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ABSTRACT 

The study was carried out on the Tikur Wuha watershed (TWW) in Ethiopia with four 

specific objectives: simulation of the potential impact of climate change on hydro-

meteorological variables, evaluation of the hydrological impacts of land use/cover 

(LU/LC) change, examination of the trend and variability of hydro-meteorological 

variables, and prioritisation of the sub-watersheds for soil and water conservation 

(SWC) measures based on soil loss rate (SLR). The LU/LC map was developed using 

a supervised classification method. The impact of LU/LC and climate change on 

streamflow was assessed using the Soil and Water Assessment Tools (SWAT) 

hydrological model. The Mann-Kendall trend test and Sen's slope estimator were 

employed for the trend and size of the trend, respectively. A Universal Soil Loss 

Equation (USLE) was used to estimate the SLR.  The result revealed that the Bega, 

Kiremt, and annual rainfall increased for all scenarios. In contrast, the Belg rainfall 

decreased in all cases except for RCP8.5 at the end of the century. Both the minimum 

and maximum temperatures increased for all scenarios. The annual average 

streamflow in TWW increased in all cases except a slight reduction in the RCP4.5 

scenario in mid-century. Climate change affects the streamflow in the study watershed 

by increasing the wet season flow and reducing the dry season flow.  The LU/LC 

detection shows a steady expansion of cropland and built-up areas and the withdrawal 

of shrubland, swampy, water bodies, and grassland during the 1978 to 2017 periods. 

The LU/LC changes increased the average annual streamflow by 14.77% from 1978 

to 2017. The LU/LC change had a dominant role in the hydrological responses of the 

TWW. The trend analysis discovered that the average annual rainfall exhibited an 

insignificant declining trend of 20.8 mm/decade at a watershed scale. The temperature 

showed a statistically significant rising trend, with the minimum temperature rising 

faster than the maximum temperature. The Tikur Wuha River's streamflow increased 

at 21.16 MCM/decade from 1980 to 2002. The average SLR of the watershed is 14.13 

t ha-1yr-1. It is larger than the maximum soil loss tolerance of the watershed and higher 

than the country's average SLR. The SWC measures should be implemented rapidly 

in the TWW, consistent with the priority watersheds' rank. 

Keywords: Climate change; LU/LC; Mann–Kendall; Soil loss rate; SWAT; Trend 

analysis; USLE 
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CHAPTER 1: INTRODUCTION 

1.1. General 

Climate change, Land Use/Cover (LU/LC) change, soil erosion, and poor 

management of water resources are challenging to sustainable development (Food and 

Agriculture Organization [FAO] 2011; Intergovernmental Panel on Climate Change 

[IPCC] 2014). Sustainable development meets the present's needs without 

compromising upcoming generations' capacity to meet their own needs (World 

Commission on Environment and Development [WCED] 1987; Holden et al. 2014). 

The impacts of climate change on development are already observed. The first chapter 

of the thesis has briefly presented the background, statement of the problem, 

objectives, and scope of the study.  

1.2. Climate Change Impacts on Water Resource 

Water is an essential natural resource for all forms of life. It is vital in almost all 

human activities. It is the lifeblood of the environment, on which the food security of 

current and upcoming generations depends. The climate, water, biophysical, and 

socio-economic systems are all intricately linked. Accordingly, altering one of these 

elements influences the others (Bates et al. 2008; High-Level Panel of Experts 

[HLPE] 2015). The effects of climate change on the water are of high significance 

since all natural and socio-economic systems critically depend on water. Hence, the 

relationship between water resources and climate change is of primary interest and 

concern.  

A warmer climate will speed up the hydrological cycle, varying rainfall and runoff 

amount and timing. Increased rainfall variability and intensity are projected to 

enhance the possibility of drought and flooding in many areas (Bates et al. 2008). The 

direct effects of climate change are the rise in temperature and sea level, the change in 

the pattern of precipitation and water availability, and extreme hydrological events 

such as floods, droughts, and heatwaves (Bates et al. 2008; IPCC 2014). It has many 

indirect effects on agriculture, energy production, and overall water infrastructure. 

Global change is likely to amend the temperature, precipitation, and streamflow 

patterns upon which agriculture depends (FAO 2011). 
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Climate change impacts are location specific. Its magnitude varies from region to 

region throughout the world. The severity of climate change's undesirable effects will 

differ notably across regions, countries, and socio-economic groups (IPCC 2014; 

Mamuye and Kebebewu 2018). Usually, developing countries like Ethiopia are more 

likely vulnerable to climate extremes than developed countries because of their ability 

to implement adaptation and mitigation measures to alleviate the harmful impacts of 

global change (Ringler et al. 2011; IPCC 2014). A climate-associated natural hazard 

such as drought and flood happens everywhere globally; however, its consequences 

are not as severe as in Africa in general and Ethiopia in particular (National 

Meteorological Service agency [NMSA] 2007). 

Africa is highly vulnerable to the potential impacts of climate change. According to 

Hallegatte et al. (2016), the consequences of climate change for Africa are shocking 

and threaten to push millions of people into severe poverty by 2030. It is mainly due 

to reducing crop yields, increased food costs, and harmful health impacts. By mid-

century (2050), 300 to 360 million people in Africa are anticipated to be prone to 

water stress caused by climate change (IPCC 2007). African communities face double 

impacts (direct and indirect) of climate change. The direct effects of increases in 

extreme weather events (flood and drought) induce a decline of crop yields and 

livestock productivity, drinking water shortage, the spread of diseases such as malaria, 

possible migration, social conflict, and increased cost of infrastructure development 

and maintenance. The indirect impacts are declining land productivity due to soil 

erosion, desertification, deforestation, and biodiversity loss (World Bank 2009). 

Accordingly, it is vital to understand the effects of global change on natural resources 

in Africa to recognise up to date and practical adaptation measures and investment 

priorities that can be implemented to alleviate the adverse impacts of global change in 

the future (Ringler et al. 2011). 

Ethiopia is one of the developing countries in Africa, and its major economy is 

heavily reliant on rain-fed agriculture (NMSA 2007; Setegn et al. 2011; Robinson et 

al. 2013; Ethiopian Panel on Climate Change [EPCC] 2015a). In a country with a 

predominantly rain-fed agricultural system like Ethiopia, variation in rainfall and 

follow-on changes in soil moisture may unfavourably affect crop yield, and the 

livelihood of millions of people as rainfall is one of the most critical climatic 
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determinants of food production (NMSA 2007; Ringler et al. 2011). Although the 

country contributes little to Green House Gas (GHG) emissions, Ethiopians already 

suffer from climate change events like drought and flood (NMSA 2007).  

Although Ethiopia has considerable water resource potential, the spatial and temporal 

distribution of water is highly uneven (EPCC 2015a), and people face water-related 

problems. Ethiopia is often cited as one of the most vulnerable and with a minor 

capability to respond and adapt (Robinson et al. 2013). Yearly, many people in 

Ethiopia are exposed to famine, serious health problems, flood hazards, and drought 

due to rainfall variability in response to ongoing climate change (NMSA 2007; EPCC 

2015a). Current climate change is already imposing a significant challenge to Ethiopia 

by affecting food security, energy and water supply, poverty reduction, and 

sustainable socio-economic development efforts (Robinson et al. 2013; EPCC 2015a).  

Therefore, it is vital to implement adaptation and mitigation measures to decrease the 

potential impact of climate change in Ethiopia. Since adaptation measures are 

implemented at the watershed level, it is indispensable to recognise the detailed 

climate change impact at the watershed level. This study focused on examining the 

potential effects of climate change on streamflow at the watershed level to help 

respective water resource managers plan watershed specific water resource 

management strategies to adapt to climate change. 

1.3. Land Use/Cover Change Impacts on Streamflow 

The impact of climate change and LU/LC change on hydrological processes can not 

be distinguished or is still a challenge in hydrology. Climate and LU/LC are the 

leading causes that affect the hydrological response of a watershed. LU/LC change 

has become a global concern due to its diverse environmental impacts (Bewket 2002). 

LU/LC change is an essential factor that directly affects watershed hydrology (Setegn 

et al. 2009; Wagner et al. 2013; Gashaw et al. 2018). LU/LC has many influences on 

the hydrological cycle. Changes in LU/LC affect the partitioning of precipitation into 

interception, infiltration, evapotranspiration, surface runoff, and groundwater 

recharge. LU/LC changes can increase water scarcity, flood risk, and erosion rate. 

Understanding the impacts of LU/LC change on water resources is, therefore, of 

decisive importance.  
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Globally, expansions of cultivated land and pastureland in the forest, grassland, and 

shrubland have been observed. However, the direction of LU/LC change was not 

uniform across the world. LU/LC change is one of the fundamental environmental 

problems in Ethiopia. There was a rapid expansion of cropland at the expense of 

forests in the country. Cultivation is stretched to highly steep areas (Zeleke and Hurni 

2001). Ethiopia's forest cover fell from 16% in the 1950s to 2.7% by the early 1990s 

(Shiferaw and Holden 2001). Dessie and Christiansson (2008) report that Ethiopia's 

forest area declined from about 40% at the end of the nineteenth century to less than 

3% in 2000.  

LU/LC change is responsible for altering the hydrological response of watersheds in 

Ethiopia (Setegn et al. 2009; Gashaw et al. 2018). According to several reports, 

LU/LC changes impact water resources in Ethiopia (Bewket and Sterk 2005; 

Getachew and Melesse 2012; Getahun and Van Lanen 2015; Tufa et al. 2015; Chakilu 

and Moges 2017; Welde and Gebremariam 2017; Gashaw et al. 2018). This study 

aims to detect the LU/LC change and its impacts on streamflow in the Tikur Wuha 

watershed (TWW). 

1.4 Variability and Trend Analysis of Hydro-meteorological Variables 

The Gross Domestic Product (GDP) of Ethiopia is reliant on agriculture. The 

agriculture of Ethiopia is mainly dependent on rainfall. Ethiopia is among the most 

susceptible nations to the undesirable effects of climate change (NMSA 2007; EPCC 

2015a). Rainfall variability has considerable adverse effects on agricultural 

production in Ethiopia (Rosell and Holmer 2007; Alemayehu and Bewket 2017). 

Analysis of the spatiotemporal variability and trend of hydro-meteorological variables 

has paramount importance for securing sustainable agricultural production in Ethiopia 

(NMSA 2007). Recognition of patterns of hydro-meteorological elements is required 

to notice a historical change. It helps to make predictions of the future and for better 

preparedness (Raju and Nandagiri 2017). Tabari et al. (2011) have noted that 

researchers recently gave great attention to analysing the weather elements trend.   

The trend analysis of historical hydro-meteorological variables contributes to 

projecting likely future trends and planning adaptation and mitigation measures to 

tackle climate change impacts (Raju and Nandagiri 2017). The exploration of rainfall 
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trends is critical for adaptation to future effects and development planning, as natural 

rainfall variability has always been a significant problem for the Ethiopian economy. 

Rainfall and temperature trend analysis often recognises the magnitude and extent of 

climate change (IPCC 2007 2014).  

In Africa, average precipitation and temperature have shown declining and increasing 

trends, respectively. In the future, the temperature in Africa is likely to grow more 

rapidly than in other regions, which could exceed four °C at the end of the 21st 

century (IPCC 2014). Simultaneously, the East African highlands will experience a 

high degree of spatial and temporal variability. Studies in Ethiopia have also 

discovered that rainfall variability has considerable adverse effects on agricultural 

production (Rosell and Holmer 2007; Alemayehu and Bewket 2017). 

Trend analysis studies in Ethiopia to date are not conclusive. Though some studies are 

carried out at macro levels, more research is warranted in this direction. There is a 

need to do trend analysis and variability at the microscale. The effect of ongoing 

climate change on rainfall in Ethiopia is more on its variability than on the amount. 

For crop production, seasonal reliability is essential than annual reliability (NMSA 

2007; Asfaw et al. 2018). There is high spatiotemporal variability of rainfall in 

Ethiopia. So it must be analysed in clusters rather than as a whole (Gissila et al. 

2004). Local-scale trend analysis is highly recommended. Analysis of the variation of 

temperature and rainfall at the macro level is not valid for local agricultural 

production. Also, watershed-scale trend examination is vigorous for site specific 

planning and executing mitigation and adaptation techniques (Gebre et al. 2013; 

Alemayehu and Bewket 2017). 

1.5  Watershed Prioritization Based on the Soil Loss Rate  

Soil erosion is unquestionably the trickiest land degradation on the globe (Bridges and 

Oldeman 1999). Soil erosion influences about one billion people globally, of which 

about 50% of the affected population is concerted in Africa (Lal and Humberto 2008). 

In Ethiopia, soil erosion by water is the most critical environmental threat that 

adversely affects agricultural productivity, economic growth, and food security (Hurni 

1985; Taddese 2001; Gashaw et al. 2017). Rapid population growth, cultivation on 

steep slopes, clearing of vegetation, and overgrazing are the main factors that 
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accelerate soil erosion in Ethiopia. Rill and inter-rill erosions account for the major 

impact of soil erosion on land productivity in Ethiopia. 

Erosion has both onsite and off-site effects. As Morgan (2005) elucidated, onsite 

effects are mainly significant on farming land where the relocation and loss of soil 

within/from a field, a decline in organic matter, soil structure, nutrient, soil depth, and 

soil fertility consequences in a decline of soil productivity, crop yield, and food 

security. Moreover, erosion results in various associated off-site effects such as 

sedimentation downstream and pollution. Soil erosion affects the capacity of drainage 

ditches and rivers, clogs up irrigation canals, raises the risk of flooding, and affects 

the intended use and life of reservoirs (Morgan 2005). Soil erosion also affected the 

water quality due to the chemicals (nutrients, pesticides) adsorbed by it, raising the 

nitrogen and phosphorus in water bodies and resulting in eutrophication and pollution 

(Bekele 2003; Morgan 2005; Kothyari 2012).  Soil erosion may also enhance the 

release of soil organic content into the atmosphere as CO2. Accordingly, it contributes 

to global warming, as rising CO2 content increases the greenhouse effect (Lal and 

Humberto 2008). Reports from Ethiopia (Hurni 1988) show that the average soil 

erosion rate nationwide was estimated to be 12 t ha-1yr-1, from cropland was 42 t ha-

1yr-1, degraded land was 70 t ha-1yr-1, and in the highlands of the country, it extends 

up to 300 t ha-1yr-1; which is beyond any tolerable soil loss.  

The consequence of soil erosion in Ethiopian reservoirs is serious (Wolancho 2012). 

Reports from different parts of Ethiopia show that many reservoirs have already lost 

their storage capacity and intended service because of heavy sedimentation (Setegn et 

al. 2010; Haregeweyn et al. 2012; Berhane et al. 2016; Gelagay 2016). As Tamene et 

al. (2006) stated, most micro-irrigation dams in the Tigray region of northern Ethiopia 

will be closed due to siltation in less than half of the design period. Lake Haramaya 

(Senti et al. 2014) in eastern Ethiopia and Lake Cheleleka (WWDSE 2001) in 

southern Ethiopia were filled with sediment and vanished due to soil erosion.  

It is imperative to plan and implement appropriate soil and water conservation (SWC) 

measures to reduce onsite and off-site soil erosion and sedimentation impacts. 

Scientific planning for SWC to counteract the erosion problems requires sufficient 

knowledge of areas susceptible to erosion risk (spatial pattern of soil erosion), the 

extent of areas affected, and their magnitude in the area. It may not be feasible to cope 
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with the whole watershed area with SWC measures at a time. Since resources are 

scarce in developing countries like Ethiopia, implementing SWC practice at a time on 

the entire watershed is not practical. Thus, the whole watershed is divided into several 

smaller units, as sub-watersheds, since a watershed is an excellent unit for planning 

and executing the SWC practices. Therefore, recognising erosion-prone areas for 

prioritising sub-watershed based on the magnitude of SLR is indispensable for 

planning and implementing sustainable watershed management and wise use of 

resources. Prioritising a sub-watershed for the execution of SWC practices involves 

ranking different sub-watershed based on the magnitude of SLR (Adinarayana 2003). 

Therefore, a comprehensive study is highly needed, and the issue has to be addressed 

at a scale relevant to practising watershed management. The present study predicted 

the spatial variation of SLR and prioritised the sub-watersheds of TWW.  

1.6  Statement of the Problem 

Countries like Ethiopia, with low economic development levels, insufficient 

infrastructure, and lack of institutional competence, are more susceptible to climate 

change (NMSA 2007). Ethiopia has previously been prone to extreme climate events. 

Recurrent floods, drought, and soil erosion are listed along with the country's main 

environmental problems, and these are the leading causes of loss of life, property, and 

migration of many people in Ethiopia (NMSA 2007). The rise in temperature and the 

change in precipitation patterns are prominent features of climate change. These two 

factors affect almost all other hydrological processes. The long-term climate change 

impacts in Ethiopia are mainly linked to these two climate elements (EPCC 2015a). 

So recognition and analysis of their pattern in the watershed are highly needed. 

Although Ethiopia has executed some water development programs, watershed 

management activities, and mitigation and adaptation measures to protect the country 

from the undesirable outcomes of climate change and enhance water security, water 

scarcity is one of the country's most significant challenges (NMSA 2007). The nature 

and magnitude of how global change will affect the Ethiopian water resources are not 

yet adequately understood, and there are many knowledge gaps related to climate and 

water interface (EPCC 2015a). This gap is a current challenge for planners and 

policy-makers to develop long-term water resource management and climate change 
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adaptation strategies in the water sector. Therefore, a comprehensive study is highly 

needed, and the issue has to be addressed at a scale relevant to decision making to 

improve the level of water security and the planning for climate change adaptation 

and mitigation practices in the country. 

Previously, most climate change impact studies in Ethiopia were done based on 

Coupled Model Intercomparison Project Phase 3 (CMIP3) climate change models 

under Special Report on Emission Scenarios (SRES) (Zeray et al. 2006; Setegn et al. 

2011; Dile et al. 2013; Wagesho et al. 2013; Chaemiso et al. 2016; Nigatu et al. 

2016).  The scientific community has developed a set of new emission scenarios 

termed Representative Concentration Pathways (RCPs). The RCPs include a strict 

mitigation scenario, RCP2.6 that aims to keep global warming below two °C above 

pre-industrial temperatures, two intermediate scenarios (RCP4.5 and RCP6.0), and 

one scenario with high GHG emission, RCP8.5 (IPCC 2014). The studies have been 

based on a single or a limited number of Global Climate Models (GCMs) (Dile et al. 

2013; Nigatu et al. 2016; Serur and Sarma 2016). Concluding the effect of climate 

change on watershed hydrology using a particular GCM may not give an exact 

representation of future changes (IPCC 2007). High uncertainty is expected in climate 

change impact studies if the simulation results of a single GCM are relied upon, and it 

will likely mislead the decision-makers and policy developers. Researchers suggested 

uncertainty minimisation by employing an ensemble of relevant models. The mean 

ensemble forecast is generally more accurate than an individual ensemble member 

(Vano et al. 2015; Jose and Dwarakish 2020; Kundzewicza et al. 2018). Thus, 

predicting climate change impacts based on multiple GCMs under Coupled Model 

Intercomparison Project Phase 5 (CMIP5) is quite crucial in Ethiopia for a better 

understanding of the potential climate change impacts, informed decision making for 

proper water resource management, and effectively respond and adapt to projected 

changes; otherwise, the consequences becoming awful.  

Even though the impact of climate change scenarios is examined globally, the exact 

magnitude of the effects at a watershed level is not examined in most parts of 

Ethiopia. Water-related climate change impacts in the TWW are poorly understood. 

Since climate change impacts are location specific and adaptation measures are 

implemented at the watershed level, recognising local climate change effects at a 
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watershed level is sensibly imperative. Hence, this study has examined the potential 

impacts of climate change on hydro-meteorological variables of the Tikur Wuha 

watershed using multiple Regional Climate Models (RCMs) from multiple GCMs 

under CMIP5 RCP4.5 and RCP8.5 emission scenarios until 2099. 

Tikur Wuha watershed suffers from human-induced land degradation mainly due to 

unregulated LU/LC change. A significant change in LU/LC has been reported in the 

watershed during the last few decades. For example, Lake Cheleleka (11.3 km2) in 

1973 in TWW was changed first to a swampy area (WWDSE 2001) and subsequently 

dried up and changed to grassland in 2011 (Dadi 2013; Wondrade 2014). Also, 

recently, the grassland near Tikur Wuha village has been converted into cultivation. A 

vast expansion of industrialisation and urbanisation in the TWW (expansion of 

Hawassa town and recently introduced industrial park (300ha)) is observed. The 

impacts of such changes on hydrology are poorly understood. Although the exact 

reason needs further assessment, the TWW stream discharge has recently increased 

(Dadi 2013; Kebede et al. 2014). As a result, floods repeatedly damage the town of 

Hawassa and the farms near the lake during extreme wet seasons (Gebreegziabher 

2004). Hence, thorough analyses and understanding of the effects of LU/LC changes 

on hydrology are critically crucial for planning watershed management. It is vital to 

capture the hydrological impacts of the past LU/LC changes in the TWW and 

translate the results into a management decision to overcome the negative 

consequences of such changes on the hydrology of the TWW.  

There are many studies on rainfall and temperature trends and variabilities in Ethiopia 

at different spatiotemporal scales (Osman and Sauerborn 2002; Seleshi and Zanke 

2004; Admassu and Seid 2006; Rosell and Holmer 2007; Cheung et al. 2008; Resoll 

2011; Funk et al. 2012; Gebre et al. 2013; Jury and Funk 2013; Wagesho et al. 2013; 

Mekasha et al. 2014; Mengistu et al. 2014; Abrha and Simhadri 2015; Kiros et al. 

2016; Alemayehu and Bewket 2017; Asfaw et al. 2018; Eshetu et al. 2018). Studies 

on temperature generally report warming trends, with the minimum temperature more 

often rising rapidly than the maximum temperature (NMSA 2007). Studies on rainfall 

do not show clear directions for the country; the change patterns are mixed. Some 

studies reported a decreasing/downward trend in seasonal and annual rainfall totals in 

their respective study areas (Osman and Sauerborn 2002; Admassu and Seid 2006; 



 

10 
 

Funk et al. 2012; Gebre et al. 2013; Jury and Funk 2013; Wagesho et al. 2013; Asfaw 

et al. 2018).  On the other hand, other studies reported a lack of clear trends (mixed 

results) in precipitation (Seleshi and Zanke 2004; Rosell and Holmer 2007; Cheung et 

al. 2008; Resoll 2011; Mengistu et al. 2014; Mekasha et al. 2014; Abrha and Simhadri 

2015; Kiros et al. 2016; Alemayehu and Bewket 2017; Eshetu et al. 2018). The 

rational inference from those previous studies is that rainfall trends are sensitive to 

local scale climatic controls such as topography (Mengistu et al. 2014). Kiros et al. 

(2016) mentioned that some of the reasons for such controverting outcomes had been 

reported for a similar region. These are differences in the temporal and spatial scale, 

quality of the data set, presence of outliers, different delineations of seasons, and 

variations in the techniques employed for trend testing. 

Although a trend study of hydro-meteorological variables in Ethiopia is common, 

previous studies focused only on rainfall and temperature. They have not been 

providing complete information about the hydrology of the watershed. Also, no 

previous research was conducted in the TWW. This study attempts to fill this gap. 

This study integrates annual, seasonal, and monthly variability examination and trend 

analysis of hydro-meteorological variables in TWW. The trend and variability of 

rainfall were analysed at individual rain-gauge stations and weighted average rainfall 

depths for the watershed. The variables analysed were minimum temperature and 

maximum temperature, rainfall depth, Potential Evapotranspiration (PET), and 

streamflow recorded at stations located within and near the TWW. 

The issue of soil erosion is severe in the TWW. Lake Cheleleka (11.3 km2) in 1973 in 

TWW was changed first to a swampy area and subsequently dried up and changed to 

grassland in 2011 (WWDSE 2001; Dadi 2013; Wondyrad 2014) as a result of soil 

erosion and sedimentation. After Lake Cheleleka was filled with silt, the sediment is 

now directly entering Lake Hawassa, and the consequences are a rise of the lake level 

and expansion of the surface area of the Lake (Gebreegziabher 2004). Also, grasses 

are growing in the lake and expanding yearly due to the deposition of nitrogen and 

phosphorus from agricultural fields due to soil erosion. The implication is that the 

problem of soil erosion is severe in the study area.  

Previous studies point out that, within the watershed, small erosion hot spot areas are 

the source of a large amount of soil erosion and sediment load. Besides, the factors 
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controlling soil loss vary from place to place (Maryam and Biswajeet 2014; Adriyanto 

et al. 2015; Gelagay and Minale 2016; Markose and Jayappa 2016, Yuan et al. 2016; 

Setegn et al. 2009; Rejari et al. 2016). Managing this small portion of the watershed 

can significantly reduce soil erosion's onsite and off-site impacts. Therefore, it is 

crucial to identify potential erosion areas for appropriate management interventions to 

tackle the main causative factors at their specific locations from an economic, 

management, and sustainability perspective. However, the spatial variation of SLR in 

TWW is not understood well. It is a current challenge for planners and policy-makers 

to develop long-term SWC strategies.  

