 0.107 0.902 0.894 0.901 0.893
C+API: Category+API call

the Simple Logistic classifier for the final features consisting of Category+API calls as

N-gram features, and correspondingly, the same classifier was successful in achieving

an almost identical accuracy of 95.288% with 0.047 FPR with final features of API

calls. The Logistic classifier attained less accuracy of 95.833% with 0.042 FPR for fi-

nal features comprising of both Category+API calls, but it gained nearest accuracy of

93.455% with FPR 0.065 for final features built with only API calls. The performance

of other classifiers such as the J48, RF, and Random Tree was not remarkable.

The highest values of TPR, Precision, and Recall signified better MDS. The experi-

mental results tabulated in Table 4.5 provides details of the comparative analysis made

for the final features (N-grams size of 4 bytes) consisting of only API calls and the com-

bination of both Category+API calls. Relatively, the nearest value to one was achieved

for final features made with API calls and as Proof-of-Concept, the SMO classifier

achieved the highest TPR with 0.984, Precision with 0.984, and Recall with 0.984.

The last set of experiments were performed on N-grams of size 5 bytes and the

performance of the classifiers for both types of features such as API calls alone and

Category+API calls was observed. Figure 4.15c and Table 4.6 provides details of the

detection accuracy and FPR achieved by the different classifiers. It was observed that
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Table 4.6: Comparison analysis of evaluation metrics obtained for N-grams of size 5bytes

Classifiers TPR FPR Precision Recall
C+API API calls C+API API calls C+API API calls C+API API calls

SMO 0.966 0.979 0.034 0.021 0.967 0.980 0.966 0.979
Simple Logistic 0.951 0.963 0.049 0.037 0.953 0.964 0.951 0.963
Logistic 0.924 0.932 0.076 0.068 0.925 0.933 0.924 0.932
J48 0.906 0.916 0.094 0.084 0.908 0.917 0.906 0.916
Random Forest 0.948 0.929 0.052 0.071 0.951 0.932 0.948 0.929
Random Tree 0.878 0.877 0.122 0.123 0.878 0.878 0.878 0.877
C+API: Category+API call

the SMO classifier was successful in achieving highest accuracy of 97.905% with 0.021

FPR for final features comprised of API calls. Moreover, the same classifier performed

well for the N-gram features of type Category+API calls and gained nearly equivalent

accuracy of 96.614% with 0.034 FPR when compared with N-gram features of API

calls type. Further, the Simple Logistic classifier attained second highest accuracy of

96.355% with 0.037 FPR for final features consisting of API calls, and for the final

features of Category+API calls, it yielded an accuracy of 95.052% with 0.049 FPR.

The least accuracy obtained was 93.193% with 0.068 FPR by the Logistic classifier

for final features of API calls, whereas, for the final features of Category+API calls, it

recorded an accuracy of 92.447% with 0.076 FPR. The other classifiers such as the J48,

RF, and Random Tree underperformed by achieving less accuracy as shown in Table

4.6.

The detection performance of the classifiers was also analyzed for N-grams of size

5 bytes using other evaluation metrics as tabulated in Table 4.6. The highest TPR, Pre-

cision, and Recall was achieved by the SMO classifier with 0.979, 0.980, and 0.979,

respectively, as witnessed for the final features consisting of API calls as N-gram fea-

tures. However, the performance of the classifiers was not appreciable for the final

features comprised of Category+API calls.

The experiments were conducted substantially and analyzed to decide which N-

gram size encouraged the classifier to achieve better accuracy. In this direction, the ob-

tained and analyzed results proved that N-gram features of type API calls alone exhib-

ited promising results for N-grams of size 4 bytes. Further, it was crucial to have LSVC

as feature selector to get the best compact set of features and better accuracy. Accord-

ingly, the accuracy of 98.429% was achieved by the SMO classifier with few features
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recommended by the LSVC for the final features consisting of API calls. Meanwhile,

experiments were also conducted by combining Category+API calls, which resulted in

less accuracy.

Some of the malware exhibits their malicious action only after certain condition

met. Till certain conditions met, they behave like benign files. If the malware detection

system analyses behaviour report of the PE file that generated before the actual event

trigged, such behaviour report of the malware misclassified as benign.

4.4 WINDOWS MALWARE DETECTOR USING CONVOLUTIONAL NEU-

RAL NETWORK BASED ON VISUALIZATION IMAGES

Despite the success of the machine learning-based techniques in the identification of

obscure malware, it may sometimes be susceptible to wrong predictions, if the learning

process is inadequate. To overcome this, the Neural Network-based methods (Nataraj

et al., 2011) have emerged as a promising approach, and it is applied as a superior

technique to detect malware.

In the present work, a Convolutional Neural Network (CNN)-based Windows mal-

ware detection approach was proposed that used the CAT-API as the behavioural fea-

tures to detect and classify unknown Windows malware. The Cuckoo Sandbox was

utilized to obtain the runtime behavioural reports. These reports were in the JSON

file format and rendered relevant information related to the CAT-API that are triggered

together while a source file is in the process of execution.

From the previous work mentioned in Section 4.3, it can be understood that the

extraction of only API calls as behavioural features from the MIST report leads to am-

biguity because two or more different API calls may have the same identifier in two

or more different Categories (CATs). To overcome this issue, in the present work, an

endeavour was made to define the combination of CAT-API as a behavioural feature to

recognize an obscure malware. Such a blend gives knowledge about the intent of the

malware and proper learning for the classifier to perform its task. Hence, CAT-API se-

quences were extracted and generated as N-grams. However, all the generated N-grams

cannot be considered as a part of the classification process because 1) the redundant

features impact on storage space as well as processing time, and 2) the noisy features
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degrade the classifier performance by achieving high FPR. Thus, to select a set of the

most crucial N-grams from the original N-gram features set, the filter-based FST was

employed. The selected topmost N-grams were used to create an image. Subsequently,

a set of experiments were conducted with four different FSTs to know which one per-

formed the best. The key contributions of the present work are as follows:

• In this work, a CNN-based Windows malware detection approach was proposed,

implemented, and evaluated. It used the runtime behaviour features (N-grams) of

the PE files that are advised by the FST to create images. The generated images

were employed to examine the proficiency of the proposed approach.

• A set of experiments were conducted to demonstrate the classification ability of

the proposed approach and compared with the chosen six machine learning-based

classifiers. The obtained empirical results manifested that the proposed approach

was predominant for the N-gram features recommended by the Relief FST and

achieved maximum detection accuracy than that of machine learning-based clas-

sifiers. Thus, the proposed approach is proficient in the detection of Windows

malware.

• The effectiveness of the four different filter-based FSTs in suggesting the best N-

grams was evaluated and compared to show which one gave the best performance.

4.4.1 Windows Malware Detector using Convolutional Neural Network

The proposed CNN-based Windows malware detector mainly comprises of the Training

Phase and the Prediction Phase as shown in Figure 4.16. The training phase is used

to train the malware detector so that it can detect and classify the unknown PE files.

The essential modules of the training phase are the Behaviour-based Feature Extractor,

Feature Selector, Final Features Set, Image Generator, and the CNN.

4.4.1.1 Behaviour-based Feature Extractor

The PE file has behavioural features that are invoked, while the PE file is being executed.

Behaviour-based Feature Extractor observes and records the behavioural features of the

PE file, which is under execution in a controlled monitoring environment. It acquires

the execution time behavioural report of the PE file to extract the CAT-API features

and then, the acquired features are processed to derive the N-grams. The main sub-

components of the Behaviour-based Feature Extractor are shown in Figure 4.17.
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Figure 4.16: CNN-based Windows Malware Detector architecture

Figure 4.17: Behaviour-based Feature Extractor

Cuckoo Sandbox and MIST Report Generator

The Cuckoo Sandbox provides vast information about the behaviour of the input PE file,

namely, registry keys, accessed files, network traffic triggered, mutexes, and Windows

API calls, as mentioned in Section 4.3.1.1. Thus, the behavioural report generated by

the Cuckoo Sandbox can be of great importance to determine obscure malware.

Besides its functionalities described in Section 4.3.1.1, the main benefits of adopting

the Cuckoo Sandbox is that it can restore the infected machine to a clean state after

performing the analysis so that new analysis operation can be carried out with a new

source file. The maximum time that a PE file is allowed to run in the Cuckoo Sandbox

is based on the default timeout option set within it. On timeout, the Cuckoo Sandbox

terminates the analysis. This is because some sophisticated malware never end or loop

for an extended period (Miller et al., 2017).

Thus in the present work, the Behaviour-based Feature Extractor utilizes the Cuckoo

Sandbox to obtain the analysis report to derive the behavioural features. Further, the

present work also involves the MIST Report Generator as described in Section 4.3.1.1
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Table 4.7: Number of API calls identified under different categories

Sl. No. Identified
Categories

# API
Calls Sl. No Identified

Categories
# API
Calls

01 notification 02 11 ole 07
02 certificate 02 12 process 41
03 crypto 10 13 registry 29
04 exception 02 14 resource 06
05 file 38 15 services 10
06 filesystem 05 16 synchronization 05
07 memory 01 17 system 27
08 misc 30 18 threading 02
09 netapi 01 19 ui 10
10 network 48 20 windows 03

to convert the JSON format-based behavioural reports to MIST format-based reports.

About 400 PE files were executed onto a Windows-7 virtual machine through the

Cuckoo Sandbox to acquire the runtime behavioural reports, and the gathered reports

were converted into MIST reports to derive a sequence of CAT-API that were invoked

during the execution of the source files. The observed 20 unique categories with their

corresponding number of unique API calls are depicted in Table 4.7.

4.4.1.2 CAT-API Extractor

The Windows API gathers user-mode library routines defined under a specific category.

It comprises of Windows Native API, which is used for invoking the services of the

operating system. The malware must call upon the local API whenever it needs to access

one or more services such as the allocation or de-allocation of the virtual memory,

interact with global resources, start a thread or process, etc. that exist in kernel-mode.

The API calls invoked during the execution of the source PE file are classified under

several CATs based on the type of operation performed including resources, system,

misc, network, file, crypto, registry, services, process, etc. Different CATs, which are

defined based on the operation being performed, are indicated numerically using a one-

byte hexadecimal number in the MIST report. Similarly, the API calls that are invoked

under each category are numerically denoted by one-byte hexadecimal number in the

MIST report. Two byte combination of the CAT-API representation supports 255 CATs

to get their unique number and each CAT assigns a unique number to the 255 API

calls. Overall, this representation supports 65535 API calls uniquely. For instance,

assume that the process CAT is denoted by hexadecimal number ’0a’ and during
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the execution of the source PE file within the sandbox, the source file invokes 255 APIs

corresponding to process CAT, then it can be represented as 0a01, 0a02, . .

. , 0afe, 0aff along with its corresponding arguments in the MIST format.

Figure 4.18: Example of CAT-API extraction from sample MIST report

The extraction of only API calls as behavioural features from the MIST report leads

to ambiguity because two or more different API calls may have the same identifier in

two or more different CATs. For instance, the extraction of API calls from the MIST

instructions as shown in Figure 4.18 produces the sequence as ’0a 0c 0a 10 0c

. . . ’. The second and fifth byte in the extracted sequence represents the same

API call, but they are different in their respective CAT. To overcome this issue, in the

present work, an endeavour was made to define the combination of CAT-API as a dy-

namic feature to recognize an obscure malware (Pektaş and Acarman, 2018). Such a

blend gives knowledge about the intent of the malware and proper learning for the clas-

sifier to perform its classification task. The CAT-API extractor was implemented using

the Python programing language with the objective of extracting CAT-API behaviour

features from the MIST report.

4.4.1.3 N-gram Generator

The N-gram constitutes a sequence of ’N’ consecutive bytes from a byte sequence

(Reddy and Pujari, 2006), where ’N’ indicates the number of predefined bytes. The

foremost task of the N-gram Generator, in the proposed work, is to generate N-grams.

The first and second columns of the MIST report represent the sequence of CAT and

API, respectively (see Figure 4.18), and the pair of the first two bytes of each row of the

MIST report denote CAT-API. For the extracted CAT-API sequences, a sliding window
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Figure 4.19: N-grams generation for the CAT-API sequence extracted from the sample MIST
report shown in Figure 4.18

approach is applied to derive N-grams of size 4 bytes as shown in Figure 4.19. Each

of the derived N-grams is viewed as a feature and the entire collection of the N-grams

is considered as an original N-gram features’ set. Past works illustrate that N-gram

of size four bytes shows encouraging results (Kolter and Maloof, 2006; Masud et al.,

2008). Accordingly, N-grams of size four bytes were adopted in the present work. The

N-gram technique generates numerous N-grams that comprise of redundant N-grams.

The repetitive N-grams affect space, processing time, and classifier performance. Thus,

all the constructed N-grams cannot be used to train the classifier. To address this is-

sue, duplicate N-grams were eliminated from the original N-gram features set and only

distinct N-grams were considered as input to the Feature Selector to obtain prominent

features.

For instance, to remove the redundant features, at first, the union operation was ap-

plied on the BNF [BNF1, BNF2, ..., BNFn] and MNF [MNF1,MNF2, ...,MNFm]

that was represented as [BNF1∪BNF2∪...∪BNFn∪MNF1∪MNF2∪...∪MNFm],

which then achieved a consolidated file as the unique N-gram features’ set.

4.4.2 Feature Selector

The Feature Selector utilizes the filter-based FST to select significant N-grams from the

unique N-gram features’ set, thereby increasing the viability of the classifier in recog-

nizing the malware. The prime aim of considering the FST in the proposed method

was to regulate the elaborate learning process behind the CNN by, (i) recommending

79



significant features which are informative for effective classification by the classifier,

and (ii) reducing significant redundancy in the CNN by pruning the neurons. Reducing

inputs is essential because it avoids the network from learning of the associations be-

tween the noisy features, which result in negative and leads to degrading performance.

Therefore, in the present approach, an attempt was made to investigate the effectiveness

of the CNN in discriminating malware from benign PE files based on the images gen-

erated by using the features advised by the FST. In the present work, widely used FSTs

such as Chi-Square (Belaoued and Mazouzi, 2015), MI (Yang and Pedersen, 1997), IG

(Kolter and Maloof, 2006), and Relief (Kononenko, 1994) were employed individually

to choose prime N-grams. Any classifier model ought to be trained with an adequate

number of features so that it can quickly and easily distinguish malware from benign

files. Thus, experiments were conducted by selecting the topmost 676 features (i.e., ≈
25% of unique N-gram features set) recommended by the FST.

The explanation for two FSTs such as MI and IG is provided in Section 3.1.2 and

Section 4.1.3, respectively. The description concerning other FSTs such as Chi-Square

and Relief is described below.

Chi-Square (χ̃2)

The Chi-Square FST is employed to examine the dearth of independence of the two

variables, i.e., feature ’f ’ and class ’c’ (Yang and Pedersen, 1997) (Belaoued and Ma-

zouzi, 2015; Ajay Kumara and Jaidhar, 2017). The Chi-Square score was computed as

per Eq. 4.4 and the higher Chi-Square score signifies a close relation between feature

and class.

χ̃2(f, c) =
N [AD −BC]2

(A+ C)(B +D)(A+B)(C +D)
(4.4)

Where, ’N’ represents the total files in the training dataset, ’A’ represents the total

files containing the feature ’f ’ in class ’c’, ’C’ indicates the total files present in class

’c’ in which feature ’f ’ does not exist, ’B’ denotes the total files containing the feature

’f ’ that does not exist in class ’c’, and ’D’ denotes files not present in class ’c’ and does

not have the feature ’f ’.
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Relief

Relief FST employs feature relevance criterion to rank the features. It is very efficient

in estimating the features (Kononenko, 1994; Coronado-De-Alba et al., 2016). It quan-

tifies features by how well their values discriminate among instances that are close to

each other. For instance, it explores its two nearest neighbours: i) one from the same

class defined as the nearest hit, and ii) the other from a different class termed as the

nearest miss. The Relief estimates W[f ] of feature ’f ’ as per Eq. 4.5.

W [f ] = P (different value of f |nearest instance from

different class)− P (different value of f |nearest

instance fromsame class)

(4.5)

It is reasonably inferred that using Relief, good features can distinguish between

instances of different classes and subsequently, instances of the same class should have

the same value.

4.4.3 Final Features Set

The Final Features Set comprises of the topmost unique N-grams advised by the FST.

These N-grams are utilized as ultimate features, since there is no further reduction in

the features’ set. In the proposed work, the N-grams were highly crucial to generate

images, as they are prerequisite for the chosen CNN to perform the classification task.

4.4.4 Image Generator

Image generation is the foremost task in the proposed work. The Image Generator takes

the N-grams present in the Final Features’ Set one at a time and checks its occurrence

in the N-gram file to construct an image for the N-gram file. Based on the presence or

absence of the N-gram in the N-gram file, the value 255 or 0 is written onto the image

(’0’ represents that the N-gram is absent and ’255’ indicates that the N-gram is present).

Thereby, black and white images corresponding to the N-gram files are created, and

the generated images are employed to measure the potency of the proposed approach.

The dimension (height x width) of the image mainly relies on the topmost significant
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(a) AutoRun Family

(b) Sality Family

(c) Zbot Family

Figure 4.20: Illustration of malware images of different families

features advised by the FST. As seen in Figure 4.20, the generated images that belong

to the same malware family are visually similar, and they differ conspicuously from

the images that belong to other families. This helps the CNN to detect and precisely

classify the input PE file.

4.4.5 Convolutional Neural Network

CNN is a multilayer perceptron that has the proficiency to learn a representation of the

raw data with multiple levels of abstraction (Albelwi and Mahmood, 2017) for iden-

tifying two-dimensional shapes. It consists of a set of learnable kernels, which are

convolved across the width and height of the input features. The CNN has a standard

structure composed of three types of layers: 1) convolutional layer, 2) sub-sampling

layer (pooling layer), and 3) fully-connected layer, as depicted in Figure 4.21.

First is the Input Layer, which fetches the training images into the Neural Network.

It is then followed by the convolution and sub-sampling layers. The convolution layer

intensifies the signal characteristics to minimize the noise, whereas, the sub-sampling

layers reduce the data processing while preserving useful information.
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Figure 4.21: General overview of the Convolutional Neural Network to perform image classifi-
cation

Next is the fully connected layer that converts the two-dimensional features into a

one-dimensional feature to comply with the classification criteria. The CNN is trained

by back-propagation as a means of Stochastic Gradient Descent to compute the weight

and bias that minimizes loss function to map arbitrary inputs into the targeted outputs.

To make the training faster, activation functions are employed because they train the

Neural Network without significant penalty. In the proposed method, each input image

proceeded through 2 convolution layers, 2 sub-sampling layers, and 2 fully connected

layers. The process of convolution included 256 learnable filters of size 5×5. Similarly,

during the sub-sampling process, it adopted a window size of 2×2, which minimized the

training parameters. After the second sub-sampling layer, the output feature map was

flattened and connected to 2 fully connected layers whose dimensions were 256, 128,

and 10 (number of malware classes). The first fully connected layers adopted ’ReLu’

as the activation function and the second used ’softmax’ as its activation function.

