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ABSTRACT

This thesis focuses on the estimation of unknown parameters using various inverse

methods for the heat transfer problems. The first class of problem elaborately discusses

about the estimation of interfacial heat transfer coefficients during the solidification of

casting. To accomplish this, a prevalent one dimensional transient horizontal direc-

tional solidification of Sn-5%wtPb alloy with temperature dependent thermophysical

properties and latent heat is considered to be the mathematical model/forward model

and numerically solved using Explicit Finite Difference Method to obtain temperature

distribution from the known boundary and initial conditions. The temperatures from

the forward model is validated with the literature and an absolute error of 5% from

the actual measurements was observed. In order to mimic the real time experiments,

the temperatures are added with σ=0.01Tmax, σ=0.02Tmax and σ=0.03Tmax Gaussian

white noise (simulated measurements) and compared with two different objective func-

tions: (i) Least Squares and (ii) Bayesian Framework. Meantime, to expedite the solu-

tion of the inverse problem, the numerical model is then replaced with Artificial Neural

Network (ANN), which acts as a fast forward model to estimate the unknown constants

present in the correlation of interfacial heat transfer coefficient. A total of 473 data

sets of inputs and corresponding outputs were used to create a trained artificial neural

network which produced temperatures with an accuracy less than 0.1◦C temperature

difference from the exact temperature data. Genetic Algorithm (GA) was implemented

as an inverse method and it was found that ANN-GA-Bayesian framework was more ef-

fective compared to ordinary least squares for noise added data with an overall average

error of 2%.

Furthermore, an extended study on the advantage of Bayesian framework for

the estimation of multi-parameters during Al-4.5wt%Cu alloy solidification is also dis-

cussed in detail. The main aim is to retrieve more information with less available simu-

lated measurements. A sensitivity analysis is performed to understand the dependency

of the unknown parameters like modeling error, latent heat and heat transfer coefficient

parameters on the solution. It showed that the values of constants of the IHTC cor-

relation and latent heat affect the temperature distribution in casting significantly. For
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the solution of inverse estimation, the use of two different metaheuristic algorithms (i)

Genetic Algorithm (GA) and (ii) Particle Swarm Optimization (PSO) is illustrated. A

careful examination of the mentioned algorithms is performed to fix the algorithm pa-

rameters. The results revealed that PSO combined with Bayesian framework provides

a better computational solution compared to GA-Bayesian with an overall absolute er-

ror less than 6%. Also, the study on the effect of multiple sensors revealed that using

two sensor the average % error for the estimation of a ,b and latent heat was 0.247, 0.3

and 0.45 respectively and suggesting that two sensors were sufficient for the present

analysis.

The second class of problem is extended to retrieve the unknown heat flux and

heat transfer coefficient for a 3-D steady state conjugate fin heat transfer problem. A

mild steel fin with dimensions 150x250x6 mm3 is placed centrally on to an aluminium

base of dimensions 150x250x8 mm3 and experiments are conducted for different heat

flux values of 305, 544, 853 and 1232 W/m2 and corresponding temperature distribution

along the vertical fin is recorded. Navier-Stokes equation is solved to obtain the neces-

sary temperature distribution of the fin. Heat flux with the range between 305W/m2 and

3300 W/m2 and its corresponding temperature distribution of the fin is obtained using

commercial software. A total of 24 Computational Fluid Dynamics (CFD) simulations

are performed to create a neural network model that can surrogate the forward prob-

lem in order to expedite the computational process. The estimation of the heat flux and

heat transfer coefficient using GA, PSO and PSO- Broyden Fletcher Goldfarb Shanno

(BFGS) is carried out for both simulated and experimental data. A detailed comparison

study on the effect of algorithm parameters on the solution is demonstrated in order to

examine the performance of the algorithms. For simulated temperature measurements,

all the mentioned algorithms proved to be effective but PSO-BFGS estimated the heat

flux with an absolute % error of 0.86 and heat transfer coefficient with 0.105% for ex-

perimental temperatures. The results show that the PSO-BFGS method outperforms GA

and PSO and is observed to be a formidable approach in the estimation of the unknown

parameters.

Key words: inverse, heat transfer, evolutionary, ANN, Bayesian, hybrid.
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CHAPTER 1

INTRODUCTION

In any parameter estimation problem, it is desirable to obtain more information using

one single experiment. A fine heat transfer model yields an accurate prediction of tem-

perature distribution close to the experimental data. In order to solve numerically, it

is necessary to know all input parameters that significantly affect the solution. In a

heat transfer problem, solving the governing equations using the available initial and

boundary conditions (cause) to obtain the temperature data (effect) is called forward

problem. Contrarily, in an inverse problem the cause is determined from the available

knowledge of the effect. Inverse heat transfer problems are widely used for the esti-

mation of unknown quantities or thermophysical properties. The estimation procedure

becomes challenging when the experimental design constraints are stringent and the

unknown parameters are sensitive to temperature and operating conditions. Generally,

the temperature distribution in the problem domain is obtained through experiments.

Using these measured temperatures, the unknown parameters are estimated with the

help of inverse techniques. Another way of using temperature measurements for in-

verse estimation is by solving forward model for an assumed unknown parameter and

obtaining the corresponding temperature information at particular locations referred as

exact temperature data. Addition of Gaussian noise to this exact data provides simulated

measurements that mimics the experimental temperatures which is generally associated

with noise.

Estimation of surface heat flux and surface temperatures becomes onerous

when it is subjected to high temperatures. Locating the sensors at this position is un-

suitable as it distorts the thermal field. To overcome these difficulties, inverse methods

can be successfully implemented for various complicated heat transfer problems. The

flowchart of the procedure of inverse estimation is represented in Figure 1.1. First, the

mathematical model of a given problem is developed to obtain temperature distribution

for any given value of unknown input. The temperature obtained from this model is

referred as simulated temperatures (Tim). Yim is the simulated measurements/ experi-
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mental temperature data for which the estimation is performed. The input parameters of

the forward model and inverse algorithm are initialized. In every iteration, the forward

model is solved for a range of initialized unknown parameters. An objective function is

framed that minimizes the error between the measured and the calculated temperature

data from the forward model. The estimation methodology varies for the different in-

verse techniques and the procedure is carried out for specified iterations till the error is

minimized between the measured and the calculated temperature data.

Figure 1.1 Flowchart of inverse estimation (Ozisik and Orlande 2000).

Inverse problems fall under the class of ill posed problems as the solution becomes un-

stable due to the errors associated with the measured temperatures thus providing vast

space to explore different inverse methods (Hadamard 2003). Various deterministic and

stochastic methods are used as inverse techniques for the estimation of unknown quan-

tities. Deterministic methods use gradient information in every iteration to obtain the

solution of a problem. Methods such as Levenberg-Marquardt (LM) method, steepest

descent method, conjugate gradient method (CGM), Broyden Fletcher Goldfarb Shanno

(BFGS) etc., belong to this category. Stochastic based methods perform random search

to satisfy the objective function. Few examples are Simulated Annealing (SA), Genetic

Algorithm (GA), Particle Swarm Optimization (PSO), etc. Such techniques are found

to be less sensitive to modeling errors present in the measurements and serve as effec-
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tive methods for the application of inverse heat transfer. The search based methods are

widely used in inverse problems to improve the performance of a design by minimizing

the model and experimental temperatures.

For a unique problem, the final solution using deterministic methods will be

better than the stochastic methods provided the function is continuous and differen-

tiable. Further deterministic methods converges to the solution faster than stochastic

methods but sometimes tend to get trapped in local minima or maxima. Nonetheless,

the convergence of the solution differs according to the type of method chosen. As

discussed above, if the complexity of the problem increases then stochastic methods

can effectively be used to obtain the solution. Before using these methods, an objective

function is framed. For inverse heat transfer problems, the objective function with least

squares that minimizes the error between the measured and calculated temperatures is

used (Colaço et al. 2006; Słota 2008). Several approaches like L-Curve method, cross

validation, restricted maximum likelihood, etc., are used to determine regularization

parameter. Usually, the choice of regularization term varies for a class of problems

in obtaining accurate inverse solutions (Sui and Cui 2008; Udayraj et al. 2015). The

use of Bayesian framework eradicates the complexity of choosing regularization term

and provides a solution to the inverse heat transfer problem by formulating a complete

probabilistic description of the unknowns and uncertainties given temperature data. In

Bayesian framework, the a-priori information provided as a prior distribution acts as an

inherent regularization term thus curing the ill-posedness of the inverse problem.

With the advent of high performance computing facilities, it is now easy to

solve complex heat transfer problems that cannot be solved analytically. Generally,

solving the forward model along with the inverse methods may result into computa-

tionally costly approach. Hence, Artificial Neural network (ANN) is found to be a good

replacement of the forward model that reduces the forward problem to a simple reduced

model by retaining the physics of the model. ANN is a training based procedure where

it approximates weight functions according to the several known inputs and outputs

provided to the network. For any value specified within the trained values of input,

the established network provides information about the corresponding output in very

less time. Thus, ANN fulfills the objective that not only retains the full nature of the
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complete model but also acts as a fast forward model in the inverse analysis. Apart

from this, several approaches of hybridization of stochastic algorithm with determinis-

tic methods can also improve the performance of the estimation. The hybrid techniques

enhances the search capability of the algorithm to produce a better solution.

1.1 HEAT TRANSFER STUDY IN SOLIDIFICATION OF CASTING

Casting is one of the oldest processes used for obtaining the components required for

various applications. The wide variety of casting methods are sand casting, permanent

mold casting, lost-foam casting, investment casting, etc. With the use of automation,

productivity and quality of products are increased and almost all components for engi-

neering applications can be obtained to desired shape by casting process. The studies

of microstructure, mechanical properties and heat transfer in casting solidification have

helped the foundry industry to get high quality products. The use of computer simu-

lations in industries also helps to understand the clarity of the solidification process.

Especially, the study on solidification stage in metal casting has a direct influence on

the microstructure of the cast product and hence affect the mechanical properties of the

casted material. But to perform the numerical simulation, accurate information of ther-

mal properties and boundary conditions of the numerical model is required. Moreover,

the study of heat transfer phenomenon at the interface of casting and mold has become

a great part of interest as it affects the evolution of microstructure of casting during

solidification and the properties of the casted product. This gives a path to study the

interfacial heat transfer by considering various process of solidification.

1.1.1 Air gap formation at the metal mold interface during solidification

During metal casting, when the molten metal comes in contact with the mold, it loses

its heat to the mold and starts solidifying. Initially a thin solidified skin is formed at

the mold metal interface and as time progresses the thickness of the solidified metal

increases. Due to this, an air gap is formed between the mold and the solidified metal

which creates resistance to the heat flow. The heat flux related to this air gap is called

interfacial heat flux and corresponding heat transfer coefficient is called interfacial heat

transfer coefficient (IHTC). The mold metal interfacial heat transfer is characterised as

shown in Figure 1.2. First stage is the start of solidification, it can be assumed that a

good contact between the molten metal and the mold exists. The heat transfer is mainly
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Figure 1.2 Formation of air gap at the mold metal interface during solidification of

casting (Stefanescu 2015).

due to conduction from molten metal to the mold. Later, as solid skin forms, the molten

metal starts shrinking from the mold wall resulting in an air gap formation (second

stage). A partial contact between asperities of mold and solid metal surfaces is formed.

The heat transfer through these point of contacts at the mold metal interface is assumed

by conduction and through gas, conduction and radiation at the metal/mold gap. In the

third stage, the thickness of solidified metal increases and the metal will move away

entirely from the mold and heat transfer is only through the gap.

It is very difficult to study the interfacial heat transfer aspects in solidifica-

tion because there are moving boundaries, the location of thermocouple at the interface

boundaries distort the thermal field and the thermophysical properties are temperature

dependent. Further, to solve the governing equations pertaining to heat transfer, more

knowledge about the metallurgical as well as heat transfer aspects are needed. The

IHTC values varies from several thousand W/m2K with a higher value initially for liq-

uid state and the value keeps on decreasing with solid skin and air gap formation. The

heat transfer limited by conduction through the air gap is defined as

hi =
q

(Tcast − Tmold)
(1.1)

where q is the interfacial heat flux in W/m2, Tcast and Tmold are the casting and mold sur-

face temperatures respectively in ◦C. The values of Tcast and Tmold cannot be measured

directly as the location of thermocouples at the interface can distort the temperature

field at the mold metal interface. Further, the region close to the interface will have a

non-uniform surface conditions. Hence, determination of IHTC is difficult and inverse

methods are widely used to find the values of IHTC.
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The study of interfacial heat transfer coefficient for solidification of casting

for 3-D problem becomes onerous but several researchers have attempted to obtain ana-

lytical solutions by simplifying it to one dimensional problem. However, few analytical

solutions are available which are solved by assuming perfect contact between the mold

and casting and neglecting the superheat. The procedure for analytical solutions from

the work of Davey (1993) shows the mathematical complexity involved in solving equa-

tions for different methods of solidification. The solidification of casting problem in-

volves the phase change hence temperature dependent thermophysical properties along

with the latent heat should be considered to obtain a realistic temperature distribution.

The heat transfer problem is a transient case and involves moving boundaries at the

mold metal interface (Stefanescu 2015). Further, to understand the extent of errors aris-

ing due to incorrect values of the unknown parameters provided as input in simulation

programs can be recognized by performing sensitivity analysis. The use of computer

simulations allows one to study the processes happening inside the casting as well as

mold. The sensitivity studies performed by Vasileiou et al. (2017) showed the variation

of cooling curves for different input values of the IHTC during the solidification of alu-

minum casting. Various values of IHTC were given as an input and the corresponding

temperatures are collected to understand deviation of the temperature distribution of a

sensor from the actual measurements. Therefore, to obtain the accurate information

at the mold metal interface, inverse methods become an effective way to estimate the

values of IHTC and surface temperature during the solidification of casting. Another

example which is taken up in this research is explained in next section.

1.2 PARAMETER ESTIMATION IN FIN HEAT TRANSFER

Estimation of thermophysical properties, heat flux and heat transfer coefficient is al-

ways critical in designing an efficient thermal system, for example, application like

heat exchanger requires the determination of boundary condition during its operation.

Fins are extensively used to enhance the heat transfer in many applications. The rate

of heat transfer from a surface at temperature, Ts to the surrounding temperature T∞ is

given by the Equation (1.2)

Q = hAs(Ts − T∞) (1.2)
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Figure 1.3 Representation of energy balance of an extended surface (Incropera et al.

2007).

Figure 1.3 shows a general representation of the extended surface. A heat flux is sup-

plied to the base of the fin. Heat is convected from the extended surface to the ambient

temperature T∞. To obtain the temperature distribution of the fin, a steady state fin heat

transfer with the constant thermophysical properties is assumed. The value of h varies

for natural and forced convection. Though the value of h varies along the length of the

fin due to the fluid motion, local value of h is considered for simplification. The esti-

mation of unknown heat flux at the base is critical which cannot be measured directly

by senors. Estimation of thermophysical properties, retrieval of unknown heat flux can

be successfully achieved using inverse methods.

The works of Chen et al. (2007); Lee et al. (2012); Wankhade et al. (2018)

involve the estimation of unknown parameters using inverse heat conduction approach.

But, the mathematical model in all these works was simplified to a heat conduction

equation. On contrary, to obtain more realistic information during inverse estimation,

the complete or full numerical model has to be retained. There are also research work

related to inverse conjugate problems but they are not adequate in literature. Especially

the work of Reddy et al. (2012) and Balaji et al. (2013) assume a constant base tem-

perature rather than a constant heat flux at the base. Hence, to keep the physics in

line with the mathematical model, heat flux at the base would be more practical than
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the constant base temperature. Nevertheless, solving the full model or complete model

(solving Navier Stokes equation) is very expensive. With the advent of high computing

facilities, it is now easy to solve the 3-D Navier Stokes equation along with the energy

equation to obtain the necessary temperature distribution of the fin. Moreover, there

is a paradigm shift from the deterministic models to stochastic models due to a lot of

advantages with the evolutionary algorithms.

As a highlight, in this work, the 3-D CFD simulations are replaced with ANN

model so as to facilitate faster computations for the proposed forward problem and a

new hybrid algorithm, which is not seen in hitherto literature for heat transfer problem,

is proposed for the inverse estimation. Therefore, the present work foresees a window

in which the combination of evolutionary and deterministic methods is possible within

the umbrella of inverse conjugate heat transfer problem to identify the heat flux and

heat transfer coefficient for the measured temperature data.

1.3 DESCRIPTION OF THE PROBLEMS CONSIDERED IN THE PRESENT

WORK

1. The first class of problem elaborately discusses about the estimation of interfacial

heat transfer coefficients during solidification of Sn-5wt%Pb alloy casting. ANN-

GA-Bayesian framework is applied to estimate the unknown parameters. Further,

the estimation procedure is extended to retrieve multiple parameters associated

with the solidification of Al-4.5 wt%Cu alloy using GA, PSO in conjunction with

Bayesian framework.

2. The second class of problem is extended to retrieve the unknown heat flux and

heat transfer coefficient for a 3-D conjugate fin heat transfer problem using GA,

PSO and PSO-BFGS algorithms as inverse methods.

1.4 ORGANISATION OF THE THESIS

This thesis contains nine chapters and a brief description of the contents of each chapter

is given below

Chapter 1 briefly explains the introduction to parameter estimation, methodology in-

volved in inverse heat transfer problems.

Chapter 2 provides extensive literature review about methods used in inverse heat
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transfer. The research gap observed from literature helped to configure the objectives

of the present work.

Chapter 3 illustrates the procedure to solve the numerical simulations to obtain the tem-

perature distribution in the problem domain. Also, it outlines the details of the objective

functions and methodologies of Genetic Algorithm, Particle Swarm Optimization and

hybrid Particle Swarm Optimization that are chosen to solve the present inverse heat

transfer problems.

Chapter 4 describes the estimation of interfacial heat transfer coefficient during solid-

ification of casting with the combination of GA-ANN-Bayesian framework.

Chapter 5 shows the capability of Bayesian framework in estimating multi-parameters

during solidification of casting using GA and PSO as inverse methods.

Chapter 6 explains the application of hybrid PSO-BFGS method to retrieve the heat

flux and heat transfer coefficients for a 3-D coupled conduction convection fin heat

transfer problem. The comparison of hybrid PSO-BFGS along with conventional GA

and PSO algorithms are also demonstrated.

Chapter 7 concludes the overall representation of research work. It explains the scope

for future work.

1.5 CLOSURE

This chapter narrated the general introduction to inverse problems in parameter estima-

tion. It explained the basic concepts of problem statement considered in this present

work. This chapter also presented the details of the organisation of the thesis. The next

chapter depicts the literature review, scope and objectives of the present study.
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CHAPTER 2

LITERATURE SURVEY

2.1 DETERMINATION OF INTERFACIAL HEAT TRANSFER COEFFICIENT

DURING SOLIDIFICATION OF CASTING

During solidification of casting, very less information at the interface boundary con-

ditions are available. Hence, many works that were carried out to study the interfa-

cial behaviour during casting solidification are put together in this section. The values

of IHTC depend on direction of solidification, mold material and thickness, casting

thickness, pressure, geometry, mold coating etc. Various methods have been proposed

by several researchers but two main effective methods are: (i) air gap measurement

method, where the measured air gap will be converted to appropriate interfacial heat

transfer coefficients and (ii) recording the temperature data at several locations in the

casting and mold which serve as information to determine the heat transfer coefficients

at the interface using inverse method. Extensive research has been done in understand-

ing the formation of air gap and studying the values of IHTC at different stages during

solidification.

Beck’s non-linear estimation is popularly used method to estimate the surface

heat flux or heat transfer coefficients with the aid of temperature measurements avail-

able inside the feasible domain (Beck 1970). A guess value of the unknown parameter

is initialized and in every iteration, the error between the measured and the calculated

temperatures is minimized using least squares. The methodology considers the sensi-

tivity coefficients for each measurement locations during the estimation procedure.