Most soil erosion assessment studies for watershed prioritisation in Ethiopia are not 

presented at the sub-watershed level. They are given the finding at the watershed 

level. It may not help to identify hot spot areas for implementing soil and water 

conservation activities in the top priority area. The present study was carried out to 

predict the spatial variation of SLR and prioritise the sub-watersheds of TWW using 

universal soil loss equation (USLE) and Geographic Information System (GIS) 

techniques.  

The international application of the USLE needs adaptation to local conditions and the 

changing of USA units to the SI metric system. However, users of the USLE are 

unaware of the considerations necessary to develop metric conversion factors.  K-

factor values in the SI units will be about 0.1317 times those of US customary units 

(Foster et al. 1981). The maximum K-factor value will be comparable to 0.10 (Foster 

et al. 1981). Panagos et al. (2012) assessed the K-factor for Europe, relying on 22,000 

soil samples collected within Europe.  They found that the K-factor of USLE ranges 

from 0.013 to 0.087, with a mean of 0.041 in the SI unit. The K-factor values in China 

are concentrated in the ranges between 0.0229 and 0.0457, with a mean of 0.0321 

(Wang et al. 2016). Studies in Ethiopia for predicting soil erosion using USLE 

misused K-factor values (Bewket and Teferi 2009; Brhane and Mekonen 2009; 

Amsalu and Mengaw 2014; Ayalew 2015). They used the K-factor values without 

converting them into the metric system. These are relatively high values and seriously 

affect the result and may mislead the decision-makers. Corrected K-factor values were 

used in this study. 
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1.7 Objectives of the Study 

1. To simulate the potential impacts of climate change on the hydro-meteorological 

variables in the Tikur Wuha watershed.  

2. To evaluate the hydrological impacts of LU/LC changes in the Tikur Wuha 

watershed using the hydrological model. 

3. To examine the trend and variability of hydro-meteorological variables in the 

Tikur Wuha watershed. 

4. To prioritise the watersheds for soil and water conservation measures based on 

soil loss rate. 

1.8 The Scope of the Study 

This research was accentuated to investigate how the medium (RCP4.5) and high 

(RCP8.5) emission scenarios affect future temperature, precipitation, and streamflow 

up to 2099. The medium emission scenario provides an average future climate 

condition. The high emission scenario (RCP8.5) represents the business as usual 

scenario.  Besides, the study assessed the LU/LC change impacts on the hydrology of 

TWW in Ethiopia. Moreover, trend and variability analysis of hydro-meteorological 

variables were evaluated. Finally, the spatial variation of the SLR was estimated for 

the prioritisation of sub-watershed for conservation activities. The map that indicates 

the spatial variation of SLR in the watersheds was developed. The research outputs 

will help recognise soil erosion risk zones and allow the planning and implementation 

of location-specific SWC measures in high erosion risk areas to reduce the sediment 

load in Lake Hawassa and improve the agricultural productivity of the TWW in the 

future. Also, it provides a wide range of helpful information about the potential 

impact of climate change on water resources in the context of TWW. It helps planners 

and decision-makers to plan site-specific and appropriate adaptation and mitigation 

measures to reduce the various adverse effects of global change in the watershed. 

Spatially, the study delimited its scope at the watershed level in Ethiopia. 
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1.9 The Organisation of the Thesis 

This thesis is segregated into eight chapters, and information about the chapters is as 

follows. The background, problem statements, objectives, and scope of the study were 

presented in the first chapter. 

Chapter Two: This chapter has five major sections. The impacts of climate change 

on Ethiopian water resources, state responses to climate change threats, and studies 

regarding climate change impacts on water resources were addressed in the first part. 

The second part addressed how LU/LC change affects water availability. The third 

part summarises studies regarding the trend and variability of hydro-meteorological 

variables. In the fourth section, soil erosion studies were presented.  Lastly, the major 

findings from the review works are highlighted, and major literature gaps are 

identified.  

Chapter Three: This chapter provides a detailed description of the study area, data 

products used, and a comprehensive methodology framed to complete the research 

work. It also provides a brief description of SWAT and USLE models.  

Chapter Four: This section provides a wide range of helpful information about the 

potential impact of climate change on water resources in the context of TWW. 

Chapter Five: This chapter provides insight into the LU/LC change dynamics over 

the study period in TWW. Besides, the impact of LU/LC change on streamflow is 

provided.  

Chapter Six: In this section, the trend and variability of hydro-meteorological 

variables of TWW in southern Ethiopia have been given and discussed.  

Chapter Seven: In this section, the priority watersheds are recognised for SWC 

activities based on the magnitude of the SLR. 

Chapter Eight: This chapter summarises and concludes the findings of this research 

work. The next chapter presents a review of related literature. 
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CHAPTER 2: REVIEW OF LITERATURE 

2.1  General 

This chapter has five parts. The first part elaborates on the water resources of 

Ethiopia, the impacts of climate change on Ethiopian water resources, state reaction to 

climate change threats, and studies regarding climate change impacts on water 

resources. The second part is about how the LU/LC change affects water availability. 

The third part summarises studies regarding the trend and variability of hydro-

meteorological variables. In the fourth section, soil erosion studies were presented. 

Soil erosion assessment methods are reviewed.  Lastly, critical points from the review 

were stated.  

2.2 Climate Change Impacts on Water Resources in Ethiopia 

2.2.1 Water resources of Ethiopia 

Ethiopia is located in East Africa between 3° - 15º north and 33° - 48° east just north 

of the equator. Its area is around 1.13* 106 km² (Berhanu et al. 2014). Ethiopia's 

climate ranges from temperate in the highlands to tropical in the lowlands (Fazzini et 

al. 2015). The yearly average rainfall of the country is about 744mm (Awulachew et 

al. 2007). Lowlands are vulnerable to increasing temperatures and prolonged 

droughts, whereas highlands are prone to intense and irregular rainfall (USAID 2016). 

In terms of rainfall occurrence, Bega, Belg, and Kiremt are the three seasons in 

Ethiopia. The Bega is the period from October to January. It is a dry and harvesting 

period for various parts of Ethiopia. The Belg corresponds to a short rainy period 

from February to May, and during this season, the rainfall patterns are very erratic in 

nature. The Kiremt is the main rainy period from June to September. 50 to 80 per cent 

of the country's annual rainfall is measured in this period (NMSA 2007; NMSA 2013; 

Fazzini et al. 2015; USAID 2016).   

Ethiopia has copious surface water resources, with estimated yearly average flows 

from the country's 12 river basins being 122 billion cubic meters per annum (MoWR 

2002), and lake water from 12 Lakes is 70 billion cubic meters (Berhanu et al. 2014). 

The real potential of the country's groundwater is not yet known. However, it is 

reported that Ethiopia has a groundwater potential of approximately up to 30 billion 
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cubic meters (MoWR and GW-MATE 2011). Although Ethiopia has considerable 

water resource potential, the spatiotemporal water distribution is highly uneven 

(EPCC 2015a), and Ethiopians face water-related problems. Despite plenty in some 

parts, Ethiopia is highly water scarce due to poor water management and a shortage of 

storage infrastructure.  

The availability of surface water and rainfall in Ethiopia is erratic and varies with 

space and time (Robinson et al. 2013; EPCC 2015a). Spatially, 80 to 90% of the water 

resources are found in Ethiopia's western parts, where no more than 30 to 40 per cent 

of Ethiopia's population lives. In contrast, more than 60% of the population lived in 

Ethiopia's eastern and central regions, where surface water resources are just 10 to 

20% of the total. Temporally, most of the rivers in Ethiopia become full in June, July, 

and August within the duration of the Kiremt season (Berhanu et al. 2014). The 

amount of rainfall varies spatially within the country and within different regions in 

the country. For example, within the Amhara national regional state, yearly 

precipitation ranges from 770mm in the eastern part to greater than 1660mm in the 

western part of the region (Bewket and Conway 2007). An increment in rainfall from 

the northeast to the west portion of the Tigray region was also recorded. According to 

Gebrehiwot and Van der Veen (2013), annual rainfall in Tigray ranges from 300mm 

in the northeast to 1260mm in the west. 

Too little has been done to date in utilising the water resources in Ethiopia as engines 

to boost the country's socio-economic development. Even though the country's water 

resources can develop an irrigation area of 3.8 * 106 ha (Berhanu et al. 2014), less 

than 5% is developed (World Bank 2006). Hydropower potential has been estimated 

at 45,000MW per annum (Berhanu et al. 2014), of which the country developed only 

3813MW (International Hydropower Association [IHA] 2017). Currently, the 

government pays more attention to generating electric energy from hydropower. For 

example, a 5225 MW hydropower project is under construction from the Great 

Ethiopian Renaissance Dam (GERD) project. Inadequate finance for investment to 

control water, a technical challenge like having few numbers of hydrological gauging 

stations, hydro-politics, and lack of competent authority and skilled experts in the 

water sector are some of the reasons for not fully utilised the water resource potential 

in Ethiopia (Berhanu et al. 2014; Mosello et al. 2015). 
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2.2.2 Ethiopian contribution to global greenhouse emission 

Ethiopia's contribution to global annual GHG emissions is negligible. According to 

the EPCC report, GHG emissions from the country were 48 Mt CO2e (0.9 tone CO2e 

per capita) in 1994, 150 MtCO2e in 2010 (1.8 tone CO2e per capita), and will 

increase to 400 MtCO2e (3 tone CO2e per capita) by 2030. The primary GHG-

emission sector in Ethiopia is agriculture. In 2010, 87 per cent of national emissions 

were accounted for by agriculture and land-use change. The rest, 13 per cent, comes 

from the sectors of industry, transport, and energy (EPCC 2015b). Although the 

country contributes little to GHG emissions, Ethiopians already suffer from climate 

change events like drought and flood (NMSA 2007).  

2.2.3 Climate change impacts on water resources in Ethiopia 

2.2.3.1 Observed (historical) impacts  

In Ethiopia, floods and droughts occur repetitively due to climate change (Robinson et 

al. 2013; EPCC 2015a). These events can lead to famine and disruption of socio-

economic well-being. Yearly, the country loses up to 6% of crop yield due to rainfall 

variability (EPCC 2015b). In some parts of Ethiopia, too much surface water results 

in floods, and at the same time, other parts of the country suffer from drought. 

The principal and direct consequence of climate change would be the changes in 

water availability. Some of the adverse effects observed in Ethiopia due to rising 

temperatures and changing rainfall amounts and patterns include a decrease in soil 

moisture, decreased freshwater availability, repeated droughts, and floods (USAID 

2016). According to the USAID report, floods and drought have increased since 1960 

in Ethiopia (USAID 2016). As the Ethiopian socio-economic development is 

dependent on rain-fed agriculture, Ethiopia suffers a lot from climate variability and 

weather extremes. Global warming has resulted in repeated droughts and heavy 

rainfall in different parts of Ethiopia and decreasing crop productivity. Yearly, many 

Ethiopians are exposed to famine, serious health problems, flood hazards, and drought 

due to rainfall variability in response to ongoing climate change (NMSA 2007; EPCC 

2015a). Drought is a very critical climate-associated disaster in Ethiopia. For 

example, due to drought, 7.75 million people in 1983, 2.1million in 1996, 13.2 

million in 2003, and 7.1 million in 2004 were exposed to famine (Dorosh and Rashid 
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2013; EPCC 2015b). A few years back, in 2015/16, more than 10,000000 people were 

affected by drought in Ethiopia (Cochrane and Singh 2017). Like drought, floods have 

a considerable impact in different parts of Ethiopia. For instance, the 2006 flood in 

Gambella regional state damaged 1650ha of maise and decreased agricultural 

production by 20% (Gambella Region Disaster Prevention and Preparedness Agency 

2007). Besides, 364 people were killed, and 6000-10,000 people were displaced in the 

South nation nationality people region (South Omo zone) (World Food Program 

[WFP] 2006). In the same year, due to the flash flood, 256 people died, more than 

9956 people were displaced, and more than 1000 traders' property was damaged in 

Dire Dawa city (Alemu 2015). The spatiotemporal variability of rainfall is more 

important than total rainfall deficits for water-related problems in Ethiopia. 

2.2.3.2 Potential impacts  

Long-term climate change impacts in Ethiopia are primarily linked to the rise in 

temperature and rainfall variability (EPCC 2015a). So recognition and analysis of 

their pattern in the country are highly needed. Future predictions of temperature and 

rainfall patterns in Ethiopia show a high degree of uncertainty.  

Most GCMs and regional projections of climate models agreed that the yearly average 

temperature is estimated to rise by between 1-2°C (USAID 2016), between 1.4 and 

2.9⁰C (Cochrane and Singh 2017) by 2050. It is uncertain whether rainfall will 

rise/drop in Ethiopia, and its projections vary between -25% and +30% by 2050s. The 

percentage of extreme total rainfall increases to 18%. Studies suggest a 30% decrease 

in the runoff on several Nile tributaries by 2050 (USAID 2016). The increase in 

temperature results in increased water stress, whereas an increase in extreme rainfall 

results in an increasing flood. As an outcome, climate change affects the country's 

development by reducing Ethiopia's GDP by nearly 10% in the upcoming (2045) 

(USAID 2016). The following section lists a relevant summary of prior studies in 

Ethiopia related to the futuristic impact of climate change on water resources.  

Serur and Sarma (2016) studied the climate change effects on the water resources of 

the Weyib watershed, Ethiopia. They used CanESM2 of the CMIP5 climate change 

model with three RCP emission scenarios to predict future rainfall and temperature; 

SWAT to estimate water availability until 2100. They detected that both precipitation 

and temperature showed an increasing trend in the upcoming periods. As well, they 



 

19 
 

identified a rising trend of yearly average daily water availability in the ranges of 

11.82-12.68% (RCP 2.6), 3.98-20.40% (RCP4.5), and 9.18-24.49% (RCP8.5), and a 

decreasing trend of PET in all the three RCPs climate change scenarios compared to 

the reference period (1984-2004). They also estimated the seasonal variation of water 

availability in the basin. The result showed an increase in water availability in the 

rainy and transitional seasons, whereas a decline in the dry season. Gebre and 

Ludwing (2015) used five GCM outputs of CMIP5 based on high and stabilisation 

scenarios to appraise climate change impacts on water resources of Giligel Abay, 

Ribb, Gummer, and Megech catchments of Lake Tana watershed in Ethiopia. The 

result revealed that both temperature and PET increased in all months and seasons and 

all five GCMs. Although it varies in both magnitude and direction, precipitation 

shows an increasing trend in the future. The average yearly runoff may rise about 

+55.7% (RCP4.5) and +74.8% (RCP8.5) for the period of (2035-2064), and by 

+73.5% (RCP4.5) and +127.4% (RCP8.5) for the period (2071-2100) as compared to 

the baseline period (1960 to 2005). They conclude that the increase in runoff may 

positively contribute to existing development projects and crop productivity based on 

rain-fed agriculture in the basin on the condition that appropriate mitigation and 

adaptation measures are applied to diminish possible harmful impacts. The effect of 

climate change on the water availability in Lake Tana watershed in Ethiopia for early 

(2010 to 2039), mid (2040 to 2069), and late (2070 to 2099) 21st century was studied 

by Nigatu et al. (2016) using HadCM3 GCM output of A2 and B2 emission scenarios 

under SRES. Their result revealed that for both emission scenarios and all three future 

periods, Lake Tana's water storage constantly increases relative to the baseline period 

(1981 to 2010) due to the increase in rainfall noticeably from 9 to 11%. Kim and 

Kaluarachchi (2009) study showed that the Upper Blue Nile River Basin (UBNRB) in 

northern Ethiopia might not be adversely affected by climate change. They used the 

ensemble mean of six GCMs under A2 of SRES. The result revealed that both rainfall 

and runoff showed an increasing trend (2040 to 2069) compared to (1961 to 1990). 

The rising precipitation trend in the UBNRB implies water availability for crop 

production, reduced severe drought events, and a slight increase in flood risk by 

2050s. 
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According to Dile et al. (2013), both rainfall and discharge of the Gilgel Abay River 

basin in Ethiopia decreased in 2010-2039 and increased in 2070-2100. They used 

HadCM3 GCM output based on A2 and B2 scenarios of SRES to project the future 

temperature and precipitation and SWAT for simulation of its effect on discharge. 

They concluded that the rise in rainfall in the wet period (Belg and Kiremt) enhances 

crop production in the basin, which is rainfall dependent even though the increase in 

evapotranspiration (ET) is expected due to the temperature rise. Depending on 

adaptation measures implemented in the area, the increase in flow may positively 

impact (water development projects) or negative impact (recurrent flooding 

problems). Mekonnen and Disse (2018) examined the effect of climate change on the 

Blue Nile River basin's water resources in Ethiopia based on CMIP3 and CMIP5 

GCMs. The ensemble results showed an increasing rainfall pattern ranging from 1.0% 

to 14.4%, maximum temperature from 0.4oC to 4.3oC, and minimum temperature 

from 0.3oC to 4.1oC. Wagesho et al. (2013) examined the climate change impacts on 

the Blate and Hare watersheds runoff in Ethiopia. They used two GCM outputs under 

CMIP3 based on A2 and A1B emission scenarios input to the SWAT hydrological 

model. Results revealed that extreme events of daily rainfall and temperature would 

be increasing in the future compared to observed events. During the simulation period 

(2081 to 2090), the streamflow in the Hare and Blate River basins ranges from -4% to 

18% and -4 % to 14%, respectively, compared to the baseline period (1990-1999). 

Setegn et al. (2011) analysed future temperature and precipitation in Ethiopia's Lake 

Tana basin using A1B, A2, and B1 emission scenarios. Then, they applied the 

temperature and precipitation generated from the 15 GCMs as an input to the SWAT 

model to predict streamflow and other hydrological components in the two future 

periods. They found that from 2070 to 2100 and for the three emission scenarios, the 

temperature increased 2oC-4.4oC and 2.2oC-4.9oC in the wet and dry periods, 

respectively. For the same period, the precipitation varies from -13% to +12% and -

14% to +16%, respectively. They also observed a statistically significant decline in 

streamflow magnitude following the same direction as rainfall compared to the 

baseline period (1980-2000). Both soil moisture and groundwater also show a 

reduction in the future. They concluded that the basin might be exposed to agricultural 

drought unless ample irrigation water is available. A study was carried out by 
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Chaemiso et al. (2016) in the Omo-Gibe basin in southern Ethiopia to spot the impact 

of global change on water resources. They used the ArcSWAT model and the A1B 

emission scenario under SRES. The result indicated that both temperature and the 

annual PET would increase in the 2030s and 2090s. The rainfall varies considerably 

relative to the base period (1980 to 2005). The surface water availability is declining 

within the dry period and rising within the basin's wet period. 

Abraham et al. (2018) revealed a high water availability reduction in the future in the 

Katar and Meki sub-watersheds of Lake Ziway, Ethiopia. They applied the outputs of 

multiple/three GCMs under stabilisation (RCP4.5) and high (RCP8.5) climate change 

emission scenarios and HBV. They reported that temperatures (maximum and 

minimum) would rise for the above scenarios. Rainfall shows a decreasing trend by 

up to 51.19% within the 2050s (2041 to 2070). Annual runoff depth was reduced by 

up to 19.45% and 20.28% in the Katar and Meki sub-watersheds, respectively, by the 

2080s (2071 to 2099) compared to the base period (1980 to 2005). Another study in 

the same watershed by Zeray et al. (2006) indicates that the water resources in the 

watershed will be significantly affected by climate change in the future. They used 

B2A and A2A scenarios and SWAT to analyse the future interaction between climate 

change and water resources in the Lake Ziway watershed. They reported that average 

inflow volume to Lake Ziway decreased notably by about 19.47% and 27.43% for 

A2A and B2A scenarios, respectively, for the time from 2001 to 2099 relative to 1981 

to 2000, even though the average monthly and annual rainfall will increase in Lake 

Zeway watershed by up to 29% and 9.4%, respectively. The rise in the rain is 

concealed by the increase in temperature (minimum and maximum) in the region.  

Previously, most climate change studies in Ethiopia were based on CMIP3 climate 

change models (Zeray et al. 2006; Setegn et al. 2011; Dile et al. 2013; Wagesho et al. 

2013; Chaemiso et al. 2016; Nigatu et al. 2016) and had been relying on a 

particular/finite number of climate models (Dile et al. 2013; Serur and Sarma 2016; 

Nigatu et al. 2016). The results will be highly uncertain if the simulation is based on a 

particular/finite number of GCMs. It will also most likely mislead decision-makers 

and policy developers (IPCC 2007; Taye et al. 2011). Thus, predicting climate change 

impacts based on multiple GCMs under CMIP5 is essential in Ethiopia for well 

perceptive of the potential climate change effects, informed decision making for 
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proper water resource management, and effectively responding and adapting to 

projected changes; otherwise, the consequences become awful. 

2.2.4 State reaction to threats of climate change in Ethiopia 

In Ethiopia, several strategies were implemented to reduce climate change's 

detrimental outcomes and maximise the country's adaptive capability. The 

government has signed some of the global and regional environmental agreements 

associated with global warming. Ethiopia also approved the UNFCCC (United 

Nations Framework Convention on Climate Change) and the Kyoto Protocol on 31th 

May 1994 and 21st February 2005. The 1992 Rio Convention on Environment and 

Development guide to designing of its conservation strategy in 1993 (EPCC 2015b). 

The 1995 Constitution of Ethiopia provides for environmental rights and a policy of 

promoting sustainable development. The constitution stipulated the environmental 

right under Article 44 (1), which states that "the citizens have the right to a clean and 

healthy environment".  

Ethiopia prepared the National Adaptation Programs of Action (NAPA) in June 2007 

(Tadege 2007). The NAPA includes the following 11 projects: Encouraging 

crop/drought coverage package, reinforcement of flood and drought timely caution 

structures, implementation of small-scale irrigation techniques and wise utilisation of 

water, pasture management measures, sustainable usage of wetlands, capacity 

building program for climate change adaptation, multipurpose large-scale water 

development project, community-based carbon sequestration project, establishing of a 

state research centre for climate change, strengthening malaria control package and 

upgrade of agroforestry practices in selected parts of the country. In addition to 

NAPA, based on Copenhagen's agreement, Ethiopia submitted Nationally 

Appropriate Mitigation Actions (NAMAs) to UNFCCC. The document lists about 88 

projects (EPCC 2015b). 

For a long time, emergency food aid was the first response to food insecurity in the 

country. However, emergency support delivery repeatedly as food for work had not 

solved the hitch. This observation influenced the launching of a Productive Safety Net 

Program (PSNP) in 2005. PSNP is credited for improvements in natural resource 

management and the environment through the conservation measures (watershed 
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management techniques) executed by the beneficiary households. PSNP builds 

households' resilience to climate variability and weather extremes (EPCC 2015b). On 

the other hand, (Weldegebriel and Prows 2013) reported that although the PSNP has 

effectively protected farmers from malnutrition and safeguarded farmers for the squat 

period, it is not developing resilience to hazards lastingly (Cochrane and Singh 2017). 

Presently, it is supported by the climate-smart initiative project to enhance its 

contribution to climate resilience. 

Ethiopia launched a Sustainable Land Management Program in 2008. The second 

phase of the program introduces methods to tackle climate variability/change 

interrelated hazards and reduce GHG emissions to meet the GTP (Growth and 

Transformation Plan) and CRGE (Climate Resilience Green Economy) targets. The 

current GTP has a section entitled "Environment and Climate Change." The CRGE 

predates GTP II, provides a blueprint for achieving middle-income status by 2025 

with no net increases in greenhouse gas emissions relative to 2010 levels (USAID 

2016).  The CRGE approach concentrates on both climate change adaptation and 

mitigation objectives. Having a policy framework is essential, but it is also equally 

noteworthy to monitor policies' implementation. In this regard, it is reported that there 

is a problem with implementation and enforcement capacity. The country has already 

started the implementation of some of the vital CRGE components. The policy 

framework is not yet complete. Literature and studies on the country's policy and 

institutional response to ongoing climate change threats are limited.  

There are two general approaches to controlling the undesirable impacts of ongoing 

climate change: mitigation and adaptation, slowing down GHG emissions, and 

reducing their consequences, respectively. Concerning water resources and crop 

production, adaptation measures consist of using varieties and drought-resistant crops, 

using water-efficient irrigation techniques like drip irrigation, implementing water 

harvesting technology, and adjusting crop calendars (Bates et al. 2008). Hadgu et al. 

(2015) point out that alteration in crop type/variety, watershed management measures, 

crop diversifications, an adjustment in planting calendar, and water-efficient irrigation 

practices are adaptation measures that have been implemented in Tigray regional state 

in Northern Ethiopia. Another report by Ahmed (2016) showed that the above-listed 
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adaptations strategies are commonly implemented by farmers in Ethiopia's central 

Rift valley. 

2.2.5 Other climate change impact studies  

The followings are the summaries of the studies related to future climate change 

impact on water resources. 