4.4.6 Prediction Phase

In the prediction phase, the test image was created from the unknown PE files, which

is essential to evaluate the discriminative performance of the trained CNN. The Final

Features’ Set and the output of the Behaviour-based Feature Extractor were used to

deliver the test image, which was then sent to the trained CNN to measure the detection

ability of the trained CNN.

4.4.7 Experimental Results and Discussion

4.4.7.1 Data Collection

Initially, a dataset comprising of 200 benign and 200 malware PE files was utilized to

acquire the execution time behavioural reports from the Cuckoo Sandbox. However,
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the 400 PE files were insufficient to train the malware detector as they did not mimic

the real-world scenario. Thus, the Malheur dataset (Rieck et al., 2011) was used and it

provided the behavioural reports of the PE files in the MIST format. To demonstrate the

effectiveness of the proposed CNN-based Windows malware detector, 3282 benign and

4151 malware MIST files were used that included ten different types of malware such as

Allaple (719), AutoIt (365), AutoRun (128), Basun (393), Lipler (119), NetMon (54),

Sality (66), Swizzor (594), Texel (1662), and Zbot (51).

The CAT-API features were extracted from the MIST files to generate N-grams as

explained in Section 4.4.1.3. The constructed unique N-gram features set consisted of

2779 N-grams, which was quite large. Therefore, the FST was used to obtain prominent

N-grams. The topmost 676 N-grams advised by the chosen four FSTs were acquired in-

dependently and considered as the Final Features Set; accordingly, four Final Features

Sets were obtained. The Final Features Set achieved by employing the Chi-Square FST

and a dataset of 7433 N-gram Files were utilized to create 7433 images (i.e., 3282 of

benign images and 4151 of malware images) of 26×26 dimension, and every image in-

dicated one PE file. Similarly, three other sets of 7433 images were created separately

using the three other Final Features’ Sets as suggested by the FSTs such as Relief, MI,

and IG. Finally, there were four image sets with each set consisting of 7433 images.

These generated sets of images were used in the 10-fold cross-validation tests to ap-

praise the ability of the proposed CNN-based approach.

Four evaluation metrics such as F-Measure, Accuracy, Precision, and Recall (Ajay Ku-

mara and Jaidhar, 2017) were utilized in the present work to appraise the detection and

classification ability of the proposed CNN-based Windows malware detector as well as

the performance of the six machine learning-based classifiers (see Eq. 2.1). A malware

detection method with a high detection rate and low misclassification rate is said to be

proficient in identifying any unknown malware. An ideal malware detector is said to

have high Precision and high Recall. However, in practice, it is difficult to achieve both.

4.4.8 Examination of the Proposed Approach with Machine Learning-based Classifiers

The proficiency of the proposed CNN-based Windows malware detection approach was

demonstrated by conducting a series of experiments based on the prominent N-grams

advised by the chosen four different filter-based FSTs. Based on the obtained experi-

84



Table 4.8: Comparison of performance achieved by machine learning-based classifiers and the
proposed CNN-based approach for collected Malheur dataset

Feature Selection
Technique Metrics Classifier(s)

SMO Simple
Logistic Logistic J48 Random

Forest
Random

Tree
Proposed
approach

Chi-Square

Accuracy 96.542 96.650 94.093 96.381 95.681 93.354 97.928
Precision 0.966 0.967 0.942 0.964 0.957 0.934 0.979
Recall 0.965 0.967 0.941 0.964 0.957 0.934 0.979
F-Measure 0.965 0.966 0.941 0.963 0.957 0.933 0.979
Time (Sec) 0.343 2.703 8.170 0.291 0.324 0.016 3.093

Information Gain

Accuracy 96.515 96.515 94.080 96.367 95.910 93.730 97.713
Precision 0.965 0.965 0.942 0.964 0.960 0.937 0.977
Recall 0.965 0.965 0.941 0.964 0.959 0.937 0.977
F-Measure 0.965 0.965 0.941 0.963 0.959 0.937 0.977
Time (Sec) 0.429 1.646 8.218 0.301 0.354 0.011 3.125

Mutual Information

Accuracy 96.515 96.461 93.959 96.340 95.856 93.717 97.847
Precision 0.965 0.965 0.941 0.964 0.959 0.937 0.978
Recall 0.965 0.965 0.940 0.963 0.959 0.937 0.978
F-Measure 0.965 0.964 0.940 0.963 0.958 0.937 0.978
Time (Sec) 0.533 2.319 8.119 0.303 0.333 0.007 3.089

Relief

Accuracy 96.488 96.650 94.053 96.273 95.896 93.771 97.968
Precision 0.966 0.967 0.942 0.963 0.960 0.938 0.979
Recall 0.965 0.967 0.941 0.963 0.959 0.938 0.979
F-Measure 0.965 0.966 0.941 0.962 0.959 0.937 0.979
Time (Sec) 0.411 1.743 7.893 0.300 0.310 0.006 3.109

Table 4.9: API calls and their respective Categories exist in the Final Features Set recommended
by Relief Feature Selection Technique

Category
Name

Category
Identifier

Invoked
API call # API’s

hooking 01 2 SetWindowsHookExW, SetWindowsHookExA
network 02 3 getaddrinfo, HttpOpenRequestA, HttpSendRequestA

windows 03 6
FindWindowA, FindWindowExA, FindWindowExW,
FindWindowW, CreateWindowExW, CreateWindowExA

threading 04 7
CreateRemoteThread, OpenThread, CreateThread, ExitThread,
NtGetContextThread, NtSuspendThread, NtResumeThread

process 05 8
NtWriteVirtualMemory, TerminateProcess, VirtualFreeEx,
NtReadVirtualMemory, OpenProcess, VirtualProtectEx,
NtCreateProcessEx, CreateProcessInternalW

system 06 7
UnhookWindowsHookEx, LdrGetProcedureAddress,
IsDebuggerPresent, LookupPrivilegeValueW, LdrLoadDll
LdrGetDllHandle, NtDelayExecution

services 07 2 StartServiceW, OpenServiceA
synchronization 08 2 NtOpenMutant, NtCreateMutant

registry 09 8
RegCreateKeyExW, RegDeleteKeyA, RegEnumValueW,
RegCloseKey, RegDeleteKeyW, RegQueryValueExA,
RegEnumKeyExW, RegOpenKeyExW

filesystem 0a 7
NtOpenFile, NtReadFile, CreateDirectoryW, NtWriteFile,
MoveFileWithProgressW, NtCreateFile, CreateDirectoryW

device 0b 1 DeviceIoControl
memory 0c 3 NtOpenSection, NtCreateSection, NtAllocateVirtualMemory
socket 0d 1 WSAStartup
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Table 4.10: Comparison of performance achieved by machine learning-based classifiers and the
proposed CNN-based approach for generated dataset

Feature Selection
Technique Metrics Classifiers

SMO Simple
Logistic Logistic J48 Random

Forest
Random

Tree
Proposed
approach

Chi-Square

Accuracy 79.250 82.250 70.250 78.250 75.500 73.500 97.499
Precision 0.786 0.815 0.693 0.776 0.742 0.727 0.974
Recall 0.793 0.823 0.703 0.783 0.755 0.735 0.973
F-Measure 0.788 0.818 0.694 0.778 0.743 0.729 0.974
Time (Sec) 0.104 0.672 6.027 0.072 0.229 0.007 3.086

Information Gain

Accuracy 80.000 82.250 68.250 77.250 75.250 74.000 95.749
Precision 0.792 0.814 0.674 0.762 0.736 0.732 0.956
Recall 0.800 0.823 0.683 0.773 0.753 0.740 0.957
F-Measure 0.794 0.816 0.677 0.765 0.740 0.734 0.956
Time (Sec) 0.077 0.662 6.546 0.056 0.191 0.006 3.164

Mutual Information

Accuracy 79.750 81.500 66.250 80.250 78.250 75.750 95.500
Precision 0.790 0.808 0.656 0.795 0.773 0.750 0.955
Recall 0.798 0.815 0.663 0.803 0.783 0.758 0.953
F-Measure 0.792 0.811 0.658 0.797 0.774 0.752 0.955
Time (Sec) 0.120 0.868 4.937 0.050 0.161 0.009 3.094

Relief

Accuracy 81.000 79.250 69.250 82.000 80.500 74.000 97.999
Precision 0.804 0.786 0.686 0.820 0.798 0.739 0.979
Recall 0.810 0.793 0.693 0.820 0.805 0.740 0.978
F-Measure 0.806 0.789 0.688 0.819 0.796 0.739 0.979
Time (Sec) 0.110 0.536 6.482 0.077 0.159 0.008 3.110

mental results, the performance of the proposed approach was compared with the per-

formance of the other six machine learning-based classifiers available in the WEKA

(Frank et al., 2009) tool such as RF, SMO, J48, Logistic, Random Tree, and Simple

Logistic. Table 4.8 demonstrates the accuracy achieved by the proposed approach for

50 epochs and six machine learning-based classifiers.

It can be noticed from Table 4.8 that the proposed CNN-based approach gained

highest accuracy of 97.968% with 0.979, 0.979, and 0.979 of F-Measure, Precision,

and Recall, respectively, with the images created by using the topmost 676 N-grams

recommended by the Relief FST. Contrarily, the experimental results delineated in Ta-

ble 4.8 demonstrates that the machine learning-based classifiers such as J48, Logistic,

RF, SMO, and Random Tree underperformed by attaining less accuracy for the same

topmost 676 N-grams. However, the Simple Logistic classifier reported better accuracy

of 96.650% with 0.966, 0.967, and 0.967 of F-Measure, Precision, and Recall, respec-

tively. Similar experiments were conducted by employing the other three FSTs and the

obtained experimental outcomes are shown in Table 4.8.

The analysis of results obtained by the proposed CNN-based Windows malware de-

tector with four different FSTs led to understand that employing FST at the input level
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of CNN boosts the detection accuracy of the classifier as shown in Table 4.8. However,

the relative analysis performed using the CNN-based approach with each of the cho-

sen FST demonstrated that the accuracy accomplished by them was almost the same

with an accuracy difference of less than 0.5%. It is evident that the performance of

the CNN-based approach is appreciable in terms of achieving better accuracy when it

is trained with the images generated using the most relevant features recommended by

the FST. However, the accuracy achieved by the machine learning-based classifiers was

comparatively less (i.e., < 97%) as illustrated in Table 4.8. The main reason behind

this is due to their shallow architecture (Deng, 2012; Hardy et al., 2016). Although

these have shown effective performance in simple or well-constrained scenarios, their

limited modelling and representation capabilities experience difficulties in dealing with

colossal training data. The execution of machine learning models with shallow struc-

tures gets saturated for more substantial training data due to their constrained learning

capacity. Thus in the present work, a CNN-based Windows malware detector was pro-

posed and the obtained experimental results demonstrated that the proposed approach

was significant when compared with machine learning-based classifiers due to their ef-

ficient learning ability. Most relevant CAT and API calls suggested by the Relief FST

are represented in Table 4.9.

Table 4.10 shows the obtained experimental results for the generated dataset that

consisted of 200 benign and 200 malware PE files. It can be noticed from Table 4.10

that the proposed CNN-based Windows malware detector performed better than the

machine learning-based classifiers even for a smaller dataset. However, the machine

learning-based classifiers’ performance was not remarkable. The main reason is since

the 10-fold cross-validation tests were performed on a smaller dataset, the machine

learning-based classifiers was subjected to overfitting due to insufficient number of

training files to perform the prediction. With these comparative results, it can be rea-

sonably inferred that the proposed CNN-based approach is significant in detection and

classification of unknown malware for both, smaller datasets (generated dataset) and

larger datasets (collected Malheur dataset).

Another observation was made in terms of accuracy and time, when the proposed

CNN-based approach for 50 epochs was compared with the machine learning-based

classifiers, and the recorded values are shown in Table 4.8 and Table 4.10. The proposed
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Figure 4.22: Performance evaluation of the proposed CNN-based approach using different met-
rics based on best relevant N-grams recommended by each Feature Selection Technique (CS:
Chi-Square, IG: Information Gain, MI: Mutual Information, Relief) by varying the number of
epoch

CNN-based Windows malware detector showed advantages in accuracy, but performed

slightly slower than the machine learning-based classifiers.

4.4.9 Analysis of the Proposed Approach

Another set of experiments were conducted to determine the efficiency of the proposed

approach by varying the number of epochs, and the subsequently obtained F-Measure,

Recall, and Precision values were recorded to measure its effectiveness. Exactness is

measured by Precision and completeness is measured by Recall. However, the malware

detection method is said to be ideal if these performance metrics attain a value closer to

1.
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Figure 4.23: Evaluation of loss occurred by the proposed CNN-based Windows malware detec-
tor

Figure 4.22 demonstrates the results accomplished by the proposed CNN-based

Windows malware detector by employing the best 676 N-grams recommended by the

four different FSTs such as Chi-Square, IG, MI, and Relief, by varying the number of

epochs from 10 to 50. It can be seen that when the CNN is trained with the images gen-

erated by the N-grams recommended by the Relief FST, the proposed approach achieves

F-measure equal to 0.979, Precision of 0.979 and high Recall of 0.979, when the num-

ber of epochs is set at 50 (See Figure 4.22a, Figure 4.22b, and Figure 4.22c). Similarly,

the proposed approach showed competitive performance for images that were generated

based on the topmost 676 N-grams suggested by the Chi-Square FST. In this case, the

CNN yielded high Precision of 0.979, F-Measure of 0.979, and Recall of 0.979 for 50

epochs as shown in Figure 4.22a, Figure 4.22b, and Figure 4.22c. It can be observed

from Figure 4.22, that the performance of the proposed approach is poor when it is

trained with the images generated based on the N-grams recommended by the IG and

MI FSTs (see Figure 4.22a, Figure 4.22b, and Figure 4.22c).

On thorough analysis, it is understood that increased number of epochs can improve

the accuracy of the proposed CNN-based approach. Further, to prevent the network

from learning the associations between the irrelevant features, feature selection at an

input level of CNN is necessary to enhance the predictive performance of the classifier.

As evidence, the proposed CNN-based Windows malware detector attained better de-

tection accuracy and outperformed for Relief FST based images when compared with

other individual FSTs.
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Table 4.11: Time to pre-process and predict three different test files of different size

Process Steps Time (Sec) taken for 50 Epoch
Min. File

584KB
Avg. File
1.8MB

Max. File
2.2 MB

Conversion of MIST File
(Behavioural Report) to
Image File

0.260 0.418 0.504

Prediction 3.044 3.076 3.085
Total 3.304 3.494 3.589

The loss function or optimization score function was also used to measure the per-

formance of the proposed classification model. From Figure 4.23 it can be understood

that the proposed CNN-based approach performed well by gaining sequentially less loss

value at each epoch when it was trained with images generated based on the topmost

676 N-grams recommended by the Relief FST.

Table 4.11 provides the time taken by the proposed CNN-based Windows malware

detector to predict the given test files (MIST) of three different sizes such as Mini-

mum (Min.), Average (Avg.), and Maximum (Max.). As the size of the test image file

(26×26) is the same for all the three different test files, the time taken for prediction is

almost equal. To investigate the feasibility of using the proposed approach in real-time

situations, it was implemented on the host system to do the prediction.

4.5 SUMMARY

In Section 4.1, the performance of the system calls-based Windows MDS in achieving

a better detection rate was investigated. The Cuckoo Sandbox was employed to gather

system-level behaviour of the PE files. The system calls sequence, triggered by the PE

files, was extracted from the MIST reports obtained by pre-processing the JSON reports.

The IG FST suggested prominent N-gram features were employed to construct the Final

Feature Set for different N-gram lengths individually. A separate experiment was con-

ducted for the Final Feature Set of each N-gram size. Through thorough experimental

analysis, the machine learning-based classifier Spegagos ensured better classification

for both N-gram lengths of three and four bytes.

In Section 4.2, a multiprocessing model was proposed to minimize the time re-

quired by the FST to compute the score for the N-grams (features). The computation

time taken by the multiprocessing model and the sequential mode1 was measured to
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compare the processing efficiency. Experiments were conducted with N-grams datasets

of different sizes, and in each experiment, the performance of the proposed multipro-

cessing model in computing the IG score was high compared with the sequential model.

On average, the proposed approach was 80% faster than the sequential model of the IG

score computation.

In Section 4.3, the effectiveness of the behavioural features suggested by the LSVC

in identifying unknown malware was investigated. Two different types of behavioural

features, namely, API calls and Category+API calls were considered to know which

type of features provided better malware detection rate. The highest detection accuracy

was obtained with API calls as the behavioural feature.

Section 4.4 proposed CNN-based Windows malware detector showed that the mal-

ware detection problem could be transformed into an image classification problem. Fur-

ther, to prevent the Neural Network from learning the associations between the irrele-

vant features, experiments conducted to demonstrate feature selection at the input level

of CNN is necessary. A set of experiments were conducted to demonstrate the classi-

fication ability of the proposed approach and compared with the chosen six machine

learning-based classifiers. The obtained empirical results reasonably presented that the

proposed approach is superior to the machine learning-based classifiers.

The main limitation of the proposed behavioural features-based malware detection

approach is that it is sometimes likely getting susceptible and fail to detect the PE

file as benign or malware accurately. The reason is that sophisticated malware can

unnecessarily enter sleep mode and remain idle to monitor the anti-defensive approach

applied to identify them. In such cases, statically analyzing the PE file becomes most

essential, and that provides information about the intent of the malware behaviour of

the PE file. To address this issue, the hybrid features-based malware detection approach

was proposed and discussed in Chapter 5. It mainly uses the combination of both the

static and behavioural features to discern the PE file as benign or malware.
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Chapter 5

Hybrid Features-based Malware Detection System

Static analysis and dynamic analysis are complementary to one another (Bounouh et al.,

2017). Dynamic analysis provides paramount insight to the malware, whereas static

analysis is unable to provide significant information required to analyze the malware

in real-time. In the present work, a Hybrid Features-based Malware Detection System

(HFMDS) has been proposed that detects Windows malware by extracting and ana-

lyzing static features and dynamic features of the PE files. The prime objective is to

measure the effectiveness of the MDS that uses both static and dynamic features.