Ho and Pehlke (1985) provided an insight of effect of IHTC values on various

metal mold systems by considering both analytical and experimental methods. Radia-

tion effects at the interface on the IHTC values was not considered. Non linear trans-

ducer was used to record the movement of the metal and mold which indicates the onset

of air gap from the temperature measurements. Downward and upward direction solid-

ification were studied. In upward casting, good contact between the mold and metal
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was found and further decrease in the IHTC values were due to the oxides formation

on the metal. In downward direction solidification, more air gap exists; hence, more

resistance to heat flow. Sensitivity analysis was also performed by considering different

mold materials.

Nishida et al. (1986) observed the air gap phenomenon for flat and cylindrical

castings. Displacement meters were used to measure the mold and casting movements.

Finite explicit method was considered to solve the governing equations in account with

radiation for cylindrical castings and approximate solution was adopted to find IHTC

by knowing the temperature distribution. In flat casting, the movement of the mold was

inwards in first few seconds after pouring and later moved away from casting hence

higher values of IHTC were found. But in cylindrical casting, the movement of the

mold was outwards.

Kulkarni and Radhakrishna (2005) used both air gap measurement technique

and inverse method to estimate the IHTC during the solidification of Al-4.5wt%Cu alloy

against CO2 sand mould. The displacement gauge was used to observe the movement

of the metal and mold to find the thickness of the air gap. By knowing the size of air

gap and thermal conductivity of the gas mixture at the air gap, IHTC was obtained. The

study concluded that the IHTC values obtained were ten times higher than the works of

(Ho and Pehlke 1985; Nishida et al. 1986).

Santos et al. (2004) determined IHTC for Al-Cu and Sn Pb alloys for hori-

zontal direction solidification with copper and steel chills. Effect of parameters such

as alloy composition, position of the chills, thickness of the mold, melt super-heat on

IHTC was studied. The overall heat transfer coefficient was expressed as a power law

function with time, h = at−m. Mold environment and interfacial heat transfer coeffi-

cients were calculated for different experiments. For thinner chill materials, the surface

gets heated rapidly compared to thicker chills, hence higher values of IHTCs were found

for thinner chills. As copper is having higher thermal conductivity, it could absorb more

heat providing higher cooling rates. It was also observed that the initial super heating of

the metal will influence the IHTC. As super heat temperature is increased, higher is the

heat content hence the increase in fluidity of metal. The increase in alloy composition

will decrease the IHTC due to the wettability of the melt with the mold.
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Sahin et al. (2006) studied the effect of chill materials on IHTC by considering

steel and copper chills for the solidification of Al-Si alloy. A water cooled chill system

was arranged in order to ensure the unidirectional solidification. With the inverse heat

conduction approach, the IHTC values determined for copper and steel chills were in

the range of 19-9.5 kW/m2K and 6.5-5 kW/m2K respectively.

Rajaraman and Velraj (2008) compared two different methods called Beck’s

algorithm and control volume approach to obtain the IHTC values for aluminum and

sand mold. Beck’s algorithm uses information about the temperature measurements

during casting to find the unknown parameters. Control volume method solves sequen-

tially the time varying ordinary differential equations which are arrived by reducing the

heat conduction partial differential equation. A deviation of 57% in the values of IHTC

between the two methods was found. Though the value of the IHTC is high at the be-

ginning, Beck’s algorithm assumes low heat flux values compared to control volume

approach, hence higher values of IHTC were obtained by Beck’s algorithm.

Arunkumar and Kumar (2008) studied spatially varying heat flux at the metal

mold interface due to mold filling. For 99.9% aluminum and cast iron mold system, a

serial-IHCP algorithm was developed that has a capability of finding the multiple heat

fluxes at metal mold interface.

Sun and Chao (2006) used lumped capacitance method to find the IHTC val-

ues for Sn-20wt%Pb alloy and A356 alloy cylindrical casting against green sand mold.

Though the values of thermal conductivity and pouring temperatures were different for

each casting, the trends of heat transfer coefficients were found to be almost similar for

both castings. The validity of the lumped capacitance method was checked by finding

the biot number (<0.1) . Further, the values of IHTC were given as an input to FEM

solver which gave within 7% error between the measured and simulated temperatures.

Aweda and Adeyemi (2009) used the Beck’s nonlinear estimation method to

estimate the values of IHTC for squeeze casting of aluminium with steel mold. Thermo-

couples at the bottom and top positions were located in the casting by which they were

able to calculate the IHTC values at two different locations. Pressure applied on the

casting reduced the defects associated with shrinkage and gas porosity and resulted in

higher values of IHTC compared to gravity castings. The values of IHTC were found to
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be higher for pressure casting than gravity casting as the application of pressure would

allow the casting surface to be in contact with the mold surface. Correlations based on

numerical and experimental methods were produced with IHTC as a function of solidus,

liquidus-solidus and liquidus phase temperatures.

Zhang and Li (2013) determined IHTC by using sequential function speci-

fication method with least squares for casting A356 alloy. The factors like damping

factor, number of future time steps, tolerance criteria and time step of the algorithm

were studied. The values of the IHTC had the range of about 900-3400 W/m2K. The

results showed the dependency of various inverse algorithm parameters, thus the choice

of algorithm parameters was crucial for the estimation of IHTC during casting solidifi-

cation.

2.2 APPLICATION OF EVOLUTIONARY ALGORITHMS FOR SOLIDIFICA-

TION OF CASTING.

The solutions from the gradient based approaches are dependent on the initial guess,

future time steps and sensitivity coefficients. Using stochastic method, the solution

will not get trapped in the local minima. Apart from popularly used Beck’s inverse

method, nature based methods like Genetic Algorithm (GA), Particle Swarm Optimiza-

tion (PSO), Artificial Neural Network (ANN) are gaining a huge scope to solve inverse

problems.

Wood (1996) compared GA with sequential function specification (SFS) method as in-

verse methods to estimate the heat transfer coefficient during cooling of semi-infinite

solid. The observations showed that the GA is immune to sensitivity coefficients and

proves the robustness of the algorithm compared to the conventional sequential func-

tional method. The results also depend on the temperature sensor locations and the

future time steps considered in SFS method to obtain stable results.

Raudenskỳ et al. (1995) used GA to obtain the solution for inverse heat con-

duction problem where the unknown heat transfer coefficient as boundary condition

was estimated by choosing both exact and noise added temperatures. The regularization

term was added to the fitness function that enhanced the smoothness of the convergence

of the solution. It was found that GA was computationally expensive, but it is capable

of providing good results for the problems that are unstable or do not converge.
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Ranjbar et al. (2010) determined IHTC values during squeeze casting pro-

cess of Al-4.5wt% Cu alloy using Genetic Algorithm. A two dimensional solidification

problem was solved by considering IHTC to vary with time as power law. The calcu-

lated temperatures were added with the noise to mimic the experiments and the inverse

estimation was carried out for σ=0.01Tmax temperature distribution.

Dousti et al. (2012) determined the IHTC values for Al-5wt%Si alloy against

steel mold using PSO algorithm. The constants of the IHTC correlation was estimated.

The work was similar to Ranjbar et al. (2010) but the application of PSO resulted in

improvement in the estimation. The overall computational time for the estimation was

around 8-9 hours.

Hetmaniok et al. (2013) devoted their work to estimate the boundary heat

flux and heat transfer coefficients during solidification of aluminium using bio inspired

algorithms. The method was tested for noisy added data up to 5% and the selection of

parameters of Immune Recruitment Mechanism and Clonal Selection Algorithm were

conducted. The method was also extended for continuous casting application.

Vasileiou et al. (2015) used GA for estimation of IHTC for a varying casting

geometry of Brass. The estimation was directly performed for the experimental data

and the temperatures from the forward model were obtained by numerical simulations

performed using commercial ProCAST software. In order to achieve this, they assumed

the IHTC correlation varying with temperature as stepwise, exponential as well as step-

wise function with time. A good agreement between numerical and experimental results

were obtained using GA.

Wang et al. (2016) determined heat transfer coefficient for a continuous cast-

ing process using PSO algorithm. The measured temperature data from the experiments

were used to optimize the heat transfer coefficients of secondary cooling zone during

solidification process. The study of choice of particle size showed that 20 number of

particles were sufficient as selection of too many particles may lead to expensive com-

putational cost during the estimation. The results depicted that convergence using PSO

algorithm was fast and possesses strong global search ability.

Wang et al. (2018) applied hybrid artificial fish swarm algorithm (ZAFA) for

the estimation of IHTC for quenching application. To increase the speed of conver-
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gence, the regular artificial fish swarm algorithm was combined with the normal distri-

bution method. The hybridization of the algorithm reduced the numerical oscillations

during the IHTC estimation.

Zhang et al. (2015) modified PSO for the radiative and phase change in laser

heating application. The energy and radiative equations were solved simultaneous using

finite volume method to get the temperature distribution. Effective estimation of Stefan

number and conduction to radiation number was accomplished for noisy temperature

data.

2.3 APPLICATION OF BAYESIAN FRAMEWORK FOR THE INVERSE HEAT

TRANSFER PROBLEM

The choice of objective function also decides the accuracy of the estimation. Usually,

the selection of regularization term is crucial in obtaining accurate inverse solutions

(Sui and Cui 2008; Harsha et al. 2018; Lugon et al. 2009). Use of Bayesian framework

takes care of regularization parameter. The a-priori information, which is provided as

a prior distribution in Bayesian framework acts as an inherent regularization term thus

leading to well-posedness of the proposed inverse problem. The results from the work

of Deng and Hwang give evidence that the Bayesian method delivers a best training

method with the back propagation algorithm (Deng and Hwang 2006).

Reddy et al. (2012) conducted steady state natural convection experiments for

discrete heat sources on vertical plate. ANN was used as a fast forward model and the

experimentally measured temperature from the Liquid Crystal Thermography (LCT)

was compared with calculated temperatures using Bayesian framework. Around 6000

sampling were performed using Markov Chain Monte Carlo method. The retrieved

values of constants in Nusselt number correlation using Bayesian framework suggests

that it can be used as an effective alternative inverse method.

Mota et al. (2010) applied Bayesian approach with Markov chain Monte Carlo

(MCMC) for a one dimensional non-linear heat conduction problem to simultaneously

estimate the heat flux and thermal parameters during heating of material with oxy acety-

lene torch. First, the method was tested for simulated measurements and later extended

for the experimentally measured data. The application of MCMC to optimize the ob-

jective function resulted in clear analysis and accurate solution of the inverse method.
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Yan et al. (2009) used Bayesian framework for the estimation of Robin coef-

ficient with the help of temperatures available at the boundaries. The estimation was

carried out for the simulated measurements. The results from the Bayesian framework

in conjunction with Markov random field (MRF)-MCMC showed the ability in provid-

ing solutions with the uncertainties quantified.

Knupp et al. (2013) performed transient heat transfer experiments on hetero-

geneous plates and measured the temperatures obtained from infrared camera which

were used for inverse analysis. A 1-D heat conduction problem was solved using in-

tegral transforms to obtain the solution for forward model. The spatially varying tem-

perature and diffusivity were estimated using Bayesian MCMC method and the eigen

function expansion of unknown parameters helped as data reduction technique as it

allowed the estimation to perform on transformed experimental temperature field.

Orlande et al. (2014) estimated spatially varying heat flux from the available

transient temperatures using MCMC method with Delayed Acceptance Metropolis-

Hastings and Enhanced Approximation Error Model. The results showed the use of

Approximation Error Model provided effective estimation compared to Delayed Ac-

ceptance Metropolis-Hastings as Approximation Error Model makes use of the poste-

rior refined by the error of the reduced model that enabled for an enhancement of the

accuracy of the inverse estimation.

Rojczyk et al. (2017) used Bayesian with MCMC to estimate the cancer tu-

mor parameters for a bio heat transfer application. The sensitivity coefficients of each

parameters were analysed to know their effects on the solution. A 1-D Pennes bio heat

transfer equation was solved to obtain the temperature distribution in the tumor and the

skin tissue. Around 200000 samples were generated using MCMC to obtain the ap-

propriate convergence of skin thermophysical properties using temperature distribution

inside the tissue.

Zeng et al. (2019) applied Approximate Bayesian Computation (ABC) to

overcome the expense of computational cost of the forward simulation by reducing

the number of samples selections during the parameter estimation. The methodology

was tested for both linear and non linear heat transfer problems and results showed half

the time less computational cost compared to the conventional estimation method.
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2.4 USE OF ARTIFICIAL NEURAL NETWORK AS FAST FORWARD MODEL

Generally, gradient based methods have faster convergence compared to the evolution-

ary algorithms. Though the estimation procedure using evolutionary algorithms is com-

putational costly, some research works show the blend of stochastic methods with Ar-

tificial Neural Network (ANN) as inverse method that can remarkably overcome this

disadvantage (Harsha and Gnanasekaran 2018; Soeiro et al. 2004).

Zhang et al. (2010) used ANN with back propagation algorithm as inverse

method and estimated IHTC for A356 alloy. Several numerical simulations were per-

formed for a range of IHTC values and a neural network was trained between the pre as-

sumed IHTCs and corresponding temperatures obtained from simulations. This trained

network was used to compare the estimate the IHTCs from the experimental temper-

atures. The accuracy of the estimation was validated by giving estimated IHTCs as

input and comparing it with the temperature distribution obtained from the commercial

software. The maximum temperature difference was less than 5◦C and the mean tem-

perature difference less than 2◦C between the calculated and experimental temperatures

were observed.

Ghadimi et al. (2015) solved conjugate heat transfer problem to estimate the

unknown heat flux in a braking disc using ANN and sequential method. A 3-D heat

transfer problem including turbulent, unsteady and conjugate heat boundary condition

was numerically solved. Several heat flux values were given as input and the corre-

sponding temperatures obtained from numerical simulations were used to train a net-

work. The accuracy of the results were dependent on the future time steps and the

location of the sensors. It was concluded that the location of the temperature sensors

should be as close to the friction interface.

Najafi and Woodbury (2015) demonstrated the use of ANN for the estimation

of heat flux in one dimensional slab. An ANN was used to establish a trained neural

network between the triangular heat flux and corresponding temperatures. The trained

neural network was tested for both constant and temperature dependent thermophysical

properties. It was illustrated that for the presumed geometry and boundary conditions,

ANN took less data from future time steps to calculate the heat flux when compared to

the filter form Tikhonov regularization algorithm.
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Balaji and Padhi (2010) estimated the convection heat transfer coefficient and

thermal conductivity for a given heat generation using Bayesian-ANN framework. The

forward model was replaced by ANN which was constructed using the available temper-

atures obtained by solving 2-D steady state conduction through a slab for given inputs.

The ANN driven MCMC improved the solution for measurements with noise than com-

pared to ANN. By using hybrid ANN, the heat transfer coefficient was found to vary

within ±4% and thermal conductivity 6% from the actual value respectively. The study

further concludes that the results from the inverse method can be refined by training

methods involved in ANN.

Lugon et al. (2009) employed Levenberg Marquardt method (LM) and Sim-

ulated Annealing (SA) as inverse methods to estimate the gas bubble interaction. The

unknowns to be estimated were considered in different forms of adsorption isotherms.

ANN was framed to replace the actual forward model and different variants of LM and

hybrid LM-SA-ANN were considered for the estimation. Both the hybrid scheme and

LM method were found to be effective and the ANN driven LM method showed less

computational cost.

Vakili et al. (2017) merged GA-ANN to predict the viscosity of graphene in

nanofluid. Various modification in the ANN parameters were made to check the accu-

racy of the trained neural network to combine with GA. Viscosity was found to be de-

pendent on temperature and weight percentage of the added nanoparticle. The viscosity

for a temperature range of 20◦C-60◦C was collected. The comparison of experimental

and GA-ANN results showed the ANN could be a replacement of actual model thus

reducing actual laboratory experimental cost.

Chanda et al. (2017) used combined GA-ANN to estimate the principal ther-

mal conductivities of the honeycomb composite structure used in aerospace applica-

tions. Forward model was developed based on finite difference method to obtain tem-

perature distribution and a neural network was framed between the thermal conductivi-

ties and corresponding temperatures. The trained neural network reduced the computa-

tional cost during inverse estimation using GA. Close agreements with a maximum de-

viation of ± 0.85◦C between simulated and experimental temperatures were observed.
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Yadav et al. (2019) optimised the location and number of discrete heaters for

a radiating heat furnace. It was observed that the major computational cost was associ-

ated with solving the forward model. Hence an ANN was trained between six different

inputs associated with the 3D radiant furnace problem and corresponding outputs were

trained based on neuron independence study. The difference in the solution of conven-

tional forward model and trained ANN was less than 4%. Genetic algorithm was used as

inverse method and the GA-ANN based results were found to have less computational

expense of the order of 103 than the conventional model.

2.5 ESTIMATION OF UNKNOWN PARAMETERS IN CONJUGATE HEAT

TRANSFER PROBLEM

Huang and Tsai (2005) solved the direct problem by considering the bound-

ary conditions, initial conditions and heat transfer coefficients as known input to obtain

temperatures at particular locations for a 3-D convection fin heat transfer problem. The

test cases were conducted for noisy measurements σ = 0.1 and σ = 0.3 respectively.

The inverse estimation was accomplished by steepest descent method considering sensi-

tivity and adjoint problem where the local heat transfer coefficient was estimated using

temperatures reading from infrared thermography at particular locations.

Colaco and Orlande (2001) applied conjugate gradient method with adjoint

problem for forced convection problem. The forward problem was concerned with

the determination of flow and thermal field inside the parallel channel. Finite volume

method was adopted. In the inverse problem, time dependent heat fluxes, spatially

dependent heat fluxes and time and space dependent heat fluxes were estimated. It was

concluded that, the inverse approach would be applicable for any forced convention

problem in channel.

Farahani and Kowsary (2017) illustrated the use of inverse conjugate heat

transfer problem for steady and pulsating flow. Heat transfer coefficient was estimated

along with consideration of radiation and lateral heat conduction while solving 2-D

governing equations for semi confined impinged slot jet. The heat flux distribution

was considered instead of constant heat flux as boundary condition. Conjugate gradient

method with adjoint method was used as inverse method and results depict that the

geometry configuration affect the heat transfer performance in pulsating impinged jet.
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For Reynolds number greater than 3000, maximum enhancement of heat transfer caused

by pulsation occured for Strouhal number, St=0.169.

Ousegui et al. (2019) adopted conjugate gradient method with adjoint method

for determining the air flow rate for PCM heat exchanger application. Numerical

modeling was achieved by using COMSOL software and the inverse estimation was

linked with the MATLAB. The method was demonstrated for two different flow rates.

Though the inverse methodology was nonlinear in nature with conjugate heat transfer,

the method showed satisfactory results with maximum relative error less than 5×10−3.

The parametric studies were found to be crucial in the estimation procedure.

Lugon and Silva (2011) solved heat mass transfer problem as direct model

to simultaneously obtain the moisture distribution and temperatures for drying process

experiments. The experimental design was based on sensitivity coefficients with respect

to temperature, moisture potential. SA and LM methods were used as inverse method

in conjunction with ANN to obtain quick convergence. It was observed that LM was

effective for noiseless temperature data. But the use of SA resolved the problem getting

trapped in local minima even for noisy temperature measurements.

Razzaghi et al. (2019) estimated spatially varying heat flux during cooling of

hot plate using conjugate gradient method with adjoint method. Least squares was se-

lected as objective function for the minimization of error between measured and calcu-

lated temperatures obtained from the solution of two dimensional convection problem.

The estimation of local heat transfer coefficient was carried out for 0.01◦C and 0.1◦C

noise added temperature data.

Mejias et al. (1999) compared Levenberg-Marquardt method (LM) and Con-

jugate Gradient Method (CGM) to estimate thermal conductivities of an orthogonal

solids. 3-D conduction problem was solved as direct problem and the performance of

the algorithms was checked for exact and σ = 0.1Tmax noisy measurement temperature

data. The conjugation coefficients of the CGM were varied to check the accuracy of

the estimation. The RMS error of estimation from LM was between 0-0.1 and the re-

sults revealed that the LM method converged quickly compared to CGM by consuming

lesser CPU.