Chaturvedi et al. (2012) used eighteen GCMs and all the four climate change emission 

scenarios (RCP8.5, RCP6.0, RCP4.5, and RCP2.6) under CMIP5 to project surface 

temperature and rainfall for overall India. They found that, under no policy scenario 

(between RCP6.0 and RCP8.5), the mean surface temperature increases in the range 

of 1.7 to 2 oC and 3.3 to 4.8 oC for the period of (2021 to 2050) and (2070 to 2099), 

respectively compared to baseline time (1961 to 1900). Even if there is a more 

considerable spatial variation, rainfall rises by 4 to 5% and 6 to 14%, respectively, 

from 2021 to 2050 and 2070 to 2099, compared to the reference period. Their findings 

conclude that the ensemble mean closer to the observed climate rather than individual 

climate models. They recommended that the new RCP climate change emission 

scenarios under CMIP5 be used for climate change impacts and vulnerability 

estimation for adaptation planning by considering extreme projection. 

In Kerala, India's humid tropics, Raneesh and Santosh (2011) assessed the climate 

change effects on streamflow at the watershed level. They used the Providing 

Regional Climates for Impacts Studies (PRECIS) regional climate model under A2 

and B2 emission scenarios to project future temperature and precipitation and the 

SWAT hydrological model to simulate streamflow. They found that, for the 

southwestern monsoon period in the A2 emission scenario, there is an increase in 

temperature and ET by 2oC and 1.14%, respectively. Whereas rainfall and streamflow 

decreased by 11.5% and 7.53% from 2071 to 2100 compared to the baseline period 

(1981-2010). For the same period in the B2 scenario, temperature and ET increased 

by 1% and 1.12%, respectively. In contrast, rainfall and streamflow decreased by 

8.79% and 4.62%, respectively. A similar trend was projected in the northeast 

monsoon also. 

Basheer et al. (2016) used four GCMs under CMIP5 combined with SWAT to 

examine the potential climate change effects on future streamflow magnitude and 



 

25 
 

ecosystem habitats in the Dinder river basin in Sudan based on RCP4.5 and RCP8.5 

climate change scenarios. Their studies concluded that the prevalent climate over the 

basin deciphers drying and warming trends. The streamflow has increased in the 

2020s, 2050s, and 2080s relative to the baseline period (1961 to 1990). Also, the 

projected climate supports the ecological restoration of the habitats of flora and fauna 

in the Dinder national park in the basin on the condition that strong consideration will 

be given to extreme events to evade the undesirable impacts on the park’s ecosystem 

habitat. 

Leta et al. (2017) used SWAT and assessed the effect of precipitation, temperature, 

and CO2 concentration changes on the water budget components of the Heeia 

watershed in Hawaii, USA. Due to the changes in projected temperature and rainfall, 

they observed that an overall decrease in all water budget components in general and 

groundwater (up to 15%) in particular by 2100 might have severe water availability 

implications in the area. 

Vicuña et al. (2012) used three GCMs based on SRES, namely B1 (low), A1B 

(medium), and A2 (high) emission scenarios under CMIP3 combined with the Water 

Evaluation and Planning (WEAP) hydrological model to recognize the impact of 

upcoming temperature and precipitation changes on water resources and irrigated 

agriculture in Limari basin in Chile for two future periods (2010-2040) and (2070-

2100). They had concluded that the climate in the basin demonstrates drying and 

warming trends. In turn, it reduces the amount of water availability and soil moisture 

in the basin (precipitation effect). Furthermore, due to enhanced ET at the plot scale, 

the demand for water in the basin increases (temperature effect), leading to a 

complicated situation for water resource management unless integrated water resource 

management practice is implemented to adapt to climate change. 

A study carried out in the Mekong Delta in Vietnam by Shretha et al. (2016) revealed 

that groundwater level and storage are projected to decline at the end of the 21st 

century due to the rise in temperature by 1.5oC (RCP4.5) and 4.9oC (RCP8.5). The 

rainfall variability increases in the wet and decreases in the dry season. They have 

used five GCMs based on RCP4.5 and RCP8.5 climate change emission scenarios 

under CMIP5 to project the future temperature and precipitation. Groundwater level 

and storage were estimated by MODFLOW, whereas WESPASS hydrological models 
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estimated groundwater recharge and its spatial variation to examine the climate 

change impacts on groundwater resources in the study area. 

Adhikari and Nejadhashemi (2016a) used six GCMs combined with the SWAT model 

to assess the impact of global change on water resource components such as potential 

ET, soil moisture content, surface runoff, and water yield in Malawi at the sub-basin, 

watershed, and country levels. They found a significant variation of -5.4% to 24.6% 

in annual rainfall,-5% to 3% in annual ET, 7.5% to 50% in runoff and water yield, and 

up to an 11.5% increase in yearly soil water at the country level. At the sub-basin 

level, the annual rainfall, runoff, and soil water increase in the north and declines in 

the south part of the country by 2050s (2041 to 2060) compared to the 1990s (1981–

2000). Since all the models projected a distinct spatial pattern with an increase in 

annual rainfall in the north and a progressive reduction towards the south, they 

concluded that a significant increase in precipitation in the north part of Malawi 

enhanced agricultural productivity or induced flood hazards. In contrast, the southern 

region was found to be more prone to droughts. 

Furthermore, Adhikari and Nejadhashemi (2016b) used the same GCMs, hydrological 

model, methods, and emission scenarios to evaluate the effect of global warming on 

water resources in Tanzania by the 2050s. In contrast to Malawi, although no distinct 

spatial trends were recognized in Tanzania, the result showed a seasonal trend. At the 

country's level, annual rainfall increases (4.3 to 30.7%) during the wet seasons but 

decreases during the dry seasons (-31.5 to 6.3%). In both seasons, both PET and soil 

moisture content increased. A significant increase in surface runoff (18.3 to 104.8%) 

was reported for the wet seasons.  Overall, the sub-basin, watershed, and country 

levels revealed an increase in Tanzania's water resources during the wet seasons in the 

2050s (2040–2059) compared to the 1990s (1980 to 1999). Depending on the level of 

water management technologies implemented in the country, a significant increase in 

surface runoff may have a positive (improve crop production) or negative (increase 

soil erosion and flood risk) impact. 

The climate change influence on streamflow and sediment yield in the Gorganround 

basin in Iran was studied by Mahmood et al. (2016) using three GCMs output for 

three emission scenarios: B1, A1, and A1F1 combined with the SWAT hydrological 

model. They found that an increase in sediment yield of 35.9%, 44.5%, and 47.7% 
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and an increase in discharge of 9.5%, 2.8% and 5.8% for the B1, A2, and A1F1 

emission scenarios, respectively, by 2050s (2040–2069) compared to the baseline 

period (1971 to 2000). They concluded that climate change has more effect on 

sediment yield than streamflow. Besides, the increase in discharge and sediment yield 

is more marked in wet seasons, and the decrease is more significant in summer.  

Zhu et al. (2016) used the coupled land surface and hydrological model system 

(CLHMS) based on RCP2.6, RCP4.5, and RCP8.5 emission scenarios under CMIP5 

to predict the influence of climate change on water resources of the Yellow river basin 

in China. They found a considerable reduction of water resources up to 30% in the 

early and mid-21st century (up to 2080) relative to the reference period (1962 to 

2005). Nevertheless, after 2080, the RCP8.5 scenario simulation increased extreme 

flood events due to increased rainfall. 

In West Africa (upper Senegal basin), Mbaya et al. (2015) investigated the impact of 

climate change on hydrological variables and water resources availability by using the 

Max Planck Institute for Meteorology-Hydrology Model (MPI-HM) output data based 

on RCP4.5 and RCP8.5 emission scenarios as an input to the hydrological model to 

predict ET, soil moisture content, runoff and streamflow for the period of 2071 to 

2100. In most of the basin, a general reduction of ET, soil moisture content, runoff, 

and streamflow was identified due to the decline in the magnitude of rainfall in the 

area for both emission scenarios compared to the baseline period (1971 to 2000). 

However, there are some localized increases in highland parts of the basin, 

particularly for uncorrected data. The reduction in water availability is more severe in 

the case of the RCP8.5 scenario pathway than RCP4.5.  

Dumenu and Obeng (2016) investigated the repeatedly observed climate change 

impacts, socioeconomic factors contributed to vulnerability, and adaptation strategies 

implemented by rural communities in Guana. They reported a decline in crop yield, 

unpredictable rainfall, changing crop season, and extreme events like recurrent floods 

and prolonged drought are the most observed climate change impacts in Guana. For 

instance, socioeconomic aspects, such as heavy reliance on climate change susceptible 

livelihood, less diversified income source, high illiteracy level, and inadequate access 

to climate change information, contribute to climate change's high vulnerability level. 

Furthermore, the most dominant forms of adaptation strategies engaged by rural 
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communities in Guana based on indigenous knowledge and experience are crop 

diversification, farm size expansion, migration to urban areas, and engaging in non-

climate sensitive occupation. Guana's situation is just a reflection of the condition of 

the African continent. 

Changkun et al. (2015) examined the effect of climate change on streamflow in the 

Chu river basin, Central Asia, using five GCMs from CMIP5 under RCP8.5, RCP4.5, 

and RCP2.6 emission scenarios, along with the SWAT hydrological model. They 

found that, for all emission scenarios, precipitation showed a decreasing trend, 

although the difference is noted among scenarios.  As well, under all scenarios and 

both short (1916-2045) and far future (2066-2096) periods, a general reduction trend 

was recognized in mean annual runoff in streamflow (-27.7% to -6.6%), snow (-

21.4% to 1.1%) and glacier (-26.6% to -1%) compared to the reference period (1966-

1995). They concluded that the climate would become drier and warmer, and the 

maximum streamflow will happen one month in advance in the future compared to 

the reference period in the study area. 

Shrestha et al. (2016) estimated the potential climate change effect on temperature, 

precipitation, and streamflow of Nepal's Indrawati river basin. They used RCP4.5 and 

RCP8.5 scenarios under one regional climate model and two GCMs coupled with 

SWAT. It is found that the average ensemble temperature of the area will 

continuously rise and increase by 2.50C to 4.90C by the end of the 21st century 

compared to the reference period (1981 to 2005). Whereas the precipitation shows no 

distinct trends, its magnitude varies with time and RCPs. The annual streamflow will 

increase in the future, but the change is not consistent during the year. 

2.3 LU/LC Change Impacts on Water Availability 

Land cover covers the surface of the Earth, such as water, grassland, and forest, 

whereas land use refers to how the land cover is modified. Land use includes 

agricultural land, recreation areas, and built-up land. Due to its diverse environmental 

impacts, LU/LC change has become a global concern (Bewket 2002).  

LU/LC changes and socio-economic dynamics have a strong relationship (Maitima et 

al. 2009). Socio-economic development drives LU/LC changes, potentially impacting 

water resources (Wagner et al. 2013). As the population increases, the need for 

cultivated land, grazing land, fuelwood, settlement areas also increases to meet the 
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growing demand for food and energy.  Population growth, lack of awareness, and 

weak management are the leading causes of LU/LC change in Ethiopia (Bewket 

2002).  

LU/LC change is responsible for altering the hydrological response of watersheds in 

Ethiopia (Setegn et al. 2009; Gashaw et al. 2018). Several studies have reported the 

impacts of LU/LC changes on water availability. The conversion of forest to 

agriculture between the 1985 and 2011 periods in the Angereb watershed in Ethiopia 

has increased the mean wet flow by 39% and decreased the dry average flow by 46% 

(Getachew and Melesse 2012). It is also evident that surface runoff is lower, and 

groundwater flow is higher in vegetative lands due to the greater infiltration of rainfall 

into the shallow and deep aquifers. On bare land, where vegetation is absent, surface 

runoff is higher, and groundwater flow is lower (Bewket and Sterk 2005).  

Gashaw et al. (2018) detected the hydrological impacts of LU/LC changes in the 

Adanssa watershed in Ethiopia. They found that the expansion of a cultivated and 

urban area, and the forest, scrubland, and grassland withdrawal during the 1985 to 

2015 periods had increased the annual and wet season flow, surface runoff, and water 

yield. The LU/LC changes, on the other hand, reduced dry season flow, groundwater 

flow, lateral flow, and evapotranspiration. They concluded that the LU/LC change in 

the watershed significantly impacts the area's hydrology. These impacts will continue 

in the future. The increase in wet season flow will result in a flood, and a decrease in 

dry season flow will affect crop production unless proper watershed management 

measures are implemented in the area. Welde and Gebremariam (2017) identified the 

impact of LU/LC change on the hydrological responses of the Tekeze Dam watershed 

in Ethiopia. The discharge was increased in the watershed because of increased 

agricultural land and bare land at the expense of shrubland and grassland. The annual 

average discharge was increased by 6.20% due to LU/LC change in the study period 

(1986 to 2008). Chakilu and Moges (2017) assessed the effect of LU/LC change on 

the low flow of the Gumara watershed in Ethiopia. The result revealed that the 

bushland and forest had been changed into croplands. As a result, the low flow was 

reduced by 18.87% in the study area from 1973 to 2013. Tufa et al. (2015) evaluated 

the hydrological impact of LU/LC change in the Ketar watershed, Ethiopia. The 

expansion of cropland and settlement and reduction of grassland and forest in the 



 

30 
 

watershed increased monthly average wet flow by 3.8% for 2010 compared to 1986. 

In contrast, the monthly average dry season flow was reduced by 12.3% at the same 

time. Getahun and Van Lanen (2015) identified the hydrological effect of LU/LC 

dynamics of the Melka Kuntrie watershed in Ethiopia. Cultivated land has been 

stretched, whereas forest, grass, and shrublands are contracted in the study period 

(1986 to 2003).  

The change in LU/LC increases wet season streamflow by up to 25%, even though 

dry season streamflow was inconsistent from month to month. Due to the decrease in 

forest and the increase in bare land and build-up areas in the metropolitan district of 

Mansehra in Pakistan, river discharge increased by 33.61% from the year 2000 to 

2010 (Younis and Ammar 2018). Yira et al. (2016) assessed LU/LC change impacts 

on the Dano watershed streamflow in West Africa. A decrease in Savannah and an 

increase in cultivated land and build-up areas resulted in an increment of streamflow 

by 17%. Yang et al. (2014) assessed the hydrological response of LU/LC change in 

China's Laohahe basin.  A significant reduction in streamflow up to 64% was 

exhibited within a short period (1999 to 2009) in the study area. Human water 

consumption appeared to be the most likely factor contributing to the significant 

reduction in streamflow in addition to increased build-up areas and cropland and 

decreased grassland in the watershed. Petchprayoon et al. (2010) studied the impact of 

LU/LC change on the Yom watershed streamflow in Thailand. A significant 

expansion of urban areas within a short period (1990 to 2006) was observed in the 

watershed. The change in LU/LC significantly increased the streamflow; more 

specifically, the peak flows at most measurement stations.  

Pokhrel (2018) predicted the hydrological response for LU/LC change in the Khokana 

outlet of the Bagmati River, Nepal. Built-up areas increased by 6%, whereas the 

forest, shrubland, grassland, cropland, open fields, and waterbody decreased from 

2000 to 2010. As a result, surface runoff has increased by 27%. In contrast, lateral 

flow and groundwater flow are reduced by 25% and 21%, respectively. 
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2.4 Variability and Trend Analysis Studies 

Many trend analysis studies have been done in Ethiopia at different spatiotemporal 

scales and came up with mixed results. The following are the summaries of the 

studies related to the trend and variability of hydro-meteorological variables. 

Asfaw et al. (2018) analyzed the spatiotemporal dynamics of meteorological variables 

of the Woleka watershed in Ethiopia based on 114 years (1901 to 2014). They 

employed a Mann-Kendall (M-K) trend test and Sen’s slope estimator to identify the 

trend and magnitude of the trend, respectively. They found that the main rain season 

(Kiremt) and annual rainfall have decreased significantly with a rate of 15 and 13mm 

per decade, respectively, at a 0.05 level of significance. A highly variable and erratic 

but insignificant (1.93mm per decade) decrease in Belg rain was recorded. The 

temperature trend analysis revealed that the maximum temperature exhibited an 

insignificant increasing trend, whereas the minimum temperature exhibited a 

significant increasing trend for all months. They conclude that rainfall in the study 

area is erratic, unreliable, and concentrated into two months (July and August). The 

variability and change in onset and cessation periods, rather than the total amount, are 

the main challenges of rainfall distribution in the study area. The rain onsets late and 

ends up very early-which makes the cropping calendar shorter than before. Moreover, 

erratic rainfall and prolonged dry-spell periods during the primary rain season have 

been significant phenomena that adversely affect agricultural activity. Therefore, it is 

vital to adjust the agriculture activity to the variable situation and design planned 

climate change adaptation strategies to enhance rain-fed dependent smallholder 

farmers' adaptive capacity and resilience. 

Kiros et al. (2016) analyzed the trend and variability of rainfall in the Geba river basin 

in Ethiopia's semi-arid climate. They used 43 years (1971-2013) measured rainfall 

data of seven stations and employed a non-parametric M-K test and Sen’s slope 

estimator to identify the trend and magnitude of the trend. They came up with a mixed 

result. The Geba river basin's rainfall pattern exhibited a very high variability over 

time, with a peak value in July and August. Annual and seasonal rainfall upstream 

showed a non-significant decreasing trend, while downstream showed an increasing 
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trend. They concluded that seasonal and annual rainfall's temporal variability might 

affect water availability and crop production in the study area. 

Chakraborty et al. (2013) applied both parametric and non-parametric tests to study 

the trend and variability of rainfall of the Seonath sub-basin in India from 1960 to 

2008. They used the M-K trend test and Sen’s slope estimator to detect the trend and 

size of the trend, respectively. The results showed that rainfall decreased seasonally 

and annually, with high interannual variability (CV=22.08%) in the northern parts of 

the watershed, except for a few stations in the southern part of the area, which showed 

a non-significant increasing trend. 

Raju and Nandagiri (2017) evaluated trends and variability of rainfall, streamflow, 

maximum temperature, and minimum temperature in the upper Cauvery Basin, India, 

based on 30 years (1981 to 2010) data. They used CV and percentage departure for 

variability and the seasonal Kendall and Sen’s slope estimators to identify the trend 

and magnitude of the trend. They found that although rainfall varies largely from 

during the winter season (December to March) up to 71%, its variability is less than 

10% during the other months, including the Basin's monsoon season. Maximum 

temperature showed less variability (5-10%) across all stations and months, whereas 

minimum temperature exhibits more variation at all stations, particularly during 

winter. Streamflow also showed slight variation. Rainfall indicates no statistically 

significant trend at any of the stations in the basin during the study period. 

Concerning the trend of temperature, they found mixed results. Streamflow showed 

no significant trend, except for one station in the Basin.   

Wagesho et al. (2013) examined the spatiotemporal variability of seasonal and annual 

rainfall over Ethiopia based on 0.50 resolution gridded monthly rainfall data from 

1951 to 2000. They employed the M-K test and Moran spatial autocorrelation method 

for the analysis. The annual and summer (primary rainy season) rainfall data show 

significant decreasing trends in northern and western parts of the country, whereas an 

increasing trend in annual rainfall was observed in a small area in eastern parts of 

Ethiopia. Statistically, insignificant trends were observed in most regions (77%) of 

Ethiopia. 

The spatiotemporal dynamics of rainfall in Ethiopia were investigated by Cheung et 

al. (2008). They used historical rain gauge data from 134 stations in 13 basins from 
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1960 to 2002. They reported no significant change/trend in annual rainfall at the 

country and watershed level in Ethiopia. Although there is a significant decline in 

Kiremt season (June to September) rainfall in the country's central and southwestern 

parts, the Belg (the primary source of rain for the south and southeast of the country) 

rainfall shows an insignificant increment with higher variability. The rise in Belg 

rainfall compensated for the dwindling in Kiremt rain. 

Based on the comprehensive review of climate variability in Ethiopia, Conway (2000) 

concluded that spatially, average annual rainfall generally increases from the 

northeast to the southwest with increasing elevation. Temporally, there is no evidence 

for the overall trend or regime change in annual rainfall in the northeast Ethiopian 

highlands. However, a slight increase in Belg rainfall (in1980s and 1996s) and a very 

slight decrease in Kiremt rain until the mid of the 1980s are reported. Osman and 

Sauerborn (2002) investigated the 100 years (1898 to 2097) trend of summer rainfall 

of the central highlands of Ethiopia. They concluded that summer rainfall had shown 

a decreasing trend statistically significant at a 1% level throughout Ethiopia's central 

highlands.  

Gebre et al. (2013) analyzed the variability and trend of rainfall in the Tigray regional 

state in Ethiopia. They used 30 years (1980-2009) of daily rainfall data from five 

meteorological stations in the region. The M-K test and Sen’s estimator were 

employed for trend and size of trend detection, respectively. They reported that 

rainfall in the area is highly unpredictable. Sizeable interannual variability of rainfall 

is observed in the area. Both the onset and cessation dates have changed significantly 

over time. The Kiremt precipitation has ended earlier in the northeast than in the 

southeast part of the region. Farmers’ perception in the area strongly supports these 

results. The M-K test showed statistically a non-significant (P > 0.05) decreasing 

trend in annual and seasonal rainfall amounts over time in the region. However, these 

disagree with the farmers’ perception of the area. 

The space-time variability and trend of rainfall in Ethiopia's central highlands were 

investigated by Resoll (2011). He used 20 years (1987-2007) of daily rainfall data 

from seven meteorological stations to analyse. The result revealed that annual and 

Kiremt season (July to October) rainfall showed an increasing trend in the region 

while the Belg season (February to May) rainfall declined. Also, high rainfall 
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fluctuation was observed in Kiremt, whereas a shorting of the Belg season and an 

increase in temperature and PET were recognized in the Belg season. 

Trend and space-time variability of annual and seasonal rainfall and temperature of 

UBNRB in Ethiopia were investigated from 1981 to 2010 by Mengistu et al. (2014). 

They employed slopes of regression lines using the list square method and the F-

distribution test to appraise trends and significance. They come up with mixed results. 

In all seasons, minimum temperature showed a statistically significant increasing 

trend in a large portion of the basin, while declining trends were observed in the 

Basin's western and north-eastern parts. Annually, both the minimum and maximum 

temperatures showed a statistically significant warming trend in the area except in the 

small western side part of the basin. Rainfall in the area is highly variable, and it 

shows a non-significant increasing trend (35mm per decade) for the period studied. In 

general, they concluded that the mean maximum temperature increased at a slower 

rate than the mean minimum temperature. There was no statistically significant trend 

in annual rainfall in the basin during the study period. 

Jury and Funk (2013) evaluated the long-term trend of historical and future rainfall 

and temperature over Ethiopia. They used observed data and A1B emission scenarios 

from Geophysical Fuilud Dynamics Laboratory (GFDL) to examine historical (1948-

2006) and future (2001-2050) periods, respectively. They observed that historically, 

temperature shows an increasing trend (0.03°C per year) across most of Ethiopia, and 

monthly rainfall shows a decreasing trend (−0.4 per year) over Ethiopia’s 

southwestern region. The same trends are projected to continue up to 2050. The 

historical and future decline in rainfall and the rise of temperature over Ethiopia may 

reduce agricultural production and cause food insecurity. 

Alemayehu and Bewket (2017) measure the spatial and temporal variabilities and 

trends of monthly temperature (1981 to 2011) and monthly rainfall (1983 to 2013) in 

the central highlands of Ethiopia. They employed linear regression and the F-

distribution test to detect trend/change and statistical significance of trends. They 

found that both the annual and Kiremt rainfall show statistically insignificant rising 

trends while Belg rainfall shows significant declining trends. Besides, both the 

minimum and maximum temperatures showed a statistically significant warming 

trend across the study area. Trends of temperature and precipitation vary significantly 
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in the region. Thus, site-specific planning and adaptation measures to cope with 

climate change's adverse impact are highly needed. 

Eshetu et al. (2018) investigated local level trends and variability of rainfall of two 

stations data, namely, Gatira (1983 to 2013) and Setema (1979 to 2011) in 

southwestern Ethiopia. The M-K test revealed no statistically significant annual and 

Kiremt rainfall trend in the area for the analysis period. They found a mixed result. 

The yearly rain showed an increasing and decreasing trend in Gatira and Setema, 

respectively. Unlike other parts of the country, rainfall in the area has low inter-

annual variability, with CV values of 8% and 23% at Gatira and Setema. 

In recent days annual and Kiremt rainfall for the southern, eastern, and south-western 

Ethiopia exhibits a significant reduction since about 1982. Nevertheless, there is no 

trend in annual, seasonal rain, and rainy days over central, northern, and north-

western Ethiopia from 1965 to 2002 (Seleshi and Zanke 2004). Seleshi and Zanke 

used 11 station data in different agro-climatic zones of Ethiopia and employed the M-

K test for the analysis. 

Funk et al. (2012) identified a significant drop in rainfall and rising temperatures over 

time in many parts of Ethiopia. Belg and Kiremt rainfall has declined by 15 to 20% 

since the mid 1970s in southern, south-eastern, and south-western Ethiopia (Funk et 

al. 2012). 

Shi et al. (2013) investigated the trend and spatial variation of rainfall in an upstream 

watershed of the Huai River in China. They used 60 years (1951 to 2010) of daily 

rainfall data from 38 rain gauge stations and employed the M-K test and linear 

regression for the analysis.  They found that the annual rainfall exhibits a slightly 

increasing trend with 0.042mm/year over the analysis period. Seasonally, they found a 

mixed result. Both negative (in spring and autumn) and positive (in summer and 

winter) trends were observed in the region. Spatially, the annual rainfall showed 

positive and negative trends in the northern and southern regions, respectively. 

