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ABSTRACT 

 

Climate variability and change has increased extreme rainfall events. There is an 

underreporting and limited analysis, which often have significant impact with extreme 

rainfall events at regional scale. The magnitude of variability of the rainfall extremes varies 

according to locations. Among subdivisions of Western Ghats of India maximum rainfall 

occurs over Coastal Karnataka. Examining the extreme events of rainfall provide an idea of 

the probable occurrence of severity conditions in future in the context of changing climate. 

Extreme rainfall indices to identify the variation of rainfall patterns such as the number of 

rainy days, total rainfall, daily intensity index, one and five-day maximum rainfall, dry 

spells and threshold intensity rainfall frequency indices were considered as per the norms 

suggested by Expert Team on Climate Change Detection (ETCCDI) of Intergovernmental 

Panel on Climate Change (IPCC). These rainfall extremes indices are analyzed using IMD 

gridded high resolution daily rainfall data for the period 1901-2013. Statistical trend analysis 

techniques namely Mann–Kendall test applied for extreme rainfall indices and Theil-Sen 

estimator perceive nature and magnitude of slope in rainfall indices. The trends show 

contrasting spatial variations of extreme rainfall indices in Coastal region (low land) and 

Western Ghats (high land) regions of Karnataka. The changes in daily rainfall events in the 

lowland region primarily indicate statistically significant (varies from 95% to 99.9% 

confidence level) positive trends in the annual total rainfall, 1-day, and 5-day maximum 

rainfall, frequency of very heavy rainfall, and heavy rainfall as well as medium rainfall 

events. The seasonal variation of rainfall exhibits mixed trend, however significantly rising 

trend is witnessed in the southern coastal plains and the adjacent Western Ghats region 

during the pre-monsoon. But, southern coastal plains show a decreasing trend in the 

monsoon period (JJAS). Furthermore, the overall annual rainfall strongly correlated with all 

the rainfall indices in both regions, especially with indices that represent heavy rainfall 

events which are responsible for the total increase of rainfall.  

The interannual variability of rainfall and its extreme events over study region is observed 

to be associated with ENSO cycle, whereas Nino indices are asymmetric over the study 

region. The trends in ETCCDI extreme rainfall indices analyzed as an issue of climate 

change and the possible teleconnection with the ENSO mode as a concern of natural climatic 

variability have been analyzed over the study region. Nevertheless, differences are found 
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between the spatial extent of correlation coefficients and their magnitudes. Using most 

significant time lag between the extreme rainfall indices (dependent variable) and the 

November-January (ONDJ) seasonal average of Niño indices (independent variable). The 

best model with the highest coefficient of determination was identified by Step wise 

regression analysis. The teleconnection between the Niño indices (Niño 1+2, Niño 3, Niño 

3.4 and Niño 4) and the rainfall extremes with 0-year and 1-year ahead are at different 

phases, regional response of rainfall extremes to these indices are dissimilar. This analysis 

provides insights into regional response of rainfall extremes to global climate indices over 

the study region.  

The large-scale phenomenon over the pacific ocean with rainfall over the study region 

provide a scientific basis for understanding and developing credibility in future regional 

climate. A significant lag correlation between the summer monsoon rainfall and Niño 

indices was revealed by the seasonal lead-lag correlation analysis, Niño 3(t-4) at 90% 

confidence level, remaining Niño 3.4(t-2), Niño 4(t-2), and Niño 4(t-3) at 95% confidence 

level shows a significant relationship at respective lag period from onset of summer 

monsoon rainfall. In order to investigate the combined lagged effects of the potential climate 

predictors for monsoon rainfall using multiple linear regression as a linear method compared 

to neural network as a nonlinear method have been employed to examine the predictability 

of the summer monsoon rainfall. The principal component analysis of predictors aids to 

represent in one-dimensional space using the eigen vector that corresponds to the covariance 

matrix’s largest eigen value. Whereas first principal component explains about 72% of the 

variance of the predictors. Thus, PC1 considered as predictor in regression equation and 

input layer in neural network models to avoid over fitting. The attained prediction on the 

basis of the overall performance of the prediction models, feed forward neural network 

model shows a better prediction compared to other models with a good correlation 

coefficient and RMSE of 0.53 and 1.6 for training case, and 0.72 and 1.63 for testing case, 

respectively. From the time series analysis for period 1951-2013 of standardized monsoon 

rainfall Index selected the positive episodes values having standardized value greater than 

+1 (excess) and similarly with negative episodes values with standardized values less than 

-1 (deficit). The mean anomalous SST values for the region Nino 3.4 for the season DJF (-

2) for positive episode is 0.1719oC and the negative episode is -0.5133oC. The two SST 

means are significantly different at confidence level of 87.15% through the Student’s t-test.  
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In awaken of climate change, this study is a contribution in the on-going research of extreme 

events over mountainous terrain including disaster management study. The sequential daily 

rainfall extremes and other atmospheric parameters may be utilized for the now-casting of 

extreme rainfall events. Further the relationship between topography and other atmospheric 

parameters influence for rainfall extremes should be studied separately to get better insight. 

This research may also be useful for the modifications in rainfall extremes retrieval methods 

over the Western Ghats mountainous terrain.   

 

Key Words: ENSO Indices, extreme rainfall, neural network, regression model, Stepwise 

regression, summer monsoon, teleconnection, Western Ghats of Karnataka.  
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

Rainfall is an essential element of the hydrologic cycle and displays temporal and spatial 

unpredictability across the globe. A reliable hydrologic cycle is critical for the maintenance 

of a normal existence of life. Varying quantities of rainfall are received by the earth at 

different regions. Several factors regulate the amount of rainfall received by a region. A 

significant aspect is the climate pattern across the globe that is influenced by differences in 

temperature between the poles and the equator. 

1.2 RAINFALL DISTRIBUTION  

Topography, nearness to large water bodies, and the general flow of air, affect rainfall 

distribution. The abundance of rainfall is greatest where moist air rises and lowest where it 

sinks. 

 Global distribution of rainfall  

Across the Earth, the annual average rainfall is about 1000 mm and the distribution is 

extremely uneven. The equator and monsoon areas of Southeast Asia are the regions which 

receive the highest rainfall. In contrast, moderate amounts of rainfall are received in the 

middle latitudes while the subtropical desert and Polar Regions receive the lowest amounts 

(Ekman, 1905; Hsu and Wallace, 1976).  

 Rainfall distribution over India 

The summer monsoon in India, typically manifests between June and September. During 

this time, greater than 80% of the total yearly rainfall is received by large portions of the 

central and western parts of the country, whereas the southern and north-western portions 

receive 50%-70% (Shukla et al., 1977; Nanjundiah et al., 2013). Figure 1.1 shows the mean 

annual rainfall pattern over India. The annual rainfall in the country averages to about 1120 

mm. However, there are significant spatial variations. For example, heavy rainfall is 

received by areas in the Sub-Himalayan region in the North East, Meghalaya hills, and 
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Western Ghats. On the other hand, lower rainfall is received by Western Rajasthan and the 

Northern areas of Kashmir (Dhar et al., 1901; Rupa Kumar et al., 1992; Parthasarathy et al., 

1995; Gadgil, 2003; Kothawale and Rajeevan, 2016). It can be seen that rainfall in India 

exhibits two significant features namely, rainfall increases eastwards in the north of India 

whereas it increases westwards in Peninsular India.   

 Rainfall Patterns over Karnataka  

Climatic variation in Karnataka can be attributed to its differing geographic and 

physiographic situations. For instance, in the plateau region, the climate varies from arid to 

semi-arid whereas in the Ghats, the variation is from humid to humid tropical. On the other 

hand, the climate in the plains of the west coast is the humid tropical monsoon type. Rainfall 

patterns in Karnataka were studied extensively by Krishnan (1984) who reported that, the 

south-west monsoon period is when the state receives 80% of its annual rainfall. This is 

followed by the post-monsoon period when it receives 12% and in summer it receives 7%. 

Only 1% of the rainfall is received in winter. Karnataka receives roughly 500 mm to 3500 

mm of rainfall annually, with an annual average of 1248 mm. In south interior Karnataka, 

the eastern part is affected by the north-eastern monsoon between October and December 

accounting for 30% of the annual rainfall in the region. During this time, the rainfall over 

and near the Ghats increases while the region towards the West Coast sees a decrease in 

rainfall (Gadgil and Gowri 1988; Francis and Gadgil 2006). 
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Figure 1.1 Annual mean rainfall map of India (Reddy et al. 2015). 

 

1.2.1 Causes of Spatial Variability of Rainfall  

Over time, there are variations in global and regional rainfall rates. Distinct causes lead to 

differing patterns of rainfall. High rainfall is received by areas near the equator since large-

scale evaporation is produced by constant solar heating. Thus, convective rainfall is formed 

by moist air that cools with altitude. In addition, there is convergence of air masses, resulting 

in heavy rainfall. Convectional rainfall may be experienced by mid-latitudes whereas frontal 

(depression) rainfall may be caused by air masses in the poles and in the sub-tropics. High 

levels of rainfall are received in mountain ranges because of moist air caused by relief or 

the orographic effect. However, this can cause a severe decrease in rainfall in the leeward 

region of mountains. In contrast, the Polar regions are dry as cold air holds less moisture 

than warm air. Moreover, the interior regions of continents are inclined to be dry due to their 



4 
 

lack of proximity to moisture sources. Also, clouds may lose moisture before they arrive at 

the middle of large continents. 

1.3 FACTORS INFLUENCING RAINFALL  

Several factors affect rainfall around the world. The varying effect of these factors is the 

reason why different parts of the Earth experience contrasting climates. The factors affecting 

hydrological cycle and influencing rainfall are broadly classified as; 

(a) Geography,  

(b) Climate and  

(c) Anthropogenic activity. 

 

A brief discussion on each of the factors is given the in the sections as follows: 

(a) Geography. Some important factors which affect rainfall based on the geography of the 

land mass are listed below.  

 Altitude or Elevation: Typically, as altitude increases, climatic conditions become 

colder.  

 Topography:  Air movement is naturally impeded by mountain ranges. 

 Impacts of Geography: A region’s location (country, state, or position) and its 

remoteness from mountains and significant water bodies (river/sea). 

 Earth’s Surface: The amount of atmospheric heating is determined by the quantity 

of sunlight reflected or absorbed by the surface. In general, darker areas, such as 

regions with dense vegetation, are inclined to be good absorbers, whereas lighter 

areas, such as regions covered with snow and ice, are likely to be good reflectors.  

(b) Climate. These factors are based on the patterns of meteorological variables in a given 

region over a long period of time. A few important factors are discussed below:   

 Sea surface temperature: The Earth’s surface contains 70% of water (sea/ocean). The 

spatial variations of sea surface temperature influences rainfall patterns. If sea 

surface temperatures vary, rainfall patterns tend to vary as well.   
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 Humidity: Humidity is the general term which describes the moisture content in the 

air. The quantity of moisture content decides the latent energy stored up in the 

atmosphere and indicates the potential capacity for rainfall. 

 Prevailing global wind patterns: The amount of rainfall at different regions is 

determined by the prevailing winds. In Southeastern Asia, for instance, monsoons 

are formed as a result of these winds. On the other hand, these winds cause abundant 

rain to be received during the winter in the West coast of South and North America. 

 Earth’s rotation: The uneven heating of Earth's surface by the sun is a driving force 

behind the rainfall patterns.  

(c) Anthropogenic activity. These factors act as direct/indirect influences due to the 

interference of human activity:  

 Increase in greenhouse gases due to burning of fossil fuels 

 Deforestation and land cover change. 

 

1.4 INFLUENCE OF CLIMATIC FACTORS ON EXTREME RAINFALL  

Extreme rainfall can have devastating effects on human society and the environment. There 

is mounting concern and emphasis on the spatio-temporal pattern of extremes of rainfall and 

the subsequent impact on the space-time variations of flood and droughts, taking the global 

warming and the subsequent modification of the hydrological cycle into consideration 

(Ashrit et al. 2001; IPCC 2012). With indications of global warming, there is an increased 

likelihood of dynamic climate systems due to the strengthening of the hydrological cycle 

(Fowler and Hennessy, 1995; Trenberth, 1998, 1999). In agreement with the Clausius-

Clapeyron relationship, air’s water-holding capacity doubles approximately with every 

10°C increase in temperature (Fowler and Hennessy, 1995). Fig. 1.2 indicates a global 

intensification in atmospheric moisture content due to anticipated greater evaporation rates 

caused by warmer lower-atmosphere and oceans (Fowler and Hennessy, 1995; Trenberth 

1998, 1999).  

It is expected that the amount of global rainfall will increase to balance the increased 

evaporation. Nevertheless, the increased moisture content in the atmosphere indicates that, 

expected increase in total rainfall will occur predominantly as an increase in intensity of 
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rainfall events, rather than in frequency (Trenberth, 1999). Additionally, latent heat release 

in precipitating systems further enhances their intensity and the convergence of moisture 

into the system, causing a favorable outcome (Trenberth, 1999). This anticipated increase 

in total rainfall and intensity of rainfall is projected to lead to global changes. However, this 

global trend may not be reflected by the effects experienced at regional and at local levels. 

Whilst rainfall globally is anticipated to be affected by the thermo-dynamic effects on 

rainfall described above, the probable changes in atmospheric movement, as a secondary 

influence on the amount of rainfall and intensity of a balmier climate, increases the 

probability of localized modifications to rainfall systems (Emori and Brown, 2005). The 

occurrence of significant modifications to both the spatial and temporal inconsistency under 

a temperate climate is suggested by these alterations in rainfall characteristics. A vast body 

of research in recent years has scrutinized the probable alterations in temporal inconsistency 

of rainfall caused by these dissimilar increase in the heaviest rainfall events. In contrast, 

considerably less attention has been paid to modifications in the extent of local spatial 

consistency, which might be anticipated to be associated with a move towards greater local 

convective rainfall. 

The Expert Team for Climate Change Detection Monitoring and Indices (ETCCDMI) 

specifies information concerning extreme rainfall indices (e.g., type of rainfall, intensity and 

extremes, frequency, etc.)  (Alexander et al., 2006). Indices related to extreme rainfall can 

be grouped into two categories: one computes the frequency (number of instances) of the 

index beyond or within its specified limit (CDD, CWD, R2.5-65, R40, R65, R100, and R20), 

while the second assesses the depth (mm) or intensity (mm per day) of rainfall (RR, SDII, 

RX1day, and RX5day). The separation of frequency and magnitude is anticipated to offer 

additional insights into the frequently slight variances in the climatic condition across the 

study area. Moreover, it is evident that these indices are also significant for the evaluation 

of the possible effect of climate changes on sub-humid to humid tropical environments 

associated with agriculture, forests, sustainable development, water resources, etc. 
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Figure 1.2 Schematic representation of the processes involved in increasing moisture 

content in the atmosphere and how they influence extreme rainfall (Trenberth, 1999). 

1.5 ASSESMENT OF EXTREME RAINFALL VARIABILITY 

The Intergovernmental Panel on Climate Change (IPCC) reported that, considerable 

increase in the anthropogenic emission of various GHGs (greenhouse gases) since 

industrialization has caused global warming (IPCC, 2007). IPCC estimates that the global 

mean surface temperature has increased by 0.6 °C ± 0.2 °C since 1861 and envisages a 

further increase of 2 °C to 4 °C over the next century. Many facets of the Earth’s climate 

system have been greatly affected by greenhouse gases, which have been at their peak for 
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the past few decades (Pachauri et al., 2014). Globally, changes in yearly rainfall quantity, 

extreme storms, and increase in total extreme rainfall events are being experienced by 

regions. As regions experience changes in rainfall, decisions regarding the preservation of 

fundamental societal standards such as, sustainable water supply, continued provision of 

food, and basic human comforts, need to be provided. Presently, there is limited clarity 

regarding the manner and extent of climate change in different regions. Policy decisions rely 

on different probable scenarios making it imperative that they are well understood and 

encompass the prospective spectrum of changes in rainfall (Jones & Patwardhan, 2014).  

The analysis of annual rainfall has been the emphasis of much climate change research. 

Often, the impact of these changes on society are best recognized, most evident, and most 

visible. In contrast, there is underreporting and limited analysis about extreme rainfall events 

and patterns which often have significant effects on a regional scale. Numerous groups have 

sought to study extreme weather patterns and have used climate indices to develop 

frameworks. The Expert Team on Climate Change Detection and Indices (ETCCDI) is one 

such group which created a group of rainfall indices that could be utilized to study the 

extreme rainfall pattern over time. These indices aid in the specific understanding of the 

local climate systems which affect society.  

This study attempts to analyze rainfall pattern using ETCCDI rainfall indices over the 

Western Ghats and Coastal regions of Karnataka. This will permit a close examination of 

spatial and temporal trends of extreme rainfall over the study region. 

 

1.6 RAINFALL VARIABILITY OVER WEST COAST OF INDIA 

Across India, rainfall on the spatial domain is unevenly distributed. The Western Ghats is 

among the areas with the maximum recorded monsoon rainfall. Due to its high elevated 

hilly regions, the Western Ghats obstructs the moisture-laden south-west monsoon winds 

crossing over the Arabian Sea.  Moist air collected from the sea and oceans cools 

adiabatically and condenses due to dense water vapor collected from sea and oceans. 

Therefore, in the west coast rainfall increases along the Western side (wind ward) of 

Western Ghats and gradually reduces on the eastern leeward side because of the drop in 

moisture content. This longitudinal stretch from the Coastline to the Western Ghats could 
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aid in observing significant spatial and temporal variations in rainfall. As seen before, 

rainfall patterns depend on various factors such as, moisture availability, velocity and 

direction of wind, region’s orography and teleconnections (Francis and Gadgil, 2006; 

Tawde and Singh, 2015; Revadekar et al., 2018). High altitudinal zones appear to be 

associated with the maximum rainfall and intense rainfall events (Patwardhan and Asnani, 

2000; Tawde and Singh, 2015). Researchers also (e.g., Grossman and Durran, 1984; Ogura 

and Yoshizaki, 1988) have indicated that the orographic effect may extend horizontally up 

to 200 km in the windward direction. Therefore, the Western Ghats elevation is capable of 

deep convection though it is well offshore from the Arabian Sea and west coast (Vishnu et 

al., 2013). Among the three subdivisions of Western Ghats, the highest rainfall is received 

by coastal Karnataka. Moreover, the Karnataka section of the Western Ghats of Karnataka 

has an extensive mountain barrier (Tawde, 2013) signifying the orographic dependence.  

In atmospheric science the word Teleconnection states that climate anomalies being 

connected to each other at large distances between land mass and oceans. Large spatio-

temporal variability is displayed by the summer monsoon rainfall over Indian sub-regions. 

This is always regarded with the greatest concern, due to teleconnection with various 

phenomena pertaining to oceanic and land surfaces. The El Niño Southern Oscillation 

(ENSO) and monsoon teleconnections exhibit significant relationship between monsoon 

rainfall and different ENSO indices (Krishna Kumar et al., 1995). In recent decades, the 

relationship of ENSO with monsoon rainfall has been observed to be declining (Kinter et 

al., 2002; Revadekar et al., 2018). Considering the inconsistent outcomes reported by global 

warming, such a decline is possibly a short-lived feature (Ashrit et al., 2001).  

 

 

 

 

 

 



10 
 

 

1.7 TELECONNECTION OF EL NINO SOUTHERN OSCILLATION WITH 

RAINFALL 

After the seasonal cycle, ENSO is the second most significant source of weather change 

which generates a substantial portion of short-term climate variation across the globe 

(Glantz, 2001; Rosenzweig et al., 2001; Goddard and Dilley, 2005). ENSO accounts for 

roughly half of the total discrepancy in local weather in some regions. ENSO, among all 

climate events, is unique for its strength, certainty, and widespread impact (McPhaden et al. 

2006). ENSO’s most direct impact on regional climate patterns are detected in the area 

nearest to the tropical Pacific. Nevertheless, rainfall and seasonal temperature can be 

transformed globally by signals of its effect (Kiladis and Diaz, 1989; Vedwan and Broad, 

2003). Also known as teleconnections (Trenberth et al., 1998), these shifts originate from 

tropical sea surface temperatures (Fedorov and Philander, 2000). 

1.7.1 Assessment of Oceanic index 

The average sea surface temperature anomaly (SSTA) over various parts of the Pacific 

Ocean is measured by the temperature-based index (Table 1.1 and Fig. 1.3). SSTA is the 

variance between the real and climatological sea surface temperatures. The Tropical 

Atmosphere Ocean (TAO) array data provides the observed sea surface temperature (SST) 

and is collected in the equatorial Pacific Ocean from a network of roughly 70 deep-ocean 

buoys (Coles, 1999). These buoys, in different regions, record and transmit sea surface (and 

sub-surface) temperatures, water currents, atmospheric status, and wind data. A real average 

standardized anomaly of sea surface temperature from a specified climatological phase is 

used to derive values. 

Table 1.1 Niño indices region with range of latitude and longitude (NOAA) 
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Figure 1.3 Pacific Ocean Areas with Sea-surface temperatures averaged for Niño Indices.  

Source (NOAA) 

 

From Figure 1.3, it can be seen that the first region to get warm is the Niño1+2 region (near 

South America’s west coast) due to its quick reactions to variations, both seasonal and El 

Niño-related (Glantz, 2001). In contrast, the variation in temperature in the Niño3 region 

(cold tongue of east Pacific) is greater than others, although it has a much lower response to 

continental influences (Hanley et al., 2003). The shift of SSTs in the Niño4 region (warm 

pool of West Pacific) is linked to modifications, along the longitudinal equator, of powerful 

east-west temperature gradients (Glantz, 2001). Niño4 explains the extent of rainfall in 

regions in Southeast Asia. The most commonly used SST index is the Niño3.4 (between 

Niño3 and Niño4) due to its effectiveness in capturing SST inconsistency and rainfall 

change (NOAA). Niño3.4 defined (Bamston et al., 1997) as a more robust representative for 

ENSO event than Niño3, due to its greater association with the Southern Oscillation Index 

(SOI). Moreover, the Niño3.4 index has greater explanatory power in describing the 

evolution of ENSO (Trenberth and Stepaniak, 2001) and displays the highest intersection 

with previous occurrences (Trenberth, 1997).  

 



12 
 

1.8 IMPORTANCE OF THE STUDY 

The Western Ghats and Coastal region of Karnataka are anticipated to have variation in 

rainfall and extreme events (Francis and Gadgil, 2006; Goswami et al., 2006; Kumar et al., 

2010; Guhathakurta et al., 2011). More water vapor can be held by warmer air. In fact, the 

capacity of air for moisture content increases by about 7% for each degree increase in 

temperature. Intense rainfall events can be produced by an atmosphere with greater moisture 

and vice versa, which is precisely what has been detected in the Western Ghats (Kumar et 

al., 2014). An increased risk of drought can result from a decrease in average rainfall.  On 

the other hand, an increased risk of flooding could be caused by an increase in average 

rainfall. Storm water runoff due to extreme rainfall, which often contains toxins such as, 

phosphorus, nitrogen, pesticides, and heavy metals, can end up in streams, lakes, and bays, 

harming aquatic ecosystems and reducing quality of water for human usage. The prospect 

of flooding is the most immediate impact of heavy rainfall. Additionally, the risk of 

landslides is also increased by heavy rainfall. When the groundwater table levels and 

saturation is raised by above-normal rainfall, slopes can become less stable, resulting in 

landslides. More frequent landslides are anticipated in the Western Ghats, which have an 

exceptionally high probability of landslides owing to their topography, due to climate 

change-induced increase in heavy downpours.  

Increase in heavy rainfall does not necessarily result in an upsurge in seasonal or annual 

total rainfall. Moreover, considering climate change, calamities, such as, reduced moisture 

content in the ecosystem and increased incidences of fire, might be witnessed in the Western 

Ghats. Gopala Krishnan et al. (2011) submitted that high vulnerability to climate change 

was evident in the forests of the Western Ghats. Moreover, temperatures are anticipated to 

disproportionately increase in contrast to rainfall. The present study is motivated by such 

observations submitted by the scientific community to evaluate regional scale extreme 

rainfall events and the effect of El Niño Southern Oscillation (ENSO) over the study region. 

According to IPCC-AR5 (2019), human interaction is directly affecting about 70 per cent 

ice-free land surface on the planet. But in India irrigation occurs prior to the start of the 

monsoon season and the resulting land cooling decreases the land-sea temperature contrast. 

This can delay the onset of the monsoon and decrease its intensity. The IPCC AR5 report 
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dealing with interactions between land and climate interprets that effects of irrigation on 

local regional and global climate very well studied. It is well established that irrigation 

increases total evapo-transpiration, increases the total amount of water vapour in the 

atmosphere, and decreases mean surface daytime temperature within the irrigated area and 

during the time of irrigation. Increase in vegetation, primarily due to agriculture, is 

weakening rainfall in early monsoon months, particularly in South and North Indian regions.  

At the onset of boreal spring (February to March) evapo-transpiration is already large over 

irrigated crops (in India) and the resulting excess moisture in the atmosphere is transported 

south-westward by the low-level winds. The IPCC report also said that human-induced 

climate change is leading to unpredictable changes, particularly in precipitation. It said that 

the heavy rainfall events have increased in frequency and intensity since 1950. 

Climate variability have a strong effect on rainfall characteristics and extremes, but the 

relationship between the El Niño Southern oscillations and rainfall patterns are not well 

defined at regional scale. Therefore, a regional analysis considering extreme rainfall and the 

impact of Niño indices on variations of rainfall events would be significant. Bearing this in 

mind, the present research proposes to investigate the association between Niño indices and 

extreme rainfall events at a regional scale specifically over the coastal regions and Western 

Ghats of Karnataka.  

1.9 STATEMENT OF PROBLEM  

Better hazard management in future requires detailed analysis on the impact of changing 

climate on extreme precipitation. Many studies analyzed the influence of changing climate 

on trend of rainfall, extreme rainfall events and frequency of irregular seasons, also tried to 

identify the association of rainfall with topographical and Meteorological parameters. 

Among the subdivisions of Western Ghats, the highest rainfall is received by coastal 

Karnataka. This is always regarded with the greatest concern, due to teleconnection with 

various phenomena pertaining to oceanic and land surfaces. It is necessary to understand the 

teleconnections exhibit significant relationship between extreme rainfall and different 

ENSO indices.  
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1.10 OBJECTIVES OF THE STUDY 

The aim of the research is to identify the variation in rainfall extreme events and their 

teleconnection of ENSO indices due to climate variability and change over the Western 

Ghats and coastal region of Karnataka.  

 

The specific objectives of the present study are:  

1 To investigate the variability and long term trends in synoptic extreme rainfall events 

using ETCCDI rainfall indices. 

2. To explore the affect of Oceanic Nino indices on ETCCDI extreme rainfall indices.  

3. To estimate the summer monsoon rainfall by identifying optimal Niño predictors.  

4. To identify the asymmetric relationship of ENSO indices with rainfall over study region.  

 

1.11 ORGANIZATION OF THE REPORT 

The complete report comprises of seven chapters. Chapter 1 provides the overview of spatio-

temporal variability of rainfall and extreme rainfall due to climate change and the basis for 

the research. The rest of this report is organized as follows:  

Chapter 2: Offers a critical review of work associated with climate change and its effects on 

extreme rainfall. 

Chapter 3: Describes the study region and the complete methodology adopted for the 

research work.  

Chapter 4: Deals with seasonal rainfall variability of extreme rainfall indices with its trend 

and contribution of annual extreme rainfall indices to the total annual rainfall across the 

Coastal region and Western Ghats of Karnataka, India. 
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Chapter 5: Deals with understanding the role of Niño indices influence on Rainfall extreme 

indices considered for the study.  

Chapter 6: Describes the identification of relationship with predictors and summer monsoon 

rainfall anomaly to estimate the seasonal rainfall using multiple regression and neural 

network models.  

Chapter 7: Provides the summary and conclusions of the present work.  

In order to attain the objective of research, existing literature pertaining to the study was 

scrutinized. The review of the same is presented in the following chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Background 

This section deals with review of relevant literature to bring out the background of the study 

undertaken to accomplish the objectives of the research. The three major themes organized 

are namely; 

  Exploratory analysis on trend analysis of rainfall and extreme rainfall indices 

  Teleconnection of rainfall events association with sea surface temperature  

  Analysis of monsoon rainfall with sea surface temperature as predictor variable 

The survey of literature carried out under these themes is presented in the sections to follow. 

2.2 Exploratory Analysis of Rainfall 

The spatial and temporal distribution of rainfall is very complex and uneven (ward and 

Robinson, 1990). There is not established standard definition of an extreme rainfall event, 

hence many researchers in the past came up with objective definitions based on the statistical 

distributions of rainfall at a particular place. The extreme rainfall event recognized from a 

Intergovernmental Panel on Climate Change (IPCC) as an event that is rare within its 

statistical reference distribution at a particular place, usually as rare as or rarer than the 95th 

percentile. A broad definition identifies extreme rainfall events as a transitory localized 

phenomenon featuring very high intensity rainfall over a restricted region. Nevertheless, 

researchers have used different thresholds for the identification of extreme rainfall events. 

This issue brought the hydrologist and others to recognize the underlying pattern of rainfall 

from historical records for better prediction of rainfall. There have been many past studies, 

which concentrated on trend of rainfall, frequency of extreme rainfall events and its trend at 

regional and spatial scales. Exploratory analysis of rainfall is grouped under the following 

heading. 

 Spatial pattern and rainfall trend in India 

 Variation in frequency of extreme rainfall events and its trend 
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2.2.1 Trend analysis of rainfall in India 

Intensification in monsoon rainfall is predicted over South Asia due to global warming as 

evident in climate model simulations studies (Lal et al., 2000; May, 2002; Meehl and 

Arblaster, 2003, May, 2004; Kumar et al., 2006; May, 2011). However, accurate 

assessments of future changes in the regional monsoon rainfall have remained unclear due 

to extensive deviations among the model projections, e.g., (Annamalai et al., 2007; 

Kripalani et al., 2007; Kumar et al., 2011). The simulated rainfall response to global 

warming by climate models is actually accompanied by a weakening of the large-scale 

southwest monsoon flow, e.g., among others (Kripalani et al., 2003; Krishnan et al., 2013). 

Several studies have tried to address the important problem of trends in rainfall in India 

since the last century. Several previous studies have found that there is no clear trend of 

either increase or decline in average annual rainfall over India (Mooley and Parthasarathy, 

1984; Thapliyal and Kulshrestha, 1991; Lal et al., 2001; Kumar et al., 2010). Although no 

study has found long term trend in the monsoon rainfall over whole of India, but significant 

long term changes have been recognized (Koteswaram and Alvi, 1969; Jagannathan and 

Parthasarathy, 1973; Raghavendra, 1974; Dash et al., 2007; Kumar and Jain, 2010; Joshi 

and Pandey, 2011). Rupa Kumar et al. (1992) reports that monsoon rainfall over the west 

coast, central peninsular and northwest India has increased by 10% –12% of the normal 

rainfall during a span of 100 years. 

Meteorological subdivisions over the west coast, western arid region and northeastern 

humid region showed significantly decreasing trends in both rainfall and rainy days. The 

northern hilly parts of the Himalaya were found to have a significantly increasing trend of 

rainfall but decreasing trend of rainy days. The north and central plains of India showed a 

decreasing trend of rainy days and the eastern plain was found to have a decreasing trend of 

rainfall during the summer monsoon period. 

2.2.2 Variation in frequency of extreme rainfall events and its trend 

As a consequence of the atmospheric warming, the water holding capacity of the atmosphere 

is also rising, which ought to result in more intense short term storms (Trenberth, 2011). 

Higher humidity in the atmosphere may create shift in the large rains by convective 

mechanisms. In many studies analyses of changes in climate extremes with coupled 
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atmosphere–ocean general circulation models have been performed. Rajeevan et al. (2008a) 

examined the variability and long term trends of extreme rainfall events over the Central 

India for 104 years and found 6% increase per decade is associated with the increasing trend 

of sea surface temperature and surface latent heat flux over the tropical Indian Ocean. Roy 

and Jr (2004) identified increase in the frequency of extreme rainfall events over last 10 

decades in India. The increase in extreme events is strongest in regions extending from the 

north western Himalayas through most of the Deccan Plateau in the southern peninsular 

region of India and decrease in eastern part of the Gangetic Plain and parts of Uttaranchal. 

Guhathakurta et al. (2011) also found increase in frequency of heavy rainfall events in 

peninsular, east and north east India and decreasing in parts of central and north India. The 

extreme high and extreme low rainfall increased from the year 1930 to 2013 by 2-fold and 

4-fold with high variation particularly in early 2000s in India (Jun et al. 2015).  

The trend using parametric test and non-parametric test varies, as parametric t-test showed 

significant trend and non-parametric Mann-Kendall test resulted no significant trend of 

extreme rainfall events in North East Himalayan region with negative correlation between 

elevation and frequency of extremes exceeding percentiles (Bharti et al. 2016). Dash et al. 

(2009) reported a significant decline in the frequency of moderate-to-heavy rainfall events 

over most parts of India in the last 50 years. This was also supported by a significant rise in 

the frequency and duration of monsoon breaks over India during recent decades (Ramesh 

Kumar et al., 2009; Turner and Hannachi, 2010). The frequency of extreme rainfall events 

(100 mm/day) have increased in certain parts of the country (Goswami et al., 2006). 

Rupakumar et al. (2006) studied the effect of climate change in India by evaluating the 

present day simulation (1961-1990) of PRECIS climate model and reported an increase in 

extreme rainfall along west coast and west central India. In order to summarize the 

understanding of the literature on rainfall extreme events, a brief description of the most 

commonly used methods and the findings of extreme rainfall events for different region is 

summarized in Table 2.1. 
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Table 2.1: Expert Team on Climate Change Monitoring and Detection Indices of 

extreme rainfall events analysis  

 

Sl. 

No 

Author and 

Year 
Region Analyzing Method Major Results 

1 Rajeevan et 

al. (2008) 

Central 

India 

 

Absolute threshold 

approach  

(a) Heavy rainfall 

(≥100 mm/day) (b) 

Moderate rainfall (≥5 

and <100 mm/day) and 

(c) Very heavy rainfall 

(≥150mm/day) events. 