21



Liu (2012) studied one dimensional inverse heat conduction problem to es-

timate the temperature dependent heat capacity using modified GA and PSO. Suitable

values of inertia weights, cognition and social component were adopted for PSO and

the inverse estimation was tested for noisy temperature data. The comparison study

of modified GA and PSO suggests that PSO algorithm gives more possibilities to find

global minimum, thereby providing an unbiased estimation.

Azimifar and Payan (2017) modelled thin fins attached on vertical hot wall of

the cavity and solved free convection problem using Finite Volume Method. The objec-

tive of the work was to optimize the characteristics of the thin fins attached to vertical

wall of the cavity using PSO. It was observed that the heat transfer was decreased with

attachment of three conductive fins for higher values of Rayleigh number. The results

from PSO algorithm also confirmed that an array of conductive thin fins reduces heat

transfer from a cavity for a higher Rayleigh number (Ra=107).

Tabrizi and Jaluria (2018) solved two dimensional laminar natural convection

problem to estimate location and strength of the heat source on a vertical plate. The

objective of their work was to obtain a connection between the heat source location and

strength with respect to temperatures. A power law function between the temperatures

and Grashof number was assumed and PSO was applied as inverse technique to find the

best location of heat sources for a given input data.

Lee (2019) illustrated the use of Repulsive PSO algorithm for solving one

dimensional heat conduction problem. The general velocity update equation of PSO

was added with a product of acceleration coefficient and random velocity values that

helps in preventing the algorithm getting propelled towards local minima. The estima-

tion of constant appearing in the heat source equation from RPSO was compared with

Levenberg-Marquardt method which showed that RPSO gave better estimation in spite

of being computationally expensive.

Gossard and Lartigue (2013) used PSO to estimate the geometrical and ther-

mophysical properties for 3-D partitioned enclosures by developing a simplified conju-

gate heat transfer model. Nusselt number correlations were used to find the convection

and radiation was determined using radiosity method. The experimental and numer-

ical temperatures were compared that showed a close agreements and the unknowns
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were effectively identified using PSO for a particular thermal resistance and volumetric

specific heat.

Chen et al. (2016) applied fuzzy inference to determine the unknown bound-

ary condition for a conjugate heat transfer problem. The direct model was solved using

Finite Volume Method and boundary element method to obtain the temperature dis-

tribution. For fuzzy inference, the difference between the measured and calculated

temperatures was chosen and corresponding inference components were obtained. The

guess value of the unknown parameters was updated using synthesizing weighted ap-

proach. The comparison of results with CGM and GA showed that fuzzy inference was

less sensitive to initial guess, number of measurement points and temperature measure-

ment noise. The average relative errors tend to fluctuate for GA and CGM compared to

fuzzy inference for σ = 0.1 and σ = 0.3.

Ding and Sun (2015) determined heat source in function of time for an inverse

heat conduction problem. Two test cases with (i) heat source varying smoothly and (ii)

heat source varying with sharp corner with respect respect to time was considered. They

developed enhanced PSO (EPSO) algorithm by introducing new way of velocity update

with randomly selecting the neighborhood. The modification helped in controlling the

larger and smaller values of velocity in every iterations. The estimation was carried out

for simulated measurements and reasonable results were obtained using EPSO with %

error of 0.02-0.4 and 0.09-3 for test (i) and (ii) respectively.

Victoire and Jeyakumar (2004) solved different economic dispatch problem

by combining BFGS with PSO. The application of inverse is also found in the field of

biomechanics where PSO algorithm is compared with GA, BFGS and SQP for identi-

fying the human muscle movements.

Li et al. (2011) combined BFGS method with PSO to improve the pre mature

convergence and search ability to optimize the multimodal functions. 20 number of

benchmark problems were solved and various algorithms such as GA and variants of

PSO. While comparing several modified PSO algorithms, few showed better results

than PSO-BFGS for some functions due to the fact that the particle learning capabilities

were found to be more effective in such algorithms.
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Wang et al. (2014) showed that hybridization of meta-heuristic algorithms

would improve the quality of the results. 51 functions were chosen to test efficiency,

convergence and performance of the accelerated PSO modified with Differential Evo-

lution (DE) mutation operator. With several combinations of PSO with DE, it was

mentioned that the convergence rate could be effectively increased and as the reason of

improvement was not discussed, it draws an attention to develop hybrid algorithms for

the engineering applications.

Plevris and Papadrakakis (2011) proposed hybrid algorithm to optimize the

structural bench mark problems. PSO was integrated with a gradient based sequential

quadratic programming method (SQP) and three different variations of inertia weight

parameter in PSO was chosen for the demonstration. The nonlinear weight upgradation

showed better results for the optimization of the structural design based on PSO-SQP

method.

Table 2.1 Summary of literature survey.

S.No Authors Year Remarks

2.1 Determination of IHTC during solidification of the casting.

1
Ho and

Pehlke
1985

determined IHTC using air gap measurement

method for cylindrical casting. Effect on direc-

tional solidification was also studied.

2
Nishida

et al.
1986

used approximate integral method and approxi-

mate calculation method to calculate IHTC val-

ues during aluminum alloy casting. The IHTC

values for cylindrical casting were found to be

2200-3200 W/m2K and for Flat casting was

2900-4500 W/m2K.

Continued on next page
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Table 2.1 – continued from previous page

S.No Authors Year Remarks

3

Kulkarni

and Rad-

hakrishna

2005

conducted experiments for Al-4.5wt%Cu alloy

against CO2 sand mould. The IHTC values ob-

tained from inverse method and air gap measure-

ment technique were found to be higher com-

pared to the studies of (Ho and Pehlke 1985;

Nishida et al. 1986).

4
Santos

et al.
2004

studied effects of IHTC behaviour during solid-

ification of Sn-Pb and Al-Cu alloys with steel

molds. The wide range of transient IHTC corre-

lations were expressed from the calculations ob-

tained from inverse non linear estimation.

5 Sahin et al. 2006

studied unidirectional solidification of Al-Si al-

loy and determined values IHTC for copper and

steel chills which were found to be in the range of

19-9.5 kW/m2Kand 6.5-5 kW/m2K respectively.

6
Rajaraman

and Velraj
2008

compared Beck’s non linear estimation and con-

trol volume approach to determine the IHTC dur-

ing for sand casting of aluminum. A deviation

of 57% in the values of IHTC between the two

methods was found. Though the value of the

IHTC is high at the beginning, Beck’s algorithm

assumes low heat flux values compared to con-

trol volume approach, hence higher values of

IHTC were obtained by Beck’s algorithm.

Continued on next page
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Table 2.1 – continued from previous page

S.No Authors Year Remarks

7
Arunkumar

and Kumar
2008

studied spatially varying heat flux at the metal

mold interface due to mold filling. For 99.9%

aluminum and cast iron mold system, a serial-

IHCP algorithm was developed that has a capa-

bility of finding the multiple heat fluxes at metal

mold interface.

8
Sun and

Chao
2006

used lumped capacitance method to find the

IHTC values for Sn20wt%Pb alloy and A356 al-

loy cylindrical casting against green sand mold.

The validity of the lumped capacitance method

was checked by finding the Biot number (<0.1).

9
Aweda and

Adeyemi
2009

performed squeeze casting experiments for alu-

minum to estimate the IHTC values using Beck’s

non linear estimation. The applied pressure dur-

ing squeeze casting enables the casting surface

to be in contact with the mold hence higher val-

ues of IHTC was observed than the gravity die

casting.

10
Zhang and

Li
2013

conducted the effect of algorithm factors like

damping factor, number of future time steps, tol-

erance criteria and time step of the algorithm on

IHTC estimation where it was found to be cru-

cial to select appropriate values of inputs while

estimating IHTC during A356 alloy casting so-

lidification.

Continued on next page
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Table 2.1 – continued from previous page

S.No Authors Year Remarks

11 Wood 1996

combined Sequential function method and GA

for estimating heat transfer coefficient. It was

observed that GA is immune to sensitivity coeffi-

cients and proves the robustness of the algorithm

compared to the conventional sequential func-

tional method.

12
Raudenskỳ

et al.
1995

solved for inverse heat conduction problem and

estimated unknown heat transfer coefficient us-

ing GA. GA provided an effective estimation for

both exact and noise added temperatures but the

procedure of estimation was found to be compu-

tationally costly.

13
Ranjbar

et al.
2010

estimated the constants of the IHTC correlation

for squeeze casting process of Al- 4.5wt% Cu al-

loy using Genetic Algorithm with a relative % er-

ror less than 1.5. The overall computational time

for the estimation was around 8-9hours.

14
Dousti

et al.
2012

determined the IHTC values for Al-5wt%Si

alloy against steel moldusing PSO algorithm.

The estimation were carried out for exact and

σ=0.01Tmax temperature measurements. The

relative % error during the estimation of con-

stants of the IHTC correlation was found be-

tween 0.01 and 2.

Continued on next page
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Table 2.1 – continued from previous page

S.No Authors Year Remarks

15
Hetmaniok

et al.
2013

used Immune Recruitment Mechanism and

Clonal Selection Algorithm for determining the

boundary heat flux and heat transfer coefficients

during solidification of aluminium. The perfor-

mance of the methodology was tested upto 5%

noise added temperature data.

16
Vasileiou

et al.
2015

conducted experiments on variable casting ge-

ometry of Brass. The estimation of IHTC across

various section using GA were performed by as-

suming the IHTC correlation varying with tem-

perature as step-wise, exponential as well as

step-wise function with time.

17 Wang et al. 2016

used PSO for estimating the IHTC for continuous

casting process. Variation of number of particle

size in PSO algorithm was studied and concluded

that 20 number of particles were sufficient for a

fast convergence and PSO showed strong global

search ability.

18 Wang et al. 2018

explored the performance of hybrid artificial fish

swarm algorithm (ZAFA) for the estimation of

IHTC for quenching application. The speed of

convergence was increased by modifying the reg-

ular artificial fish swarm algorithm with the nor-

mal distribution method.

Continued on next page
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Table 2.1 – continued from previous page

S.No Authors Year Remarks

19 Zhang et al. 2015

solved energy and radiative equations using fi-

nite volume method to get the temperature dis-

tribution for the radiative and phase change in

laser heating application. Modified PSO algo-

rithm was applied that provided effective estima-

tion of Stefan number and conduction to radia-

tion number for noisy temperature data.

2.3 Application of Bayesian framework for the inverse heat transfer problem.

20
Reddy

et al.
2012

used Bayesian-ANN approach to retrieve the val-

ues of constants in Nusselt number correlation

during natural convection experiments for dis-

crete heat sources on vertical plate.

21 Mota et al. 2010

solved one dimensional non-linear heat conduc-

tion problem to simultaneously estimate the heat

flux and thermal parameters during heating of

material with oxy acetylene torch. Accurate so-

lution of the inverse method was obtained using

Bayesian MCMC approach.

22 Yan et al. 2009

showed the ability of Bayesian framework in

conjunction with Markov random field (MRF)-

MCMC providing solutions with the uncertain-

ties quantified using simulated measurements for

inverse heat transfer problem.

Continued on next page
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Table 2.1 – continued from previous page

S.No Authors Year Remarks

23
Knupp

et al.
2013

solved 1-D heat conduction problem was solved

using integral transforms to obtain the solution

for forward model. Transient heat transfer ex-

periments were conducted and spatially varying

temperature and diffusivity were estimated using

Bayesian MCMC method.

24
Orlande

et al.
2014

applied MCMC method with Delayed Accep-

tance Metropolis-Hastings and Enhanced Ap-

proximation Error Model to estimate spatially

varying heat flux from the available transient

temperatures.

25
Rojczyk

et al.
2017

applied Bayesian MCMC for bio heat transfer

application to estimate the skin thermophysical

properties using temperature distribution inside

the tissue.

26 Zeng et al. 2019

tested Approximate Bayesian computation

(ABC) to reduce the computational time of

forward model and achieved successful esti-

mation both linear and non linear heat transfer

problems.

2.4 Use of artificial neural network as fast forward model.

27 Zhang et al. 2010

used ANN to train a network between the pre

assumed IHTCs and corresponding temperatures

obtained from simulations. The trained network

was used to compare the estimate IHTCs from

the experimental temperatures during casting so-

lidification.

Continued on next page
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S.No Authors Year Remarks

28
Ghadimi

et al.
2015

trained a neural network input heat flux and cor-

responding temperatures obtained by solving 3-

D conjugate heat transfer problem. The accuracy

of the results were dependent on the future time

steps and the location of the sensors.

29
Najafi and

Woodbury
2015

used ANN to establish a trained neural network

between the triangular heat flux and correspond-

ing temperatures obtained by solving 1-D slab

heat transfer problem. The trained neural net-

work was tested for both constant and tempera-

ture dependent thermophysical properties.

30
Balaji and

Padhi
2010

replaced forward model by ANN to estimate the

convection heat transfer coefficient and thermal

conductivity for a given heat generation using

Bayesian-ANN framework for 2-D steady state

conduction through a slab.

31
Lugon

et al.
2019

compared Levenberg Marquardt method (LM)

and Simulated Annealing (SA) algorithms in

conjunction with ANN to estimate the gas bub-

ble interaction. The results depicted that ANN

driven LM method showed less computational

cost.

Continued on next page
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S.No Authors Year Remarks

32 Vakili et al. 2017

explored the performance of ANN by varying its

parameters along with GA for estimating viscos-

ity of graphene in nanofluid. The results of GA-

ANN was compared with experiments which

showed that the ANN could be a replacement of

actual model thus reducing actual laboratory ex-

perimental cost.

33
Chanda

et al.
2017

estimated the principal thermal conductivities

of the honeycomb composite structure used

in aerospace applications using GA-ANN ap-

proach. Close agreements with a maximum de-

viation of ± 0.85◦C between simulated and ex-

perimental temperatures were observed.

34 Yadav et al. 2019

observed that the major computational cost was

associated with solving the forward model and

implemented ANN for 3D radiant furnace prob-

lem. Genetic algorithm was used as inverse

method and GA-ANN based results were found

to have less computational expense of the order

of 103 than the conventional model.

2.5 Estimation of unknown parameters in conjugate heat transfer problem.

(a) using determinstic methods.

Continued on next page
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S.No Authors Year Remarks

35
Huang and

Tsai
2005

performed inverse analysis on 3-D convection

fin heat transfer problem for noisy measurements

σ = 0.01 and σ = 0.03 respectively. Inverse es-

timation was accomplished by steepest descent

method considering sensitivity and adjoint prob-

lem where the local heat transfer coefficient was

estimated.

36
Colaco and

Orlande
2001

solved forced convection problem to estimate the

time dependent heat fluxes, spatially dependent

heat fluxes and time and space dependent heat

fluxes using conjugate gradient method with ad-

joint problem.

37

Farahani

and

Kowsary

2017

illustrated the use of inverse conjugate heat trans-

fer problem for steady and pulsating flow prob-

lem. Heat transfer coefficient was estimated with

consideration of radiation and lateral heat con-

duction while solving 2-D governing equations

for semi confined impinged slot jet using conju-

gate gradient method.

38
Ousegui

et al.
2019

adopted conjugate gradient method with adjoint

method for determining the air flow rate for

PCM heat exchanger application. The inverse

methodology was nonlinear in nature with con-

jugate heat transfer, the method showed satis-

factory results with maximum relative error less

than 5×10−3.

Continued on next page
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S.No Authors Year Remarks

39
Lugon and

Silva
2011

employed SA and LM methods as inverse

method in conjunction with ANN to obtain quick

convergence for drying process experiments.

40
Razzaghi

et al.
2019

determined spatially varying heat flux during

cooling of hot plate using conjugate gradient

method with adjoint method.

41
Mejias

et al.
1999

solved 3-D conduction problem with Conjugate

Gradient Method (CGM) and Levenberg Mar-

quardt method (LM) to estimate thermal conduc-

tivities of an orthogonal solid. They concluded

that the LM method converged quickly compared

to CGM by consuming lesser CPU.

42 Liu 2012

performed the comparison study using GA and

PSO for 1-D inverse heat conduction problem

to estimate the temperature dependent heat ca-

pacity. The study suggested that PSO algorithm

gives more possibilities to find global minimum,

thereby providing an unbiased estimation.

43
Azimifar

and Payan
2017

optimized the characteristics of the thin fins at-

tached to vertical wall of the cavity using PSO.

44
Tabrizi and

Jaluria
2018

PSO was applied as inverse technique to find the

best location of heat sources. A 2-D laminar nat-

ural convection problem was solved to estimate

location and strength of the heat source on a ver-

tical plate.

Continued on next page
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45 Lee 2019

implemented Repulsive PSO algorithm for solv-

ing one dimensional heat conduction problem.

The estimation of constant appearing in the

heat source equation from RPSO was com-

pared with Levenberg-Marquardt method which

showed that RPSO gave better estimation in spite

of being computationally expensive.

46

Gossard

and

Lartigue

2013

adopted PSO to estimate the geometrical and

thermophysical properties for 3-D partitioned en-

closures by developing a simplified conjugate

heat transfer model.

47 Chen et al. 2016

exploited fuzzy inference to determine the un-

known boundary condition for a conjugate heat

transfer problem for noisy temperature data. The

guess value of the unknown parameters was

updated using synthesizing weighted approach.

The comparison of results with CGM and GA

with fuzzy showed that fuzzy inference was less

sensitive to initial guess, number of measurement

points and temperature measurement noise.

48
Ding and

Sun
2015

developed enhanced PSO (EPSO) algorithm by

introducing new way of velocity update with ran-

domly selecting the neighborhood to determine

heat source in function of time for an inverse heat

conduction problem.

Continued on next page
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49

Victoire

and

Jeyakumar

2004

solved different economic dispatch problem by

combining BFGS with PSO. The application of

inverse is also found in the field of biomechan-

ics where PSO algorithm is compared with GA,

BFGS and SQP for identifying the human mus-

cle movements.

50 Li et al. 2011

demonstrated the use of BFGS method with PSO

for various benchmark problems where the hy-

brid approach improved the pre mature conver-

gence and search ability to optimize the multi-

modal functions.

51 Wang et al. 2014

solved 51 functions to show the performance

of several combinations of PSO with DE. The

draws an attention to develop hybrid algorithms

for the engineering applications.

52

Plevris and

Pa-

padrakakis

2011

integrated PSO with a gradient based sequential

quadratic programming method (SQP) and three

different variations of inertia weight parameter in

PSO for optimization of a structural problem.

2.6 SUMMARY

The above literature review highlights: (i) the estimation of unknown parameters using

various inverse methods. (ii) scope of evolutionary algorithms for inverse problems (iii)

hybrid techniques along with ANN for the faster estimation of unknown parameters and

(iv) application of Bayesian framework to measure the uncertainty quantification.

1. Estimation of heat flux or heat transfer coefficient for castings is very important to

improve its quality and is possible only through the concept of inverse approach.

2. The gradient based methods with the least squares approach have been exten-

sively used to determine the unknown parameters (without the quantification of
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uncertainties) in the inverse estimation.

3. The solution of the inverse method is dependent on the number of sensors, loca-

tion of the sensors and future time steps.

4. Regularization of the objective function is required in order to address the ill -

posedness of the inverse problem when the objective function is based on least

squares. But, Bayesian framework has inherent regularization of the posterior

solution in the form of a-priori.

5. The mathematical model in most of the works is simplified to a heat conduction

equation, but solving full model (considering 3-D Navier Stokes equations) of

conjugate heat transfer problem provides more realistic information during in-

verse estimation.

6. Evolutionary algorithms are computationally expensive, but they are capable of

providing good solutions for the problems that are unstable or do not converge.

7. Replacement of ANN as fast forward model provide quicker estimation and com-

bination of ANN with evolutionary algorithm will enhance the computational

efficiency during the inverse estimation.

2.7 RESEARCH GAP 

 1. Determination of interfacial heat transfer coefficient of metal casting is dependent 

 on time and temperature dependent thermophysical properties; hence, the number 

 of unknown parameters involved makes the inverse estimation more challenging. 