Admassu and Seid (2006) assessed the trend of rainfall over Ethiopia from 1973 to 

2002. They used ten selected station data and the M-K test for the analysis. They 

found that the annual total rainfall exhibits a statistically significant decreasing trend, 

while Belg rainfall does not show any significant trend in the analysis period. It is 

difficult to conclude the trend over the country based on only ten station data. 
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Abrha and Simhadri (2015) analyzed the monthly, seasonal, and annual rainfall trends 

in southern Tigray, Ethiopia. They used 34 years (1978 to 2012) rainfall data from 

three stations in the area and an M-K test for the analysis. They reported a statistically 

significant increase in Kiremt rainfall in the region at the 0.01 and 0.05 levels, while 

Belg rainfall exhibits a non-significant decreasing trend. Annual rainfall does not 

show any significant change/trend in the area due to an increasing and decreasing 

trend in Kiremt and Belg rain, respectively, in the region. 

Rosell and Holmer (2007) analyzed the CV, rainy days, dry spells, and rainfall 

intensity in South Wollo, Ethiopia. They used 40 years from 1963 to 2013 data for the 

analysis. They reported that rainfall varies significantly in the area with minor 

changes in the annual amount. Despite the fact that rainfall in the Belg season has 

decreased and rainfall in the Kiremt season has increased, both seasons have become 

shorter. The more considerable precipitation variation in the area affects crop 

production in the region, particularly Tef (stable crop in Ethiopia) production in the 

Belg season. 

Mekasha et al. (2014) analyzed climate extremes using 42 years (1967 to 2008) daily 

measured temperature and rainfall data from 11 stations in three different eco-

environment in Ethiopia, namely highland, pastoral, and agro-pastoral. They found 

mixed results. Temperature extremes showed both a negative and a positive trend. 

There is a general tendency to increase warm extremes and a decrease in cold 

extremes in the regions. Precipitation extremes showed high variability within 

stations. They concluded that the local climate's response to global warming could 

differ in physiographically diverse areas (Mekasha et al. 2014).   

2.5 Soil Loss Rate  

Soil erosion is a process of losing topsoil particles by erosion agents (Eckelmann et al. 

2006). Soil erosion resulting from the natural causes exclusive of man's interference is 

called geological erosion, which occurs at low rates. When soil loss exceeds the 

annual soil formation, mainly in agriculture, it will generate accelerated soil erosion, 

which is more rapid and more destructive than natural erosion (Morgan 2005). Wind 

and water are the most important agents for causing accelerated soil erosion. Thus, 

accelerated erosion can further be classified as wind and water erosion. Water erosion 

is the removal of soil particles from the surface owing to runoff and raindrop impact. 
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It is unquestionably the trickiest land degradation in the globe (Bridges and Oldeman 

1999).  

The soil erosion processes due to water are classified into inter rill (splash and sheet), 

rill, gully, and stream channel erosion. Splash and sheet erosions remove soil by 

raindrop impact and shallow overland flow, respectively (Morgan 2005; Kothyari 

2012). Rill erosion is the soil erosion resulting from runoff whereby several small but 

well-defined channels are formed. They are differentiated from gullies because they 

are small enough to be erased easily with conventional tillage methods (Kothyari 

2012; USDA 2011). Among different water erosion types, inter rill and rill erosions 

are the primary reason for reducing soil productivity. Gully erosion is a process of the 

wearing away of soil by large channels of not less than 0.3m width and 0.3m depth 

due to concentrated runoff. Streambank erosion removes stream bank soil by water 

either flowing over the sides of the stream or scouring from the stream bed. Three 

complex processes in water erosion act in sequence, namely, detachment (the removal 

of individual soil particles from the soil mass), transport (the movement of soil 

particles), and deposition (the transfer of soil particles from the sediment load to the 

soil mass) (Lal and Humberto 2008; USDA 2011). The followings are the summaries 

of the studies related to soil loss rate.  

2.5.1  Soil loss rate studies 

Ganasiri and Ramesh (2016) used RUSLE with GIS and RS to assess the soil loss rate 

of the Nethravathi river basin in the southwestern part of India. They found that the 

basin's soil loss is 473339 t yr-1 from 3128km2, equivalent to 1.51 t ha-1yr-1. The result 

is comparable with the observed sediment data from 2002 to 2003 water year. They 

also identified that a slight change in land use from forest to cultivation increases soil 

loss markedly in the Nathravathi river basin. Gelagay and Minale (2016) evaluated 

the Koga watershed soil loss rate in Ethiopia using RUSLE combined with RS and 

GIS. They recognized that the soil erosion in the watershed ranges from 0 to 265 t ha-

1yr-1, with an average soil loss of 47 t ha-1yr-1. They also identified that topography 

and soil are significant soil loss factors in the study area as a large amount (71%) of 

soil loss is initiated from the steepest slope, and Nitosols and Alisols are dominant. 

In India's Kali river basin, Markose and Jayappa (2016) used the RUSLE and GIS 

tools to predict SLR for prioritizing sub-watershed for watershed management. Even 
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though a substantial soil loss rate is observed in the basin (up to 6995 t ha-1yr-1 with an 

average value of 2339.58 t ha-1yr-1), most areas experience SLR between 0 and 38 t 

ha-1yr-1. Only 6.67%, 3.77%, and 10% of the area are exposed to very high, severe, 

and extreme erosion hazards, respectively. They also recognized that the downstream 

part of the basin where a steep slope exists is exposed to excessive soil erosion. 

Cropland areas show less soil loss than forest land, and rainfall and topography are 

the main factors of soil erosion in the Kali river basin. 

Uddin et al. (2016) identified priority areas of the Koshi basin for soil and water 

conservation measures using RS data, GIS tools, and RUSLE. They developed a soil 

erosion risk map and classified the basin into eight erosion hazard classes based on 

soil loss rate. They recognized that topography is the main factor affecting soil loss in 

the Kashi basin. The central part of the basin needs a top priority for management as it 

is exposed to high erosion due to its topography. Rejari et al. (2016) estimated both 

temporal and spatial variation of soil loss of wet semi-arid Seethagondi watershed 

cluster in India using RUSLE coupled with ArcGIS. Results showed that 85.3% of the 

cluster had soil loss below 20 t ha-1yr-1. A small portion of the watershed (20.7%) is 

prone to severe erosion (> 15 t ha-1yr-1). In drought and high rainfall years, the 

cropland's soil loss rate varied from 2.9 to 3.6 t ha-1yr-1 and 29.4 to 34.7 t ha-1yr-1, 

respectively, with an average soil loss of 12.2 t ha-1yr-1. A maximum soil loss is 

estimated in August due to the high value of erosivity in this month. In terms of 

LU/LC wise, the soil loss is relatively higher in forest land, followed by wasteland 

and cropland. Since most of the area is cropland and has a slope of less than 10%, 

they recommended agronomic SWC measures combined with water harvesting 

technologies for sustainable watershed management. 

Maryam and Biswajeet (2014) used USLE to predict the spatial distribution and 

temporal variation of soil erosion risk at Kuala Lumpur city in Malaysia. Results 

revealed that only 3.8% of the area is susceptible to a severe (> 20 t ha-1yr-1) soil loss 

rate, and it shows a decreasing trend from 2000 to 2010. Adriyanto et al. (2015) 

evaluated the soil erosion of the Kalikonto watershed of Indonesia by using RS data 

and the RUSLE. They found that the watershed's soil loss rate varies from 5.5 to 

376.67 t ha-1yr-1 with a mean annual value of 72 t ha-1yr-1. They also identified that 

only 9% of the watershed area is prone to severe and very severe erosion. Besides, a 
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minimum erosion is observed from forest areas relative to other land covers. Senti et 

al. (2014) used MUSLE to study Lake Haramaya watershed soil erosion in Ethiopia. 

Results show that the mean annual sediment yield is 24.32 t ha-1yr-1and rainfall is the 

primary factor affecting soil erosion in the area. 

Bewket and Teferi (2009) assessed the spatial variation of soil erosion risk of 

Ethiopia's Chemago watershed using USLE integrated with RS and GIS. They found 

that the watershed's annual SLR varied from 0 to 125 t ha-1yr-1 with a mean annual 

value of 93 t ha-1yr-1. They also identified that over 58% of the watershed is prone to 

severe erosion risk (> 80 t ha-1yr-1). In the erosion hot spot area where steep lands are 

overgrazed or cultivated, the erosion is estimated above 125 t ha-1yr-1. A study carried 

out in the Densu River Basin of Ghana by Ashiagbor et al. (2013) predicted the spatial 

distribution of soil erosion hazards using the RUSLE and GIS tools. Similar to other 

studies, a small portion of the watershed (6%) is prone to high and very severe erosion 

risk. Gashaw et al. (2017) assessed the soil erosion rate of the Geleda watershed in 

Ethiopia by using USLE adopted to Ethiopian conditions. The watershed soil loss rate 

varied from 0 to 237 t ha-1yr-1 with a mean annual value of 23.7 t ha-1yr-1. About 

21.25% of the watershed is prone to soil erosion above the country's maximum soil 

loss tolerance limit. 

Ayalew (2015a) used RUSLE adapted to Ethiopian conditions combined with RS and 

GIS to examine the soil loss rate of the Zingin watershed in the highlands of Ethiopia. 

He identified that the mean annual soil loss of the watershed is 9.10 t ha-1yr-1. 21.69% 

of the area is categorized under moderate to high soil loss rate, which is greater than 

its maximum soil loss tolerance.  Furthermore, Ayalew (2015b) applied the same 

approach to estimate the soil loss of the Lalen watershed in the highlands of Ethiopia. 

Nevertheless, in this case, only 5% of the watershed is susceptible to moderate to high 

soil erosion, which is greater than tolerable soil loss. Brhane and Mokonen (2009) 

studied the SLR of different land use and landforms of Medego Watershed in 

Ethiopia's arid and semi-arid zone using USLE adapted and modified to Ethiopian 

conditions. They found that the mean annual soil erosion of the Medego watershed is 

9.63 t ha-1yr-1. The result showed that in flat plains (slope < 2%) of the watershed, soil 

loss is about 1.59 t ha-1yr-1, which is less than the minimum soil loss tolerance of 

Ethiopia (2 t ha-1yr-1). However, from steep mountains (slope 30-50%) landforms, the 
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soil loss is about 35.43 t ha-1yr-1which is the highest compared to soil losses of other 

landforms in the watershed. The soil loss of very steep mountains (slope > 50%) of 

the watershed is 7.63 t ha-1yr-1
, which is less than steep mountains (slope 30-50%), hill 

landforms (slope 15-30%), and rolling (slope 8-15%) landforms because of more 

human activities like intensive cultivation and overgrazing in these slope classes 

compared to very steep slope class in the watershed. 

Wolka et al. (2015) used RUSLE to map soil erosion risk areas of the Cheleleka 

wetland watershed of southern Ethiopia. They recognized a great spatial variation in 

soil loss's magnitude in the watershed (2.5 to 85.64 t ha-1yr-1). 13.6%, 15.5%, and 

17.3% of the area is classified under low (less than 10 t ha-1yr-1), moderate (10 to 20 t 

ha-1yr-1) and high to very high (20 to 45 t ha-1yr-1) soil loss rate, respectively. 

However, 53.6% of the watershed is vulnerable to severe to very severe soil loss, 

which is greater than 45 t ha-1yr-1. Adugna et al. (2015) assessed soil erosion on 

different land use land cover in northeast Wollega in Ethiopia by using RUSLE. They 

found that the mean annual soil loss rate from forest, grass, shrub, and cropland is 4.5 

t ha-1yr-1, 22 t ha-1yr-1, 37.6 t ha-1yr-1, and 65.9 t ha-1yr-1, respectively. According to 

Fanta et al. (2016), a significant reduction in soil loss rate is observed due to soil and 

water conservation measures in the Agula watershed in semi-arid northern Ethiopia. 

They assessed the temporal variation of soil loss rate from 1990 to 2012 by using 

RUSLE. The result showed that the soil erosion reduced from 28 t ha-1yr-1to 12 t ha-

1yr-1 from 1990 to 2000. And from 28 t ha-1yr-1 to 10 t ha-1yr-1 from 1990 to 2012. 

Sisay et al. (2014) employed RUSLE integrated with GIS to identify soil erosion hot 

spot areas of the mountainous landscape of Abaro Medeo in the Wondo Genet 

watershed of Ethiopia. They recognized that the area's soil loss rate varies spatially 

from 2.5 t ha-1yr-1 to over 60 t ha-1yr-1 with a mean annual soil loss of 26 t ha-1yr-1. 

Moreover, 56.3% of the study area is prone to soil loss greater than 20 t ha-1yr-1 and 

susceptible to high to severe erosion hazards. Amsalu and Mengaw (2014) assessed 

soil erosion's spatial distribution in the Jabi Tehinan woreda in Ethiopia using RUSLE 

and GIS. The result revealed a significant spatial variation of soil loss in the woreda 

from 0 to 504.6 t ha-1yr-1 with an average value of 30.6 t ha-1yr-1. 

Coca and Nilca (2016) used RUSLE to estimate soil loss in the upper catchment of 

the Bârsa River. They found that the area's annual soil loss ranges from 0 to 263 t ha-
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1yr-1, and the majority of the site has a soil loss of less than 25 t ha-1yr-1, whereas soil 

loss exceeding 100 t ha-1yr-1 has a little weight. They also identified that the slope and 

land cover are the primary influencing factors in the study area. In the Lake Tana 

basin of Ethiopia, Setegn et al. (2009) used the SWAT model to recognize the 

watershed portion, which contributes a large amount of sediment and GIS integration 

with Multi-Criteria Evaluation (MCE). Results from SWAT revealed that 18.4% of 

the area (mainly cultivated areas and areas at a steep slope condition) is identified to 

be the most vulnerable areas for soil erosion, which has sediment yield ranges from 

30 to 65 t ha-1yr-1, and results from MCE also indicate that only 12-30.5% of the basin 

is high erosion potential area. Moreover, topography and land cover are the two most 

dominant factors affecting soil erosion in the Lake Tana basin (Setegn et al. 2009). 

The maps from the two approaches showed a significant likeness indicating areas that 

contribute a heavy sediment load. 

A study was carried out at the Doviraj watershed of Iran by Fathizad et al. (2014) 

using RUSLE and SDR to calculate SY. They reported that the mean annual SY of the 

watershed is 273.6 t ha-1yr-1, and it is close to observed sediment data (253.4 t ha-1yr-1) 

in the watershed. Gelagay (2016) quantified the spatial variation of the Koga 

watershed soil loss rate in Ethiopia by using RUSLE with a GIS environment. The 

result revealed that the annual average sediment yield delivered to the Koga 

watershed outlet is 25 t ha-1yr-1. It mainly originated from the very steep upper part of 

the watershed, and topography and soil are the main factors affecting the soil loss rate 

in the watershed. They concluded that unless appropriate watershed management is 

implemented to control the eroded sediment, the Koga irrigation reservoir will lose its 

intended service due to heavy sedimentation. Yuan et al. (2016) used the USLE to 

estimate the soil loss rate from China's Lake Poyang watershed. The soil loss rate 

ranges from 0 to 394.8 t ha-1yr-1, with a mean value of 1.82 t ha-1yr-1. The total 

sediment load in the Lake is 1438 * 104 t yr-1 from 62000km2. Like other areas, a 

small portion of the watershed (0.83%) in the northwest and northeast corners is the 

source of massive soil loss. They concluded that, unless suitable and effective soil 

erosion measures are practised, the watershed reservoirs are severely affected by soil 

erosion. 
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Tamene et al. (2006) carried out a reservoir survey to estimate the sediment load rate 

for 11 micro-irrigation dams in the Tigray region of Northern Ethiopia. The 

reservoirs' spatial variation in sediment yield varied from 3.45 to 49.35 t ha-1yr-1, with 

an average annual sediment yield of 19 t ha-1yr-1. They concluded that most micro-

dams would be closed due to soil erosion and sedimentation in less than half the 

design period. A further study in the same region by Haregeweyn et al. (2006) point 

out that only 30% of the micro-dams are expected to last for the whole design period. 

Whereas the rest 70% of irrigation reservoirs lost their proposed purpose before their 

intended service time due to sediment deposition in the reservoirs. Wolancho (2012) 

reviewed the problem and effect of sedimentation in Ethiopian reservoirs and 

concluded that heavy sedimentation was experienced in most Ethiopian existing dams 

such as Koga, Melke Wakena, Aba-Samuel, Gilgel Gibe I, Angereb, Legedadi, 

Adrako, and many irrigation micro-dams. The inventory of 92 micro dam reservoirs 

in the Tigray region in Ethiopia made by Berhane et al. (2016) based on direct field 

observational method, secondary data, and selected interviews showed that 61% of 

the sustainability of micro-dams in the region was threatened due to soil erosion. The 

sustainability of the Angereb water supply dam in north-western Ethiopia is 

threatened due to highly accelerated sediment deposition (Haregeweyn et al. 2012). 

They employed a bathymetric survey to recognize the sediment load in the domestic 

water supply reservoir. Although a relatively decreasing trend is observed due to 

SWC measures undertaken in the watershed, the annual total capacity loss was 

estimated at 4.02%, 3.16%, and 3.03% during 1997-2005, 1997-2007, 2005-2007, 

respectively. Moreover, the specific sediment yield of the watershed ranged from 

1,789 to 3,354 t km-2 yr-1. They concluded that the water supply from the reservoir to 

Gondar town would diminish under half the designers' design life. The mean annual 

observed sediment yield in Anjeni gauged watershed in Ethiopia is 24.6 t ha-1 (Setegn 

et al. 2010). They simulated the sediment yield in the Anjeni watershed using SWAT 

and found that the mean annual sediment yield was 27.8 t ha-1 during calibration and 

29.5 t ha-1 for the validation period. 

2.5.2 Water erosion assessment methods 

This subtopic describes and discusses various methods and approaches to soil erosion 

assessment by focusing on water erosion models.  
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Depending on the intended purpose, data on water erosion and factors affecting it can 

be gathered from the field or laboratory. For realistic data, field measurements are the 

most reliable. However, it is not easy to determine the principal causes of soil loss due 

to conditions that vary in time and space. Since various factors affecting soil erosion 

can be controlled in the laboratory, measurements intended for explanation are better 

undertaken. However, due to the artificiality of laboratory experiments, verification of 

their natural circumstance results is needed (Morgan 2005). Identifying areas at risk 

of soil erosion is a prerequisite for planning and executing SWC measures to reduce 

soil erosion effectively. Major approaches to identify areas at risk of soil erosion are a 

qualitative approach using expert knowledge and a quantitative approach based on 

measurements and erosion models.  

2.5.2.1 Qualitative approaches based on expert Knowledge 

Qualitative approaches are the relative indication of areas at risk of soil erosion based 

on expert knowledge. These approaches use surveys about a complete acquisition of 

the soil loss data in a particular place as a base for assessing soil erosion risks and 

their controlling factors (Eckelmann et al. 2006). An example of a qualitative 

approach based on expert knowledge is the Global Assessment of Human-induced 

Soil Degradation (GLASOD). GLASOD is intended to give information about soil 

erosion and create awareness of the importance of soil conservation for decision-

makers and governments at a global level to make a suitable plan and set priorities for 

future investments. The GLASOD survey provides essential data on the spatial 

variation and severity of soil degradation based on responses to a questionnaire from 

experts in different parts of the globe (Bridges and Oldeman 1999). Its main 

advantage is its applicability at all scales, from local to global quickly. However, it is 

difficult to compare countries because GLASOD relies only on an expert's opinion, 

exclusive of any field measurements, and some experts even did not reply to the 

questionnaire. Its reliability and reproducibility remain uncertain. Qualitative 

approaches revealed the spatial variation of erosion (Bridges and Oldeman 1999). 

However, they are subjective and do not provide the information needed to plan and 

appraise SWC measures. 
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2.5.2.2 A quantitative approach based on the measurement 

Conventional soil erosion assessment approaches are centred on quantifying soil 

erosion from field erosion plots based on actual measurements. This approach gives 

the most precise SLR. However, they are costly, require a long time, and provide site-

specific data, which may be applicable for only that location. Moreover, it is 

impractical to take measurements at all points in the watershed. It also takes time to 

perform repeated measurements to build an adequate database to verify that the data is 

not influenced by a few years of unusually high rainfall and extreme events. Long-

time measurements are necessary to evaluate climate, and LU/LC change impacts on 

SLR and SWC measures' utility. These difficulties can be overcome by soil erosion 

models (Morgan 2005).  

2.5.3 Erosion models  

Soil erosion models are the mathematical descriptions used to designate complex 

erosion processes in a simplified form. They applied to estimate soil loss rates under 

various conditions for planning and evaluating SWC practices' performance (Tiwari et 

al. 2000). Besides, modelling soil erosion is vital to clarify the factors controlling soil 

erosion, understanding the driving processes and their interaction, evaluating onsite 

and off-site consequences on soil productivity and water quality, and selecting 

suitable SWC measures (Tiwari et al. 2000; Lal and Humberto 2008). Well developed 

and accurately calibrated soil erosion models provide reasonable estimates of soil loss 

rates. Several erosion models of different prediction capabilities and purposes have 

been developed (Lal and Humberto 2008). There are three main reasons for modelling 

soil erosion. They are used as a predictive tool for assessing soil loss rate, providing 

data on spatiotemporal dynamics (where and when) of soil erosion, and models can 

elucidate erosion processes and their interactions. In general, water erosion models 

are classified into two types based on the principles used in developing the models. 

These are empirical and physically-based models. 

2.5.3.1 Empirical models (Statistical model) 

Empirical models are developed based on relating erosion controlling factors to soil 

loss through comprehensive field observation and measurement (Beach 1987). 

Hudson also articulates it similarly. An empirical model is one based on observation 

or experiment and not derived from theory. It fits observed facts and predicts what 
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will happen in certain circumstances because we know what has happened before in 

those situations (Hudson 1995). Empirical models do not consider the fundamental 

processes involved and how the system functions. These models can only be operated 

in the designed direction where inputs go into one side of the equation and the output 

on the other side. Scientist-developed the parameters under particular environmental 

circumstances, and for that reason, the parameters are appropriate to only those 

situations. SWC planners often use empirical models in preference to process-based 

models as they can be implemented in situations with limited data and parameter 

inputs, primarily for predicting soil erosion and recognizing leading causes of erosion 

in the area (Merritt et al. 2003). Empirical models are speedy in estimating water 

erosion, but they need many years' data and are valid only within the boundaries they 

developed. The use of empirical models in other areas requires an adaptation of the 

model to local conditions. The USLE model and its derivatives (MUSLE and 

RUSLE) are the most commonly used empirical water erosion models described in 

brief below. 

Universal Soil Loss Equation (USLE): The USLE is the most commonly applied and 

widely recognized empirical water erosion model developed in the United States 

based on measured data on soil loss and its controlling factors from many field 

erosion plots. SWC planners and decision-makers use this model to predict the long-

term average soil loss for possible alternative combinations of vegetative cover and 

land use in relationship with a specific slope gradient and length, soil, rainfall, and 

management systems (Wischmeier and Smith 1978). The equation assembled many 

interconnected physical and management parameters that affect soil loss under six 

significant erosion controlling factors. Mathematically the equation is denoted as: 

 𝐴 = 𝑅𝐾𝐿𝑆𝐶𝑃                                              (2.1) 

Where A is the mean annual soil loss rate (t ha-1yr-1), R is the rainfall erosivity factor 

[MJ mm ha-1 hr-1 yr-1], K is the soil erodibility factor [t hr MJ-1 mm-1), L is the slope 

length factor, S is the slope steepness factor, C is the land cover and management 

factor, and P is the support practice factor. The details of the USLE factors are found 

in (Wischmeier and Smith 1978). 

Revised Universal Soil Loss Equation (RUSLE): Further investigation and practice 

have improved USLE and led to the development of RUSLE. RUSLE is a water 
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erosion model intended to estimate the long-term annual soil loss rate by splash, 

sheet, and rill erosion resulting from raindrop impact and runoff. It is an update of 

USLE that takes account of the extensive knowledge about the physics of soil erosion 

and the analysis of data that did not exist when USLE was developed (Renard et al. 

1997). RUSLE retains the six factors of USLE. Although the original USLE has been 

retained, technology for determining these factors' values has been altered. The new 

data has been introduced, updating the method to calculate the terms in the equation. 

For example, the cover and management factor (C) is now a product of four 

subfactors representing crop canopy (CC), surface cover (SC), surface roughness 

(SR), and prior land use (PLU). To determine the topographic factor (LS), a new 

equation was developed. The new algorithm helps to estimate water erosion from a 

wide range of slope gradients. The K-factor in the RUSLE made time-varying, 

bringing an alternative regression equation for soil erodibility term. RUSLE also 

includes new isoerodent maps as well as conservation practice values (P). The change 

in RUSLE made the model suitable for predicting water erosion from agronomic 

settings and rangelands, disturbed areas, and a situation involving construction sites, 

mine spoils, and land reclamation. It is also used for a wide range of slope gradients 

(Renard et al. 1997). 

Modified Universal Soil Loss Equation (MUSLE): Researchers have modified the 

USLE parameters for extended applications. Investigators developed the MUSLE to 

estimate sediment yield for particular storm runoff events (Williams 1975). Sediment 

yield is the quantity of eroded soil delivered to an outlet of a watershed or a point in 

the watershed far from the source of the detached soil particles (Renard et al. 1997). 