 

Positive trend in extreme active 

events and negative trend in 

moderate active events 

2 Dash et al.  

(2009) 

Six 

homogeneou

s 

monsoon 

regions 

in India 

Low, moderate, and 

heavy rainy days and 

short, long, dry, and 

prolonged dry spells 

are analyzed 

Positive trend of dry spells 

observed in each region Positive 

trend of heavy rainy days 

observed in North West, Central 

North East and North East, while 

negative trend is observed in other 

regions 

 

3 Singh and 

Ranade 

(2010) 

19 sub-

regions 

of India 

Onset, critical length, 

and number of wet and 

dry events 

Reduction in longest wet spell 

with high intensity rainfall and 

enhancement in longest dry spell, 

which further indicates a drift 

toward extreme of extremes 

 

 

4 Ghosh et al. 

(2011) 

India (grid 

wise 

analysis) 

Annual Maximum 

Series has been 

extracted to compute 

30 year and 100 year 

return level using 

Generalized Extreme 

Value distribution.  

Spatially non uniform trend and 

also increase in spatial 

heterogeneity is observed. 
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Table 2.1 Continued….. 

 

Sl. 

No 

Author and 

Year 
Region Analyzing Method Major Results 

5 Rajendran et 

al. (2012) 

Western 

Ghats of 

India 

Future climate 

change in mean 

rainfall, rainfall 

regimes and 

monsoon circulation   

Analysis of observed APHRODITE 

rainfall shows that there is a 

significant decreasing trend in the 

monsoon rainfall over the Western 

Ghats mountains during the recent 

past.  

Significant reduction in orographic 

rainfall over the west coasts of 

Kerala and Karnataka along the 

narrow western Ghats mountains by 

the end of the twenty-first century. 

5 Singh 

(2013) 

India (grid 

wise 

analysis) 

Standardized rainfall 

anomaly of +1 is 

active event and -1 is 

break event. 

Analysis carried out 

for pre-1975 and 

post-1977 separately 

Positive trend of short break spells 

and moderate active spells in post-

1977 is observed 

6 Vittal et al. 

(2013) 

India (grid 

wise 

analysis) 

Intensity, duration, 

and frequency is 

analyzed for the Peak 

Over Threshold 

(rainfall >95th 

percentile) series.  

Significant differences in the 

pattern of active rainfall extremes in 

India during pre-1950 and post-

1950. Abrupt variations in the 

rainfall extreme events occurred 

after 1975 in most of the grids. 

Indication advise that this period 

coincides with the commencement 

of urbanization in India (Kishtawal 

et al., 2010). 

7 Singh et al. 

(2014) 

Central 

India  

Standardized rainfall 

anomaly of +1 is 

active event and -1 

is break event. 

 

 

 

 

Significant increase in the 

frequency of dry spell and intensity 

of wet spell.  
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Table 2.1 Continued…  

 

Sl. 

No 

Author and 

Year 
Region Analyzing Method Major Results 

8 Pai et al. 

(2015) 

south 

central, 

north 

central, 

northeast 

and west 

coast 

regions of 

India 

 

 

 

 

Variability and 

trends in the daily 

rainfall events of 

monsoon season 

over four regions.  

Increased disaster potential for 

instant flooding over SCI and NCI 

due to significant increasing trends 

in the frequency and intensity of the 

HR and VHR events.  

9 Varikoden et 

al. (2018) 

Western 

Ghats of 

India  

to identify changes in 

regional climate 

the extreme events of rainfall are 

observed in low elevated areas with 

high inter-annual variability and an 

increase (decrease) southwest 

monsoon rainfall of about 1.6 mm 

day−1 decade−1 in certain regions 

of the northern (southern) Western 

Ghats 

 

 

 

10 Nageswara 

Rao et al. 

(2019) 

South 

peninsula 

region of 

India 

Unveil the behavior 

of north east 

monsoon rainfall 

over south peninsula.  

The variability of north east 

monsoon rainfall has increased 

during the period 1959–2016. The 

seasonal rainfall has increased over 

Tamil Nadu, Rayalaseema, as well 

as an increase in the number of 

high-intensity rainfall events in the 

recent period with respect to the 

earlier period (1901–1958).  
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2.3 Association of Rainfall with Sea Surface Temperature  

Izumo et al. (2008) have stated that it is essential to understand the fundamental mechanism of 

sea surface temperature oscillations that control variability of rainfall intensity. The 

teleconnection between the tropical central eastern pacific SST and Asian south west monsoon 

has been studied by researchers since Walker (1923, 1924) defined the ENSO which is very 

closely linked to the zonal circulation over the equator. It was further witnessed that, the Walker 

circulation is strongly coupled with underlying oceans, especially the sea surface temperature 

in the tropical central eastern Pacific (Bjerknes, 1969). Studies have been carried out to 

investigate the physical mechanisms responsible for the ENSO–monsoon association 

(Rasmusson and Carpenter, 1983; Webster and Yang, 1992; Ju and Slingo, 1995; Kirtman and 

Shukla, 1997). The association between ENSO events and Indian monsoon has been studied by 

many researchers (Krishna Kumar et al., 1999; Krishnamurthy and Goswami, 2000; Singh et 

al., 2011). Indian summer monsoon is weaker (stronger) than normal before (after) the peak of 

an El Niño in winter, and that the relationship is opposite for the monsoon and La Niña (Wu et 

al. 2012; Chakraborty 2018). It is also observed that, the monsoon circulation over southern 

Asia is generally weaker (stronger) than normal during El Niño (La Niña) summers (Webster 

and Yang, 1992; Lau and Yang, 1997).  

Shukla (1975) evaluated physical mechanism between Arabian Sea oceanic parameters and 

Indian monsoon rainfall. Aforementioned research explained that, the reduction in monsoon 

rainfall amount is related to the weak wind speed over Western Arabian Sea and cold SST, 

which is attributed to reduced sea level pressure and therefore less evaporation over Arabian 

Sea. Shukla & Mishra (1977) studied the lead-lag relationship between Arabian Sea surface 

temperature affecting monsoon rainfall over central and western India. Their study found out 

significant positive correlation between sea surface temperature of July with August rainfall 

over central and western India. The study of Izumo et al. (2008) has provided the new methods 

for better estimate of Indian summer monsoon considering regional scale as well as ENSO 

cycles. Their study concludes that upwelling at Somalia coast maximizes during summer 

monsoon season because of south west winds. Further Izumo et al. (2008) observed that 

increased upwelling at Somalis coast limits the westward extent of warm pool (SST>28⁰C) 

hence decreasing rainfall at west coast of India. This is due to less evaporation and insufficient 
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moisture transport towards Western Ghats. The alongshore variability in wind velocities over 

western Arabian sea affects the upwelling at Somalia coast hence the intensity of rainfall over 

west coast of India. Nino 3.4 SST of previous year affects the Indian monsoon rainfall in the 

next season summer monsoon at west coast of India. A positive lag-correlation is observed 

between previous winter ENSO conditions and the subsequent Indian summer monsoon. In 

order to summarize the understanding of the literature on various SST indices and rainfall 

relationship is summarized in Table 2.2. 

2.3.1 Impacts of climate change on water resources 

The hydrologic system is an integral part of the global climate system and circulates water 

between oceans, air, and land. Climate change could lead to the disruption of the hydrological 

cycle leading to either intense rainfall events (causing floods and landslides) or intensified 

droughts leading to reduction in agricultural productivity. The increase in temperature increases 

the potential evapotranspiration and leads to decrease in the soil moisture and groundwater 

which ultimately impacts the availability of water in the form of river flow. 

2.3.2 Local impacts of Climate change in India and the Western Ghats 

The climate change impacts on surface water resources are expected to be severe in India. The 

increasing population along with the associated developmental activity has a threatening role 

on freshwater sources. The National Commission for Integrated Water Resources Development 

(NCIWRD) has made an assessment of the total freshwater resources of the country (GoI 2007). 

The water resources in the Indian subcontinent are expected to be stressed in the light of climate 

change and as much as 45% of annual runoff drains into the sea. Several schemes are proposed 

and under construction to minimize the loss of available runoff. But, the accomplishment of 

these water resource development plans in the rivers and agro-climatic zones is only possible 

with knowledge of spatio-temporal variation of rainfall in light of climate change. 

The irrigation requirements in the non-irrigated areas are solely met by rainfall. The variation 

in rainfall due to climate change could strain the cultivation in these areas. Additionally, the 

irrigated areas may face water shortage during summer leading to scarcity of food and risk to 

the agricultural sector. It may be interesting to note that, the Central Statistics Office, Govt. of 

India (GoI 2017) reported a 4.1% growth rate of Gross Value Addition (GVA) of agricultural 

and allied sector in 2016-17 as first advance estimate. 
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Table 2.2:  Teleconnection of climate indices with rainfall extreme events 

Sl. 

No. 

Author 

and Year 
Region Climate Indices Major Results 

1 Brown et 

al. (2011) 

North Eastern 

United states 

AO, ENSO (Nino 

3.4), NAO, PDO, 

PNA (pacific 

north American 

pattern), NP 

(North Pacific 

pattern) 

Rainfall indices did not display 

coherent associations with large-

scale forcing. 

2 Revadekar 

et al. 

(2011) 

Individual states 

in India to 

detection of 

possible 

changes in 

extreme climate 

events on the 

local, regional, 

and national 

scales 

scenarios under 

increasing 

greenhouse gas 

concentration and 

sulphate aerosols 

Rainfall is expected to increase in 

calendar year, prominent changes 

in daily rainfall and extremes 

events during summer monsoon 

(JJAS) season. Coastal 

Karnataka is a remarkable 

region, the occurrences of heavy 

rainfall events are likely to 

reduce in the future. 

3 Donat et 

al. (2014) 

Arab Region ENSO (Nino 3.4), 

NAO 

The relationships of the climate 

extremes with NAO are stronger, 

strong in the western part of the 

Arab region (closer to the 

Atlantic Ocean) but the 

relationship with ENSO are 

found to be more significant 

towards the eastern part.  

4 Casanueva 

(2014) 

Europe  AO, NAO, 

Scandinavian 

Pattern, East 

Atlantic Pattern 

(EA), SOI, AMO 

(Atlantic 

Multidecadal 

Oscillation) 

 

Dissimilar patterns of variability 

found for wet and dry spells in 

winter and summer, Opposite 

associations with the North 

Atlantic Oscillation in winter and 

summer, and the relationships 

with the Scandinavian and East 

Atlantic patterns as well as El 

Niño/Southern Oscillation events 

in spring and autumn gave 

insight into the trend differences. 
Significant relationships were 

found between the Atlantic 

Multidecadal Oscillation and 

Total volume of R95p rainfall 

indices.  
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Table 2.2 Continued…  

Sl. 

No. 

Author 

and Year 
Region Climate Indices Major Results 

5 Duan et 

al. (2015) 

Japan AMO, PDO and 

Southern 

Oscillation Index 

(SOI), 

Climate indices shows statistically 

significant correlations with 

increasing extreme rainfall events, 

especially with SOI. 

 

 

6 Preethi et 

al. (2017) 

Two large 

regional 

subsystems over 

the Asian 

domain, (a)  

South Asian and 

(b) East Asian 

monsoons 

SSTs of West 

pacific Ocean 

and West Indian 

Ocean, mean sea 

level pressure, 

winds at lower 

troposphere 

The relationship of the NEI and 

WCI rainfall series with Nino 

indices reveals maximum relation 

with SSTs over the Nino3.4 region 

correlation coefficient of −0.52 

with NEI and −0.43 with WCI for 

the period 1970–2014 at 5% 

significance level.  

Wind patterns over the Pacific 

intensification rainfall depicts 

particularly associated with the 

WCI. 

 

7 Wang et 

al. (2017) 

Tropical North 

Atlantic 

(1) the western 

TNA  (2) the Gulf 

of Mexico and the 

western 

Caribbean Sea, 

and (3) the open 

ocean southeast 

and east of 

Florida. 

ENSO (Nino 

3.4), NAO, 

AMO, MDR 

SST (Main 

hurricane 

development 

region), AWP 

(Atlantic Warm 

pool) 

Rainfall intense events show a 

minimum value in the eastern 

Caribbean Sea north of South 

America. Rainfall intense events 

displays both interannual and 

multidecadal variability, but does 

not show a long-term trend due to 

global warming. The topmost 

three climate index depicts high 

correlations with rainfall intense 

events are (JJASON) ENSO and 

Atlantic warm pool indices, and 

the (JFM) North Atlantic 

oscillation index.  

However, the large-scale oceanic 

and atmospheric variables not 

show an important role in rainfall 

intense events in the Gulf of 

Mexico and the open ocean 

southeast and east of Florida. 
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Table 2.2: Continued…  

Sl. 

No. 

Author 

and Year 
Region Climate Indices Major Results 

8 Xiao et al. 

(2017) 

China ENSO, PDO, 

IOD, NAO 

The regions with rainfall 

extremes influenced by climate 

indices with 1-year and 0-year 

ahead identified and shows 

contrasting at different phases. 

The rainfall extremes generally 

tend to be decreasing in the 

central part at the same year of 

positive ENSO while increasing 

in the east part of China a year 

after the positive ENSO. 

 

 

9 Li et al. 

(2018) 

Singapore ENSO (Nino 

3.4), global 

mean 

temperature, 

local 

temperature 

 

 

Significant correlations are 

found between rainfall extremes 

and all the three factors, and the 

signature of local effects is more 

evident than global warming. 

10 Revadekar 

et al. 

(2018) 

Western Ghats of 

India 

ENSO Indices 

and IOD 

Observed that Indian Ocean 

Dipole (IOD) plays a dominant 

positive role in rainfall over 

entire Western Ghats in summer 

monsoon months, whereas role 

of Nino regions are asymmetric 

with rainfall over Western 

Ghats. Indian summer monsoon 

shows negative relationship with 

Nino SST. Negative correlations 

are also seen for Western Ghats 

rainfall with Nino regions but 

only during onset and 

withdrawal phase. During peak 

monsoon months July and 

August subdivisions of Western 

Ghats show positive correlation 

with Nino SST. 
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2.4 Sea surface temperature anomalies teleconnection with monsoon rainfall  

Summer monsoon rainfall over Western Ghats exhibits large spatio-temporal variability 

that is always viewed with  greatest concern, and it is teleconnected with different oceanic and 

land surface phenomena (Revadekar et al. 2018; Varikoden et al. 2018a). ENSO events are well 

known to be associated with significant seasonal climate anomalies at many places around the 

globe (Walker 1923; Rajeevan and McPhaden 2004; Naidu et al. 2017) .The ENSO-monsoon 

rainfall teleconnections involve significant simultaneous relationships between monsoon 

rainfall and various ENSO indices (Krishna Kumar et al., 1995). The classical relation between 

ENSO and summer monsoon rainfall (SMR), observation says majority of years during the 

ENSO warm (cold) events the SMR was below (above) normal. Almost all the statistical 

seasonal prediction schemes of SMR rely heavily on the change in magnitude of various ENSO 

indices from winter (December to February) to spring (March to May) prior to the start of 

monsoon season. These studies reveal that Indian summer monsoon is weaker (stronger) than 

normal before (after) the peak of an El Niño in winter, and that the relationship is opposite for 

the monsoon and La Niña. It is also observed that the monsoon circulation over southern Asia 

is generally weaker (stronger) than normal during El Niño (La Niña) summers (Webster and 

Yang, 1992; Lau and Yang, 1997).  Actually, it is also associated with other oceanic regions in 

addition to the eastern tropical Pacific, such as the warm pool of the west Pacific Ocean, the 

northwest Pacific Ocean (Ju and Slingo 1995; Soman and Slingo 1997) and the Indian Ocean 

(Saji et al. 1999). Several studies have documented empirical links between Indian Ocean SST 

anomalies and monsoon variability. Negative correlations exist between the summer monsoon 

rainfall and 16 months earlier SST near Indonesia (Nicholls 1983). Furthermore, the links 

between the SMR, the Indian Ocean and the tropical eastern Pacific have shown a biennial 

variability (Meehl 1987, 1997). Therefore, instead of calculating various global SST indices, 

from the tropical Pacific Ocean and using seasonal lag (December to May) for prediction of the 

SMR. In order to summarize the understanding of the literature on rainfall estimation, the brief 

description of the recent literatures are summarized in Table 2.3.  
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Table 2.3: Analysis of summer monsoon rainfall by identifying predictors 

Sl. 

No. 

Author and 

Year 
Region Predictor Remarks 

1 Sahai et al. 

(2003) 

India Global SST and 

ENSO (Nino 3.4)  

SMR-SST relationship examined from 

three seasons lag prior to the start of the 

monsoon season up to four years lag. 

The correlation patterns show a slow 

and consistent temporal evolution, 

predicted values explain about 80% of 

the observed variance of SMR in the 

model verification period. It is claimed 

that the weakening of the ENSO-SMR 

relationship in recent years.  

2 Kumar et al. 

(2007) 

Orissa ENSO (Nino 3.4), 

Equatorial Indian 

Ocean Oscillation  

(EQUINOO), 

Ocean Land 

temperature 

contrast (OLTC) 

The climate indices of ENSO, 

EQUINOO, and Ocean-Land 

Temperature Contrast (OLTC) have 

been used as predictor variables to 

predict the monthly as well as seasonal 

rainfall. Global climate variables that 

are highly influencing the regional 

monsoon rainfall. The obtained results 

are encouraging and show 

improvement in monsoon rainfall 

estimating. ANN is very useful to 

predict non-linear relationship of 

global climate and monsoon rainfall at 

regional scale.  

3 Srivastava et 

al. (2010) 

India Southern 

Oscillation Index 

(SOI), Pacific 

Decadal 

Oscillation Index 

(PDOI), Global 

SST 

SOI and PDOI alone unable to give the 

best model description but 

combination of both of these is able to 

produce a better forecasting model. 

Climatic indices and regional Sea 

Surface Temperature both considered 

as candidate predictors, showed the 

better performance with RMSE (root 

mean square error) and AAPE (average 

absolute percentage error) ranges from 

12.85 to 29.92 mm and 1.21% to 

5.01%, respectively.  
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Table 2.3: Continued… 

Sl. 

No. 

Author and 

Year 
Region Predictor Remarks 

4 Schepen et 

al. (2012) 

Australia Pacific Ocean  

indices, Indian 

Ocean Indices, 

Antarctic 

Oscillation 

Seasonally, the strongest evidence is 

found from August–October to 

November–January and the weakest 

evidence is found from March–May to 

May–July. Climate indices derived 

from the Pacific region show stronger 

persistence in the relationship with 

Australian seasonal rainfall totals than 

SST anomalies of Indian region. Many 

climate indices are found to show 

similar supporting evidence for 

forecasting Australian seasonal rainfall, 

leading to the prospect of combining 

climate indices in multiple predictor 

models and/or model averaging. 

5 Singh and 

Borah (2013) 

India the time series 

rainfall data for 

140 years 

considered   

Antecedent (90 

years) period 

data analyze the 

precedent  (50 

years) 

In this study feed-forward 

backpropagation neural network 

algorithm used for SMR analysis. Based 

on neural network algorithm the five 

neural network architectures designated 

using three layers of neurons (one input 

layer, one hidden layer and one output 

layer). The data set is trained and tested 

separately for each of the neural 

network architecture.  The predicted 

results obtained for the training and 

testing data are compared with existing 

model. Results clearly exhibit 

superiority of model over the other 

existing model. 

6 Nanjundiah 

et al. (2013) 

India ENSO and 

EQUINOO 

(Equatorial 

Indian Ocean 

Oscillation) 

The prediction of the phases of extreme 

modes of climate indices and their link 

with the monsoon assessed. It was 

found that SMR-SST relationship 

opposite to the observed, with the 

predicted SMR being negatively 

(instead of positively) correlated with 

the rainfall over the western equatorial 

Indian Ocean and positively (instead of 

negatively) correlated with the rainfall 

over the eastern equatorial Indian 

Ocean. 
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Table 2.3: Continued…  

Sl. 

No. 

Author and 

Year 
Region Predictor Remarks 

7 Ravi et al. 

(2013) 

South 

India  

Antarctic 

Circumpolar 

Current Index, 

(ACCI) 

Southern Indian 

Ocean (SIO),  

Bay of Bengal index 

(BOBI),  

North Equatorial 

Index (NEI) and  

Nino 3.4  

Correlation analysis is done to see 

the effect of STIO (South and 

Tropical Indian Ocean) SST 

variability on winter monsoon 

rainfall index (WMRI) for South 

India. The significant positive 

correlation is found between 

Southern Indian Ocean (SIO) SST 

and WMRI in July-August-

September. Maximum positive 

correlation of 0.61 found from the 

region south of 50deg. S and the 

negative correlations of 0.60, 0.53 

and 0.57 are found with the SST of 

the regions SIO, Bay of Bengal and 

North Equatorial Ocean respectively 

at 99% confidence level. WMRI 

predicted by SST indices using 

regression models, individual 

models performed better prediction 

skills to capture non linearity.  

8 Surendran et 

al. (2015) 

India ENSO (Nino 3.4) 

and Equatorial 

Indian Ocean 

oscillation 

(EQUINOO) 

Interannual variation of SMR over 

Indian region is strongly linked with 

ENSO and as well as EQUINOO, the 

seasonal value of the ENSO being 

stronger than that with the 

EQUINOO. Results shows the 

variation of a composite index 

determined through bivariate 

analysis, explains 54% of SMR 

variance, suggesting a strong 

dependence of the skill of monsoon 

prediction on the skill of prediction 

of ENSO and EQUINOO.  
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Table 2.3: Continued…  

Sl. 

No. 

Author and 

Year 
Region Predictor Remarks 

9 Dorji et al. 

(2018) 

Bhutan SST of AS and BB, 

MSLP (mean sea 

level pressure) of 

Bangladesh and 

northeast India, 

selected Northern 

hemisphere 

teleconnection 

indices 

The monsoon rainfall mainly from 

the large-scale seasonal south-

westerly winds from the Bay of 

Bengal and the Arabian Sea. The 

study shows high correlation with the 

SST and the MSLP of the Bay of 

Bengal and the Arabian Sea. Study 

shows the weakening of the 

relationship between ENSO and 

summer rainfall, ENSO/SOI was a 

weak predictor for summer monsoon 

in Bhutan. The study shows modest 

correlations with the Northern 

Hemisphere teleconnection indices.  

 

 

 

 

10 Johny et al. 

(2018) 

Kerala Indian Ocean 

Dipole (IOD) 

The possible teleconnection of SMR 

of Kerala with the Indian Ocean 

dipole (IOD) using the cross- 

correlation and ensemble empirical 

mode decomposition - based time-

dependent intrinsic correlation 

analyses. The analysis has showed 

the dominancy of negative 

association of IOD with SMR of 

Kerala in different process scales 

with strong positive association at 

localized time spells. The forecasting 

strategy demonstrated in the study 

and the evidence of IOD–SMR 

rainfall link are an amendment to the 

efforts for improving the 

predictability of SMR in Kerala. 
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2.5 Literature gap and Summary   

Following inferences were drawn from the literature review 

 From the review of past literature, it is evident that, the Western Ghats of India is one 

of the eight "hottest hotspots" of biological diversity in the world and are listed as the 

UNESCO World Heritage Site (UNESCO 2013). The region is facing problems related 

to extreme weather conditions. A great deal of research has been conducted on the 

changing climate of the Western Ghats of India, but few studies have been carried out 

on the estimation of rainfall extreme events. 

 

 Longitudinal stretch from the coastline to the Western Ghats could aid in observing 

significant spatial and temporal variations in rainfall. Rainfall extremes depend on 

various factors such as, moisture flux, orography and teleconnections. Therefore, the 

Western Ghats elevation is capable of deep convection. Among the three subdivisions 

of Western Ghats, the highest rainfall is received by coastal Karnataka due to extensive 

mountain barrier signifying the orographic dependence.  

 

 Due to changing climate, there is a change in extreme rainfall events pattern. Studies 

have quoted the extreme rainfall Indices derived by expert team on climate change 

detection and monitoring indices (ETCCDI) based on intensity, frequency and   duration 

in daily rainfall pattern. Therefore, change in frequency of extreme rainfall events and 

their trend has to be given importance in West Coast of Karnataka as this region receives 

extreme events of rainfall all along the west coast of India. 

 

 The recognition of prospective variations in extreme rainfall events, in terms of the 

occurrence, depth and interval assumes importance on the regional scales, due to the 

associated critical socioeconomic consequences. Therefore, it is necessary to evaluate 

various aspects of future projections of rainfall extremes.  

 

 The trend analysis carried out using daily rainfall data signified that the trend is 

increasing in the southern India except Kerala region and decreasing in the Himalayan 
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region. Though there have been many studies at global and in the Indian context, very 

few studies accounted for the regional heterogeneity of rainfall. 

 

 The El Nino Southern Oscillation (ENSO) is known to be a major forcing of the Earth's 

year-to-year climate variability. Association between ENSO and summer-monsoon 

rainfall over India has been rigorously studied. Whereas role of Nino regions are 

asymmetric over Western Ghats rainfall.  

 

 Understanding changes in rainfall variability is essential for explanation of the extreme 

events response to sea surface warming (SST) and its impacts. While changes in mean 

rainfall have been studied intensively, rainfall extreme events variability has received 

less attention, despite its theoretical and practical importance.  

 

 Analyzing the summer monsoon rainfall by teleconnection of Climate indices SST-

monsoon relationship at different season. The asymmetric teleconnection of Nino 

indices reveals better performance of prediction using seasonal lead-lag relationship 

than the standard ENSO index.  

 

Inferences drawn from the literature survey led to the formulation of the objectives of this 

research. Formulated objectives address few important aspects related to rainfall over Coastal 

region and Western Ghats of Karnataka. 

 

Description of study area under investigation and materials used for present study are outlined 

in chapter 3 
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CHAPTER 3 

MATERIALS AND METHODOLOGY 

 

3.1 INTRODUCTION 

This chapter includes the description of;  

 Geographical, physical features of study region and climatic characteristics, 

 Data used and, 

 Overall methodology adopted for the study 

3.2 STUDY AREA 

The geographical location of Karnataka’s coastal region and the Western Ghats is between 

11º 50ʹ to 15º 48ʹ N latitude and 74º 5ʹ to 76º 14ʹ E longitude. The districts of Udupi, 

Dakshina Kannada, and Uttara Kannada are covered by the coastal region of Karnataka, 

which is spread among the Western Ghats and extends up to the Arabian Sea in the west 

and to the edge of the plateau of Karnataka. Several ridges and spurs of the Western Ghats 

span this region. The Western Ghats are parallel to the coastline and comprise of a series of 

mountains. Several hill peaks and ranges, waterfalls, creeks, and rivers render the Western 

Ghats as a difficult terrain. The Western Ghats and the plains constitute the two major 

physical units of the coastal region. During the summer monsoon season (JJAS), heavy 

rainfall is received by Karnataka’s coastal region and the Western Ghats, with the average 

rainfall being in excess of 2500mm in some parts. Considerable damage is caused by the 

frequently occurring orographic effect, which is caused due to the heavy rainfall (> 150 

mm/day) along the coastal plains. 

A narrow stretch of marine and estuarine plains is represented by the coastal plains. The 

Western Ghats are formed by the precipitous rise at the eastern sides. When compared to 

the elevation of the northern parts (450m-600m), the elevation of the southern parts (900m-

1,500m) is found to be higher. A distance of around 320km is covered from the north to the 

south by the 50km-80km wide coastal belt. From the point of view extreme rainfall analysis, 
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the study region can be conveniently divided into Coastal region as Low land (LL) and High 

land (HL) composes of Western Ghat. The location of the study area is shown in Figure 3.1. 

According to a report of the Western Ghats Ecology Expert Panel (2011), several mammals, 

reptiles, birds, amphibians, plants and floras are indigenous to this region and are 

specifically restricted to India. The rainfall received in this region during the south-west 

monsoon cherishes the flourishing growth of living beings. During the JJAS months, the 

annual averaged rainfall is found to be more than 250cm in the study region (Francis and 

Gadgil, 2005). According to a report by the Western Ghats Ecology Expert Panel (2011), 

the vegetated or forest areas with a specific altitude are mapped for defining the boundaries 

of the Western Ghats. In accordance with this report, the present study has considered the 

areas with an elevation of more than 200m as the mountain barriers of the Western Ghats 

(Tawde, 2013). Moist air rising from the Arabian Sea is blocked at cascaded mountains, 

resulting in the eastern side of the Western Ghats receiving low rainfall (Tawde and Singh, 

2015). On the other hand, moist air flux rising from the Arabian Sea causes orographic 

effect, resulting in intense rainfall in the coastal plains and the windward side (western part) 

of the Western Ghats (Francis and Gadgil, 2006; Tawde and Singh, 2015). 

The summer monsoon is driven by seasonal variations in land-sea temperature contrast 

between Asian landmass and adjacent oceans. The south-east trade winds from the southern 

hemisphere are drawn into Western Ghats as the south-west monsoon winds after they cross 

the Equator. The summer monsoon winds are divided into branches - the Arabian Sea branch 

and the Bay of Bengal branch. It gives very heavy rainfall (more than 200 cm), to the 

windward side of the Western Ghats.  

Among three subdivisions of Western Ghats (Kerala, Coastal Karnataka and Konkan Goa), 

minimum rainfall occurs over Kerala. Maximum rainfall occurs over Coastal Karnataka 

which is middle subdivision and again rainfall decreases over Konkan & Goa. Thus, though 

all the three subdivisions of Western Ghats receive very high rainfall during the summer 

monsoon season, it indicates substantial spatio-temporal variation in distribution. Therefore 

to understand the modulation of large-scale phenomenon over the Pacific Ocean SSTs with 

rainfall over West coast of Karnataka, a subdivision of Western Ghats of India is considered. 

Communities, economies, and ecosystems are being significantly influenced by climate 

change. An increased risk of flooding is caused by an increase in the mean rainfall, while 
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an increased risk of drought is caused by a decrease in the mean rainfall. Aquatic ecosystems 

are damaged and the quality of fresh water is diminished by several pollutants, such as 

phosphorus, nitrogen, pesticides, and heavy metals. Such pollutants are transposed by storm 

water runoff caused by extreme rainfall. The most immediate impact of heavy rainfall is the 

prospect of flooding. Moreover, there is an increased risk of landslides being caused due to 

heavy rainfall. A landslide is caused because of the slopes losing their stability, which is 

due to the rising of the water table, which is in turn caused by an above-normal rainfall. 

Increased heavy rainfall induced by climate change leads to the anticipated occurrence of 

frequent landslides in the Western Ghats of Karnataka. 

 

Rainfall is the primary source of irrigation in non-irrigated areas. Crop cultivation in such 

areas could be strained due to the variation in rainfall caused by climate change. Moreover, 

shortage of water may be encountered in irrigated areas during the summer season, which 

may pose a risk to the agriculture sector and cause scarcity of food grains. Several rivers 

originate in the Western Ghats of Karnataka. Several problems, such as climate change and 

rapid changes in land use, are encountered by the people residing in this region. Water 

scarcity is reported during the summer in places located in the Western Ghats and the 

Coastal regions of Karnataka, where an annual average rainfall of more than 3000 mm is 

recorded. 
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Figure 3.1. Geographical Location of (a) Coastal region and Western Ghats of Karnataka 

and (b) Regional distribution of grid point in the study area 
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Figure 3.1b. Geographical Location of grid points of the study region 
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3.2.1 Climate characteristics  

The distance from the sea, topography, and the land’s altitude contribute towards the 

dynamic weather of Karnataka’s coastal region and the Western Ghats. The coastal plains 

possess a humid tropical monsoon climate, whereas the Western Ghats possess a sub-humid 

to humid tropical climate. According to the Ministry of Environment and Forests, four 

seasons, namely, summer season, monsoon season, post-monsoon season, and winter 

season, are experienced by the people living in Karnataka. 

 Summer: The summer season is experienced in the months of March, April, and 

May. The last two months prove to be the hottest, as the study area becomes 

uncomfortable and dry. The situation may turn worse if the pre-monsoon rainfall 

does not occur. 

 

 Monsoon: The monsoon season commences in the month of June and extends up to 

the month of September. Although the temperature and humidity are found to be 

increasing in the month of June, ample rainfall is brought about by the south-west 

monsoon. The humidity content is demonstrated in the coastal region and the 

western side of the Western Ghats (100%) and also by the eastern side of the Western 

Ghats (60%) during the months of June and August. 

 

 Post-Monsoon: A pleasant weather change is observed in the months of October and 

November that witness the post-monsoon season. The north-eastern monsoon brings 

about some spells of rainfall in the study region, thereby affecting other parts of 

Karnataka. A considerable decrease in humidity is witnessed during post-monsoon. 

 

 Winter: The winter season is experienced in December, January and February, which 

are regarded as the coldest months of the year as the temperature dips to around 

10°C. Consequently, the high altitude region of the Western Ghats witness a 

noteworthy fall in the humidity levels, resulting in a pleasant weather.  
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i. Rainfall  

The rainfall in the study region is mainly due to cyclonic and orographic effects, the 

contribution of convective rainfall out of annual rainfall is negligible. The moist air being 

lifted due to depression over the Arabian Sea during the south-west monsoon are carried by 

the sea breeze towards the canopy of Western Ghats resulting in the orographic rainfall. The 

high lands closure to Western Ghats experience heavier rainfall and intense rainfall could 

be identified near narrow belt coastline. With respect to the south-west monsoon and the 

Arabian Sea, the study region with a tropical climate is found to be dependent on its 

geographic and physiographic location.  

 

ii. Temperature  

Sea breeze and land breeze primarily impact the coastal region’s climate. Striking changes 

in temperature are demonstrated by the direction of wind over the Arabian Sea. A gradual 

increase in temperature is witnessed in the study region after the coldest month of January. 

The month of March witnesses a rapid rise in temperature. The month of May generally 

witnesses a peak in temperature in the coastal plains. The temperature begins to drop in the 

months of October and November and continues to drop further in the month of December.  