 2. The concept of modeling error associated with the temperature measurements for 

 solidification of casting problem has not been reported in hitherto literature and 

 uncertainties associated with the IHTC are not adequately dealt with literature. 

 3. Though the stochastic approach is preferred against the deterministic approach, 

 it is found to be computationally expensive in the solution of inverse problems. 

 Hence, model reduction can play major role that surrogates the forward model.
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4. Estimation of thermal parameters in a conjugate heat transfer problem is impera-

tive and realistic to develop an efficient thermal system.

2.8 OBJECTIVES OF THE PRESENT WORK

1. Mathematical modeling of horizontal directional solidification for different melt-

ing point alloys and inverse estimation of modeling error and heat transfer coeffi-

cient parameters using evolutionary algorithms.

2. Implementing Artificial Neural Network as a surrogate forward model to expe-

dite the inverse process for the determination of heat transfer parameters using

Bayesian framework.

3. Numerical modeling of coupled conduction and convection fin heat transfer prob-

lem to simultaneously estimate heat flux and heat transfer coefficient using hybrid

inverse approach.

2.9 CLOSURE

This chapter signified the objectives of the present work framed based on research gap

observed from the extensive literature study on various methods applied for inverse heat

transfer problems. The next chapter explains the methodology involved in solving the

present work.
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CHAPTER 3

FORWARD AND INVERSE SOLUTIONS FOR SOLIDIFICATION
OF CASTING AND FIN HEAT TRANSFER

3.1 INTRODUCTION

This chapter elaborates complete methodology of solving the inverse problem. It is

necessary to develop an forward model that provides accurate temperature information.

Forward model refers to the numerical model that provides temperature data for a cor-

responding assumed boundary conditions or unknown parameters. The role of artificial

neural network is also portrayed that replaces the actual numerical model and provides a

quicker estimation serving as fast foward model. An objective function that involves the

parameters affecting the problem is framed. Finally, inverse techniques are employed

to estimate the unknown parameters.

3.2 FORWARD MODEL

3.2.1 NUMERICAL SIMULATIONS

For the first class of problem, a prevalent one dimensional transient solidification heat

conduction is solved representing a horizontal directional solidification of Sn-5%wtPb

and Al-4.5%wtCu alloys against low carbon steel chill. During the inverse estimation,

the values of IHTC and the surface temperature of the casting and chill are unknown.

By solving the forward model with the available information about the IHTC correla-

tion from literature, all the nodal temperatures in the problem domain can be obtained.

Explicit Finite Difference Method (FDM) is used to discretize the governing equations.

MATLAB is chosen as the computational tool.

For second class of problem, numerical simulations for 3D conjugate fin heat

transfer problem is solved using ANSYS fluent. 3D vertical fin with base is provided

with an external domain to facilitate the natural convection. Grid independence study

is carried out to perform further case studies. Heat flux is supplied to the fin base and

temperature distribution at several location, velocity contour and heat transfer coeffi-

cient are acquired as output from the numerical simulations. Based upon the residual
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value, the convergence criteria for continuity equation is set as 10−4 and for momentum,

energy equations is specified as 10−6.

3.2.2 ARTIFICIAL NEURAL NETWORK

Artificial Neural Network (ANN) is a tool developed based on the biological nervous

system. It creates a link between the inputs and the outputs with the help of weighted

functions. The structure of the ANN includes three layers as shown in Figure 3.1. The

first layer is the input layer that consists of range of input values through which data is

furnished to the network. The second layer is called the hidden layer where training of

the network is performed. The trained values are obtained from the output layers (Deng

and Hwang 2006; Zhang et al. 2010). Initially, the input and output data are segregated

Figure 3.1 Representation of Artificial Neural Network.

as training and testing data to form a network which undergoes training until the error is

reasonably less. The basic unit of the network is neuron that is interlinked by layers that

carry signals which has to be processed. The weighted functions provide the strength

for the signals to pass through the neurons. With the aid of certain training algorithms

the weights associated with the neurons in different layer are adjusted according to the

training set and the procedure is referred as training the network. The trained network

represents fast forward model due to its robustness in producing the output for a given

value of input.
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In the present work, to obtain the solution from the forward model using nu-

merical simulations is time consuming hence ANN is employed as a fast forward model

which is created using large range of data set containing several values of unknown pare

meters and corresponding temperature data obtained from numerical simulations. From

the large set of data available for ANN, 70% data is chosen for training and 30% is used

for testing. Neuron independence study is carried out to select the fixed number of

neurons while creating the network. The selection of the neurons is based on certain

parameters and is given as (Balaji and Padhi 2010),

Mean Relative Error:

MRE =
1

N

N∑
i=1

|Tactual,i − Tnetwork,i|
Tactual,i

(3.1)

Correlation Coefficient:

R2 = 1−
∑N

i=1 (Tactual,i − tnetwork,i)
2∑N

i=1 T
2
actual,i

(3.2)

where, Tactual is the temperature data obtained from simulations, Tnetwork is the temper-

ature data obtained from the network trained between known input and output. Within

the range of input and output sets used to train the model, during the process of inverse

estimation of unknown parameter, the ANN model will provide the output for a given

input which was not a part of the training sets.

3.3 OBJECTIVE FUNCTIONS

To solve any optimization problem, an objective function has to be framed that involves

the parameters affecting the problem. Least squares is commonly used objective func-

tion for the estimation of the unknowns. Choosing different type of objective function

will help in smoothening of the results. In the present work, least squares method and

Bayesian framework as objective function are compared.

3.3.1 LEAST SQUARES METHOD

For the purpose of demonstration, the retrieval methodology is attempted using Least

squares method (LSM). The solution to the unknown parameter estimation using the

least squares is achieved by minimizing the difference between the measured and the

calculated temperatures obtained by the forward model (Ozisik and Orlande 2000) as
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shown in Equation (3.3),

S =
M∑

m=1

N∑
i=1

[Yim − Tim]2 (3.3)

where Yim is the ith observation from the mth measurement;M andN are the number of

measurements and observations, respectively. Tim is the simulated temperature obtained

from the forward model.

3.3.2 BAYESIAN FRAMEWORK

The Bayesian approach incorporates the known information regarding the unknown pa-

rameters and system uncertainties into a prior distribution model that is then combined

with the likelihood to formulate the posterior probability density function (PPDF). The

a-priori information, which is provided as a prior distribution, in Bayesian framework

acts as an inherent regularization term thus leading to well-posedness of the proposed

inverse problem. In addition to this, it also helps in quantification of modeling error as-

sociated with the temperature measurements. If one uses such a Bayesian framework as

the objective function, there are possibilities that more information such as uncertainty

of the unknown parameters can also be estimated simultaneously. According to Baye’s

theorem to relate measurements Y and the parameter P is given as (Wang and Zabaras

2004),

πposterior(P) = π(P|Y) =
πprior(P)π(Y|P)

π(Y)
(3.4)

where πposterior(P) is the posterior probability density function (PPDF), π(Y|P) is like-

lihood function, πprior(P) is the prior probability density function. π(Y) is the marginal

probability density function of the measurements. PPDF is the probability of parame-

ters P obtained for a given set of measurements Y.

The posterior probability is given as,

Posterior ∝ prior × likelihood (3.5)

Therefore, the posterior probability density function is directly proportional to the prior

probability times likelihood function. P in the Equation (3.4) is the unknown parameter

to be estimated and Y is the temperature vector. Assuming the temperature data to be

additive, uncorrelated, Gaussian, with zero mean and constant standard deviation, the
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likelihood can be written as Equation (3.6) (Mota et al. 2010),

π(Y|P) = (2π)−
M
2 |W|−

1
2 exp{−1

2
[Y− T(P)]T

W−1[Y− T(P)]}
(3.6)

Where M -number of measurements, W-co-variance matrix of the measurement errors.

The Gaussian prior is assumed to be normal distribution with mean µp standard devia-

tion σp is expressed as

π(P) = (2π)−
N
2 |V|−

1
2 exp[−1

2
(P− µp)

TV−1(P− µp)] (3.7)

where µp is the known mean, V is the co-variance matrix P. Therefore, the posterior

probability density function becomes,

π(P|Y) = (2π)−
M
2 |W|−

1
2 exp{−1

2
[Y− T(P)]TW−1[Y− T(P)]}

× (2π)−
N
2 |V|−

1
2 exp[−1

2
(P− µp)

TV−1(P− µp)]
(3.8)

The above equation can be written in terms of -lnPPDF as,

− lnPPDF =
M∑

m=1

N∑
i=1

[Yim − Tim(P)]2

2σ2
+

[P− µp]
2

2σ2
p

(3.9)

where Yim is the ith observation from the mth measurement, M and N are the number

of measurements and observations, respectively. Tim(P) is the simulated temperature

obtained from the forward model solution.

3.4 INVERSE METHODS

This section explains various algorithms used as inverse techniques to estimate the un-

known parameters. Stochastic methods are adopted as they have a great tendency to

provide the solution through exploration over a large range of population. Genetic

Algorithm, Particle Swarm Optimization and Hybrid Particle Swarm Optimization al-

gorithms are discussed.

3.4.1 GENETIC ALGORITHM

Genetic algorithm (GA), developed by Goldberg and Holland, is recognised to be one

of the robust optimization algorithms (Goldberg and Holland 1988). GA can be ex-

ploited for various applications in optimization problems. The technique works on the
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evolution concept where the best candidate will always survive and becomes the suc-

cessor to carry through the next generation where the worst individuals are ignored

from the population in each generation. The primary steps in GA are population initial-

ization, evaluation of the fitness function, selection, crossover, mutation and off spring

generation. Initially, a set of population, generally called as chromosomes is randomly

initialized. Each chromosome is encoded by bit strings referred as genes. The fitness

function values are calculated for the chromosomes and ranking is performed on the ba-

sis of type of problem (to maximize or minimize). According to this, the chromosome

having best fitness value is retained for next iteration. The selected set of chromosomes

produce new off springs by the process called crossover where the chromosomes are

randomly swapped at random cross over sites to generate new offspring. This new set

of chromosomes has a great tendency to produce good performance in retrieving the

solution. In order to prevent the solution getting trapped in local minima/maxima, the

process of mutation is carried out. Thus the newborn population is used to find the

fitness function and the process continues until the stopping criterion is reached.

3.4.2 PARTICAL SWARM OPTIMIZATION

Kennedy and Eberhart developed Particle Swarm Optimization (PSO), a widely used

technique developed based on the swarm of birds moving in search of food (Eberhart

and Kennedy 1995). Each individual swarm particle in the group communicates their

experience of search in its proximity in space which provides a learning experience

among them that results in finding its destination. PSO algorithm consists of three basic

steps: initializing the random position and velocities of the swarm particles, secondly,

calculating the fitness values for each particle in the swarm and finally, updating the

velocities of the particles. PSO is very easy to implement with fundamental steps like

random initialization of the particles and velocities, calculation of fitness function and

updating the position and velocity of the particles in each iteration. For kth iteration,

the velocity vki of the particle xki and its position are updated as Equations (3.10) and

(3.11) respectively.

vk+1
i = w.vki + c1.r1.(Pbest,i − xki ) + c2.r2.(gbest,i − xki ) (3.10)

xk+1
i = xki + vk+1

i (3.11)
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The term particle best, Pbest is the personal best fitness value of the particles. The

overall best position of the swarm particles is termed as global best, gbest. w is inertia

weight coefficient that influences the searching capabilities of particles and is chosen

between 0 and 1, c1 and c2 are cognition learning coefficient and social component that

drives the particles towards the local and global best positions. r1 and r2 are random

vectors whose value lie between 0 and 1.

3.4.3 PSO-BFGS ALGORITHM

The procedure for BFGS is explained as below (Rao 2009; Nocedal and Wright 2006;

Li et al. 2012),

Step 1: Set the value of initial point x0 and convergence criterion ε>0.

Step 2: Initialize a Hessian matrix H0=In, calculate the gradient d0=∇Jx0.

Hessian matrix Hk+1 of the Lagrangian function is evaluated in each iteration replacing

the previous Hessian matrix Hk. The search direction yk is given by

Step 3:

yk = −Hkdk (3.12)

Step 4: Set the values

dk+1 = ∇J(xk+1) (3.13)

xk+1 = xk + γky
k (3.14)

The value γk can be computed by the Equation. (3.15)

J(xk + γky
k) = minJ(xk + γyk) for γ ≥ 0 (3.15)

Step 5: If || dk+1 || ≤ ε, calculation is stopped and the output is the solution. Else go to

Step6.

Step 6: Set gk= dk+1 - dk and βk= xk+1 - xk, evaluate Hk+1 which is given by Equation.

(3.16)

Hk+1 = Hk + (1 +
gkHkgkT

βkTgk
)
βkβkT

βkTgk
− βkgkTHk +HkgkβkT

βkTgk
(3.16)

Step 7: Set the value k to next iteration k+1 and go to step 3.

For PSO-BFGS method, after finding the global best for the current iteration using PSO

(Victoire and Jeyakumar 2004).
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Figure 3.2 Minimum values of Rosenbrock banana function.

Step 8: Evaluate the fitness function and update the inertia weight and count t.

Step 9: Identify the gtbest, If gtbest < gt−1best, solve the inverse problem with BFGS algorithm

using the present global best gtbest.

Step 9: Replace the gtbest value with the final solution obtained using BFGS method,

else

Step 10: otherwise go to step 8.

Step 11: Change the velocities and positions.

Step 12: Iteration continued till the stopping criterion is reached.

3.5 BENCHMARK PROBLEM

A benchmark problem is solved using the above mentioned algorithms to provide a

firm establishment of the accuracy of these algorithms. The bench mark problem used

is Rosenbrock’s banana function, which is given by (Rosenbrock 1960),

f(x) = 100(y − x2)2 + (1− x)2 (3.17)

The range of (x,y) is chosen between -5 and 10. The minimum of the banana function

lies at (1,1). Figure 3.2 shows the evaluation of Rosenbrock function using GA, PSO
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and PSO-BFGS and it is evident that the in-house code was able to predict the values

of and accurately.

3.6 CLOSURE

This chapter has put up the information of the forward model used in the present work

along with the details of ANN fast forward model. The details of the least squares and

Bayesian framework as objective functions were also discussed. The steps involved in

various evolutionary and hybrid algorithms chosen to solve the inverse problem associ-

ated with the present work was illustrated.
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CHAPTER 4

SIMULTANEOUS ESTIMATION OF UNKNOWN PARAMETERS
FOR THE ESTIMATION OF INTERFACIAL HEAT TRANSFER

COEFFICIENT DURING SOLIDIFICATION OF Sn–5wt%Pb
ALLOY

4.1 INTRODUCTION

The present chapter focuses on model reduction in which the prevalent one-dimensional

transient heat conduction equation for a horizontal solidification of Sn–5wt%Pb alloy

is replaced with Artificial Neural Network (ANN) in order to estimate the unknown

constants present in the interfacial heat transfer coefficient correlation. As a novel ap-

proach, ANN-driven forward model is synergistically combined with Bayesian frame-

work and Genetic algorithm (GA) to simultaneously estimate the unknown parameters

and modelling error for noise added temperature data. The hallmark of this work is to

reduce the computational time of both the forward and the inverse methods and to si-

multaneously estimate the unknown parameters using a-priori engineering knowledge.

4.2 FORWARD MODEL

A mold cavity of length 110mm with 60mm low carbon steel chill is considered for

solving horizontal solidification of Sn-5wt%Pb alloy casting as shown in the Figure

4.1. The main purpose of the design was to ensure a unidirectional solidification. The

heat transfer exists mainly between the casting and chill with the provision of sufficient

insulation around the mold cavity. The insulation prevents the heat loss through the

wall surroundings and the steel chill initiates the solidification in the horizontal direc-

tion. The effects of flow of the molten metal inside the mold are neglected. As the area

of the air gap at the mold metal interface is very small, the heat transfer at the casting-

chill interface is assumed to happen only by conduction and the effects of convection

and radiation are neglected. Two temperature sensors T1 and T2, one placed inside the

mold cavity at a distance of 20 mm and other 3mm in the steel chill respectively from

mold metal interface to measure the temperatures (Santos et al. 2004). The domain is
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Figure 4.1 Schematic representation of the cast mold system.

discretized as shown in the Figure 4.2. The cast surface node TC and chill surface node

TM at the mold metal interface are represented by subscripts ig and ig+1 respectively.

Figure 4.2 Discretization of the mold and metal interface.

The average interfacial heat transfer coefficient hi in W/(m2K) at the casting-chill inter-

face interface is given by,

hi =
q

TC − TM
(4.1)

where q is the average heat flux across the casting-chill interface in W/m2 and TC is

casting surface temperature, TM is chill surface temperature (◦C). It is presumed that

heat flux released by casting is equal to the heat flux gained by the chill.

4.2.1 Governing equation for heat transfer in the chill

The unsteady one dimensional heat conduction equation is given as follows,

k
∂

∂x
(
∂T

∂x
) = ρC

∂T

∂t
(4.2)

50



where T is the temperature in ◦C, t is the time in seconds, α is the thermal diffusivity

in m2/s.

α =
k

ρCp

(4.3)

Where k is the thermal conductivity, W/(mK), ρ is the density, kg/m3 and Cp is the

specific heat capacity, J/(kgK).

4.2.2 Governing equation for casting

One dimensional transient heat conduction for casting solidification process is given as,

∂

∂x
(k
∂T

∂x
) + q̈ = ρC

∂T

∂t
(4.4)

where k is the thermal conductivity (W/(mK)), ρ is the density (kg/m3), C is the specific

heat capacity (J/(kgK)), q̈ is the heat source term which is included to account latent

heat, q̈=ρl ∂fs(x,t)
∂t

, where l is the latent heat of the casting. The term fs is solid fraction

of casting and its value varies between 0 and 1. A linear form of fs defined in Equation

(4.5) in the freezing zone Ts≤T≤Tl was assumed (Voller and Swaminathan 1991).

fs =
Tl − T
Tl − Ts

(4.5)

where Ts is the solidus temperature, Tl is the liquidus temperature of the casting ma-

terial. The term fs is expressed as a parameter dependent on temperature, fs=fs(T ),

then, ∂fs(x,t)
∂t

=∂T (x,t)
∂t

dfs(T )
dT

and substituting back in to Equation (4.4), the final form

of the governing equation by considering substitute thermal capacity method can be

written as Equation (4.7) (Majchrzak et al. 2008)

∂

∂x
(k
∂T

∂x
) = ρC

∂T

∂t
− ρl∂T

∂t

dfs
dT

(4.6)

Hence,
∂

∂x
(k
∂T

∂x
) = ρC ′

∂T

∂t
(4.7)

where

C ′ = C − l dfs(T )

dT
(4.8)
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4.2.3 Boundary conditions

At x = 0, ∂T
∂x
|x=0 = 0

At x = ig (casting surface), −kC ∂T
∂x
|x=ig = hi(TC − TM)

At x = ig+1 (chill surface), −kM ∂T
∂x
|x=ig+1 = hi(TC − TM)

At x = L (chill environment), −kM ∂T
∂x
|x=L = ha(TM − T∞)

Initial condition, at t = 0, T = Ti

where kM is the thermal conductivity of chill, W/(mK), kC is the thermal conductivity

of casting, W/(mK), hi is the interfacial heat transfer coefficient W/(m2K), ha is the

chill-environment heat transfer coefficient W/(m2K), Ti is the initial temperature of the

cast and chill (◦C), T∞ is the ambient temperature (◦C).

Table 4.1 Thermophysical properties of the Sn-5wt%Pb alloy and low carbon steel

materials (Santos et al. 2004).

Properties ks kl Cs Cl ρs ρl Tl Ts Tf Kp l

Sn-5wt%Pb 64 33 221 259 7720 7380 216 183 232 0.0656 57120
Low carbon steel 46 7860 527

Table 4.11 reports the thermo-physical properties of the materials. The initial tempera-

tures of casting and chill were assumed as 256◦C and 27◦C respectively. The IHTC (hi)

is assumed to vary with time as power law shown in Equation (4.9) ,

hi = at−b (4.9)

The values of hi and ha are assumed based on available literature data (Santos et al.