MUSLE is a modified version of USLE and used many readily available parameters 

and data sets of USLE. The equation of MUSLE can be mathematically expressed as 

follows: 

 𝑌 = 11.8(𝑄𝑞𝑝)0.56𝐾𝐿𝑆𝐶𝑃                                         (2.2) 

Y is total sediment yield from a storm event in a ton, Q is the volume of storm runoff 

in m3, qp is the peak runoff rate in m3/s. K is the soil erodibility factor, L is the slope 

length factor, S is the slope steepness factor, C is the land cover and management 

factor, and P is the support practice factor.  
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In the MUSLE, the factors made up of peak discharge and runoff variables replace the 

USLE's rainfall erosivity factor. It made the model predict sediment yield, channel 

erosion, gully erosion, floodplain scour, and deposition, which is not possible by 

USLE and RUSLE. In contrast to USLE/RUSLE, the MUSLE estimates sediment 

yield directly without sediment delivery ratio. Moreover, MUSLE has an advantage 

over USLE/RUSLE due to its capability to predict a single storm sediment yield. The 

limitation of MUSLE is, it predicts a sediment yield only and is not suited for long-

term soil loss estimation.  

2.5.3.2 Physical-based models (Deterministic model) 

Physically-based water erosion models are derived from understanding the basic 

erosion processes and considering the laws of conservation of mass and energy 

(Tiwari et al. 2000; Morgan 2005). These models indicate the natural processes by 

explaining each physical process/sub-processes of the system relevant to erosion and 

deposition and combining them into a complex model. Since they require cost-

demanding, extensive, and high resolution spatial and temporal input data, the 

successful implementation of physically-based models is restricted by the availability 

and quality of data for calibration and validation (Beach 1987). Such problems are 

noticeable in developing countries where data is limited, not easily accessible, and 

stored in different formats.  

However, they can accommodate the ongoing natural process's spatiotemporal 

dynamics, which can not be realized through empirical models (Tiwari et al. 2000). 

Moreover, physical processes do not vary from one environment to another, and 

therefore, theoretically, these models can be used in new environments. Usually, 

researchers employ physically-based models to elucidate the mechanics of soil 

erosion. Examples of physical-based models include Water Erosion Prediction Project 

(WEPP), Agricultural Non-Point Source (AGNPS), Soil and Water Assessment Tool 

(SWAT), Areal Nonpoint Source Watershed Environmental Response Simulation 

Model (ANSWER), Chemical Runoff and Erosion from Agricultural Management 

Systems (CREAMS), European Soil Erosion Model (EUROSEM).  

These physically-based models usually require expensive methods to determine the 

input parameters. They require extensive data. For example, AGNPS requires 22 input 

parameters, and EUROSEM needs more than 60 input parameters for implementation. 
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Most of them (such as AGNPS, ANSWER, and EUROSEM) are single storm event-

based, whereas few, like CREAMS, simulate single or long-term sequences. Some of 

them (for example, SWAT and CREAMS) incorporated MUSLE to estimate water 

erosion. Physical-based models vary in size of the area they are applicable and can 

predict water erosion. 

2.5.4 Selection of water erosion models 

There is no best soil erosion model for all purposes. Erosion models vary in terms of 

the type of input data requirements, difficulty, the scale, intended use, the types of 

output they give, and the processes considered (Merritt et al. 2003). It is essential to 

identify the exact objective and purpose of models designed to estimate soil erosion to 

select models. Two main divisions are models for prediction and models to assist with 

an explanation. If the intention is to predict the amounts of soil loss rate under 

different SWC measures, the empirical models are efficient and effective, whereas the 

purpose is for explaining the process of erosion, physically-based models are the 

preference (Hudson 1995). However, it is challenging to execute physically based 

water erosion models in developing countries because of their extensive data 

requirements. Therefore, it is vital to recognize models that are not very much 

simplified and under-represent the physical basis or are too complicated and costly to 

apply. An assessment of erosion based on the fundamental soil erosion models that 

best fit with the available resource and data is necessary (Sonneveld et al. 1999). 

Among various soil erosion models, USLE and its revised version (RUSLE) coupled 

with GIS are more prevalent in water erosion estimation and applied worldwide to 

guide conservation planning, quantify water erosion and estimate sediment yield 

(Ashiagbor et al. 2013; Maryam and Biswajeet 2014; Adriyanto et al. 2015; Ganasiri 

and Ramish 2016; Markose and Jayappa 2016; Rejari et al. 2016; Uddin et al. 2016; 

Yuan et al. 2016).  It is due to practicability within logical costs, better accuracy for 

larger watersheds, easy availability of input data, and the model is relatively easy to 

use, compatible with incorporating various spatial information such as LU/LC, 

topography, soil, management, and its capability to predict the many years' average 

annual soil loss rate and comparing the possible benefits of different SWC measures 

(Arnold et al. 1998). According to Wischmeier and Smith (1978), USLE enables 

SWC planners to estimate the mean soil erosion for each possible alternative 
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combination of conservation measures and crop type in integration with a particular 

soil, rainfall, and topography. Thus, RUSLE/USLE with the GIS environment has 

been widely used worldwide.  

Despite the above advantages, USLE can not simulate the following (Wischmeier and 

Smith 1978): Soil loss daily and its variation from storm to storm; gully and stream 

bank erosion; detailed processes. USLE only predicts soil loss that results from 

splash, sheet, and rill erosion. Although the model has the above limitations, it is still 

used most extensively for predicting water erosion as a function of the primary soil 

erosion controlling factors in data-scarce areas of developing countries.  

USLE/RUSLE was mainly developed for conditions in the USA. The use of 

USLE/RUSLE in other areas requires adaptation to local conditions. For example, in 

East Africa, Ethiopia, Hurni (1985) simplified the USLE by adapting the factors to 

conditions in Ethiopia based on long-term measurements and experimental data from 

a large number of test plots in various slopes, soils, land uses, crops, and under 

several SWC treatments in different agro-climatic zones. After Hurni (1985), in 

various agro-climatic regions of Ethiopia, USLE/RUSLE coupled with GIS has been 

successfully and extensively applied for the estimation of the spatial variation of soil 

loss and sediment yield, and it has provided good results (Bewket and Teferi 2009; 

Brhane and Mokonen 2009; Sisay et al. 2014; Adugna et al. 2015; Ayalew 2015a,b; 

Wolka et al. 2015; Fanta et al. 2016; Gelagay and Minale 2016; Gashaw et al. 2017).  

Primary USLE was developed to predict the long-term average annual soil loss rate 

from agricultural land and predict rill, splash, and sheet erosion. It suits slopes with a 

low gradient. Therefore, its performance is less in areas where gully erosion is the 

dominant, a wide range of slope gradients, and other non-agricultural areas like 

construction sites. Although RUSLE shares the limitations of USLE, the changes in 

RUSLE make it useful for estimating soil loss for agronomic settings and situations 

involving construction, mine spoils, land reclamation, and from a wide range of slope 

gradients. In the MUSLE, the newly developed rainfall-runoff erosivity term of peak 

discharge and runoff variables makes it the model useful for estimating channel 

erosion, gully erosion, floodplain scour, and deposition separately. Moreover, the 

change in MUSLE makes it suitable to predict sediment yield for individual storm 

runoff events. That is the main limitation of USLE/RUSLE. 
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If the competition is between USLE and its derivatives (RUSE and MUSLE), it is 

better to select a water erosion model that simulates the important processes in the 

study area and is based on the purpose. For instance, if the intention is to estimate the 

event-based/storm-based sediment yield or the area is dominated by gully erosion, 

select the MUSLE rather than the USLE/RUSLE. Whereas the intention is to estimate 

the long-term average soil loss rate to prioritize the subwatershed for soil and water 

conservation planning, evaluate management practices, or rill and inter-rill water 

erosion is dominant, select USLE/RUSLE. More specifically, for agricultural land and 

slopes with a low gradient, select USLE rather than RUSLE, whereas for high 

gradient and non-agricultural areas, choose RUSLE rather than USLE. 

For example, in a non-agricultural area, Spaeth et al. (2003) compared RUSLE and 

USLE predicted soil loss rate with measured field data on different sets of rangeland 

vegetation types. They found that RUSLE performs better than USLE in rangelands. 

Bayramove et al. (2013) compared the performance of USLE with MMF. Their 

findings showed that USLE has an excellent performance in predicting soil loss rate 

compared to MMF in all aspects.  

Furthermore, According to Tiwari et al. (2000), USLE and RUSLE did show evidence 

of better model efficiency than WEPP. Mondal et al. (2018) compared USLE, 

RUSLE, and MMF water erosion models' performance in central India. They 

compared the models’ output with measured sediment data. They found that RUSLE 

has better performance than other models in that specific area. Ubierna et al. (2009) 

compared the suitability of USLE, RUSLE, and WEPP to estimate soil loss in non-

agricultural areas. They compared the model output with field data. They found that 

USLE is overestimated, and WEPP underestimates soil loss on restored mining 

slopes, whereas RUSLE estimates are close to field data. They concluded that RUSLE 

is more suitable for estimating soil loss than USLE and WEPP on restoring mining 

slopes. Sadeghi and Mizuyama (2007) evaluated the performance of MUSLE to 

assess storm event sediment yield in the Khanmirza watershed, Iran. The MUSLE 

output is compared with measured sediment data. The result revealed that the MUSLE 

had performed well enough (R2 = 0.99) to predict storm event sediment yield in the 

study area.  
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No particular model is best for each application. Each model has strengths and 

weaknesses, data requirements, and purposes. Therefore, a model's choice should be 

mainly based on the reason for which it is intended (prediction or explanation) and the 

availability of data, money, and time.  

2.6 Summary and Key Points from the Literature  

The followings are some of the main points concluded from the literature review. 

 Climate change and LU/LC change impacts on hydrological processes are the 

leading causes that affect the hydrological response of a watershed. 

Hydrological processes are very sensitive to change in temperature and 

precipitation. The rise in temperature and the variability of rainfall are the 

major features of climate change. Those climate elements affect almost all 

other hydrological processes, and the long-term climate change impacts in 

Ethiopia is mainly linked to these two climate elements. So recognition and 

analysis of their pattern in the watershed are highly needed. 

 Climate change impacts are location specific. Adaptation measures are 

implemented at the watershed level. As a result, recognizing the effects of 

climate change at a watershed level is sensibly imperative. However, the exact 

impacts at the watershed level in Ethiopia are poorly understood. The potential 

impacts of these changes on water resources at the appropriate level are not 

examined in most Ethiopian parts and particularly in the southern region. 

Ethiopia's climate change studies are concentrated on the UBNRB, or Lake 

Tana watershed, and other areas were neglected. 

 Previous climate change studies in Ethiopia are based on old emission 

scenarios under SRES and a single or finite number of GCMs. Forming an 

inference regarding climate change impacts on water resources based on a 

single GCM may not provide a clear picture of the coming changes. 

 The nature and magnitude of global change affecting Ethiopian water 

resources are not yet adequately understood. Despite the fact that the water 

sector is one of Ethiopia's most vulnerable, there are many knowledge gaps 

regarding the climate-water interface. This gap is a current challenge for 

planners and policymakers to develop long-term water resource management 

and climate change adaptation strategies in the water sector. Therefore, a 
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comprehensive study is highly needed, and the issue has to be addressed at a 

scale relevant to decision making. 

 Even though the impact of climate change is widely understood globally, the 

exact effects at the watershed level are poorly understood. Recognizing local 

climate change impacts at a watershed level is sensibly imperative since 

adaptations are practised at the watershed level. The future climate change 

impacts on the water resources in the Tikur Wuha watershed is poorly 

understood.  

 The SWAT model is widely used in climate and LU/LC changes impact 

assessments in Ethiopia and has an excellent performance in predicting 

climate change and water interaction. 

 As far as rainfall distribution in Ethiopia is concerned, the main problem is not 

the amount, rather the variability. The spatiotemporal variability of rainfall is 

more important than total rainfall deficits for water-related issues in Ethiopia. 

Historically, climate variability has had a high impact on Ethiopian 

agricultural productivity and livelihood. Ethiopian rainfall is highly variable, 

both temporally and spatially, and must be analyzed at a watershed level rather 

than the whole. Trends in annual and seasonal rains are mostly sensitive to 

local scale climatic controls such as topography. Trend analysis studies in 

Ethiopia are not conclusive, and some are conducted at a macro scale, which 

needs more examination. Several studies investigated the meteorological 

trends in Ethiopia, however, there are no prior studies that investigated water 

resource management in the watershed in the study period considered. 

 Soil erosion is one of the main problems upsetting water resources and land 

productivity in the study area. Soil erosion hazards and the main factors 

affecting soil loss are highly site-specific. A large amount of the total soil loss 

from a watershed originated from a small portion of the watershed areas. 

Managing this small portion of the watershed can significantly reduce both the 

onsite and offsite impacts of soil erosion. Since resources are scarce in 

developing countries like Ethiopia, implementing watershed management 

practices on the entire watershed is not practical. Therefore, recognizing 

erosion-prone areas for prioritizing sub-watershed based on the severity and 
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risks of soil erosion is indispensable for planning and implementing 

sustainable watershed management and wise use of resources. Many studies 

are conducted in Ethiopia on prioritising watersheds to implement SWC 

measures by considering the amount of soil loss. However, almost all are not 

prioritized based on sub-watershed (without delineating the sub-watershed). It 

is not practical to implement SWC measures, given that a watershed is a 

superlative unit for developing and managing the land and water resources. 

 There are several methods for assessing soil erosion, but no one best universal 

method for evaluating soil erosion works everywhere. Methods have to be 

critically chosen depending on the assessment and applicability objectives 

because each is best at performing a particular purpose. If the intention is to 

predict the amounts of SLR under different SWC measures, the empirical 

models are efficient and effective. In contrast, the objective is to understand 

erosion mechanics; preference should be given to the physically-based water 

erosion models. USLE and its revised version (RUSLE) integrated with GIS 

and RS soil erosion assessment methods have been used in most countries and 

showed better performance. It is recommended for data-scarce areas. 

However, utilization of USLE/RUSLE in other areas requires adaptation to 

local conditions. 
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CHAPTER 3: STUDY AREA, DATASETS, AND RESEARCH 

METHODOLOGY 

3.1 Description of the Study Area 

The Tikur Wuha watershed location is between latitude 6º 48' 47" N to 7º 10' 58" N 

and longitude 38º 28' 28" E to 38º 43' 3" E in Southern Ethiopia (Figure 3.1). It falls 

into two administrative boundaries of the Sidama national regional state in the south 

and Oromia national regional state in the northern alignments. TWW has a catchment 

area of 681km2. The Tikur Wuha river originates from the Wondo genet highlands. 

The Tikur Wuha river is 52km long and flows northwest toward Lake Hawassa in 

Ethiopia. Several streams characterize the drainage network of the TWW. All streams 

drain into the Cheleleka wetlands, which flow into Lake Hawassa through the Tikur 

Wuha river (the sole permanent river feeding Lake Hawassa). A river gauging station 

is located at Dato, near the outlet of the river. The topography ranges from 1668 to 

2976 meters above the mean sea level (Figure 3.1). The considerable part of the study 

area (57.83%) is level to the gentle slope (0-8%) but bounded by steep mountains 

with hillier regions to the eastern part of the watershed. TWW is a sub-humid 

watershed in the Ethiopian highlands. Based on the rainfall data from four 

meteorological stations from 1978 to 2017, the average annual rainfall was 1071mm. 

Rainfall shows a bimodal pattern (Figure 3.2). The watershed receives about 47% of 

annual rainfall during the Kiremt season (June to September). The Belg season 

(February to May) and the dry season (October to January) subsidize 37% and 15% of 

the annual rain, respectively. The annual average daily temperature of the watershed 

is about 18.5oC (Figure 3.2). Four major soil types have been identified in the 

watershed: Andosols, Fluvisols, Luvisols, and Vertisols. Most of the watershed area is 

rain-fed agricultural land (primarily mixed perennial and annual cropping). Other 

LU/LCs in the watershed are grassland, shrubland, urban, and swampy. Because of 

population growth and urbanization, rapid LU/LC change in the watershed is 

observed.  The issue of soil erosion is severe in the TWW. Water-related climate 

change impacts in the TWW are poorly understood. Hence, the comprehensive 

assessment of the effects of climate change and LU/LC change on water availability 

in the watershed is essential. 
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Figure 3.1. Location of Tikur Wuha watershed 

 

 

 

Figure 3.2. The 40 years average monthly rainfall and temperature of the TWW 
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3.2 Datasets for the Study 

Both spatial and temporal data were used for the study. The spatial datasets are the 

Digital Elevation Model (DEM), LU/LC, and soil. Temporal data includes 

hydrological and meteorological data. Shuttle Radar Topography Mission (SRTM) 

DEM 30m resolution was downloaded from https://earthexplorer.usgs.gov. The 

path/row of the DEM is 38/6 and 38/7, and the acquisition date is 23-09-2014. The 

DEM was used for watershed delineation, sub-basin definition, and Hydrological 

Response Units (HRUs) setup. The topographic parameters of the studied watershed 

are also derived from the DEM. Figure 3.3 showed the DEM of the TWW. 

Landsat Multispectral Scanner (MSS) for 1978, Landsat Thematic Mapper (TM) for 

1988 and 1998, and Landsat Operational Land Imager and Thermal Infrared Sensor 

(OLI_TIRS) for 2017 were used for LU/LC change detection and to disclose the 

hydrological impacts of LU/LC dynamics in the study area. The images are 

downloaded from https://earthexplorer.usgs.gov. Landsat image data was selected due 

to its accessibility of adequately long period image series in the study watershed (year 

consistency across the TWW) to analyse LU/LC dynamics. The satellite images were 

taken in the same time frame in the dry season (November and December) under clear 

cloud cover conditions, and in the same vegetation season to negate vegetative effects 

on the change detection between pairs of images as well as to balance the bias from 

inter-annual variability of cloud cover. Clouds introduce significant noise to an image 

by obscuring the reflectance of radiation from Earth's surface materials.  The details 

of the characteristics of the images used for classification are given in Table 3.1. A 

soil map was prepared from the FAO soil map for the study area. The soil's physical 

and chemical property parameters were derived from the digital soil map of the world 

soil database. Figure 3.4 displays the soil map of the study area. These spatial datasets 

and text files need to be prepared before running the hydrological model. The spatial 

datasets were created in the raster format, and the same projection was used for all 

maps.  

The daily meteorological data are precipitation, minimum temperature, maximum 

temperature, wind speed, solar radiation, and relative humidity. The meteorological 

data from 1978 to 2017 were collected from the National Meteorology Service 
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Agency (NMSA) Ethiopia, South nation nationalities and people's regional state 

branch office at Hawassa. The number of stations is selected based on data 

availability, spatial representation, data length (years), and data records gaps. Four 

stations, Hawassa, Haisawita, Wondogenet, and Shashemene, were chosen based on 

the criteria. Hawassa station is a class one (synoptic) station. At Hawassa station, 

more than ten meteorological parameters are observed. Haisawita station is the third 

class station (ordinary station). Only three meteorological elements are found: 

maximum air temperature, minimum air temperature of the day, and total rainfall 

amount in 24 hours. Shashemene and Wondo genet stations are the fourth class 

stations (rainfall recording station). At these stations, only the total rainfall amount in 

24 hours is observed. In all the stations, the rain gauges are non-recording type. Daily 

streamflow data from 1980 to 2002 was taken from the Ministry of Water, Irrigation 

and Energy in Ethiopia to calibrate and validate the SWAT model.  

The bias-corrected daily minimum and maximum temperature and precipitation 

outputs from the Coordinated Regional Climate Downscaling Experiment (CORDEX) 

were obtained from GFZ (Geoforschungs Zentrum) German Research Centre for 

Geoscience for both historical (1960 to 1999) and future time horizons (2020 to 

2099). CORDEX is a global collaborative project that aims to improve the awareness 

of regional downscaling of global climate scenarios and provide and develop 

comprehensive, regional climate information essential for vulnerability, impact, and 

adaptation studies at local and regional levels. Table 3.2 summarizes the type, source, 

and purpose of the data. 

Table 3.1. The characteristics of Landsat images used for LU/LC change detection  

Spacecraft Identifier Sensors Date of acquisition Path-Row Spatial resolution  

LANDSAT 8 OLI/TIRS 12-Dec-2017 168-55 30m x 30m 

LANDSAT 5 TM 24-Dec-1998 168-55 30m x 30m 

LANDSAT 5 TM 10-Nov-1988 168-55 30m x 30m 

LANDSAT 3 MSS 07-Nov-1978 181-55 57m x 57m 
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Figure 3.3. Digital elevation model of Tikur Wuha watershed 

 

 

Figure 3.4.  Soil class map of the Tikur Wuha watershed 
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Table 3.2. The type, source, and the purpose data 

Types of Data Period 

(Time) 

Source Purpose 

Meteorological Data 1978 to 

2017 

NMSA, Ethiopia Input for SWAT and 

USLE, and for trend 

analysis 

Hydrological Data 

(Streamflow) 

1980 to 

2002 

MoWIE, 

Ethiopia 

For calibration and 

Validation 

Spatial data (DEM) 2014 USGS For watershed delineation,   

Input for both SWAT and 

USLE 

Spatial data (Soil)  FAO Input for both SWAT and 

USLE 

Spatial data(LU/LC) 1978, 

1988, 

1998, and 

2017 

USGS  Input for both SWAT and 

USLE, LU/LC change 

detection 

CORDEX data (T-max 

and T-min, and 

precipitation) 

1960-1999 

and 2020-

2099 

German 

Research Centre 

for Geoscience 

Analysis of  climate 

change impacts on hydro-

meteorological variables 

3.3 Research Methodology 

This research has the climate change impact, LU/LC change effect, trend and 

variability analysis, and soil erosion portion. The Soil and Water Assessment Tool 

(SWAT) hydrological model was used to assess the hydrological response of climate 

and LU/LC change in TWW. The Mann-Kendall (MK) trend test was used to detect 

the trends of hydro-meteorological variables. The universal soil loss equation (USLE) 

was implemented to predict the soil loss rate and prioritize the sub-watersheds of 

TWW for soil and water conservation practices. Figure 3.5 presents the general 

methodology flow chart. The data processing and analysis methods for each objective 

are discussed independently under the topics from 3.3.1 to 3.3.4.  
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Figure 3.5. General methodology framework of the study 
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3.3.1 Methods for hydro-meteorological impacts of climate change  

The following three steps have been followed to predict the potential impact of 

climate change on hydro-meteorological variables in TWW: 

i. The two most crucial climate elements, temperature (minimum and maximum) 

and precipitation, which affects water availability, were collected for both 

historical and future time based on RCP4.5 and RCP8.5 climate change 

scenarios; analysed and compared with the baseline/reference period.  

ii. The SWAT model was calibrated and validated based on observed streamflow 

data in TWW. 

iii. The potential impacts of climate change on streamflow was evaluated by using 

SWAT in the two future time slices, mid-century (2020 to 2059) and end 

century (2060 to 2099), compared with the reference period (1960 to 1999). 

3.3.1.1 Selection and evaluation of climate scenarios 

The accuracy of GCMs decreases at increasingly finer spatial and temporal scales, 

while impact studies' needs increase with higher resolution (Wigley et al. 1990; Xu 

1999). The bias-corrected CORDEX output climate data were used for this study 

because GCM is inherently unable to represent local sub-grid-scale features. Since the 

multi-model ensemble approach better accounts for uncertainties involved with 

climate models, several climate models' usage of ensembles has become common 

(Kundzewicza et al. 2018). Besides, it is recommended that a range of possible 

climate scenarios be considered rather than a single best or average case climate 

scenario (Jose and Dwarakish 2020).  

A performance indicator is a measure of any model to determine how well it simulates 

the observed data. It is very much necessary and recommended to have a detailed 

evaluation of model performance against observed datasets, which can help determine 

the best-performing models. NSE (Nash and Sutcliffe Efficiency) was used for this 

study (Nash and Sutcliffe 1970). For the performance evaluation of the climate 

models, monthly maximum and minimum temperature and yearly precipitation 

(1978–2001) at the Hawassa meteorological station were used. For further analysis, a 

weighted average of the five best models was used. A list of RCMs selected from 

multiple GCMs and used in the study is given in Table 3.3. 
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Table 3.3. List of RCMs from multiple GCMs used in the study 

Institute 

ID 

Institute name Model ID (RCMs) Driving model 

CCCma Canadian Center for 

Climate Modelling and 

Analysis  

CCCma-RCM4 CCCma-CanESM2 

DMI  Danish Meteorological 

Institute 

DMI-HIRHAM5 ICHEC-EC-

EARTH 

KNMI Koninklijk Netherlands  

Meteorological Institute 

KNMI-RACMO22T ICHEC-EC-

EARTH 

SMHI Swedish Meteorological 

and Hydrological Institute 

SMHI-RCA4 ICHEC-EC-

EARTH 

SMHI Swedish Meteorological 

and Hydrological Institute 

SMHI-RCA4 MPI-M-MPI-ESM-

LR 

 

For the most part, potential socio-economic and technological trends are inexplicable 

and might not be similar to historical shifts. Emissions levels will depend on the 

mitigation strategy that will be implemented in the future, influencing anthropogenic 

emissions. It is recommended that various potential scenarios be implemented, not a 

single best or average case (Vano et al. 2015; Kundzewicza et al. 2018).  According to 

the RCP4.5 storyline, the population growth rate will decline, the economy will show 

steady growth, and tangible land-use regulations will be decided so that 

environmental protection is adequately valued. The RCP8.5 storyline, on the other 

hand, indicates that urban demands will increase with population growth linked to 

relatively low economic development, and society will focus more on development 

than on the protection of the environment (Kim et al. 2015). Each RCP trajectory is, 

therefore, the outcome of particular scenarios of socio-economic and technological 

growth. Thus, the choice of RCP plays a significant role in rightly predicting climate 

change's potential impacts. Of the four RCPs under the fifth Assessment Report 

(AR5) of IPCC, two of the most frequently used in climate change impact studies: the 
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mitigation scenario (RCP4.5) and the high-emission scenario (RCP8.5), were used for 

this study.  