5.1 WINDOWS MALWARE DETECTION SYSTEM BASED ON LSVC REC-

OMMENDED HYBRID FEATURES

The proposed HFMDS uses header information of the PE files such as OH, DOSH,

and FH as static features together with dynamic features of the PE files to ascertain the

Windows malware. Two types of dynamic features were used, namely, API calls alone

and API calls with their correspondent Category (APICAT), and these features were

extracted from the Cuckoo Sandbox generated behavioural report. The following are

the key highlights of the present work:

• The HFMDS was designed, implemented, and evaluated using publicly available

real-world malware samples. To validate its effectiveness, different set of exper-

iments were conducted by considering different combinations of the hybrid fea-

tures (API+OH+FH+DOSH, API+OH, API+FH, API+ DOSH, and OH+DOSH+

FH) and individually with only API calls as features. Further, another set of ex-

periments were carried out by considering APICAT as dynamic features with the

same static features. Finally, a comparative analysis was made to know which

combination of the features provided better detection rate.

• To measure the detection rate of the HFMDS, 10-fold cross-validation tests were

conducted. The obtained experimental results demonstrated that the HFMDS

was effective in precisely identifying malware and benign PE files using hybrid



features. The HFMDS was able to attain highest detection accuracy for API-

CAT+OH+DOSH+FH hybrid features.

5.2 Architecture Overview of HFMDS

An overview of the proposed HFMDS is shown in Figure 5.1. It mainly consists of two

phases: 1) the Training Phase and 2) the Prediction Phase. The HFMDS utilizes the

merits of both the static and dynamic malware analysis techniques.

Figure 5.1: Architecture of the proposed HFMDS

5.2.1 Training Phase

In the training phase, a set of benign and malware PE files are provided to derive static

and dynamic/behavioural features. The extracted features are processed further to elim-

inate noisy features using a specific approach elucidated in the HFMDS, and then a

training file is prepared, which is essential to train the HFMDS. The main components

of the training phase are Static Feature Extractor, Dynamic Feature Extractor, Feature

Selector, Final Feature Set, and Training-File-Creator.

5.2.1.1 Static Feature Extractor

The prerequisite task of the Static Feature Extractor is to identify and extract static

features such as OH, DOSH, and FH from the PE files. Each extracted data is considered
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as an individual feature. Its sub-component is the Header-Feature-Extractor.

5.2.1.2 Header-Feature-Extractor

It uses the Python module called pefile (Ero, 2017) to extract all the OH, DOSH, and FH

related data, and then stores the extracted data into an appropriate output file. For each

input file, the Header-Feature-Extractor maintains three separate output files; one file

to store OH related information and the other two files to store DOSH and FH related

information. Since the HFMDS treats each extracted data as an individual feature, all

the OH related features extracted from all the training files are gathered to form an OH

original feature set. Similarly, all DOSH and FH related features are gathered to form

a DOSH original feature set and an FH original feature set, respectively. However,

all the extracted features in the original feature set may not contribute to the detection

of unknown malware because the extracted features may comprise of redundant and

noisy/irrelevant features. Since noisy features reduce the predictive performance of the

classifier, identifying and eradicating these features plays a crucial role. In order to

address this problem, the Feature Selector is utilized.

5.2.1.3 Feature Selector

It is used to identify and select significant features from the original feature set that

increase the effectiveness of the classifier in detecting unknown malware. It employs

the LSVC (see Chapter 4, Section 4.3.1.2) as a feature selector to detect relevant and

irrelevant features from the original feature set by assigning a separate score to each

individual feature. The features with the highest score are considered as predominant

features and are selected as topmost features for the classification task.

In the present work, the LSVC is used to select the most significant static features

(OH, DOSH, and FH) and dynamic features (API calls and APICAT) from their respec-

tive original feature set. Subsequently, the topmost static features and dynamic features

are used to prepare a Static Final Feature Set and Dynamic Final Feature Set, respec-

tively. Finally, all these selected features play an important role in precisely classifying

the input files.
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5.2.1.4 Static Final Feature Set

The Static Final Feature Set is a set of static features derived from the PE files. Later,

these features are provided as input to the Union of Features to amalgamate with the

Dynamic Final Feature Set, and finally, a Final Feature Set is prepared to build training

as well as a testing file essential to evaluate the efficiency of the classifier(s).

5.2.2 Dynamic Feature Extractor

The prime task of the Dynamic Feature Extractor is to observe and record the behaviour

of the PE files, while one is being executed in a controlled monitoring environment. Its

main sub-components are: 1) Cuckoo Sandbox, 2) Behavioural Analysis Report, 3)

MIST Report Generator, and 4) API-Call Extractor.

5.2.2.1 Cuckoo Sandbox

It is used to obtain a behavioural report of the PE file during the runtime of the one

being executed (Guarnieri et al., 2012) in the JSON file format, as explained in Section

4.3.1.1.

5.2.2.2 Behavioural Analysis Report and MIST Report Generator

Behaviour analysis is also called as a dynamic analysis report (Firdausi et al., 2010).

The Cuckoo Sandbox captures the API calls triggered by the PE file and classifies them

into several categories based on the type of operation performed (Miller et al., 2017).

Moreover, as per Chapter 4, it is understood that the category of an API call in terms

of the type of operation performed helps to determine the actions taken by the PE file.

So, the focus is to extract details such as category and API call with the corresponding

arguments from the JSON file, and then, represent the acquired particulars in the MIST

format.

The MIST format (Rieck et al., 2011) is used in the present work to record all system

level behaviour in which the category, API call, and arguments are organized in different

levels or blocks, as shown in Figure 4.14. MIST reports are created by implementing

the MIST conversion process for all the runtime behaviour reports (JSON) produced by

the Cuckoo Sandbox.
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5.2.2.3 API-Call Extractor

The task of the API-Call Extractor is to extract API calls and APICAT from the MIST

report and its implementation is programmed using the Python programming language.

As the name indicates, the approach is specific to observation of the monitored API

calls and APICAT. So, the category and operational field of the MIST report are of

concern. The values in the operational field and the values of both the categories with

the operation field are extracted independently to prepare N-grams (Reddy and Pujari,

2006; Masud et al., 2008; Pektaş et al., 2011; Das et al., 2016) of size four bytes.

5.2.2.4 Dynamic Final Feature Set

The Dynamic Final Feature Set is a set of features that is derived from the behavioural

analysis report produced by the Cuckoo Sandbox for all the PE files of the dataset.

5.2.3 Final Feature Set and Training-File-Creator

The Final Feature Set is a set of hybrid features that consists of the most significant

static and dynamic features. These features are employed as final features since there is

no further features elimination.

The Training-File-Creator creates a training file essential to train the classifiers. It

parses the training dataset of the benign and malware files with the Final Feature Set

features to create a training file as shown in Figure 5.1.

5.2.4 Prediction Phase

In the prediction phase, the Testing-File-Creator is used to create a testing file, which is

necessary to appraise the predictive performance of the trained classifiers. It makes use

of the Final Feature Set and the output of the Static Feature Extractor and the Dynamic

Feature Extractor to deliver a testing file. The generated testing file is sent to the trained

classifier, which classifies whether the test input file is benign or malware.

5.3 Results

5.3.1 Experimental Setup

To evaluate the performance of the proposed HFMDS, all the experiments were con-

ducted on the host system, and its specifications are as mentioned in Section 2.7. Six
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different classifiers such as SMO, Simple Logistic, Logistic, J48, RF, and Random Tree

available in the WEKA (Frank et al., 2009) tool was adopted to evaluate the perfor-

mance of the proposed HFMDS with default parameters settings.

5.3.2 Data Collection

The experimental data consisted of 3856 benign and 3856 malware PE files to demon-

strate the effectiveness of the proposed HFMDS in detecting unknown malware. The

collected files in the dataset were in the Windows PE file format and all were unpacked,

and further, no duplicate PE files were found in the dataset. The benign Windows PE

files were gathered from freshly installed Windows virtual machines that included the

Windows-XP, Windows-7, and Windows-8 operating system files and other program

files of ’x64’ and ’x86’ architecture. Some benign PE files were downloaded from free

online software archives (CNET, 1996). The Windows malware PE files used in this

experimental work were downloaded from a public source (VirusShare, 2011), and the

collected files in the dataset included seven different types of malware such as Trojan,

Worm, Exploit, Backdoor, Virus, Rootkits, and Flooder. The same dataset was utilized

to extract the static and dynamic features required to validate the HFMDS. To have a

reliable feature set for the training and prediction phases, it is necessary to ensure that

all the PE files in the dataset are correctly labelled. Therefore, the dataset was scanned

using (VirusTotal, 2004a).

5.3.3 Evaluation Metrics

An HFMDS with the highest detection rate and minimum FPR is proficient in identify-

ing unknown malware. The effectiveness of the HFMDS and the detection performance

of the classifiers were estimated using six evaluation metrics such as TPR, FPR, Preci-

sion, Recall, F-Measure, and Accuracy as shown in Eq. 2.1.

5.3.4 Results and Discussions

In the present work, the prime aim of the HFMDS was to explore the accurate detection

and categorization of the malicious PE files using the Final Feature Set that consisted

of hybrid features.

During the training file creation phase, the Static Feature Extractor produced 14985
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OH features as an original OH feature set. Similarly, it produced 532 DOSH features

and 4600 FH features independently. The LSVC was applied onto each original feature

set separately to get the score for each of the features present in the original feature

set. Accordingly, the LSVC recommended 1334 significant features from the original

feature set of the OH. Further, 98 DOSH and 1492 FH features were advised as pre-

dominant features by the LSVC considering their respective original feature set. These

features were then used to prepare three independent Static Final Feature Sets for each

of the OH, DOSH, and FH.

One of the components of the Dynamic Feature Extractor, namely, the Cuckoo

Sandbox was employed to monitor and record the runtime behaviour of the PE file.

It stored the monitored behaviour of the PE file in the JSON file format. This was

then pre-processed to convert the data into MIST format so that only relevant data such

as the APICAT, API call, and the arguments were recorded. From the MIST format,

(a) the API call sequence and (b) the APICAT sequence were extracted independently,

and consecutive four byte sequences were grouped as one N-gram. For each MIST

format file, two separate N-gram files were prepared, where one consisted of API call

sequences and the other comprised of APICAT sequences. After removing duplicate

N-grams from each N-gram file that had different sequences, 7292 N-grams (generated

using API call sequences) and 3017 N-grams (generated using APICAT sequences)

were attained from all the N-gram files of the dataset. Since all these N-grams did not

contribute to malware detection, the LSVC was applied to choose the distinct features

and to ignore the noisy features. The LSVC recommended 667 N-grams as prominent

features out of 7292 N-grams and 429 N-grams as significant features out of 3017 to

construct two separate Dynamic Final Feature Sets.

In the present work, the features present in the Dynamic Final Feature Set and the

Static Final Feature Set were amalgamated to build a Final Feature Set in five differ-

ent combinations to validate the efficiency of the proposed HFMDS. The six compos-

ite forms of the Final Feature Sets were: 1) only API calls, 2) API calls with OH

(API+OH), 3) API calls with DOSH (API+DOSH), 4) API calls with FH (API+FH), 5)

OH and DOSH with FH (OH+DOSH+FH), and 6) API calls, OH, and DOSH with FH

(API+OH+DOSH+FH).
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Similarly, experiments were also carried out by considering dynamic features such

as APICAT with other static features to ensure the effectiveness of the HFMDS in de-

tecting malware. The experiments performed were reasonably able to prove that better

detection accuracy can be achieved by the hybrid features compared with merely con-

sidering either dynamic features or static features.

5.3.5 Analysis of HFMDS Based on Evaluation Metrics

The prime goal of the experiments was to check the feasibility of the HFMDS in the

detection and classification of unknown malware.

Initially, the experiments were carried out with only the dynamic features (invoked

API calls). Accordingly, from Figure 5.2a and Figure 5.2b it can be noticed that the RF

classifier obtained maximum detection accuracy of 88.488% with 0.115 FPR. However,

the detection accuracy of the other classifiers such as SMO, Simple Logistic, Logistic,

J48, and Random Tree achieved less accuracy. Meanwhile, experiments were also con-

ducted and comparative analysis performed to show that better detection accuracy can

be attained when APICAT is considered as dynamic features. Consequently, the RF

classifier gained maximum detection accuracy of 91.234% with 0.088 FPR as shown

in Figure 5.2c and Figure 5.2d. Further, classifiers such as SMO and Logistic yielded

significantly less accuracy of 90.638% with 0.094 FPR and 90.482% with 0.095 FPR,

respectively. On the other hand, Simple Logistic, J48, and Random Tree attained least

accuracy of 89.458% with 0.105 FPR, 89.821% with 0.102 FPR, and 89.198% with

0.108 FPR, respectively.

From the experimental observations depicted in Figure 5.2a and Figure 5.2b, the

SMO classifier achieved maximum accuracy of 96.071% and 0.039 FPR with the Final

Feature Set corresponding to a combination of API+OH. Further, the Simple Logistic,

RF, and J48 classifiers also performed well by producing an accuracy of 94.489% with

0.055 FPR, 93.464% with 0.065 FPR, and 93.348% with 0.067 FPR, respectively. Rela-

tively the overall performance of the other classifiers such as Logistic and Random Tree

reported lowest accuracy and their corresponding values were 89.665% with FPR 0.103

and 87.564% with FPR 0.124, respectively. Similarly, experiments were also performed

to examine effectiveness in obtaining better detection accuracy when the Final Feature

Set comprising of APICAT+OH was considered as the hybrid features. The SMO clas-
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sifier achieved better detection accuracy of 97.017% with 0.03 FPR (see Figure 5.2c

and Figure 5.2d). It can also be seen from Figure 5.2c that the second highest accuracy

of 95.811% with 0.958 FPR was yielded by the Simple Logistic classifier, followed by

other classifiers such as RF (95.604% with 0.044 FPR), J48 (94.216% with 0.058 FPR),

Logistic (91.843% with 0.082 FPR), and Random Tree (90.313% with 0.097 FPR).

The accuracy achieved by the different classifiers with the Final Feature Set cor-

responds to a combination of API+DOSH as shown in Figure 5.2a and Figure 5.2b.

From Figure 5.2a and Figure 5.2b, it can be observed that the highest detection accu-

racy of 89.613% with 0.104 FPR was obtained by the SMO classifier. However, the

performance of the other classifiers was not remarkable. The second highest accuracy

of 88.848% was accomplished by the Logistic classifier with 0.112 FPR. The J48 clas-

sifier recorded lowest accuracy of 87.435% with 0.126 FPR. Moreover, other classifiers

such as Simple Logistic, RF, and Random Tree underperformed by achieving least ac-

curacy of 87.396% with 0.126 FPR, 87.124% with 0.129 FPR, and 83.506% with 0.165

FPR, respectively. Further experiments were conducted to examine the detection ability

of the classifiers for the Final Feature Set consisting of APICAT+DOSH as the hybrid

features. From Figure 5.2c and Figure 5.2d, it can be noticed that the SMO classifier

outperformed the other classifiers and achieved detection accuracy of 91.428% with

0.086 FPR. However, classifiers such as the Logistic, Simple Logistic, J48, and RF

recorded detection accuracy of 90.949% with 0.091 FPR, 90.534% with 0.095 FPR,

90.158% with 0.098 FPR, and 90.936% with 0.091 FPR, respectively. Minimum per-

formance was shown by the RF classifier by attaining a detection accuracy of 88.433%

with 0.116 FPR.

For the combination of API+FH, the SMO classifier achieved highest accuracy of

94.722% with 0.053 FPR. Further, it can be noticed that both the Simple Logistic and

J48 classifiers seem to be equipotent in obtaining detection accuracy of 92.608% with

0.074 FPR and 92.245% with 0.078 FPR. The performance of other classifiers such

as the Logistic, RF, and Random Tree was not appreciable and yielded least accuracy

of 89.159% with 0.108 FPR, 91.143% with 0.089 FPR, and 86.605% with 0.134 FPR,

respectively, as depicted in Figure 5.2a and Figure 5.2b.

101



SM
O

Sim
ple

 Lo
gis

tic
Log

isti
c 

J48
Ran

dom
 Fo

res
t

Ran
dom

 Tr
ee

0.8
0

0.8
5

0.9
0

0.9
5

1.0
0

TPR

Cla
ssif

ier
s

 AP
I 

 AP
I+O

H 
 AP

I+D
OS

H 
 AP

I+F
H 

 OH
+D

OS
H+

FH
 

 AP
I+O

H+
DO

SH
+FH

 

 

(a
)

SM
O

Sim
ple

 Lo
gis

tic
Log

isti
c 

J48
Ran

dom
 Fo

res
t

Ran
dom

 Tr
ee

0.8
6

0.8
8

0.9
0

0.9
2

0.9
4

0.9
6

0.9
8

1.0
0

TPR

Cla
ssif

iers

 AP
ICA

T 
 AP

ICA
T+

OH
 

 AP
ICA

T+
DO

SH
 

 AP
ICA

T+
FH

 
 OH

+D
OS

H+
FH

 
 AP

ICA
T+

OH
+D

OS
H+

FH

 

 

(b
)

SM
O

Sim
ple

 Lo
gis

tic
Log

isti
c

J48
Ran

dom
 Fo

res
t

Ran
dom

 Tr
ee

0.8
0

0.8
5

0.9
0

0.9
5

1.0
0

Precision

Cla
ssif

ier
s

 AP
I 

 AP
I+O

H 
 AP

I+D
OS

H 
 AP

I+F
H 

 OH
+D

OS
H+

FH
 

 AP
I+O

H+
DO

SH
+FH

 

 

(c
)

SM
O

Sim
ple

 Lo
gis

tic
Log

isti
c

J48
Ran

dom
 Fo

res
t

Ran
dom

 Tr
ee

0.8
5

0.9
0

0.9
5

1.0
0

Precision
Cla

ssif
ier

s

 AP
ICA

T 
 AP

ICA
T+

OH
 

 AP
ICA

T+
DO

SH
 

 AP
ICA

T+
FH

 
 OH

+D
OS

H+
FH

 
 AP

ICA
T+

OH
+D

OS
H+

FH
 

 

(d
)

Fi
gu

re
5.

3:
Pe

rf
or

m
an

ce
ev

al
ua

tio
n

of
th

e
cl

as
si

fie
rs

fo
rd

iff
er

en
tc

om
bi

na
tio

n
of

hy
br

id
fe

at
ur

es
se

t(
i)

T
PR

,a
nd

(i
i)

Pr
ec

is
io

n.