2004) as mentioned in Equation (4.10),

hi = 18000t−0.47 and ha = 5.7t0.15 (4.10)

The solution of the direct problem (forward model) is obtained by solving the govern-

ing equations subjected to the known initial and boundary conditions using Explicit

Finite Difference Method that provides the temperature distribution inside the casting

and mold. The discretized form of the governing equation with the applied boundary

1SI units: T -◦C, ρ-kg/m3, C-J/(kgK), k-W/(mK), l-J/kg,suffix l-liquidus, s-solidus,f -fusion
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conditions is given below (Kulkarni and Radhakrishna 2005),

For the internal nodes in casting from TC to ig−1,

T p+1
m = T p

m (1− 2f0) + f0
(
T p
m+1 + T p

m−1
)

(4.11)

For the node ig (casting surface),

ρC

(
∆x

2

)(
T p+1
m − T p

m

∆t

)
= −kc

(
T p
m − T

p
m−1

∆t

)
− hi

(
T p
ig − T

p
m+1

)
(4.12)

Upon simplification,

T p+1
ig = 2f0T

p
ig−1 +

(
1− 2f0 −

(
2hi∆t

ρC∆x

))
T p
ig +

(
2hi∆t

ρC∆x

)
T p
ig+1 (4.13)

For the node ig+1, (chill surface node),

T p+1
ig+1 =

(
2hi∆t

ρC∆x

)
T p
ig +

(
1− 2f0 −

(
2hi∆t

ρC∆x

))
T p
ig+1 + 2f0T

p
ig+2 (4.14)

The value of the grid size ∆x= 1mm and the time step size is chosen to be 2ms. By

solving the Equations (4.2)-(4.7) along with the boundary conditions, the exact temper-

atures are obtained. These exact temperatures are added with Gaussian white noise of

σ = 0.01Tmax, σ = 0.02Tmax and σ = 0.03Tmax as shown in Equation (4.15), as the

experimental temperatures are usually subjected to errors. In order to mimic real time

experiments, the simulated measurements are represented as,

YiM = Texact(ti, SensorM) + εσ (4.15)

Where M is the number of sensors, σ is the standard deviation of the temperature mea-

surements and ε is the random numbers varying between -2.576 to 2.576 for normally

distributed errors with zero mean and 99% confidence bounds. The term ε σ represents

the temperature measurement error (Dousti et al. 2012). The noisy data is now consid-

ered as simulated measurements YiM , which in turn used to solve the inverse problem.

4.3 NEURAL NETWORK

Neural network is an artificial intelligence tool developed based on the biological ner-

vous system provides a relationship between the inputs and outputs with the help of

weighted functions. Figure 4.3 shows insight of layers associated in ANN. ANN con-
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sists of input, hidden and output layers. Initially, the input and output data are segre-

gated as training and testing data to form a network which undergoes training until the

error is reasonably less. The basic unit of the network is neuron that is interlinked by

Figure 4.3 Representation of ANN trained for the present work.

layers that carry signals which has to be processed. The weighted functions provide the

strength for the signals to pass through the neurons. The trained network developed pro-

vides an output for a given input and hence helps in fast computation. In other words,

the trained network provides the temperature distribution for any set of input parame-

ters specified within the range. In the present work, following steps were conducted to

create a neural network.

1. Training the network: Input layers consists of set of assumed range of constants

of the hi correlation as given in Equation (4.9) and the output layers consists of

corresponding temperature array at the given location from the available training

data.

2. Building the network: Two hidden layers are created and the learning process is

directed by Feed forward back propagation algorithm. Feed forward back prop-

agation neural network changes the weights in such a way that output vector

produces the result which is closer to the target data.

3. Training the network: From Equation (4.9), a and b are the unknown parameters,

within the specified range of a=[1000 30000] and b=[0.3 0.6]. 473 data sets of

numerical simulations were performed to generate neural network and the tem-

perature measurements of the sensor at the location 20mm inside the casting for
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150s is used for developing trained network. The trained network was able to

produce temperatures with an accuracy less than 0.1 ◦C temperature difference

from the exact temperature data. 70% of data is used for training and 30% of

data is used for testing. 50 number of neurons are selected to produce a good fit

between the output and the target data as shown in the Figure 4.4.

4. Testing the network: The trained network is referred to as fast forward model

due to its robustness in producing the temperature data for any values of a and

b within the specified range. A random value from the testing data is chosen to

check the accuracy of the trained neural network. The output of ANN is fed in to

the objective function to estimate the unknown parameters by inverse method.

4.4 INVERSE ESTIMATION

Inverse estimation is carried out using Genetic Algorithm (GA) as an inverse method.

A detailed procedure of the GA is explained in the chapter 3.4.1. Here, ANN is used

as fast forward model that will be employed to solve the objective functions for a de-

fined range of populations assigned during the process of iterations. For the purpose

of demonstration, the retrieval methodology is attempted using Least Squares method.

But, eventually it has been identified that the methodology fails to obtain proper results

when the temperature data contains more noise which will be discussed in the later

section. The solution to the unknown parameter estimation using the least squares is

achieved by minimizing the difference between the measured and the calculated tem-

peratures obtained by the fast forward model (Ozisik and Orlande 2000) as shown in

Equation (4.16),

S(hi) =
M∑

m=1

N∑
i=1

[Yim − Tim(hi)]
2 (4.16)

The Bayesian framework is a combination of Likelihood function, which is based on

the mathematical model and the prior information about the parameter to be estimated.

The -lnPPDF from the Bayesian framework is given as (Mota et al. 2010; Wang and

Zabaras 2004),

−lnPPDF =
M∑

m=1

N∑
i=1

[Yim − Tim(hi)]
2

2(ME ∗ Tmax)2
+

(a− µa)
2

2σ2
a

+

(b− µb)
2

2σ2
b

+
(ME − µME)2

2σ2
ME

(4.17)
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Figure 4.4 Regression plot between the output and Target data. (a) Training (b) Valida-

tion (c) Testing (d) Overall.

where hi is the unknown parameter, Yim is the ith observation from the mth measure-

ment, M and N are the number of measurements and observations, respectively. Tim(hi)

is the calculated temperature obtained from the fast forward solution, a and b are the

range of values generated by GA, ME is the modeling error associated with the tem-

perature measurement, µa=18000, µb=0.47, σa and σb are taken as 0.01µa and 0.01µb

respectively.
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Figure 4.5 Overview of the present work.

Figure 4.5 shows the overview of the present work. In the beginning, Genetic

Algorithm parameters and a range of population of the values of a and b are initialized.

For every value of population, the temperatures are calculated using ANN. The error

between the calculated and simulated measurements are minimized using the objec-

tive/fitness function. The fitness values are then ranked using the GA procedure and the

process of crossover and mutation are performed to obtain a new set of population to

proceed the iterations. The process of estimation is carried out for a specified iterations

and the values of a and b for which the fitness values are minimum is the estimated

values.
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4.5 RESULTS AND DISCUSSION

Figure 4.6 shows the transient IHTC (hi) and chill-environment heat transfer coefficient

values (ha) variation of pre assumed values from Equation (4.10).

Using these pre assumed values, the forward model is solved and the temper-

ature distribution inside the casting and chill is obtained as shown in Figure 4.7. The

hi possess higher values during the initial stages of the solidification due to the good

contact between the molten metal and chill surface at the interface. When the molten

metal comes in contact with the chill, it loses its heat to the chill which increases the

chill temperature. A thin solidified skin is first formed at the interface which acts as

a resistance for the incoming molten metal. As time progresses, an air gap is formed

hence the values of hi decrease. The temperature distribution at the sensor location

20mm inside the mold cavity from the casting chill interface is used for the inverse

analysis is validated as shown in the Figure 4.8.

Figure 4.6 IHTC (hi) and chill-environment heat transfer coefficient (ha) used to solve

the forward problem.
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Figure 4.7 Temperature distributions at the location T1 and T2 from the casting chill

interface.

Figure 4.8 Validation of the forward model (Santos et al. 2004).
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(a)

(b)

Figure 4.9 (a) Temperature distribution at T1 for % change in values of a in hi correla-

tion. (b) Temperature distribution at T1 for % change in values of b in hi correlation.
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Table 4.2 Estimated values of a and b using ANN-GA-LSM for different runs for exact

temperature data.

Runs a absolute% b absolute% Time,s Fitness
(18000) error of a (0.47) error of b value

1 18091.42 0.507 0.471 0.212 86.1 0.01743
2 18092.79 0.515 0.471 0.212 84.5 0.01743
3 18090.86 0.504 0.471 0.212 82.3 0.01743
Average 18091.69 0.509 0.471 0.212 84.3 0.01743

Table 4.3 Estimated values of a and b using ANN-GA-LSM for different runs for σ =

0.01Tmax temperature data.

Runs a absolute% b absolute% Time,s Fitness
(18000) error of a (0.47) error of b value

1 19389.55 7.719 0.497 5.75 115.2 894.84
2 19376.83 7.649 0.497 5.75 105.45 894.84
3 19400.96 7.783 0.497 5.75 108.52 894.84
Average 19389.113 7.717 0.497 5.75 109.72 894.84

Table 4.4 Estimated values of a and b using ANN-GA-LSM for different runs for σ =

0.02Tmax temperature data.

Runs a absolute% b absolute% Time,s
(18000) error of a (0.47) error of b

1 11392.7 36.70 0.3 36.17 120.2
2 11392.7 36.70 0.3 36.17 99.5
3 11392.7 36.70 0.3 36.17 110.8
Average 11392.7 36.70 0.3 36.17 110.17

Choosing an appropriate value of hi for the numerical simulation is most im-

portant decision because a random or guess value of hi always results in different tem-

perature distribution during the solidification. A common practice in industries is to use

trial and error method to choose hi. In order to show that, variation of temperature for

small change of the unknown parameters at the sensor location T1 is carried out where

a change of 10% from the actual value of constants of the hi correlation a and b are

chosen and plotted in Figures 4.9a and 4.9b respectively.
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Table 4.5 Estimated values of a and b using ANN-GA-LSM for different runs for σ =

0.03Tmax temperature data.

Runs a absolute% b absolute% Time,s
(18000) error of a (0.47) error of b

1 17005.28 5.526 0.3 36.17 104.3
2 17949.17 0.282 0.31 34.04 101.2
3 17584.88 2.306 0.307 34.68 107.5
Average 17513.11 2.704 0.306 34.89 104.3

Figure 4.10 (a) Convergence of 'a' value (b) Convergence of 'b ' value (c) Convergence

of fitness values for exact temperature data using ANN-GA-LSM.
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Figure 4.11 (a) Convergence of 'a' value (b) Convergence of 'b' value for σ=0.01Tmax

temperature data using ANN-GA-LSM.

Now the process of estimation of unknown parameters is carried out using

GA. The input parameters for GA such as number of population=20, iterations=200,

mutation rate=0.06 were initialized. The range of the values of a= [1000 30000] and

b= [0.3 0.6] was selected based on the work of Santos et al. (2004), where a wealth

of information is available for the solidification of Sn-Pb alloys. The inverse estima-

tion was performed in 12GB RAM, INTEL i5 Core, 1.70 GHz computer. Three runs

were carried out with the same initialized input parameters and the estimated values are

collected and reported in Table 4.2. For the exact temperature data, ANN driven GA

provides good estimates of a and b with LSM as objective function. The average value

of a=18091.69 and b=0.471 was obtained with an absolute % error of a and b as 0.509

and 0.212 respectively. The minimum fitness value was found to be 0.01743. The ANN

driven GA took around 83.4 seconds that shows a huge reduction in the computational

cost compared to conventional model i.e., without ANN. Figures 4.10 (a) and (b) show

the estimation of values of a and b using least square method for exact temperature data

respectively. Figure 4.10 (c) provides the corresponding fitness values convergence for

exact temperature data using LSM.
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Table 4.6 Estimated values of a and b using ANN-GA-Bayesian framework for different

runs for exact temperature data.

Runs a absolute% b absolute% Time,s −lnPPDF
(18000) error of a (0.47) error of b

1 18001.41 0.0078 0.469 0.21 85.6 0.002275
2 18001.41 0.0078 0.469 0.21 88.74 0.002275
3 18002.41 0.0133 0.469 0.21 94.15 0.002275
Average 18001.74 0.0096 0.469 0.21 89.49 0.002275

Table 4.7 Estimated values of a and b using ANN-GA-Bayesian framework for different

runs for σ = 0.01Tmax temperature data.

Runs a absolute% b absolute% ME absolute% Time,s −lnPPDF
(18000) error of a (0.47) error of b error of ME

1 17984.31 0.0871 0.4708 0.1702 0.0101 1 83.32 67.54
2 17984.14 0.0881 0.4708 0.1702 0.0101 1 85.48 67.54
3 17983.69 0.0906 0.4708 0.1702 0.0101 1 85.48 67.54
Average 17984.04 0.0886 0.4708 0.1702 0.0101 1 84.76 67.54

Table 4.8 Estimated values of a and b using ANN-GA-Bayesian framework for different

runs for σ = 0.02Tmax temperature data.

Runs a absolute% b absolute% ME absolute% Time,s −lnPPDF
(18000) error of a (0.47) error of b error of ME

1 18019.42 0.107 0.468 0.425 0.0203 1.5 88.53 86.99
2 18019.43 0.107 0.468 0.425 0.0203 1.5 87.92 86.99
3 18019.41 0.107 0.468 0.425 0.0203 1.5 88.47 86.99
Average 18019.42 0.107 0.468 0.425 0.0203 1.5 88.3 86.99

Table 4.9 Estimated values of a and b using ANN-GA-Bayesian framework for different

runs for σ = 0.03Tmax temperature data.

Runs a absolute% b absolute% ME absolute% Time,s −lnPPDF
(18000) error of a (0.47) error of b error of ME

1 18036.02 0.2 0.468 0.425 0.0305 1.67 97.8 93
2 18036.05 0.2 0.468 0.425 0.0305 1.67 95.35 93
3 18036.05 0.2 0.468 0.425 0.0305 1.67 95.46 93
Average 18036.04 0.2 0.468 0.425 0.0305 1.67 96.2 93
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Figure 4.12 (a) Convergence of 'a 'value (b) Convergence of 'b 'value (c) Convergence

of −lnPPDF for exact temperature data using ANN-GA-Bayesian framework.

The estimation is now proceeded to a noisy temperature data of σ=0.01Tmax

and similarly three different runs were carried out and reported in Table 4.3. It was

observed that the estimated values had a large deviation from the actual value with an

absolute % error of 7.717 and 5.75 for the estimated a and b values respectively. The

average fitness value was found to be 894.84. Figure 4.11 shows the convergence of

a and b values for σ=0.01Tmax temperature data respectively. Table 4.4 provides the

details of the estimated unknown parameters for σ=0.02Tmax noise data. The ANN-

GA with LSM showed an unusual estimation with a very large absolute % error of 36.

Hence, in order to check the accuracy of estimation for larger noisy data, a Gaussian

noise of σ=0.03Tmax is added for the exact temperature and the estimation was contin-
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Figure 4.13 (a) Convergence of 'a 'value (b) Convergence of 'b 'value (c) Convergence of

'ME 'value using ANN-GA-Bayesian framework for σ = 0.01Tmax noisy temperature

data.

ued. It was observed that for high noisy data, a good estimation was achieved for the

retrieval of a values with absolute % error of 2.704 where as for the value of b, there

was again a huge deviation from the actual value 0.47 as mentioned in Table 4.5. The

overall estimation with LSM using ANN trained inverse estimation was time saving but

an accurate estimation was not achieved.

In order to overcome the disadvantage of LSM, the objective function was

replaced by Bayesian framework. As mentioned in Equation (4.17), to estimate the

unknown parameters, −lnPPDF was calculated. Initially, for the exact temperature

data, the prior information about the noise is not considered. In order to achieve this,
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Figure 4.14 (a) Convergence of 'a 'value (b) Convergence of 'b 'value (c) Convergence of

'ME 'value using ANN-GA-Bayesian framework for σ = 0.02Tmax noisy temperature

data.

the range of values of a= [1000 30000], b= [0.3 0.6] was considered. Similar to the

previous estimation, three runs with the same initial parameters using GA was carried

out and the estimated values of a and b are reported in Table 4.6. Compared to LSM,

ANN-GA-Bayesian framework the retrieved a and b values were very close to the actual

value with absolute % error of 0.0096 and 0.21 respectively. The -ln PPDF value was

0.002275 which is found to be lesser compared to LSM. The convergence of a and b

values and its fitness values are shown in Figure 4.12.

Further, the estimation is carried out for a noisy data of σ = 0.01Tmax. The

range of values of a= [1000 30000], b= [0.3 0.6] and modeling error, ME= [0 0.04]
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Figure 4.15 (a) Convergence of 'a 'value (b) Convergence of 'b 'value (c) Convergence of

'ME 'value using ANN-GA-Bayesian framework for σ = 0.03Tmax noisy temperature

data.

was chosen to solve using GA. The advantage of Bayesian framework over LSM can

be observed here. The Bayesian framework not only retrieves very accurate values of a

and b but also provides an opportunity to estimate the modeling error (ME) associated

with the temperature measurements. As the Bayesian framework contains knowledge

of priori information about the estimates, the method out-performs than the LSM which

is evident from the reported Table 4.7. The retrieved values were having an error lesser

than 2% compared to the actual values. The convergence of a, b and ME values are

shown in the Figure 4.13.

As the experimental temperature measurements are more prone to errors, the
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Figure 4.16 Comparison of temperature distribution obtained from the actual and re-

trieved values of a and b at T1=20mm inside the mold cavity sensor. (a) For exact

temperature. (b) For σ = 0.01Tmax. (c) For σ = 0.02Tmax. (d) For σ = 0.03Tmax.

estimation is conducted for a noisy temperature data σ = 0.02Tmax. The retrieved

unknown parameters reported in Table 4.8 for the σ = 0.02Tmax noisy temperature data

show a good agreement with the actual values. The convergence of the corresponding

unknown parameters is shown in Figure 4.14. Similarly, the estimation was carried out

for a noisy temperature of the σ = 0.03Tmax and as a result; GA in accordance with

Bayesian found to be an effective method for solving high noisy data as noted from

Table 4.9. The corresponding convergence of a, b and ME values are shown in Figure

4.15. The retrieved average values of a and b are used as an input for simulating forward

model and ANN and the comparison of the obtained temperature distribution as shown

in Figure 4.16 show the noise handling capability of the inverse method.
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4.6 CONCLUSION

An ANN driven inverse estimation was attempted using GA. The forward model was

solved to obtain the required temperature distribution for the solidification of Sn-5wt%Pb

alloy. The major concern during inverse estimation of unknown parameters was the

computational time. Therefore, a large data set, within the range of unknown parame-

ters and corresponding temperatures was created by solving the forward model and an

ANN model was developed to reduce the computational time, that acts as a fast for-

ward model. Though the ANN-GA with LSM was found to be good for the noiseless

temperature data, the methodology failed to produce satisfactory results for the noise

added temperature data. Hence, the objective function was replaced with the Bayesian

framework thereby exploring the a priori information of the unknown parameters. The

ANN-GA with Bayesian framework established effective results with the overall aver-

age absolute error less than 2% , thus proves to be competent and potent tool for the

present inverse problem.

4.7 CLOSURE

This chapter explored the use of GA as inverse method to estimate the constants of the

IHTC correlation during solidification of casting. ANN as fast forward model helped

to perform the estimation procedure quicker along with the Bayesian framework. In the

next chapter, an attempt is made to retrieve multi-parameters using Bayesian framework

along with GA and PSO algorithms during solidification of casting.
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CHAPTER 5

INVERSE APPROACH USING BIO-INSPIRED ALGORITHM
WITHIN BAYESIAN FRAMEWORK FOR THE ESTIMATION OF
HEAT TRANSFER COEFFICIENTS DURING SOLIDIFICATION

OF Al-4.5wt%Cu ALLOY

5.1 INTRODUCTION

The work presented in this chapter is the simultaneous estimation of interfacial heat

transfer coefficient parameters, latent heat and modeling error during the solidification

of Al-4.5wt%Cu alloy with the aid of Bayesian framework as an objective function

that harmoniously match the mathematical model and measurements. A 1-D transient

solidification problem is considered to be the mathematical model/forward model and

numerically solved to obtain temperature distribution for the known boundary and ini-

tial conditions. Genetic algorithm (GA) and Particle Swarm Optimization (PSO) are

used as an inverse approach and the estimation of unknown parameters is accomplished

for both pure and noisy temperature data. The effect of number of temperature mea-

surements on parameter estimation is also investigated in detail.