This study takes into account the reference period from 1960 to 1999. Future time 

horizons are established between 2020 and 2059 (mid-century) and between 2060 and 

2099 (end of the century). A comparison was made between these time horizons and 

the reference period to determine the potential impacts of climate change on the 

hydro-meteorological variables. The projected climate variables were introduced in a 

SWAT model to evaluate future climate projections' hydrological impact in two 

horizons: mid-century and end century, focusing on the annual, seasonal, and monthly 

bases. All future hydrological predictions (average discharges of every 40 years) were 

compared with their baselines at monthly, yearly and seasonal scales. 

3.3.1.2 Description and applicability of the SWAT hydrological model  

The impact of climate and LU/LC change on streamflow was determined using the 

Soil and Water Assessment Tool (SWAT). Studies on the effects of climate change on 

water resources have been carried out in many parts of the world using different 

hydrologic models. The SWAT model is widely used in hydrologic modelling for an 

impact study of climate and LU/LC change.  SWAT is a watershed scale, physically 

based, and semi-distributed hydrological model developed by the USDA suited to 

explain the relationship between input (soil, land use, topography, and weather) and 

output variables (sediment, water, and agrochemical yields) in agricultural watersheds 

over long periods (Arnold et al. 1998). SWAT divides watersheds into multiple sub-

watersheds for modelling purposes, further divided into hydrologic response units 

(HRUs). HRUs represent percentages of the area within the sub-watershed that are 

identical in land use, slope, and soil type. The SWAT model's main advantage is that, 

unlike the other models, it does not require much calibration and can be used on 

ungauged watersheds. The SWAT Model outputs include all water balance 

components at each watershed level and are available daily, monthly, or annual time 

steps. SWAT can be used to simulate a single watershed or a system of multiple 

hydrologically connected watersheds. 

The SWAT hydrological model was selected for this study to predict the climate and 

LU/LC change impact on streamflow due to its excellent performance in the country 
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for different hydro-climatic conditions and input data availability. In Ethiopia, SWAT 

has been calibrated, validated, and widely implemented. It has a good performance 

(has a fair degree of accuracy) to study the impact of climate and LU/LC change on 

water availability (Setegn et al. 2011; Dile et al. 2013; Wagesho et al. 2013; Serur and 

Sarma 2016). SWAT was also widely used in different parts of the world for a broad 

range of scales and environmental conditions to evaluate the potential impact of 

climate change on water resources (Changkun et al. 2015; Adhikari and 

Nejadhashemi 2016a, b; Basheer et al. 2016; Azari et al. 2016; Leta et al. 2016). 

Impact studies require the model to simulate a continuous process rather than a single 

event, and the SWAT model can predict long term sequences of flow.  Also, it is 

freely available (open source) and compatible with ArcGIS. The SWAT model is 

limited in that it does not explicitly allow for the inclusion of spatial data as model 

inputs. Data must be processed into a form that the SWAT model can use. Geographic 

Information Systems (GIS) have been successfully integrated with the SWAT model 

to process the inputs and outputs. The ArcSWAT interface that works in the ArcGIS 

environment is the most popular one. ArcSWAT is freely available public domain 

software. The main components of SWAT are watershed delineation, creation of 

HRU, editing input, running SWAT, and visualization of results. SWAT simulates the 

hydrological cycle based on the water balance equation. 

𝑆𝑊 =  𝑆𝑊𝑜 +  ∑ (𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑊𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)𝑛
𝑖=1                                (3.1) 

where SW is final soil water content (mm), 𝑆𝑊𝑜 is initial soil water content on day 𝑖 

(mm), t is time (days), 𝑅𝑑𝑎𝑦 is the amount of the precipitation on day 𝑖 (mm), 𝑄𝑠𝑢𝑟𝑓 is 

the amount of surface runoff on day 𝑖 (mm), 𝐸𝑎 is the amount of evaporation on day 𝑖 

(mm), 𝑊𝑠𝑒𝑒𝑝 are the amount of percolation and bypass flow exiting the soil profile 

bottom on day 𝑖 (mm), and 𝑄𝑔𝑤 is the amount of return flow on day 𝑖 (mm).  

SWAT has different options for calculating the hydrological components in a 

watershed. In this study, the Penman-Monteith method was used to determine 

potential evapotranspiration. Surface runoff was estimated using the Soil 

Conservation Service's curve number method (Equation 3.2).  

𝑄𝑠𝑢𝑟 = 
(𝑅𝑑𝑎𝑦−0.2𝑆)

2

(𝑅𝑑𝑎𝑦+0.8𝑆)
                                                                                   (3.2) 
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Where 𝑄𝑠𝑢𝑟 is the daily surface runoff (mm), 𝑅𝑑𝑎𝑦 is the rainfall depth for the day 

(mm), and S is the retention parameter (mm). The retention parameter (S) is given in 

Equation 3.3. 

𝑆 = 25.4 (
1000

𝐶𝑁
− 10)                                                                                  (3.3) 

S is the drainable volume of soil water per unit area of the saturated thickness 

(mm/day), CN is the curve number. 

3.3.1.3  Preparation of weather generator parameters 

The SWAT needs daily precipitation, minimum and maximum temperature, solar 

radiation, wind speed and relative humidity. Values for all these parameters may be 

read from records of measured data or generated. This study used station data for all 

weather variables. The weather data obtained for the stations in and near TWW had 

missed some of the variables. These missed values were filled with the weather 

generator utility in the SWAT model from weather generator parameters' values. This 

study used the pcpSTAT and Dew02.exe programs to prepare weather generator 

parameters based on forty years of data from the synoptic station (Hawassa station). 

3.3.1.4  Preparation of LU/LC map  

The LU/LC maps used to evaluate climate change impacts on streamflow were 

prepared using the Landsat Thematic Mapper (TM) for 1988 and 1998. The Landsat 

images were projected to the Universal Transverse Mercator (UTM) coordinate 

system (WGS 84 datum, UTM Zone 37 N). A supervised classification procedure was 

implemented for classification. Among different classification algorithms, the 

Maximum Likelihood Classification (MLC) algorithm was selected for supervised 

classification. ERDAS 2014 was employed for image classifications purposes and 

ArcGIS 10.3 for mapping purposes.  For classification, seven LU/LC classes were 

established in the scheme as intensively cultivated (AGRR), moderately cultivated 

(AGRC), water (WATR), shrubland (RNGB), built-up (URHD), swampy (WETN), 

and grassland (RNGE). The categories specified in the LU/LC map were reclassified 

into SWAT land cover/crop types. The LU/LC map preparation details were given in 

topic 3.3.2.1, and the maps are shown in chapter five. 
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3.3.1.4  Calibration and validation of the model  

Appropriate implementation of the SWAT model involves calibration and validation 

of the model against historical measured data. Model calibration involves 

correction/adjustment of model parameters and constants to reduce the deviation of 

model output from the observed data set. It estimates model parameters by comparing 

model estimations with measured values for the same condition. Model validation 

means that a model is acceptable for its intended application because it meets 

specified performance requirements (Rykiel 1996). Model validations involve running 

a model using input parameters determined during the calibration process. It is the 

process of determining that a particular model can make adequately accurate 

predictions (Refsgaard and Knudsen 1996). The accuracy of model predictions is 

usually tested by comparing predicted with measured values and applying some 

measure of goodness-of-fit. The result of model predictions can be compared with the 

measurements to ensure their validity. Therefore, calibration and validation were 

performed in this study using 23 (1980–2002) years of streamflow measured data. The 

data was separated into warm-up (1980–1982), calibration (1983-1995), and 

validation (1996–2002) periods. The prolonged calibration period (65%) with a 

LU/LC map within the calibration period (1988) was used to better parameterise the 

model. Calibration and validation were performed in SWAT-CUP 2012 version 5.1.4 

using the Sequential Uncertainty Fitting (SUFI-2) algorithm, based on the SWAT-

CUP user manual (Abbaspour 2013). SUFI-2 is a semi-automated calibration and 

uncertainty analysis algorithm that accounts for all uncertainty sources, including 

driving variable uncertainty, conceptual model, parameters, and measured data (Tang 

et al. 2012; Zhou et al. 2014; Vilaysane et al. 2015). 

3.3.1.5  Model performance evaluation 

The SWAT model performances were evaluated using Nash-Sutcliffe Efficiency 

(NSE), root-mean-square error to observation standard deviation ratio (RSR), 

coefficient determination (R2), and per cent bias (PBIAS). NSE is a statistical 

indicator for evaluating the model's performance. It defines the relative size of the 

residual variance to the observed data variance (Nash and Sutcliffe 1970) and ranges 

from one to a large negative number; one indicates a perfect model (Equation 3.4). 
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RSR is the ratio of the root-mean-square error (RMSE) to the observation standard 

deviation, and it ranges from zero to a large positive number. The higher the RSR 

values, the lower the model performance; RSR has an optimum value of zero 

(Equation 3.5). The coefficient determination (R2) is the magnitude of the linear 

relationship between the observed and the simulated values. R2 varies from zero to 

one with higher values that display less error variation (Equation 3.6). PBIAS 

indicates the simulated result's tendency to overestimate or underestimate compared 

to the observed values (Equation 3.7) (Moriasi et al. 2007). The low-magnitude values 

of PBIAS indicate better model simulations. The optimal value of PBIAS is zero 

(Moriasi et al. 2007). According to Moriasi et al. (2007) recommendation, the model 

evaluation can be judged satisfactory if RSR is less or equal to 0.70, NSE greater than 

0.50, and PBIAS less than +/-25% for streamflow. Table 3.4 summarizes statistical 

performance indicators for streamflow simulation with a monthly time step. 

𝑁𝑆𝐸 = 1 − 
∑ (𝑥𝑖−𝑦𝑖)2𝑛

𝑖=1

∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1

                                                         (3. 4) 

𝑅𝑆𝑅 =
[√∑ (𝑥𝑖−𝑦𝑖)2𝑛

𝑖=1 ]

[√∑ (𝑥𝑖−�̅�𝑖)2𝑛
𝑖=1 ]

                                                              (3.5) 

𝑅2 =
[∑ (𝑥𝑖−�̅�𝑖)(𝑦𝑖−�̅�𝑖)𝑛

𝑖=1 ]
2

∑ (𝑥𝑖−�̅�𝑖)2𝑛
𝑖=1 ∑ (𝑦𝑖−�̅�𝑖)2𝑛

𝑖=1

                                                    (3.6) 

 𝑃𝐵𝐼𝐴𝑆 = [
∑ (𝑥𝑖− 𝑦𝑖) 𝑛

𝑖=1 ∗ (100)

∑ (𝑥𝑖)𝑛
𝑖=1  

]                                                  (3.7)  

Where 𝑥𝑖 and 𝑦𝑖 are observed and simulated values, respectively. n is the 

number of datasets. 
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Table 3.4. Overall performance ratings for a simulation with a monthly time step 

(Moriasi et al. 2007). 

Performance  

rating 

RSR NSE PBIAS (%) for 

streamflow 

Very good 0.00 < RSR ≤ 0.50  0.75 < NSE ≤ 1.00  PBIAS < ± 10 

Good 0.50 < RSR ≤ 0.60 0.65 < NSE ≤ 0.75  ± 10 ≤ PBIAS < ± 15 

Satisfactory 0.60 < RSR ≤ 0.70 0.50 < NSE ≤ 0.65  ± 15≤ PBIAS < ± 25 

Unsatisfactory  RSR > 0.70 NSE ≤ 0.50  PBIAS ≥ ±25 

 

The SWAT model was set up for TWW and run on a monthly time step. The 

calibrated SWAT model was run for both the reference period (1960 to 1999) and the 

future climate change scenarios for a period of mid-century (2020–2059) and end 

century (2060 to 2099) based on the 1998 LU/LC map. The SWAT model outputs 

were compared with the historical values/reference period monthly, seasonal, and 

yearly. The future precipitation, minimum temperature, and maximum temperature 

are also compared with the reference period (1960 to 1999) to recognize the impact of 

climate change on temperature and precipitation. Figure 3.6 summarizes the 

methodology for climate change's effects on hydro-meteorological variables. 
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Figure 3.6. Methodology flow chart for climate change impacts on hydro-

meteorological variables in TWW 
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3.3.2 Methods for land use/land cover change impacts 

3.3.2.1 LU/LC change detection 

Assessments of LU/LC change were done using four Landsat images; Landsat 

Multispectral Scanner (MSS) for 1978, Landsat Thematic Mapper (TM) for 1988 and 

1998, and Landsat Operational Land Imager and Thermal Infrared Sensor 

(OLI_TIRS) for 2017. The images under clear cloud-cover conditions were collected 

from the USGS Centre for Earth Resources Observation and Science 

(https://earthexplorer.usgs.gov/). All Landsat images were projected to the Universal 

Transverse Mercator (UTM) coordinate system (WGS 84 datum, UTM Zone 37 N). A 

supervised classification procedure was implemented for classification. In supervised 

classification, the user supervises the pixel classification process. Supervised 

classification is based on the idea that a user can select sample pixels in an image 

representing specific classes and then direct the image processing software to use 

these training sites as references to classify all other pixels in the image. Training sites 

are selected based on the knowledge of the user. For this study, this is done by 

selecting 600 representative reference data from Google Earth images of the 

corresponding periods and experience of the user. Among different classification 

algorithms, the Maximum Likelihood Classification (MLC) algorithm was selected 

for supervised classification. MLC is the most common and widely used algorithm 

that assumes that the statistics for each class in each band are normally distributed and 

calculates the probability that a given pixel belongs to a specific category. Each pixel 

is assigned to the class with the highest probability (maximum likelihood). 

As Lillesand elucidated, "A classification is not complete until its accuracy is 

assessed" (Lillesand 2015). In thematic mapping from remotely sensed data, the word 

accuracy is used to clarify the degree of "correctness" of a classification (Foody 

2002). Therefore, classification accuracy is naturally taken to mean how the derived 

image classification agrees with reality or conforms to the truth. Therefore, accuracy 

assessment is a general term for comparing the classified image to geographical data 

considered accurate or ground truth data to determine the classification process's 

accuracy.  

https://earthexplorer.usgs.gov/
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A confusion matrix (or error matrix) is the most widely used quantitative technique to 

assess the accuracy of classified images (Foody 2002). A confusion matrix is a row by 

column table with as many rows as columns that show the agreement between the 

classification result and a reference image. Each row of the table is reserved for one of 

the information or remote sensing classes the classification algorithm uses, whereas 

each column displays the corresponding ground truth classes in identical order.  A 

confusion matrix is used to properly analyze the validity of each category, including 

the classification as a whole. The most common classification accuracy assessment 

approaches are expressing overall accuracy, producer's accuracy, and user's accuracy 

(Lillesand et al. 2004).  

The producer's accuracy measures how accurately the analyst classified the image 

data by category (columns). Producer accuracy niceties the errors of omission. An 

error of omission results when a pixel is incorrectly classified into another category. It 

is an important measure because the producers of spatial data are interested in 

knowing how well a particular area on the Earth's surface can be mapped. Producers' 

accuracies are derived by dividing the number of properly classified pixels in each 

category (on the major diagonal) by the number of reference pixels used for that 

category.  

User accuracy represents the possibility that a sample from the classified image 

actually represents that class on the ground. User accuracy specifics errors of 

commission. An error of commission indicates the probability that a pixel classified 

into a given category actually represents that category on the ground. User accuracy is 

vital for users of spatial data because users are principally interested in knowing how 

well the spatial data actually represents what can be found on the ground (Lillesand et 

al. 2004). The user accuracy is calculated by dividing the number of accurately 

classified samples of the relevant class by the total number of verified samples 

belonging to that class. Overall classification accuracy is the ratio of the number of 

correct classifications to the total number of samples evaluated. The overall accuracy 

constitutes the percentages of correctly classified classes lying along the diagonal in 

the confusion matrix. Accuracy assessment was employed regarding the 

corresponding Google Earth images to illustrate the representativeness of the 
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classified images on the ground. ERDAS 2014 was used for image classifications 

purposes and ArcGIS 10.3 for mapping purposes.  

For classification, seven LU/LC classes were established in the scheme as intensively 

cultivated (AGRR), moderately cultivated (AGRC), water (WATR), shrubland 

(RNGB), built-up (URHD), swampy (WETN), and grassland (RNGE). Detailed 

explanations of the LU/LC types are given in Table 3.5. The categories specified in 

the LU/LC map were reclassified into SWAT land cover/crop types. LU/LC change 

analysis was carried out using the classified (1978, 1988, 1998, and 2017) states to 

demonstrate the LU/LC changes trend. To elucidate the extent of changes experienced 

between the subsequent periods, the per cent of change and rate of change was 

computed using Equation (3.8) and (3.9), respectively. The same method was 

employed by Gashaw et al. (2018). 

 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 = (
𝐴−𝐵

𝐵
) 100                                                           (3.8) 

𝑅𝑎𝑡𝑒𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 (𝐾𝑚2 𝑦𝑟⁄ ) = (
𝐴−𝐵

𝑇
)                                                       (3.9) 

A is the LU/LC area (Km2)  in time two, B is the area of LU/LC (Km2) in time one, T 

is the time interval between A and B in years. 
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Table 3.5. Description LU/LC classes in Tikur Wuha watershed  

No. LU/LC Type Explanation  

1 Intensively 

cultivated 

This unit includes mechanized and smallholder farms. Both are 

characterized by tilled and planted, bare crop fields, and limited 

areas temporarily left as fallow. (dominated by seasonal crops, 

such as Barley, Wheat, Teff, Maize, Pulses, Potatoes, Pepper) 

2 Moderately 

cultivated 

This unit is dominated by perennial crops, such as Khat (Catha 

edulis) and Coffee (Coffea arabica), Enset (Ensete-

ventricosum), Sugar Cane 

3 Water Open water areas (Lake Cheleleka, Tikur Wuha river, and all 

watershed streams). 

4 Shrubland These areas are covered with shrubs, bushes, and small trees 

mixed with grasses.  

5 Built-up This unit describes urban areas of residential, commercial, 

industrial buildings, transportation infrastructures, an urban 

settlement with bare ground and roads.  

6 Swampy This unit labels the marshland area with topographic low where 

the water table is near or above the land surface.  

7 Grassland This unit refers to the areas dominated by grass with a low 

occurrence of shrubs. The grassy area used for communal 

grazing 

 

3.3.2.2  Methods for LU/LC change impacts on streamflow 

The impact of LU/LC change on streamflow was determined using the calibrated and 

validated SWAT version SWAT2012 hydrological model. The SWAT hydrological 

model is briefly discussed in topic 3.3.1.2. The different period LU/LC map 

(1978LU/LC, 1988LU/LC, 1998LU/LC and 2017LU/LC) with fixed DEM, soil and 

weather data was used to run the SWAT model. The streamflow from the simulation 

was compared and discussed. Figure 3.7 showed the methodology framework to 

determine the LU/LC change impacts on streamflow.  
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Figure 3.7. Methodology flow chart for LU/LC impacts on streamflow 

3.3.3 Methods for variability and trend analysis of hydro-meteorological 

variables 

The analysis of the trend can be done using either parametric or non-parametric tests. 

Parametric trend tests are more powerful than non-parametric ones, but they usually 

need distributed and independent data (Hamed and Rao 1998). The hydro-

meteorological data is often non-normally distributed, censored, and missing data. If 

the data is not normally distributed, parametric methods result in invalid inferences 

and mislead the decision-makers. Major advantage of non-parametric tests compared 

to parametric tests is its advantage for non-normal distribution and quality-checked 

datasets. A non-parametric test is often referred to as a distribution-free or distribution 
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independent method. Several non-parametric methods are available for the trend 

detection of meteorological variables, but the Mann-Kendall (M-K) test is the widely 

used non-parametric approach for trend detection of hydro-meteorological time series 

such as precipitation and temperature (Hamed and Rao 1998; Yue et al. 2002). The 

M-K test is a non-parametric test, which tests for a trend in a time series without 

specifying whether the trend is linear or non-linear (Yue et al. 2002). Since there are 

probabilities of outliers existing in the data set, the non-parametric M-K test is 

advantageous because of its statistics based on the positive (+) or negative (-) signs, 

instead of the value of the random variable, and therefore, the trends recognized are 

less sensitive to outliers. The M-K test is widely used to detect trends of 

meteorological variables (Tabari et al. 2011). For this study, the non-parametric M-K 

test (Equation 3.10) with a 0.05 level of significance was used to detect the annual 

and seasonal trend of hydro-meteorological variables. The M-K trend test was used 

because it is robust, simple, can cope with missing values, and the data need not 

follow any specific distribution (Mann 1945; Kendall 1975). Besides supporting the 

M-K trend test results, linear trend lines are plotted for each station using Microsoft 

Excel®. Figure 3.8 summarizes the method adopted to analyze trends and variability 

of hydro-meteorological variables.  
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Figure 3.8. Methodology flow chart for trend and variability analysis of hydro-

meteorological variables in TWW 

The M-K test statistic ‘S’ is calculated based on Mann (1945) and Kendall (1975) 

using Equation 3.10. The statistic S is increased by one if a data value from a later 

time is higher than the data value from an earlier time. In contrast, S is decreased by 

one if the data value later is lower than that sampled earlier. The net result of all such 

increase and decrease yields the final value of S. The statistics S of Kendall's tau is 

given by Equation 3.11. The null hypothesis (H0) in this test assumes that there is no 

trend (S=0), and this is tested against the alternative hypothesis (Ha), which assumes 

that there is a trend (S0). 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖 )
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1                                                    (3.10) 
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The application of trend test is done to a time series 𝑥𝑖 that is ranked from i = 1, 2…n-

1 and 𝑥𝑗, which is ranked from j = i + 1, i +2…. n. Each of the data point 𝑥𝑖  is taken 

as a reference point which is compared with the rest of the data point's 𝑥𝑗 so that: 

𝑆𝑔𝑛 (𝑋𝑗 − 𝑋𝑖 ) = {

+1    𝑖𝑓(𝑋𝑗 − 𝑋𝑖 ) > 0

0     𝑖𝑓(𝑋𝑗 − 𝑋𝑖 ) = 0

−1    𝑖𝑓(𝑋𝑗 − 𝑋𝑖 ) < 0

                                                (3.11) 

Where Xi and Xj are the annual values in years i and j (j > i), respectively.  

Under the null hypothesis that Xi and Xj are independent and randomly ordered. 

When the number of observations is more than 10 (n ≥10), the statistic ‘S’ is 

approximately normally distributed, with the mean of S becomes 0 (Kendall 1975). In 

this case, the variance statistic is given as Equation 3.12. 

𝑉𝑎𝑟(𝑆) =
𝑛(𝑛−1)(2𝑛+5)−∑ 𝑡𝑗(𝑡𝑗−1)(2𝑡𝑗+5)𝑚

𝑗=1

18
                                                   (3.12) 

Where m is the number of tied groups in the data set, and tj is the number of data 

points in the jth tied group. 

The standardized test statistics Zs for the M-K test were computed by using Equation 

3.13. 

𝑍𝑠 = {

𝑆−1 

𝜎
    𝑖𝑓 𝑆 > 0

0            𝑖𝑓 𝑆 = 0
𝑆+1

𝜎
    𝑖𝑓 𝑆 < 0

                                                                              (3.13) 

Where, 𝜎 = √𝑉𝑎𝑟(𝑆)  

Zs is used to judge the presence of the significance of any trend. Positive Zs show an 

upward trend, and negative Zs show a downwards trend for the period. 

The parameter estimate of the slope was then tested for statistical significance using 

the probability value (p-value) at a 0.05 level of significance. A p-value of less than 

0.05 shows a monotonic trend, and a P-value greater than 0.05 indicates no trend. 

Since non-parametric tests are commonly designed to point out the existence but not 

the magnitude of a trend, the magnitude of the trend was estimated using Sen’s Slope 

Estimator method (Sen 1968). Sen's slope estimator is a non-parametric approach and 

gives a robust estimate of the magnitude of a monotonic (increasing/decreasing) trend 

and is a widely used tool in quantifying a trend in hydro-meteorological time series. 
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In general, the slope β between two values of a time series x can be computed as 

Equation 3.14 (Sen 1968). 

𝛽 =
𝑥𝑗−𝑥𝑖

𝑗−𝑖
                                                                                                   (3.14) 

Where xj and xi are considered data values at time j and i (j > i), respectively. 