102



SM
O

Sim
ple

 Lo
gis

tic
Log

isti
c

J48
Ran

dom
 Fo

res
t

Ran
dom

 Tr
ee

0.8
0

0.8
5

0.9
0

0.9
5

1.0
0

Recall

Cla
ssif

ier
s

 AP
I 

 AP
I+O

H 
 AP

I+D
OS

H 
 AP

I+F
H 

 OH
+D

OS
H+

FH
 

 AP
I+O

H+
DO

SH
+FH

 

 

(a
)

SM
O

Sim
ple

 Lo
gis

tic
Log

isti
c

J48
Ran

dom
 Fo

res
t

Ran
dom

 Tr
ee

0.8
5

0.9
0

0.9
5

1.0
0

Recall

Cla
ssif

ier
s

 AP
ICA

T
 AP

ICA
T+

OH
 AP

ICA
T+

DO
SH

 AP
ICA

T+
FH

 OH
+D

OS
H+

FH
 AP

ICA
T+

OH
+D

OS
H+

FH

 

 

(b
)

SM
O

Sim
ple

 Lo
gis

tic
Log

isti
c

J48
Ran

dom
 Fo

res
t

Ran
dom

 Tr
ee

0.8
0

0.8
5

0.9
0

0.9
5

1.0
0

F-Measure

Cla
ssif

ier
s

 AP
I 

 AP
I+O

H 
 AP

I+D
OS

H 
 AP

I+F
H 

 OH
+D

OS
H+

FH
 

 AP
I+O

H+
DO

SH
+FH

 

 

(c
)

SM
O

Sim
ple

 Lo
gis

tic
Log

isti
c

J48
Ran

dom
 Fo

res
t

Ran
dom

 Tr
ee

0.8
5

0.9
0

0.9
5

1.0
0

F-Measure

Cla
ssif

ier
s

 AP
ICA

T
 AP

ICA
T+

OH
 AP

ICA
T+

DO
SH

 AP
ICA

T+
FH

 OH
+D

OS
H+

FH
 

 AP
ICA

T+
OH

+D
OS

H+
FH

 

 

(d
)

Fi
gu

re
5.

4:
Pe

rf
or

m
an

ce
ev

al
ua

tio
n

of
th

e
cl

as
si

fie
rs

fo
rd

iff
er

en
tc

om
bi

na
tio

n
of

hy
br

id
fe

at
ur

es
se

t(
i)

R
ec

al
l,

an
d

(i
i)

F-
M

ea
su

re
.

103



Relatively, experiments were also conducted for a combination of APICAT+FH hy-

brid features. In this case, it was observed that the SMO classifier obtained maximum

detection accuracy of 96.019% with 0.04 FPR. Meanwhile, classifiers such as the Sim-

ple Logistic and RF achieved significantly less detection accuracy of 94.074% with

0.059 FPR and 94.087% with 0.059 FPR, respectively. Other classifiers such as the Lo-

gistic, J48, and Random Tree underperformed and achieved less accuracy of 91.117%

with 0.089 FPR, 92.972% with 0.070 FPR, and 90.845% with 0.092 FPR, respectively,

as shown in Figure 5.2c and Figure 5.2d.

Later, the Final Feature Set built with OH, DOSH, and FH features was also consid-

ered. Consequently, Figure 5.2a and Figure 5.2c demonstrated that the SMO classifier

attained highest accuracy of 96.058% with 0.039 FPR, followed by the RF classifier

with 95.643% with 0.044 FPR. The three classifiers such as the Simple Logistic, Logis-

tic, and J48 showed favourable performance by yielding an approximately equivalent

accuracy of 94.229% with 0.058 FPR, 94.761% with 0.052 FPR, and 94.126% with

0.059 FPR, respectively. Subsequently, the performance of the Random Tree classifier

was not remarkable.

Similar to the above sets of experiments, the next observation was made on the

Final Feature Sets constructed with a combination of API calls, OH, DOSH, and FH

features. It can be seen from Figure 5.2a and Figure 5.2b, that the highest accuracy of

97.108% with 0.029 FPR was reported by the SMO classifier. In addition, it can also be

noticed that the Simple Logistic classifier was able to achieve the second highest accu-

racy of 95.643% with 0.044 FPR and substantiated its stable performance. Meanwhile,

the J48 and RF classifiers showed competitive performance, but resulted in achieving

less accuracy of 94.478% with 0.053 FPR and 94.268% with 0.057 FPR, respectively.

In comparison, other classifiers such as the Logistic and Random tree produced least

accuracy of 85.114% with 0.149 FPR and 86.851% with 0.131 FPR, respectively. An-

other set of experiments were also conducted on the Final Feature Sets constructed with

a combination of APICAT, OH, DOSH, and FH features as depicted in Figure 5.2c

and Figure 5.2d. Accordingly, the SMO classifier showed maximum detection accu-

racy of 99.743% with 0.015 FPR. The Simple Logistic classifier also performed well

by producing an accuracy of 96.537% with 0.035 FPR. Further, the J48 and RF clas-

sifiers achieved remarkably less accuracy of 95.383% with 0.046 FPR and 95.811%

104



with 0.042 FPR, respectively. The overall performance of the other classifiers such as

the Logistic and Random Tree reported lowest accuracy and their corresponding values

were 90.106% with 0.099 FPR and 90.287% with 0.097 FPR.

Table 5.1 and Table 5.2 demonstrate the effectiveness of the classifiers for the hybrid

features and each one represents the ’k’ fold cross-validation results, where, k = 2, 3 . . .

10. From the thorough and substantial analysis conducted, it can be observed that most

of the classifiers attained best accuracy for k=10. Further, it can be noticed that both

the SMO and Simple Logistic classifiers performed well on all the composite forms of

the Final Feature Sets. Moreover, through the analysis carried out, it was possible to

discern that the SMO classifier provided competitive performance, and finally, achieved

better accuracy. Apparently, the SMO classifier performed the best, and the Random

Tree classifier exhibited the worst performance.

Experiments were also conducted with different Final Feature Sets to know their

best detection rate. In this direction, the obtained and analyzed results proved that the

Final Feature Set with the combination of APICAT+OH+DOSH+FH achieved better

malware detection rate of 99.743% with low FPR 0.015 compared with other Final

Feature Sets comprising of different combination of static and dynamic features.

For any MDS, highest TPR signifies its effectiveness in the precise detection of mal-

ware. Figure 5.3a provides details of the TPR achieved by the different classifiers for

the 10-fold cross-validation tests. From the observation, it can be noticed that the SMO

classifier yielded the highest TPR of 0.884, 0.961, 0.896, 0.947, 0.961, and 0.971 on the

different combinations of the Final Feature Sets such as the API, API+OH, API+DOSH,

API+FH, OH+DOSH+FH, and API+OH+DOSH+FH, respectively, compared with the

other classifiers. Similarly from Figure 5.3b, it can be observed that the SMO classifier

also outperformed and attained maximum TPR of 0.906, 0.970, 0.914, 0.960, and 0.961

on all the various blends of the Final Feature Sets such as the APICAT, APICAT+OH,

APICAT+DOSH, APICAT+FH, and OH +DOSH+FH, respectively. It can also be seen

from Figure 5.3a and Figure 5.3b that for the same above different combinations of the

Final Feature Sets, the second highest TPR was produced by the Simple Logistic classi-

fier. Similarly, it can be seen that the RF classifier was also equipotent in obtaining TPR

nearly equal to one for all those combinations of the Final Feature Sets. Furthermore,
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Table 5.1: Performance evaluation of the classifiers in terms of accuracy (%) with k fold cross-
validation test results (k=2 to 10) for different combinations of hybrid features.

cross
validation

Folds

Classifiers

SMO Simple
Logistic Logistic J48 Random

Forest
Random

Tree
(a) API features

2 87.192 84.430 83.769 85.234 85.973 83.406
3 88.216 85.597 86.297 85.960 87.308 84.469
4 87.995 85.286 87.231 86.738 87.879 84.586
5 88.449 86.064 87.140 86.764 88.125 85.001
6 88.190 85.701 87.632 86.829 87.918 85.027
7 88.190 85.675 87.892 87.218 88.397 85.156
8 88.225 86.219 88.099 87.218 88.358 85.468
9 88.449 86.038 87.801 86.803 88.203 86.025
10 88.423 85.908 88.190 87.256 88.488 86.142

(b) API+OH features
2 94.774 93.750 87.668 92.492 92.349 85.282
3 95.695 94.152 90.093 92.881 92.907 86.540
4 95.759 94.035 88.926 92.997 93.386 86.709
5 95.889 94.152 88.952 92.985 93.348 87.396
6 95.915 94.437 88.861 93.244 93.361 87.344
7 96.058 94.528 89.328 93.244 93.451 86.916
8 96.200 94.437 89.613 93.309 93.335 88.005
9 95.928 94.177 89.639 93.412 93.374 88.303
10 96.071 94.489 89.665 93.348 93.464 87.564

(c) API+DOSH features
2 88.822 87.059 84.569 86.255 85.827 81.146
3 88.757 87.357 86.605 85.827 86.060 83.065
4 89.004 87.279 87.889 86.670 86.358 82.780
5 89.159 87.409 88.005 86.981 87.007 82.520
6 89.445 87.448 88.031 86.877 87.240 83.441
7 89.406 86.877 88.291 86.864 86.735 83.402
8 89.172 87.188 88.420 87.357 86.799 82.715
9 89.471 87.733 88.667 86.955 86.968 83.545
10 89.613 87.396 88.848 87.435 87.124 83.506

(d) API+FH features
2 93.568 91.545 80.627 90.599 90.689 84.063
3 94.009 92.155 86.955 91.428 90.988 86.229
4 94.203 92.712 87.746 91.506 91.260 86.164
5 94.333 92.194 88.615 91.779 91.871 86.657
6 94.670 92.985 90.832 91.623 91.636 85.490
7 94.502 93.062 89.224 92.012 91.506 86.618
8 94.644 92.933 88.783 91.882 91.519 86.242
9 94.722 92.790 88.109 92.012 91.766 85.982
10 94.722 92.608 89.159 92.245 91.143 86.605

(e) OH+DOSH+FH features
2 94.968 93.270 94.515 92.907 94.955 90.988
3 96.006 93.944 94.709 93.737 95.422 91.208
4 95.889 93.840 94.359 93.581 95.344 92.077
5 95.915 94.255 94.592 93.983 95.539 92.168
6 96.071 94.294 94.839 93.853 95.746 92.907
7 95.980 94.385 94.800 94.074 95.721 92.855
8 96.006 94.216 94.528 93.892 95.785 92.842
9 96.097 93.372 95.072 94.100 95.669 92.518
10 96.058 94.229 94.761 94.126 95.643 92.388

(f) API+OH+DOSH+FH features
2 96.421 94.981 80.485 94.009 92.959 85.464
3 96.797 95.759 80.627 93.866 93.659 86.579
4 96.913 95.513 81.314 94.592 94.424 86.618
5 97.017 95.643 83.610 94.463 93.866 86.799
6 96.978 95.863 83.311 94.761 94.022 86.657
7 97.069 95.798 83.545 94.696 94.320 87.305
8 97.030 95.759 83.571 94.942 94.216 87.525
9 96.978 95.941 83.765 94.891 94.216 86.968
10 97.108 95.643 85.114 94.748 94.268 86.851
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Table 5.2: Performance evaluation of the classifiers in terms of accuracy (%) with k fold cross-
validation test results (k=2 to 10) for different combinations of hybrid features.

cross
validation

Folds

Classifiers

SMO Simple
Logistic Logistic J48 Random

Forest
Random

Tree
(a) APICAT features

2 90.041 89.354 87.876 88.316 89.898 88.550
3 90.261 88.835 89.056 88.900 90.158 88.809
4 90.417 89.276 89.821 89.367 91.014 89.082
5 90.650 89.302 90.261 89.146 91.065 89.250
6 90.547 89.548 90.650 89.315 91.130 89.717
7 90.560 89.367 90.249 89.587 90.923 89.380
8 90.456 89.847 90.430 89.393 91.338 89.548
9 90.676 89.315 90.249 89.678 91.208 89.587
10 90.638 89.458 90.482 89.821 91.234 89.198

(b) APICAT+OH features
2 96.097 94.891 85.114 92.829 94.100 88.161
3 96.628 95.396 92.803 93.555 95.020 89.963
4 96.758 95.254 91.260 93.944 95.280 89.263
5 96.926 95.785 91.467 93.957 95.098 89.613
6 96.784 95.733 91.312 94.385 95.072 89.808
7 96.952 95.837 91.545 94.126 95.254 90.702
8 96.939 95.591 91.766 93.983 95.357 90.313
9 96.952 95.708 91.740 94.139 95.163 89.847
10 97.017 95.811 91.843 94.216 95.604 90.313

(c) APICAT+DOSH features
2 90.650 90.404 89.613 88.641 89.613 87.357
3 90.936 89.808 89.432 89.587 90.404 87.033
4 91.325 90.404 90.767 90.028 90.689 87.461
5 91.234 90.663 90.638 90.261 90.573 87.837
6 91.480 90.443 90.728 90.145 90.884 87.850
7 91.221 90.638 90.793 90.067 90.910 87.772
8 91.377 90.599 91.117 90.326 90.793 88.005
9 91.260 90.508 90.845 90.443 90.949 87.837
10 91.428 90.534 90.949 90.158 90.936 88.433

(d) APICAT+FH features
2 95.332 93.361 87.357 91.714 92.894 88.692
3 95.513 93.775 90.443 92.699 93.464 89.808
4 95.643 93.672 91.260 93.036 94.255 89.458
5 95.863 93.866 91.416 92.686 94.255 89.613
6 95.798 94.009 90.962 92.972 94.164 90.547
7 95.876 93.983 91.390 93.153 93.970 90.274
8 95.811 94.087 91.027 93.088 94.346 90.236
9 95.798 94.139 91.325 93.010 94.190 90.547
10 96.019 94.074 91.117 92.972 94.087 90.845

(e) OH+DOSH+FH features
2 94.968 93.270 94.515 92.907 94.955 90.988
3 96.006 93.944 94.709 93.737 95.422 91.208
4 95.889 93.840 94.359 93.581 95.344 92.077
5 95.915 94.255 94.592 93.983 95.539 92.168
6 96.071 94.294 94.839 93.853 95.746 92.907
7 95.980 94.385 94.800 94.074 95.721 92.855
8 96.006 94.216 94.528 93.892 95.785 92.842
9 96.097 93.372 95.072 94.100 95.669 92.518
10 96.058 94.229 94.761 94.126 95.643 92.388

(f) APICAT+OH+DOSH+FH features
2 99.108 95.954 88.615 93.996 94.917 88.083
3 99.302 96.395 84.647 94.774 95.798 88.161
4 99.562 96.447 83.311 94.917 95.565 89.211
5 99.666 96.447 85.204 95.085 95.941 88.433
6 99.640 96.589 88.303 95.332 95.759 90.274
7 99.678 96.719 89.458 95.409 95.928 90.352
8 99.704 96.473 89.159 95.267 96.006 89.808
9 99.717 96.576 89.691 95.189 96.356 89.678
10 99.743 96.537 90.106 95.383 95.811 90.287
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Table 5.3: Receiver Operating Characteristics area with k fold cross-validation Results (k=2 to
10) for different combination of hybrid features

cross
validation

Folds

Classifiers

SMO Simple
Logistic Logistic J48 Random

Forest
Random

Tree
(a) API features

2 0.872 0.905 0.852 0.879 0.923 0.855
3 0.882 0.913 0.891 0.890 0.929 0.866
4 0.880 0.908 0.903 0.896 0.933 0.867
5 0.884 0.916 0.904 0.898 0.936 0.871
6 0.882 0.912 0.911 0.899 0.935 0.872
7 0.882 0.912 0.910 0.899 0.938 0.874
8 0.883 0.915 0.917 0.899 0.936 0.877
9 0.884 0.913 0.912 0.899 0.936 0.886

10 0.884 0.916 0.917 0.900 0.938 0.886
(b) API+OH features

2 0.948 0.984 0.924 0.940 0.971 0.853
3 0.957 0.985 0.946 0.946 0.976 0.865
4 0.958 0.985 0.931 0.944 0.977 0.867
5 0.959 0.986 0.926 0.945 0.977 0.874
6 0.959 0.985 0.923 0.946 0.978 0.873
7 0.961 0.987 0.929 0.949 0.980 0.869
8 0.962 0.986 0.934 0.947 0.978 0.880
9 0.959 0.985 0.932 0.950 0.979 0.883

10 0.961 0.986 0.935 0.948 0.982 0.876
(c) API+DOSH features

2 0.888 0.946 0.873 0.906 0.925 0.835
3 0.888 0.947 0.903 0.907 0.932 0.851
4 0.890 0.946 0.924 0.912 0.933 0.853
5 0.892 0.946 0.927 0.914 0.934 0.845
6 0.894 0.948 0.925 0.916 0.936 0.856
7 0.894 0.945 0.928 0.912 0.936 0.856
8 0.892 0.945 0.935 0.921 0.935 0.850
9 0.895 0.949 0.933 0.915 0.939 0.858

10 0.896 0.947 0.937 0.917 0.938 0.859
(d) API+FH features

2 0.936 0.972 0.821 0.921 0.959 0.841
3 0.940 0.974 0.897 0.928 0.961 0.863
4 0.942 0.975 0.908 0.926 0.961 0.862
5 0.943 0.974 0.921 0.927 0.963 0.866
6 0.947 0.976 0.939 0.928 0.963 0.855
7 0.945 0.977 0.927 0.932 0.963 0.866
8 0.946 0.977 0.913 0.933 0.963 0.862
9 0.947 0.977 0.912 0.933 0.965 0.859

10 0.947 0.976 0.921 0.933 0.962 0.866
(e) OH+DOSH+FH features

2 0.950 0.984 0.985 0.949 0.988 0.910
3 0.960 0.987 0.985 0.957 0.988 0.912
4 0.959 0.986 0.983 0.957 0.989 0.921
5 0.959 0.987 0.985 0.963 0.989 0.922
6 0.961 0.987 0.986 0.959 0.989 0.929
7 0.960 0.987 0.985 0.960 0.990 0.929
8 0.960 0.987 0.985 0.961 0.991 0.929
9 0.961 0.987 0.986 0.963 0.991 0.925

10 0.961 0.987 0.985 0.963 0.989 0.924
(f) API+OH+DOSH+FH features

2 0.964 0.990 0.830 0.954 0.978 0.855
3 0.968 0.992 0.832 0.954 0.981 0.866
4 0.969 0.991 0.840 0.960 0.984 0.866
5 0.970 0.992 0.869 0.959 0.984 0.868
6 0.970 0.993 0.866 0.964 0.984 0.867
7 0.971 0.992 0.865 0.958 0.983 0.873
8 0.970 0.993 0.866 0.961 0.985 0.875
9 0.970 0.992 0.871 0.962 0.984 0.870

10 0.971 0.992 0.876 0.960 0.984 0.869
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Table 5.4: Receiver Operating Characteristics area with k fold cross-validation Results (k=2 to
10) for different combination of hybrid features

cross
validation

Folds

Classifiers

SMO Simple
Logistic Logistic J48 Random

Forest
Random

Tree
(a) APICAT features

2 0.900 0.949 0.904 0.924 0.953 0.915
3 0.903 0.944 0.922 0.927 0.954 0.921
4 0.904 0.947 0.932 0.934 0.958 0.921
5 0.907 0.948 0.938 0.931 0.959 0.926
6 0.905 0.949 0.942 0.932 0.959 0.930
7 0.906 0.949 0.938 0.934 0.958 0.926
8 0.905 0.950 0.940 0.936 0.958 0.927
9 0.907 0.946 0.939 0.938 0.959 0.930