 

iii. Wind 

The winds are strong and are mainly westerly or south westerly during south west monsoon 

period (June and July). During the rest of the year, Winds are northeasterly. The maximum 

wind velocity is so far recorded is 72 km/hr on the 21st of July 1983 (IMD).  
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iv. Water resources  

Reservoirs, waterfalls, lakes, and rivers constitute some of the available sources of surface 

water in Karnataka. The Western Ghats are the primary division for the river basins. About 

6% of the country’s surface water resources (i.e. approximately 17 lakh million cubic meters 

(MCM)) is accounted by the country’s seventh largest (area-wise) state of Karnataka. 

Additionally, the state possesses a potential of about 102 cubic km of surface water. A 

majority of the seven river systems of Karnataka originate near the Western Ghats ridge at 

an elevation of 400 meters to 1,600 meters above the mean sea level. The rivers flowing 

towards the east (towards the Bay of Bengal) carry 60% of the state’s surface water, whereas 

the rivers flowing towards the west (towards the Arabian Sea) carry 40% of the state’s 

surface water. Since the rivers flowing in the western direction cannot be utilized, the 

average economic utilization of the river basins is estimated to be 45%. It is noteworthy that 

the state’s ground water resources (485 TMC) are not evenly exploited in Karnataka. For 

instance, the irrigation and coastal areas of Malenadu possess adequate quantum of surface 

water; however, the ground water resources are minimally exploited. 
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3.3 Data sets 

i. Rainfall data 

The India Meteorological Department (IMD) 0.25ºx0.25º high resolution (25Km grid data) 

gridded daily rainfall data for the period 1901 to 2013 were used. The IMD gridded data has 

been developed by IMD over Indian region using weighted interpolation technique on rain 

gauge observations. The dataset is well validated and reliable (Pai et al. 2014; 2015). The 

starting point of this gridded data is 6.5º N and 66.5º E with total (241x281) grid points. A 

total of 38 grid points were selected and extracted the individual grid point rainfall values 

from the IMD gridded data for the year 1901-2013. The rainfall data is available in daily 

series with various compatible conversion data format. In the present study netcdf format is 

used and extracted using the climate data analysis tools ferret and Grads. Figure 3.1b depicts 

geographical locations of grid points employed. The selected grid points are divided broadly 

into two groups based on its situated location in the study region and elevation. West coast 

of India, has an influence of sea/breeze circulation. Whereas horizontal extent of sea breeze 

is upto 75km from the sea/land interface and vertical extent of sea/land breeze circulation 

cell upto 1 km (Rani et al., 2010). According to the elevation values from the ASTER digital 

elevation model, the selected grid points are bifurcated into two zones. The high-resolution 

daily rainfall gridded data (for the time series of 1901-2013) was used to extract the grid 

points (selected for analysis within the study area) as individual points of rainfall data. In a 

way similar to the one followed by the state’s agro metrological division, the elevation and 

location of the grid points were used to differentiate them within the study region. The 

spatial rainfall variability and the circulation of sea breeze or land breeze caused by 

orographic rainfall affect the west coast of India (Rani et al., 2010). Therefore, intense 

rainfall is prevalent in low lying areas (up to 140 m above MSL) of the Western Ghats 

(Tawde and Singh, 2015). Elevation values for the selected grid points are extracted from 

ASTER elevation data. Appendix I shows the description of selected grid over study region. 

The 17 grid points located towards western side of Western Ghats and elevation within 200 

meters are coastal region grid points, which are also remarked as ‘Low Land’. The 

remaining 21 grid points are spread over ridges and slope of the Western Ghats at high 

elevated location, which are termed as ‘High Lands’. Grid points, which are located in 

border of Western Ghats toward inland region are near to leeward side of Western Ghats, 
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which receives rainfall relatively low. However, the grid points at the strip of the coastline 

received intense rainfall.  

ii. Sea Surface Temperature    

 The anomaly of the sea-surface temperature (SST) is measured in °C and its monthly time 

series of climatic data (from 1951 to 2013) is included in the present study. The SST data is 

available in monthly series with various data format (www.esrl.noaa.gov) . The sea-surface 

temperature anomalies (SSTA) observed in the central Pacific’s Niño 3.4 region defines the 

ENSO signal. The National Weather Service Climate Prediction Center at the National 

Oceanic and Atmospheric Administration (NOAA) tabulates the monthly time series of 

SSTA, which is derived from the NOAA Extended Reconstructed Sea Surface Temperature 

V3B (ERSST.V3B). SST anomalies that are averaged across a given region are used as the 

basis of several indices that are employed in the monitoring of the tropical Pacific. The 

various indices, such as the Niño 1+2, Niño 3, Niño 3.4 and Niño 4 regions, correspond with 

the labels assigned to ship tracks that crossed these regions. El Niño was first recognized in 

the coastal South American region with which the eastern-most and the smallest of the Niño 

SST regions (Niño 1+2 region) corresponds. It was discovered that the vital region for 

coupled interactions between the atmosphere and the ocean for ENSO was situated 

westward towards the Niño 4 region, despite the Niño 3 region once being the chief focus 

to monitor and predict El Niño (Trenberth, 1997). SST anomalies are captured by the Niño 

4 index in the central equatorial Pacific. When compared to other Niño regions, this region 

has a lesser inclination to possess variance. The average equatorial SSTs from around the 

South American coast’s dateline may be represented by the Niño 3.4 anomalies across the 

Pacific. As mentioned below, two different regimes (La Niña or El Niño phases) were 

defined using the mean value of sea-surface temperature anomaly in Niño 3.4 region for a 

given year. 

La Niña, if mean 𝑆𝑆𝑇𝐴 < − 0.5℃; 

El Niño, if mean 𝑆𝑆𝑇𝐴 ≥ + 0.5℃ 

It is inferred from the above definition that a growing season, influenced by La Niña or El 

Niño, is denoted by any average values that exceed -0.5 or +0.5. 



45 
 

3.4 Details of tools used for the study  

The following list of tools and packages were used for processing the Rainfall data and 

analysis are summarized in Table 3.1:  

Table 3.1 Tools used for the study 

 

Tools Purpose  

Ferret, CDO, 

GRADS 

These are the open source tools based on Linux platform. It was used for 

converting raw rainfall data obtained from IMD and extraction of grid 

points of the study region. It is very useful in data visualization and 

analysis.   

AnClim 
Open source tool used to detect autocorrelation and homogenization in a 

time series.  

RClimdex 
A software developed by Zhang and Yang (2004) at Canadian 

Meteorological Services was used to obtain Rainfall Indices and analysis.  

RHtetsV3 
RHtest package is used to detect multiple change points that might exist 

in time series (Wang and Fing 2004).  

ArcGIS 10.1®  

ArcGIS is professional GIS software developed by Environmental 

System Research Institute (ESRI). It is used for the generation of maps, 

conduct of spatial analysis and sharing of intelligent visualization for an 

improvised decision making. It renders a set of comprehensive data 

visualization and analysis tools which greatly simplify the analysis of 

geo-spatial data. 

MATLAB ® 
A powerful mathematical data analysis tool used in neural network 

analysis and modeling.  

Spi_sl_6 

US Drought Mitigation Center definitive calculation SPI (Standardized 

rainfall Index) executable program (WMO adopted), WINDOWS 

operating system command line. 

Minitab 17 
A statistical analysis software helps to improve quality and verification 

of analysis and results.  
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3.5 Overall Methodology  

 

 

Figure 3.2 Flowchart of the steps involved in research methodology 

 

 

 

Obj. 3 

Obj. 1 

Obj. 4 

Obj. 2 
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The present study can be classified under four objectives, which are inter-related as shown 

in the flow chart of the overall research methodology in (Figure 3.2). By using daily time 

series, the ETCCDI extreme rainfall indices were computed by the high-resolution gridded 

rainfall IMD data for the study region. The measurement and characterization of climate 

variability and change is addressed by the joint Expert Team on Climate Change Detection 

and Indices (ETCCDI) of JCOMM/CLIVAR/CCl by providing extreme rainfall indices 

relevant to climate change detection which is discussed under chapter 4. Mountains with a 

steeply rising western face, narrow zonal width, and an orientation from the north to the 

south, basically constitute the Western Ghats of Karnataka. The rainfall over the study 

region is occurred by winds sliding over the Arabian Sea blocked by the Western Ghats and 

thus uplifted to generate moderate-to-heavy rainfall in an orographic manner. Whereas 

relationship of Nino regions with rainfall are asymmetric over the Western Coast of 

Karnataka, India. Hence, the effects of Nino indices with ETCCDI rainfall indices are 

discussed in chapter 5. The rainfall over study region is highly concentrated in monsoon 

season. Therefore, in chapter 6 discussed on estimation of seasonal rainfall by significantly 

influencing seasonal Nino Indices using lead lag relationship. Chapter 7 on summary and 

conclusions of all the four objectives of this research.  

 

The next chapter explains detailed methodology, results and discussions of the objective 1 

of this research. 
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 CHAPTER 4 

TREND ANALYSIS OF EXTREME RAINFALL INDICES 

 

4.1 INTRODUCTION  

Synoptic weather system variability provides insight into regional rainfall and extreme 

events. In recent decades, fluctuations in extreme rainfall events have attracted widespread 

interest by the scientific community due to their devastating impacts on both human society 

and natural systems. Increased concerns for extreme Rainfall events analysis is not only due 

to economic development, the growing need for water, and global warming, but also due to 

its significance in natural threats, such as droughts, soil erosion, and floods  (Lopez-Moreno 

et al., 2009; Oguntunde et al., 2011; Wang et al., 2015; Tabari et al., 2015a). The increased 

concentration of greenhouse gases (GHG) has accelerated the speed of the hydrological 

cycle because of enhanced atmospheric warming and result in instability of the hydrological 

cycle system. An enhanced focus on this issue could be attributed to the varying Rainfall 

patterns as witnessed in several parts of the world. The changes to the rainfall due to climate 

change are bound to influence the review of management practices in hydrology.  

4.2 EXTREME RAINFALL ANALYSIS IN WESTERN GHATS  

In the Western Ghats, Rainfall often exhibits seasonality due to the periodicity of weather. 

The methods adopted to evaluate the trends, therefore, are required to consider the 

seasonality. The trend analysis of extreme Rainfall indices are explained in this chapter for 

the study area namely, the coastal region of Karnataka and the Western Ghats.  

Of late, extreme occurrences of rainfall have become a matter of much interest as they have 

greater sensitivity to changes in climate than average values, within the global warming 

context. Extreme events are described as the “occurrence of climate variable above (or 

below) a threshold value near the upper (or lower) ends of the range of observed values of 

the variable”. Extreme events are occasional occurrences and frequently are situated beyond 

the scope of most monitored or computed data. Although there is a very low likelihood of 

these events, they are connected with abnormal effects and can result in significant losses 

and destruction due to their scale. These impacts may involve excessive loss of life, 
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economy, or both. Extreme rainfall signifies the maximum rainfall in a day within a year. 

Consequently, there are as many values of extreme rainfall as the total number of years. 

It is widely acknowledged that rainfall events taking place in mountainous regions provide 

water resources for society, agriculture, industry, and the environment.  But, for planners of 

water resources and agriculture, variability of Rainfall events is an extremely challenging 

issue. It is difficult to predict the risk of extreme events, but their impacts could be severe. 

India is of substantial interest for researchers as it is evident from several studies that a rise 

in GHG concentrations would markedly enhance the conveyance of moisture into the Indian 

west coast, causing extreme events of rainfall (Bhaskaran et al., 1995; May, 2002). Despite 

the significance of inflow-generating rainfall in the Western Ghats of Karnataka, a 

knowledge gap remains concerning the enduring, historic climatological behavior of the 

synoptic weather system that delivers the region’s rainfall pattern. To outline the change in 

Rainfall extremes in the study region (i.e., Karnataka’s coastal region and the Western 

Ghats), it is necessary to look at the historical trends of statistical properties of Rainfall 

extremes.   

The objective of the Chapter 4 is to understand spatio and temporal behavior of the extreme 

rainfall events based on ETCCDI rainfall indices and its trend over study region.  

4.3 METHODS FOR TREND ANALYSIS 

The detection of trends can be carried out using either parametric or non-parametric tests. 

The linear trend in the parametric tests analyze whether there is a significant variance from 

zero for the slope coefficient of linear regression whereas the sign of the slope coefficient 

signifies a negative or positive trend. The meteorological time series are frequently 

encountered with non-normally distributed, censored, and missing data, making them more 

suitable for non-parametric methods as they are distribution free (Hirsch et al. 1991). 

Incorrect results leading to invalid inferences could be obtained with the use of parametric 

methods when the data is not normally distributed. The trend detection of meteorological 

variables can be performed using several non-parametric methods, such as seasonal Kendall 

test (Hirsch et al. 1991), Locally Weighted Scatterplot Smoothing (LOWESS) (Champely 

and Doledec, 1997), the wavelet based trend analysis (Craigmile et al., 2004), and the 
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Spearman’s rank correlation test (Yue and Wang, 2002). The Mann-Kendall (MK) test is 

the best non-parametric approach for detecting the trend (WMO, 1988).  

Mann-Kendall test with pre-whitening of time series is referred to as the Modified Mann-

Kendall (MMK) test used in the present study for rectifying serially correlated data with 

95% confidence interval. The slope estimator of Sen (1968) is used to estimate the 

magnitude of the trend in the seasonal and annual series. A robust estimate of a monotonic 

trend’s magnitude is rendered by the non-parametric approach of Sen’s slope estimator. The 

change in the mean of the sample over observation period is determined with an assumption 

of the trend to be linear. The magnitude of a trend can be gauged by analyzing the average 

changes over a region (Hirsch et al., 1991; Kiros et al., 2016; Mudbhatkal and Amai, 2018). 

The slope estimator of Sen is a widely used tool in quantifying trend in Rainfall time series 

(Kahya and Kalayci, 2004; Partal and Kahya, 2006; Rajeevan et al., 2008; Kiros et al., 2016; 

Revadekar et al., 2018).  

For water management in warmer climates, an awareness of the pattern of extreme Rainfall 

is essential. Indeed, mobilizing and planning water resources requires analysis of trends in 

Rainfall time series. This analysis can facilitate adaptation planning and resilience building 

for droughts and flood. This study endeavors to offer greater insight regarding the 

development of extreme Rainfall in the Western Ghats and west coast of Karnataka at daily 

timescales. The chapter 4 attempts to study the historical rainfall trend of the ETCCDI 

extreme rainfall indices in the Western Ghats and coastal region of Karnataka. 

Methodology followed in the analysis is outlined below section 4.4.  
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4.4 METHODOLOGY 

4.4.1 Schematic flow of extreme rainfall analysis 

Fig. 4.1 depicts the flow of activities undertaken by the study for the trend analysis of 

extreme Rainfall patterns. 

 

Fig. 4.1: Schematic flow chart for evaluating the trend of extreme Rainfall indices of 

ETCCDI 
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The changes in extreme rainfall events were assessed using daily Rainfall series of high-

resolution gridded data of the India Meteorological Department (IMD). This dataset 

contains data for the period 1901-2013 (113 years) (Pai et al., 2013).  The elevation 

information of topography is extracted using the Digital Elevation Model (DEM) of 

Advanced Space borne Thermal Emission and Reflection (ASTER). Within the boundary 

of the study area, the grid points chosen for analysis were extracted as distinct Rainfall 

values from the IMD dataset. Within the region, the grid points were segregated based on 

their elevation and location, which is also comparable with Karnataka state agro 

meteorological division. The circulation of breeze caused by sea or land affects the Indian 

west coast and the spatial Rainfall variability, because of the orographic Rainfall (Rani et 

al., 2010). Consequently, the low-lying areas (that is, up to 200 m above MSL) of the 

Western Ghats in Karnataka have a tendency for intense Rainfall (Tawde and Singh 2015). 

 

Figure 4.2: Variation of Rainfall with elevation at each grid points over (a) Low Land 

(Coastal region) and (b) High Land (Western Ghats) 
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Appendix 1 summarizes the grid points/stations utilized in this study with their elevations, 

coordinates, and the observed average rainfall values for the study period (i.e., 1901-2013). 

The ordering of the grid points was done in two categories, namely high land points (HL) 

and low land points (LL). The grid points were above 200 m above MSL in HL points and 

were below 200 m above MSL in LL points (Tawde and Singh 2015). A total of 38 grid 

points were scrutinized of which 21 were located in HL and 17 were located in LL. The HL 

points were distributed across the highly elevated areas of the Western Ghats.  

Spatial variation of Rainfall at each grid point over coastal plains and highly terrain region 

of selected study area is depicted in Figure 4.2. A significant role is played by the hilly 

terrain of the Western Ghats in the suppression of Rainfall on the leeward side and intense 

Rainfall on the windward side. Detectable peaks and higher Rainfall over gradually 

increasing slopes are observed in the study region.  

 

4.4.2 Assessment of Changes in Rainfall Extreme Events 

In order to elaborate the climatology of extreme rainfall and to investigate changes in 

extremes (intensity and frequency), it was essential to design a set of indices that were 

statistically robust, covered a wide range of climates. The latent change in rainfall extremes 

over Karnataka’s coastal region and the Western Ghats was characterized by calculating the 

climatic extreme indices. These indices are recommended by the Expert Team on Climate 

Change Detection Indices (ETCCDI) and the joint World Meteorological Organization 

Commission for Climatology (CCl) and World Climate Research Programme (WCRP) 

project on Climate Variability and Predictability (CLIVAR) (Peterson et al., 2001; 

Alexander et al., 2006; Zhang et al., 2011). Since extreme events have strong impact on 

society. These extreme rainfall indices have also been used in other studies for different 

regions in India and around the world (Revadekar et al. 2011; Revadekar and Preethi 2012; 

Hasan et al. 2018; Jiang et al. 2018; Li et al. 2018).  

Table 4.1 summarizes the descriptions of the indices selected for the present study. The 12 

rainfall indices were computed for each individual grid points/station at seasonal and annual 

(monsoon, before monsoon and after monsoon) time steps. The rainfall indices considered 



55 
 

in the study are based on fixed threshold (absolute) and some are based on adaptable 

thresholds. Data were analyzed by using the RClimDex is an open source software 

developed by ETCCDI. This package was used and developed in previous studies (Croitoru 

et al. 2016; Demaria et al. 2013; Sharma and Singh 2017; Wang et al. 2013).  

RClimDex was used to compute extreme rainfall indices from the IMD gridded daily rainfall 

data. A 5% level of statistical significance was taken into consideration. The purpose of the 

ETCCDI process is to determine a standardized set of indices, which makes capable 

comparison across study region. The slopes of the annual/seasonal trends and their statistical 

significance to rainfall indices were calculated based on non-parametric MK/MMK test in 

order to detect trends within time series.   

Table 4.1: Description of Annual and Seasonal Rainfall Indices 

 

S.no. Index Definition Units Significance 

1 RR Total annual rainfall mm 
Annual magnitude 

of rainfall 

2 CWD 
Number of rainy days in a year/season (with 

rainfall intensity ≥2.5mm/day) 
days Rainy days 

3 CDD Number of dry days in a year  Days Dry Days 

4 Rx1 One-day annual highest rainfall amount mm 
High intensity 

rainfall 

5 Rx5  
Cumulative five-day annual highest rainfall 

amount 
mm 

Intense rainfall 

event magnitude 

6 SDII 

Average intensity of daily rainfall in a 

year/season (with rainfall intensity 

≥2.5mm/day) 

mm/day 
Daily intensity of 

rainfall 

7 RRTOT 

Ratio of seasonal precipitation to Annual 

precipitation (Seasonal precipitation 

/Annual precipitation * 100) 

% 
Seasonal Ratio of 

Precipitation 

8 R100 
No. of days in a year/season with rainfall 

intensity ≥100mm/day 
days Very heavy rainfall 

9 R65 

No. of days in a year/season with rainfall 

intensity between 100mm/day and 65 

mm/day 

days Heavy rainfall 

10 R2.5-65 

No. of days in a year/season with rainfall 

intensity between 65mm/day and 2.5 

mm/day 

days Moderate rainfall 

11 R40 

No. of days in a year/season with rainfall 

intensity between 65mm/day and 40 

mm/day 

days Average rainfall 

12 R20 

No. of days in a year/season with rainfall 

intensity between 40mm/day and 20 

mm/day 

days Low rainfall 
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4.4.3 Statistical Tests for Trend Detection  

4.4.3.1 Serial Correlation 

Serial dependence between the data is checked using Lag-1 autocorrelation (Enders, 2002; 

Wilks, 2006). The correlation coefficient (simple) of the first observations N-1, 𝑋𝑡, t = 

1,2,3…..N-1 and the next observations, 𝑋𝑡+1, t = 2 , 3, ..., N is the lag-1 autocorrelation 

coefficient. Equation 4.1 specifies the correlation between 𝑋𝑡 and 𝑋𝑡+1 

𝑟1 = 
∑ (𝑋𝑡−�̅�)(𝑋𝑡+1−�̅�)
𝑁−1
𝑡=1

∑ (𝑋𝑡−�̅�)
𝑁
𝑖=1 2

       (4.1) 

where �̅� = ∑ 𝑋𝑡
𝑁
𝑡=1   = Mean of the time series.  

The testing of the significance of the lag-1 autocorrelation coefficient 𝑟1 is conducted. The 

limits of probability on the correlogram of a two-tailed tests’ independent series is specified 

by Equation 4.2 (Meshram et al., 2016). 

𝑟1 (95%) =
−1±1.96√𝑁−𝑘−1

𝑁−𝑘
        (4.2) 

where k denotes the lag and N denotes the sample size. 

 

If the value of 𝑟1 is beyond the aforementioned confidence interval, and serially independent 

if otherwise, then the data are presumed to be serially correlated. 

4.4.3.2 Autocorrelation Removal  

 The outcome of the Mann-Kendall test can be influenced by the effect of auto-correlation. 

The probability of the incorrect rejection of the null hypothesis at the stipulated significant 

level is increased by a positive autocorrelation of the time series (von Storch and Navarra, 

1995). Moreover, the trend’s significance can possibly be underestimated if the data 

contains negative serial correlations (Yue et al., 2002). The serial correlation can be 

eliminated using several proposed approaches. Several researchers have commonly 

employed “pre-whitening” on the original dataset (Douglas et al., 2000; Burn and Hag 

Elnur, 2001; Zhang et al., 2001; Yue et al., 2002). The method of using pre-whitening in the 

removal of the effect of lag-1 serial correlations was originally proposed by von Storch and 
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Navarra (1995); however, an erroneous evaluation of a trend’s significance can be probably 

caused by the method’s capacity of eliminating a segment of the identified trend (Yue et al., 

2002; Wu et al., 2008; Shifteh Some'e et al., 2012). Therefore, in the present study, Modified 

Mann-Kendall test has been utilized for overcoming the autocorrelation effect on the trend 

estimation. 

4.4.3.3 Non-Parametric Versus Parametric Methods 

Hydro-climatologic data do not typically satisfy the assumptions of the parametric test (i.e., 

linearity, normality, and independence) (Van Belle and Hughes, 1984; Helsel and Hirsch, 

1988; Huth and Pokorna, 2004). A trend’s statistical significance is determined by non-

parametric methods employed in several studies (Harry et al, 1999; Zhang et al., 2001; Yue 

and Hashimoto, 2003; Xu et al., 2003; Kahya and Kalayci, 2004; Huth and Pokorna, 2004; 

Partal and Kalya, 2006). It has been evidenced that non-parametric approaches are 

appropriate for large sample sizes and commonly skewed data (Hirsch et al., 1982). 

Moreover, these approaches are not only inclined to be more unaffected by misbehaving 

data (e.g., outliers), but additionally offer outcomes similar to their parametric counterparts. 

Further, these methods are found to be within the limits of confidence limits even during 

normal distributions (Huth and Pokorna, 2004).  

The above-mentioned points indicate the suitability of non-parametric methods for trend 

analysis. Further, these methods are more robust than their parametric counterparts. 

Regarding competence, i.e., capacity to differentiate between the null and alternative 

hypotheses, the Mann-Kendall test for monotonic trends (Mann 1945) outperform 

parametric tests (Kahya and Kalayci 2004). This is a non-parametric test that has been 

commonly utilized for evaluating the randomness against the hydrology and climatology 

trends ( Kahya and Kalayci 2004; Alexander et al. 2006; Partal and Kahya 2006; Kiros et 

al. 2016; Kumar Raju and Nandagiri 2017). The challenge in utilizing the Mann-Kendall 

test is that the outcome gets modified if the analyzed time series contains serial correlations. 

A trend that is more frequent and random than the significant level is suggested by the test 

because of a positive serial correlation (persistence) existing in a time series Trend analysis 

in Turkish Rainfall data (Partal and Kahya 2006). The elimination of the impact of serial 

correlation through “pre-whitening” prior to the application of the Mann-Kendall test was 
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proposed by Von Storch (1995). Another option is to use the Modified Mann Kendall test 

that removes the effect of serial correlation in the dataset (Hamed and Ramachandra Rao 

1998). 

4.4.3.4 Background and Purpose of Mann-Kendall test 

The Mann-Kendall test is a non-parametric test for identifying trends in time series data, 

based on the idea that a lack of trend should correspond to a time series plot fluctuating 

randomly about a constant mean level, with no visually apparent upward or downward 

pattern. If an increasing trend really exists, the sample taken first from any randomly 

selected pair of measurements should on average have a lower concentration than the 

measurement collected at a later point. The test compares the relative magnitudes of sample 

data rather than the data values themselves (Gilbert, 1987). One benefit of this test is that 

the data need not confirm to any particular distribution. Moreover, data reported as non-

detects can be included by assigning them a common value that is smaller than the smallest 

measured value in the data set. The procedure assumes that there exists only one data value 

per time period. When multiple data points exist for a single time period, the median value 

is used. 

4.4.3.5 Assumptions and Requirements: 

The following assumptions underlie the MK test: 

When no trend is present, the measurements (observations or data) obtained over time are 

independent and identically distributed. The assumption of independence means that the 

observations are not serially correlated over time. 

The observations obtained over time are representative of the true conditions at sampling 

times. 

The sample collection, handling and measurements be normally distributed or that the trend, 

if present, is linear. The MK test can be computed if there are missing values and values 

below the one or more limits of detection, but the performance of the test will be adversely 

affected by such events. The assumptions of independence requires that the time between 



59 
 

samples be sufficiently large so that there is no correlation between measurements collected 

at different times. 

4.4.3.6 Calculation of Mann-Kendall trend test 

As introduced in the previous section, the Mann-Kendall (MK) is a non-parametric trend 

test that is often utilized for the discovery of significant trends in hydrologic data series 

(Patra et al., 2012). Equation 4.3 explains the S statistics for a series X1, X2 ,……, Xn in the 

MK test: 

 

S = ∑ ∑ sgn (Xj − Xi)𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1                  (4.3) 

 

where i = 1, 2,…, n − 1 and j = i + 1 and n is the dataset’s length. 

 

Sgn (𝜃) = {

+1   𝑖𝑓 (𝑋𝑗 − 𝑋𝑖) > 0
0   𝑖𝑓 (𝑋𝑗 − 𝑋𝑖) = 0
−1  𝑖𝑓 (𝑋𝑗 − 𝑋𝑖) < 0

        (4.4) 

An upward or a downward trend is signified by a positive or a negative value of the test 

statistic S. The variance of the Mann-Kendall statistics is rendered by Equation 4.5.  

 

var (S) =
𝑛(𝑛−1)(2n+5)−∑ tp(𝑡𝑝−1)(2𝑡𝑝+5)

q
p−1

18
       (4.5) 

 

where tp is the number of ties existing up to sample i. 

 

The standardized MK test statistic (Zmk) can be calculated using Equation 4.6: 

𝑍𝑚𝑘  =  

{
 

 
𝑆−1

√var (S)
 if S > 0

0                 if S = 0
𝑆+1

√var (S)
 if S < 0

            (4.6) 

 

A standard normal distribution is followed by Zmk. A negative value signifies a negative 

trend and a positive value signifies an upward trend. The cumulative probabilities of Z-
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values are presented in Appendix 2 and 3.  The null hypothesis is rejected and a trend is 

considered significant, if Zmk > Zά/2 (where ά is the level of significance). 

 

 

4.4.3.7 Modified Mann-Kendall (MMK) 

 

MMK has been utilized to identify trends in data that is serially correlated. The significant 

values of ρk (autocorrelation coefficient) are utilized in this method for estimating the 

variance correction factor 𝑛 𝑛𝑠∗⁄  . The variance of S is undervalued during the positive and 

auto correlation of the data. 

𝑛
𝑛𝑠∗ ⁄ = 1 + 

2

𝑛(𝑛−1)(𝑛−2)
 𝑋 ∑ (𝑛 − 𝑘)(𝑛 − 𝑘 − 1)(𝑛 − 𝑘 − 2)𝑛−1

𝐾=1 𝜌𝑘 (4.7) 

Equation 4.8 is used to compute the revised Variance:  

𝑉∗(𝑆) = 𝑉(𝑆)𝑋
𝑛

𝑛𝑠
∗        (4.8) 

Where V(S) is the same as was estimated using the Mann-Kendall approach. 

 

4.4.3.8 Magnitude of Trend (Sen’s Slope)  

Apart from identifying the existence of a trend, a slope estimator β was utilized to compute 

the trend’s magnitude. Hirsch et al. (1982) extended this slope estimator from an original 

proposal by Sen (1968). β is the robust value of the trend’s magnitude. That is, the median 

overall probable combinations of pairs for the entire dataset is indicated by the slope 

estimator β (Hirsch et al., 1982). An ‘ascending trend’ (increasing values with time) is 

indicated by a positive value of β, while a ‘descending trend’ is indicated by a negative value 

of β (Xu et al., 2007; Karpouzos et al., 2010). Sens’ slope estimated forecasts the trend’s 

magnitude with the slope (Q) of all pairs of data. This magnitude can be gauged by using 

Equation 4.9. 

𝑄 =  
𝑥𝑗−𝑥𝑖

𝑗−𝑖
         (4.9) 
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where xj and xi are regarded as the values of data at times j and i (j > i), respectively.  

Sen’s slope estimator is calculated as the median of Q’s N values by Equation 4.10 and 

Equation 4.11: 

𝛽 = 𝑄 
( 𝑁+1)

2
   if N is Odd,        (4.10) 

𝛽 = (𝑄 (𝑁 2⁄ ) + 𝑄 (
(𝑁 + 2)

2⁄ ))/2)/2 if N is even   (4.11) 

A positive value of β indicates an upward (increasing) trend in the time series and a negative 

value of β indicates a downward (decreasing) trend in the time series. 

The direction of data trend is reflected by the sign of the 𝛽 value, while the steepness of the 

trend is indicated by its value. The confidence interval of 𝛽 at a particular probability should 

be obtained to ascertain whether there is any statistical difference between the median slope 

and zero. Equation 4.12 can be used to compute the confidence interval regarding the 

median slope. 

𝐶𝛼 = 𝑍1 −
𝛼

2
𝑋√𝑉𝑎𝑟 (𝑆)       (4.12) 

where Variance (S) is  

𝑉𝑎𝑟 (𝑆) =
1

18
[𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑡𝑝 (𝑡𝑝 − 1)(2𝑡𝑝 + 5)𝑞

𝑝−1 ]  (4.13) 

The standard normal distribution table is used to derive Z1-α/2.  

The confidence interval’s lower bounds (M1) and upper bounds (M2), are computed using 

Equation 4.14 and 4.15:  

𝑀1 =
𝑁−𝐶𝛼

2
         (4.14) 

𝑀2 =
𝑁+𝐶𝛼

2
         (4.15) 

Sen’s slope estimator was used to gauge the trend’s magnitude. The trends were detected at 

0.1% (extremely significant), 1% (significant), 5%, and 10% significance levels. The annual 

and seasonal variations of rainfall for each station/grid point were computed with respect to 

the mean and the variations are plotted over time. 
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4.5 RESULTS AND DISCUSSION 

Within the context of global warming, extreme rainfall events have recently received much 

attention because they are the most sensitive to climate change than mean values. Extreme 

events are occasional occurrences and frequently are situated beyond the scope of most 

monitored data. Although there is a very low likelihood of these events, they are connected 

with abnormal effects and can result in significant losses and destruction due to their scale. 

These impacts may involve excessive loss of life, economy, or both. Extreme rainfall 

signifies the maximum rainfall events in a day within a year. Consequently, there are as 

many values of extreme rainfall events as the total number of years. The results of extreme 

rainfall analysis is provided under the following sub-headings.  

4.5.1 Spatio-temporal patterns and Variability of Rainfall 

The statistical analysis of the data grid of daily Rainfall is summarized in Appendix 1. The 

mean annual Rainfall in the LL regions varies between 3036 mm and 4496 mm respectively 

for narrow mountain ranges and broader coastal strips. Fig. 4.3 shows that the average 

annual rainfall of LL and HL regions is 3961 mm and 2342 mm respectively for the period 

1901-2013. Appendix 1 represents the variance in the skewness was between -0.089 and 

1.49, while the variance in the standard deviation of Rainfall was from 581 mm to 1881 mm. 

The largest positive skew distribution was found to have a mean value of 0.69. The yearly 

Rainfall during the period 1901- 2013 was asymmetric alongside the Western Ghats’ ridge 

line. Three grid points, namely, LL1, LL14, and LL17, were found to have been lesser than 

the mean (i.e., on the left) whereas the remaining were higher than the mean (i.e., on the 

right). The variance in the kurtosis ranged from 0.03 to 4.88 with an approximate mean 

value of 1.55. The variance in the coefficient of variation (CV) of Rainfall ranged between 

15.74% and 36.65%, adjoining the coastline (LL12) adjacent to the bottom of the Western 

Ghats (LL9). The coastal region’s average CV was found to be 21.75%. 
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Fig. 4.3   Annual Rainfall in the (a) Low Land (Coastal Region) and (b) High Land 

(Western Ghats) regions of the west coast of Karnataka.  