A negative value of β indicates a downward trend, whereas a positive value of β 

indicates an upward trend.  

The median of these N values of 𝛽 is represented as Sen's estimator of the slope, 

calculated as Equation 3.15. 

  𝑄𝑚𝑒𝑑 =
𝛽(𝑁+1)

2
 if N is odd, and 𝑄𝑚𝑒𝑑 = {𝛽 (

𝑁

2
) +

𝛽(𝑁+2)

2
} /2 if N is even      (3.15) 

A positive value of 𝑄𝑚𝑒𝑑 indicates an upward or increasing trend and a negative value 

of 𝑄𝑚𝑒𝑑 gives a downward or decreasing trend in the time series. 

Forty years (1978 to 2017), daily observed data were used for the analysis. The 

observed data of all the variables were tested for consistency and missing records. For 

temperature and streamflow, missing cases are filled using linear interpolation, and 

nearest neighbour values are used for rainfall. Similar methods were employed by 

Raju and Nandagiri (2017). Data analysis was undertaken using XLSTAT 2018 

software and excel spreadsheet 2013.  

Observed daily rainfall of four stations and temperature (T-max and T-min) from two 

stations are collected from NMSA branch office at Hawassa. Streamflow was 

obtained from MoWIE. Observed PET data is not available on TWW. For estimation 

and planning of water resources and to compute crop water use, determining PET is 

critical. An accurate estimate of PET is pertinent for hydrological and agricultural 

studies, especially under increasing water scarcity and changing climate (Allen et al. 

1998). Due to the difficulty of obtaining accurate field measurements, 

evapotranspiration is commonly computed from weather data. 

Many authors have proposed several models. Many of the models are subject to local 

calibration, thereby making them have limited global acceptance. Due to the higher 

performance of the FAO-56 Penman-Monteith (FAO-56 PM) model in different parts 

of the world when compared with other models, it has been accepted as the sole 

method of computing reference evapotranspiration (PET) from meteorological data 

(Allen et al. 1998). The FAO-56 PM model has been universally accepted as the 
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exclusive method for estimating reference evapotranspiration. The FAO-PM method 

was developed by defining the reference crop as a hypothetical crop with an assumed 

height of 0.12m, with a surface resistance of 70 sm-1 and an albedo of 0.23, closely 

resembling the evaporation from an extensive surface of green grass of uniform 

height, actively growing and adequately watered (Allen et al. 1998). In this study, the 

daily values of PET were computed using the FAO-56 PM method (Equation 3.16) 

and MATLAB software for the Hawassa station.  

𝐸𝑇𝑜 =
0.408∗∆∗ (𝑅𝑛− 𝐺)+ 𝛾∗

900

𝑇+273
∗𝑢2∗(𝑒𝑠−𝑒𝑎)

∆+𝛾∗(1+0.34∗𝑢2)
                                   (3.16) 

Where, 

 𝐸𝑇𝑜 = reference evapotranspiration rate/ (mm d-1),  

𝑇 = mean air temperature (°C),   

𝑢2 = wind speed (m s-1) at 2 m above the ground.  

𝑅𝑛 = net radiation at the crop surface, MJ m-2 d-1; 

𝐺 = soil heat flux density, MJ m-2 d-1; 

𝑒𝑠 = saturation vapour pressure, KPa; 

𝑒𝑎 = actual vapour pressure, KPa; 

𝑒𝑠 − 𝑒𝑎= saturation vapor pressure deficit, KPa; 

∆ = slope of the vapor pressure curve, KPa ºC-1; 

𝛾 = psychrometric constant, KPa ºC-1 

In computing daily evapotranspiration using the FAO-56 PM model, five specific 

climate data are required: daily maximum and minimum air temperature, solar 

radiation, wind speed, and relative humidity. These data are not always available at all 

weather stations, especially in Ethiopia and most developing countries. Thus, using 

PET models that require a reduced set of climate data continues to be an important 

alternative in such cases. In most cases, only the maximum and minimum air 

temperatures are available. In such a situation, the procedure for estimating PET 

outlined in Allen et al. (1998) is used and has been found to produce acceptable 

results. The Hargreaves model has been recommended for the computation of PET 

when only the maximum and minimum air temperatures are available (Allen et al. 

1998). In TWW, at Haisawita station (where limited climatic data is available, the 
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maximum and minimum air temperatures), PET was determined using the Hargreaves 

model (equation 3.17). The equation stated by Hargreaves and Samani (1982) and is 

given as: 

𝐸𝑇𝑜 = 0.0023 ∗ (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)0.5 ∗ 𝑅𝑎                                                         (3.17) 

Where, 

𝐸𝑇𝑜= reference evapotranspiration (mmd-1), 

𝑇𝑚𝑎𝑥 = maximum air temperature  

𝑇𝑚𝑖𝑛 = minimum air temperature 

𝑅𝑎= the extra-terrestrial solar radiation (MJ m-2 d-1)  

The Thiessen polygon method was employed to compute the average annual rainfall 

in the watershed (Chow 2010). The Thiessen method is generally more accurate than 

the arithmetic mean method. If there are n gauges in the watershed, the areal weighted 

average precipitation for the watershed is given by Equation 3.18. 

�̅� =
1

𝐴
∑ 𝐴𝑗𝑃𝑗

𝑛
𝑗=1                                                                                (3.18)                                      

Where, 

�̅�  is the weighted average of rainfall in the watershed  

𝐴 = ∑ 𝐴𝑗
𝑛
𝑗=1  is watershed area   

Aj  is the  area  within  the  watershed  assigned to each station  

Pj  is the  rainfall  recorded  at the  jth  gage 

Variability analysis 

This study has computed the inter-annual and seasonal variability of hydro-

meteorological variables using the Coefficient of Variation (CV). A higher and lower 

value of seasonal and annual CV indicates greater and lesser variability, respectively. 

The value of CV was computed by using Equation 3.19. 

𝐶𝑉 = (
𝜎

𝜇
) ∗ 100                                                                                         (3.19)         

Where μ is the mean rainfall, and σ is the standard deviation. 

The CV is used to classify the degree of variability of rainfall events and is considered 

as less variability (CV < 0. 20), moderate variability (0. 20 < CV < 0.30), and high 

variability (CV > 0.30). The same CV value range was used in Ethiopia (Asfaw et al. 

2018; Samy et al. 2019). 
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3.3.4 Methods for prediction of the soil loss rate  

The USLE (Wischmeier and Smith 1978) and its revised version (RUSLE) (Renard et 

al. 1997) are widely used models for assessment of SLR (Ashiagbor et al. 2013; 

Maryam and Biswajeet 2014; Ganasri and Ramish 2016; Markose and Jayappa 2016; 

Rejari et al. 2016; Uddin et al. 2016; Yuan et al. 2016). USLE was mainly developed 

for conditions in the United States of America (USA). The use of USLE in other areas 

requires adaptation to the local situation. Thus, Hurni (1985) simplified the USLE by 

adapting the factors to conditions in Ethiopia based on long term measurements and 

experimental data from a large number of test plots in five Soil Conservation 

Research Project (SCRP) stations, namely: Anjeni, Andit Tid, Gununo, Hunide Lafito 

and Mayabir in various slopes, soils, land uses, crops, and under several SWC 

treatments in different agro-climatic zones of Ethiopia and one additional station in 

Eritrea (Afdeyu). In various agro-climatic regions of Ethiopia, USLE coupled with 

GIS has been successfully and extensively applied for the estimation of the spatial 

variation of soil loss, and it has provided good results (Bewket and Teferi 2009; 

Brhane and Mokonen 2009; Sisay et al. 2014; Adugna et al. 2015; Ayalew 2015; 

Wolka et al. 2015; Fenta et al. 2016; Gelagay and Minale 2016; Gashaw et al. 2017). 

Therefore, the present study employed USLE (Equation 2.1) adopted for the 

Ethiopian condition (Hurni 1985) and coupled with a GIS tool to quantify the SLR of 

TWW. The details of the USLE factors are found in (Wischmeier and Smith 1978) 

and briefly described underneath. The following three steps were developed to 

estimate the SLR and recognition of the priority watershed and summarized in Figure 

3.9. 

(i) It is generating the raster map of the necessary input parameters of USLE.  

(ii) The watershed SLR map was developed and classified into severity 

categories based on different criteria (based on soil erosion severity class, 

soil loss tolerance of the area, and average soil loss rate of the country). 

(iii) Prioritization of sub-watersheds for SWC practices based on the relative 

erosion status of the sub-watersheds  
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Figure 3.9. The framework for the modelling of SLR and prioritization of watersheds 

using the USLE 

3.3.4.1 Rainfall erosivity factor (R-factor) 

The R-factor is determined by the rainfall erosion index (EI30). It is a measure of 

rainfall events (Wischmeier and Smith 1978). However, measured data like intensity 

and kinetic energy are not commonly obtainable in every area for the R-factor's 

precise determination (Lal and Humberto 2008). Researchers developed various 

equations for the R-factor computation based on average annual, monthly, and daily 

precipitations. However, those equations can not be applied to Ethiopia since they are 

valid for their elaborate areas. Also, extrapolating them to another place beyond the 

database from which they have been derived is not convincing. Due to the difficulty 

of direct determination of R-factor, as the intensity of the precipitation does not exist 

at the meteorological stations in the TWW, indirect methods developed by Hurni 

(1985) for Ethiopia based on average annual rainfall (Equation 3.20) are applied.  

R = 0.56P − 8.12                                                                                            (3.20)  
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Where P is the average yearly precipitation in mm. 

A similar method was employed by (Bewket and Teferi 2009; Amsalu and Mengaw 

2014; Adugna et al. 2015; Ayalew 2015). The daily rainfall data for four stations in 

and near the watershed was collected from the national meteorological service 

agency, South Nation Nationality and People Regional State, Hawassa branch office. 

In developing countries like Ethiopia, meteorological stations are sparsely available. 

All the stations in and near the watershed that satisfy the criteria (The data 

availability, period of observation of data in the study area and gaps in data records 

are the criteria applied for the choice of used stations) were included. Nearest 

neighbour values filled the missing data. 

The databases of the rainfall from four stations are for 40 years (1978 to 2017). The 

data were first aggregated into average annual rainfall amounts in the attribute table. 

The average yearly rainfall amounts of the four stations were entered as point values 

for the geo-referenced locations culminating in a point map. The point map was 

rasterized using the functions in ArcGIS 10.3 software. The rasterized rainfall point 

map was then used to develop a Thiessen map (rainfall map), with continuous surface 

annual rainfall values depicting different rainfall regimes in the study area. The 

annual rainfall map shows the spatial variation of annual rainfall in the watershed, and 

it was used to generate the R-factor raster map. The R-factor map was developed by 

using GIS-based on the annual rainfall map and Equation 3.20. 

3.3.4.2 Soil erodibility factor (K- factor) 

Soils vary in their vulnerability to erosion. This variation, due to the soil type itself, is 

called soil erodibility (Wischmeier and Smith 1978). Organic matter content, 

permeability, texture, and soil structure are the critical soil characteristics that control 

the K-factor. Typically, a soil type becomes less erodible with a decrease in silt 

fraction, regardless of whether the corresponding increase is in the sand or clay 

fraction (Wischmeier and Smith 1978). Determining K-factor values by directly 

measuring the erodibility factor is expensive and requires considerable time and 

equipment to execute. In this study, to determine the K-factor value, Hurni (1985) 

adapted K-factor estimations for various soil types for Ethiopian conditions were 

used. However, this value is in the US unit. It needs to adjust the values multiplied by 

a conversion factor to get the SI unit's values.  
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3.3.4.3 Slope length and slope steepness (LS-factor) 

The LS-factor reflects the impact of topography on water erosion. Steeper slopes raise 

runoff velocities, and longer slopes allow for the accumulation of runoff. Both these 

results increased erosion potential. The steeper and prolonged the hill, the higher is 

the risk of erosion (Hudson 1995). The two factors have been determined separately. 

However, considering the two as a single topographic factor is convenient in field 

applications. Since each location's altitude defines topography within an area, altitude 

data stored in a DEM is the standard input for performing topographical operations in 

a raster format. The LS-factor can be used in a single index for this research, as shown 

in Equation 3.21, defined by (Wischmeier and Smith 1965), and derived from DEM. 

LS = (
x

22.13
)

m
(0.065 + 0.045s + 0.0065s2)                                                    (3.21) 

Where x = the field slope length, can be determined by multiplying flow accumulation 

and the resolution of the DEM, s = slope gradient (%). The magnitude of m in 

Equation 3.21 does not mean the same for all places or conditions at a given site. m 

values vary from 0.2 – 0.5 subjects to the slope, as provided in Table 3.6  

(Wischmeier and smith 1978). 

Table 3.6. Relationship between slope in per cent and m-values  

Slope 

(%) 

greater than 

five 

between three and 

five 

between one and 

three  

less than 

one 

m-values 0.5 0.4 0.3 0.2 

3.3.4.4 Cover and management factor (C-factor) 

The C-factor is the ratio of soil loss from land with specific vegetation to the 

corresponding soil loss from continuous fallow (Wischmeier and Smith 1978). In 

estimating the C-factor, it is indispensable to know the LU/LC of the study area. The 

LU/LC map of the watershed was developed from the Landsat Operational Land 

Imager and Thermal Infrared Sensor (OLI_TIRS) image acquired on 12-December-

2017 during the dry season. The details of the development of the LU/LC map are 

given in section 3.3.2.1. The C-factor value was determined for each LU/LC class of 

the TWW based on available literature recommendations in the Rift valley Lake Basin 

in Ethiopia (MoWR 2008) in the Ethiopian highlands (Hurni 1985), and other 

published literature. 
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3.3.4.5 Support practice factor (P-factor) 

The P-factor gives the ratio between the soil losses expected for a specific soil 

conservation practice to that of up and downslope ploughing (Wischmeier and Smith 

1978). The effects of supportive conservation methods such as terracing, contouring, 

tillage, cropping practices, in particular, and land management, in general, are 

significant in controlling SLR in a specific area. The magnitude of erosion declines 

with the installation of these methods. Supportive SWC practice decreases runoff 

amount and speed and encourages the deposition (Morgan 2005). In the TWW, an 

insignificant portion of the watershed has been cured with improved SWC 

intervention through the Safety Net Program and the government. Previously 

constructed works were reported as destroyed in many places due to the free grazing 

of cattle and a lack of maintenance (MoWR 2008). Hence, P-factor values from slope 

and land use classes were used in this study. Firstly, we developed the LU/LC map. 

The LU/LC map was reclassified into two categories that are agricultural land and 

non-agricultural land. At the same time, we reclassified the slope in per cent map into 

six classes. Then, using raster analysis in ArcGIS 10.3, we developed a P-factor raster 

map using the reclassified LU/LC map, slope in per cent map. Similar methods of 

determining P-factor values have been employed in earlier studies from several 

nations (Bewket and Teferi 2009; Adediji et al. 2010; Shiferaw 2011; Mulu and 

Dwarakish 2016). 
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CHAPTER 4: HYDRO-METEOROLOGICAL IMPACT 

ASSESSMENT OF CLIMATE CHANGE  

4.1 General  

As climate change impact is location-specific and varies seasonally and regionally, it 

should be examined at each watershed. This topic covers the validation of CORDEX 

data of five RCMs from multiple GCMs using observed and historical data of climate 

variables. It also discusses how the future temperature and precipitation will change in 

the mid and end of the century compared to baseline periods. Besides, it describes the 

potential impacts of climate change on streamflow in TWW for the mid and end 

century.  

4.2 Validation of CORDEX Data with Observed Data 

The performance of the bias-corrected CORDEX data was checked by using NSE. 

Validation was done based on 24 years' simulation from 1978 to 2001(the common 

period for observed and historical data) monthly and yearly for temperature and 

precipitation, respectively. The results are presented in Table 4.1. The weight was 

given based on the performance of the models. The NSE of the five best models' 

minimum temperature output ranges from 0.66 to 0.83, whereas the maximum 

temperature output ranges from 0.61 to 0.78. The NSE of the precipitation of the five 

best models output ranges from 0.39 to 0.59. The NSE of the five selected models' 

weighted average is 0.85 and 0.84 for temperature and precipitation, respectively 

(Table 4.1). The result revealed that rainfall is less well simulated than temperature, 

the minimum temperature is better simulated than the maximum temperature, and the 

weighted average of selected models perform better than a single model in the Tikur 

wuha watershed. It is in agreement with previous studies (Fang et al. 2015; Legese 

2017). RCMs/GCMs had better represent the temperature domain than the 

precipitation domain (Fang et al. 2015). Legese (2017) reported that precipitation 

exhibited a worse agreement than the temperature in Bale highlands in southern 

Ethiopia.  
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Table 4.1. The NSE values of the five selected and the weighted average of the RCMs 

Model ID (RCMs) 

 

Driving model                           NSE 

 Minimum 

temperature 

Maximum 

temperature 

Precipitation 

CCCma-RCM4 CCCma-CanESM2 0.69 0.62 0.45 

DMI-HIRHAM5 ICHEC-EC-EARTH 0.66 0.61 0.39 

KNMI-RACMO22T ICHEC-EC-EARTH 0.83 0.78 0.52 

SMHI-RCA4 ICHEC-EC-EARTH 0.79 0.71 0.59 

SMHI-RCA4 MPI-M-MPI-ESM-LR 0.75 0.69 0.54 

Weighted average  0.85 0.85 0.84 

4.3 Description of statistical parameters of seasonal and annual climate variables 

4.3.1 Description of statistical parameters of seasonal and annual climate 

variables of historical CORDEX outputs 

The summary of the statistical parameters for precipitation, minimum temperature, 

and maximum temperature of the weighted average of historical CORDEX outputs 

are given in Table 4.2. 

Table 4.2. Summary of statistical parameters for all variables of the weighted average 

historical CORDEX outputs (1960 to 1999) 

Variables Statistical parameters Bega Belg Kiremt Annual 

Precipitation (mm) Minimum 98.81 181.40 418.74 802.09 

Maximum 293.33 525.43 733.94 1330.19 

Average 169.13 366.92 542.60 1078.64 

CV 23.57 20.33 13.56 10.28 

Minimum  

Temperature (oC) 

Minimum 8.44 10.91 11.92 10.40 

Maximum 10.20 12.54 13.70 12.02 

Average 9.31 11.78 12.77 11.22 

CV 4.45 3.33 2.98 3.35 

Maximum  

Temperature (oC) 

Minimum 24.37 25.11 22.46 24.04 

Maximum 26.87 27.54 24.21 26.09 
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Average 25.79 26.40 23.37 25.18 

CV 2.41 2.37 1.81 1.93 

Note: CV = Coeficient of variation in percent 

Annual precipitation has ranged from 802.09mm to 1330.19mm in the historical 

period, with an average of 1078.64mm. Rainfall during the Kiremt season ranges 

from 418.74mm to 733.94mm, with an average of 542.60mm. The average rainfall in 

Belg is 366.92mm, with a range of 181.40mm to 525.43mm. The average rainfall in 

the Bega is 169.13mm, with a range of 98.81mm to 293.33mm. The minimum 

monthly average precipitation was recorded in January, and the maximum monthly 

average rainfall is observed in May.  The CV value of annual rainfall is 10.28% 

implies that the interannual variability of annual rainfall is less in the Historical 

period. Seasonally, rainfall variability is large in Bega and Belg compared to the 

Kiremt season.  

Forty-year annual minimum temperature ranges from 10.40 oC to 12.02 oC with an 

average value of 11.22 oC. The average minimum temperature of Bega ranges from 

8.44 oC to 10.20 oC with an average value of 9.31 oC. The average minimum 

temperature of Belg ranges from 10.91 oC to 12.54 oC with an average value of 11.78 

oC. The average minimum temperature of Kiremt ranges from 11.92 oC to 13.70 oC, 

with an average value of 12.77 oC. The result showed that the average minimum 

temperature is greater in Kiremt (wet season) than in Belg and Bega (dry season). The 

weather is cold in the Bega than in Kiremt. CV values of seasonal minimum 

temperature also revealed that the minimum temperature variability is lower in Kiremt 

than Belg and Bega.  

The forty-year annual maximum temperature ranges from 24.04 oC to 26.09 oC with 

an average value of 25.18 oC. In the Bega, the maximum temperature ranges from 

24.37 oC to 26.87 oC, with an average value of 25.79 oC. In Belg, the maximum 

temperature ranges from 25.11 oC to 27.544 oC with an average value of 26.40 oC, 

whereas in Kiremt, the maximum temperature ranges from 22.46 oC to 24.21 oC with 

an average value of 23.37 oC. The maximum temperature is less in Kiremt than in 

Belg and Bega. The lowest yearly average maximum temperature was recorded in 

1964, and the highest annual average maximum temperature was recorded in 1998. 



 

90 
 

4.3.2 Description of statistical parameters of seasonal and annual climate 

variables of mid-century CORDEX outputs 

The summary of the statistical parameters for the weighted average precipitation, 

minimum temperature, and maximum temperature of mid-century CORDEX outputs 

are given in Table 4.3. 

Table 4.3. Summary of statistical parameters for all variables of the weighted average 

mid-century CORDEX outputs (2020 to 2059) 

Scenario Variables Statistical 

parameters 

Bega Belg Kermit Annual 

RCP4.5 Precipitation 

(mm) 

Minimum 91.62 161.51 402.54 758.01 

Maximum 267.40 475.58 696.12 1340.58 

Average 182.69 341.45 567.75 1091.89 

CV 22.29 21.60 12.19 10.09 

Minimum  

Temperature (oC) 

Minimum 10.08 12.41 13.10 12.06 

Maximum 12.03 14.33 14.94 13.69 

Average 11.12 13.39 13.91 12.81 

CV 4.48 3.56 3.27 3.44 

Maximum  

Temperature (oC) 

Minimum 25.66 26.70 23.91 25.60 

Maximum 28.29 29.36 26.27 27.77 

Average 27.19 28.03 24.93 26.71 

CV 2.45 2.56 2.27 2.19 

RCP8.5 Precipitation 

(mm) 

Minimum 92.76 166.16 421.58 832.75 

Maximum 356.27 539.40 739.57 1303.79 

Average 198.93 332.65 582.47 1114.05 

CV 28.33 22.31 13.03 10.29 

Minimum  

Temperature (oC) 

Minimum 10.06 12.42 12.12 12.03 

Maximum 12.99 14.75 15.36 14.22 

Average 11.38 13.69 14.14 13.07 

CV 6.33 4.96 4.64 4.96 

Maximum  Minimum 24.97 26.17 23.27 25.22 
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Temperature (oC) Maximum 29.53 29.26 26.40 28.13 

Average 26.94 27.95 24.98 26.61 

CV 3.64 3.15 2.89 2.97 

Note: CV = Coefficient of variation in percent 

In mid-century, the average annual rainfall ranges from 758.01mm to 1340.58mm, 

with an average value of 1091.89mm for the case of the RCP4.5 scenario. It ranges 

from 832.75mm to 1303.79mm, with an average value of 1114.05mm for the RCP8.5 

scenario. In the Belg season, the rainfall varies from 161.51mm to 475.58mm for 

RCP4.5, and it ranges from 166.16mm to 539.40mm for the RCP8.5 scenario. In the 

Kiremt season, the rainfall varies from 402.54mm to 696.12mm for RCP4.5, and it 

ranges from 421.58mm to 739.57mm for the RCP8.5 scenario. The Belg and Kiremt 

average rainfall are 341.45mm and 567.75mm for RCP4.5. The average rainfall of 

Belg and Kiremt is 332 .65mm and 582.47mm for RCP8.5. The CV values uncover 

that the rainfall variability is relatively high in Bega and Belg than Kiremt and annual 

variability for RCP4.5 and RCP8.5 scenarios in mid-century. This implies that the 

variability of precipitation is higher in the dry season than in the wet season. The 

maximum monthly rainfall will appear in July and August, whereas the minimum 

monthly rainfall will appear in January and December. 

In mid-century, the Bega season minimum temperature ranges from10.08 oC to 12.03 

oC with an average value of 11.12 oC for the RCP4.5 oC scenario, and it varies from 

10.06 oC to 12.99 oC with an average value of 11.38 oC for the RCP8.5 scenario. The 

Belg season minimum temperature ranges from 12.41oC to 14.33 oC with an average 

value of 13.39 oC for the RCP4.5 scenario, and it varies from 12.42 oC to 14.75 oC 

with an average value of 13.69 oC for the RCP8.5 scenario. The Kiremt season 

average minimum temperature is 13.91 oC and 14.14 oC for RCP4.5 and RCP8.5 

scenarios. The annual average daily minimum temperature is 12.81 oC and 13.07 oC 

for the RCP4.5 and RCp8.5 scenarios. The minimum temperature is less in the dry 

season than in the wet season in the study area. 

The maximum temperature ranges from 25.66 oC to 28.29 oC, 26.70 oC to 29.36 oC, 

23.91 oC to 26 .27 oC, and 25.60 oC to 27.77 oC for the Bega, Belg, Kiremt and annual, 

respectively for the RCP4.5 scenario. Whereas for the RCP8.5 scenario, it ranges 
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from 24.97 oC to 29.53 oC, 26.17 oC to 29.26 oC, 23.27 oC to 26.40 oC, and 25.22 oC to 

28.13 oC for the Bega, Belg, Kiremt and annual, respectively. The yearly average 

maximum temperature is 26.71 oC and 26.61 oC for RCP4.5 and RCP8.5, respectively. 