10 0.906 0.949 0.941 0.936 0.959 0.923
(b) APICAT+OH features

2 0.961 0.990 0.885 0.945 0.982 0.882
3 0.966 0.991 0.968 0.949 0.985 0.900
4 0.968 0.991 0.943 0.956 0.985 0.893
5 0.969 0.992 0.949 0.953 0.986 0.897
6 0.968 0.992 0.950 0.957 0.986 0.898
7 0.970 0.992 0.952 0.955 0.985 0.908
8 0.969 0.992 0.953 0.955 0.987 0.904
9 0.970 0.992 0.954 0.957 0.986 0.899

10 0.970 0.992 0.957 0.958 0.987 0.904
(c) APICAT+DOSH features

2 0.907 0.968 0.936 0.935 0.957 0.907
3 0.909 0.966 0.935 0.940 0.961 0.901
4 0.913 0.968 0.954 0.950 0.963 0.905
5 0.912 0.970 0.952 0.951 0.964 0.910
6 0.915 0.970 0.953 0.951 0.965 0.911
7 0.912 0.970 0.955 0.952 0.965 0.908
8 0.914 0.970 0.957 0.950 0.965 0.912
9 0.913 0.970 0.955 0.954 0.965 0.911

10 0.914 0.970 0.958 0.950 0.965 0.915
(d) APICAT+FH features

2 0.953 0.983 0.909 0.956 0.971 0.887
3 0.955 0.985 0.953 0.958 0.971 0.897
4 0.956 0.986 0.962 0.962 0.975 0.895
5 0.959 0.986 0.957 0.958 0.977 0.897
6 0.958 0.987 0.953 0.960 0.974 0.907
7 0.959 0.986 0.956 0.962 0.975 0.904
8 0.958 0.987 0.957 0.960 0.975 0.904
9 0.958 0.987 0.958 0.959 0.975 0.906

10 0.960 0.986 0.956 0.962 0.977 0.910
(e) OH+DOSH+FH features

2 0.950 0.984 0.985 0.949 0.988 0.910
3 0.960 0.987 0.985 0.957 0.988 0.912
4 0.959 0.986 0.983 0.957 0.989 0.921
5 0.959 0.987 0.985 0.963 0.989 0.922
6 0.961 0.987 0.986 0.959 0.989 0.929
7 0.960 0.987 0.985 0.960 0.990 0.929
8 0.960 0.987 0.985 0.961 0.991 0.929
9 0.961 0.987 0.986 0.963 0.991 0.925

10 0.961 0.987 0.985 0.963 0.989 0.924
(f) APICAT+OH+DOSH+FH features

2 1 0.993 0.943 0.953 0.988 0.881
3 1 0.995 0.877 0.961 0.990 0.882
4 1 0.994 0.857 0.959 0.990 0.892
5 1 0.995 0.880 0.966 0.991 0.884
6 1 0.995 0.921 0.965 0.992 0.903
7 1 0.995 0.942 0.966 0.991 0.904
8 1 0.995 0.935 0.963 0.991 0.898
9 1 0.995 0.939 0.965 0.992 0.897

10 1 0.995 0.946 0.965 0.991 0.903
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the malware detection performance of all the other classifiers for the aforementioned

combinations is depicted in Figure 5.3a and Figure 5.3b. The lowest TPR was shown

by the Random Tree classifier on all these different blends of the Final Feature Sets.

In particular, the proposed HFMDS was successful in achieving the highest TPR of

0.997 for the Final Feature Set, which included the APICAT+OH+DOSH+FH features

by the SMO classifier (see Figure 5.3b). Apparently, the Simple Logistic classifier also

achieved a nearly equivalent highest TPR of 0.965, which justifies that the HFMDS is

efficient in identifying unknown malware. The RF classifier also achieved a relatively

equivalent TPR of 0.958, which is less when compared with the SMO and Simple Logis-

tic classifiers. Other classifiers such as the Logistic, J48, and the Random Tree attained

less TPR of 0.901, 0.954, and 0.903, respectively.

The effectiveness of the classifiers was also measured using other evaluation metrics

such as Precision, Recall, and F-Measure. Where, Precision is a measure of exactness

and Recall is a measure of completeness. Usually, if the value of these performance

metrics is closer to one, it signifies as ideal MDS. However, this is difficult to attain in

reality.

The obtained experimental results shown in Figure 5.3c, Figure 5.4a, and Figure 5.4c

demonstrate that the SMO classifier was able to attain high Precision, Recall, and F-

Measure of 0.971 for the combination of API+OH+DOSH+FH features. Similarly,

it can be noticed from Figure 5.3d, Figure 5.4b, and Figure 5.4d that the same SMO

classifier achieved high Precision, Recall, and F-Measure of 0.997 for the combina-

tion of APICAT+OH+DOSH+FH features. The recorded values for classifiers which

are approximately equal to one justify that the HFMDS is superior in the detection of

malware. Based on the results depicted in Figure 5.3c, Figure 5.3d, Figure 5.4a, Fig-

ure 5.4b, Figure 5.4c, and Figure 5.4d it can be seen that even the Simple Logistic clas-

sifier was successful in attaining Precision, Recall, and F-Measure values almost equal

to one, i.e., 0.957 (combination of API+OH+DOSH+FH features) and 0.966 (combina-

tion of APICAT+OH+DOSH+FH features), which is another evidence that the HFMDS

is proficient in identifying unknown malware. The other classifiers such as the Logistic,

J48, RF, and Random Tree achieved low Precision, Recall, and F-Measure values.

The ROC curve is used in the present work to compare the classification capabil-
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ity of the different classifiers. The higher ROC value, i.e., closer to 1 signifies that

the classifier categorizes all malware files as malware and benign files as benign with

zero FPR. The performance of each classifier tabulated in Table 5.3 and Table 5.4 is

appraised separately with different hybrid features set and each sub-table denotes the

’k’ fold cross-validation experimental results, where, k = 2 to 10. From the experimen-

tal analysis, it can be observed that the SMO classifier achieved the highest ROC of

1 for all the ’k’ fold cross-validation experiments when the classifier provided hybrid

features’ sets comprised of APICAT+OH+DOS+FH, while the Random Tree reported

the lowest ROC value. Furthermore, it can also be observed from Table 5.3 and Table

5.4, that the Simple Logistic classifier produced a reasonably higher value of ROC for

all the hybrid feature sets compared with the other classifiers.

5.4 AN EMPIRICAL STUDY TO ESTIMATE THE STABILITY OF RANDOM

FOREST CLASSIFIER ON THE HYBRID FEATURES RECOMMENDED

BY FILTER BASED FEATURE SELECTION TECHNIQUE

The main aim of the present work is to measure the detection ability of the proposed

HFMDS with the RF classifier. The reason for selecting the RF classifier is that it is

widely used, efficient, and can operate over large datasets (Cutler et al., 2012; Alam and

Vuong, 2013). However, only few works show how many DTs should be employed to

compose an RF classifier (Oshiro et al., 2012; Ajay Kumara and Jaidhar, 2017). There-

fore, in the present work investigations were made by conducting various set of exper-

iments to know what number of DTs does the RF classifier needs to achieve consistent

accuracy for hybrid features.

The proposed HFMDS utilized the DH, SH, FH, OH, and IF extracted from the

PE files as static features, whereas the API+CAT gathered from the behavioural report

generated by the Cuckoo Sandbox was treated as dynamic features. To acquire a set of

imperative features from the original feature set, FSTs such as Chi-Squareχ̃2 (Belaoued

and Mazouzi, 2015), Gain-Ratio (Moskovitch et al., 2008), Max-Relevance and Min-

Redundancy (mRMR) (Peng et al., 2005), and Max-Relevance (Max-Rel) (Sakar et al.,

2012) were employed. A relative analysis of the chosen FSTs in recognizing the best

one was carried out using the RF classifier.
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Figure 5.5: An architecture overview of the proposed HFMDS

5.4.1 Overview of the Proposed HFMDS

The proposed HFMDS was implemented directly on to the PE files and was categorized

into two phases such as the Training phase and the Prediction phase as illustrated in

Figure 5.5. The detailed procedures of the training phase and prediction phase are

described in the following sections.

5.4.2 Training Phase

A training phase is a basic building block of the HFMDS and involves static and dy-

namic features extraction, followed by selection of prominent features in order to train

the HFMDS. An adequate number of benign and malware PE files are processed to de-

rive the relevant static and dynamic features from each PE file. The HFMDS essentially

adopts the Static Feature Extractor to acquire static features, namely, DH, SH, FH, OH,

and IF, whereas the Dynamic Feature Extractor component of the HFMDS is used to

gather the execution time behavioural report and then, to derive the dynamic features.

Since the extracted original hybrid feature set dimensionality is quite large, the feature

selector is utilized to choose the prominent features and these are considered to build a

training file.

5.4.2.1 Dynamic Feature Extractor

In order to evade detection by the anti-malware solution, sophisticated malware gener-

ate a large number of runtime features. All the monitored runtime characteristics are
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Figure 5.6: Dynamic Feature Extractor

computationally expensive for consideration. Therefore, recognizing the most promi-

nent runtime features is essential to ascertain the potential of the malware. Many of

the anti-malware detection techniques examine only the API calls from the behavioural

pattern of the executing PE files to discriminate whether the source PE file is malware

or benign (Faruki et al., 2012; Salehi et al., 2014; Kawaguchi and Omote, 2015; Salehi

et al., 2017). The proposed HFMDS focused on acquiring a combination of API calls

and their CAT from the behavioural report to generate dynamic features in the form of

N-grams. The Dynamic Feature Extractor executes the source PE files one at a time

onto the Cuckoo Sandbox to obtain the runtime behavioural report needed to derive

the dynamic features (Tsyganok et al., 2012; Qiao et al., 2014; Sethi et al., 2018). Its

subcomponents as shown in Figure 5.6 are: (1) Cuckoo Sandbox, (2) MIST Report

Generator, (3) API + CAT Extractor, and (4) N-gram Generator.

Figure 5.6 depicts the operation carried out by each component of the Dynamic

Feature Extractor. The description related to the subcomponents such as the Cuckoo

Sandbox, MIST Report Generator, and API + CAT Extractor has been discussed in

Section 4.3.1.1, Section 4.3.1.1, and Section 4.4.1.2, respectively.
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Figure 5.7: Static Feature Extractor

N-gram Generator

In the present work, the extracted API + CAT from the MIST report is represented in

overlapping substrings based on the sliding window approach to generate the N-grams

as shown in Figure 5.6. As previous works have demonstrated that N-grams of size four

bytes show encouraging results (Darshan et al., 2016; Ajay Kumara and Jaidhar, 2017),

the values in the category and operational field of each MIST report were extracted

to prepare N-grams (Kolter and Maloof, 2006; Masud et al., 2008) of size four bytes

in the present work. For instance, for byte sequence 0307 030a 030b 0306 0201, the

corresponding N-grams would be 0307030a, 030a030b, 030b0306, and 03060201.

Duplicate N-gram Eliminator

The N-gram-based technique generates a large number of N-grams that comprise of

duplicate N-grams. Therefore, all the generated N-grams cannot be used to prepare

a training file, since the redundant N-grams(features) consume storage space, high

processing time, and degrade performance by achieving high misclassification rate.

To overcome these issues, it is necessary to eliminate the duplicates and construct

a distinct N-gram features’ set. Therefore, a union operation was applied to gen-

erate a Unique N-gram Features (UNF) set from the Benign N-gram Files (BNFs)

[BNF1, BNF2, BNF3, . . ., BNFn] and Malware N-gram Files (MNFs) [MNF1,M−
NF2,MNF3, . . .,MNFm] as represented in Eq. 5.1.

UNF = {BNF1 ∪BNF2 ∪BNF3 ∪ ... ∪BNFn∪

MNF1 ∪MNF2 ∪MNF3 ∪ ... ∪MNFm} (5.1)
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Table 5.5: Datatype specifications defined for the attributes to build a training file

Features
Static Features Dynamic Features

OH DH FH SH IF N-grams

<datatype> numeric numeric numeric Binary{0,1} numeric Binary{0,1}

5.4.2.2 Static Feature Extractor

The Static Feature Extractor shown in Figure 5.7 extracts certain static features from

the PE files to create an integrated static feature set that includes header related infor-

mation and IF calls. Its subcomponents are: 1) Header Feature Extractor, and 2) Import

Function Extractor.

Header Feature Extractor

The Header Feature Extractor extracts PE Header related information such as DH, FH,

SH, and OH from all the PE files present in the dataset (Section 5.4.4.2). The Python

module called pefile (Ero, 2017) is used to extract the OH, FH, and DH information

and an open source tool called the ClaMP (urwithajit9, 2016) is used to acquire SH

information. The Header Feature Extractor maintains a separate output directory and

stores the output in the appropriate directory. For instance, the extracted OH related

information is stored in the OH directory.

Import Function Extractor

The DLL function used by the malware provides good insight into its functionality.

Most malware require the use of system-level functionalities to perform their intended

task. These functionalities are available in the form of DLL import functions. Hence,

the access of system-level functionality must be done through appropriate DLL func-

tions (Bai et al., 2014). However, it is difficult for malware authors to avoid the DLL

import functions to carry out malicious activities. Therefore, IF is used as static features

for malware detection in the proposed HFMDS. The IF was extracted using the Python

module called PEframe (Amato, 2016), and the extracted features were stored in the

specific output file and in a specific output directory as depicted in Figure 5.7.

Duplicate Feature Eliminator

It is used to prepare a unique feature set separately for each type of static features by

considering both the benign and malware files of the relevant type as shown in Figure
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5.7. This step is essential since the extracted original features set may include redun-

dant features leading to substantial memory consumption, performance degradation of

the classifier, and wrong prediction of the unknown PE file. To obtain unique features

necessary for the Feature Selector, a union operation was applied on each type of ac-

quired static features as shown in Eq. 5.2,

UOH = {BOH1 ∪ ... ∪BOHn ∪MOH1 ∪ ... ∪MOHm}

UFH = {BFH1 ∪ ... ∪BFHn ∪MFH1 ∪ ... ∪MFHm}

USH = {BSH1 ∪ ... ∪BSHn ∪MSH1 ∪ ... ∪MSHm}

UDH = {BDH1 ∪ ... ∪BDHn ∪MDH1 ∪ ... ∪MDHm}

UIF = {BIF1 ∪ ... ∪BIFn ∪MIF1 ∪ ... ∪MIFm}

(5.2)

Where, U specifies unique, B indicates benign, and M denotes malware. As shown

in Figure 5.7, UOH, UFH, USH, UDH, and UIF represent the unique feature sets for

OH, FH, SH, DH, and IF features, respectively.

The generated unique static features sets (UOH, UFH, USH, UDH, and UIF) and

the UNF set are utilized to prepare either an ARFF file or a Comma Separated Values

(CSV) file as per the requirement of the Feature Selector. The ARFF or CSV file is a

file that characterizes a list of instances sharing a set of attributes (Ajay Kumara and

Jaidhar, 2017). To obtain better malware detection rate, the attributes’ data type have

been defined as numeric for the selected OH, FH, DH, and IF static features and binary

values 0, 1 for SH and N-gram features as shown in Table 5.5. The specific reason

for this assignment is that OH(30), FH(07), and DH(19) consist of a predefined set of

features, and it makes no sense to substitute the binary values as 0 or 1 to show whether

those features exist or not. Therefore, the correspondent values obtained for the selected

features of UOH, UFH, and UDH were substituted during the extraction of the features.

For UIF features, their frequency count, if present or ’0’ otherwise was substituted,

therefore, the attribute data type of the UIF features was numeric.

5.4.2.3 Feature Selector

The dimensionality of the original feature set in numerous applications present a great

challenge. In most cases, some irrelevant features exist that do not assist in the ac-
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curacy of the classification task and degrades the performance of the classifier (Huda

et al., 2016). The Feature Selector was used in the present work to recognize the im-

perative and noisy features from the original feature set. Although the filter-based FST

recommends best relevant features based on highest computed score, there is no guaran-

tee that the features suggested by a single FST is more informative and makes a better

prediction for malware detection. Therefore, in the proposed HFMDS, four popular

filter-based FSTs such as Chi-Squareχ̃2 (Belaoued and Mazouzi, 2015; Ajay Kumara

and Jaidhar, 2017), Gain-Ratio (Moskovitch et al., 2008), mRMR (Peng et al., 2005),

and Max-Rel (Huda et al., 2018) were used to identify the crucial features. The four

FSTs computed separate scores for each of the features that belonged to OH, FH, SH,

DH, IF, and N-grams. Based on the highest feature score, the topmost features were

acquired resulting in a list of top scored features from each FST. The topmost scored

features advised by each FST was acquired individually with the purpose of identifying

the better one. The description for the Chi-Squareχ̃2 FST is provided in Section 4.4.2.

The explanation concerning the other FSTs such as Gain-Ratio, mRMR, and Max-Rel

is described below.

Gain-Ratio

Gain-Ratio (Moskovitch et al., 2008) was introduced to compensate for the bias of IG

and it was calculated using Eq. 5.5. It estimates the foreseen depletion of entropy due to

portioning the examples based on the selected feature. If E(S) is the entropy, it assesses

the irrelevant features in a collection of features, and then quantifies the significance of

a feature in classifying the training data. The entropy was calculated as per Eq. 5.4.

It represents the entropy of a set of items S, considering C subsets of S, given by Sc.

IG evaluates the expected reduction in entropy due to portioning the examples based on

attribute A, where, ’V’ is the set of values of ’A’, as shown in Eq. 5.3.

IG(S,A) = E(S)−
∑

v∈V (A)

| Sv |
S

.E(Sv) (5.3)

E(S) =
∑
c∈C

−| Sc |
S

. log2

| Sc |
S

. (5.4)

IG estimates features with a high variety of values by comparing with those only
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few. Gain-Ratio resolves this issue by including how the feature splits the data. Eq. 5.5

and Eq. 5.6 are used to compute the Gain-Ratio score.

Gain-Ratio(S,A) =
IG(S,A)

SI(S,A)
(5.5)

SI(S,A) = −
d∑

i=1

| Si |
| S |

.log2
| Si |
| S |

. (5.6)

Where, Si are d subsets of examples obtained from portioning S by the d-valued

feature A.