5.2 FORWARD MODEL

A one dimensional solidification problem is considered to solve the forward model that

computes the temperature distribution inside the casting and chill. Figure 5.1 shows

the schematic view of the problem. A mold cavity of 60mm and low carbon steel chill

of 60mm is considered to cast the Al-4.5wt%Cu alloy. The temperature sensor T1 is

located inside the mold cavity at a distance of 20 mm from casting-chill interface and

sensor T2 at a distance of 3mm inside the steel chill from casting-chill interface to

measure the temperatures (Santos et al. 2001). The domain is considered in such a way

that the heat transfer from the casting to the chill is unidirectional. The mold cavity is

insulated to restrict the heat transfer through walls and the placement of the chill acts

as a heat extractor that allows the molten metal to solidify in the horizontal direction.

When molten metal comes in contact with the chill, an air gap is formed at the casting-
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chill interface. The heat transfer at this air gap depends on actual contact between

surfaces of the chill and the casting. The air gap formed is very limited in size, as a

result, the convection at the chill cast interface is neglected (Cheung et al. 2009). Also,

the radiation effects at the air gap is neglected as it is found to be effective in case of high

melting temperature alloys, example ferrous alloys (Prabhu and Griffiths 2001). Hence,

the estimation of heat transfer coefficient during solidification of casting is adopted as

inverse heat conduction problem (IHCP). Thus, the heat transfer across the casting-chill

interface can be characterized by average interfacial heat transfer coefficient (hi).

Figure 5.1 Schematic diagram of cast and chill arrangement with sensor locations.

Figure 5.2 Discretization of the casting and chill system.

Figure 5.2 depicts the discretization of the solidification domain. The dis-

cretization of the casting-chill domain is considered from Kulkarni and Radhakrishna

(2005). The average interfacial heat transfer coefficient hi (W/(m2K)) across the casting
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Table 5.1 Thermophysical properties of the Al-4.5wt%Cu and steel material (Santos

et al. 2001).

Properties ks kl Cs Cl ρs ρl Tl Ts Tf l

Al-4.5wt%Cu 193 85 1092 1059 2650 2480 645 548 660 381900
Steel 46 527 7860

chill interface is given as,

hi =
q

TC − TM
(5.1)

where q is the average interfacial heat flux across the casting-chill interface in W/m2

and TC is casting surface temperature, TM is chill surface temperature (◦C). The initial

temperature of the casting and chill was taken as 700◦C and 27◦C, respectively. It is

presumed that heat flux released by casting is equal to the heat flux gained by the chill.

The hi and ha values are time dependent and assumed to vary as power law which is

given in Equation (5.2),

hi = at−b and ha = ctd (5.2)

To obtain the simulated temperatures, preselected values of hi and ha (Equation. (5.3))

from the literature are used (Santos et al. 2001).

hi = 8650t−0.17 and ha = 5.1t0.27 (5.3)

The mathematical model represented in the Chapter section (4.2.1) along with the

boundary conditions is evaluated to determine the temperature distribution in casting

and chill using Explicit Finite Difference Method (FDM) (Kulkarni and Radhakrishna

2005). The prior information about hi and ha from Equations (5.3) is used to solve the

forward model. The temperature dependent thermophysical properties considered are

shown in Table 5.11. The values of ∆ x=1mm and ∆ t=2ms for both the casting and

chill were chosen satisfying Fourier number, f0 <0.5. The exact temperatures at the

mentioned sensor locations in the Figure 5.1 are added with Gaussian additive noise of

σ = 0.01Tmax, σ = 0.02Tmax and σ = 0.03Tmax as shown in Equation (4.15) to mimic

the experimental temperatures.

1SI units: T-◦C, ρ-kg/m3, C-J/(kgK), k-W/(mK), l-J/kg,suffix l-liquidus, s-solidus,f -fusion
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5.3 SENSITIVITY ANALYSIS

A sensitivity analysis provides the information about the dependency of the unknown

parameters with respective to each other. Sensitivity coefficient represents a deviation

in the output for a small change in the input. Sensitivity coefficient in scaled form is

defined by Equation (5.4) (Ozisik and Orlande 2000; Raudenskỳ et al. 1995)

JP j = Pj
∂T

∂Pj

=
T (Pj + εPj)− T (Pj − εPj)

2εPj

(5.4)

where Pj=1, 2, ...N is the number of unknown parameters, T is the temperature and ε

is the value 1e-5 or 1e-6.

5.4 INVERSE ESTIMATION

The inverse estimation is carried out using Genetic Algorithm (GA) and Particle Swarm

Optimization (PSO) methods. A detailed working procedure of GA and PSO is ex-

plained in Chapter 3.4 under sections 3.4.1 and 3.4.2. Bayesian framework as shown in

Equation (5.5) is chosen as an objective function to exhibit the multi parameter estima-

tion using GA and PSO.

−lnPPDF =
M∑

m=1

N∑
i=1

[Yim − Tim(hi, l)]
2

2(ME ∗ Tmax)2
+

(a− µa)
2

2σ2
a

+
(b− µb)

2

2σ2
b

+
(c− µc)

2

2σ2
c

+
(d− µd)

2

2σ2
d

+
(l − µl)

2

2σ2
l

+
(ME − µME)2

2σ2
ME

(5.5)

where hi includes the constants of the correlation as unknown parameters (a, b, c, d)

and l is latent heat, Yim is the ith observation from the mth measurement, M and N are

the number of measurements and observations, respectively. Tim(hi, l) is the simulated

temperature obtained from the forward solution. a, b, c, d and l are the range of values

generated by GA and PSO, µa=8650, µb=0.17, µc=5.1, µd=0.27, µl=381900. σa, σb, σc,

σd and σl are taken as 0.01µa, 0.01µb, 0.01µc, 0.01µd and 0.01µl respectively.

The overview of the present work is represented as shown in Figure 5.3. A

one dimensional transient solidification governing equations are solved for the known

boundary conditions (forward model) to obtain the temperature distribution inside the

casting and chill. The temperature distribution obtained by solving the forward model is

now compared with the experimental temperatures. It is pertinent to mention here that,
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the experiments are not performed in this work; hence, for the assumed value of input

parameters the forward model is solved and the temperature data at a particular location

is added with different level of noise in order to mimic experimental temperature data.

The input parameters of the GA and PSO algorithms are initialized. In every iteration,

a range of unknown parameter is initialized by GA and PSO and each value in the

population will solve the forward model and corresponding calculated temperatures are

compared with the simulated measurements at the mentioned locations. Based on the

methodology of the algorithms, the -lnPPDF is minimized and the procedure is carried

out till the convergence criteria is satisfied. The values of the unknown parameters for

which the -lnPPDF is minimum are the estimated values of unknown parameters.

Figure 5.3 Overview of the present work for the multiparameter estimation with

Bayesian framework using GA and PSO as inverse method.

5.5 RESULTS AND DISCUSSION

As discussed previously, a one dimensional solidification heat transfer problem is solved

to obtain temperature distribution during solidification process. The available informa-

tion about the values of hi and ha (Equation (5.3)) during horizontal directional solidi-

fication of Al-4.5wt%Cu alloy were used. The result of the forward model is compared

with the work of Santos et al. (2001) for validation. The temperature curves obtained
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Figure 5.4 Temperature curves obtained from the temperature sensor located at a dis-

tance 20mm from the casting-chill interface inside the casting (T1) and at a distance of

3mm from the casting-chill interface inside the chill (T2) (Santos et al. 2001).

from the temperature sensor located at a distance of 20mm from the casting-chill inter-

face inside the casting and at a distance of 3mm from the casting-chill interface inside

the chill respectively are compared with the present mathematical model and a good

agreement was observed as shown in the Figure 5.4. The molten metal starts solidify-

ing at 660◦C and ends at 548◦C. The heat released during the solidification of casting

is transferred to the chill and the temperature of the chill rises. The time duration till

which the molten metal remains in contact with the chill depends on the metallostatic

pressure and wettability of the molten metal. In the present study, a, b, c, d in hi and ha

correlations and Latent heat (l) are the unknown parameters to be estimated. The de-

pendency of the unknown parameters can be analyzed through scaled sensitivity values

at one of the sensor locations T2 which is shown in Figure 5.5. The values of scaled

sensitivity for a, b and latent heat were found to be high compared to c and d hence

they significantly affect the temperature distribution during solidification. The scaled
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Figure 5.5 Scaled sensitivity values at temperature sensor located at a distance of 3mm

from the casting-chill interface inside the chill (T2).

sensitivity calculation of c and d is close to zero; therefore, the simultaneous estimation

of all the unknown parameters is not possible without the Bayesian framework.

Upon performing the sensitivity study, GA and PSO are used as inverse meth-

ods with Bayesian framework as objective function, that helps to estimate the unknown

parameters simultaneously with the beforehand available a-priori information. Gen-

erally, the selection of input parameters sometimes affect the solution as found in the

literature. The increase in the number of population will increase the computational

cost. In order to compare the performance of GA and PSO, in the present study, the

input parameters of the GA are initially set as: number of population=50, number of

generations=200, mutation rate =0.1. Słota (2008) analysed various combinations of

GA input parameters and suggested that mutation rate of 0.1 was efficient. Generation

gap is set as Ggap=1.

A generation gap of 1 represents that the entire population is replaced each

generation. If the Ggap is chosen as some specific value, then few of the most fit in-
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dividuals always propagate to successive generations. In the present work, no elitism

was used. The real valued population was initialized and real valued mutation was per-

formed using mutbga function in MATLAB (Chipperfield and Fleming 1995). Similarly

for PSO, number of particles=50, number of generations=200, w=0.2, c1=1, c2=3 are

initialized. The inverse estimation is accomplished using in-house codes developed us-

ing MATLAB and executed in computer with configuration of 64GB RAM, Intel xeon

@2.40GHz. The values of a=[1000 25000], b=[0.01 0.6], c=[0.01 10], d=[0.01 0.6],

ME=[0.001 0.06] and l=[100000 500000] are assumed. The range of values is selected

from the correlation data available based on the work of Santos et al. (2001) for dif-

ferent compositions of Al-Cu alloys. In each iteration, GA and PSO generate random

population within the specified range. Each value in the set of population represents

the values of a, b, c, d and l. The forward model is executed for these population to

obtain transient temperature distribution. Subsequently, the temperature obtained using

forward model (at T1 and T2) is then compared with simulated measurements in the

−lnPPDF Equation (5.5). The inverse analysis is performed for the exact measure-

ments and noise added measurements (σ=0.01Tmax, σ=0.02Tmax and σ=0.03Tmax).

Initially the estimation procedure is carried out for exact temperatures. Three

runs were performed with the same input parameters (number of population=50, num-

ber of generations=200) of GA and PSO and the retrieved unknown parameters along

with the -lnPPDF values are plotted shown in 5.6. (The pre assumed values are men-

tioned in brackets in Tables 5.2-5.9). It can be seen that both GA and PSO estimated

values are very close to the pre assumed values, refer Tables 5.2 and 5.3. With PSO, in

every run the latent heat and b values were retrieved exact to the actual value and out of

three runs, in two of the runs PSO estimated the values of a and c exact to the original

values. The average −lnPPDF values were found to be 1.85e-7 from GA and 2.31e-

15 from PSO. As PSO method is simple to implement with few number of steps, it took

less time i.e. 26142 s for the solution to converge compared to GA (29622 s) for exact

temperature data. Figure 5.7 shows the retrieval of the constants of the heat transfer

coefficient correlation, latent heat along with the modeling error for σ=0.01Tmax noisy

temperature data.

It is evident that the convergence of the values of a, b,c, d along with the la-
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Figure 5.6 (a) Convergence of average values of 'a '(b) Convergence of average values

of 'b '(c) Convergence of average values of 'c '(d) Convergence of average values of

'd'(e) Convergence of average values of latent heat (f) Convergence of average values

of −lnPPDF using GA and PSO for exact temperature data.
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Figure 5.7 (a) Convergence of average values of 'a '(b) Convergence of average values

of 'b '(c) Convergence of average values of 'c '(d) Convergence of average values of

'd '(e) Convergence of average values of 'ME '(f) Convergence of average values of

latent heat using GA and PSO for σ=0.01Tmax noisy data.
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Figure 5.8 (a) Convergence of average values of −lnPPDF for σ=0.01Tmax (b) Con-

vergence of average values of −lnPPDF for σ=0.02Tmax noisy temperature data.

tent heat and ME was faster by using PSO and also produced smooth results compared

to GA. Figure 5.8(a) shows faster convergence of the −lnPPDF for PSO than GA

and it was observed that GA converging to a value of 171.46 at 163 iteration where as

PSO converges to the same value at 65 iteration. This convergence capability is based

on the principle of search mechanism where PSO drives the population towards the

global optimum quickly compared to GA. Corresponding estimated values by GA and

PSO for σ=0.01Tmax noisy data can be found from Tables 5.4 and 5.5. The retrieved

values of latent heat showed a slight variation from the original value with absolute %

error of 0.45 using GA and PSO respectively. The estimation shows the main feature of

the Bayesian framework where fitness functions like Least squares, Tikhonov regular-

ization are not essentially drafted to provide the information about the error estimates

which has statistical exposition.

As the experimental temperatures are subjected to more errors, the noise level

of the temperature is increased to σ=0.02Tmax and the average retrieved values of the

unknown parameters are reported in Table 5.6. The estimated average values of a by

PSO was 8596 and by GA was 8597.1 with absolute % error of 0.625 and 0.611 respec-

tively. The estimated average value of latent heat by PSO was 381407 and by GA was

381355 with absolute % error of 0.129 and 0.14 respectively. Figures 5.8(b) and 5.9
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Figure 5.9 (a) Convergence of average values of 'a '(b) Convergence of average values

of 'b '(c) Convergence of average values of 'c '(d) Convergence of average values of

'd '(e) Convergence of average values of 'ME '(f) Convergence of average values of

latent heat using GA and PSO for σ=0.02Tmax noisy data.
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Figure 5.10 Schematic diagram of cast and chill arrangement with five temperature

sensor locations.

again show the quick convergence of −lnPPDF and the unknown parameters respec-

tively. The average computational time taken by GA and PSO was 29513 s and 26718 s

respectively for σ=0.02Tmax temperature data. Further the estimation is carried out for

σ=0.03Tmax and the benefit of the proposed methodology in handling the noise during

inverse estimation can be observed in Table 5.7. The average computational time taken

by GA and PSO was found to be 29366 s and 26232 s respectively for σ=0.03Tmax

temperature data. The convergence of estimation of unknown parameters from PSO for

noisy data showed within 80 iterations where as for GA it was found to be more than

100 iterations.

In addition, the effect of number of sensors are also investigated. Five temper-

ature sensors in which three of them placed at the distance of 5mm, 10mm and 20mm

from the casting-chill interface inside the mold cavity and other two at the distance of

3mm and 6mm from the casting-chill interface inside the steel chill were chosen as

shown in Fig.5.10 and the temperature distributions at the mentioned locations were

collected. The inverse analysis using GA and PSO is conducted for both exact and

σ=0.01Tmax noise data. The retrieval of unknown parameters using 5 sensors with ex-

act temperatures is demonstrated in Table 5.8. It was found that GA and PSO estimated

the unknown parameters close to the actual values for exact temperatures compared to
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Table 5.2 and 5.3. Using, PSO, the estimation achieved was accurate and took less

time to converge to the solution compared to GA. The average time taken by GA and

PSO was 29278 and 26319 s respectively. Table 5.9 shows the retrieved values of the

unknown parameters and the estimated average values of a by GA was 8677.2 and by

PSO was 8676.6 with absolute % error of 0.313 and 0.3 respectively. PSO retrieved b,

c and d values exactly to the original values. Further, the retrieved values of latent heat

by GA was 379860.2 and by PSO was 379931.83 respectively. It was also observed that

the absolute % error for ME was higher with five sensors compared to the results using

two sensors (refer Tables 5.4 and 5.5). This may be because of the fact that, higher the

number of temperature sensors, higher is the noise associated in the temperatures. It

has been observed that the average retrieved values of unknown parameters with two

temperature sensors for σ=0.01Tmax noise were close to the actual values compared

to the average values of unknown parameters obtained using five temperature sensors.

Hence, it sufficient enough to have two temperature sensors for the present analysis.

The results substantiate the use of GA and PSO within Bayesian framework to obtain

better estimates of the unknown parameters and hence proving an effective tool in the

field of solidification inverse problem.

5.6 CONCLUSIONS

An inverse heat conduction problem was identified to estimate the interfa-

cial heat transfer coefficient and mold environment heat transfer coefficient. During

the process of estimation of interfacial heat transfer coefficients, it has been identified

that the Bayesian framework provides a window where the constants involved in the

interfacial heat transfer coefficients along with the modeling error and latent heat of

the casting can also be simultaneously estimated with subjective priors. The use of

Bayesian framework alleviates the problem of ill-conditioning of the present inverse

problem. The popular Genetic algorithm and Particle Swarm Optimization were used

as the inverse approach for the estimation of the unknown parameters based on the sim-

ulated measurements. Later, the robustness of the proposed methodology was tested

using noisy temperature data. The following are the key findings of the present work:

1. The observations from scaled sensitivity revealed that the parameters a, b and

latent heat of the alloy were more sensitive and thus affecting temperature disti-
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bution significantly; hence, estimation was crucial. The scaled sensitivity values

of a, b and latent heat are showing a trend where they can be simultaneously

estimated but the scaled sensitivity values of c and d which are close to zero can-

not be retrieved with the temperature measurements unless there is some a-priori

information about those parameters. Hence, this entails and reinforces the use of

Bayesian framework.

2. The results from the PSO algorithm converged quickly with less computational

time compared to GA for both exact and added noisy temperature data. It was

also found that, there was no significant effect of noisy measurements on the

computational time during the process of estimation.

3. The investigation on effect of number of sensors revealed that the average re-

trieved values of unknown parameters were close to the actual data for both two

and five number of sensors hence, it would be sufficient to have two temperature

sensors for the present analysis.

4. The methodology adopted provides adequate information about the error asso-

ciated with the real time temperature measurements and thus buttresses the use

of present methodology for further studies on uncertainties of the parameters in-

volved in the mathematical model.

5.7 CLOSURE

In this chapter an explication of potential of Bayesian framework along with

GA and PSO as inverse method for multi-parameter estimation was addressed. In the

next chapter, a comparison of a hybrid PSO along with conventional GA and PSO

algorithms for a conjugate heat transfer experiments is discussed.
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CHAPTER 6

3D COUPLED CONDUCTION-CONVECTION PROBLEM USING
IN-HOUSE HEAT TRANSFER EXPERIMENTS IN

CONJUNCTION WITH HYBRID INVERSE APPROACH

6.1 INTRODUCTION

The first class of problem explained the 1-D inverse heat conduction problem for solid-

ification of casting where retrieval of more information was focused with less available

simulated measurements. Various multi-parameters like constants of the heat transfer

correlation, latent heat and modeling error were simultaneously estimated using GA

and PSO in conjunction with Bayesian framework. In this chapter, the challenges asso-

ciated in integrating the complex forward model that involves Navier Stokes equation

and energy equations is highlighted. After exploring the ability of GA and PSO for 1-D

heat conduction problem, the use of hybrid evolutionary algorithm that overcomes the

disadvantages of GA and PSO is studied. The demonstration of hybrid robust evolution-

ary algorithm for the inverse solution for an effective and quick estimation of heat flux

and heat transfer coefficient during conjugate fin heat transfer problem is performed.