4.5.2 Trend analysis of ETCCDI rainfall Indices 

The Expert Team for Climate Change Detection Monitoring and Indices (ETCCDMI) 

specifies information concerning extreme rainfall indices (e.g., type of rainfall, intensity and 

extremes, frequency, etc.)  (Alexander et al., 2006). Indices related to extreme rainfall can 

be grouped into two categories: one computes the frequency (number of instances) of the 

index beyond or within its specified limit (CDD, CWD, R2.5-65, R40, R65, R100, and R20), 

while the second assesses the depth (mm) or intensity (mm per day) of rainfall (RR, SDII, 

RX1day, and RX5day). The separation of frequency and magnitude is anticipated to offer 

additional insights into the frequently slight variances in the climatic condition across the 

study area (i.e., the Western Ghats and the shoreline of Karnataka). Moreover, it is evident 

that these indices are also significant for the evaluation of the possible effect of climate 

changes on sub-humid to humid tropical environments associated with agriculture, forests, 

sustainable development, water resources, etc. 
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The trend analysis for rainfall indices was carried out for the annual and three principal 

seasons, namely monsoon (from June to September), north-east monsoon or post-monsoon 

(from October to November), and winter (from December to February). Table 4.2 

summarizes the outcomes of the MK/MMK test (non-parametric) at a 5% level of 

significance. The majority of the Rainfall indices that were evaluated by the dataset’s time 

series did not possess any significant lag-1 serial correlation coefficient. Table 4.2 

summarizes each index’s significant increasing and decreasing trends and the quantity of 

significant serial correlations, during the period of study from 1901 to 2013. 

The outcomes of the statistical analysis for the annual rainfall trend detection at 95% 

confidence level revealed that the annual series (RR) was dominated by positive trends 

(Table 4.2). A positive trend was shown by 22 (58 %) of the 38 grid point and 16 grid points 

showed a negative trend. Whereas 16 grid point trends showed statistically significant 

increases at the 95% significance level (Table 4.2), the remaining 16 grid points showed a 

decreasing trend. However, only 5 grid points are statistically significant.  
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Table 4.2: Lag-1 significant serial correlations and MK/MMK Trend test results at the 5% level 

 

 

 
Season Variable 

No. of significant 

Serial correlation 

No. of Significant 
 

No. of Non-Significant 
No 

Trend increasing trend 
decreasing 

trend  
increasing trend 

decreasing 

trend 

Annual RR 7 16 5 
 

6 11 -- 

 

RX1 17 8 3 
 

17 10 -- 

 RX5 9 11 5  11 11 -- 

 

CWD 6 9 10 
 

12 7 -- 

 

SDII 5 14 12 
 

8 4 -- 

 CDD 8 18 6  7 4 3 

         Monsoon RRTOT 26 12 2 

 

11 13 -- 

 

CWD 14 10 4 

 

14 10 -- 

 

SDII 32 13 4 

 

10 11 -- 

 

R2.5_65 17 7 10 

 

11 7 3 

Pre-

Monsoon RRTOT 
2 5 9 

 

11 13 -- 

 

CWD 12 2 6 

 

5 8 17 

 

SDII 10 2 3 

 

13 20 -- 

 

R2.5_65 11 2 6 

 

5 9 16 

Post-

Monsoon RRTOT 
8 -- 4 

 

10 24 -- 

 

CWD 15 3 4 

 

9 12 10 

 

SDII 10 -- 3 

 

19 16 -- 

 

R2.5_65 17 3 4 

 

7 13 11 

Monsoon R100 15 6 1 
 

0 0 31 

Frequency  R65 20 12 4 
 

2 0 20 

indices R40 29 11 4 
 

6 4 13 

 

R20 28 7 3 
 

9 10 9 
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Similarly, the trend in total seasonal rainfall (RRTOT) reveals: (a) in monsoon season 

(JJAS), 23 (60%) out of 38 grid points are showed increasing trend. Whereas, 12 grid points 

are significant. (b) Pre-monsoon season (MAM), 16 (42%) grid points showing increasing 

trend and 22 grid points showing decreasing trend. Whereas, 5 and 9 grid points are showing 

statistically significant trends of increase and decrease. And (c) in Post-monsoon season 

(ON), 10 grid points showing increasing trend but not statistically significant. Whereas 28 

(73%) out of 38 grid points are decreasing trend, but only 4 grid points are statistically 

significant.  

Upon analysis of the overall trend in total rainfall of annual and seasonal regime, the results 

revealed increasing trend in annual rainfall due to predominant grid point are showing 

statistically increasing trend. In study region, about 80% of rainfall occurs in Monsoon 

season. Due to high contribution of monsoon rainfall to total annual rainfall, we could 

observe similarity in pattern of rainfall. To prove it, the monsoon season rainfall also 

indicating increasing trend with statistical significance. In pre-monsoon, 42% of grid points 

shows increasing trend and post-monsoon 73% of grid points are showing decreasing trend. 

From results shown above it can be concluded that there is a mixed trend of rainfall 

experienced in the study region (i.e., the Western Ghats and Coastal Karnataka).  

4.5.2.1 Significance of ETCCDI extreme rainfall indices 

The majority of indices based on extreme rainfall provide information on the “wetness”. 

The index CWD (Consecutive wet day) is a measure of rainy/wet day. In present study, 

rainy day is considered if the daily rainfall is greater than 2.5 mm according to IMD. CDD 

(Consecutive dry day) is the index that describes the dryness, often referred to drought 

indicator. The dry day is defined when daily rainfall is less than 1mm. CWD and CDD are 

duration indices which calculate the maximum length of wet and dry spell, respectively. 

Analysis of CWD and CDD could be performed using different threshold of rainfall for wet 

and dry days. The foremost contribution indices, RX1 and RX5, the intense 1 and 5 day 

intense rainfall respectively, these indices provide information of most intense-rain of the 

year. RX5 is a measure of short-term rainfall intensity and indicator for flood creating 

events. RR describes the total annual rainfall amount on wet days (CWD) of year, similarly 

RRTOT is a percentage ratio of seasonal rainfall with annual. SDII is a simple measure of 
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rainfall intensity that depicts the average amount of daily rainfall over all wet days in a year. 

There is no necessary relationship between RR and SDII and extremes of climate, however, 

these offer useful information regarding the association between changes in extreme 

conditions and other aspects of the distribution of daily rainfall events. The indices R100 

(very heavy), R65 (heavy), R2.5-65 (moderate), R40 (average), R20 (low rainfall) are based 

on absolute thresholds, i.e. they directly measure the frequency of very wet days and they 

are highly correlated with total, annual and seasonal Rainfall.  

4.6 Spatial distribution of interannual Rainfall indices and its trend 

4.6.1 Spatial distribution and trends in Wet day Annual Total Rainfall (RR) and 

Simple Daily Rainfall Intensity (SDII) Indices 

Generally any discussion on changes to extremes of rainfall begins with changes of RR 

index at local and regional levels. This is probably the most important parameter reflecting 

rainfall variations over the entire year which is one of the twelve rainfall indices analyzed 

in this study. Figure 4.4(a) illustrates the long-term annual Rainfall spatial distribution. The 

coastal region was found to have the maximum magnitude of annual Rainfall, while it 

decreased near the Western Ghats’ eastern side.  A similar outcome was derived by Tawde 

and Singh (2015) suggested that moist air from the Arabian Sea is raised by the mountain 

ranges causing a low-intensity Rainfall in the eastern side of the Western Ghats. The 

shoreline and areas near the coastal plains displayed intense Rainfall. In general, this is 

because of the orographic Rainfall Francis and Gadgil (2006). Fig. 4.4(b) depicts a low 

Rainfall on the Western Ghats’ eastern side and a heavy Rainfall on the south-west section 

near the coast. The mean intensity of annual daily Rainfall (SDII), lowest value less than 6 

mm/day displayed by the leeward side of the Western Ghats. Consequently, intense Rainfall 

was seen in the Western Ghats’ windward side, i.e., the LL region. This could also be 

attributed to the fact that the Karnataka section of the Western Ghats is cascaded and wider 

resulting in intense Rainfall (Tawde and Singh, 2015; Vinay and Shetty, 2018). The range 

of CWD was found to be greater than 155 days in the Western Ghats and it is extended to 

around 65 days in the rain shadow region. Similarly the spatial variation of CDD found to 

be lesser than 170 days in the Western Ghats region and it extended upto about 260 days in 

leeward region. 
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Fig. 4.4 Spatial distribution of annual rainfall indices (a) RR and (b) SDII (c) CWD and 

(d) CDD 
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With increasing gradient was demonstrated by the study regions’` south-west region in the 

rainy days there is decreasing gradient of dry days (Fig. 4.4 ((c) & (d)). 

The trend analysis outcomes for the general Rainfall indices are depicted in Fig. 4.5. The 

total annual Rainfall and RR illustrated a mixed trend over the 113 years of study (1901 to 

2013), which ranged from –6.0 mm/year to 23 mm/year. It can be observed from Fig. 4.5 

(a) that a significant increase at a confidence level of 99% was prevalent through most of 

the study area sections, especially the north-west region. A statistically significant rise in 

the trend was demonstrated by most of the grid points of the order 21 mm/year (at 99.9% 

confidence level) in the LL region. A mixed trend was shown by the mountainous HL region 

and a significant decrease in trend was shown by some of the grid points (8 mm/decade 

magnitude). Again, a significant rise (-2.6 days/decade to 2.4 days/decade) in trend was 

displayed by the study region and a mixed trend was depicted by the rainy days for most of 

the part (Fig. 4.5 (c)). Interestingly, a decreasing trend was observed in the number of rainy 

days (CWD) and an increasing trend was observed in the total annual Rainfall (RR). CWD 

shows mixed trend in both spatial and in significance level, but daily average and CDD are 

showing in agreement. Hence, a significant increase across most of the grid points could be 

observed in the trend of SDII with the values of SDII varying between 0.53mm/day/decade 

and 1.6mm/day/decade. These variations in trends increase the probability of the effect of 

topography, local urbanization, and global climate change on the Rainfall events. These 

outcomes are in agreement with Meher Homji’s (1980) early study, which found that the 

intensity of Rainfall in Karnataka’s Western Ghats is strengthened by the proximity of the 

sea. 
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Fig. 4.5 Spatial patterns of temporal trends of the rainfall indices (a) RR, (b) SDII, (c) 

CWD and (d) CDD. 
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4.6.2 Changes in the Extreme Rainfall Depth and Intensity Indices 

The index for one-day and five-day yearly highest Rainfall (Rx1and Rx5) indicates that the 

LL regions’ northern section and the HL regions’ central section witnessed the highest 

values and Rx5 depicts intense rainfall along the western side of the Western Ghats (Fig. 

4.6 (e)). The lowest values for Rx1 were found on Western Ghats’ eastern side, that is, the 

eastern side of the HL region (Fig. 4.6 (b)). Rx5 is an indicator of short flood shows spatial 

variation is about 700mm high in along the coastal strip to about 200mm western side of the 

Western Ghats. Intense rainfall is related with wet and dry days, with increase in rainfall 

and decrease wet days (also means increase in dry days) leads to very heavy rainfall. The 

mean intensity of annual daily Rainfall (SDII), with intensity of Rainfall ≥ 2.5mm/day, was 

almost comparable with Rx1 and Rx5 days (Fig. 4.6). Nevertheless, the northern part of LL 

and central part of HL displayed the highest intensity of about 28mm/day. Consequently, 

intense Rainfall was seen in the Western Ghats’ windward side, i.e., the LL region. This 

could also be attributed to the fact that the Karnataka section of the Western Ghats is 

cascaded and wider resulting in intense Rainfall (Tawde and Singh, 2015). 

 

Fig. 4.6 Spatial distribution of annual rainfall indices (a) Rx1 and (b) Rx5 
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A decreasing trend ranging from -3 mm/decade to 9 mm/decade is shown by Rx1 in the 

study areas’ south-east and central sections (Fig. 4.7 (a)). For the RX5 day index which 

corresponds to the maximum consecutive 5-day rainfall amount (a potential indicator of 

flood producing events). The trend magnitude varied from -14mm/decade to 32mm/decade, 

whereas there is significantly an increasing trend at maximum annual rainfall region of the 

study region.  A scatter spatial distribution was possessed by the one-day and 5 day annual 

highest Rainfall amount (Rx1 and Rx5). Moreover, in comparison to the Rx1 index in the 

south of both LL and HL regions, the one in the north-west regions was found to be 

extremely strong. Rapid urbanization in the south-east and central HL regions of the 

Western Ghats could be considered to contribute to the decrease in Rx1 (Singh et al., 2014).  

 

 

Fig. 4.7 Spatial patterns of temporal trends of the rainfall indices (a) Rx1, (b) Rx5 
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4.6.3 Inference of interannual temporal variation of extreme rainfall Indices 

The spatial analyses of rainfall frequency suggested an increase in the frequency and 

contribution of the heavy rainfall in north-west portion of the LL and adjacent HL region. 

The study pointed out that the coexistence of shallow and deep convective clouds in the 

moist adiabatic stratification regime was the reason for this increase. The variations in the 

temporal features of the rainfall were also analyzed in the study. The study observed a 

decreasing trend in Rx1 in the central and south-east portion of the study area that ranges 

from -3 mm/decade to 9 mm/decade and also revealed an increase in the total annual rainfall 

(RR) and a considerable decrease in the number of rainy days.  

The decrease in CWD implies a reduction in the number of wet spells, which could critically 

affect the water availability during the growing season of rain fed crops and result in reduced 

crop yields. Such spatio-temporal information would be useful for the planners and policy 

makers for implementation of location-specific adaptation and mitigation measures against 

drought vulnerability of the region. A strong correlation exists between total rainfall and 

other rainfall indices, especially heavy rainfall indices which are responsible for the increase 

in rainfall. The changes in the frequency and magnitude of extreme events would have 

adverse effects on human lives, infrastructure, natural resources and ecosystem. 

These findings lead to the conclusion that the variations in trend is influenced by global 

warming, expanding urbanization and deforestation (Goswami et al. 2006; Guhathakurta et 

al. 2011). If the rainfall trend remains unchanged (Karuna Sagar et al. 2016), rainstorms and 

heavy Rainfall which may lead to serious consequences such as floods, landslides, etc. may 

be predicted in the future. The availability of water resources in the study region during the 

non-monsoon seasons may also get affected with the present trend in rainfall. 
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4.7 Seasonal analysis of Rainfall indices and trend 

The present section to understand the seasonal variation of extreme rainfall indices of the 

study region. Appendix 4 presents the basic seasonal Rainfall statistical attributes of study 

region of Karnataka’s Low Land (coastal region) and High Land (Western Ghats) regions. 

The CV ranges from 47.56% to 15.4% and the SD ranges from 1880m to 398mm. The 

minimum Rainfall ranged from 2714mm to 609mm and the maximum Rainfall ranged from 

9792mm to 3166mm, with the average Rainfall in the monsoon season ranging from 

4496mm to 1168mm.  The range of the mean seasonal Rainfall is from 272mm to 98.60 mm 

in the pre-monsoon period and from is 410mm to 152mm in the post-monsoon period. The 

SD ranged from 198.85 mm to 69mm in the pre-monsoon period and from 163mm to 84mm 

in the post-monsoon period. The CV ranged from 130mm to 44mm in the pre-monsoon 

period and from 63.72% to 39.53% in the post-monsoon period. These values indicate that 

there is more variability in regions with less rainfall than the regions with relatively greater 

rainfall. The data indicates that the maximum amount of Rainfall occurs with spatial 

variation across the study region in the monsoon season. It was found through the temporal 

distribution of seasonal Rainfall that the highest contribution of Rainfall was made by the 

monsoon season, followed by the pre-monsoon season and the post-monsoon season. 

 

4.7.1 Spatial distribution of extreme Rainfall indices during monsoon season  

A scrutiny was performed of the spatial dispersion of the average monsoon (July to 

September) Rainfall using values of gridded and high-resolution daily Rainfall from IMD 

for the study period of 110 years, which explains the study area’s indices of Rainfall. The 

highest average magnitude of monsoon Rainfall was possessed by the coastal region 

whereas the lowest average monsoon Rainfall was possessed by the eastern section of the 

Western Ghats, i.e., the rain shadow region. Moreover, the shoreline and nearby hilly 

regions received intensified Rainfall, which could be explained by the orographic influence 

(Francis and Gadgil, 2006). Rainfall regimes display spatial variances in the area of study. 

It can be observed that there is a distribution of very heavy Rainfall near the coastline (Fig. 

4.8a), which reduces to 20% of the maximum average daily Rainfall in the observed rain 

shadow region, as Tawde and Singh (2015) also described. A significant reduction in the 
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gradient in RR (from 4525 mm in the coastal region (low land) to 1168 mm in the Western 

Ghats’ rain shadow region (high land)) is observed. The IMD refers to a day as rainy, if the 

Rainfall is either equaling or exceeding 2.5 mm. Nandargi and Mulye (2012) reported that 

the rainy days were approximately the same over the area of study. The norms of IMD (for 

a rainy day) were utilized by the present study to calculate the mean number of rainy days, 

since heavy Rainfall is received by the mountainous territory of the study area. It was 

observed that the range of consecutive wet days (CWD) was from 66 days on the Western 

Ghats’ eastern side to 104 days on the shoreline (Vinay et al., 2017).  

Further, the length of the study area’s south-west portion witnessed an increased number of 

rainy days (Fig. 4.8b). The area composed of the northern section of the low land and the 

central section of the western portion of the high lands witnessed the highest intensity of the 

SDII’s spatial distribution of more than 36 mm/day. Nevertheless, the leeward part of the 

Western Ghats appears to have the lowest intensity of SDII (<6mm/day). The occurrence of 

moderate Rainfall (65 mm > R ≥ 2.5mm) in the eastern portion of the Western Ghats was 

found to range from about 60 days to about 91 days in the study period of 110 years. 
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Fig. 4.8 Spatial distribution of Rainfall indices over the study region - Monsoon (JJAS) 

average values (a) RRTOT, (b) CWD, (c) SDII and (d) R2.5_65 
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4.7.2 Spatial patterns of temporal trends of the extreme rainfall indices during 

monsoon season 

Thus, the low land region of the Western Ghats, i.e., the windward side, experiences intense 

Rainfall. This indicates that extreme Rainfall is caused by Karnataka’s longer and broader 

(i.e., cascaded) mountains. In contrast, the leeward side (i.e., rain shadow region) is 

strengthened by the barriers formed by the mountains. Fig. 4.9 depicts the general Rainfall 

indices’ spatial patterns from 1901 to 2013 in the study area. A trend of assertion is 

demonstrated by the ratio of seasonal Rainfall to total Rainfall (RRTOT). The RRTOT 

values range from -0.35%/decade to 0.99%/decade during the study period of 110 years 

(Fig. 4.9a).  Moreover, a growing tendency for monsoon Rainfall is demonstrated by the 

neighboring mountainous regions of the southern coastal plains and a decreasing tendency 

for monsoon Rainfall is demonstrated by the Western Ghats, which are the neighboring 

regions of the southern coastal plains. On the contrary, the cascaded mountainous region 

(HL) rendered an assorted trend of statistically significant and insignificant values with the 

increasing and decreasing Sen’s slope during the study period of 110 years. SDII results 

from increase in seasonal Rainfall and decrease in rainy days. Consequently, a significant 

primarily increasing trend of SDII (between -0.68 mm/day/decade and 1.79 

mm/day/decade) can be seen across most of the grid points. The highest positive trends 

along with the almost comparable SDII patterns were displayed by the study area’s north-

west regions. A mixed trend of moderate Rainfall ranging from 1.62 days/decade to 1.99 

days/decade was demonstrated by the study region during the study period of 110 years 

from 1901 to 2013. Interestingly, an increasing trend was depicted by the RRTOT, while a 

significant decreasing trend was depicted by the moderate Rainfall over the study region. 

Thus, it can be inferred that a significant increase in heavy Rainfall (≥ 65mm) is experienced 

by the northern coastal plains. 
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Fig. 4.9 Spatial patterns of trends for Rainfall indices over the study region - Monsoon 

(JJAS) period (a) RRTOT, (b) CWD, (c) SDII and (d) R2.5_65 
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4.7.3 Spatial distribution of extreme Rainfall indices during pre-monsoon season  

The pre-monsoon season (March to May) spatial variation is depicted in Fig. 4.10. As shown 

in Fig. 4.10(a), the ratio of Rainfall to the total yearly Rainfall ranges between 2.9% and 

21% in the pre-monsoon season. The western section of the Western Ghats was partially 

found to receive higher Rainfall during the pre-monsoon season than other sections. The 

eastern sections of the Western Ghats and the coastal plains receive a low Rainfall. The 

frequency and variation of the pre-monsoon Rainfall wet spell is from 6 days to 25 days. 

The variation in rainy days (CWD) is depicted in Fig. 4.10 (b). A decreasing gradient can 

be seen from the study area’s south-west region to the study area’s north-eastern regions. 

There is a variance from 7.3 mm/day to 14.3 mm/day in the simple daily Rainfall index. The 

rarity of heavy Rainfall events is indicated by the pre-monsoon season depiction of a similar 

pattern of moderate Rainfall and rainy days (CWD). The SDII in pre-monsoon season 

oscillates between 7.3 mm/day and 14.3 mm/day. Low magnitude Rainfall is depicted in the 

interior portion of the hilly terrain. Thus, the pre-monsoon season in the study area illustrates 

the dominance of a moderate range of Rainfall (65 mm > R ≥ 2.5 mm). The spatial pattern 

of moderate Rainfall varies from 5.6 days to 25 days and is found to be similar to rainy days. 
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Fig. 4.10 (a-d) Spatial distribution of mean values of Rainfall indices over the study region 

- Pre-Monsoon (March-May). 
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4.7.4 Spatial patterns of temporal trends of the extreme rainfall indices during pre-

monsoon season 

Fig. 4.11 depicts the Rainfall trends’ spatial pattern in the pre-monsoon season. An 

increasing trend in the range from -0.48%/decade to 0.24%/decade is demonstrated by the 

ratio of the seasonal Rainfall to the total yearly Rainfall in the adjacent regions and the 

southern coastal plains of the Western Ghats. During the pre-monsoon season, significantly 

decreasing trends are shown by some of the grid points in the hilly terrain, denoting the 

presence of a high spatial variation in Rainfall. The seasonal rise in the Rainfall’s intensity 

is indicated by the relationship of CWD, RRTOT, and SDII to surge in the seasonal 

Rainfall’s percentage with daily intensity and rainy days. An assorted trend is shown by 

CWD ranging from -0.8 days/decade to 0.75 days/decade. Similarly, a mixed trend ranging 

from -0.55 mm/day/decade to 0.43 mm/day/decade is shown in the low magnitude daily 

intensity index in the Sen’s slope. Similarity in the spatial variation of patterns of Rainfall, 

ranging from -0.8 days/decade to 0.73 days/decade, could be observed between the 

moderate Rainfall and CWD. The moderate Rainfall of the region and the spatial patterns 

of the rainy days show an increasing trend, which is in agreement with RRTOT. 
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Fig. 4.11 (a-d) Spatial patterns of trends for Rainfall indices period over the study region - 

Pre-Monsoon (March- May). 
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4.7.5 Spatial distribution and temporal trends of the extreme rainfall indices during 

post-monsoon season 

The study period’s spatial patterns of Rainfall for the post-monsoon season are depicted in 

Fig. 4.12. A variance in the ratio of the seasonal Rainfall to the total annual Rainfall can be 

observed in the range from 5.5% to 25.7% (Fig. 4.12a). The frequency of rainy days varied 

from 9 days (in the north-east region) to 27 days (in the south-west region) in the post-

monsoon season. The study area’s south-west region was found to have a concentration of 

rainy days. The daily intensity index in the study region ranged between 9.3mm/day and 

15.3mm/day in the post-monsoon season. In the south-west region, moderate Rainfall was 

found to resemble CWD with a range of 9 days to 27 days. 

The trends of the seasonal Rainfall’s (post-monsoon) spatial patterns for the study period 

are depicted in Fig. 4.13. A mixed trend was observed in the ratio of post-monsoon season 

Rainfall (RRTOT) ranging from -0.43% to 0.17%, with a principally decreasing trend. Some 

of the grid points showed significantly reducing trends in the post-monsoon season. A 

primarily declining trend ranging from -0.48 days/decade to 0.64 days/decade is seen in the 

post-monsoon season for CWD. In contrast, an increasing trend is shown by some grid 

points in the neighboring mountainous regions and the southern part of the coastal plain. 

The daily intensity index depict an increasing trend in the northern section of the study area, 

and a mixed trend in the remaining sections. Moderate Rainfall and CWD were comparable 

with values ranging from -0.51 days/decade to 0.62 days/decade. 
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Fig. 4.12 (a-d) Spatial distribution of average values of Rainfall indices over the study 

region - Post-Monsoon (October-November). 
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Fig. 4.13 (a-d) Spatial patterns of trends for Rainfall indices over the study region - Post-

Monsoon (October-November). 
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4.8 Spatial Distribution of Threshold Rainfall Indices 

The spatial distribution of the monsoon season averages of the indices for extreme Rainfall 

event frequency during 1901-2013 over the LL and HL regions is depicted in Fig. 4.14. 

Intense Rainfall is demonstrated by the confluence section between the shoreline and the 

coastal plains and the Western Ghats (western part). The coastal regions witnessed a 

common occurrence of intense rain events, which is in harmony with the outcomes. 

Moreover, comparable outcomes have been reported previously (e.g., Konwar et al., 2012; 

Francis and Gadgil, 2006). Interestingly, the spatial distribution of Rainfall was dominated 

by moderate Rainfall over the HL (elevated) regions (Konwar et al., 2012, 2014). A 

decreasing gradient was evident on the Western Ghats’ eastern side (from west to east) due 

to the events of very heavy rainfall (R100) for more than 8 days and heavy rainfall (R65) 

for more than 12 days in the LL region (Fig. 4.14 (a and b)). The spatial distribution of 

average threshold Rainfall was between 1 day and 35 days, and the spatial distribution of 

moderate threshold Rainfall was between 62 days and 139 days (Fig. 4.14 (c and d)). The 

process of condensation over the HL region (i.e., mountainous terrain) was forced by the 

induced shallow convective orographic clouds resulting in low Rainfall (Revadekar et al., 

2011; Konwar et al., 2012, 2014). The variance in the R20’s spatial distribution was 7 to 36 

days (Fig. 4.14 (e)). The study area’s south-western region had a higher number of low 

Rainfall days. The spatial distribution shows consistent values for the indices for heavy 

Rainfall to low Rainfall intensity days. While the coastal region witnessed the extreme 

values, the leeward side of the study area displayed a decreasing gradient of low intensity 

Rainfall. 
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Fig. 4.14 (a-d) Spatial distribution of average values of the extreme Rainfall event 

frequency indices during 1901-2013. 
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Fig. 4.14 demonstrates the spatial patterns of trends over the study area with regards to the 

frequency of Rainfall indices. No trend was identified by the spatial patterns of the Rainfall 

frequency indices (used for present study) in some of the grid points in both LL regions and 

HL regions. The indices for heavy rainfall (R65) and very heavy rainfall (R100) indicate a 

significant rise in the trend. However, a decline in the trend (ranging between 0.74 

days/decade and -0.217 days/decade and between 0.73 days/decade and 0.51 days/decade) 

is illustrated by some of the grid points (Fig. 4.14 (a and b)). Fluctuating between -2.61 

days/decade and 1.96 days/decade, an assorted trend was demonstrated by the moderate 

rainfall event (R2.5-65) (Fig. 4.14 (c)). An increase in trend from both regions by 17 grid 

points is exhibited by the R40 index; whereas, a significant increase in trend of magnitude 

0.81 days/decade was observed in LL. A significant decrease in the trend is shown in some 

of the grid points, whereas a significant increase in the trend is shown in the R20 rainfall 

event in the HL region. The overall range varied between 9.37 days/decade and 0.605 

days/decade. A comparable pattern of spatial distribution was found in the Rainfall indices 

of mean to very heavy Rainfall frequencies, with a significant increase and decrease in 

trends. 

Consequently, an increase in the contribution and frequency of heavy Rainfall in the 

neighboring HL regions and the north-west portion of the LL is suggested by the preceding 

spatial analysis of Rainfall frequency. This finding is in agreement with the findings of 

Mahesh Kumar et al. (2014) who demonstrated a significantly increasing trend in Rainfall 

events in the western sections of the HL and the LL regions of the Western Ghats. The 

present research contended that such a finding could be chiefly attributed to the co-

occurrence, in the moist adiabatic stratification system, of deep and shallow convective 

clouds. Moreover, the observations of the present study are also supported by the study of 

Francis and Gadgil (2006), who posited that offshore vortices and troughs cause heavy 

rainfall between mid-June and mid-August. 
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Fig. 4.15 (a-d) Spatial patterns of trends for the frequency of extreme Rainfall indices over 

the study region during 1901-2013. 
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4.9 Correlation of annual Rainfall Indices 

Fig. 4.15 shows the relationship between the indices for annual Rainfall with mean annual 

Rainfall and assessed at 99% confidence level. The outcomes signify a high correlation 

among the indices of rainfall frequency (R20, R40, R65, and R100). Moreover, the total 

yearly rainfall over the HL and the LL regions concurred with the current study. The 

correlation of ETCCDI extreme rainfall Indices with total rainfall over HL and LL tabulated 

in the Table 4.3. The coefficients of correlation were 0.83, 0.84, 0.78, and 0.42 over the LL 

region; whereas, the correlation coefficients were 0.71, 0.79, 0.83, and 0.66 over the HL 

region (Fig. 4.13 (d-f)). At a confidence level of 0.01, the coefficients of correlation were 

found to be statistically significant. Over the LL region, the heavy rainfall was found to 

contribute to the increase in the rainfall during the study period. Nevertheless, low rainfall 

indices illustrate the significant relation of R20 in the HL regions and R40 in the LL regions. 

Additionally, at a confidence level of 99%, the coefficients of correlation for RR and Rx1 

day, SDII, and CWD were found to be significant (Fig. 4.15 (a-c)), with values of  0.57, 

0.59, and 0.88 (HL region) and 0.55, 0.54, and 0.86 (LL region). The correlation coefficient 

(for moderate rainfall (R2.5-65)) was statistically insignificant (<0.30) in the LL region and 

0.33 in the HL region. Rainy days and one-day maximum rainfall caused lesser impact and 

lower variation on the total annual rainfall during the study period (1901-2013) over both 

the regions. 

 

Table 4.3: Correlation analysis of annual rainfall with extreme rainfall indices 

                  

# statistically insignificant at 1% significance level  

 

 
Indices 

Co-efficient correlation 

(r)  

 
Indices 

Co-efficient correlation 

(r) 

 

HL LL 

 

HL LL 

(a) Rx1 0.57 0.56 (f) R100 0.71 0.83 

(b) Rx5 0.73 0.72 (g) R65 0.79 0.84 

(c)  CWD 0.51 0.54 (h) R40 0.83 0.78 

(d) SDII 0.88 0.86 (i) R20 0.65 0.42 

(e) CDD -0.35 -0.29 (j) R2.5_65 0.33 0.13
#
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Fig. 4.16 (a-j) Correlation between total annual rainfall and annual Rainfall indices over LL and HL regions during 1901-2013. 
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Fig. 4.15 Continued …. 
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4.10 Conclusions 

The present study was taken up for the analysis of annual and seasonal Rainfall variation 

with the association of ETCCDI extreme Rainfall indices. The analysis was based on the 

frequency and the intensity. Based on the trend analysis of Rainfall indices, the following 

conclusions are drawn:  

• The annual rainfall spatial variation shows intense towards western side of the 

Western Ghats due to orographic effect and gradually decreases towards eastern side of 

Western Ghats due to loosing moisture flux in transition from west to eastern side of the 

study region. Lesser the advection time leads to more carry-over of moisture content to the 

peak of mountain (Jiang and Smith 2003). Daily average (SDII) and annual rainy days 

(CWD greater than equal to 2.5mm) varies in similar pattern of highest 28mm/day to least 

6mm/day and 155 days to 62 days from west to eastern side of Western Ghats of Karnataka. 

Similar results found with Varikoden et. al., (2019) shows negative trends in rainfall in the 

southern region, with high values (more than 1.6 mm day−1 decade−1) over the area 

bounded by 75.5°E–76.5°E and 11°N–12°N. The coastal regions south of 13°N experience 

dry conditions as evidenced by the negative trends in rainfall. In the northern region, an 

increasing trend is observed north of 13.5°N up to 17°N. The wetting trend is more in the 

low altitude plains, oriented southeast to northwest between longitudes 73.75°E and 74.75°E 

and latitudes 14°N and 16°N, and is exceeding 1.6 mm day−1 decade−1. 

• The intense rainfall indices Rx1 and Rx5 are observed during the months of the 

monsoon season (JJAS), one day intense rainfall is concentrated at center region of coastal 

region and towards northern portion of the coastal region because of high orographic effect 

due to local topography. Rx5 is an indicator of short flood shows spatial variation is about 

700mm (15 % of annual rainfall) high in along the coastal strip and southern portion of 

western side of the Western Ghats. The time series average (113 years) of intense rainfall 

indices gradually decreases towards eastern side of Western Ghats. Intense rainfall is 

directly related with wet and dry days, with increase in rainfall and decrease wet spells leads 

to very heavy rainfall.   
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• The spatial pattern of trend in rainfall indices show significant for all the indices at 

95 to 99.9% confidence level. Trend in an annual rainfall is significantly increasing along 

coastal strip and depicts mixed variations at mountainous terrain. The daily average, wet 

and dry spells rainfall indices are interlinked each other and predominantly influence the 

intensity of rainfall events. CWD shows mixed trend in both spatial and in significance level, 

but daily average and CDD are in agreement. With increase in dry spell the daily average 

rainfall increases by supporting the intense rainfall events. Rx1 and Rx5 intense rainfall 

indices depicts mixed trend pattern but the similarity shows in significantly increasing and 

decreasing trend and are in agreement. Vinnasri and Dhanya (2016) though characteristics 

of extremes are observed to be highly localized, apparent signs of wet regions turning drier 

and dry regions turning wetter are obtained at Indian scale. 