Max-Relevance and Min-Redundancy

Max-Rel FST (Peng et al., 2005; Sakar et al., 2012) employs MI (Gulgezen et al., 2009)

to select the most predominant features and provides more information about the class

variable. If S is a set of features, {Fi | Fi ∈ S : i = 1, 2, 3, ...} and class variable is c,

Max-Rel as defined in (Peng et al., 2005) as shown in Eq. 5.7.

max T (S, c), T =
1

| S |
∑
Fi∈S

I(Fi; c). (5.7)

Where, I(Fi; c) is MI between feature Fi, and class c. It is probable that Max-Rel

chooses features that are highly relevant to the class. When two features are highly

dependent on each other, the corresponding class discriminative power does not cause

much affect, if one of them is removed. Thus, to avoid redundancy in Max-Rel, the

following redundancy function was incorporated to select mutually exclusive features

(Gulgezen et al., 2009).

max L(S), L =
1

| S |2
∑

Fi,Fj∈S

I(Fi;Fj). (5.8)

Where, I(Fi;Fj) is the Mutual Information between the features: Fi, Fj . Thus,

mRMR (Sakar et al., 2012) is defined as per Eq. 5.8. The T and L is combined as
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Φ(T, L) and is defined in the simplest form as per Eq. 5.9.

max Φ(T, L), Φ = T − L. (5.9)

5.4.2.4 Final Feature Set

The Final Feature Set comprises a blend of crucial dynamic and static features (hybrid)

advised by the FST. These features are used as foremost features since there is no further

elimination of features.

5.4.2.5 Training File Creator

The Training File Creator constructs a training file necessary to train the classifier. It

parses the training dataset that consists of N-gram files, OH files, SH files, FH files, DH

files, and IF files corresponding to the benign and malware PE files with the features of

the Final Feature Set to prepare a training file.

5.4.3 Prediction Phase

In the prediction phase, the Testing File Creator is utilized to prepare testing files es-

sential to assess the classification ability of the trained classifier. It utilizes the Final

Feature Set and the outcome of the Dynamic Feature Extractor and the Static Feature

Extractor to obtain a testing file. The created testing file is provided as input to the

trained classifier, which predicts the given test input file as either malware or benign.

5.4.4 Experimental Results and Discussion

In the present work, the proposed HFMDS was evaluated and validated with the inten-

tion of demonstrating the ability of the hybrid features set recommended independently

by four FSTs in a direction to find the best one. Further, the performance of the RF

classifier was investigated by considering a variable number of DTs in detecting un-

known Windows malware. With this, the following research goals are presented as four

questions:

• Does the hybrid feature set, amalgamated as a combination of static and dynamic

features, boost the efficiency of the Malware Detection System in detecting un-

known malware?

119



• Is it possible to classify a test file(s) accurately as benign or malware with less

number of features as recommended by the FSTs?

• Which Final Feature Set features recommended by the FST significantly increases

the detection accuracy of the classifier?

• Investigate the prediction capability (accuracy) of the RF classifier for a variable

number of DTs to know how many DTs should be employed to compose an RF

classifier?

To obtain the answers to the above questions, a wide set of experiments were carried

out.

5.4.4.1 Experimental Set-up

In the present work, an RF classifier available in WEKA (Frank et al., 2009) was used

as an ensemble-based technique for classification tasks throughout the experiments. It

runs efficiently on larger datasets and estimates crucial features, which are essential for

better predictability (Breiman, 2001; Shabtai et al., 2009; Oshiro et al., 2012; Cutler

et al., 2012; Alam and Vuong, 2013; Ajay Kumara and Jaidhar, 2017). Every DT in

the RF classifier attains the output by each individual tree on the basis of most frequent

values in the class of datasets. The RF classifier amalgamates the DTs with a bag-

ging (Breiman, 2001) method, where every DT is constructed individually by running

bootstrap sample features of the input training set. However, the bootstrap features are

selected by recursive arbitrary sub-sampling with the replacement of the original train-

ing set. Assume a training set ’Ta’ with ’f ’ features, ’n’ instances, then ’Tb’ a bootstrap

training set defined to be a training set sampled from ’Ta’ with replacement that con-

tains ’r’ random features where, (r ≥ f) with ’n’ instances. Thus, the RF classifier

comprises a collection of tree structured classifiers {hi(x, Ti)}, where, i = 1, 2, ..., N ,

and Ti are independent and uniformly distributed random features, and each tree casts

a unit vote for the most popular class as input x. Further, each node of the DT in the RF

classifier is made of arbitrarily selected features that help to reduce the correlation be-

tween the features and is thus less susceptible to irrelevant data. The number of arbitrary

features ’r’ determined by each decision node in a tree determines the misclassification

rate of the classifier when performing the prediction. The misclassification rate of the

RF classifier relies upon the interdependence between two trees and the prediction ca-
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pability of each tree. If the selected arbitrary features ’r’ are less, then the correlation

between the tree and the potency of each tree is also less. On the other hand, increasing

the random features ’r’ enhances the correlation between the trees and the proficiency

of each tree. The Out-of-Bag Error (OOBE) rate manifests how well the RF classifier

exhibits its predictive performance on the dataset. In the RF classifier, about one-third

of the input dataset is left out to build the N th tree from the bootstrap samples for each

individual tree. The one-third sample is utilized to test the N th tree and the outcome of

the incorrect classification is averaged over all the trees.

The main reason to select the RF classifier is to explore its efficiency in the clas-

sification of known and unknown malware by attaining hybrid features recommended

by different filter-based FSTs. In Peng et al. (2005), experiments were carried out to

measure the proficiency of the mRMR FST by using three different classifiers such as

Naive Bayes, Support Vector Machine, and Linear Discriminate Analysis. The authors

claimed that the mRMR FST is capable of identifying the best features for the classi-

fication task. However, the mRMR FST performance is required to be measured with

tree-based classifiers. Thus in the present work, the efficiency of the mRMR (Sakar

et al., 2012) was investigated and compared with other FSTs such as Chi-Squareχ̃2,

Gain-Ratio, and Max-Rel using the RF classifier. In addition, the following observa-

tions were made to evaluate the efficiency such as (i) number of DTs required for the

RF classifier to achieve high accuracy, (ii) effect of more number of DTs, and (iii) ex-

amining the stability of the RF classifier accuracy. Therefore, the performance of the

RF classifier was tested by considering a range of DTs from 5 up to 5120 and with

different features’ combination in additions of 25 to 100 (i.e., 25, 50, 75, and 100). The

evaluation was conducted using the 10 fold cross-validation tests for each experiment

and all the experiments were conducted on the host system as described in Section 2.7.

5.4.4.2 Data Collection

The proposed HFMDS is appropriate for the Windows PE files, as today Windows

malware monopolize malicious codes (VirusTotal, 2004b; Amin, 2016). The evalua-

tion was accomplished by utilizing two datasets, namely, Dataset-1 consisting of 200

malware and 200 benign PE files and Dataset-2 consisting of 3856 malware and 3856

benign PE files. All the collected files, existing in either Dataset-1 or Dataset-2, were
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non-identical, unpacked, and in the Windows PE file format. The malware samples

were downloaded from a public source (VirusShare, 2011; CNET, 1996) and the col-

lected set included seven distinct kinds of malware such as Backdoor, Exploit, Flooder,

Rootkits, Trojan, Virus, and Worm. Majority of the benign PE files were collected from

newly installed Windows virtual machines that included Windows-XP, Windows-7, and

Windows-8 operating system files, and some benign PE files were gathered from free

online software archives (CNET, 1996).

5.4.4.3 Result Analysis

Initially, the experiments were performed by involving Dataset-2. The hybrid features

derived from Dataset-2 formed the original features set and consisted of 3096 hybrid

features. The dynamic features and static features extracted formed separate original

features set. The constructed original features set subject to static, dynamic, and hybrid

features were used to create three different training files to train the classifier, and the

obtained results are shown in Table 5.6. The evaluation was carried out by choosing

different classifiers, namely, J48, RF, Random Tree, Logistic, SMO, and Simple Logis-

tic to determine which classifier could provide better detection accuracy. It was found

that hybrid features can achieve better detection accuracy than by merely using static or

dynamic features alone. Another observation was that the RF classifier achieved max-

imum accuracy than the other five chosen classifiers. Thereby, the proposed approach

provided empirical evidence to be used as a substitute to either static features-based

(classical method) or dynamic features-based techniques, and this led to further inves-

tigate the hybrid features. Although better results were observed when all the hybrid

features in the original features set were involved, the highest accuracy of 93.926%

accomplished by the RF classifier was not appreciable.

The reason in achieving less accuracy was due to the existence of insignificant fea-

tures, which mislead the predictability of the classifier. In this regard, to select the best

imperative features from the original feature set, the Feature Selector was employed

in the proposed approach, and four different FSTs were chosen to demonstrate their

effectiveness with the empirical results. Each FST computed the score for every fea-

ture individually. Based on the highest feature score, the topmost 25, 50, 75, and 100

features recommended by each FST were selected separately to obtain four individual

122



Table 5.6: Relative analysis of the hybrid features with static features and dynamic features
involving all features in their respective original features set

Classifiers
Accuracy (%)

Static Features

alone

Dynamic Features

alone
Hybrid Features

SMO 89.872 89.989 92.993

Simple Logistic 91.182 89.354 92.837

Logistic 91.636 87.746 91.882

J48 90.876 89.652 93.317

Random Forest 92.043 91.065 93.926

Random Tree 90.800 89.600 91.286

Final Feature Sets to verify which Final Feature Set achieved more accuracy. For the

topmost 25, 50, 75, and 100 features suggested by each FST, the RF classifier yielded

maximum accuracy compared with the other classifiers as shown in the last column of

Table 5.7. Due to this, the detection accuracy of the RF classifier was further examined

by considering different number of DTs with the varied topmost features’ set size. Ac-

cordingly, two sets of experiments (Experiment I and Experiment II) were conducted.

5.4.4.4 Experiment I

The first set of experiments was conducted using Dataset-1, and each PE file of Dataset-

1 was executed one at a time onto the Cuckoo Sandbox to capture the runtime be-

havioural reports. The obtained reports were in the JSON file format, and these were

converted into MIST format to extract a sequence of API+CAT. The gathered sequence

of API+CAT was used to generate N-grams of length 4 bytes, and each N-gram was

treated as an individual dynamic feature. After removal of the redundant N-grams,

4948 distinct N-grams were obtained. Static features, namely, OH, FH, DH, SH, and

IF were also extracted from the same set of PE files. In case of static features, all the

30 OHs, seven FHs, and 19 DHs were considered as distinct features and their corre-

spondent values were obtained during the preparation of the training file. The reason

to consider feature correspondent value is that all the benign and malware PE files con-

sist of the same features as per the PE Header format. In contrast, after the removal of

duplicates from each original features set of SH and IF, 10 features were attained from

each. Since the proposed HFMDS uses both static and dynamic features, the size of the

123



original feature set comprised of 5024 features, which required more time to prepare a

training file. The analyses of these experiments are discussed in Section 5.4.5.1.

5.4.4.5 Experiment II

The second set of experiments was performed on Dataset-2. Steps similar to Exper-

iment I were followed in Experiment II to extract static features. For Dataset-2 PE

files also, all the 30 OHs, 19 DHs, and seven FHs were used. Further, the SH features

consisting of Section Names as nine features and 14 IF features were retained after the

removal of irrelevant features from each of the respective original feature sets. The ex-

ecution of all 7712 PE files onto the Cuckoo Sandbox in order to capture the execution

time behavioural report is a tedious task and takes a long time to compute. Therefore,

the MIST reports available in the public source (Konrad, 2015) were used to extract the

API+CAT as dynamic features (N-grams). After removal of repetitive N-gram features,

3017 distinct N-grams were obtained. The gathered original hybrid feature set of size

3096 was quite large and considering all of them directly for classification would cer-

tainly degrade the performance of the classifier. The analyses of these experiments are

explained in Section 5.4.5.2.

5.4.5 Performance Analysis of the RF Classifier

Experiments were conducted using the RF classifier by differing the number of DTs as

per Eq. 5.10, where, x = 1, 2, 3, ..., 11. In each experiment, accuracy was chosen as a

performance metric to analyze the results and it was calculated as per Eq. 2.1.

Number of DTs = 5 ∗ 2x−1 (5.10)

5.4.5.1 Analysis-I

The accuracy accomplished by the RF classifier for Dataset-1 and Dataset-2 is illus-

trated in Table 5.8 and Table 5.9, respectively. The accuracy accomplished by the RF

classifier for the topmost 25 features recommended by each of the four chosen FSTs

with variable number of trees has been presented in Table 5.8. It can be noticed that for

the top 25 features recommended by the Chi-Squareχ̃2 FST, the RF classifier achieved

lowest accuracy of 98.167% with five DTs and the accuracy increased to 98.429% when

five more DTs were added.
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Further, an identical accuracy of 98.691% for the number of DTs 20 and 40 can

be observed. Besides, steady accuracy of 98.952% can be discerned as the number of

DTs augmented to 80, 160, 320, 640, 1280, 2560, and 5120. Similarly, for the topmost

25 features advised by the Gain-Ratio FST, accuracy of 98.429% and 98.691% was

obtained when the RF classifier was set with five and ten DTs, respectively. However,

stable accuracy of 98.952% was obtained as the DTs in the RF classifier were appended

in terms of 20, 40, 80, 160, 320, 640, 1280, 2560, and 5120. Moreover, when the

topmost 25 features suggested by the mRMR FST were employed, the RF classifier

was able to attain accuracy of 98.691% with five DTs. Later, when different number of

DTs, i.e., 10, 20, 40, 80, 160, 320, 640, 1280, 2560, and 5120 was considered, at each

computation, the RF classifier yielded stable detection accuracy. Correspondingly, for

the topmost 25 features endorsed by the Max-Rel FST, the RF classifier with five DTs

achieved detection accuracy of 98.691%, and as the number of DTs was incremented

by 10, 20, 40, 80, 160, 320, 640, 1280, 2560, and 5120, the accuracy accomplished by

the RF classifier was identical, i.e., 98.952%.

To measure the effect of the number of DTs on the predictability of the RF classi-

fier, additional experiments were carried out by considering topmost 50, 75, and 100

features recommended by each of the FSTs. When the topmost 50 features were taken

into account as recommended by the Chi-Squareχ̃2 and Gain-Ratio FSTs separately, the

RF classifier achieved an accuracy of 98.167% and 98.691% when examined with 5 and

10 DTs, respectively. Contrarily, the RF classifier obtained steady accuracy of 98.952%

when the number of DTs were set to 20, 40, 80, 160, 320, 640, 1280, 2560, and 5120

for the crucial 50 features advised by the Chi-Squareχ̃2 and Gain-Ratio FSTs. Further,

it was noticed that the RF classifier gained detection accuracy of 98.952% with five DTs

for the significant 50 features suggested by the mRMR FST. However, for the same fea-

tures, the detection accuracy of the RF classifier declined slightly, i.e., 98.691% when

the classification process was performed with 10 and 20 DTs. Further, for the same

features, the detection accuracy obtained was the same, i.e., 98.952% when the RF

classifier was executed with 40, 80, 160, 320, 640, 1280, 2560, and 5120 DTs. Lastly,

when 50 imperative features recommended by the Max-Rel FST were considered, the

RF classifier with five DTs achieved an accuracy of 98.429% and showed further im-

provement by gaining an accuracy of 98.691% when the number of DTs was increased

127



to 10 and 20. Later, the accuracy of 98.952% stabilized as the number of DTs increased

(see Table 5.8).

Experiments were further pursued to examine the efficiency of the RF classifier

when the top 75 relevant features were selected by each of the FSTs. It can be seen

from Table 5.8 that for the top 75 features recommended by the Chi-Squareχ̃2 FST, the

RF classifier attained detection accuracy of 98.691% with five DTs. However, as the

number of DTs increased to 10 and 20, interestingly, the RF classifier achieved highest

accuracy of 99.214%. Later, the accuracy decreased to 98.691% when the RF classifier

was set with 40 DTs. However, for the same 75 features, the accuracy decreased, i.e.,

98.429% when the RF classifier was set with DTs of size 80, 160, 320, 640, 1280, 2560,

and 5120. For the best 75 features provided by the Gain-Ratio FST, stable accuracy of

98.691% was accomplished when the RF classifier was evaluated with a different num-

ber of DTs such as 5, 10, and 20. When the RF classifier was set with 40 and 80

DTs, an increase in accuracy to 98.952% was observed. Further, a drop in accuracy,

i.e., 98.691% was found when the number of DTs was 160. Moreover, the detection

accuracy of 98.952% became steady when the number of DTs was fixed at 320, 640,

1280, 2560, and 5120. Subsequently, the topmost 75 features, insisted by the mRMR

FST, were also utilized to find the detection accuracy of the RF classifier with 5 and 10

DTs, and it gained an accuracy of 98.691%. Further, a gradual increase in accuracy, i.e.,

98.952% was noticed, which then stabilized to a certain extent as the number of DTs

increased to 20, 40, 80, 160, 320, and 640. Furthermore, when the number of DTs was

set to 1280, 2560, and 5120, the accuracy slightly declined, i.e., 98.691%. Additionally,

the RF classifier with 5 and 10 DTs was examined with crucial uppermost 75 features

provided by the Max-Rel FST and achieved a detection accuracy of 98.429%. On suc-

ceeding further by varying the number of DTs to 20, 40, 80, 160, 320, 640, 1280, 2560,

and 5120, the detection accuracy recorded by the RF classifier is as shown in Table 5.8,

and stable accuracy obtained was 98.691%.

The proficiency of the RF classifier was also examined with the topmost 100 fea-

tures recommended by each of the FSTs (See Table 5.8). For the top 100 features

endorsed by the Chi-Squareχ̃2 FST, the RF classifier with five DTs accomplished a de-

tection accuracy of 98.167%, followed by 98.429% when the number DTs was set to

10 and 20. Further, as the number of DTs increased to 40, 80, and 160, slightly im-
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proved accuracy of 98.691% was noticed and thereafter, constant accuracy of 98.429%

was achieved, irrespective of the number of DTs. The RF classifier with five DTs was

evaluated by considering the topmost 100 features advised by the Gain-Ratio FST and

the achieved accuracy was 98.167%. Later, when the number of DTs was increased to

10, better accuracy of 98.429% could be observed. Consecutively, the performance of

the RF classifier was analyzed by increasing the number of DTs sequentially in terms

of 20, 40, 80, 160, 320, 640, 1280, 2560, and 5120, and it was observed that the RF

classifier accomplished stable accuracy of 98.952%. In comparison, for the best 100

features recommended by the mRMR FST, the RF classifier with a different number of

DTs achieved different accuracies, i.e., for 5 DTs, the accuracy achieved was 98.691%,

for 10 DTs, the accuracy was slightly minimized to 98.429%, for 20 DTs, the accuracy

increased, i.e., 98.691%, and for 40 DTs, the achieved accuracy was 98.952%. How-

ever, the accuracy declined to 98.691% and became stable on further increase in the

number of DTs (see Table 5.8). Finally, for the topmost 100 relevant features recom-

mended by the Max-Rel FST, the RF classifier attained a steady accuracy of 98.691%

for varying number of DTs, except when the number of DTs was set to 640 and 1280.