Many a times, the information about the boundary heat flux is obtained only

through inverse approach by locating the thermocouple or temperature sensor in acces-

sible boundary. Most of the work reported in literature for the estimation of unknown

parameters is based on heat conduction model. Inverse approach using conjugate heat

transfer is found inadequate in literature as discussed in the Chapter 2 under section

2.5. Therefore, a 3D conjugate heat transfer model is solved without model reduction

for the estimation of heat flux and heat transfer coefficient from the measured temper-

atures. The application of the evolutionary algorithms to obtain accurate results from

simulated measurements is performed. Efficacy of the hybrid algorithm is established

using real time measurements.
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6.2 EXPERIMENTAL PROCEDURE

In-house experimental setup has been developed to facilitate the free convection heat

transfer from the fin. The layout of the experimental setup is shown in Figure 6.1. The

detailed connections involved in the experiments are represented in Figure 6.2. The

mild steel fin with dimensions 150x250x6 mm3 is placed centrally on to an aluminium

base of dimensions 150x250x8 mm3 as shown in Figure 6.3 (Gnanasekaran and Balaji

2011).

Figure 6.1 Layout of the experimental setup.

A nichrome wire wound over a mica sheet shown in Figure 6.4a is used as

the heater having the dimensions of the aluminium plate but the thickness is 1.4mm.

The sides of the aluminium base plate and bottom of the heater are insulated with glass

wool to prevent heat loss. The aluminium plate is placed in such a way that the longer

side is perpendicular to the ground and the longer side of the fin is parallel to the longer

side of the base. Several layers of glass wool are placed beneath the heater and sides

of the base plate to minimise heat loss. The backside portion of the heater is insulated
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and a thermocouple is placed on the insulation surface. Complete contact between the

heater and the base plate was ensured by tightening the screws in the frame as shown

in the Figure 6.4b, which helped in pushing the base plate against the heater. The size

of the heater is same as the size of the base plate. The fin setup is placed in an enclosed

chamber so as to avoid natural disturbances. Holes of 3mm diameter are drilled for a

depth of 20mm along the measuring length of the fin and the base plate. Calibrated K-

type sheathed thermocouples are used to measure the temperature of the fin and the base

plate. The thermocouples are calibrated with the standard thermostatic bath supplied by

Thermo Scientific, with the range of -60◦C to 200◦C and with accuracy of 0.01◦C. The

heater, placed below the base plate, is powered by a DC power source that can supply

constant power to the setup. Different trials of experiments are conducted by varying

the range of power input to the heater. The temperature recorded using thermocouple is

accessed with the help of data acquisition system equipped with the Labview software

supplied by the National Instruments. The DAQ used in the present work consists of 16

channels with the model no: NI 9213. Temperature is recorded for every 10s during

Figure 6.2 Photographic representation of the experimental setup.

the experiments; however, only steady state measurements are taken into account for the

purpose of estimation. A typical natural convection fin experiments requires 5-6 hours

to reach steady state. The steady state is confirmed when the change in temperature is
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Figure 6.3 Photographic view of vertical fin setup.

(a)

(b)

Figure 6.4 (a) Nichrome heater plate (b) Front view of the vertical fin setup.
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Figure 6.5 Measured temperature along the length of fin.

0.1 ◦C for a time duration of 10min. Experiments are conducted for different heat flux

values of 305, 544, 853 and 1232 W/m2 and corresponding temperature distribution

along the vertical fin is recorded from beginning of the experiment till the end in the

system with the help of DAQ. A typical experimental plot for three different power

inputs is shown in Figure 6.5.

6.2.1 Uncertainty analysis

The uncertainty due to the voltage and the current in DC power source is presented

below. The heat is supplied to the experimental setup using DC power source. The

uncertainty of the power source should be known beforehand since the uncertainty of

the voltage and current have some effect on the final estimates of heat flux and heat

transfer coefficient. Table 6.1 shows the uncertainty associated with the instruments.
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Table 6.1 Instruments and uncertainty.

Instrument Uncertainty

DC power source ±0.2%
Digital multimeter ±1.6%

For a typical power of 32W, the uncertainty in the power is given by,

P = V × I (6.1)

±
√

(
∂P

∂V
σV )2 + (

∂P

∂I
σI)2 (6.2)

±
√

(0.64× 0.002)2 + (50× 0.016)2 (6.3)

= ±0.64W or 2% (6.4)

Where P is Power in W, V is voltage and I is current in amphere.

6.3 FORWARD PROBLEM

6.3.1 Numerical Simulations

The numerical model consists of a fin and base assembly placed inside an extended

domain. The setup has an aluminium base with dimensions of 250x150x8mm3 and

steel fin with dimensions of 250x150x6 mm3. Figure 6.6 shows the numerical model

representing physics of the actual model. An extended domain is modelled to study

the effects of convection and also to obtain velocity of the fluid. A domain indepen-

dence study has been carried out for the given geometry by varying the dimensions of

the extended domain. Finally, the dimension of the extended domain was considered

to be 975x995x930 mm3 in x, y, z direction, respectively. The properties of the mate-

rials used in this study are provided in Table 6.2. The fluid medium considered in the

extended domain is air and is considered to be of constant thermo-physical properties

except for the density so as to model natural convection. Boussinesq approximation is

incorporated to treat density as a constant in the momentum and the continuity equa-

tions but it varies with temperature in the energy equation. The present numerical study

is modelled as a three dimensional conjugate heat transfer problem. The domain is

modelled with ANSYS 14.5 design modeler and meshed using ANSYS meshing tool.
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Figure 6.6 Numerical model of fin and base setup with extended domain considered for

simulation.

The governing equations of the present study are given as

Continuity

∇.
−→
V = 0 (6.5)

X-momentum equation
−→
V .∇u = −1

ρ

∂p

∂x
+ ϑ∇2u (6.6)

Y-momentum equation

−→
V .∇v = −1

ρ

∂p

∂y
+ ϑ∇2v + gβ.∆T (6.7)

Z-momentum equation
−→
V .∇w = −1

ρ

∂p

∂z
+ ϑ∇2w (6.8)

95



Table 6.2 Properties of materials.

Properties Mild Steel Aluminum

Density (kg/m3) 8030 2719
Specific heat (J/kgK) 502.48 871
Thermal conductivity (W/mK) 46 202.4

Energy equation (for fluid)
−→
V .∇T = α∇2T (6.9)

Energy equation (for fin and aluminium base)

∇2T = 0 (6.10)

Figure 6.6 depicts the boundary conditions of the present problem. At the inlet, the

following boundary conditions are imposed,

u = 0, v = 0, z = 0, T = T∞ (6.11)

At the outlet of the domain the following boundary condition is used,

∂2u

∂y2
= 0,

∂2v

∂y2
= 0,

∂2z

∂y2
= 0,

∂2T

∂y2
= 0, (6.12)

The x-face of the domain is subjected to,

u = 0, v = 0, z = 0,
∂T

∂x
= 0 (6.13)

Also z-face of the domain is subjected to,

u = 0, v = 0, z = 0,
∂T

∂z
= 0 (6.14)

Region 'a 'is a solid-solid interface and the transfer of energy at this region is through

conduction, where the wall of the fin and the aluminum base are treated as coupled wall.

kAl
∂T

∂n
= kms

∂T

∂n
and TAluminum = TMildsteel (6.15)
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At regions 'b ', 'c 'and 'd 'the boundary condition imposed is solid-liquid interface, so the

energy transfer between the fin faces to the air in the extended domain is by convection.

kms
∂T

∂n
= kf

∂T

∂n
and TMildsteel = Tfluid (6.16)

At region where the top surface of the aluminum base is in contact with fluid. The

following boundary condition is specified.

kAl
∂T

∂n
= kf

∂T

∂n
and TAluminum = Tfluid (6.17)

where kAl is the thermal conductivity of the aluminum, kms is the thermal conductivity

of the mild steel, kf is the thermal conductivity of the fluid.

The base of the aluminium is subjected to constant heat flux,

q0 = −k∂T
∂x

(6.18)

At region 'e 'i.e. along the sides of the base insulated boundary condition is applied.

∂T

∂z
= 0 (6.19)

No slip condition is applied along all solid walls. All these regions are treated as inter-

faces. It is pertinent to mention here that Equations (6.5-6.10) are solved for an assumed

heat flux (refer Equation (6.18)) and known boundary conditions to obtain the temper-

ature distribution. Finite volume method is used as the numerical method to solve the

partial differential equations. Commercial software, ANSYS FLUENT was used to ac-

complish this task. The solution procedure included the use of Semi Implicit Pressure

Linked Equation (SIMPLE) algorithm. Second order upwind scheme was used and the

convergence criterion of 10−6 was fixed for the energy and the momentum equations.

One of the findings of the present work is the estimation of heat transfer coefficient

mentioned in region ‘c’ where the side of the mild steel plate is dissipating heat by con-

vection to the ambient by natural convection; hence, the forward model is solved based

on the boundary condition given in Equation (6.20) which replaces the Equation (6.16),

− kms
∂T

∂n
= h∆T (6.20)
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In the inverse estimation, the heat flux mentioned in Equation (6.18) and the heat trans-

fer coefficient in Equation (6.20) are estimated for the known temperature distribution

obtained from in-house experiments.

6.4 GRID INDEPENDENCE STUDY

Grid independence study is shown in Figure 6.7. A 3-D numerical model for fin heat

transfer was developed and meshed using ANSYS package. Structured mesh was used

for the entire domain. For the heat flux input of 1200 W/m2, simulation was carried out

for the selected domain with 117438 nodes and the temperature at the location of 0.13m

on the mild steel plate along the y- direction as shown in Figure 6.3 was recorded. This

Table 6.3 Grid independence study.

Location, m Nodes
(x,y,z) 117438 463116 756516

(0.14,0.005,0.075) 355.696 347.740 347.697
(0.14,0.07,0.075) 356.100 348.557 348.645
(0.14,0.013,0.075) 356.620 349.374 349.475
(0.14,0.018,0.075) 356.936 349.878 349.995
(0.14,0.022,0.075) 357.069 350.101 350.225

was followed by reducing the mesh size which resulted in the increase of the nodes. The

mesh size was reduced at the regions of interest such as the solid-solid and solid-liquid

interface layers. The next set of nodes obtained was 463116 and the simulation was

carried out for the same value of heat flux. Once again the temperature was recorded.

Further the node number was increased to 756516 nodes and the temperature for the

same value of heat flux is recorded at the same height of the plate. It was observed that

the difference in temperature decreased as the nodes were increased. The difference

in temperature between 463116 and 756516 was not very significant as shown in Table

6.3. Hence, 463116 nodes were used for further simulations as increase in the number of

nodes would also increase the computational time. Numerical simulations are carried

out in a 32core 64GB RAM workstation and the average time taken for obtaining a

single forward solution was 30-45 mins. The results obtained from the simulations are

validated with measured data as shown in Figure 6.8.
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Figure 6.7 Grid Independence study.

6.5 FAST FORWARD MODEL

6.5.1 Artificial neural network

ANN is based on neural computing similar to the biological nervous system. It cre-

ates a relation between the input and the output based on some weighted function. The

structure of the ANN includes three layers; The first layer through which data is fed in

to the network is the input layer and the results are obtained from the output layer. In

between the input and the output layer is the hidden layer where training the network is

accomplished (Deng and Hwang 2006; Zhang et al. 2010). As discussed earlier, solving

the forward model using ANSYS FLUENT to obtain the temperature distribution for

the assumed heat flux is time consuming. An ANN is proposed in this work as a fast

forward model which is created using large data set containing different values of heat

fluxes and corresponding temperature distributions which are obtained from Computa-

tional Fluid Dynamics (CFD) solutions.

The neurons in the hidden layer are decided based on the neuron indepen-

dence study. Each interconnection between the neurons is associated with weight. The
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Figure 6.8 Comparison of simulated and measured temperatures for different heat flux

values.

strength of the connections between the neurons is determined by these weights. The

back propagation algorithm is used in the present work to upgrade the weights. Using

certain training algorithms the weights connecting neurons in the different layers is ad-

justed according to the training set. This process is called training the network. Learn-

ing the connection between the input and the output layers based on the corresponding

input-output pairs is the main feature of ANN. During network training, 75% of the

data is considered for training and remaining 25% is kept aside for testing. Sometimes,

training the network is time consuming depending on the number of unknowns and

data, but after establishing the network, the output is considerably faster than the CFD

computations. In the present case, the maximum time taken for training the network

was 2 hours that involved neuron independence study, testing and validation between

the input and the target data. Heat flux values and temperatures are chosen as input

and output respectively. Network is trained for different number of neurons and corre-

sponding R2 values are recorded. Table 6.4 shows the neuron independence study and

it is observed that 6 neurons are sufficient for the purpose of training as the value of
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R2 ≈ 1. The point to be noted here is, within the range of heat flux values specified to

train the ANN model, in the process of inverse estimation of heat flux and heat transfer

coefficient, the ANN model will also provide the output for a given input which was not

a part of the training sets.

Table 6.4 Neuron independence study.

Sl.No. Neurons MRE R2

1 6 0.00041 0.99999
2 12 0.01391 0.99940
3 19 0.00986 0.99982
4 27 0.02058 0.99940

6.6 SENSITIVITY STUDY

The sensitivity approach has an important role in the estimation of unknown parame-

ters. The solution to the sensitivity problem is defined as the directional derivative of the

temperature corresponding to the perturbation of the unknown parameters. For exam-

ple, the effect of change in the heat flux or the heat transfer coefficient results in change

in temperature of the fin which is the study of sensitivity. The sensitivity coefficient is

expressed as (Ozisik and Orlande 2000),

Jij =
∂Ti
∂Pj

=
Ti(P1 . . . , Pj + ∆Pj . . . , PN)− Ti(P1 . . . , Pj . . . , PN)

∆Pj

(6.21)

where Jij is the sensitivity coefficient, Ti is the ith estimated temperature, Pj is the jth

unknown parameter, ∆Pj is the change in the unknown parameter. When the magnitude

of Jij is small, it indicates that large changes in Pj results in small changes in Ti. In

such case, the estimation of unknown parameters is exceedingly difficult, and the meth-

ods like gradient based technique are seldom used as an inverse approach because of its

inability to estimate the required parameter. Sometimes, the gradient based method gets

entrapped in the local minima or maxima. It is always desirable to obtain a large mag-

nitude for Jij so that accurate estimation of the unknown parameters is possible. Small

magnitude of Jij necessitates the use of prior information about the unknown parame-

ters in the inverse approach. Sensitivity coefficients expressed in the form of matrix is

termed as Jacobian matrix. The determinant of the Jacobian matrix i.e | JT
ij Jij| defines
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Figure 6.9 Sensitivity coefficient plot.

the condition of the problem. When | JT
ij Jij| ≈ 0 , the problem is then ill-conditioned.

The sensitivity analysis for the heat flux and the heat transfer coefficient is shown in

Figure 6.9. The magnitude of the sensitivity coefficient of heat flux is found to be less

and positive, while the other sensitivity coefficient is negative. The sensitivity coeffi-

cient of the heat flux and the heat transfer coefficient show linear dependency, therfore

the simultaneous estimation of the heat flux and the heat transfer coefficient is more

difficult without a priori information since the magnitude of the sensitivity coefficient

of the heat flux is close to zero and hence no information can be obtained from it. Need-

less to say, the heat transfer coefficient and the heat flux are estimated independently

using GA, PSO, PSO-BFGS for the proposed inverse conjugate heat transfer problem

without the use of a priori information.

6.7 INVERSE METHODS

A detailed explanation of inverse methods is provided in Chapter 3.4. In the present

work, GA, PSO and PSO-BFGS are used as inverse methods. To improvise the existing

conventional evolutionary algorithm, a hybrid algorithm is proposed to demonstrate its
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effective use in estimation of unknown parameters. In comparison with the existing

metaheuristic algorithms, hybridizing PSO algorithm with other deterministic method

is easy as PSO contains lesser parameters to solve the optimum solution and also sev-

eral studies show that hybrid GA give poor results than hybrid PSO for the estimation

of parameters in heat transfer problem. Besides that hybrid PSO also achieves bet-

ter search capabilities to produce better solutions compared to hybrid GA (Vakili and

Gadala 2009; Lee et al. 2008). For nonlinear optimization, the use of Broyden Fletcher

Goldfarb Shanno (BFGS) method is very efficient as its performance is found to be

more accurate compared to other optimization algorithms.

6.8 OVERVIEW OF THE PRESENT WORK

In the present paper GA, PSO and PSO-BFGS are used as the inverse algorithms with

the common objective of minimizing the error between the measured and the simu-

lated temperatures. Least squares method is chosen as the fitness function expressed in

Equation (6.22).

S(q or h) =
M∑

m=1

N∑
i=1

[Yim − TANN(q or h)]2 (6.22)

where q or h is the unknown parameter. Yim is the ith observation from the mth mea-

surement; M and N are the number of measurements and observations, respectively.

TANN(q or h) is the simulated temperature obtained from the fast forward model.

For the forward problem, the temperature distribution was obtained by con-

sidering the heat flux as the input. For inverse approach, heat flux and heat transfer

coefficient are to be determined from the known temperature information. Figure 6.10

represents the overview of the present work. CFD simulations are performed for various

values of heat flux and corresponding heat transfer coefficient (h) and temperature data

(Tsim) are collected. As the CFD simulations are time consuming, a neural network

is trained between the available heat flux/ heat transfer coefficient and corresponding

temperature data obtained from CFD simulations. The trained ANN model predicts

the temperatures (TANN ) for any given value of heat flux/ heat transfer coefficient in-

put. A range of heat flux/ heat transfer coefficient is initialized by GA/PSO/PSO-BFGS

optimization algorithms. Every value in the range is passed to ANN model and tem-

peratures are predicted which are then compared with the observed temperatures to find
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Figure 6.10 Overview of the present work.

the fitness values using Equation (6.22). Based on the methodology of the mentioned

optimization algorithms, the fitness function is minimized and the procedure is carried

out till the criterion is satisfied. The value of the heat flux and heat transfer coefficient

for which the fitness function is minimum, would be the estimated value.

6.9 RESULTS AND DISCUSSION

6.9.1 Solution from forward model

With the known thermo-physical properties and appropriate boundary conditions, the

governing equations are solved to obtain the temperature distribution for different val-

ues of heat flux as input. The temperature distribution along the height of the fin is

shown in Figure 6.11. It can be observed that along the length of the fin there is a

gradual increase in the temperature indicating that the heat transfer from the fin surface

to ambient as y→ L is decreasing because the cold air from the bottom receives more

heat and raises upstream due to the difference in density. The temperature contour for

the heat flux value of 1600 W/m2 is shown in the Figure 6.12. Heat transfer by natural

convection takes place as shown in the Figure 6.13 along the y-direction i.e, along the

length of the mild steel plate. The analysis was carried out assuming Boussinesq ap-

proximation. The density difference causes the flow of the air as observed. Hence, the
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Figure 6.11 Simulated temperature distribution along the length of the fin.

velocity is maximum at the top end which is evident from the Figure 6.13.

6.9.2 Forward solution based on Fast Forward model

The use of iterative based method in the inverse approach leads to cumbersome task

due to evaluation of the forward model each time for every new value of the parameters

generated during the inverse process. In order to overcome this, the CFD simulations

are performed for different values of heat fluxes and the corresponding temperature

distributions are noted down. To solve the forward model by CFD simulation, the com-

putational time required is 30-45 minutes depending upon the convergence. A neural

network is now trained between the heat flux values and respective temperature data.

The network not only reduces the computational time drastically but also provides the

temperature distribution for any given heat flux within the range of heat flux used for

training the network. The trained neural network produces temperature distribution in

less than 5 seconds for a given heat flux (within specified range). From Table 6.5, it can
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Figure 6.12 Temperature contour for the heat flux of 1600 W/m2.

be seen that ANN temperatures are in good agreement with CFD temperatures. There-

fore, for the estimation of the unknown heat flux and the heat transfer coefficient using

the inverse method, ANN replaces the CFD solutions as a fast forward model.