 • The monsoon season temporal trend shows significant spatial variations over the 

study region. The seasonal ratio of Rainfall (RRTOT) exhibits a mixed trend, but a 

significantly rising trend is witnessed in the southern coastal plains and the adjacent Western 

Ghats region during the pre-monsoon. The southern coastal plains show a decreasing trend 

in the monsoon period (JJAS). Possible shift in pattern of rainfall is estimated by 

determining the changes in the onset and return levels (Vinnarasi and Dhanya 2016).  

• The rainy days and the mean daily intensity of Rainfall are correlated to seasonal 

Rainfall. The rainy days show the spatial variation to be similar to the seasonal ratio of 

Rainfall, whereas the daily intensity Rainfall depicts a substantially increasing trend in the 

northern coastal plains and its adjacent terrain region. 

• In the pre- and post-monsoon rainy days, the daily intensity index illustrates a mixed 

trend over the study region. Most of the grid points show no trend for rainy days and 

moderate Rainfall. A few grid points depict a mixed trend with a low magnitude of Sen’s 

slope. 

• The present trend in the contribution of Rainfall over the Western Ghats and the west 

coast of Karnataka is observed during the monsoon season followed by the pre-monsoon 

and the post-monsoon seasons. Vinnarasi and Dhanya (2016) detailed investigation on 

various characteristics of extreme events though provides sufficient proof regarding the 

abrupt variations in the rainfall distribution; however, no generic statement of increase or 
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decrease in extremes derived since the rainfall seems to be significantly influenced by local 

factors than global influences.  

• A statistically significant increasing trend exists in the frequency of very heavy and 

heavy Rainfall events and a significantly decreasing trend exists in the frequency of 

moderate Rainfall at the region of heavy Rainfall events. This observation is in contrary 

with the observation made by Jun et al. (2015) over Indian scale. 

• A strong correlation exists between the total Rainfall and other Rainfall indices, 

especially the heavy Rainfall indices. The magnitude of intense Rainfall is responsible for 

the increase in the annual total Rainfall. 

 

The asymmetric relationship of individual Nino indices with rainfall extremes discussed in 

Chapter 5.    
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CHAPTER 5 

ENSO INDICES INFLUENCE ON EXTREME RAINFALL EVENTS 

 

5.1 INTRODUCTION  

The chapter 4 shows the spatio-temporal variation in ETCCDI extreme rainfall indices in 

the Western Ghats and the Coastal region of Karnataka. The region’s climate is modulated 

by many large scale atmospheric controls. The variations in rainfall over the study region 

are significantly influenced by the El Niño Southern Oscillation (ENSO) which is one of the 

teleconnections (Revadekar et al. 2018).  The fifth chapter aims to identify influence of 

ENSO on extreme rainfall indices over the study region.  

5.2 SPATIAL PATTERNS AND TELECONNECTION OF RAINFALL 

EXTREMES  

It is well known that the climatology of the Western Ghats and the Coastal region of 

Karnataka is characterized by pre-monsoon, summer monsoon, post-monsoon and annual 

total rainfall. Tawde and Singh (2015) observed a variation in the rainfall in the coastal 

plains and the Western Ghats’ eastern part. The planning and management of the region’s 

agricultural development is directly influenced by the water resources’ spatio temporal 

patterns, which are significantly impacted by the rainfall’s spatio temporal variations. 

Researchers like Goswami et al. (2006) and Pai et al. (2015) have specifically heeded 

extreme rainfall events and have discussed the variations in rainfall. Moreover, the possible 

teleconnection with the ocean-atmospheric modes must be examined as an issue of natural 

climatic variability and the trends of extreme rainfall indices must be examined as an issue 

of climate change, because the natural climatic variability and the climatic changes cause 

spatiotemporal variations of extreme rainfall regimes.  

Large-scale circulation causes changes in rainfall extremes. The relationship between 

hydrological variables and ocean-atmospheric modes can be identified, because it has been 

established that ocean-atmospheric interactions are not random or chaotic due to the 

progress made in the field of synoptic climatology. The precipitation extremes can be 

forecast through related studies. Various land surface and oceanic phenomenon are 
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teleconnected to the Indian rainfall as evidenced by prior studies. The Asian monsoon 

dominates the Indian west coast’s climate, which is significantly influenced by ENSO 

(Kripalani and Kulkarni, 2001; Kumar et al., 2007). Simultaneous and significant 

associations between various ENSO indices and monsoon rainfall are involved in the 

ENSO-monsoon teleconnections (Kumar et al., 1999). The Niño regions depicted 

asymmetric relationship over the rainfall in the subdivisions of the Western Ghats, whereas 

Revadekar et al. (2018) found that the sub-divisions of the Indian west coast were highly 

connected with the spatial variation of rainfall, indicating an asymmetric relationship. 

Therefore, it is vital to examine the impact of Niño indices on regional rainfall extremes in 

the study region of the Western Ghats and the Coastal region of Karnataka. 

5.3 METHODOLOGY  

Monthly Nino Indices are available from the period 1951 onwards, therefore, accordingly, 

IMD’s gridded daily rainfall data for a 63-year period (1951 to 2013) were chosen for the 

study period. Extreme rainfall indices are statistically stronger because the rainfall extremes 

generally occur several times in a year. Therefore, the observation of extremes may not be 

possible during certain years and the measure of extremes is far enough in the distribution’s 

tails. Significant responses to the eminent patterns of the climate system’s internal 

variability are demonstrated by certain grid points. The association between the indices 

representing the state of Niño regions and the indices of calculated rainfall extremes is 

examined in this study. The strongest correlation of total rainfall is caused by the variability 

patterns of Niño indices, which are also the most evident for annual rainfall. The 

International Research Institute (IRI) considers the indices of climate variability from 

October to January (ONDJ), whose outcomes are presented in this study. It was found that 

after (before) El Niño’s peak, the Indian summer monsoon is stronger (weaker) than normal 

in winter. Revadekar et al. (2018) identify the associations between cold SSTs and floods 

and between warm SSTs and droughts over the equatorial pacific SSTA. Extreme 

precipitation is facilitated by influencing the association between the rainfall and ENSO. 

The ENSO-monsoon teleconnection has been examined from various perspectives in earlier 

studies. The present study attempts to understand the relationship of ETCCDI extreme 

rainfall indices with ENSO indices (Niño 1+2, Niño 3, Niño 3.4 and Niño 4) using the 

stepwise regression method. Pearson’s linear correlation was used as the basis for examining 
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the correlation between Niño indices and the annual extreme rainfall indices. Hodrick 

Prescott filter was used to eliminate the trend’s influence and to detrend the grid points with 

extreme rainfall indices (Harvey and Trimbur, 2008; Yu et al., 2018). Nevertheless, the trend 

for the Niño indices is not processed for maintaining the consistency of data. The impacts 

of Niño indices with 1-year and 0-year of monsoon year on the annual rainfall extremes are 

examined as the rainfall extremes of the present and forthcoming years were influenced by 

Niño indices. 

 

Figure 5.1 Schematic flow chart to identify the asymmetric relationship of ENSO 

indices with ETCCDI extreme rainfall Indices.   
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5.3.1 Stepwise regression analysis 

Draper and Smith (1981) employ an automated process to select the predictive variables in 

stepwise regression (SWR), which is a type of regression model. SSTA (Niño indices) data 

set, which impact the rainfall extremes, is considered for the procedure of the stepwise 

regression. The goal of SWR is to render a simple regression model with predictive ability 

through the selection of predictor variables. The effect of orography influence in the study 

region is due to topography. Hence, a significance level of 0.01 is chosen in the present 

study for including most of the predictors. Let x represent the observed SSTA variable (Niño 

Indices) matrix (predictor data, input) and y be the vector of observed precipitation in 

sequence (predicted data, output). The basic steps involved in the stepwise regression are as 

follows: 

 

The start of process: A level of significance termed as Alpha-to-Enter significance level 

has to be established for entering a predictor into the stepwise model and is denoted as αE. 

A level of significance termed as Alpha-to-Remove significance level is required for 

removing a predictor from the stepwise model and is denoted as αR. In other words: 

 An Alpha-to-Enter level of significance, which is not greater than the usual level of 0.05, 

has to be specified to ensure that predictors are easily entered into the model on the basis of 

SST anomaly relationship and rainfall indices. 

 An Alpha-to-Remove level of significance, which is not greater than the usual level of 0.01 

has to be specified to ensure that predictors are not easily removed from the model. The 

level of significance must be set to αR = 0.01 or more by default. 

 

First step: The following has to be done after specifying the levels of significance: 

1. Each of the one-predictor model has to be fitted. In other words, regress y on x1, 

regress y on x2,….. and regress y on xp-1.  

2. Among the predictors having P-value lesser than αE = 0.01, the predictor with the smallest 

P-value is first put in the stepwise model. 

3. The process has to be stopped if no predictor has a  P-value less than αE = 0.01. 

Step #2. Then: 

1. If x1 possessed the t-test P-value lower than αE = 0.01, then it is viewed as the optimal single 

predictor originating from the first step.  
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2. Now, every two-predictor model, which includes x1 as a predictor, must be fitted. In other 

words, y must be regressed on x1 and x2, y must be regressed on x1 and x3, …, and y must be 

regressed on x1 and xp-1. 

3. Among the predictors with P-value less than αE = 0.01, the predictor possessing the smallest 

P-value is the second predictor placed in the stepwise model. 

4. The process has to be stopped if none of the predictors have a P-value less than αE = 0.01. 

The final model will be the one with a predictor received from the first step. 

5. However, if x2 is viewed as the optimal second predictor, then it would be entered into the 

stepwise model. 

6. Since the first predictor in the model was x1, it must be ascertained whether or not the 

significance of the x1 predictor is affected by the entering of x2 into the stepwise model. In 

other words, the P-value must be checked for testing β1 = 0. If the P-value is greater than 

αR = 0.01, that is, if the t-test P-value for β1 = 0 has become non-significant, then x1 must 

be removed from the stepwise model. 

Step #3. Then: 

1. Let us assume that both x1 and x2 entered and remained in the two-predictor stepwise model. 

2. Each of the three-predictor models, which include x1 and x2 as predictors, must now be fitted. 

In other words, y must be regressed on x1, x2, and x3, y must be regressed on x1, x2, and x4, 

…, and y must be regressed on x1, x2, and xp-1. 

3. Among the predictors with a P-value less than αE = 0.01, the predictor with the smallest P-

value is the third predictor placed in the stepwise model. 

4. The process must be stopped if none of the predictors has a P-value less than αE = 0.01. The 

final model will be the one that contains two predictors received from the second step. 

5. However, if x3 is viewed as the optimal third predictor, then it would be entered into the 

stepwise model. 

6. Since the first predictors in the model were x1 and x2, it must be ascertained whether or not 

the significance of the x1 and the x2 predictors is affected by the entering of x3 into the 

stepwise model. In other words, the P-values must be checked for testing β1 = 0 and β2 = 0. 

If the P-value is greater than αR = 0.01, that is, if the t-test P-value for either β1 = 0 or β2 = 

0 has become non-significant, then the predictor must be removed from the stepwise model. 

Stopping the process 

Unless a t-test P-value below αE = 0.01 is not yielded by an additional predictor, the 

aforementioned steps have to be continued. 
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5.3.2 Bivariate Correlation  

In the present study, correlation analysis is used to identify the grid points that possess the 

annual rainfall extremes, which are determined by the Niño indices with 0-year and 1-year 

of monsoon year lagged relationship. The linear correlation between two variables x and y 

is measured by the Pearson correlation coefficient, which is referred to as several terms, 

such as the bivariate correlation, the Pearson product-moment correlation coefficient 

(PPMCC), and Pearson’s ‘r’. The Pearson correlation coefficient has a value between –1 

and +1, where –1 is the total negative linear correlation, 0 is no linear correlation, and +1 is 

total positive linear correlation. It is commonly utilized in atmospheric science’s discrete 

statistical analysis (Pearson, 1895). 

Pearson’s  𝑟 =
𝑛(∑𝑥𝑦)−(∑𝑥)(𝑦)

√[𝑛∑𝑥2−(∑𝑥)
2
][𝑛 ∑𝑦2−(∑𝑦)2]

     (5.1) 

where 𝑥, 𝑦 are the variables. n is length of the data.   

P-value is less than 0.05 and the correlation between Niño indices and rainfall indices is 

significant at 5% and more. 

P-value is more than 0.05 and the correlation between Niño indices and rainfall indices is 

significant at >5% and less. 

 

5.4 Results and Discussion 

A distinct response to each of the circulation regimes is depicted by the indices, which 

evidences that extreme precipitation is affected by large circulation regimes. The discussion 

of a detailed study of outcomes for each of the large-scale circulation regimes can be found 

subsequently are discussing under the section 5.5 of this chapter 5.  

  

5.4.1 Analysis of teleconnection between rainfall extreme indices and ENSO Indices 

This section presents the teleconnection between ETCCDI rainfall extremes and El Niño 

Southern Oscillation (ENSO) indices. The SSTA of ONDJ (October to January) shows a 

strong influence on the rainfall extreme indices. The multiple indices influence was detected 

by using a step wise regression method and each of the ENSO indices correlation was 

detected for 0-year lag and 1-year lag by using Pearson correlation analysis.  
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5.4.2 Temporal patterns of Niño Indices 

Examining the temporal patterns of SSTs, anomalies over the Niño regions play a key role 

in investigating the linkage among them and the observed rainfall indices over the study 

region. Figure 5.2 presents the inter-annual variability of sea-surface temperature anomalies 

over Niño regions during the ONDJ season.  

 

Figure 5.2 Interannual variability of sea-surface temperature anomalies over Niño region 

during ONDJ (October-January) season. 

5.4.3 Possible teleconnections of Rainfall extremes with ENSO indices 

A series of regressions on an array of potential explanatory Niño indices are executed by a 

multiple linear regression model termed as Step Wise Regression (SWR) analysis. The 

statistical significance of Niño indices determines either their addition or removal from the 

model at each step. The p-value of a variable’s coefficient estimate is used by each step to 

calculate its predictive value. The testing against the model, with and without the potential 

parameter, is conducted by each step. When the model cannot be improved by any of the 

additional variables, then the method is concluded. Non-significant indices were discarded 

and all extracted indices were included as potential explanatory variables for the prediction 

of precipitation and greenness at each site. In order to identify the optimal model with the 

highest coefficient of determination (R2) value, a variable lagged SWR analysis was 

performed. The R2 value is regarded as the most significant time lag between the extreme 

rainfall indices (dependent variable) and the Niño indices (independent variable), which 
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leads to the generation of optimal causal association to explain the teleconnection signal 

propagation, regarding the Niño regions’ multiple index. 

The rainfall extremes of the current and the forthcoming years may be influenced by the 

ENSO indices. A study was conducted on the influences of Niño 1+2, Niño 3, Niño 3.4 and 

Niño 4 with 0-year and 1-year ahead on the annual rainfall extremes. The ENSO indices 

with 0-year and 1-year ahead were considered as the candidate predictor variables for each 

of the grid points in the study region. Later, step wise regression was used to select the 

robust combinations of predictor variables for predicting the rainfall extremes in each of the 

grid points. This was followed by the identification of extreme rainfall regions that were 

significantly affected by the ENSO indices (Figure 5.3 and Figure 5.4). It can be observed 

that the influences of certain Niño indices are invariably regulated by another Niño region, 

because the Niño regions influence the annual extreme rainfall indices in the most of the 

grid points and more than one Niño index influences a few of the grid points. In particular, 

the grid points with intensity index influenced less due to the orographic effect of study 

region’s topography feature. The rainy days (CWD) and dry days (CDD) are more 

influenced by the modulation of climate index. Table 5.1 shows that the asymmetric 

relationship of SSTA is detected in the study region through the coefficient of determination 

between the SSTA over the Niño regions and rainfall extreme indices.  
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Figure 5.3 (a-f) Rainfall indices identified grid points influenced by the Niño Indices 

based on the stepwise regression method. 
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Figure 5.4 (a-e) Absolute threshold intensity rainfall frequency indices identified grid 

points influenced by the Niño Indices based on the stepwise regression method. 
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Table 5.1 SWR analysis Coefficient of determination (%) for rainfall extreme indices. 

GP RR RX1 CWD SDII RX5 CDD R100 R65 R2.5_65 R40 R20 

LL1 15.7 - 6.39 13.3 - 11.5 - 14.5 17.79 6.79 - 

LL2 31.14 19.8 5.03 31.2 18.0 13.1 15.8 14.9 25.32 - 25.3 

LL3 - - 3.63 32.3 25.7 3.94 30.0 8.36 25.95 7.96 12.2 

LL4 - - 12.7 -  10.74 - - 22.2 - 16.3 

LL5 12.0 - - - - 9.28 - - 9.65 4.66 3.4 

LL6 3.96 - 6.42 - - 4.18 - - 11.06 - 13.4 

LL7 - 11.45 7.77 - 4.79 6.1 - - 18.41 14.5 - 

LL8 9.75 - 2.91 4.64 - 6.78 - 7.55 9.88 15.9 11.1 

LL9 7.84 7.56 14.0 18.3 17.8 - 18.3 7.8 - 6.01 4.31 

LL10 3.83 - - - - 8.35 - - 10.13 13.2 9.31 

LL11 - - 13.9 7.74 3.91 - - 10.4 - 11.4 8.62 

LL12 - 9.32 9.8 7.46 11.6 6.55 14.6 - 16.94 - 17.2 

LL13 - - - - - 3.16 - - 11.25 - 17.2 

LL14 - - 6.71 - 14.9 3.62 - - 15.57 3.9 14.0 

LL15 - - 9.31 - - - - - - - 4.36 

LL16 - 6.76 9.69 - - - 4.59 - 27.04 10.7 - 

LL17 20.1 - 7.49 - - 4.1 - - 13.23 - 19.0 

HL1 - - 14.24 - - 17.87 - - 15.89 - - 

HL2 3.19 - 13.9 - - 5.83 - - 10.59 - - 

HL3 - 7.44 11.4 - 4.12 5.62 - - - - - 

HL4 4.16 4.81 3.79 - 3.91 6.81 - - 7.49 - - 

HL5 - 3.06 6.61 - - 10.86 5.63 3.98 14.68 - - 

HL6 - - 3.74 18.2 - 6.53 - 10.3 19.44 - 3.24 

HL7 - - 22.4 - - - - - - - - 

HL8 - 5.85 11.1 - - 9.01 - - 6.97 - 6.95 

HL9 - - 4.13 4.39 - 8.13 - - 17.66 - - 

HL10 - 3.95 22.7 - 3.44 3.6 - - - - - 

HL11 - - 13.9 - - - - - 6.63 - 4.14 

HL12 - 5.34 9.01 - 3.14 4.56 - - 9.68 - - 

HL13 - 6.08 9.31 - 6.59 - 3.7 4.27 8.22 - - 

HL14 - - 11.9 - - - - - - - - 

HL15 - 16.0 6.87 20.4 - 6.3 - 3.63 8.93 - - 

HL16 20.4 - 18.6 20.2 - 8.62 - 15.3 6.99 17.3 - 

HL17 5.88 4.44 8.07 3.96 5.88 - 5.12 3.44 3.98 - - 

HL18 4.8 - 17.6 - 6.21 6.66 6.14 - 4.4 7.36 - 

HL19 4.5 4.79 - - 4.53 4.23 - - 3.4 - 4.62 

HL20 - - 15.6 - 3.93 - 4.59 - - - - 

HL21 3.57 - 16.6 18.0 4.72 - 5.84 16.1 3.19 6.03 - 
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5.4.4 Characteristics of Sea surface temperature  

 

The study region’s rainfall is recognized for the out-of-phase relationship with the Niño 

indices. The ocean is capable of absorbing, storing and transporting solar heat energy and 

therefore plays a vital role in influencing the climate. Consequently, different characteristic 

features in variability, trends, anomalies and annual cycles are demonstrated by the rainfall 

events over the Western Ghats. The atmospheric temperature and circulation is affected by 

the temperature of sea/ocean surface all over the globe. The proximity to the Arabian Sea 

and the orographic effect jointly influence the study region’s climate. The correlation 

coefficient between the ENSO indices and the rainfall extreme events is thereby computed. 

Floods are associated with cold SSTs and droughts are associated with warm SSTs over the 

equatorial Pacific Ocean. Hence, a negative correlation is observed between the ENSO 

indices and the rainfall over the study region. This negative correlation is also observed for 

the rainfall in study region.  

5.4.5 Correlation Analysis between ENSO Indices and extreme Rainfall events 

 

In order to identify the optimal time shifts that maximize the correlation between the ENSO 

indices and the meteorological variables, the 0-year lag correlation and the 1-year lag 

correlation are applied. This is due to the frequent time delays of climatic responses to large-

scale atmospheric controls. The lag correlation of individual oceanic ENSO indices with the 

annual average of regional averages of extreme rainfall indices is used to serve this purpose. 

  

The tropical Pacific is monitored by using several indices that are based on SST anomalies, 

which are averaged across a specific region. The computation of anomalies is generally 

based on a period of 30 years. This index has an inclination of possessing the Niño SST 

indices’ largest variance. External influences in the analysis (local factors, seasonal factors, 

altitude, etc.) are explicitly avoided because each of the time series is in its standardized 

version. 
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The concluding section contains an analysis of the similarities and differences among 

various outcomes. The following sections contain an analysis of the temporal and spatial 

climatic patterns among the outcomes from relationships with the ENSO indices. 

 

5.4.5.1 Influence of Niño 1+2 on extreme precipitation indices.  

 

Niño 1+2 (0-10S, 90W-80W): The Niño 1+2 region corresponds with the South American 

coastal region that was acknowledged by the local populations and is the smallest and the 

eastern-most of the Niño SST regions (Trenberth, 2011). Essentially, when linear correlation 

analyses are applied, then there is a synchronized time between the region’s precipitation 

and the ENSO indices’ time series. This statement holds true in all cases except for the ones 

in which wet spells are correlated with dry spells. 

  

Figure 5.5 and Figure 5.7 depict the extract of the regions with the annual rainfall extremes 

that are affected by Niño 1+2 with 1-year and 0-year, respectively. Figure 5.6 and Figure 

5.8 (Appendix 5 and 6) illustrate each grid point’s correlation values for 1-year and 0-year, 

respectively. The modulation of Rx1 day and R100 with climate modes is similar, because 

of their close relation to Rx5 day and R65, respectively. The figures depict the rainfall 

indices and the spatial patterns. It can be observed that when the Niño 1+2 is at different lag 

periods, then the regional responses of annual extreme rainfall indices to the Niño 1+2 are 

different (Figure 5.5 and Figure 5.6). In general, a negative but less influencing and 

insignificant correlation is demonstrated by most of the grid points; whereas, a positive 

correlation is demonstrated by Rx1 day and Rx5 day. However, both positive and negative 

significant correlations are demonstrated by RR, SDII and CWD at different stages. 

Moreover, the Niño 1+2 simultaneously affect some grid points for general precipitation 

indices. 

The frequency indices of intense rainfall events are positively correlated for R100 (very 

heavy rainfall) and R65 (heavy rainfall) with Niño 1+2 simultaneously at different stages. 

The moderate, average and low rainfall (R2.5-65, R40 and R20) indices show a significant 

negative correlation at different stages simultaneously (Figure 5.8). In comparison to the 
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5% and 1% level of significance, some of the significant correlation between Niño 1+2 and 

regional rainfall indices are found to be better. Normally, the intense extreme rainfall 

indices’ frequency modulation is associated with wet spells. The grid points possessing 

statistically significant correlation demonstrate a consistent pattern of climate. The grid 

points over the study area’s coastal (low land) region exhibited the greatest correlation 

among all statistically significant outcomes (Figure 5.6 and Figure 5.8 with respect to 

Appendix 6). 



111 
 

 

Figure 5.5 (a-f) Grid points with the precipitation extremes influenced by the Niño 1+2 

with 1-year and 0-year ahead, respectively. 
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Figure 5.6: The Pearson’s correlation between Niño 1+2 and general extreme 

precipitation indices



113 
 

 

Figure 5.7 (a-f) Absolute threshold intensity rainfall frequency indices influenced by the 

Niño-1+2 with 1-year and 0-year ahead, respectively. 
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Figure 5.8: The Pearson’s correlation between Niño 1+2 and frequency of extreme 

precipitation indices 
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5.4.5.2 Influence of Niño 3 on extreme precipitation indices.  

 

Niño 3 (5N-5S, 150W-90W): Although researchers found that the vital region for coupled 

ocean-atmosphere interactions for ENSO was further west, Niño 3 was regarded as the 

prime region for the monitoring and prediction of ENSO extreme events (Trenberth, 1997). 

Figure 5.9 depicts the general highest magnitude rainfall indices and Figure 5.11 depicts the 

frequency of intense rainfall events, which illustrate the regions with extreme rainfall events 

determined by the Niño 3 with 0-year ahead and 1-year ahead, respectively. It shows that 

there is no significant correlation with RR, CWD and CCD general rainfall indices at both 

0-year and 1-year ahead. This evidences that at a considered period of lag, the general 

rainfall indices’ regional responses to the Niño 3 are not significant; whereas, a significant 

but not simultaneous correlation at different stages is demonstrated by the highest intensified 

rainfall indices Rx1 day and Rx5 day. The modulation of Niño 3 shows a strong relationship 

with intense magnitude and a weak relationship with the frequency of the wet and dry spell 

indices. The interesting characteristic could be identified from the relationship between 

extreme rainfall indices and Niño 3 is a significant positive correlation in general rainfall 

indices. 

The influence of Niño 3 on the frequency of intensity of extreme rainfall indices with 0-year 

and 1-year ahead, respectively, is graphically represented in Figure 5.11 and its correlation 

values are represented by Figure 5.12 and tabulated in Appendix 7. The Niño 3 shows a 

strong and positive correlation with R100 (very heavy rainfall) indices over the mountainous 

region of the study area. The influence of Niño 3 on the frequency of intensity of rainfall 

indices of heavy rainfall (R65) and moderate rainfall (R2.5_65) shows an insignificant 

relationship. However, most of the grid points in moderate rainfall indices present a negative 

correlation at different stages. The relationship with average intense rainfall (R40) shows a 

negative, but statistically significant correlation. The low rainfall (R20) indices show a 

significant correlation, but most of the grid points show a negative relationship with Niño 

3. It is observed from the above results that Niño 3 strongly influences very heavy rainfall 

by suppressing the low intensity rainfall events.  
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Figure 5.9 (a-f) Grid points with the precipitation extremes influenced by the Niño-3 with 

1-year and 0-year ahead, respectively. 
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Figure 5.10: The Pearson’s correlation between Niño 3 and general extreme 

precipitation indices 
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Figure 5.11 Absolute threshold intensity rainfall frequency indices influenced by the Niño-

3 with 1-year and 0-year ahead, respectively. 
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Figure 5.12: The Pearson’s correlation between Niño 3 and frequency of extreme 

precipitation indices 
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5.4.5.3 Influence of Niño 4 on extreme precipitation indices 

Niño 4 (5N-5S, 160E-150W): In comparison to other Niño regions, the central equatorial 

Pacific region is inclined to have a less variance and the SST anomalies in this region are 

captured by the Niño 4 index. In contrast with other Niño indices, Niño 4 shows a significant 

positive correlation with the annual rainfall over the study region. Due to weak and 

insignificant relationship with wet spells (CWD) and dry spells (CDD), a low significant 

relationship is illustrated with the daily average rainfall (SDII) at different stages of 0-year 

and 1-year (Figure 5.13 and 5.14). This indicates that regional responses to total rainfall 

modulation by Niño 4 is better than any other general rainfall indices at no lag. Niño 4 

modulates the highest magnitude rainfall (Rx1) at lagged period with decent positive 

correlation, when compared to the cumulative of intense rainfall (Rx5) that shows 

moderately positive but statistically insignificant correlation at different stages. Overall, 

Niño 4 indicates a good relationship with the total rainfall and the magnitude of intense 

rainfall, when compared to other rainfall indices.  

The modulation of Niño 4 with intense rainfall frequency of extreme rainfall indices shows 

a moderate relationship over the study region shown in figure 5.15 and 5.16. The frequency 

of very high rainfall (R100) shows a decent positive relation and a low negative correlation. 

The Niño 4 depicts a negative correlation with moderate rainfall (R2.5-65) at both 0-year 

and 1-year ahead. The remaining intense rainfall frequency indices R40 and R20 show a 

low mixed relationship at different stages. In the same pattern, it also indicates a low and 

mixed combination of correlation for heavy rainfall (R65). The comparison of these types 

of Niño 4 modulations with the frequency of intense rainfall indices indicates that Niño 4 is 

a modulator for very high rainfall. There is a consistent relation between very heavy rainfall 

and annual rainfall and this implies the influence of Niño 4 on very heavy extreme rainfall. 

The positive relation of Niño 4 strengthens the extreme precipitation events by contributing 

to the annual rainfall.  Whereas, the increase in extreme events reduces the strength of the 

low frequency of rainfall and it could be observed from the relationship of other rainfall 

indices. In other words, it justifies that Niño indices are showing an asymmetric relation for 

extreme rainfall events over the study region of Karnataka’s west coast. The correlation 

values of Nino 4 are listed in the table Appendix 9 and 10.  
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Figure 5.13 (a-f) Grid points with the precipitation extremes influenced by the Niño-4 with 

1-year and 0-year ahead, respectively. 
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Figure 5.14: The Pearson’s correlation between Niño 4 and general extreme 

precipitation indices 
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Figure 5.15 (a-f) Absolute threshold intensity rainfall frequency indices influenced by the 

Niño-4 with 1-year and 0-year ahead, respectively.
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Figure 5.16: The Pearson’s correlation between Niño 4 and intense rainfall frequency 

of extreme precipitation indices 
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5.4.5.4 Influence of Niño 3.4 on extreme precipitation indices 

Niño 3.4 (5N-5S, 170W-120W):  The average equatorial SSTs across the Pacific are 

perceived to be represented by the Niño 3.4 anomalies from around the dateline to the South 

American coast. When the Niño 3.4 SSTs exceed +/- 0.4°C for a period of six months or 

more, then the El Niño or La Niña events are defined and the Niño 3.4 index is generally 

utilized as the standard ENSO index. Figure 5.17 and Figure 5.19 depict the extract of the 

region with the annual rainfall extremes affected by Niño 3.4 with 1-year ahead and 0-year 

ahead, along with the linear correlation for every grid point of each of the extreme rainfall 

indices (Appendix 11). Specifically, the annual rainfall is influenced by 0-lag period of Niño 

3.4; the more the lag period, the less the correlation noted. Intense rainfall indices Rx1 day 

and Rx5 day show a good, but not simultaneous correlation at different stages. The wet and 

dry spells show no significant relationship, such that the modulation of the frequency of 

rainfall indices with Niño 3.4 is statistically insignificant. Due to the insignificance of wet 

spell with Niño 3.4, SDII also represents a similar statistically insignificant relationship at 

different stages. The strong relationship of ENSO index with rainfall shows a significant 

positive correlation.  

The frequency of extreme rainfall indices (Figure 5.19) influenced by Niño 3.4 has a 

moderate correlation with the very heavy (R100) and heavy rainfall events (R65) at no lag 

period. Few grid points over low land regions show a significant positive correlation, most 

of the grid points over high lands show a negative relationship with a low correlation, due 

to the effect of topography and less spatial correlation. The events of moderate rainfall 

(R2.5_65), average rainfall (R40), and low rainfall (R20) depict a negative correlation 

(Appendix 12). It is generally found that a certain Niño index always modulates another 

Niño index and when the climate indices are at different stages, the regional responses of 

extreme rainfall events to the climate indices differ and some regions get simultaneously 

impacted by the climate index. These outcomes are vital for either predicting or mitigating 

the risks caused by droughts or floods. The ENSO influences the extreme rainfall at the 

same point of time, specifically, in Karnataka’s Western Ghats. The agricultural activities 

and water resources across the coastal region and the Western Ghats of Karnataka can be 

optimally planned and managed if the impact of climate indices on agriculture and regional 

response of rainfall extremes is comprehended. 
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Figure 5.17 (a-f) Grid points with the precipitation extremes influenced by the Niño-3.4 

with 1-year and 0-year ahead, respectively.  
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Figure 5.18: The Pearson’s correlation between Niño 3.4 and general extreme 

precipitation indices 
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Figure 5.19 (a-e) Absolute threshold intensity rainfall frequency indices influenced by the 

Niño-3.4 with 1-year and 0-year ahead, respectively.
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Figure 5.20: The Pearson’s correlation between Niño 3.4 and frequency of extreme 

precipitation indices 
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5.5 Conclusions 

 

The contrast in the land and sea temperatures between the Asian landmass and the adjacent 

oceans determines the rainfall in the west coast of Karnataka, India. The moisture laden 

monsoon winds from the equatorial Pacific Ocean further intensify the low pressure existing 

over the northern plain. The Indian subcontinent that adjoins the Bay of Bengal and the 

Arabian Sea receives low-level cross-equatorial south-west monsoon winds, which flow in 

a westerly direction over the Indian Ocean. The south-east trade winds cross the Equator 

from the southern hemisphere and are drawn as south-west monsoon winds in the Western 

Ghats of Karnataka. The summer monsoon winds render very heavy rainfall (more than 

3000mm) to the study region’s windward side and are divided into two, namely, the Arabian 

Sea branch and the Bay of Bengal branch. 

  

Correlation coefficients between the SSTs over Niño regions and ETCCDI extreme rainfall 

indices of the coastal region and the Western Ghats of Karnataka are identified with the 

asymmetric effects of global SSTs on the extreme rainfall indices. Nevertheless, differences 

are found between the spatial extent of correlation coefficients and their magnitudes. The 

following conclusions are drawn after considering the association between ENSO indices 

and the monsoon. 