5.4.5.2 Analysis-II

Table 5.9 demonstrates the performance analysis of the RF classifier for Dataset-2. It

can be seen that for the top 25 features suggested by the Chi-Squareχ̃2 FST, the detec-

tion accuracy achieved by the RF classifier was found to sequentially increase in terms

of 96.888%, 97.380%, 97.549%, 97.782%, 97.899%, and 98.029% when the number of

DTs was set to 5, 10, 20, 40, 80, and 160, respectively. Similarly, the performance of the

RF classifier was observed when the top 25 features recommended by the Gain-Ratio

FST were utilized. As the number of DTs was increased from 5 to 80, the detection

accuracy also increased - 92.842%, 92.933%, 92.959%, 92.966%, and 92.985%. In this

case also, it was recognized that increasing the number of DTs after a certain thresh-

old did not show any improvement in the detection accuracy. When the 25 significant

features advised by the mRMR FST were employed, the RF classifier produced an ac-

curacy of 96.473%, 96.836%, 96.991%, 97.095%, 97.152%, and 97.186% when it was

set to 5, 10, 20, 40, 80, and 160 DTs, respectively.
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Even though experiments were carried out to analyze the performance of the RF

classifier by increasing the number of DTs to 320, 640, 1280, 2560, and 5120, an im-

provement in detection accuracy was not noticed. Finally, the performance of the RF

classifier was analyzed for the 25 features suggested by the Max-Rel FST, where the

detection accuracy consistently improved until the DTs within the RF was raised to 80.

However, incrementing the number of DTs after 80 led to a decrease in accuracy of the

RF classifier.

Appendix C, D, E, and F show the topmost hybrid features suggested by four dif-

ferent FSTs, respectively.

For the topmost 50 features suggested by the Chi-Squareχ̃2 FST, the RF classifier

with five DTs obtained an accuracy of 97.523%. Further improvement in accuracy as

the DTs increased to 10, 20, 40, and 80 was found. Consequently, the tree size was

increased to 160, 320, 640, 1280, 2560, and 5120, in order to see improvement in ac-

curacy than the previous, however, poor accuracy was attained as reported in Table 5.9.

The efficiency of the RF classifier was examined by considering the top 50 features

advised by the Gain-Ratio FST. The detection accuracy showed a continuous improve-

ment until the number of DTs was raised to 80. The detection accuracy yielded was

93.153%, 93.244%, 93.205%, 93.166%, and 93.257%. In this case also, drop in ac-

curacy was observed when the number of DTs was set to 160, 320, 640, 1280, 2560,

and 5120. Further, the proficiency of the RF classifier was checked for the 50 fea-

tures recommended by the mRMR FST. The accuracy obtained by the RF classifier was

96.667%, 97.173%, 97.251%, 97.445%, 97.627%, and 97.666% when the number of

DTs was set to 5, 10, 20, 40, 80, and 160, respectively. Meanwhile, when the number

of DTs was increased from 320 to 5120, less accuracy was observed. Moreover, the de-

tection accuracy achieved by the RF classifier for the Max-Rel recommended features

was also better when the number of the DTs was increased until 320 and maximum

accuracy of 98.314% was achieved (see Table 5.9). Further, the accuracy yielded by the

RF classifier was not remarkable when the number of DTs was set to 640, 1280, 2560,

and 5120.

The analysis was continued for the top 75 features recommended by the chosen

FSTs. For the top 75 features advised by the Chi-Squareχ̃2 FST, gradual increase in
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accuracy was determined when the DTs were consistently varied from 5 up to 640 trees.

The obtained detection accuracy was 97.264%, 98.029%, 98.184%, 98.340%, 98.314%,

98.379%, 98.418%, and 98.444%. However, further increase in the number of DTs did

not show much affect on detection accuracy. When the RF classifier was executed

with the top 75 features suggested by the Gain-Ratio FST with five DTs, detection

accuracy of 96.019% was achieved. Later, on increasing the DTs to 10, an immediate

decrease in accuracy, i.e., 95.928% was found. Further, hike in detection accuracy, i.e.,

96.006% and 96.084% was observed when the number of DTs was set to 20 and 40,

respectively. Moreover, the recorded accuracy in the Table 5.9 shows that the detection

ability was variable as the number of DTs was increased to 80, 160, 320, 640, 1280,

2560, and 5120. Maximum accuracy of 96.174% was accomplished when the number

of DTs was set to 2560 and 5120. Furthermore, the analysis was pursued independently

with the 75 features insisted by the mRMR FST and Max-Rel FST. It was observed

that the detection accuracy achieved by the RF classifier gradually increased as the

number of DTs increased from 5 up to 80. The accuracy computed by the RF classifier

for the features recommended by the mRMR and Max-Rel FSTs did not show any

improvement when the number of DTs was set to 160, 320, 640,1280, 2560, and 5120

trees (see Table 5.9).

Similar to the previous experiments, the topmost 100 features suggested by the cho-

sen FSTs were selected to analyze the ability of the RF classifier. From Table 5.9, it

can be observed that for the topmost 100 features advised by the Chi-Squareχ̃2 FST,

the detection accuracy showed an improvement each time when the number of DTs was

varied until 160, and the detection accuracy declined on further increasing the num-

ber of DTs. Besides, for the top 100 features recommended by the Gain-Ratio FST,

the detection accuracy was increased continuously until the number of DTs was set to

160 (see Table 5.9), and later, the detection accuracy did not show much improvement

on increasing the number of DTs. Finally, the RF classifier was evaluated for the 100

significant features recommended by the mRMR and Max-Rel FSTs. The detection ac-

curacy recorded in Table 5.9 describes that as the number of DTs increased from 5 up

to 640, the detection accuracy also increased. Moreover, when the number of DTs was

set to 1280, 2560, and 5120, there was not much impact on the detection accuracy.
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5.4.6 Out-of-Bag Error

The OOBE rate (Khoshgoftaar et al., 2007) determines the error rate of the RF classifier.

The error rate is due to the correlation between two trees and the discrimination ability

of every DT (Leistner et al., 2009; Ajay Kumara and Jaidhar, 2017). However, the

RF classifier error rate was evaluated considering the aggregation of the Out-of-Bag

prediction.

In the present work, the OOBE rate was used to evaluate the predictive performance

of the RF classifier according to the number of DTs considered as per Eq. 5.10. Figure

5.8a, Figure 5.8c, Figure 5.9a, and Figure 5.9c illustrate the OOBE rate for the top

features suggested by the four different chosen FSTs for Dataset-1. Figure 5.8b, Figure

5.8d, Figure 5.9b, and Figure 5.9d represent the OOBE rate achieved with the top crucial

features recommended by the four FSTs for Dataset-2.

Figure 5.8a demonstrates the OOBE rate attained when the DTs were increased to

80 for the topmost 25 features recommended by the Chi-Squareχ̃2 and mRMR FSTs.

Similarly, for the top 25 features suggested by the Gain-Ratio FST, lower OOBE rate

was achieved at 160 DTs. Likewise, for the top 25 features advised by the Max-Rel

FST, lower OOBE rate was obtained at 320 DTs. In this case, the error rate stabilized

after reporting lower OOBE rate as 0.0105 at 80 DTs, 0.0105 at 160 trees, and 0.0105

at 320 trees.

The OOBE rate was achieved for the top 50 features suggested by the Chi-Squareχ̃2

FST at 40 DTs and by the Max-Rel FST when the DTs were increased to 80, whereas

for the top 50 features advised by the Gain-Ratio FST, lower OOBE rate was obtained

at 160 DTs. Similarly, the OOBE rate was attained when the DTs were increased to 320

for the topmost 50 features recommended by the mRMR FST. As shown in Figure 5.8c

the error rate stabilized after yielding lower OOBE rate as 0.0105 at 40 DTs, 0.0131 at

80 trees, 0.0105 at 160 trees, and 0.0131 at 320 trees.

The OOBE rate obtained for the top 75 features is illustrated in Figure 5.9a, where

lower OOBE rate for the 75 features advised by the Chi-Squareχ̃2 FST was attained

at 80 DTs, and by Max-Rel FST at 80 DTs. Similarly, for the top 75 features recom-

mended by the Gain-Ratio FST, lower OOBE rate was achieved at 40 DTs, and for

the mRMR FST, when the DTs were increased to 80. In this case, the error rate was
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stabilized after gaining minimum OOBE rate as 0.0105 at 80 DTs, 0.0131 at 80 trees,

0.0105 at 40 trees, and 0.0131 at 80 trees for the top 75 features recommended by the

Chi-Squareχ̃2, Max-Rel, Gain-Ratio, and mRMR FSTs, respectively.

Figure 5.9c describes the lower OOBE rate as 0.0157 obtained for the top 100 fea-

tures recommended by the Chi-Squareχ̃2 FST at 80 DTs. For the top 100 features

advised by the Gain-Ratio FST, lower OOBE rate 0.0105 was attained at 40 DTs. Sim-

ilarly, lower OOBE rate of 0.0131 was achieved for the top 100 features suggested by

the mRMR FST at 80 DTs, and for the top 100 features insisted by Max-Rel FST, lower

OOBE rate of 0.0105 was achieved at 40 DTs.

Additionally, a thorough analysis was carried out to know the predictive perfor-

mance of the RF classifier while measuring the OOBE rate from the experiments con-

ducted using Dataset-2. It can be seen from Figure 5.8b, Figure 5.8d, Figure 5.9b, and

Figure 5.9d, that the evaluation was done by noticing the OOBE rate when the DTs

were increased from 5 to 5120. Figure 5.8b depicts that lower OOBE rate of 0.0197

was achieved at 320 DTs for the top 25 features recommended by the Chi-Squareχ̃2

FST. Similarly, for the top 25 features advised by the Gain-Ratio FST, lower OOBE

rate of 0.0683 was obtained at 160 DTs. Likewise, for the 25 features suggested by the

mRMR FST and Max-Rel FST, lower OOBE rate of 0.0281 and 0.0198 was attained at

320 and 640 DTs, respectively.

When the OOBE rate was measured for the top 50 features suggested by the Chi-

Squareχ̃2 FST, error rate of 0.0171 was obtained at 80 DTs as shown in Figure 5.8d.

The OOBE rate of 0.0681 was achieved at 40 DTs for the top 50 features recommended

by the Gain-Ratio FST. Similarly, lower OOBE rate of 0.024 was obtained at 80 DTs

and 0.0172 at 160 DTs for the top 50 features advised by the mRMR and Max-Rel

FSTs, respectively. Figure 5.9b illustrates the lower OOBE rate achieved for the top 75

features suggested by the chosen four FSTs. Accordingly, lower OOBE rate of 0.0175

was obtained at 80 DTs for the top 75 features suggested by the Chi-Squareχ̃2 FST.

When lower OOBE rate was measured for the top 75 features suggested by the Gain-

Ratio FST, the error rate of 0.0368 was achieved at 40 DTs. Further, the OOBE rate for

the top 75 features advised by the mRMR FST was 0.0244 at 80 DTs. Similarly, lower

OOBE rate of 0.0218 was accomplished at 40 DTs for the top 75 features recommended

by the Max-Rel FST.

134



(a
)D

at
as

et
-1

:A
cc

ur
ac

y
(2

5
Fe

at
ur

es
)

(b
)D

at
as

et
-2

:A
cc

ur
ac

y
(2

5
Fe

at
ur

es
)

(c
)D

at
as

et
-1

:A
cc

ur
ac

y
(5

0
Fe

at
ur

es
)

(d
)D

at
as

et
-2

:A
cc

ur
ac

y
(5

0
Fe

at
ur

es
)

Fi
gu

re
5.

8:
O

ut
-o

f-
B

ag
E

rr
or

(O
O

B
E

)r
at

e
ac

hi
ev

ed
by

th
e

R
an

do
m

Fo
re

st
cl

as
si

fie
rf

or
D

at
as

et
-1

an
d

D
at

as
et

-2

135



(a
)D

at
as

et
-1

:A
cc

ur
ac

y
(7

5
Fe

at
ur

es
)

(b
)D

at
as

et
-2

:A
cc

ur
ac

y
(7

5
Fe

at
ur

es
)

(c
)D

at
as

et
-1

:A
cc

ur
ac

y
(1

00
Fe

at
ur

es
)

(d
)D

at
as

et
-2

:A
cc

ur
ac

y
(1

00
Fe

at
ur

es
)

Fi
gu

re
5.

9:
O

ut
-o

f-
B

ag
E

rr
or

(O
O

B
E

)r
at

e
ac

hi
ev

ed
by

th
e

R
an

do
m

Fo
re

st
cl

as
si

fie
rf

or
D

at
as

et
-1

an
d

D
at

as
et

-2

136



Ta
bl

e
5.

10
:C

om
pa

ri
so

n
of

th
e

pr
op

os
ed

ap
pr

oa
ch

w
ith

ex
is

tin
g

re
se

ar
ch

w
or

ks

R
el

at
ed

W
or

k
#

E
xe

cu
ta

bl
es

us
ed

Fe
at

ur
e

Se
le

ct
io

n

Te
ch

ni
qu

e
Fe

at
ur

es
Ty

pe
A

cc
ur

ac
y

(%
)

M
al

w
ar

e
B

en
ig

n

Is
la

m
et

al
.(

20
13

)
23

98
54

1
N

ot
M

en
tio

ne
d

Fu
nc

tio
n

L
en

gt
h

Fr
eq

ue
nc

y,
97

.0
5

Pr
in

ta
bl

e
St

ri
ng

In
fo

rm
at

io
n,

an
d

A
PI

ca
lls

Sa
nt

os
et

al
.(

20
13

)
10

00
10

00
In

fo
rm

at
io

n-
G

ai
n

In
fo

rm
at

io
n

of
th

e
ex

ec
ut

io
n

tr
ac

e
of

96
.6

0

th
e

ex
ec

ut
ab

le
,a

nd
O

pe
ra

tio
na

lc
od

e

A
hm

ad
ie

ta
l.

(2
01

3)
80

6
30

6
Fi

sh
er

Sc
or

e
A

PI
ca

lls
se

qu
en

ce
s

an
d

ite
ra

tiv
e

98
.1

0(
A

U
C

)

pa
tte

rn
s

Sa
le

hi
et

al
.(

20
14

)
82

6
38

5
R

el
ie

f
A

PI
ca

lls
w

ith
th

ei
ra

rg
um

en
ts

98
.4

0

A
w

an
an

d
Sa

qi
b

(2
01

6)
16

00
60

0
In

fo
rm

at
io

n-
G

ai
n

A
PI

ca
lls

,P
ri

nt
ab

le
St

ri
ng

s,
an

d
97

.2
0

PE
H

ea
de

rI
nf

or
m

at
io

n

K
um

ar
et

al
.(

20
19

)
27

22
24

88
N

ot
M

en
tio

ne
d

PE
fil

es
H

ea
de

rfi
el

d’
s

ra
w

va
lu

e
98

.4
0

an
d

de
riv

ed
va

lu
es

Pr
op

os
ed

W
or

k
20

0
20

0
C

hi
-S

qu
ar

eχ̃
2

O
H

,F
H

,S
H

,D
H

,I
F,

an
d

99
.2

14

H
FM

D
S

A
PI

+
C

A
T

38
56

38
56

C
hi

-S
qu

ar
eχ̃

2
O

H
,F

H
,S

H
,D

H
,I

F,
an

d
98

.5
21

A
PI

+
C

A
T

137



Table 5.11: Comparison of proposed approach with the recent related works

Recent Works Accuracy (%)
Jain and Singh (2017) 73.47
Aman et al. (2017) 93.30
Proposed work (HFMDS) 98.52

Finally, the lower OOBE rate was measured for the 100 features recommended by

the Chi-Squareχ̃2, Gain-Ratio, mRMR, and Max-Rel, FSTs, and the error rate achieved

was 0.0205, 0.0359, 0.0219, and 0.0187, with the increased number of DTs as 40, 40,

80, and 80, respectively (see Figure 5.9d).

From the analysis, it can be understood that when less number of features are con-

sidered, maximum number of DTs are required to stabilize the OOBE rate. Contrarily, if

the number of features is more, then less number of DTs is required by the RF classifier

to stabilize the OOBE rate.

In order to substantiate the proposed approach, the present work was compared with

some of the earlier research works (see Table 5.10). It can be noticed that the proposed

HFMDS outperforms previous works with an improvement in accuracy that varies from

0.18% to 2.61% for Dataset-1 and from 0.12% to 1.92% for Dataset-2.

Similarly, the present work was compared with some of the research works of recent

years as shown in Table 5.11. Jain and Singh (2017) propounded an integrated features-

based malware detection framework that utilized selected static and dynamic features

for detecting malware. They experimented to demonstrate the relative analysis of the

integrated technique with only static features and only dynamic features to analyze

which could provide better detection accuracy. They used three machine learning-based

classifiers, namely, Naive Bayes, Support Vector Machine, and RF to evaluate their

framework. The results obtained manifested that the integrated approach was better

and attained detection accuracy of 73.47% by the RF classifier. Aman et al. (2017)

presented a malware discrimination system based on multiple features such as static,

API calls, and regular expression. They achieved an accuracy of 93.30% by the RF

classifier with 100 trees.

From Table 5.11, it can be inferred that the proposed approach obtained an accuracy

of 98.521% by the RF classifier with 160 trees, which is more than the accuracy of
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(Jain and Singh, 2017) and (Aman et al., 2017). The enhancement in accuracy might

be because of the use of API+CAT and IF along with the PE header features (DH, FH,

SH, and OH), and the increased number of DTs.

5.5 Discussion

In the present work, the feasibility of the proposed HFMDS in detecting Windows mal-

ware was explored. The FSTs which were employed in the work were compared to

determine which FST increased the RF classifier’s accuracy. Finally, experiments were

carried out to seek the stability of the RF classifier accuracy and also to ascertain the

optimal number of DTs needed by the RF classifier. Four research questions mentioned

in Section 5.4.4 were investigated to measure the efficiency of the HFMDS. To answer

them, several experiments were designed and conducted. In Section 5.4.4.4, the ef-

fectiveness of the HFMDS was demonstrated using both static and dynamic features

in detecting unknown malware. The experimental results proved the efficiency of the

proposed HFMDS in achieving highest accuracy of 99.214% by the RF classifier with

10 DTs for the top 75 features recommended by the Chi-Squareχ̃2 FST with respect to

Dataset-1. Further, it was possible to attain an accuracy of 98.521% by the RF classifier

with 160 DTs for the 100 features suggested by the Chi-Squareχ̃2 FST correspond-

ing to Dataset-2, which promised the proficiency of the HFMDS. Another observation

was that the RF classifier achieved an acceptable accuracy for the mRMR and Max-Rel

FSTs with different features size obtained for Dataset-1 and Dataset-2. Although, the

mRMR suggested features were found to achieve better detection accuracy in (Peng

et al., 2005) when tested by the SVM classifier, it failed to recommend the best signifi-

cant features and resulted in less significant accuracy gain by the RF classifier. Further,

from Analysis-I and Analysis-II, one can reasonably infer that as the number of DTs in-

creased, it did not always mean that the performance of the RF classifier was better with

fewer trees within the RF classifier. In general, the number of DTs was fixed on trial-

and-error basis. However, based on the observations on the experiments conducted, it

can be understood that merely doubling the number of DTs is of no use since it is also

possible to define a threshold for the number of DTs, as beyond the threshold there

was no significant improvement in accuracy. The analysis performed by employing two

datasets demonstrated that beyond 160 DTs, there was no significance in increasing the

number of DTs, to 640, 1280, 2560, and 5120. Therefore based on the experimental
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results, it is possible to recommend that the DTs should range from 80 to 160 for the

RF classifier to attain better detection accuracy.