Table 6.5 The comparison between ANN and CFD simulations.

1100W/m2 1600W/m2 2200W/m2

Distance TSim TANN TSim TANN TSim TANN

from base (K) (K) (K) (K) (K) (K)
(m)
Base 363.43 363.43 389.49 389.52 419.77 419.78
0.005 333.36 333.35 346.33 346.32 361.10 361.09
0.178 338.54 338.53 353.42 353.42 370.30 370.30

6.10 ESTIMATION OF HEAT FLUX

As mentioned earlier, the inverse conjugate fin heat transfer problem is solved using

GA, PSO and PSO-BFGS as optimization algorithms. The inverse estimation along

with the neural network method is accomplished using in-house codes developed in
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(a)

(b)

Figure 6.13 (a) Velocity streamlines for heat flux of 1600 W/m2 and (b) velocity vector

plot in y-z plane for the heat flux of 1600 W/m2.

MATLAB. The estimation is attempted using simulated measurements, for this, the heat

flux value is chosen in the range between 305 W/m2 and 3300 W/m2. Figure 6.14a and

6.14b show the heat flux and fitness values obtained using GA, PSO and PSO-BFGS

as inverse methods for the heat flux 700 W/m2 respectively. The estimation is achieved

using all the mentioned algorithms with the same initialization parameters for several

trials and three such runs are reported in Table 6.6. For GA, the number of iterations
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is set to 50. The mutation rate, chromosomes number and gene number are assigned to

be 0.1, 12 and 8 respectively. Every chromosome represents heat flux values for which

the array of temperatures are obtained from neural network. This array of temperatures

is used in Equation (6.22) to calculate the error between the measured and simulated

temperatures. From Table 6.7 it can be observed that the computational time was

Table 6.6 Estimated values for the actual heat flux of 700 W/m2 using GA, PSO and

PSO-BFGS.

Runs GA heat Time,s PSO heat Time,s PSO-BFGS Time,s
flux flux heat flux
(W/m2) (W/m2) (W/m2)

1 699.95 8.19 700 11.14 700 20.9
2 699.95 8.29 700 12.56 700 15.15
3 699.95 8.21 700 11.08 700 18.02

Table 6.7 Effect of chromosome number in estimating actual heat flux of 700 W/m2

using GA.

Chromosomes GA heat flux Time,s Fitness
(W/m2) value

8 699.95 8.19 4.08e-05
30 699.95 33.49 4.08e-05
60 699.95 62.38 4.08e-05

found to increase with increasing chromosomes and this is due to the evaluation of

more number of inputs during the calculation of fitness function. When the number of

genes is assumed to be 8, the heat flux estimated by GA is 704.33 W/ m2 whereas, the

retrieved value of heat flux now becomes very close to the actual value of heat flux for

12 genes which is evident from Table 6.8. Hence, the number of genes is fixed as 12 for

further analysis. The effect of change in the mutation rate was found to be insignificant.

For the same range of initial guesses, the estimation of actual heat flux is car-

ried out using PSO algorithm. In the beginning, the position and velocities are randomly
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(a)

(b)

Figure 6.14 (a) Estimation of heat flux using GA, PSO and PSO-BFGS, (b) Fitness

values for the estimation of heat flux of 700 W/m2 using GA, PSO and PSO-BFGS.
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Figure 6.15 Enlarged view of fitness values for 700 W/m2 heat flux.

Table 6.8 Effect of gene number in estimating actual heat flux of 700 W/m2 using GA.

genes GA heat flux Time,s Fitness
(W/m2) value

8 704.33 8.05 0.2536
12 699.95 8.19 4.08e-05

generated. In order to evaluate the fitness function, the input parameters are initialized.

In the present case, the particles represent a range of heat flux values. In each iteration

the particle’s previous best and the global best are updated. The values of c1 and c2

are set to 1.43 and 1.43 respectively. After evaluation of fitness function, the personal

best and global best values are updated appropriately. In the next iteration, the updated

velocities and positions of each particle are considered. A modification for the present

PSO algorithm is employed by using BFGS to improve the inverse solution. This hy-

brid strategy follows the initialization of heat flux values similar to PSO algorithm, but

the algorithm makes use of hessian matrix to improve the solution. The value of γ i.e.,

step size and the direction is calculated using line search method (Nocedal and Wright
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Table 6.9 Effect of particles numbers on the estimation of actual heat flux 700 W/m2.

Particles PSO heat PSO Fitness PSO-BFGS PSO-BFGS Fitness
flux Time,s values heat flux Time,s values
(W/m2) (W/m2)

10 700 11.14 3.85e-11 700 20.9 1.3e-13
30 700 29.65 9.25e-11 700 31.26 7.66e-10
60 700 60.32 10.05e-12 700 61.95 5.07e-11

2006; Rao 2009) to find out the unknown parameter. The computational time required

for the estimation of heat flux using PSO-BFGS algorithm was observed to be more

compared to the other two algorithms because it needs to find out appropriate value of

γ to predict the increment of the next parameter. Like GA, the increase in the number of

particles increases the computational cost (Vakili and Gadala 2009) as reported in Table

6.9. The enlarged view of Figure 6.14b is shown in Figure 6.15. The convergence rate

of the fitness function for PSO and PSO BFGS was found to be faster than GA. For the

actual heat flux value of 700 W/m2, GA estimates a value of 699.95 W/m2 with a fitness

value of 4.07575e-5 whereas PSO and PSO-BFGS algorithm estimates 700 W/m2 with

fitness values 3.84829e-11 and 1.30006e-13 respectively.

Now the process of estimation of unknown heat flux is carried out for the

experimental temperatures. Figure 6.16a illustrates the retrieval of experimental heat

flux. As the experimental temperatures are prone to errors, it is very difficult and also

quite challenging to retrieve the unknown heat flux. It is evident that the PSO-BFGS

was able to find a closer estimate compared to the other two algorithms. It can also be

observed that PSO accomplishes the estimation quicker than GA but no improvement

in the solution was found with further iterations. Table 6.10 represents the estimated

values of unknown heat flux for experimental heat flux of 853 W/m2 using GA, PSO and

PSO-BFGS respectively. The plot for the fitness values is shown in Figure 6.16b. From

Table 6.11, it can be well judged that the PSO-BFGS algorithm show good performance

in retrieving the unknown heat flux very near to the actual value with a fitness value of

9.87e-7 compared to GA and PSO whose fitness values are found to be 1.27e-4 and

5.37e-13, respectively. The computational time taken by PSO-BFGS was nearly equal

to GA where as for PSO it was observed to be considerably less. The estimation is
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(a)

(b)

Figure 6.16 (a) Retrieved heat flux using GA, PSO and PSO-BFGS from the measured

temperatures performed for the experimental heat flux of 853 W/m2 and (b) best fitness

values for the experimental heat flux of 853 W/m2using GA, PSO and PSO-BFGS.
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carried out for one more experimental heat flux of 1232 W/m 2 and the results are

tabulated in Table 6.12. The error percentages in the estimation of experimental heat

fluxes of 853 W/m2 and 1232W/m2 are found to be 0.86 and 0.44 respectively. The

heat flux estimated from the experimental temperature is now fed in to the forward

model to obtain the temperature distribution. The agreement between the experimental

temperature and ANN temperature is found to be good and is shown in Figure 6.17a in

terms of parity plot. The dotted lines show the range of deviation of the temperature

between the experimental and trained value of the temperature.

6.11 ESTIMATION OF HEAT TRANSFER COEFFICIENT

From the previous section, it can be seen that the evolutionary methods are well suited

for the estimation of heat flux for the experimental temperatures. In this section, the

input to the forward model is the heat transfer coefficient and the output is the tem-

perature distribution. The agreement between the average temperature from simulated

values and the neural network is shown in Figure 6.17b. The range for the heat transfer

coefficient is considered between 2.378W/m2K and 5.581W/m2K . Figure 6.18a shows

Table 6.10 Heat flux values estimated for the experimental heat flux of 853 W/m2.

Runs GA GA PSO PSO PSO-BFGS PSO-BFGS
heat flux Time,s heat flux Time,s heat flux Time,s
(W/m2) (W/m2) (W/m2)

1 875.43 12.62 875.58 9.39 860.41 11.75
2 875.43 12.36 875.58 9.85 860.41 13.06
3 875.43 13.68 875.58 10.15 860.41 12.65

Table 6.11 Comparison of retrieved heat flux and fitness values for experimental heat

flux of 853 W/m2.

Algorithms Retrieved Fitness Time,s % error
heat flux values
(W/m2)

GA 875.43 1.27e-4 12.62 2.63
PSO 875.59 5.37e-13 9.39 2.64
PSO-BFGS 860.41 9.87e-7 11.75 0.86
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Table 6.12 Comparison of retrieved heat flux and fitness values for experimental heat

flux of 1232 W/m2.

Algorithms Retrieved Fitness values Time,s % error
heat flux
(W/m2)

GA 1257.1 1.87e-4 6.86 2.03
PSO 1258.1 1.69e-14 9.67 2.11
PSO-BFGS 1237.5 5.22e-10 10.84 0.44

Table 6.13 Retrieval of actual heat transfer coefficient value of 4.121 W/m2K using GA,

PSO and PSO-BFGS algorithms.

Runs GA, h GA PSO, h PSO PSO-BFGS, PSO-BFGS
(W/m2K) Time, s (W/m2K) Time, s h (W/m2K) Time, s

1 4.121 13.54 4.121 14.59 4.121 15.42
2 4.119 13.32 4.121 14.84 4.121 14.32
3 4.121 13.41 4.121 14.93 4.121 14.06

Table 6.14 Retrieval of heat transfer coefficient from experimental temperature using

GA, PSO and PSO-BFGS algorithms.

Actual, h GA, h GA PSO, h PSO PSO-BFGS, PSO-BFGS
(W/m2K) (W/m2K) Time, s (W/m2K) Time, s h (W/m2K) Time, s

3.782 3.81 11.57 3.81 17.1 3.786 24.64
4.283 4.318 8.21 4.316 11.54 4.293 15.28

the retrieval of actual value of 4.121W/m2K for simulated temperature data using GA,

PSO and PSO BFGS algorithms. From Table 6.13, it can be observed that PSO and

PSO-BFGS algorithms produce best estimates but GA was found to have instability in

retrieving the same value for different runs. The computational time taken by GA was

found to be less compared to other two algorithms. Figure 6.18b shows the conver-

gence of the fitness values for the estimation of actual heat transfer coefficient of 4.121

W/m2K. The fitness values at the end of 50 iterations are found to be 7.67e-4, 2.86e-8

and 2.104e-12 for GA, PSO and PSO-BFGS respectively.
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(a)

(b)

Figure 6.17 (a) Parity plot for between the experimental and simulated temperature

from the estimated heat flux and (b) parity plot between the temperatures obtained using

ANN and numerical simulations.

115



(a)

(b)

Figure 6.18 (a) Retrieval of actual h value of 4.121 W/m2K using GA, PSO and PSO-

BFGS algorithms respectively. (b) Fitness values of GA, PSO and PSO-BFGS algo-

rithms for the actual h value of 4.121W/m2K.
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(a)

(b)

Figure 6.19 (a) Retrieval of actual experimental heat transfer coefficient of 3.78 W/m2K

using GA, PSO and PSO-BFGS algorithms respectively. (b) Fitness values of GA, PSO

and PSO-BFGS algorithms for the actual heat transfer coefficient of 3.78W/m2K.
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After estimating the heat transfer coefficient values for the simulated measure-

ments, the estimation is extended to the experimental temperature to prove the efficacy

of all the algorithms. From Figure 6.19a, it is seen that the PSO-BFGS again provides

closer findings compared to the other two algorithms. For different runs the estimated

values of heat transfer coefficient against the actual value are reported in Table 6.14.

Computational time was found to be more for PSO-BFGS due to evaluation of BFGS

method, but the value retrieved was noticed to be 3.786 W/m2K with an error of 0.105%.

The retrieved values from GA and PSO are 3.81 W/m2K with an error of 0.74%. The

convergence of the fitness value plot is shown in Figure 6.19b.

6.12 CONCLUSION

In this work the solution of an inverse problem has been presented for a three dimen-

sional conjugate heat transfer problem. The forward problem was solved using ANSYS-

FLUENT software. The objective of the inverse problem was to estimate the unknown

heat flux and the heat transfer coefficient from the measured temperatures. To accom-

plish this, a simple inexpensive natural convection fin setup was fabricated and several

steady state experiments have been performed to obtain the temperature distribution of

the fin. The forward problem based on CFD solutions was then replaced by Artificial

Neural Network in order to expedite the computational process. The inverse estimation

was accomplished using GA, PSO and PSO-BFGS algorithms. Sensitivity coefficient

analysis was also examined for the unknown parameters. The estimation using sim-

ulated measurements showed good results from the inverse approaches. In addition,

the proposed approach was also applied to the actual measurement data obtained from

in-house experiments. It was concluded that PSO-BFGS, a new hybrid optimization

algorithm, can effectively be used to solve the inverse conjugate heat transfer problems

with more accurate results. BFGS algorithm helps the hybrid algorithm to overcome

the disadvantage of PSO and GA in handling noisy data. For simulated measurements,

all the three algorithms were found to be effective; whereas, PSO-BFGS demonstrated

to be a good choice for the estimation of heat flux and heat transfer coefficient with

absolute %error less than 1 and 0.25 respectively compared to PSO and GA for the

experimental data. Hence, the use of the evolutionary algorithms in combination with

ANN was found to be a formidable approach in the estimation of the unknown param-
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eters. Thus, the above hybridization of forward and inverse solutions in the field of

inverse estimation opens up new vistas for solving more complex conjugate problems

in heat transfer.

6.13 CLOSURE

This chapter reported the estimation of heat and heat transfer coefficients associated dur-

ing 3D conjugate fin heat transfer problem. The estimation obtained from PSO-BFGS

algorithm along with ANN showed that it can be well utilized for solving complex

conjugate heat transfer problems.
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CHAPTER 7

CONCLUSIONS

The present work is concentrated towards the exploration of inverse methods

for the estimation of multiple parameters associated with solidification of casting and

conjugate fin heat transfer problems. Estimating the parameters at the surface which is

subjected to high temperature becomes crucial when direct estimation is non-feasible.

Chapter 1 described the introduction to the inverse problems, basic concepts of so-

lidification of casting and conjugate fin heat transfer. Chapter 2 briefly described

the literature review on various inverse methods for heat transfer problems; especially,

application of evolutionary algorithms and neural network for the estimation of heat

transfer parameters which led to define the objective of the present work. Chapter 3

explained the forward model, numerical simulations, neural networks as fast forward

model considered in the inverse problem and procedure of GA, PSO and PSO-BFGS

algorithms.

Chapter 4 explained the solution of first class of problem considered in the

present work. The IHTC estimation at the casting-chill interface during solidification of

Sn-5wt%Pb alloy was chosen and solved using the available prior information about the

IHTC from the literature. The temperatures from the numerical simulations using an

explicit FDM scheme and corresponding inputs are trained using ANN. The major con-

cern with the inverse estimation was computational time, hence a GA-ANN approach

was attempted. Bayesian approach was implemented where the error associated with

the temperature measurements can be incorporated. Both GA-ANN-least squares and

GA-ANN-Bayesian showed accurate estimation for exact temperature data but for the

noisy measurements GA-ANN-Bayesian approach retrieved accurate estimation with

an absolute % error of a, b and ME as 0.0886, 0.172 and 1 for σ=0.01Tmax; 0.107,

0.425 and 1.5 for σ=0.02Tmax ; 0.2, 0.425 and 1.67 for σ=0.03Tmax respectively. The

conventional estimation using genetic algorithm would take 8-9 hours for the estimation

but the use of ANN produced the results with an average of less than 125 seconds. This

approach furnished an advantage over the other inverse methods as the prior knowledge
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of the parameters to be estimated can be inserted in the Bayesian framework which

could result in achieving effective retrievals.

The state of the art research of Chapter 5 was the use of Bayesian frame-

work combined with GA and PSO in order to estimate the constants involved in the

heat transfer coefficients, latent heat and quantification of uncertainties in the form of

standard deviation during solidification of Al-4.5wt%Cu alloy. The goal of accomplish-

ing several unknown parameters simultaneously from single simulated experiment was

successfully attempted. The Bayesian framework regularizes the inverse solution with

help of informative priors. Scaled sensitivity analysis of the unknown parameters has

been highlighted to express the effect of unknown parameters with temperature sensor

locations and to find out the feasibility of the estimation process. The values of scaled

sensitivity for a, b and latent heat were found to be high compared to c and d hence

they significantly affect the temperature distribution during solidification. A range of

a=[1000 25000], b=[0.01 0.6], c=[0.01 10], d=[0.01 0.6], ME=[0.001 0.06] and latent

heat=[100000 500000] initialized for GA and PSO. The convergence of the -lnPPDF

was faster for PSO than GA and it was observed that GA converging to a value of 171.46

at 163 iteration where as PSO converges to the same value at 65 iteration. The method-

ology was successfully implemented for both exact and noisy data and also the Study of

effect of number sensors was also carried out. For five sensors, the retrieved values of

the unknown parameters and the estimated average values of a by GA was 8677.2 and

by PSO was 8676.6 with absolute % error of 0.313 and 0.3 respectively. PSO retrieved

b, c and d values exactly to the original values. Further, the retrieved values of latent

heat by GA was 379860.2 and by PSO was 379931.83 respectively which was found be

comparatively higher to that of two sensors as increase in the number of sensors would

increase noise associated in the temperatures.

Developing new techniques for the parameter estimation will always provide

a choice to solve heat transfer problems. In Chapter 6, a 3D conjugate steady state

fin heat transfer problem was considered and a numerical model was developed using

ANSYS Fluent to obtain the temperatures distribution in fin. Each simulation took 30-

45 mins for the convergence hence, a neural network was trained between the range

of heat fluxes and corresponding temperatures which produced the output less than
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5 seconds, used replaced by CFD simulations. In-house natural convection fin heat

transfer experiments were also conducted for various heat fluxes and the estimation

was performed for experimental temperatures. GA, PSO and PSO-BFGS algorithms

exhibited good results for simulated temperatures. During the estimation of heat flux

from measurements, PSO-BGFS provided the results with an average % error of 0.86

and 0.44 for 853 W/m2 and 1232 W/m2 respectively. The retrieval of heat transfer

coefficient was also attempted for both simulated and experimental temperatures. PSO-

BFGS estimated the heat transfer coefficient with an average %error 0.105 and 0.233 for

3.782W/m2K and 4.283W/m2K respectively. A new hybrid PSO-BFGS algorithm was

developed and the efficacy was compared with conventional GA and PSO algorithms.

The estimation using PSO-BFGS observed to be a preferred choice for the estimation

of heat flux and heat transfer coefficient with absolute % error less than 1 and 0.25

respectively for the experimental data.

7.1 LIMITATIONS OF THE PRESENT WORK

1. The use of evolutionary algorithms become a time-consuming process of esti-

mation when compared to gradient-based methods as it requires a range of input

parameters to be solved to obtain the values of the fitness function in every itera-

tion.

2. Though ANN is found to be an effective approach as a reduced model, for the

multi-parameter problems, training of ANN also requires more time.

3. This approach is more suitable for heat transfer problems with prior information.

4. To choose an effective algorithm for the estimation, one has to perform several

runs to optimize the algorithm parameters.

5. The trained ANN represents a reduced model for a particular case of a problem.

If the dimensions of the domain are changed, the network has to be trained again

to use it as fast forward model.

7.2 FUTURE SCOPE

The overall work presented in the thesis thus provides a new approach in the

inverse parameter estimation for various heat transfer problems.
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1. Consideration of radiation effects along with conduction at mold metal interface

for the estimation of IHTC during solidification of casting.

2. Application of fin designed molds to enhance heat transfer during solidification of

casting and optimization of number of fins on mold to maximize the heat transfer.

3. The estimation of heat flux and heat transfer coefficients can be further extended

for transient conjugate heat transfer.

4. Exploring various hybrid techniques and comparing the performances with the

existing methods.
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