 Regarded as the most significant time lag between the extreme rainfall indices 

(dependent variable) and the Niño indices (independent variable), the best model with 

the highest coefficient of determination was identified by SWR analysis. The 

teleconnection signal propagation, with respect to multiple index of Niño regions, is 

explained by the best causal relationship thus generated. Xavier et al., (2018) the large‐

scale advection of moisture brought about by strengthening of monsoon low level jet 

(MLLJ) is shown to be a prerequisite for heavy rainfall over the Indian subcontinent. 

 The rainfall extreme regimes over the west coast of Karnataka are characterized by 

analyzing the ETCCDI extreme rainfall indices. If more extreme rainfall (Rx1, Rx5) is 

less spatially correlated and if it is represented by an annual extreme rainfall index, then 

the local topography is likely to influence the index. Krishnaswamy et al., (2015) ENSO 
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positively influences extreme rainfall events below a threshold of 100 mm day−1 for 

Indian region.  

 

 With the intense rainfall events (Rx1 and Rx5) being spatially and sparsely coherent, 

the regional topography is more likely to impact the synoptic weather system. Attention 

must be paid to the less spatially correlated precipitation extremes are they are either 

dominated by a significant trend or are influenced by the regions, in spite of the 

mounting concern of the hydrological cycle’s regional response to climate change. 

 

 The teleconnections between the Niño indices (Niño 1+2, Niño 3, Niño 3.4 and Niño 

4) and the rainfall extremes have been examined. The identification of grid points with 

rainfall extremes affected by ENSO indices with 0-year and 1-year ahead analyzed. It 

is found that if the Niño indices are at different phases, then the regional response of 

rainfall extremes to these indices are different. Preethi et al., (2017) the West Pacific 

SSTs appear to be related with the rainfall over southern parts of India.  
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CHAPTER 6 

ESTIMATION OF SUMMER MONSOON PRECIPITATION  

 

6.1 INTRODUCTION      

The chapter 5 shows the teleconnection of Nino indices at 0-year and 1-year lag period for 

specific seasonal average with ETCCDI extreme rainfall indices. Similarly, considering 

the consecutive seasonal average of Nino indices identifying the teleconnection of 

monsoon rainfall at various seasons with respective lag period as predictors.  

The south Asian summer monsoon is one the most noteworthy seasonal developments in 

the world that occurs between June and September. Water managers and irrigators can 

take informed decisions and formulate risk-management strategies by using the estimation 

of probabilistic seasonal rainfall. Such estimation can be made up to one year in advance 

using both dynamical and statistical prediction systems of climate (Goddard et al., 2001). 

The stationary relationships between the variables and the availability of long term data 

records are crucial for a statistical prediction system as it is based on empirical 

associations among the observed variables. In comparison with a statistical climate 

prediction system, a dynamical prediction system is more expensive for implementation 

and operation and it is based on such numerical simulations that model physical processes 

directly (Anderson et al., 1999). ENSO and other climate variables are predicted by simple 

statistical prediction systems, which are found to be consistently outperform sophisticated 

dynamical prediction systems, despite such systems being backed by significant 

technological advances and research studies (Barnston et al., 1999; Quan et al., 2006; 

Halide and Ridd, 2008). The dominance of statistical prediction system in the forecasting 

of seasonal rainfall will continue unless there is a significant improvement in the 

dynamical prediction systems (Rajeevan et al., 2007). A significant temporal and spatial 

variability is exhibited by the summer monsoon precipitation (SMP), despite the wind 

patterns’ consistent reversal of seasons (Parthasarathy et al., 1995). The Western Ghats is 

one of the regions that receive the maximum monsoon precipitation, which is unevenly 

distributed on the Indian spatial domain. Elevated summits and cascaded topography 

basically comprise the Western Ghats. Heavy precipitation is generated due to the Western 
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Ghats’ abstraction of the summer monsoon winds passing above the Arabian Sea. The 

highest monsoon seasonal precipitation is received by coastal Karnataka among the 

Western Ghats’ subdivisions (Tawde and Singh, 2015). The association of El Niño-

Southern Oscillation (ENSO) with the Indian summer monsoon has been evidenced in 

several studies, wherein it is proved that large spatial variability is depicted by the Indian 

SMP (Kripalani and Kulkarni, 1996; Mooley, 1997; Webster et al., 1998; Varikoden and 

Babu, 2015). The Western Ghats’ precipitation is asymmetrically affected by the Niño 

regions (Revadekar et al., 2018), whereas substantial simultaneous relationships between 

various ENSO indices and monsoon seasonal precipitation are involved in the ENSO-

monsoon teleconnections (Krishna Kumar et al., 1995). The effects of the SMP over the 

Niño indices, the Western Ghats and the coastal region of Karnataka are being 

investigated in the present research study. 

6.2 IMPORTANCE OF ESTIMATION OF SEASONAL RAINFALL 

Among three subdivisions of west coast of India (Kerala, Coastal Karnataka and Konkan 

Goa), minimum rainfall occurs over Kerala. Maximum rainfall occurs over Coastal 

Karnataka which is middle subdivision and again rainfall decreases over Konkan & Goa. 

Thus, though all the three subdivisions of WG receive very high rainfall during the 

summer monsoon season, it indicates substantial spatio-temporal variation in distribution. 

Therefore to understand the influence of large-scale phenomenon over the Pacific Ocean 

SSTs with precipitation over Western Ghats and coastal region of Karnataka, is considered 

in the study (Tawde and Singh 2015; Revadekar et al. 2018). 

Several fields, such as water resource management, food security, fisheries, energy and 

agriculture, need the prediction of seasonal precipitation, which proves useful for the 

ground users. More than one hundred years ago, the SMP was estimation in the long range 

for the first time. The seasonal forecast of the Indian summer monsoon’s precipitation has 

been empirically investigated in several studies (Krishna Kumar et al., 1997; Rajeevan et 

al., 2004). Several dynamic and statistical forecasting techniques have been tried and 

tested since then. The forecast of the monsoon remains indefinable, despite a few 

statistical models functioning better than the dynamic ones (Gadgil et al., 2005). Several 

studies have investigated the relationship between the ENSO events and the Indian 
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summer monsoon (Krishna Kumar et al., 1999; Singh et al., 2011; Preethi et al., 2017; Roy 

2017). It was found from these research studies that before (after) an El Niño’s peak, the 

Indian summer monsoon is weaker (stronger) than normal in winter. Additionally, this 

relationship was found to be the opposite for La Niña and monsoon. Further, it was 

ascertained that during the La Niña (El Niño) summers, the circulation of monsoon was 

usually stronger (weaker) than normal (Liu and Chan, 2018). 

It has been evidenced that El Niño events (with the warmest SST anomalies) were found 

to be more effective in the central Pacific than in the eastern equatorial Pacific (Krishna 

Kumar et al., 2006; Varikonden and Babu, 2015). The use of neural network (NN) 

methods has become popular in climate and atmospheric studies (Gardner & Dorling, 

1998) after the derivatives were successfully determined by the Artificial Intelligence 

(Bishop, 1995). Researchers are now increasingly comparing the conventional and modern 

methods of forecasts. Lagged associations between the combinations of Niño indices and 

the SMP at the regional scale are used with the Neural Networks and statistical regression 

models to predict the summer monsoon precipitation (SMP) in the present study.  
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6.3 Methodology  

 

Figure: 6.1 Flow chart of the methodology adopted for estimation of SMP with Niño 

Indices over study region. 

 

6.3.1 Temporal variation of monsoon season rainfall  

In recent years hydro-meteorological disasters such as floods and drought are considered 

the major sources of losses of unknown percentage Gross Domestic Product (GDP) due to 

lack of documented information concerning the recurrence of these Rainfall extremes. In 

this section, Precipitation Index (SPI) was used to assess the recurrence of rainfall pattern. 

Precipitation index over study region has been estimated to find out in-out phase 

relationship with ENSO indices over study region as follows:  
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SMP Anomaly = climatology of monthly 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 − 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 

𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 time series. 

Summer monsoon Precipitation (SMP) anomaly calculated for each months of monsoon 

season (June-July-August-September) using Thiessen polygon area weighted of grid 

points partially covered and averaged over study region. 

6.3.2 Multiple linear regression model  

The extent of association among the variables is determined by utilizing the multiple linear 

regression analysis. The least square regression analysis can be extended to cases where 

there are more than one independent variables. Let y the dependent variable (Rainfall) and 

X1, X2,…Xp be the independent variables (Nino Indices). The multiple linear regression 

equation is represented as: 

 

Y = d0 + d1X1 + d2X2 +……+dpXp      (6.2) 

 

where d0, d1, ……dp are the regression constants (coefficients) to be determined. Denoting 

the observations on the variable as (Y, X1, X2… Xp). 

The averaging and the anomaly series over the summer season were calculated to 

construct the summer monsoon precipitation anomaly and were equated with selected 

potential predictors. The models were developed through the selection of predictor values 

having a threshold confidence level. Eventually, the predictors in a model are usually 

subjected to tests and the selected ones are included for making predictions. The final 

regression equation generally comprises of such predictors only. Another regression model 

using the first principle component as predictor constructed regression equation. The 

developed models constructed to predict monsoon precipitation over study region, west 

coast of Karnataka, India. 

Precipitation Index =
(𝑐𝑙𝑖𝑚𝑎𝑡𝑜𝑙𝑜𝑔𝑦 𝑜𝑓 𝑜𝑏𝑠𝑟𝑣𝑒𝑑 monthly  𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 − 𝑚𝑒𝑎𝑛 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛)

𝑆𝑡𝑑.  𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 
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6.3.3 Principle Component Analysis  

The number of independent variables in principal component analysis was defined 

considering a set of components accounting for highest total variance (Jolliffe 2002). The 

mathematical transformation of a number of latently correlated variables into a fewer 

number of uncorrelated variables is termed as Principal Component Analysis (PCA). 

Principal components possess the original variables’ linear combination and are also 

known by the generation of a new set of variables by PCA.  

 

Table 6.1 Eigen values of principal component analysis 

  PC1 PC2 PC3 PC4 

Eigenvalue 2.9024 0.6307 0.3553 0.1116 

Variability (%) 72.5592 15.7685 8.8815 2.7907 

Cumulative % 72.5592 88.3277 97.2093 100.0000 

 

 

Table 6.2 Eigen vectors of the principal component analysis  

  PC1 PC2 PC3 PC4 

Niño4 (t-2) 0.4172 0.4881 0.0185 -0.2240 

Niño4 (t-3) 0.5464 -0.0726 -0.4635 0.4694 

Niño3 (t-4) 0.4997 -0.2196 0.8268 0.1358 

Niño3.4 (t-2) 0.5269 -0.4137 -0.3181 -0.6708 

 

Table 6.1 illustrates that the variances and eigen values of each component’s four-

dimensional parameters are gauged by PCA. A majority of the total variance (72.5%) is 

accounted by the first PC component. The eigen vectors of the four predictor’s principal 

component analysis are shown in Table 6.2. Thus, the data in a one-dimensional space can 

be represented using the eigen vector that corresponds to the covariance matrix’s largest 

eigen value (PC1 explains about 72% of the variance of the predictors)  (Chate et al., 

2018). This one dimensional PC is used as predictor in regression equation and input layer 

as neural network models to avoid over fitting of the model for estimation of seasonal 

precipitation.   
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6.3.4 Artificial Neural network  

An artificial neural network (ANN), or simply neural network (NN), is a mathematical or 

computational representation of a model inspired by neural networks of the biological 

nervous system. The neural networks are able to capture complex patterns that exist in the 

data, and to solve problems that are difficult for conventional computers or human beings 

(Chowdary 2007). Generally, the network models have been found to outperform the 

traditional empirical, statistical or numerical models (Singh & Borah, 2013). Since 1980s, 

several models of neural networks with different learning algorithms and topologies have 

been formulated (Rumelhart et al., 1985). Several fields (including atmospheric science) 

utilize neural networks. 

Among the different kinds of existing Artificial Neural Networks, the present study has 

focused on generalized regression neural network and feed-forward neural network. 

i. Training of an Artificial Neural Network 

The rules of learning are used to implement the process of learning, which is termed 

training. The rules of learning are classified into supervised learning and unsupervised 

learning. 

• Supervised learning: The given inputs are used by the network in determining the 

predictive performance. Both the inputs and the outputs are known in supervised learning.  

• Unsupervised learning: The neurons have to manage the outputs, as they are not known 

in unsupervised learning. 

In present study, supervised learning method is used with potential selected predictors 

with training period from 1951 to 2000 and test period of 2001 to 2013 by trail method. 

 

ii. Feed Forward Back Propagation Neural Network  

Figure 6.2 depicts a typical feed forward back propagation neural network. Complicated 

problems are solved by such network types, as they utilize one or multiple layers hidden 
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between the output layers and the input layers. The number of neurons is fixed in the input 

layer and in the output layer after the determination of the number of inputs and outputs. 

However, the optimal count of neurons hiding in the hidden layer has to be selected. 

Several trial and errors are required to determine the optimum quantity of hidden layers. A 

good initial value can be selected and the quantity of the input parameters must be used to 

initiate the finding, followed by the increment in the quantity of hidden layers. The 

disability of classifying non-linear functions is solved through the utilization of feed 

forward networks. 

 

Figure 6.2 Schematic representation of feed forward back propagation neural network 

  

The training of a supervised neural network is based on back propagation. A set of outputs 

is attained after the data is transmitted in the form of inputs (layer by layer) through the 

network. The weights of the network are set during this forward pass. A comparison is 

made between the desired outputs and the obtained outputs. In order to decrease the 

magnitude of the error, the difference between the calculated outputs (error) and the 

desired outputs is utilized for adjusting the network’s weights as a backward pass. Unless 

an acceptable magnitude of errors is attained, this process is continuously repeated. Epoch 

is a term given to the processing of the whole set of data, both as a forward pass as well as 

a backward pass, by the network. Unless an acceptable magnitude of error is attained, each 

of the epochs decreases the error, and the network is thus trained in an approach termed as 

error back-propagation training.  
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In the current study, PC1 used at input layer, Sigmoid functions at hidden layer and 1 

output at output layer selected.  

 

iii. Generalized Regression Neural Network  

Specht (1991) proposed generalized regression neural network (GRNN). Like 

typical feed forward back propagation neural network, GRNN will not require iterative 

training procedure for approximation of solutions. The GRNN comprises the radial basis 

function neural network method. Its topology looks similar to typical feed forward neural 

network, which is used in back propagation training but its operation is different from 

typical NN. The theory of estimating function is utilized as the basis for the GRNN. The 

GRNN shows consistent approximation, if a large number of training set is used then the 

error move towards zero with smaller constraints on the function. The GRNN is based on 

Nadaraya Watson Kernel regression and it is used to estimate the solutions similar to 

regression techniques. The GRNN is used in prediction of probability density function of 

dependent and independent variables. The schematic representation of GRNN is shown in 

Figure 6.3. 

 

 

Figure 6.3 Schematic representation of generalized regression neural network 

Four layers constitute the GRNN, Wherein the input layer is the first, which depends on 

the number of inputs considered. The first layer is connected to the second layer, which is 

called as pattern layer. Each neuron in pattern layer passes through training pattern, which 
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is processed as output. The pattern layer is then summed up in third layer, called as 

summation layer. The output layer is the fourth layer with the output neuron. The 

exponential activation is used at pattern layer and linear activation is used at output layer 

in the study. GRNN has been used in many hydrological applications and modelling.  

In the current study, PC1 used at input layer, Radial Basis function at hidden layer and 1 

output at output layer selected.  

 

6.3.5 Statistical Performance 

Root Mean Square Analysis 

𝑅𝑀𝑆𝐸 =  √
∑ (𝐹𝑖−𝐴𝑖)2𝑛

𝑖=1

𝑛
       (6.3) 

 

F
i 

and A
i 

are the predicted and observed values of SMP time series data set for year i 

respectively, and n is the time period. 

 

6.4 Seasonal Precipitation anomaly associated with sea surface temperature 

The observed precipitation data used for the period 1951–2013, w.r.to availability of 

corresponding monthly SSTA time series. The averaging and anomaly series over the 

summer season (JJAS) is calculated to derive the summer monsoon precipitation index. 

Figure 6.4 shows standardized precipitation index used for analyzing seasonal relationship 

of monsoon precipitation and sea surface temperature. Figure 6.4(a) depicts monsoon 

months precipitation, whereas peak precipitation observed during the month of July and 

least at withdrawal phase of September month. Figure 6.4(b) shows average monsoon 

precipitation for the time series with mean of 2706.74 mm and standard deviation 495.6 

mm. Monsoon precipitation anomaly normalized by the standard deviation, also termed as 

standardized monsoon precipitation index (SMPI) calculated for each months of monsoon 

season (June-July-August-September) and averaged over study region. Years with 

magnitude of normalized anomaly greater than 1 are excess rainfall seasons, for positive 

anomalies and negative anomalies less than -1 for deficient rainfall seasons. 
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The SST of the ENSO indices is utilized as different Niño indices (Niño-1+2, Niño-3, 

Niño-3.4 and Niño-4), as shown in Figure 6.5 (Trenberth and Stepaniak, 2001; Trenberth, 

1997). The actual indices are computed as the specified region’s area-averaged sea surface 

temperature anomalies (°C) (Table 1.1 and Figure 1.1 in the first chapter). Corresponding 

to the times when SST anomalies exceeded 0.4°C in the Niño-3.4 region or when SST 

anomalies exceeded 0.5°C in the Niño-3 region, the quantification of El Niño is in terms 

of simple indices. This is apparently sufficient to generate detectable effects in the Pacific 

rim nations (e.g., USA, South Korea, Russia, Philippines, India, Japan, Colombia, China, 

Canada, Australia, etc.) (Trenberth, 1997). 
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Figure 6.4 The time series for the period of 1951 -2013; (a) Monsoon season (JJAS) monthly precipitation, (b) Average monsoon season 

precipitation of study region and (c) the anomaly of the summer monsoon precipitation normalized by the standard deviation. 
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6.5 Temporal variation of Sea Surface Temperature anomalies over Equatorial 

Pacific Ocean associated with ENSO phases 

The temporal variation of SSTA over the Niño 3.4 region play a key role in exploring the 

recurrence of weak, moderate and strong ENSO events and the linkage between them and 

the observed rainfall anomalies over study region west coast of Karnataka. Figure 6.5 

presents the inter-annual variability of sea-surface temperature anomalies. The three 

month seasonal average of Niño region during the MAM, JJA, SON and DJF seasons are 

considered in the study. There are recurrences of the years with the warm and the cold 

ENSO phases. These warm and cold ENSO events are classified as weak, moderate and 

strong El Niño and La Niña. Weak El Niño and La Niña events are defined as the years 

during which the SSTA range between the standardized values of positive/negative 0.5-

0.75. Moderate El Niño and La Niña events are defined as the years during which the sea-

surface anomaly range between positive/negative 0.75- 1.0 standardized values. 

 

Figure 6.5 ENSO Oceanic Index (Sea surface temperature anomaly) of regions                 

(a) Niño 1+2, (b) Niño 3 (c) Niño 3.4 and (d) Niño 4 
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6.6 Seasonal Lead-lag correlation of summer monsoon precipitation index with Niño 

indices 

The correlation of the summer monsoon precipitation index (SMPI) with the Niño indices 

over the study area is depicted by Figure 6.6. The recording of the concerned SST before 

the onset of monsoon is demonstrated by the parenthesized negative number on the x-axis. 

The recording of the SST anomaly after the onset of monsoon is illustrated by the positive 

numbers. Therefore, such cases are considered for the correlation analysis. Pearson’s 

correlation analysis was used and it was found that the SMP anomaly was correlated with 

the following predictors for a period of 50 years (1951-2000). Table 6.3 and Figure 6.6 

shows the Pearson’s correlation of summer monsoon precipitation index with Niño 

indices. Niño 3 index is correlated with a lag of four seasons and correlation coefficient of 

0.25 at 10% significance level. Niño 3.4 index is correlated with a lag of two seasons and 

correlation coefficient of 0.285 at 5% significance level. Niño 4 index is correlated with a 

lag of two and three seasons with a correlation coefficient of 0.315 and 0.294 at 5% 

significance level. From this analysis, it is observed that Niño 4 index has a good 

relationship with the monsoon over the study region. 
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Figure 6.6 Seasonal lead-lag correlation between summer monsoon precipitation index and Niño 1+2, Niño 3, Niño 3.4 index and Niño 4 

indices lagging by 1-8 season.
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Table 6.3 Seasonal lead-lag relationship between Niño indices and summer monsoon 

precipitation. 

*

*

 

1

0

 

%

 significance level, * 5% significance level 

 

 

 

 

Figure 6.7 Scatter plot of correlation between summer monsoon precipitation index and 

predictors 

Niño indices Lag period in season Correlation coefficient 

Niño 3 4 season   0.245**  

Niño 3.4 2 season 0.285* 

Niño 4 2 season 0.315* 

Niño 4 3 season  0.294* 
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The results of seasonal lead-lag correlation are presented in Appendix 13. In the present 

analysis, Niño 3(t-4), Niño 3.4(t-2), Niño 4(t-2), and Niño 4(t-3) shows a significant relationship 

with the summer monsoon precipitation over the study region of Karnataka (Table 6.3). 

Therefore, these indices have been selected as the predictors. Niño 1+2 index demonstrate 

a significance level lesser than 80% for any of the lag values. Therefore Niño 1+2 is not 

considered as a predictor of the analysis. The obtained results are in agreement with 

studies based on standard ENSO index (Tawde, 2013) with summer monsoon precipitation 

over Western Ghats. 

 

6.7 Models for estimation of summer monsoon precipitation 

The results obtained lead lag correlation of seasonal rainfall anomalies and Niño indices at 

lagged are significantly correlated at various confidence level. It should be noted that due 

to the low correlations obtained between the variables under correlation considered in the 

study, the constructed regression models were based only on the significance greater than 

10% of variability for Niño indices. Below equations illustrates the models constructed 

between seasonal rainfall and Niño indices. The results indicated the regression models 

constructed were far from being optimal and model not able to capture some peaks 

observed in the observed rainfall anomalies. 

Multiple linear regression models (Wilks 2006) have been formulated for the prediction of 

the summer monsoon precipitation (SMP) with Niño indices as the threats of over-fitting 

are avoided and the quantity of free parameters is considerably reduced in the network by 

the utilization of the first PC as a predictor for neural network. These models are 

summarized by the following regression equations.  

a) Multiple Linear Regression Model 

i. MR = Significant lagged Niño indices included as predictors 

SMPt = −20.4 + 0.494 ∗ Niño 4(t−2) + 0.034 ∗  Niño 4(t−3) + 0.017 ∗

 Niño 3(t−4) − 0.228 ∗ Niño 3.4(t−2)     (6.4) 

ii. PC = Predictor was used from principal component analysis   

SMPt = −15.28 + 0.561 ∗ PC1      (6.5) 
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b) Artificial neural network model 

i. NN1 = Feed forward back propagation neural network model  (6.6) 

ii. NN2 = Generalized regression neural network model   (6.7)  

 

Overall, four methods have been developed such as regression method using lagged Niño 

indices and first principle component, NN1 model using feed forward back propagation 

neural network, and NN2 model using generalized regression neural network. The models 

on unseen patterns (test set) were evaluated by using 13 patterns and the coefficients were 

determined by using 50 patterns in the training set. The correlation coefficient (r) and the 

root mean square error (RMSE) were used with the observed precipitation for evaluating 

the models’ skills. An analysis of the observed and the predicted precipitation’s standard 

deviation (SD) was also conducted. The standard deviation and the mean of the observed 

SMP anomaly were 1.9 and 10.6 mm, respectively, for the train series, and 2.12 and 10.45 

mm, respectively, for the test series. 

6.8 Results and discussion  

The global-scale tropical Sea Level Pressure associated with the Southern Oscillation 

occur in conjunction with the episodes of large-scale sea surface temperature (SST) 

anomalies (El-Nino/La Nina) over the tropical Pacific region. The intensities of El-Nino 

events are generally assessed on the basis of the average SSTs over the Nino regions in the 

Pacific Ocean (Table 1). Subsequently the detection of strong links between the El-Nino 

Southern Oscillation (ENSO) and the Indian monsoon rainfall (Sikka et al. 1980; 

Rasmusson et al. 1983; Rao 1999), the empirical models for monsoon prediction have 

developed rapidly. Many studies have used the relation of ENSO-Rainfall over the Indian 

sub-continent (Kumar et al. 2007; Gill et al. 2015; Azad and Rajeevan 2016). 

Parthasarathy et al. (1988) found that Niño 4 region having significant relation with the 

Indian rainfall, whereas others observed that Niño 3 region (Ashok et al. 2004), and Niño 

3.4 region (Gadgil et al. 2003 and 2004) present better relationship with Indian rainfall. 

Few studies were analyzed for ENSO-rainfall over Karnataka region (Tawde 2013; 

Revadekar et al. 2018; Amat and Ashok 2018). 
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6.8.1 Assessing SST-SMP association with identifying predictors and comparison of 

models 

As seen in Figure 6.8, the observed SMP is compared with the model output SMP in the 

training and the test case for the NN1 model, the NN2 model, the PC1 regression model, 

and the multiple regression model. Figure 6.9 depicts the difference of SMP between 

model output and observed data.  It may be noted that from Earth System Research 

Laboratory (NOAA), there were fourteen El Niño (warm phase) and years in the period of 

the times series (1951-2013).  

The NN1 model optimally predicted the El Niño precipitation (Figure 6.11 (a-d)). The 

NN2 model optimally predicted the La Niña precipitation and the precipitation was 

predicted with corresponding skill by the multiple regression model. The scatter plot of 

various anomalies, such as NN1 predicted precipitation, NN2 predicted precipitation, PC 

predicted precipitation, multiple linear regression predicted precipitation, and observed 

precipitation, for the training and test cases is depicted in Figure 6.10. It can be seen in 

Figure 6.10 that the observed precipitation anomalies are in tandem with the precipitation 

anomalies in the test case. 

 

 

 

Figure 6.8 The comparison of model output and observed data for multiple regression 

model, PC1 regression model, NN1 (FFNN) model and NN2 (GRNN) model. 
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Figure 6.9 The difference of seasonal mean precipitation anomaly between model output 

and observed data for multiple regression model, PC1 regression model, NN1 (FFNN) 

model and NN2 (GRNN) model. 

 

The models’ prediction skills for the training case and the test case are summarized in 

Table 6.4. The RMS errors of the model and the NN1 model’s better performance (on the 

basis of the correlation with the observed precipitation) for the training and test cases are 

depicted in Table 6.4. The NN1 model output’s correlation coefficient was found to be 

0.53 for the training case and 0.72 for the test case. The NN1 model’s RMS error was 1.60 

for the training case and 1.63 for the test case. In comparison with the NN2 model, the 

model output’s correlation coefficient was 0.55 for the training case and 0.66 for the test 

case. The NN2 model’s RMSE was 1.61 for the training case and 1.58 for the test case. 

The prediction was found to be better than the mean prediction, because the standard 

deviation of the observed data was significantly larger than the RMS error of NN models 

for the test case. Moreover, the regression models had more RMS errors in the training 

case and in the test case, when compared with the NN models. When compared to the 

observed standard deviation, the NN1 model’s test case standard deviation was 1.5 (Table 

6.4). The test case standard deviation of the multiple linear regression model and the NN2 

model was 1.22. Therefore, the variance explained by the NN2 model was found to be 

slightly lower than that of the NN1 model. 

Therefore, when El Niño and La Niña years are pertained, the accuracy of predicting the 

seasonal precipitation is compared between the multiple linear regression model and the 
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NN models. Nevertheless, the overall prediction skill of the multiple regression model is 

less accurate than that of the NN1 model. It is important to observe that the SST values’ 

spatial variability in the aforementioned Niño regions is equally important as the actual 

values of sea surface temperature in individual regions. This is due to the fact that the 

second PC of the Niño indices is predicted by the first one, which is correlated with the 

SMP anomaly. The multivariate regression model’s performance establishes the linear 

regression model, which is not able to discover the complex relationship between the 

summer monsoon precipitation anomaly and the sea surface temperature’s spatial 

variability in the aforementioned Niño regions. The outcomes discussed above depict that 

the variability’s non-linear feature is successfully captured by the NN1 model with the 

individual predictors. 

 

Table 6.4 Performance of the models used in prediction of summer monsoon 

precipitation. 

Predictor 

Models 

Training 

 

Test 

r RMSE SD RSD 

 

r RMSE SD RSD 

MR 0.54 1.59 1.03 1.85  0.43 1.84 0.82 2.59 

PC1 0.39 1.74 0.75 2.54  0.64 1.63 0.96 2.22 

NN1 0.53 1.60 0.97 1.97  0.72 1.63 1.50 1.42 

NN2 0.55 1.61 0.76 2.52  0.66 1.58 1.22 1.73 
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Figure 6.10 Scatter plot of the model performance between training and test set of the models MR, PC1, NN1, and NN2.
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6.8.2 Rainfall Anomaly teleconnected with ENSO Events 

The evaluation of rainfall anomalies over west coast of Karnataka region during ENSO 

years is very important for risk assessment and damage associated with climate extremes. 

This helps in anticipating the type of risk associated with ENSO as part of early warning 

processes. The analysis is based on evaluation of rainfall performance corresponding to 

the timing of the ENSO and composite analysis of rainfall anomalies patterns 

corresponding to El Niño and La Niño events, to define performance of models (wet and 

dry conditions) during these episodes (Figure 6.11). The results shows the strong 

evidences that dry, wet and normal conditions are recurrent in study region during weak, 

moderate, and strong ENSO (El Niño and La Niña) events. Moreover, the results show 

that some of the driest and the wettest years over the study region coincide with the 

strength of the ENSO events. 

From the time series 1951-2013 of standardized monsoon precipitation Index (Figure 3c) 

selected the positive episodes values having standardized value greater than +1 (excess) 

and similarly with negative episodes values with standardized values less than -1 (deficit). 

The mean anomalous SST values for the region Nino 3.4 for the season DJF (-2) for 

positive episode is 0.1719oC and the negative episode is -0.5133oC. These two SST means 

are found significantly different at confidence level of 87.15% through the Student’s t-test.  

 

 

 

 

 

 

 

 

 

 



156 
 

 

Figure 6.11 Comparison of SMP anomaly with prediction models output during (a) El Niño and (b) La Nina period respectively.  



157 
 

6.9 Conclusions 

ENSO indices of different Niño regions show asymmetric relationship with summer 

monsoon precipitation over the study region. The models need to be subjected to constant 

changes and scrutiny for a better prediction, because of the prediction models’ underlying 

problems like varying predictability, variation in the predictor-predictand relationship, etc. 

Changing the training period’s length, analyzing the predictors’ combination, changing the 

size of the model, etc. are some of the ways to implement the changes. The demonstration 

of a better performance by the models during a common test period results in the changes 

being acceptable. The prediction of seasonal summer monsoon precipitation over the study 

region is the outcome of the ceaseless efforts put in for adopting better skills. 

A significant lag correlation between the summer monsoon precipitation and four Niño 

indices was revealed by the seasonal lead-lag correlation analysis, which helped to select 

significantly influencing four predictors based on this analysis. In order to investigate the 

combined lagged effects of the potential climate predictors for west coast and Western 

Ghats of Karnataka summer monsoon precipitation using multiple linear regression as a 

linear method compared to neural network as a nonlinear method have been employed to 

examine the predictability of the summer monsoon precipitation by utilizing the selected 

Niño indices as the predictors.  

Generalized regression neural network (NN2) model is able to predict better in 

comparison with NN1 neural network model during El Nino phase. The attained 

prediction by feed forward back propagation neural network model (NN1) utilized in the 

prediction of SMP are significantly better than other selected models. However, the 

comparison of the standard deviation and the Root Mean Square error of the observed 

precipitation reveals that the mean prediction was better. This study basically concluded 

that non-linear relationship between the summer monsoon precipitation and the Niño 

indices over the study region and neural network modelling technique is able to provide a 

better prediction of precipitation.  

 

Based on the modelling of monsoon season rainfall using ENSO indices, the following 

conclusions were drawn: 
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• The analysis of the Niño indices with the summer monsoon rainfall reveals that 

there is a significant lag correlation between them, which helped to select four 

significantly influencing predictors on the basis of correlation analysis.  

• India, as a whole, receives deficit precipitation during El Niño and excess 

precipitation during La Niña episodes. The models using Nino indices depict a low 

prediction performance during El Nino period and a comparatively better prediction 

during La Niña period. Ihara (2007) results supports the ENSO events have strong 

relationship with rainfall over study region.  

• Monsoon rainfall during the ENSO phases and the prediction by models MR and 

NN2 was good in El Nino (warm phase) years. The NN1 model showed a better prediction 

in La Niña (cold phase) years.  

• The attained prediction on the basis of the overall performance of the NN1 (FFNN) 

neural network model shows a better prediction when compared to other models with a 

good correlation coefficient and RSD of 0.53 and 1.97 for training case, and 0.72 and 1.06 

for testing case, respectively. The RMSE of NN1 was slightly higher (1.63) than that of 

NN2 (1.58) in the testing case, and the coefficient correlation of NN1 (0.53) was slightly 

lesser than that of NN2 (0.55) in the training case.  

• The mean anomalous SST values for the region Nino 3.4 for the season DJF (-2) 

for positive episode is 0.1719oC and the negative episode is -0.5133oC. These two SST 

means are found significantly different at confidence level of 87.15% through the 

Student’s t-test.  

• The present study basically concludes that non-linear relationship between the 

Niño indices and the summer monsoon precipitation over the study region using neural 

network modeling technique is able to provide a better prediction of the rainfall. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS  

7.1 SUMMARY  

The focus of the present study was to assess the impacts of climate change on extreme 

rainfall events over the coastal region and Western Ghats of Karnataka. The primary 

research aims to develop a synoptic-scale rainfall climatology for the Western Ghats and 

Coastal region of Karnataka, assess the variability of synoptic types of extreme rainfall 

events using Expert team on climate change detection and monitoring Indices (ETCCDI), 

and to understand the asymmetric relationship of large-scale climate driver Nino indices 

influence on variability of extreme events. Climate of study region is dominated by the 

summer monsoon (JJAS), which delivers most of rainfall, which accounts for 80% of the 

annual rainfall. Extreme rainfall events increase along the slopes of the coastal plains and 

rapidly decrease on the eastern leeward side. Summer monsoon exhibits large variability in 

different space and time scales. The variability in rainfall is always viewed of concern and 

it is teleconnected with ENSO indices. However, studies on regional scale variability and 

their teleconnection are meagre. In view of this, trend and variability in extreme rainfall 

events in annual and seasonal is examined.  