The proposed hybrid apparoach achieves False Positive due to the following rea-

sons: (i) While execution, some of the sophisticated malware do not exhibit their mali-

cious action until certain condition met. Extracting the features from behavioural report

that do not provide the malicious action(s) never provide essential features to recognize

malware accurately. (ii) Feature(s) present in the Final Feature Set do not exist in the

features list that is extracted from the testing file also leads to misclassification.

5.6 Summary

In Section 5.1, an HFMDS that utilizes both static and dynamic features to precisely

classify unknown malware has been presented. The API calls triggered by the PE files

during their execution were treated as dynamic features and the OH, FH, and DOSH

related data was considered as static features. The effectiveness of the API calls alone,

combination of API calls and static features, and combination APICAT and static fea-

tures were investigated in the detection of unknown malware to know which blend

would provide better detection accuracy. The LSVC was applied onto static features set

as well as dynamic features set individually to obtain potential features that would in-

crease the performance of the classifier. The LSVC recommended features were treated

as the final features to evaluate the effectiveness of the HFMDS. Experiments are con-

ducted with real-world malware samples, and the obtained empirical results demon-

strated that the proposed HFMDS was efficient in analyzing and detecting malware

with an accuracy of 99.743% as accomplished by the SMO classifier comprising of

APICAT+OH+DOSH+FH as the hybrid features.

In Section 5.4, the proposed HFMDS examined the hybrid features of the PE files

that included PE header information, IF, and API+CAT to accurately classify the test

input file as either benign or malware. The selection of the most significant hybrid fea-

tures was achieved by utilizing well-known filter-based FSTs, and a thorough analysis

was made to identify the best FST, which could assist the classifier to achieve better

detection accuracy. A wide set of experiments was conducted by considering a smaller

dataset (Dataset-1) as well as a larger dataset (Dataset-2) to evaluate the detection pro-

ficiency of the proposed HFMDS with the RF classifier. The obtained empirical results
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demonstrated that the RF classifier achieved highest detection accuracy when the num-

ber of DTs was set in the range of 80 to 160, and it was noticed that merely doubling

the number of DTs did not have any significant effect on the predictive performance of

the RF classifier.
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Chapter 6

Conclusions and Future Work

The existing Windows malware detection techniques fall short of tackling the chal-

lenges posed by obscure malware leading to escalating information, time, and financial

losses. This necessitates the development of new or enhanced Windows malware de-

fence techniques. In this direction, a detailed study of the different Windows malware

detection techniques was carried out that consider static features alone, behavioural fea-

tures alone, and a combination of both. In the present research work, Windows malware

detection approaches were proposed to accurately identify benign PE files as benign and

malware PE files as malware. This chapter discusses concluding remarks related to the

proposed approaches.

Most of the conventional Windows antimalware defensive solutions are static features-

based approach. However, the discovery of obscure malware in real-time is still a crit-

ical issue. In this regard, the PEOHF-based MDS was designed for discerning the

Windows malware by considering OH and their corresponding values as static features.

To obtain the most significant PEOHF features from the original feature set, the Single-

Stage-Feature-Selector was utilized. Experiments were conducted, and comparative

analysis was performed to measure the effectiveness of the chosen filter-based FSTs in

recommending the best features to obtain better accuracy by the classifiers.

The modern Windows malware is well versed with evasion techniques and can eas-

ily elude the conventional static features-based technique. Therefore, a malware de-

tection technique using the Cuckoo Sandbox was implemented to gather system-level

behaviour of the PE files. The system calls sequence, invoked by the PE files, was

extracted from the MIST reports obtained by pre-processing the JSON reports. The

sliding window approach was used to represent the extracted system calls sequence as

N-grams, and the IG FST was employed, which suggested prominent N-gram features

required to construct the Final Feature Set. An evaluation of the machine learning-based

classifier was carried out, and the Spegagos classifier ensured better detection rate for

N-gram lengths of three and four bytes.

The performance of the classifier depends purely on the final features used in the



training file. FST plays an essential role in selecting the best features from the original

feature set. It computes the score for each N-gram (features) and takes an enormous

amount of time to produce a score when the total number of N-grams is vast. To ad-

dress this issue, a multiprocessing model that computes the IG score for each N-gram

was developed. The efficiency of the proposed multiprocessing model was measured

through a set of the experiments and the obtained empirical evidence demonstrated that

it was 80% faster than the sequential model.

The dimensionality of the original feature set exhibited significant effect on the pre-

dictive performance of the machine learning-based classifier. In order to identify and

eradicate noisy features from the original feature set, the LSVC was employed as fea-

ture selector. The effectiveness of the behavioural features suggested by the LSVC in

identifying unknown Windows malware was investigated. Two different types of be-

havioural features, namely, API calls and Category+API calls were considered to know

which type of features provided better detection rate. From the obtained experimen-

tal results, it was observed that maximum accuracy was achieved for the final features

set comprising of API calls as N-gram features of size 4 bytes as recommended by

the LSVC. Thus, the empirical results manifested that the LSVC is proficient in rec-

ommending the best N-gram features, which boost the detection rate of the machine

learning-based classifier.

The behavioural-based malware detection approaches with machine learning tech-

niques have been widely adopted as a profound solution to defend against malware.

Though machine learning-based malware detection techniques have exhibited success

in detecting malware, their shallow learning architecture is still deficient in identify-

ing sophisticated malware. Therefore, a CNN-based Windows malware detector was

proposed that used the execution time behavioural features of the PE files to detect and

classify obscure malware. The runtime behaviour features (CAT-API) of the PE files, as

advised by the Feature Selection Technique was used to create images, and thereby, it

was demonstrated that the malware detection problem can be transformed into an image

classification problem. Further, to prevent the Neural Network from learning the asso-

ciations between the irrelevant features, experiments were conducted to demonstrate

that feature selection at the input level of CNN is necessary. The obtained empirical

results manifested that the detection accuracy achieved by the proposed approach is
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predominant than that of the detection accuracy gained by the machine learning-based

classifiers. Thereby, the proposed approach was proficient in the detection of Windows

malware.

The amalgamation of the dynamic and static analysis can provide vital informa-

tion for analyzing malware. In this regard, the HFMDS was proposed to identify un-

known Windows malware that used the LSVC as feature selector. A wide set of ex-

periments were conducted to demonstrate the benefits of combining both static and

dynamic features. The obtained experimental results demonstrated that the proposed

HFMDS was able to attain maximum detection accuracy for the combination of API-

CAT+OH+DOSH+FH hybrid features.

The effectiveness of the hybrid features-based detection approach depends on the

types of features used to identify the malware. In this regard, the proposed HFMDS

investigated the hybrid features of the PE files that included PE header information, IF,

and API+CAT to precisely detect and classify the PE file. The HFMDS was trained

with prominent hybrid features advised by the filter-based FST. The detection ability

of the proposed HFMDS was evaluated with the RF classifier. In-depth analysis was

carried out to determine the optimal number of DTs required by the RF classifier to

achieve consistent accuracy. Besides, the performance of the four popular FSTs was

also analyzed to determine which FST recommended the best features. From the ex-

perimental analysis, it was inferred that increasing the number of DTs after 160 within

the RF classifier did not make any significant difference in attaining better detection

accuracy.

The proposed approaches are robust in detecting the Windows malware. As future

work, efforts should be made to map the proposed approaches to discern and classify

non-Windows malware. The proposed CNN-based Windows malware detector showed

advantages in accuracy, but performed slightly slower than the machine learning-based

classifiers. In this regard, it is required to reduce the detection time in the future. A

novel approach has to be introduced whereby the Sandbox can monitor and recognize

kernel-based malware.
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Appendix A: Top 25 PEOHF features (static features) selected by each FST for BD

Sl. No. DFS Sl. No. MI
1 BaseOfCode-4096 1 BaseOfCode-4096
2 CheckSum-0 2 CheckSum-0
3 DllCharacteristics-0 3 DllCharacteristics-0
4 DllCharacteristics-32768 4 DllCharacteristics-32768
5 ImageBase-16777216 5 ImageBase-16777216
6 ImageBase-268435456 6 ImageBase-4194304
7 ImageBase-4194304 7 MajorImageVersion-0
8 MajorImageVersion-0 8 MajorImageVersion-5
9 MajorImageVersion-5 9 MajorLinkerVersion-6
10 MajorLinkerVersion-2 10 MajorLinkerVersion-7
11 MajorLinkerVersion-6 11 MajorOperatingSystemVersion-4
12 MajorLinkerVersion-7 12 MajorOperatingSystemVersion-5
13 MajorOperatingSystemVersion-4 13 MinorImageVersion-0
14 MajorOperatingSystemVersion-5 14 MinorImageVersion-1
15 MinorImageVersion-0 15 MinorLinkerVersion-0
16 MinorImageVersion-1 16 MinorLinkerVersion-10
17 MinorLinkerVersion-10 17 MinorOperatingSystemVersion-0
18 MinorOperatingSystemVersion-0 18 MinorOperatingSystemVersion-1
19 MinorOperatingSystemVersion-1 19 SizeOfHeaders-1024
20 SizeOfHeaders-1024 20 SizeOfHeaders-4096
21 SizeOfHeaders-4096 21 SizeOfStackReserve-1048576
22 SizeOfStackReserve-1048576 22 SizeOfStackReserve-262144
23 SizeOfStackReserve-262144 23 SizeOfUninitializedData-0
24 Subsystem-2 24 Subsystem-2
25 Subsystem-3 25 Subsystem-3

Sl. No. CPD Sl. No. DIA
1 SizeOfUninitializedData-225280 1 AddressOfEntryPoint-107871
2 SizeOfUninitializedData-241664 2 AddressOfEntryPoint-24748
3 SizeOfUninitializedData-24576 3 AddressOfEntryPoint-31475
4 SizeOfUninitializedData-262144 4 AddressOfEntryPoint-36633
5 SizeOfUninitializedData-3592192 5 AddressOfEntryPoint-4205
6 SizeOfUninitializedData-36864 6 AddressOfEntryPoint-9360
7 SizeOfUninitializedData-40960 7 AddressOfEntryPoint-9369
8 SizeOfUninitializedData-413696 8 AddressOfEntryPoint-9621
9 SizeOfUninitializedData-45056 9 BaseOfCode-40960
10 SizeOfUninitializedData-49152 10 BaseOfData-565248
11 SizeOfUninitializedData-512 11 CheckSum-134908
12 SizeOfUninitializedData-528384 12 CheckSum-448067
13 SizeOfUninitializedData-53248 13 CheckSum-70053
14 SizeOfUninitializedData-57344 14 MinorImageVersion-55
15 SizeOfUninitializedData-589824 15 MinorLinkerVersion-55
16 SizeOfUninitializedData-61440 16 SizeOfCode-101376
17 SizeOfUninitializedData-65536 17 SizeOfCode-219136
18 SizeOfUninitializedData-69632 18 SizeOfCode-36352
19 SizeOfUninitializedData-70144 19 SizeOfImage-314811
20 SizeOfUninitializedData-73728 20 SizeOfImage-331776
21 SizeOfUninitializedData-77824 21 SizeOfInitializedData-12173312
22 SizeOfUninitializedData-86016 22 SizeOfInitializedData-290816
23 SizeOfUninitializedData-90112 23 SizeOfInitializedData-590848
24 SizeOfUninitializedData-98304 24 SizeOfStackCommit-65536
25 Subsystem-0 25 SizeOfUninitializedData-57344
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Appendix B: Top 25 PEOHF features (static features) selected by each FST for

UBD
Sl. No. DFS Sl. No. MI

1 BaseOfCode-4096 1 BaseOfCode-4096
2 CheckSum-0 2 CheckSum-0
3 DllCharacteristics-0 3 DllCharacteristics-0
4 DllCharacteristics-32768 4 DllCharacteristics-32768
5 FileAlignment-32 5 FileAlignment-512
6 ImageBase-16777216 6 ImageBase-16777216
7 ImageBase-4194304 7 ImageBase-4194304
8 ImageBase-65536 8 ImageBase-65536
9 MajorImageVersion-0 9 MajorImageVersion-0
10 MajorImageVersion-5 10 MajorImageVersion-5
11 MajorLinkerVersion-6 11 MajorLinkerVersion-6
12 MajorLinkerVersion-7 12 MajorLinkerVersion-7
13 MajorOperatingSystemVersion-4 13 MajorOperatingSystemVersion-4
14 MajorOperatingSystemVersion-5 14 MajorOperatingSystemVersion-5
15 MinorImageVersion-0 15 MinorImageVersion-0
16 MinorImageVersion-1 16 MinorImageVersion-1
17 MinorLinkerVersion-10 17 MinorLinkerVersion-10
18 MinorOperatingSystemVersion-0 18 MinorOperatingSystemVersion-0
19 MinorOperatingSystemVersion-1 19 MinorOperatingSystemVersion-1
20 SectionAlignment-32 20 SectionAlignment-4096
21 SizeOfHeaders-1024 21 SizeOfHeaders-1024
22 SizeOfStackReserve-1048576 22 SizeOfStackReserve-1048576
23 SizeOfStackReserve-262144 23 SizeOfStackReserve-262144
24 Subsystem-1 24 Subsystem-1
25 Subsystem-3 25 Subsystem-3

Sl. No. CPD Sl. No. DIA
1 SizeOfUninitializedData-176128 1 AddressOfEntryPoint-107871
2 SizeOfUninitializedData-19532 2 AddressOfEntryPoint-15209
3 SizeOfUninitializedData-2048 3 AddressOfEntryPoint-24748
4 SizeOfUninitializedData-241664 4 AddressOfEntryPoint-25152
5 SizeOfUninitializedData-262144 5 AddressOfEntryPoint-31475
6 SizeOfUninitializedData-32768 6 AddressOfEntryPoint-36633
7 SizeOfUninitializedData-36864 7 AddressOfEntryPoint-9360
8 SizeOfUninitializedData-413696 8 AddressOfEntryPoint-9369
9 SizeOfUninitializedData-45056 9 AddressOfEntryPoint-9621
10 SizeOfUninitializedData-49152 10 BaseOfData-565248
11 SizeOfUninitializedData-512 11 CheckSum-134908
12 SizeOfUninitializedData-528384 12 CheckSum-75729
13 SizeOfUninitializedData-53248 13 MinorImageVersion-55
14 SizeOfUninitializedData-57344 14 MinorLinkerVersion-55
15 SizeOfUninitializedData-589824 15 MinorLinkerVersion-69
16 SizeOfUninitializedData-61440 16 NumberOfRvaAndSizes-17
17 SizeOfUninitializedData-65536 17 SizeOfCode-101376
18 SizeOfUninitializedData-69632 18 SizeOfCode-219136
19 SizeOfUninitializedData-70144 19 SizeOfCode-6400
20 SizeOfUninitializedData-73728 20 SizeOfImage-304856
21 SizeOfUninitializedData-77824 21 SizeOfImage-331776
22 SizeOfUninitializedData-86016 22 SizeOfInitializedData-290816
23 SizeOfUninitializedData-90112 23 SizeOfInitializedData-590848
24 SizeOfUninitializedData-98304 24 SizeOfStackCommit-65536
25 Subsystem-0 25 SizeOfUninitializedData-19532
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Appendix C: Top 25 hybrid features recommended by Chi-Squareχ̃2 FST

Type Features
API calls + Category (N-grams) (3) 02020a01, 11031102, 030a0307
OPTIONAL HEADER (12/30) DllCharacteristics

MajorLinkerVersion
MajorOperatingSystemVersion
MajorSubsystemVersion
SizeOfCode
SizeOfInitializedData
BaseOfCode
BaseOfData
MinorOperatingSystemVersion
MajorImageVersion
CheckSum
AddressOfEntryPoint

DOS HEADER (1/17) e lfanew
FILE HEADER (3/7) NumberOfSections, TimeDateStamp, Characteristics
SECTION HEADER (4) .text, .rdata, .reloc, .data
IMPORT FUNCTION CALL (2) KERNEL32.dll, USER32.dll

Appendix D: Top 25 hybrid features recommended by Gain-Ratio FST

Type Features
API calls + Category (N-grams) (18) 03070306, 030a0307, 030a1103, 0307030a

11031103, 0c011102, 03060303, 0306030a
0a010201, 120c0602, 030b0306, 030a0302
0b030e01, 03040303, 02021103, 030a0301
120c0202, 02020a06

OPTIONAL HEADER (5/30) MajorSubsystemVersion
MinorOperatingSystemVersion
MinorSubsystemVersion
MajorOperatingSystemVersion
DllCharacteristics

DOS HEADER (0/17) Not Recommended by Gain-Ratio FST
FILE HEADER (0/7) Not Recommended by Gain-Ratio FST
SECTION HEADER (2) .reloc, .text
IMPORT FUNCTION CALL (0) Not Recommended by Gain-Ratio FST
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Appendix E: Top 25 hybrid features recommended by Max-Rel FST

Type Features
API calls + Category (N-grams) (4) 030a0307, 0307030a, 02020a01, 0c011102
OPTIONAL HEADER (11/30) DllCharacteristics

MajorLinkerVersion
MajorOperatingSystemVersion
MajorSubsystemVersion
SizeOfCode
BaseOfData
BaseOfCode
CheckSum
MajorImageVersion
SizeOfInitializedData
MinorOperatingSystemVersion

DOS HEADER (1/17) e lfanew
FILE HEADER (3/7) Characteristics, NumberOfSections, TimeDateStamp
SECTION HEADER (4) .reloc, .text , .rdata, .data
IMPORT FUNCTION CALL (2) KERNEL32.dll, USER32.dll

Appendix F: Top 25 hybrid features recommended by mRMR FST

Type Features
API calls + Category (N-grams) (9) 030a0307, 02020a01, 0c011102, 03070306

11021104, 030a1103, 0307030a, 030a0301
09050902

OPTIONAL HEADER (7/30) DllCharacteristics
MajorSubsystemVersion
MajorOperatingSystemVersion
MajorLinkerVersion
MajorImageVersion
MinorOperatingSystemVersion
BaseOfCode

DOS HEADER (0/17) Not Recommended by mRMR FST
FILE HEADER (2/7) Characteristics, NumberOfSections
SECTION HEADER (5) .reloc, .text, .rdata, .data, .rsrc
IMPORT FUNCTION CALL (2) KERNEL32.dll, ole32.dll
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