This chapter presents the conclusions drawn from the present investigation. The conclusions 

are presented sequentially in line with the framed objectives for convenience. Further, the 

limitations of the present study and scope for further research are also highlighted. 
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7.2 CONCLUSIONS 

Conclusions drawn from the research with respect to the four objectives are discussed in 

this section.  

 

Objective 1: Trend and variability and long term trends in synoptic extreme rainfall 

events using ETCCDI rainfall indices.  

 The spatial pattern of rainfall indices shows a significant trend for all the indices at 

95 to 99.9% confidence levels. Trend in total annual rainfall is significantly increasing along 

coastal strip and depicts mixed variations at mountainous terrain. The daily average, wet 

and dry spells rainfall indices are interlinked with each other and predominantly influence 

the intensity of rainfall events. CWD shows magnitude of Sen’s slope -2.6 days/decade to 

2.4 days/decade with mixed trend in both spatial and at the significance level (>5%), but 

daily average and CDD are showing in agreement. With increase in dry spell the daily 

average rainfall increases by supporting the intense rainfall events.  

 Rx1 has decreasing trend ranging from -3mm/decade to 9 mm/decade and Rx5 

corresponds to maximum consecutive 5-day rainfall a potential indicator of flood producing 

event depicts  mixed trend with Sen’s slope of -14mm/decade to 32mm/decade.  

• The monsoon season temporal trend shows significant spatial variations over the 

study region. The seasonal ratio of rainfall (RRTOT) exhibits a mixed trend with magnitude 

of -0.35%/decade to 0.99%/decade, but a significantly rising trend is witnessed in the 

southern coastal plains and the adjacent Western Ghats region during the pre-monsoon. The 

southern coastal plains show a decreasing trend in the monsoon period (JJAS).  

• In the pre- and post-monsoon rainy days, the daily intensity index illustrates a mixed 

trend over the study region. Most of the grid points show no trend for rainy days and 

moderate rainfall. A few grid points depict a mixed insignificant trend with a low magnitude 

of Sen’s slope. 

• A statistically significant increasing trend exists in the frequency of very heavy and 

heavy rainfall events with sen’s slope of 0.32 days/decade and 0.71 days/decade 
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respectively, and a significantly decreasing trend exists in the frequency of moderate rainfall 

(-0.29 days/decade to 0.82 days/decade) at the region of heavy rainfall events.  

• A strong correlation exists between the total rainfall and other extreme rainfall 

indices, especially the heavy rainfall indices with correlation coefficient of 0.8. The intense 

rainfall is responsible for increase in annual total rainfall. 

Objective 2: Influence of oceanic Niño indices on ETCCDI extreme rainfall indices. 

 The Step wise regression analysis in order identify the optimal model with highest 

coefficient of determination for variable lagged Nino Indices at 95% Confidence level. The 

Consecutive wet days (CWD), Rx5, and Rx1 depicts R2 of 0.22, 0.25 and 0.19 at 5% 

significance level.  

 Nino 1+2 is having positive correlation with Rx1 and Rx5 at 95% confidence level. 

Whereas RR, SDII and CWD are showing significant correlations but different stages.  

 Nino 3 influence on frequency of intense rainy days, and R100 at both 0-year and 1-

year lag period at 95% confidence level. Henceforth, the correlation with lower magnitude 

rainy days depicts negative relationship. Nino 3 strongly influence the very heavy rainy days 

by suppressing low intensity rainfall events.  

 Nino 4 has positive significant correlation with total annual rainfall at 0-year lag 

period. Similarly the Nino 3.4 shows moderate mixed relationship for total rainfall. Both 

Nino 4 and Nino 3.4 has positive correlation but not significant at 95% confidence level.  

 

 The teleconnections between the Niño indices (Niño 1+2, Niño 3, Niño 3.4 and Niño 

4) and the rainfall extremes have been examined. The identification of grid points with 

rainfall extremes affected by ENSO indices with 0-year and 1-year ahead at different scales. 

It is found that if the Niño indices are at different phases, then the regional response of 

rainfall extremes to these indices is also dissimilar. Preethi et al., (2017) the West Pacific 

SSTs appear to be related with the rainfall over southern parts of India. 
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Objective 3: Estimation of summer monsoon rainfall  

• Monsoon rainfall during the ENSO phases and the prediction by models MR and 

NN2 was good in El Nino (warm phase) years. The NN1 model showed a better prediction 

in La Niña (cold phase) years. Ihara (2007) results supports the ENSO events have strong 

relationship with rainfall over study region. 

 

• The attained prediction on the basis of the overall performance of the NN1 (FFNN) 

neural network model shows a better prediction when compared to other models with a good 

correlation coefficient and RSD of 0.53 and 1.97 for training case, and 0.72 and 1.06 for 

testing case, respectively. The RMSE of NN1 was slightly higher (1.63) than that of NN2 

(1.58) in the testing case, and the coefficient of correlation of NN1 (0.53) was slightly lesser 

than that of NN2 (0.55) in the training case.  

 

 The mean anomalous SST values for the region Nino 3.4 for the season DJF (-2) for 

positive episode is 0.1719oC and the negative episode is -0.5133oC. These two SST means 

are found significantly different at confidence level of 87.15% through the Student’s t-test. 

 

• The present study concludes that non-linear relationship between the Niño indices 

and the summer monsoon rainfall over the study region. The neural network models are able 

to capture nonlinearity of ENSO-monsoon relationship and provide better prediction of the 

monsoon rainfall. 

 

Objective 4: Asymmetric affect of Nino indices with rainfall extremes 

 The ENSO-rainfall teleconnections involve simultaneous relationships between 

different ENSO indices and rainfall at different stages.  

 

 Deficient rainfall is associated with warm SSTs and excess rainfall (extreme events) 

with cold SSTs over equatorial Pacific. Therefore negative correlations are seen over 

equatorial Pacific SSTs. Such negative relationship perceived for coastal region and 

Western Ghats of Karnataka.  
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 Asymmetric impacts of global SSTs are observed on the rainfall through correlation 

coefficients between the SSTs at different seasonal average over Nino regions with rainfall 

over the study region. SSTs over Nino regions are seen for their negative impact on rainfall 

over the coastal region and Western Ghats of Karnataka, however the magnitudes of 

correlation coefficients and their spatial extent shows differences. 

 

The results presented in this study are statistically significant nevertheless more studies 

coupled with general circulation models should be carried out to establish the robustness of 

the results. 

7.3 LIMITATIONS OF THE STUDY 

The present study attempted to analyze the association of asymmetric impact of ENSO 

indices on ETCCDI extreme rainfall indices. However it is known that rainfall is also 

dependent on large scale climate drivers and its teleconnection with wind speed, wind 

direction temperature and climatic parameters of the region. Studying rainfall variation by 

considering all these parameters may give better insight into the rainfall variability in zones 

of Western Ghats of India. The relation between elevation and frequency of extreme rainfall 

events should be studied. This study has been limited to examining the ETCCDI extreme 

rainfall indices exclusively, however, other topographical factors like slope, aspect and 

geometry of the region may also be the reason for such dissimilar results which need to be 

studied elaborately. 

 

7.4 SCOPE FOR FUTURE STUDY  

The recommendations from current study are:  

a. The study is limited to ENSO indices, the combination of various land and sea 

climatic indices could able to establish variations of rainfall patterns at local scale.  

b. In recent days the rainfall events are highly varied at local regions, such that it is 

necessary to identify the local parameters affecting rainfall events.  

c. Recent report states that land covering patterns and irrigation system has significant 

impact on rainfall. Modelling of irrigation system and rainfall events with respect to 

climates indices could be established.  
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In the study area, selected regions having high decreasing or increasing trends or increase 

in frequency of extreme rainfall events or its trends, the rationale behind this change can be 

analyzed by incorporating historical change in land cover/land use, variation in temperature, 

long term trend of aerosol compositions, impact of humidity. The space-time variation in 

rainfall with wind speed, wind direction and temperature, humidity, aerosol contents can be 

analyzed considering long period data.  

According to recent report IPCC (AR5, 2019) due to Irrigation (Peninsular India) prior to 

the start of the monsoon season and the resulting land cooling decreases the land-sea 

temperature contrast. This can delay the onset of the monsoon and decrease its intensity. 

Irrigating farms in India may be having an unfavourable outcome within its national 

boundaries but it’s probably having some beneficial impact in faraway places. Therefore, 

based on the current study in future could establish the relationship of rainfall and irrigation 

management system over Peninsular India. Kerala is the gateway of monsoon for India and 

in other words it is highly dependent on agro based socio-economic system. Most of the 

rivers are originated from Western Ghats and irrigation facilitated.  

Humans have altered the earth's surface - primarily by urbanization and agricultural 

activities (IPCC, 2013). Use of land for agriculture, which is often accompanied by 

irrigation, modifies the land surface through changes in the water and energy balance 

between land surface and atmosphere. This further influences climatic parameters like 

temperature, rainfall and cloud formation. The effect is more pronounced on local as 

compared to global climate. India is one of the regions of the world with a large irrigated 

area. The practice of irrigation has changed in recent years resulting in depletion of 

groundwater. In future, as the groundwater sources get depleted, the effect on agriculture 

and climate are bound to be locally significant. 

Irrigating farms in India may be having an unfavourable outcome within its national 

boundaries but it’s probably having some beneficial impact in faraway places. According to 

a global modelling study, irrigation in India is increasing rainfall in the Horn of Africa. 
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APPENDIX 

 

APPENDIX 1: Annual Statistics of Individual Grid Points’ Daily Gridded Precipitation over 

HL (the Western Ghats) and LL (coastal regions) 

 

Grid 

Points 

Lat 

 deg N 

Lon 

deg E 

Elevation 

meters 

Mean 

Precipit

ation 

mm 

Min 

Precipit

ation 

mm 

Max 

Precipit

ation 

mm 

SD 

 mm 

CV 

% 

Kurtosis Skew 

LL1 14 74.5 000 4186 2714 7013 725 17.31 1.46 0.69 

LL2 14.75 74.25 117 3442 2028 5560 581 16.87 0.74 0.53 

LL3 12.75 75 117 3987 2233 6999 628 15.74 4.21 1.01 

LL4 13 75 069 4220 2305 6543 650 15.40 1.23 0.44 

LL5 13.25 74.75 013 4319 2438 6534 738 17.08 0.30 0.16 

LL6 13.5 74.75 012 4496 2506 7988 1034 22.99 0.73 0.90 

LL7 13.75 74.75 075 4433 2181 9651 1306 29.46 3.26 1.49 

LL8 14 74.75 029 3864 1247 5185 781 20.21 1.09 0.65 

LL9 14.25 74.5 057 3925 1964 6621 1391 35.43 1.05 1.31 

LL10 14.5 74.5 086 3036 2141 8817 753 24.81 1.16 1.10 

LL11 14.75 74.5 183 3819 1800 5703 717 18.76 0.57 0.04 

LL12 12.5 75.5 116 4191 1853 5970 689 16.45 2.99 0.54 

LL13 12.75 75.25 114 4165 2012 7218 696 16.72 4.88 0.92 

LL14 13 75.25 062 4227 1939 7501 928 21.95 0.03 0.09 

LL15 13.25 75 092 4155 1820 6592 1881 45.27 0.59 1.30 

LL16 13.5 75 055 3049 1793 9793 754 24.74 1.42 1.00 

LL17 13.75 75 108 3124 1495 8145 717 18.76 0.77 1.09 

HL1 14 75 642 3028 1139 5869 818 27.00 0.10 0.53 

HL2 14.25 74.75 605 3830 1765 5668 1203 31.42 1.65 1.12 

HL3 14.5 74.75 582 2347 1483 4341 804 34.24 3.50 1.50 

HL4 14.75 74.75 514 2611 1083 4159 574 21.98 -0.01 0.63 

HL5 15 74.5 480 2179 1394 4928 483 22.17 3.03 1.14 

HL6 12.25 75.75 639 2443 903 4849 589 24.09 2.22 1.02 

HL7 12.75 75.5 863 2095 1618 6357 588 28.08 4.52 1.41 

HL8 12.5 75.5 1066 1477 610 3196 454 30.78 1.36 0.82 

HL9 13 75.5 434 2282 1161 5635 615 26.94 6.92 1.73 

HL10 13.25 75.25 949 3366 1873 5771 727 21.61 0.50 0.62 

HL11 13.5 75.25 692 3005 1206 5825 668 22.23 2.46 0.87 

HL12 13.75 75.25 663 2536 1220 5615 629 24.82 4.57 1.28 

HL13 14 75.25 637 1168 553 4314 556 47.56 19.05 4.02 

HL14 14.25 75 602 1797 1021 4698 570 31.72 10.72 2.74 

HL15 15 74.75 559 1699 757 3753 497 29.23 4.44 1.30 

HL16 15.25 74.5 529 1998 1088 3945 511 25.58 1.79 1.07 

HL17 15.5 74.5 711 1729 846 3437 500 28.93 1.26 0.89 

HL18 12 76 815 1471 638 3933 442 30.01 7.74 1.71 

HL19 12.75 75.75 940 1770 821 3167 398 22.51 1.77 0.63 

HL20 13.25 75.5 745 2190 1312 5119 805 36.75 2.59 1.68 

HL21 13.5 75.5 818 1829 839 3665 576 31.46 1.10 1.08 
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Appendix 2: Cumulative probabilities for negative z-values are shown below table 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

-3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 

-3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 

-3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 

-3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007 

-3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010 

-2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 

-2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019 

-2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 

-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036 

-2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 

-2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 

-2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084 

-2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 

-2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143 

-2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 

-1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 

-1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294 

-1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 

-1.6 0.0548 0.0537 0.0526 0.0516 0.0509 0.0495 0.0485 0.0475 0.0465 0.0455 

-1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0471 0.0559 

-1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681 

-1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 

-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985 

-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 

-1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379 

-0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611 

-0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867 

-0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148 

-0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451 

-0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776 

-0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121 

-0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483 

-0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 

-0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247 

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641 

 

 

 

 

 

 

 

 



181 
 

Appendix 3: Cumulative probabilities for Positive z-values are shown below table 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.9088 0.7123 0.7157 0.7190 0.7224 

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 

1.4 0.9192 0.9207 0.9222 0.9263 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 

3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 

3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 
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   Appendix 4: Seasonal statistics of gridded points of precipitation data over the study region for the period of 1901-2013. 

    *LL: Low Land (Coastal region)  *HL: High Land (Western Ghats/Hilly region)  

Grid 

Points 

  Monsoon (JJAS)     Pre-Monsoon (MAM)   Post-Monsoon (ON) 

  
Min 

(mm) 

Max 

(mm) 

Mean 

(mm) 
SD (mm) 

CV 

(%)  
  

Min 

(mm) 

Max 

(mm) 

Mean 

(mm) 

SD 

(mm) 
CV (%)   

Min 

(mm) 

Max 

(mm) 

Mean 

(mm) 

SD 

(mm) 

CV 

(%) 

LL1 
 

2714.47 7012.59 4185.55 724.55 17.31 
 

0.00 1149.53 163.80 198.85 121.40 
 

26.13 627.94 249.23 129.53 51.97 

LL2 
 

2027.64 5559.87 3441.74 580.77 16.87 
 

0.00 726.67 116.66 152.64 130.84 
 

0.00 675.12 200.74 124.04 61.80 

LL3 
 

2233.22 6999.33 3987.03 627.70 15.74 
 

7.82 867.43 231.85 154.14 66.48 
 

88.22 787.10 375.44 148.40 39.53 

LL4 
 

2304.81 6543.31 4219.99 649.84 15.40 
 

18.74 849.30 214.20 154.40 72.08 
 

83.52 787.10 363.75 148.75 40.89 

LL5 
 

2438.18 6534.10 4318.84 737.74 17.08 
 

11.05 958.70 224.32 171.21 76.32 
 

63.01 825.07 361.81 157.39 43.50 

LL6 
 

2506.34 7987.72 4496.33 1033.80 22.99 
 

9.49 954.77 183.15 170.08 92.86 
 

29.26 706.41 285.72 138.22 48.38 

LL7 
 

2181.05 9650.95 4433.24 1306.11 29.46 
 

1.19 873.63 154.30 156.92 101.70 
 

17.22 732.95 250.17 128.59 51.40 

LL8 
 

1964.41 6620.96 3864.01 780.99 20.21 
 

0.76 829.87 108.05 135.41 125.31 
 

2.56 553.88 206.48 116.38 56.36 

LL9 
 

2140.79 8816.94 3925.14 1390.86 35.43 
 

0.00 659.68 121.50 126.68 104.27 
 

3.91 942.13 215.34 137.22 63.72 

LL10 
 

1800.29 5702.83 3036.38 753.36 24.81 
 

0.00 552.14 98.60 90.80 92.09 
 

2.31 503.95 182.81 97.85 53.52 

LL11 
 

1853.25 5970.41 3819.21 716.55 18.76 
 

84.28 791.35 272.38 142.09 52.17 
 

162.03 787.10 369.75 129.15 34.93 

LL12 
 

2011.72 7217.72 4190.69 689.32 16.45 
 

36.88 864.25 235.86 148.16 62.82 
 

123.44 787.10 410.97 163.06 39.68 

LL13 
 

1938.99 7500.56 4165.29 696.26 16.72 
 

41.84 747.26 222.53 143.87 64.65 
 

74.65 787.10 374.29 160.95 43.00 

LL14 
 

1819.78 6591.57 4226.93 927.72 21.95 
 

28.96 833.13 216.31 144.99 67.03 
 

65.21 813.54 368.69 151.08 40.98 

LL15 
 

1793.31 9792.77 4155.10 1880.95 45.27 
 

15.25 772.71 185.51 136.29 73.47 
 

25.30 672.93 261.79 130.88 50.00 

LL16 
 

1765.38 5667.85 3048.96 754.24 24.74 
 

4.35 616.68 99.44 80.91 81.36 
 

1.90 459.25 184.11 99.56 54.08 

LL17 
 

1617.96 6357.11 3128.33 1065.01 34.04 
 

28.08 525.27 202.31 99.52 49.19 
 

36.41 787.10 285.76 125.56 43.94 

HL1 
 

1246.59 5185.50 3028.20 817.69 27.00 
 

1.41 528.45 103.05 88.94 86.31 
 

14.46 624.29 190.86 102.69 53.80 

HL2 
 

1494.89 8144.81 3830.10 1203.36 31.42 
 

8.28 723.32 128.69 105.27 81.80 
 

31.74 538.09 227.11 107.72 47.43 

HL3 
 

1138.98 5868.66 2347.05 803.71 34.24 
 

13.61 392.74 124.05 78.51 63.29 
 

11.72 464.13 182.97 97.50 53.29 

HL4 
 

1482.75 4341.34 2611.36 574.01 21.98 
 

0.65 456.75 95.54 77.46 81.08 
 

8.29 516.19 180.81 103.75 57.38 

HL5 
 

1083.33 4159.45 2179.33 483.14 22.17 
 

0.00 453.16 100.29 78.42 78.20 
 

16.45 512.65 171.09 91.85 53.68 

HL6 
 

1394.31 4928.39 2443.11 588.56 24.09 
 

0.00 539.20 96.48 80.66 83.60 
 

2.40 575.08 166.52 90.53 54.36 

HL7 
 

903.14 4849.04 2094.82 588.15 28.08 
 

34.21 889.25 234.16 121.22 51.77 
 

72.30 787.10 264.83 116.78 44.10 

HL8 
 

609.53 3195.93 1476.97 454.93 30.80 
 

40.10 498.47 194.65 82.98 42.63 
 

24.40 787.10 233.20 116.31 49.88 

HL9 
 

1160.90 5634.92 2281.59 614.64 26.94 
 

40.68 566.14 193.57 93.76 48.43 
 

26.99 787.10 248.45 122.01 49.11 

HL10 
 

1872.78 5770.72 3365.63 727.47 21.61 
 

15.47 616.70 213.44 117.91 55.25 
 

2.71 787.10 281.93 135.53 48.07 

HL11 
 

1205.61 5825.24 3004.94 667.89 22.23 
 

24.57 567.72 165.23 96.55 58.43 
 

24.98 650.50 231.50 117.52 50.77 

HL12 
 

1220.08 5614.77 2535.77 629.38 24.82 
 

2.41 448.31 140.56 82.01 58.34 
 

16.43 514.36 199.95 106.88 53.45 

HL13 
 

553.03 4313.73 1168.39 555.74 47.56 
 

5.07 310.82 117.88 59.74 50.68 
 

12.41 402.58 161.35 86.82 53.81 

HL14 
 

1021.44 4698.37 1796.70 569.86 31.72 
 

10.48 450.16 112.65 71.62 63.58 
 

2.04 483.67 185.06 95.84 51.79 

HL15 
 

757.35 3753.41 1698.98 496.55 29.23 
 

0.00 510.91 107.78 77.90 72.27 
 

6.59 439.80 166.31 86.35 51.92 

HL16 
 

1088.38 3944.65 1997.65 510.96 25.58 
 

0.00 473.19 105.72 84.78 80.20 
 

5.06 468.61 164.75 93.90 57.00 

HL17 
 

845.84 3436.95 1729.19 500.33 28.93 
 

6.51 396.60 108.55 69.52 64.05 
 

7.71 373.30 152.75 84.85 55.55 

HL18 
 

638.42 3933.11 1471.40 441.63 30.01 
 

66.41 451.58 218.65 86.73 39.67 
 

30.75 784.86 222.01 108.04 48.66 

HL19 
 

821.26 3166.94 1769.57 398.33 22.51 
 

34.07 516.27 173.39 76.48 44.11 
 

21.72 787.10 217.82 110.51 50.74 

HL20 
 

1312.31 5118.61 2190.17 804.98 36.75 
 

10.02 540.64 195.90 90.89 46.40 
 

53.61 787.10 250.54 123.47 49.28 

HL21   839.16 3664.88 1829.03 575.50 31.46   45.30 481.54 160.59 80.65 50.22   24.80 560.17 220.37 117.34 53.25 
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Appendix 5: The Pearson’s correlation between Niño 1+2 and general extreme precipitation indices 

SL 

No 

Grid 

Point 
  

RR   RX1   CWD   SDII   RX5   CDD 

0 - year 1 - year   0 - year 1 - year   0 - year 1 - year   0 - year 1 - year   0 - year 1 - year   0 - year 1 - year 

1 LL1  0.176 0.142  0.141 0.321**  0.075 0.068  0.227* 0.173  0.168 0.279**  0.071 0.12 

2 LL2  0.244* 0.253**  -0.035 0.158  0.114 0.111  -0.058 -0.024  -0.034 0.179  -0.001 0.047 

3 LL3  0.315** 0.313**  0.236* 0.284*  -0.081 -0.078  0.293** 0.272**  0.207 0.344**  0.19 0.201 

4 LL4  0.162 0.045  0.316** 0.212*  0.008 0.061  0.32** 0.31**  0.374** 0.315**  0.032 0.062 

5 LL5  0.176 0.127  -0.019 -0.027  -0.136 -0.106  -0.065 0.022  -0.012 -0.016  -0.133 -0.065 

6 LL6  0.1 0.143  -0.036 0.302**  -0.028 -0.054  0.076 0.181  0.011 0.42**  0.041 0.017 

7 LL7  -0.02 -0.059  0.038 0.168  -0.182 -0.218*  -0.006 -0.087  0.042 0.075  -0.012 0.031 

8 LL8  -0.033 -0.132  -0.065 0.104  -0.025 0.051  -0.017 -0.108  -0.025 0.111  0.192 0.144 

9 LL9  -0.184 -0.054  0.103 0.071  0.1 -0.169  0.202 0.103  0.141 0.141  0.014 0.056 

10 LL10  0.044 -0.014  0.081 0.028  0.06 0.133  0.037 -0.071  0.111 0.07  -0.057 -0.172 

11 LL11  -0.218* -0.072  -0.194 0.036  -0.102 -0.109  -0.209 -0.081  -0.194 0.005  -0.056 -0.053 

12 LL12  0.1 0.034  0.121 0.127  -0.079 -0.195  0.049 0.07  0.142 0.157  0.047 0.103 

13 LL13  0.08 -0.024  -0.173 0.042  -0.21* -0.253*  -0.21* -0.07  -0.165 0.031  -0.064 -0.001 

14 LL14  0.04 0.068  -0.061 0.073  -0.048 0.043  0.009 -0.05  0.07 0.06  0.045 -0.122 

15 LL15  -0.03 0.038  -0.004 0.123  0.182 0.107  -0.026 -0.059  -0.038 0.069  0.045 0.055 

16 LL16  0.03 -0.028  0.05 0.031  -0.033 -0.061  0.036 0.032  0.068 0.044  0.081 0.166 

17 LL17  -0.28* -0.045  -0.069 0.088  0.182 0.122  0.002 0.111  -0.115 0.114  0.156 0.151 

18 HL1  -0.115 -0.128  0.095 -0.025  0.024 0.102  0.026 -0.021  0.02 -0.008  0.273** 0.305** 

19 HL2  -0.04 -0.103  0.06 0.065  -0.066 -0.091  -0.03 -0.044  -0.02 0.073  0.044 0.204 

20 HL3  -0.072 -0.116  0.092 0.164  -0.026 -0.178  0.12 0.04  0.027 0.161  0.127 0.155 
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Table 5.2: Continued…  
 

                    

21 HL4  -0.092 -0.114  0.018 0.093  0.029 0.214*  0.002 -0.05  -0.052 0.001  0.261** 0.3* 

22 HL5  0.019 -0.009  0.237* 0.194  -0.044 -0.097  0.193 0.162  0.161 0.239*  0.114 0.191 

23 HL6  0.126 0.1  0.016 -0.127  0.067 -0.071  -0.049 -0.108  -0.055 -0.149  0.071 0.218* 

24 HL7  -0.083 0.047  -0.026 0.031  0.051 0.031  -0.084 0.041  -0.023 0.053  0.008 0.079 

25 HL8  0.019 0.018  0.177 0.335**  -0.292* -0.24*  0.153 0.024  0.303** 0.249*  0.02 0.007 

26 HL9  -0.117 -0.18  0.015 0.196  -0.015 -0.181  0.02 -0.006  0.034 0.168  0.068 0.024 

27 HL10  0.042 0.034  0.018 0.015  0.196 0.156  0.073 -0.004  0.108 0.006  0.015 -0.022 

28 HL11  -0.038 0.042  -0.082 -0.13  -0.01 -0.122  -0.049 -0.085  -0.112 -0.118  -0.077 -0.141 

29 HL12  -0.092 -0.065  -0.041 -0.029  -0.059 0.115  -0.06 0.006  -0.105 -0.004  0.075 0.121 

30 HL13  -0.065 -0.026  -0.101 0.048  0.019 0.052  -0.056 -0.031  -0.119 0.103  0.047 0.124 

31 HL14  0.162 0.18  0.021 0.091  0.079 0.095  0.159 0.179  0.083 0.176  -0.107 -0.08 

32 HL15  0.066 -0.036  -0.099 0.026  -0.195 -0.04  0.053 -0.101  -0.051 0.01  0.047 0.01 

33 HL16  0.349** 0.301**  0.205 0.294**  0.06 0.018  0.363** 0.315**  0.287** 0.3**  -0.053 -0.074 

34 HL17  0.045 -0.045  0.02 0.046  0.093 0.037  0.077 0.046  0.035 -0.013  0.022 0.135 

35 HL18  -0.1 -0.164  -0.056 -0.05  0.091 0.036  -0.093 -0.137  -0.144 -0.173  0.107 0.063 

36 HL19  0.006 -0.03  -0.082 0.19  -0.157 -0.089  -0.108 -0.004  -0.102 0.044  0.094 0.101 

37 HL20  -0.101 -0.035  -0.055 -0.027  0.104 0.007  -0.103 -0.129  -0.066 -0.068  0.154 0.178 

38 HL21   -0.145 -0.042  -0.134 0.026  0.048 -0.056  -0.179 -0.051  -0.194 0.047  0.076 -0.053 

*Significant at 10%;  ** significant at 5% 
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Appendix 6: The Pearson’s correlation between Niño 1+2 and frequency of extreme precipitation indices 

SL 

No 

Grid 

Point 
  

R100   R65   R2.5_65   R40   R20 

0 - year 1 - year   0 - year 1 - year   0 - year 1 - year   0 - year 1 - year   0 - year 1 - year 

1 LL1  0.178 0.239*  0.154 0.03  -0.029 -0.016  0.069 -0.004  -0.049 0.055 

2 LL2  -0.035 0.096  0.003 0.074  -0.006 -0.169  0.278** 0.162  -0.195 -0.25** 

3 LL3  0.216* 0.249*  0.084 0.064  -0.207 -0.154  0.099 0.011  0.078 -0.028 

4 LL4  0.33** 0.352**  0.072 0.173  -0.119 -0.148  0.129 -0.157  -0.181 -0.168 

5 LL5  -0.066 -0.028  0.09 0.032  0.133 0.102  0.152 0.028  0.183 0.164 

6 LL6  0.097 0.27*  0.042 -0.029  0.063 -0.031  -0.024 0.035  0.01 -0.139 

7 LL7  -0.041 -0.062  -0.008 -0.212*  0.104 0.139  0.002 0.238*  -0.011 -0.176 

8 LL8  -0.035 -0.098  0.025 -0.248*  0.055 0.06  -0.005 -0.121  -0.175 0.044 

9 LL9  0.27** 0.22*  -0.012 0.093  -0.128 0.049  -0.127 0.018  -0.03 0.07 

10 LL10  0.066 0.084  0.042 -0.095  -0.009 0.105  -0.033 -0.122  -0.025 -0.061 

11 LL11  -0.233* -0.134  -0.1 -0.014  0.195 0.12  -0.212* -0.128  0.167 0.165 

12 LL12  0.072 0.28*  0.015 0.019  -0.08 -0.13  -0.029 -0.247*  -0.109 -0.002 

13 LL13  -0.098 0.04  -0.242* -0.164  -0.045 0.031  0.108 -0.28**  -0.218* -0.025 

14 LL14  -0.105 0.06  0.04 0.026  0.041 0.183  0.055 -0.031  0.113 0.052 

15 LL15  -0.075 0.04  0.048 0.038  0.097 0.022  0.1 0.037  0.04 0.084 

16 LL16  0.016 -0.015  0.04 0.038  -0.05 -0.105  0.045 0.022  -0.064 -0.043 

17 LL17  -0.077 0.045  -0.074 -0.012  0.07 -0.069  0.106 -0.188  0.023 0.011 

18 HL1  0.056 0.043  -0.039 -0.059  -0.307* -0.244*  -0.212* -0.129  -0.03 -0.129 

19 HL2  0.04 0.138  0.018 -0.047  -0.02 -0.2  -0.113 -0.144  -0.056 -0.116 

20 HL3  0.01 0.168  -0.007 0.02  -0.14 -0.132  -0.01 -0.138  -0.043 -0.175 
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Continued…  

21 HL4  0.028 0.016  -0.125 -0.107  -0.177 -0.218*  0.06 -0.112  -0.111 -0.119 

22 HL5  0.104 0.161  0.129 0.08  -0.141 -0.146  0.13 -0.031  0.012 -0.084 

23 HL6  -0.077 -0.092  -0.056 -0.131  -0.19 -0.214*  0.039 0.043  -0.101 -0.102 

24 HL7  -0.061 0.035  -0.164 0.02  0.025 0.045  0.016 -0.024  -0.117 0.039 

25 HL8  0.231* 0.278**  -0.03 -0.201  -0.001 0.016  0.088 0.007  -0.23* 0.069 

26 HL9  0.058 0.133  -0.061 -0.144  -0.024 -0.042  -0.105 -0.145  -0.031 0.057 

27 HL10  -0.068 -0.005  0.031 -0.007  0.066 0.152  0.05 -0.002  0.054 0.06 

28 HL11  -0.064 -0.076  -0.011 0.011  0.199 0.162  -0.154 0.113  0.178 0.128 

29 HL12  -0.124 0.065  -0.118 -0.209  -0.034 -0.169  -0.073 0.124  0.154 -0.022 

30 HL13  -0.185 0.068  -0.014 -0.121  -0.007 0.061  0.074 -0.011  0.185 -0.07 

31 HL14  0.035 0.147  0.09 0.152  0.18 0.082  0.065 0.193  0.236* 0.00 

32 HL15  -0.024 -0.049  0.167 0.047  0.049 0.068  -0.037 -0.004  0.166 -0.079 

33 HL16  0.222* 0.274**  0.247* 0.291**  0.109 0.025  0.297** 0.123  0.343** 0.301** 

34 HL17  0.085 0.037  -0.068 -0.107  -0.029 -0.176  -0.023 -0.054  0.084 0.054 

35 HL18  -0.068 0.05  -0.116 -0.28*  -0.062 -0.04  -0.077 -0.074  0.014 -0.033 

36 HL19  -0.049 0.047  -0.151 -0.051  0.129 -0.173  0.062 -0.021  -0.201 -0.122 

37 HL20  -0.095 0.077  -0.097 -0.166  0.116 -0.01  -0.085 0.032  0.008 0.066 

38 HL21   -0.152 0.07  -0.172 -0.04  0.031 0.061  -0.118 -0.116  -0.043 -0.077 

  *Significant at 10%;  ** significant at 5% 
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Appendix 7: The Pearson’s correlation between Niño 3 and general extreme precipitation indices 

Sl 

No 

Grid 

Point 

  RR   RX1   CWD   SDII   RX5   CDD 

  0 - year  1-year   0-year  1-year   0 - year  1 - year   0 - year  1 - year   0 - year  1 - year   0 - year  1 - year 

1 LL1  0.204 0.13  0.086 0.27**  0.106 0.04  0.25** 0.20  0.125 0.24  0.03 0.14 

2 LL2  0.151 0.21  -0.057 0.16  0.082 0.09  -0.061 -0.05  -0.08 0.16  -0.014 0.03 

3 LL3  0.205 0.19  0.159 0.25**  -0.019 -0.08  0.184 0.22**  0.094 0.3**  0.089 0.17 

4 LL4  0.123 0.00  0.29** 0.16  -0.033 0.07  0.216* 0.21  0.291** 0.23  0.02 0.07 

5 LL5  0.127 0.08  -0.011 0.02  -0.097 -0.07  -0.06 0.09  -0.004 0.04  -0.122 -0.01 

6 LL6  0.071 0.06  -0.066 0.27**  0.046 -0.03  0.043 0.14  -0.058 0.33**  0.034 0.08 

7 LL7  0.033 0.01  0.029 0.17  -0.091 -0.11  0.045 0.02  0.043 0.10  -0.02 0.10 

8 LL8  0.017 -0.07  -0.032 0.18  -0.049 0.07  0.027 -0.01  -0.004 0.16  0.112 0.16 

9 LL9  -0.14 -0.02  0.22* 0.04  0.145 -0.12  0.163 0.08  0.125 0.11  0.025 0.10 

10 LL10  0.05 -0.01  0.092 0.03  0.007 0.08  0.051 -0.04  0.108 0.06  -0.037 -0.09 

11 LL11  -0.127 -0.01  -0.134 0.11  -0.069 -0.11  -0.163 -0.03  -0.146 0.04  -0.043 0.01 

12 LL12  -0.005 0.03  0.065 0.08  0 -0.11  0.023 0.08  0.092 0.16  0.032 0.12 

13 LL13  0.002 -0.03  0.22* 0.13  -0.122 -0.19  -0.123 0.02  -0.105 0.10  -0.078 0.08 

14 LL14  -0.029 0.04  -0.078 0.14  -0.01 0.07  0.016 -0.03  0.008 0.05  0.085 -0.05 

15 LL15  -0.045 0.02  -0.014 0.21*  0.151 0.11  -0.001 -0.03  -0.06 0.16  0.032 0.08 

16 LL16  0.028 0.01  0.038 0.09  -0.019 -0.11  0.039 0.05  0.063 0.07  0.017 0.12 

17 LL17  -0.018 -0.06  -0.035 0.16  0.119 -0.05  -0.034 0.12  -0.099 0.16  0.119 0.17 

18 HL1  0.022 -0.05  0.27* 0.02  0.008 0.08  0.118 0.01  0.22* 0.04  0.103 0.19 

19 HL2  0.002 -0.05  0.041 0.12  -0.053 -0.10  0.018 0.00  0.023 0.13  0.006 0.14 

20 HL3  -0.025 0.00  0.09 0.21*  0.03 -0.16  0.119 0.10  0.21* 0.20*  0.07 0.10 
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Table 5.4: Continued….  

21 HL4  -0.031 -0.01  0.015 0.19  -0.046 0.10  0.04 0.05  -0.037 0.09  0.127 0.18 

22 HL5  0.024 0.04  0.26** 0.20  0.016 -0.02  0.11 0.13  0.086 0.22*  0.03 0.15 

23 HL6  0.068 0.07  0.075 -0.04  0.081 -0.04  0.003 -0.02  -0.05 -0.08  0.019 0.17 

24 HL7  -0.104 0.08  0.052 0.14  0.042 -0.02  -0.092 0.08  0.016 0.13  0.063 0.14 

25 HL8  0.054 0.08  0.052 0.27**  -0.122 -0.11  0.127 0.00  0.20* 0.20*  0.032 0.06 

26 HL9  -0.048 -0.08  -0.011 0.18  0.02 -0.14  0.029 0.07  -0.002 0.17  0.021 0.06 

27 HL10  0.013 0.05  0.042 0.05  0.146 0.03  0.057 0.02  0.108 0.03  0.023 0.00 

28 HL11  -0.045 0.09  0.09 -0.07  0.053 -0.14  0.009 -0.03  -0.02 -0.08  -0.061 -0.03 

29 HL12  -0.048 0.03  -0.012 0.05  -0.099 0.05  -0.048 0.08  -0.059 0.09  -0.005 0.05 

30 HL13  -0.012 0.08  -0.032 0.19  0.04 0.05  -0.002 0.08  -0.068 0.23*  0.008 0.13 

31 HL14  0.117 0.17  0.01 0.23*  0.016 0.02  0.122 0.16  0.058 0.25*  -0.091 -0.08 

32 HL15  0.056 0.00  -0.098 0.10  -0.14 -0.06  0.029 -0.04  -0.073 0.05  0.013 0.09 

33 HL16  0.197 0.15  0.099 0.34**  0.024 0.00  0.206 0.21**  0.27* 0.24*  -0.02 0.06 

34 HL17  0.095 0.00  0.07 0.16  0.03 -0.02  0.106 0.09  0.083 0.06  -0.026 0.14 

35 HL18  -0.049 -0.15  -0.014 0.00  0.034 -0.02  -0.068 -0.10  -0.074 -0.13  0.061 0.11 

36 HL19  0.042 -0.03  -0.086 0.24*  -0.118 -0.06  -0.062 0.05  -0.076 0.08  0.053 0.12 

37 HL20  -0.063 0.02  -0.039 0.11  0.08 -0.07  -0.047 0.00  -0.041 0.06  0.071 0.14 

38 HL21   -0.147 -0.01   -0.137 0.09   0.054 -0.09   -0.158 -0.01   -0.202 0.09   0.075 -0.04 

*Significant at 10%;  ** significant at 5% 
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Appendix 8: The Pearson’s correlation between Niño 3 and frequency of extreme precipitation indices 

Sl 

No 

Grid 

Point 

  R100   R65   R2.5_65   R40   R20 

  0 - year  1 - year   0 - year  1 - year   0 - year  1 - year   0 - year  1 - year   0 - year  1 - year 

1 LL1  0.219* 0.22*  0.143 0.07  -0.071 -0.09  0.165 -0.01  -0.003 0.03 

2 LL2  -0.062 0.09  0.01 -0.01  0.095 -0.17  0.12 0.08  -0.019 -0.27** 

3 LL3  0.077 0.21  0.108 0.12  -0.117 -0.13  0.075 -0.23*  0.166 -0.11 

4 LL4  0.19 0.24*  -0.006 0.10  -0.095 -0.13  0.203 -0.10  -0.106 -0.21 

5 LL5  -0.042 0.12  0.02 0.09  0.072 0.04  0.089 0.02  0.171 0.13 

6 LL6  0.084 0.16  0.057 -0.08  0.005 -0.09  -0.029 -0.02  0.029 -0.16 

7 LL7  0.034 0.17  0.159 -0.14  -0.082 0.02  -0.059 0.27**  -0.027 -0.21* 

8 LL8  0.019 -0.14  0.113 -0.16  -0.019 -0.03  0.056 -0.05  -0.185 -0.02 

9 LL9  0.234* 0.18  -0.073 0.07  -0.127 0.00  -0.106 0.03  0.042 0.04 

10 LL10  0.056 0.16  0.031 -0.07  -0.014 0.08  0.032 -0.10  -0.046 -0.02 

11 LL11  -0.102 -0.18  -0.037 -0.02  0.086 0.10  -0.115 -0.06  0.017 0.17 

12 LL12  0.058 0.19  -0.017 -0.02  -0.054 -0.13  0.029 -0.24*  -0.044 0.05 

13 LL13  0 0.06  -0.046 -0.12  -0.095 -0.03  0.193 -0.33**  -0.106 0.00 

14 LL14  -0.031 0.15  -0.082 0.04  -0.048 0.07  0.057 -0.10  0.16 0.08 

15 LL15  -0.032 0.15  0.059 0.00  -0.01 -0.03  0.02 0.00  0.005 0.05 

16 LL16  0.011 0.03  -0.001 0.02  0.033 -0.02  0.041 0.06  -0.032 -0.01 

17 LL17  0.022 0.09  -0.062 -0.05  -0.004 -0.12  0.115 -0.21*  0.065 -0.02 

18 HL1  0.16 0.07  0.095 -0.06  -0.082 -0.11  -0.042 -0.04  0.13 -0.06 

19 HL2  0.052 0.18  0.072 -0.02  0.036 -0.16  -0.002 -0.08  0.036 -0.07 

20 HL3  0.013 0.21*  0.08 0.04  -0.077 -0.10  0.047 -0.26*  0.018 -0.18 
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Continued…. 

21 HL4  0.077 0.06  -0.065 -0.03  -0.03 -0.11  0.093 -0.04  0.016 0.03 

22 HL5  0.046 0.14  0.026 0.12  -0.053 -0.15  0.106 0.04  -0.023 -0.20 

23 HL6  -0.025 -0.01  0.012 -0.04  -0.08 -0.19  0.1 0.05  -0.058 -0.08 

24 HL7  -0.046 0.08  -0.181 0.08  -0.007 0.05  -0.071 0.06  -0.148 0.05 

25 HL8  0.101 0.22*  0.027 -0.21  -0.038 0.03  0.13 0.05  -0.19 0.05 

26 HL9  0.059 0.24*  0.037 -0.03  -0.007 -0.06  -0.028 -0.24*  0.002 0.08 

27 HL10  -0.06 -0.01  -0.019 0.02  0.022 0.09  -0.049 0.07  0.01 0.06 

28 HL11  0.055 -0.03  -0.05 0.01  0.083 0.04  -0.189 0.12  0.032 0.06 

29 HL12  -0.051 0.26*  -0.083 -0.18  0.062 -0.10  -0.061 -0.23*  0.148 0.02 

30 HL13  -0.133 0.25*  0.011 -0.08  0.017 0.06  0.091 0.09  0.176 -0.01 

31 HL14  0.086 0.23*  0.102 0.18  0.146 0.07  0.028 0.12  0.212* -0.03 

32 HL15  -0.011 0.21*  0.15 0.01  0.052 0.03  -0.021 0.04  0.065 -0.08 

33 HL16  0.089 0.18  0.089 0.16  0.058 -0.12  0.112 0.03  0.146 -0.17 

34 HL17  0.145 0.11  0.045 -0.04  0.038 -0.18  0.083 -0.07  0.029 -0.08 

35 HL18  -0.019 0.07  0.02 -0.29**  -0.036 -0.05  -0.071 -0.24*  -0.001 0.05 

36 HL19  -0.008 0.22**  -0.062 0.00  0.152 -0.13  0.162 -0.06  -0.091 -0.04 

37 HL20  -0.013 0.01  -0.071 -0.09  0.112 -0.02  -0.031 0.07  0.113 0.09 

38 HL21   -0.154 0.28**   -0.124 -0.05   0.002 0.07   -0.057 -0.22*   -0.005 -0.06 

*Significant at 10%;  ** significant at 5% 
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Appendix 9: The Pearson’s correlation between Niño 4 and general extreme precipitation indices 

Sl 

No 

Grid 

Point 

  RR   RX1   CWD   SDII   RX5   CDD 

  0 - year  1-year   0 - year  1-year   0 -year  1-year   0 - year  1 - year   0 - year  1 -year   0-year  1-year 

1 LL1  0.201 0.03  0.153 0.24*  0.081 -0.06  0.258** 0.14  0.166 0.17  0.065 0.20 

2 LL2  0.193 0.26**  0.066 0.25**  0.008 -0.08  0.021 0.1  0 0.21*  0.018 0.03 

3 LL3  0.26** 0.20  0.168 0.22*  -0.075 -0.14  0.22* 0.3**  0.12 0.3**  0.096 0.22* 

4 LL4  0.22** 0.29**  0.35* 0.18  -0.064 0.11  0.278** 0.22*  0.331** 0.24*  0.012 0.07 

5 LL5  0.169 0.11  -0.06 0.29*  -0.046 -0.06  -0.017 0.12  -0.03 0.09  -0.09 0.07 

6 LL6  0.181 0.00  0.011 0.28**  -0.014 -0.15  0.082 0.12  -0.038 0.24*  0.057 0.16 

7 LL7  0.178 -0.01  0.114 0.18  -0.099 -0.09  0.113 0.04  0.096 0.09  0.014 0.17 

8 LL8  -0.05 -0.08  0.184 0.29**  -0.058 0.00  0.013 0.02  0.038 0.23*  0.131 0.21* 

9 LL9  0.29* -0.15  0.157 0.05  0.102 0.00  0.234* 0.15  0.154 0.14  0.109 0.18 

10 LL10  0.148 0.06  0.194 0.25*  0.098 0.15  0.055 0.06  0.176 0.14  -0.049 -0.05 

11 LL11  -0.069 -0.03  -0.07 0.03  -0.02 -0.09  -0.118 -0.13  -0.112 -0.08  -0.066 0.07 

12 LL12  -0.016 0.05  0.08 0.07  0.032 -0.08  0.028 0.14  0.077 0.18  0.052 0.12 

13 LL13  0.143 -0.05  0.013 0.28**  -0.108 -0.28  -0.067 0.03  -0.009 0.10  -0.084 0.18 

14 LL14  0.11 0.07  -0.065 0.14  0.043 0.00  0.053 0.03  0.017 0.07  0.114 -0.03 

15 LL15  -0.04 0.05  0.052 0.26**  0.195 0.12  0.072 -0.01  -0.042 0.18  0.056 0.17 

16 LL16  0.18 0.02  0.124 0.15  -0.031 -0.14  0.065 0.03  0.114 0.08  0.052 0.10 

17 LL17  0.25* -0.04  0.07 0.16  0.038 -0.23*  0.029 0.17  -0.054 0.12  0.158 0.21* 

18 HL1  0.13 -0.04  0.191 -0.05  0 0.02  0.195 -0.01  0.184 -0.02  0.074 0.17 

19 HL2  0.14 0.03  0.151 0.11  -0.113 -0.20  0.188 0.06  0.164 0.10  0.015 0.07 

20 HL3  0.16 0.03  0.175 0.21*  0.047 -0.18  0.216* 0.21  0.112 0.20  0.051 0.09 
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21 HL4  -0.01 -0.01  -0.031 0.11  -0.032 0.04  0.04 0.02  -0.04 0.05  0.113 0.15 

22 HL5  0.22* 0.13  0.125 0.16  0.043 0.03  0.146 0.22*  0.072 0.20  0.033 0.15 

23 HL6  0.116 0.15  0.09 0.01  0.079 -0.05  0.061 0.05  0.041 -0.03  0.02 0.21 

24 HL7  -0.117 0.08  0.118 0.19  -0.017 -0.13  -0.092 0.09  0.03 0.15  0.093 0.18 

25 HL8  0.185 0.03  -0.016 0.06  -0.037 -0.07  0.162 -0.07  0.143 0.07  0.1 0.12 

26 HL9  0.28** -0.03  0.016 0.04  0.061 -0.05  0.08 0.05  0.018 0.07  0.034 0.12 

27 HL10  0.26* 0.11  0.054 0.25*  0.102 0.05  0.035 0.08  0.103 0.13  -0.06 0.03 

28 HL11  -0.022 0.08  0.138 0.24*  0.002 -0.17  0.095 0.01  0.081 0.00  -0.069 0.00 

29 HL12  -0.019 0.06  -0.07 0.09  -0.113 -0.07  -0.047 0.10  -0.058 0.13  -0.061 0.03 

30 HL13  -0.001 0.12  -0.016 0.25**  -0.011 -0.14  -0.004 0.15  -0.075 0.22*  -0.001 0.19 

31 HL14  0.27* 0.15  0.035 0.38**  -0.026 -0.05  0.186 0.14  0.115 0.3**  -0.188 -0.13 

32 HL15  0.046 0.01  -0.058 0.21*  -0.133 -0.17  0.015 0.02  -0.061 0.11  0.054 0.22* 

33 HL16  0.23* 0.02  0.082 0.39*  -0.064 -0.09  0.165 0.12  0.109 0.21*  0.002 0.18 

34 HL17  0.21* -0.08  0.085 0.13  -0.03 -0.06  0.1 -0.01  0.061 0.01  -0.053 0.13 

35 HL18  -0.085 -0.21  0.073 0.06  -0.061 -0.16  -0.079 -0.13  -0.036 -0.12  0.138 0.21 

36 HL19  0.21* 0.01  0.012 0.23*  -0.126 -0.15  0.077 0.15  0.039 0.11  0.034 0.07 

37 HL20  0.24** 0.13  -0.058 0.07  0.004 -0.20  -0.016 0.04  -0.043 0.06  0.08 0.16 

38 HL21   -0.158 0.00   -0.104 0.06   -0.021 -0.20   -0.185 -0.06   -0.202 0.04   -0.06 -0.08 

*Significant at 10%;  ** significant at 5% 
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Appendix 10 : The Pearson’s correlation between Niño 4 and intense rainfall frequency of extreme precipitation indices 

Sl 

No 

Grid 

Point 

  R100   R65   R2.5_65   R40   R20 

  0 - year  1 - year   0 - year  1 - year   0 - year  1 - year   
0 - 

year  

1 - 

year 
  0 - year  1 - year 

1 LL1  0.226** 0.13  0.084 0.09  -0.087 -0.19  0.167 -0.06  0.002 -0.04 

2 LL2  -0.03 0.14  0.053 0.00  -0.007 -0.21  0.138 0.10  -0.017 -0.33 

3 LL3  0.105 0.25**  0.207 0.27**  -0.185 -0.25  0.094 -0.03  0.117 -0.23 

4 LL4  0.274** 0.22*  0.11 0.16  -0.188 -0.20  0.178 -0.07  -0.119 -0.25 

5 LL5  -0.039 0.04  0.04 0.18  0.007 -0.12  0.106 0.05  0.155 0.07 

6 LL6  0.17 0.17  0.08 -0.07  -0.047 -0.22  -0.013 -0.09  -0.007 -0.22 

7 LL7  0.141 0.00  0.18 -0.04  -0.14 -0.12  -0.044 0.17  -0.081 -0.21 

8 LL8  0.11 0.00  0.041 -0.16  -0.04 -0.16  0.029 -0.08  -0.192 -0.13 

9 LL9  0.229** 0.18  0.029 0.07  -0.179 -0.14  -0.131 -0.08  0.052 -0.05 

10 LL10  0.184 0.14  -0.003 -0.01  -0.021 -0.01  -0.003 -0.06  -0.069 -0.01 

11 LL11  -0.094 -0.16  -0.025 -0.18  0.058 0.07  -0.152 -0.16  -0.023 0.16 

12 LL12  0.186 0.24*  -0.005 0.02  -0.12 -0.23  -0.013 -0.21  -0.121 -0.03 

13 LL13  0.19 0.09  -0.045 -0.12  -0.108 -0.14  0.157 -0.31  -0.098 0.01 

14 LL14  -0.015 0.05  -0.074 0.18  -0.009 -0.02  0.049 -0.05  0.148 0.00 

15 LL15  -0.031 0.06  0.085 -0.02  -0.048 -0.07  0.035 0.11  -0.033 0.00 

16 LL16  0.181 0.23*  0.045 0.03  0.038 0.03  0.01 0.03  -0.041 -0.05 

17 LL17  0.12 0.03  -0.055 0.02  -0.017 -0.16  0.079 -0.05  0.082 -0.04 

18 HL1  0.164 0.00  0.158 -0.04  -0.075 -0.07  0.013 -0.07  0.137 -0.03 

19 HL2  0.102 0.13  0.131 0.03  0.033 -0.07  0.059 0.02  0.1 0.02 

20 HL3  0.20 0.20  0.109 0.12  -0.072 -0.11  0.098 0.11  0.05 -0.09 
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21 HL4  0.168 -0.02  -0.074 0.03  -0.099 -0.10  0.027 -0.07  0.003 0.04 

22 HL5  0.166 0.15  0.058 0.23*  -0.042 -0.16  0.166 0.20  0.016 -0.18 

23 HL6  0.19 0.05  0.032 0.01  -0.12 -0.29  0.178 0.16  0.04 -0.06 

24 HL7  -0.019 0.22*  -0.192 0.09  -0.009 -0.04  -0.119 0.03  -0.083 -0.01 

25 HL8  0.123 0.05  0.078 -0.18  -0.133 -0.02  0.133 0.03  -0.193 -0.07 

26 HL9  0.162 0.08  0.086 0.03  -0.061 -0.19  -0.013 0.04  -0.018 -0.01 

27 HL10  -0.023 -0.01  -0.01 0.09  0.114 0.16  -0.05 0.13  0.04 0.09 

28 HL11  0.184 0.23*  -0.021 -0.03  0.076 0.04  -0.149 0.09  0.003 0.02 

29 HL12  -0.07 0.17  -0.06 -0.12  0.062 -0.09  0.004 0.24*  0.133 0.02 

30 HL13  -0.167 0.12  0.024 -0.01  0.073 -0.03  0.139 0.19  0.143 0.02 

31 HL14  0.178 0.22*  0.071 0.15  0.19 0.09  0.073 0.06  0.254** -0.02 

32 HL15  -0.042 0.03  0.163 0.05  0.06 -0.08  -0.023 0.02  0.04 -0.07 

33 HL16  0.18 0.10  0.075 0.08  0.012 -0.29**  0.106 -0.03  0.145 -0.03 

34 HL17  0.162 0.16  0.05 -0.11  0.027 -0.19  0.113 -0.17  -0.011 0.03 

35 HL18  -0.037 0.19  0.006 -0.28**  -0.074 -0.11  -0.127 -0.17  -0.031 -0.06 

36 HL19  0.11 -0.01  0.02 0.12  0.102 -0.01  0.22* 0.03  0.019 0.12 

37 HL20  -0.03 0.15  -0.143 -0.16  0.122 -0.03  0.017 0.14  0.123 0.04 

38 HL21   -0.188 0.15   -0.15 -0.11   -0.044 0.12   -0.143 -0.15   -0.05 -0.03 

           *Significant at 10%;  ** significant at 5% 
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Appendix 11 : The Pearson’s correlation between Niño 3.4 and general extreme precipitation indices 

Sl 

No 

Grid 

Point 

  RR   RX1   CWD   SDII   RX5   CDD 

  0 -year  1-year   0 - year  1-year   0 -year  1 -year   0 - year  1 - year   0 -year  1 -year   0 -year  1 -year 

1 LL1  0.321* 0.19  0.185 0.24*  0.078 -0.02  0.22** 0.17  0.143 0.18  0.02 0.14 

2 LL2  0.135 0.19  -0.054 0.18  0.058 0.03  -0.036 -0.04  -0.066 0.17  -0.027 -0.01 

3 LL3  0.176 0.14  0.118 0.22*  -0.034 -0.10  0.152 0.20  0.059 0.28**  0.045 0.14 

4 LL4  0.11 -0.06  0.256** 0.14  -0.016 0.12  0.191 0.16  0.247* 0.19  0.018 0.05 

5 LL5  0.22* 0.16  -0.034 0.04  -0.058 -0.05  -0.043 0.11  -0.017 0.06  -0.085 0.04 

6 LL6  0.161 0.10  -0.082 0.25*  0.019 -0.09  0.049 0.10  -0.10 0.27**  0.042 0.09 

7 LL7  0.178 0.02  0.158 0.15  -0.033 -0.05  0.103 0.04  0.174 0.09  -0.009 0.13 

8 LL8  0.23* -0.06  0.18 0.19  -0.056 0.04  0.045 0.02  0.127 0.15  0.107 0.17 

9 LL9  -0.099 -0.04  0.138 0.02  0.138 -0.07  0.165 0.06  0.126 0.10  0.028 0.10 

10 LL10  0.251* 0.02  0.101 0.05  0.013 0.07  0.052 -0.01  0.11 0.07  -0.035 -0.05 

11 LL11  -0.066 0.01  -0.089 0.11  -0.042 -0.08  -0.117 -0.03  -0.109 0.03  -0.049 0.04 

12 LL12  0.27* 0.04  0.044 0.04  0.029 -0.09  0.03 0.09  0.17 0.14  0.023 0.10 

13 LL13  0.146 -0.02  -0.065 0.15  -0.079 -0.20  -0.065 0.05  -0.049 0.11  -0.097 0.11 

14 LL14  -0.004 0.06  -0.08 0.15  -0.008 0.03  0.06 0.01  0.17 0.07  0.114 -0.04 

15 LL15  -0.004 0.05  0.14 0.22*  0.155 0.10  0.064 0.00  -0.037 0.19  0.037 0.09 

16 LL16  0.127 0.03  0.23* 0.10  -0.018 -0.11  0.042 0.06  0.165 0.08  0.026 0.10 

17 LL17  0.32* -0.05  0.14 0.16  0.084 -0.14  0.012 0.15  -0.054 0.17  0.113 0.16 

18 HL1  0.184 -0.04  0.184 -0.03  0.012 0.06  0.146 -0.02  0.155 0.00  0.032 0.12 

19 HL2  0.162 -0.02  0.17 0.11  -0.05 -0.09  0.086 0.01  0.175 0.12  -0.014 0.10 

20 HL3  0.24* 0.04  0.12 0.22*  0.067 -0.15  0.159 0.12  0.162 0.21  0.027 0.05 
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21 HL4  0.26* 0.02  0.10 0.18  -0.078 0.06  0.078 0.06  -0.01 0.10  0.065 0.12 

22 HL5  0.27** 0.07  0.136 0.17  0.032 0.02  0.091 0.11  0.163 0.19  0.005 0.12 

23 HL6  0.26** 0.07  0.17 -0.01  0.092 -0.03  0.015 -0.01  0.123 -0.05  0.012 0.17 

24 HL7  -0.126 0.05  0.18 0.14  0.014 -0.06  -0.111 0.05  0.10 0.12  0.076 0.15 

25 HL8  0.27** 0.06  -0.025 0.17  -0.053 -0.07  0.121 -0.07  0.143 0.12  0.048 0.07 

26 HL9  -0.023 -0.06  0.15 0.12  0.05 -0.11  0.069 0.07  0.22* 0.13  0.029 0.10 

27 HL10  -0.006 0.04  0.25* 0.07  0.095 0.00  0.036 0.02  0.296** 0.05  0.017 0.04 

28 HL11  -0.039 0.09  0.181 -0.01  0.078 -0.12  0.074 0.00  0.25* -0.02  -0.034 0.01 

29 HL12  -0.03 0.03  -0.025 0.06  -0.089 0.02  -0.048 0.07  -0.045 0.10  -0.035 0.05 

30 HL13  -0.006 0.09  -0.02 0.23*  0.014 -0.03  0.007 0.11  -0.059 0.24*  0.008 0.15 

31 HL14  0.142 0.15  0.18 0.29**  -0.008 0.00  0.156 0.13  0.193 0.27**  -0.112 -0.08 

32 HL15  0.26* 0.01  -0.073 0.15  -0.124 -0.07  0.045 0.00  -0.054 0.09  0.023 0.14 

33 HL16  0.148 0.07  0.17 0.36**  0.005 0.00  0.166 0.15  0.29** 0.22*  -0.004 0.13 

34 HL17  0.144 -0.01  0.14 0.18  0 -0.01  0.139 0.07  0.22* 0.08  -0.046 0.13 

35 HL18  -0.029 -0.16  0.23* 0.01  -0.009 -0.06  -0.036 -0.10  -0.024 -0.12  0.079 0.14 

36 HL19  0.28** -0.01  -0.061 0.21*  -0.083 -0.05  -0.01 0.07  -0.03 0.08  0.046 0.10 

37 HL20  -0.022 0.05  -0.026 0.13  0.048 -0.12  0.005 0.05  -0.013 0.10  0.043 0.11 

38 HL21   -0.103 0.03   -0.108 0.09   0.024 -0.13   -0.111 0.00   -0.17 0.10   0.006 -0.08 

*Significant at 10%;  ** significant at 5% 
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Appendix 12: The Pearson’s correlation between Niño 3.4 and frequency of extreme precipitation indices 

Sl 

No 

Grid 

Point 

  R100   R65   R2.5_65   R40   R20 

  0 - year  1 - year   0 - year  1 - year   0 - year  1 - year   0 - year  1 - year   0 - year  1 - year 

1 LL1  0.28** 0.16  0.136 0.13  -0.035 -0.13  0.141 -0.05  0.18 0.14 

2 LL2  -0.08 0.10  -0.042 -0.02  0.183 -0.14  0.168 0.06  -0.052 -0.28* 

3 LL3  0.18 0.20  0.182 0.13  -0.148 -0.12  0.071 -0.05  0.129 -0.17 

4 LL4  0.23* 0.18  -0.124 0.08  -0.086 -0.11  0.186 -0.08  -0.104 -0.21 

5 LL5  0.148 0.03  -0.004 0.09  0.10 -0.02  0.124 0.00  0.163 0.14 

6 LL6  0.176 0.13  0.143 -0.09  0.144 -0.13  -0.038 -0.05  0.052 -0.16 

7 LL7  0.15 0.02  0.192 -0.09  0.14 -0.03  -0.047 -0.25*  0.21 -0.21* 

8 LL8  -0.04 -0.03  0.186 -0.13  0.13 -0.08  0.057 -0.05  -0.171 -0.05 

9 LL9  0.22* 0.10  0.181 0.04  -0.133 -0.02  -0.119 0.01  0.17 -0.01 

10 LL10  0.24* 0.08  0.142 -0.04  -0.018 0.05  0.015 -0.07  -0.016 0.02 

11 LL11  0.162 -0.07  0.164 -0.07  0.152 0.05  -0.113 -0.08  0.17 0.16 

12 LL12  0.143 0.19  -0.03 -0.02  -0.049 -0.12  0.008 -0.19  -0.059 0.05 

13 LL13  0.163 0.18  -0.13 -0.09  -0.054 -0.05  0.177 -0.33**  -0.136 0.04 

14 LL14  0.198 0.16  -0.073 0.10  -0.005 0.02  0.057 -0.09  0.179 0.08 

15 LL15  0.186 0.18  0.22 -0.01  0.149 -0.03  0.046 0.03  0.133 0.05 

16 LL16  0.011 0.17  0.11 0.03  -0.15 0.02  0.057 0.06  -0.036 0.00 

17 LL17  -0.051 0.19  0.111 -0.01  -0.13 -0.13  0.131 -0.08  0.164 -0.02 

18 HL1  0.122 0.17  0.145 -0.06  -0.145 -0.06  -0.096 -0.04  0.176 -0.04 

19 HL2  0.013 0.17  0.146 0.00  0.012 -0.13  -0.085 -0.02  0.03 -0.05 

20 HL3  -0.017 0.22**  0.132 0.05  -0.104 -0.09  0.012 0.02  -0.01 -0.18 
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21 HL4  0.035 0.03  0.11 0.01  -0.083 -0.06  0.073 -0.02  -0.038 0.07 

22 HL5  0.057 0.12  0.146 0.14  -0.085 -0.13  0.098 0.10  -0.007 -0.23* 

23 HL6  -0.04 0.12  0.19 -0.03  -0.121 -0.20  0.063 0.06  -0.066 -0.08 

24 HL7  -0.041 0.16  0.163 0.08  -0.005 0.02  -0.029 -0.01  -0.147 0.01 

25 HL8  0.126 0.10  -0.003 0.23**  -0.015 0.07  0.139 0.04  -0.175 0.02 

26 HL9  0.034 0.11  -0.015 0.00  0.046 -0.13  -0.059 -0.01  0.007 0.03 

27 HL10  -0.073 -0.03  0.021 0.01  0.08 0.07  -0.005 0.08  0.024 0.05 

28 HL11  -0.009 0.12  0.16 0.00  0.15 -0.01  -0.19 0.10  0.13 0.01 

29 HL12  -0.062 0.16  -0.105 -0.17  0.038 -0.09  -0.079 -0.24**  0.17 0.00 

30 HL13  -0.136 0.14  -0.02 -0.04  0.023 0.02  0.102 0.12  -0.27* -0.02 

31 HL14  0.133 0.24**  0.069 0.17  0.15 0.06  0.004 0.08  -0.25* -0.07 

32 HL15  -0.031 0.13  0.127 0.02  0.087 -0.03  -0.02 0.03  0.129 -0.09 

33 HL16  0.201 0.14  0.127 0.10  0.087 -0.20  0.156 -0.03  -0.28* 0.07 

34 HL17  0.18 0.12  -0.002 -0.05  0.014 -0.17  0.031 -0.10  0.054 0.07 

35 HL18  -0.056 0.10  0.14 -0.29**  -0.011 -0.06  -0.077 -0.05  0.017 -0.06 

36 HL19  -0.041 0.00  -0.102 0.02  0.168 -0.08  0.107 -0.04  -0.139 0.01 

37 HL20  -0.061 0.06  -0.064 -0.10  0.112 -0.02  -0.074 0.09  0.063 0.08 

38 HL21   -0.174 0.09   -0.163 -0.04   -0.012 0.13   -0.094 -0.11   -0.049 -0.01 

*Significant at 10%;  ** significant at 5% 
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Appendix 13: Correlation Analysis between ENSO Indices and summer monsoon precipitation index 

 

Season Nino 1+2   Nino 3   Nino 3.4   Nino 4 

  

P-Value 
Correlation 

Coefficient 
  

P-Value 
Correlation 

Coefficient 
  

P-Value 
Correlation 

Coefficient 
  

P-Value 
Correlation 

Coefficient 

DJF(-6) 0.775 0.041   0.482 0.102   0.497 0.098   0.478 0.103 

MAM(-5) 0.251 0.165  0.191 0.188  0.133 0.216  0.139 0.212 

JJA(-4) 0.431 0.114  0.095 0.231**  0.104 0.232  0.215 0.178 

SON(-3) 0.215 0.178  0.238 0.17  0.181 0.192  0.02 0.251* 

DJF(-2) 0.522 0.093  0.19 0.188  0.045 0.246*  0.038 0.243* 

MAM(-1) 0.549 0.087  0.696 0.057  0.678 0.06  0.738 0.048 

JJA(0) 0.376 -0.128  0.164 -0.2  0.176 -0.195  0.447 -0.111 

SON(+1) 0.428 -0.115   0.165 -0.22   0.106 -0.231   0.131 -0.216 

** 10 % significance level, * 5% significance level 
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