The average maximum temperature in the RCP4.5 scenario is 27.19 oC, 28.03 oC, and 

24.93 oC for the Bega, Belg, and Kiremt. It is 26.94 oC, 27.95 oC, and 24.98 oC in the 

RCP8.5 scenario for the Bega, Belg, and Kiremt, respectively. In contrast to the 

minimum temperature, the maximum temperature is less in the wet season than in the 

dry season. The variability of the minimum temperature is higher than the maximum 

temperature. Seasonally, the CV values disclose that the temperature variability is 

relatively lower in Kiremt and Belg than in the Bega.  

4.3.3 Description of statistical parameters of seasonal and annual climate 

variables of end century CORDEX outputs 

The summary of the statistical parameters for the weighted average precipitation, 

minimum temperature, and maximum temperature of end century CORDEX outputs 

are given in Table 4.4. 

Table 4.4. Summary of statistical parameters for seasonal and annual climate 

variables of the weighted average of end century CORDEX outputs (2060 to 2099) 

Scenario Variables Statistical 

parameters 

Bega Belg Kermit Annual 

RCP4.5 Precipitation 

(mm) 

Minimum 113.32 198.46 445.33 931.41 

Maximum 339.33 478.13 745.52 1403.51 

Average 200.73 349.59 584.50 1134.82 

CV 26.31 19.38 13.43 9.61 

Minimum  

Temperature (oC) 

Minimum 11.34 13.42 14.15 13.16 

Maximum 12.61 15.18 15.61 14.29 

Average 12.02 14.29 14.79 13.70 

CV 2.81 2.52 2.07 1.90 

Maximum  

Temperature (oC) 

Minimum 27.51 28.11 24.78 26.95 

Maximum 29.22 29.85 26.87 28.28 

Average 28.28 29.06 25.87 27.73 
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CV 1.38 1.63 1.84 1.09 

RCP8.5 Precipitation 

(mm) 

Minimum 147.48 192.04 505.51 1026.41 

Maximum 424.15 668.59 899.80  1552.25 

Average 247.89 374.78 639.58 1262.25 

CV 25.11 22.66 15.01 10.80 

Minimum  

Temperature (oC) 

Minimum 12.20 14.72 15.01 14.12 

Maximum 15.65 17.41 18.18 17.06 

Average 14.01 16.18 16.16 15.61 

CV 6.43 4.89 5.31 5.38 

Maximum  

Temperature (oC) 

Minimum 28.54 29.25 25.89 27.96 

Maximum 32.69 33.18 29.63 31.65 

Average 30.17 31.12 27.70 29.65 

CV 3.78 3.36 3.66 3.36 

Note: CV = Coefficient of variation in percent 

In the end century, the annual rainfall ranges from 931.41mm to 1403.51mm, with an 

average value of 1134.82mm for the case of RCP4.5. Whereas for the case of RCP8.5, 

it ranges from 1026.41mm to 1552.25mm with an average value of 1262.25mm. In 

the Kiremt season, the precipitation ranges from 445.33mm to 745.52mm and 

505.51mm to 899.80mm for RCP4.5 and RCP8.5 scenarios. The average Kiremt 

rainfall is 584.50mm and 639.58mm for the RCP4.5 and RCP8.5 scenarios, 

respectively. The average rainfall in Bega and Belg is 200.73mm and 349.59mm for 

the RCP4.5, and it is 247.89mm and 374.78mm for the RCP8.5 scenario. The 

seasonal and annual rainfall is higher for RCP8.5 compared to RCP4.5. Like mid-

century, the maximum average monthly rainfall will be in July and August, and the 

minimum average monthly rainfall is in December and January. The CV values 

uncovered that the rainfall variability is high in Bega and Belg season relative to the 

Kiremt season. 

For RCP4.5 in end century, the minimum temperature ranges from 11.34 oC to 12.61 

oC (Bega), 13.42 oC to 15.18 oC (Belg), 14.15 oC to 15.61 oC (Kiremt), and 13.16 oC to 

14.29 oC (annual). The average minimum temperature is 12.02 oC, 14.29 oC, 14.79 oC, 

and 13.70 oC for Bega, Belg, Kiremt, and annual. For the case of RCP8.5 at the end 
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century, the minimum temperature ranges from 12.20 oC to 15.65 oC, 14.72 oC to 

17.41 oC, 15.01 oC to 18.18 oC, and 14.12 oC to 17.06 oC for Bega, Belg, Kiremt, and 

annual. The average minimum temperature will be 14.01 oC, 16.18 oC. 16.16 oC, and 

15.61 oC, for Bega, Belg, Kiremt, and annual, respectively. At the end century, the 

minimum temperature is less in the Bega than Belg and Kiremt for both RCP4.5 and 

RCP8.5 scenarios. The result revealed that both the variability and size of the 

minimum temperature are relatively high for RCP8.5 than RCP4.5. 

The Bega season maximum temperature ranges from 27.51 oC to 29.22 oC with an 

average value of 28.28 oC for the RCP4.5 scenario, whereas it ranges from 28.54 oC to 

32.69 oC with an average value of 30.17 oC for the RCP8.5 oC scenario. The Belg 

season maximum temperature ranges from 28.11 oC to 29.85 oC with an average value 

of 29.06 oC for RCP4.5, and it goes from 29.25 oC to 33.18oC with an average value of 

31.12 oC for the RCP8.5 scenario. The Kiremt season maximum temperature varies 

from 24.78 oC to 26.87 oC with an average value of 25.87 oC for the RCP4.5, and it 

ranges from 25.89 oC to 29.63 oC with an average value of 27.70 oC for the RCP8.5 

scenario. In the end century, the maximum annual average temperature will be 27.73 

oC and 29.65 oC for RCP4.5 and RCP8.5 scenarios, respectively. In contrast to 

minimum temperature, the maximum temperature is relatively high in Bega and Belg 

than in Kiremt. The result revealed that both the variability and size of the maximum 

temperature is relatively high for RCP8.5 compared to RCP4.5. 

4.4 Climate Change Impacts on Precipitation, Minimum and Maximum 

Temperature 

4.4.1 Climate change impacts on precipitation  

The summary of the average values and per cent of change in precipitation on the 

monthly, seasonal, and yearly bases is given in Table 4.5. The variation of rainfall in 

historical, mid, and end century are demonstrated in Figure 4.1. The per cent of 

change in precipitation for mid and end century for both scenarios on a monthly basis 

are shown in Figure 4.2. 
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Table 4.5. Summaries of the average values and per cent of change of precipitation in 

mid and end century compared to the historical period 

                                         Average values 

 

Per cent of change in precipitation in 

mid and end century compared to the 

historical period 

Months Historical MID4.5 MID8.5 END4.5 END8.5 MID4.5 MID8.5 END4.5 END8.5 

Jan 18.96 17.28 18.36 22.78 29.20 -8.85 -3.13 20.15 54.03 

Feb 31.79 37.53 35.25 36.75 47.16 18.06 10.88 15.59 48.35 

Mar 63.31 62.11 64.96 67.36 70.00 -1.89 2.61 6.41 10.57 

Apr 126.57 119.69 113.69 116.46 121.64 -5.44 -10.18 -7.99 -3.89 

May 145.25 122.12 118.75 129.02 135.98 -15.92 -18.24 -11.18 -6.38 

Jun 114.53 118.37 116.16 107.78 127.57 3.35 1.43 -5.89 11.39 

Jul 142.44 151.15 162.02 160.31 185.42 6.11 13.74 12.54 30.17 

Aug 142.92 151.84 165.69 168.68 177.31 6.24 15.93 18.02 24.06 

Sep 142.70 146.40 138.60 147.73 149.28 2.59 -2.87 3.52 4.61 

Oct 90.20 103.85 104.14 102.27 123.65 15.14 15.46 13.39 37.09 

Nov 38.52 39.88 49.76 50.82 61.86 3.54 29.18 31.94 60.61 

Dec 21.46 21.68 26.67 24.86 33.17 1.03 24.27 15.86 54.60 

Bega 169.13 182.69 198.93 200.73 247.89 8.02 17.62 18.68 46.57 

Belg 366.92 341.45 332.65 349.59 374.78 -6.94 -9.34 -4.72 2.14 

Kiremt 542.60 567.75 582.47 584.50 639.58 4.64 7.35 7.72 17.87 

Yearly 1078.64 1091.89 1114.05 1134.82 1262.25 1.23 3.28 5.21 17.02 
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Figure 4.1. Intra annual variation of precipitation in TWW in the historical, mid and 

end century for RCP4.5 and RCP8.5 climate change scenario 

 

Figure 4.2. Per cent of change in precipitation in TWW in the mid and end century for 

RCP4.5 and RCP8.5 climate change scenario compared to the Historical period 

In mid-century, the Belg rainfall reduced by 6.94% and 9.34% for RCP4.5 and 

RCP8.5, respectively, compared to the reference period. At the same time, the Kiremt 

season rainfall increased by 4.64% and 7.35% for RCP4.5 and RCP8.5 scenarios 

compared to the reference period. The annual rainfall shows a slight increase of 
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1.23% for RCP4.5 and 3.28% for RCP8.5. The Bega rainfall increases by 8.02% for 

the RCP4.5 and by 17.62% for the RCP8.5 scenario. At the end century, the rainfall 

increased in all seasons and both scenarios except Belg. The Belg season rainfall 

reduced by 4.72% for RCP4.5, rising by 2.14% for RCP8.5 compared to the baseline 

period. The Kiremt season rainfall increased by 7.72% for RCP4.5 and 17.87% for 

RCP8.5 in the end century compared to the baseline period. Compared to the baseline 

period, the yearly average rainfall increased by 5.21% for RCP4.5 and 17.02% for 

RCP8.5 in the end century. The Bega season rainfall increased in both scenarios. 

 In general, the study revealed that the Bega, Kiremt, and annual rainfall increased in 

both mid and end century for all scenarios. Whereas, the Belg rainfall decreased for 

all cases except for RCP8.5 in the end century. The rainfall increased more in the end 

century than mid-century. The increase in precipitation is higher in the Bega 

compared to Belg and Kiremt season. No significant change in variability is observed 

in rainfall in the study area. It is uncertain whether rainfall will rise/drop in Ethiopia, 

and its projections vary between -25% and +30% by the 2050s (USAID 2016). 

Although it varies in both magnitude and direction, precipitation shows an increasing 

trend in the future in the Lake Tana watershed in northern Ethiopia (Gebre and 

Ludwing 2015; Nigatu et al. 2016). Nigatu et al. (2016) observed the increase in the 

annual rainfall noticeably up to 37% in the future relative to (1981 to 2010). In the 

Blue Nile river basin in northern Ethiopia, the average annual rainfall increased in the 

future ranging from 2.1% to 43.8% (Mekonnen and Disse 2018). Chaturvedi et al. 

(2012) used eighteen GCMs outputs under CMIP5 to project rainfall for overall India. 

They found that even if the more considerable spatial variation is observed, rainfall 

increases from 4% to 5% and  6% to 14% for 2021-2050 and 2070-2099, respectively, 

compared to baseline time (1961 to 1900). In Kerala, India's humid tropics, Raneesh 

and Santosh (2011) reported that for the southwestern monsoon period, there is a 

decrease in rainfall by 11.5% for the A2 scenario and by 8.79% for the B2 scenario 

from 2071 to 2100 compared to the baseline period (1981-2010). Based on the 

RCP8.5 climate change scenario, in the 2050s (2041–2060), the annual rainfall 

increase in Malawi up to 24.6% at a country level compared to (1981–2000) 

(Adhikari and Nejadhashemi 2016a). It increases up to 30.7% at the country level in 
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Tanzania by 2050s compared to the 1990s (1980 to 1999) (Adhikari and 

Nejadhashemi 2016b).  

4.4.2 Climate change impacts on the minimum and maximum temperature 

A summary depicting how the temperature changes in the mid-and end-century with 

both RCP4.5 and RCP8.5 scenarios are presented in Table 4.6. The difference is 

calculated based on the baseline period.  

Table 4.6. Summaries of the change in minimum and maximum temperature in mid 

and end century for RCP4.5 and RCP8.5 climate change scenario compared to the 

historical period 

Climate 

scenario 

Season Mid-century (2020 to 2059) End century (2060 to 2099) 

Change  

in T-min (oC) 

Change  

in T-max (oC) 

Change  

in T-min(oC) 

Change  

in T-max (oC) 

RCP4.5 Bega 1.81 1.40 2.71 2.49 

Belg 1.61 1.63 2.51 2.66 

Kiremit 1.14 1.56 2.02 2.50 

Annual 1.59 1.53 2.48 2.55 

RCP8.5 Bega 2.07 1.15 4.70 4.38 

Belg 1.91 1.55 4.40 4.72 

Kiremit 1.37 1.61 3.86 4.33 

Annual 1.85 1.43 4.39 4.47 

Note: T-min = minimum temperature, T-max = maximum temperature 

The yearly average minimum temperature increases in the mid-century by 1.59 oC for 

RCP4.5 and 1.85 oC for RCP8.5 relative to the baseline period. Compared to the 

baseline period, the average maximum annual temperature increased by 1.53 oC for 

RCP4.5 and 1.43 oC for RCP8.5. Seasonally, the average minimum temperature 

increased by 1.81 oC, 1.61 oC, and 1.14 oC for the Bega, Belg, and Kiremt, 

respectively, for the RCP4.5 climate change scenario. It increased by 2.07 oC, 1.91 oC, 

and 1.37 oC for Bega, Belg, and Kiremt, respectively, for the RCP8.5. Compared to 

the baseline period, the average maximum temperature increases by 1.40 oC, 1.63 oC, 

and 1.56 oC for the Bega, Belg, and Kiremt, respectively, for RCP4.5 the baseline 



 

99 
 

period. For the RCP8.5 scenario, it increased by 1.15 oC, 1.55 oC, and 1.61 oC for 

Bega, Belg, and Kiremt, respectively.  

In the end century, the average annual minimum temperature increased by 2.48 oC and 

4.39 oC for the RCP4.5 and RCP8.5 scenario, respectively, compared to the baseline 

period. Compared to the baseline period, the average yearly maximum temperature 

increased by 2.55 oC for the RCP4.5 and 4.47 oC for the RCP8.5. Seasonally, the 

average minimum temperature increased by 2.71 oC, 2.51 oC, and 2.02 oC for the 

Bega, Belg, and Kiremt, respectively, for the RCP4.5 scenario. For RCP8.5, it 

increased by 4.70 oC, 4.40 oC, and 3.86 oC for Bega, Belg, and Kiremt, respectively. 

The average maximum temperature also increased by 2.49 oC, 2.66 oC, and 2.50 oC for 

Bega, Belg, and Kiremt, respectively, for the RCP4.5 scenario. For the RCP8.5, the 

maximum temperature increased by 4.38 oC, 4.72 oC, and 4.33 oC, respectively, for 

Bega, Belg, and Kiremt seasons.  

Figure 4.3 indicate the monthly, seasonal and yearly average maximum temperature 

of historical, mid and end century for RCP4.5 and RCP8.5 climate change scenarios. 

For the RCP8.5, the mean temperature rises to a greater degree at the end of the 

century. Figure 4.4 depicts historical, mid-century, and end-of-century average 

minimum temperatures for RCP4.5 and RCP8.5 climate change scenarios. For 

RCP8.5, the minimum temperature rises to a greater degree at the end century. Figure 

4.5 showed the yearly average daily minimum and maximum temperature in the 

future for RCP4.5 and RCP8.5 climate change scenarios. The result of the study is in 

agreement with the previous reports in Ethiopia. Most GCMs and regional projections 

of climate models in Ethiopia agreed that the yearly average temperature is estimated 

to rise by between 1-2°C (USAID 2016), between 1.4 ⁰C and 2.9 ⁰C (Cochrane and 

Singh 2017) by 2050. The temperature increases in all months and seasons in the 

Lake Tana watershed in northern Ethiopia (Gebre and Ludwing 2015). Serur and 

Sarma (2016) also reported that both the minimum and maximum temperatures will 

increase in southern Ethiopia in the future. In the Lake Tana watershed in Ethiopia, 

Nigatu et al. (2016) observed an increase in the mean monthly maximum temperature 

noticeably up to 3.0 oC from 2071 to 2100 relative to (1981 to 2010). Whereas the 

mean monthly maximum temperature increased up to 3.9 ˚C from 2080 to 2100. In 
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Ethiopia's Blue Nile river basin, the annual average maximum temperature increased 

up to 4.3 oC, and the average annual minimum temperature increased up to 4.1 oC at 

the end of the 21st century (Mekonnen and Disse 2018). Setegn et al. (2011) analysed 

future temperatures in Ethiopia's Lake Tana basin. They found that from 2070 to 

2100, the temperature increased by 2 oC-4.4 oC and 2.2 oC-4.9 oC in the wet and dry 

period, respectively, compared to the baseline period (1980-2000). Chaturvedi et al. 

(2012) used eighteen GCMs and all four climate change emission scenarios under 

CMIP5 to project surface temperature for overall India. They found that, under the no 

policy scenario, the mean surface temperature increases in the range of 1.7 to 2oC and 

3.3 to 4.8 oC for the period of (2021 to 2050) and (2070 to 2099), respectively 

compared to baseline time (1961 to 1900). In Kerala, India's humid tropics, Raneesh 

and Santosh (2011) reported that, for the southwestern monsoon period in the A2 

emission scenario, there is an increase in temperature by 2 oC from 2071 to 2100 

compared to the baseline period (1981-2010). For the same period in the B2 scenario, 

the temperature increased by 1%. Shrestha et al. (2016) estimated the potential 

climate change effect on Nepal's Indrawati River basin's temperature. They used 

RCP4.5 and RCP8.5 scenarios under one regional climate model and two GCMs. 

They found that the area's average ensemble temperature will continuously rise and 

increase by 2.5 0C to 4.9 0C by the end of the 21st century compared to the reference 

period (1981 to 2005).  

 

Figure 4.3. Monthly, seasonal, and yearly average maximum temperature of 

historical, mid and end century for RCP4.5 and RCP8.5 climate change scenarios 
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Figure 4.4. Monthly, seasonal, and yearly average minimum temperature of historical, 

mid and end century for RCP4.5 and RCP8.5 climate change scenarios 

 

Figure 4.5. Yearly average minimum and maximum temperature in the future for 

RCP4.5 and RCP8.5 climate change scenario  
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stabilize the model. Model calibration was performed using simulated and observed 

streamflow data from January 1983 to December 1995 and model validation data 

from January 1996 to December 2002. Figure 4.6 demonstrates the graphical 

comparison of measured and simulated streamflow for calibration periods (1983-

1995) and validation (1996-2002). Figure 4.7 and Figure 4.8 show the scatter plots of 

simulated and observed monthly average daily flow for the calibration and validation 

period. Table 4.7 provides the statistical performance indices. The results showed that 

the simulated streamflow was well correlated with the streamflow observed, with a 

correlation coefficient equal to 0.77 for the calibration and 0.85 for the validation 

period. The Nash–Sutcliffe efficiency (NSE) of the SWAT was 0.68 for calibration 

and 0.64 for the validation period. In general, the result revealed that the SWAT 

model had performed well in simulating the hydrological impacts of climate changes 

in the study area. 

Table 4.7. Statistical performance indicator of SWAT for TWW with the different 

objective function 

Statistical Indicator Calibration Validation Performance Rating 

Calibration Validation 

NSE 0.68 0.64 Good Satisfactory 

RSR 0.60 0.63 Good Good 

R2 0.77 0.85 Acceptable Acceptable 

PBIAS 10.43 1.79 Good Very Good 
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Figure 4.6. Simulated and observed streamflow for calibration and validation period 

 

Figure 4.7. Scatter plots of simulated and observed monthly average daily flow for 

calibration period. 
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Figure 4.8. Scatter plots of simulated and observed monthly average daily flow for the 

validation period. 

 

4.6 Climate Change Impacts on Streamflow 

The summary of the average values and per cent of change in streamflow on the 

monthly, seasonal, and yearly bases is given in Table 4.8. The monthly variation of 

average streamflow in historical, mid, and end centuries are demonstrated in Figure 

4.9. The per cent of change in monthly streamflow for the mid and end century for 

both scenarios is shown in Figure 4.10. 

Table 4.8. Summaries of the average values and per cent of change of streamflow in 

mid and end century compared to the historical period 
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Average Streamflow (m3/s) 
Per cent of change in streamflow (m3/s) 

compared to the historical period 

Historical MID4.5  MID8.5  END4.5  END8.5 MID4.5 MID8.5 END4.5 END8.5 

Jan 0.76 0.84 0.96 1.12 1.47 11.22 26.42 47.12 93.89 

Feb 1.60 1.00 1.25 1.24 1.86 -37.46 -21.95 -22.68 16.28 

Mar 4.78 3.13 3.74 3.48 4.11 -34.52 -21.86 -27.18 -14.09 

Apr 9.14 5.86 5.91 6.22 7.50 -35.95 -35.38 -31.92 -18.00 
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May 10.76 8.80 9.04 8.15 10.82 -18.22 -15.99 -24.20 0.57 

Jun 15.42 15.43 17.32 15.94 19.93 0.09 12.31 3.36 29.23 

Jul 18.04 18.87 21.05 21.04 23.50 4.59 16.66 16.64 30.26 

Aug 19.58 21.34 21.33 21.36 22.98 8.99 8.92 9.09 17.37 

Sep 17.48 18.79 18.71 18.88 20.73 7.52 7.08 8.06 18.60 

Oct 10.98 12.34 12.92 13.15 14.71 12.31 17.60 19.74 33.94 

Nov 5.38 5.99 6.36 6.53 8.04 11.27 18.20 21.31 49.32 

Dec 1.47 1.60 1.96 2.08 2.70 8.50 33.00 40.87 82.96 

Bega 4.65 5.19 5.55 5.72 6.73 11.66 19.36 22.98 44.72 

Belg 6.57 4.70 4.98 4.77 6.07 -28.52 -24.16 -27.34 -7.60 

Kiremt 17.63 18.61 19.60 19.31 21.78 5.55 11.18 9.51 23.56 

Yearly 9.62 9.50 10.04 9.93 11.53 -1.22 4.45 3.29 19.88 

Dry 4.75 3.54 3.81 3.71 4.74 -25.55 -19.86 -21.83 -0.21 

Wet 14.48 15.46 16.28 16.15 18.31 6.76 12.43 11.54 26.47 

 

Figure 4.9. The monthly variation of average streamflow in historical, mid, and end 

century 

0

5

10

15

20

25

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

S
tr

ea
m

fl
o
w

(m
3
/s

)

Months

Historical MID4.5 MID8.5 END4.5 END8.5



 

106 
 

 

Figure 4.10. Per cent of change of average streamflow in the future compared to the 

reference period  

In all cases, the Belg season streamflow will be reduced in the future compared to the 

baseline time. The reduction in streamflow in the Belg season is related to the 

decrease in the Belg rainfall in the future in the area. In mid-century, the Belg 

streamflow reduced by 28.52% for the RCP4.5 and 24.16% for the RCP8.5 climate 

change scenario. In the end century, the Belg streamflow reduced by 27.34% and 

7.60% for the RCP4.5 and RCP8.5 scenarios. Whereas the Kiremt season streamflow 

increased in the future in both scenarios compared to the baseline period. In mid-

century, the Kiremt streamflow increased by 5.55% and 11.18% for the RCP4.5 and 

RCP8.5, respectively. In the end century, the Kiremt streamflow increased by 9.51% 

and 23.56%, respectively. The annual average streamflow in TWW disclosed that the 

streamflow increased in all cases except a slight reduction in the RCP4.5 scenario in 

mid-century. It increased by 4.45% for the RCP8.5 scenario in mid-century. In the 

end century, the yearly average streamflow increased by 3.29% and 19.88% for the 

RCP4.5 and RCP8.5 scenarios, respectively. The monthly average streamflow shows 

a reduction from February to May and increased in all other months. In TWW in 

Ethiopia, the average Bega streamflow increased in the future in all cases. In mid-

century, the Bega streamflow increased by 11.66% and 19.36% for the RCP4.5 and 

RCP8.5 scenarios, respectively. In the end century, the Bega season streamflow 

increased by 22.98% for RCP4.5 and 44.72% for the RCP8.5 climate change scenario 
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compared to the reference period. Climate change affects the streamflow in the study 

watershed by increasing the wet season flow and reducing the dry season flow.  

An increase in water availability in the rainy and transitional seasons, whereas a 

decline in the dry season is also reported in southern Ethiopia (Serur and Sarma 

2016). In the Weyib watershed of south Ethiopia, based on a single GCM (CanESM2) 

output, Serur and Sarma (2016) identified the annual average daily streamflow 

increased in 3.98-20.40% for RCP4.5 and 9.18-24.49% for RCP8.5 climate change 

scenario. Studies suggest a 30% decrease in the runoff on several Nile tributaries by 

2050 (USAID 2016). In the Lake Tana watershed in northern Ethiopia, Gebre and 

Ludwing (2015) identified that the average yearly runoff might raise about +55.7% 

(RCP 4.5) and +74.8% (RCP 8.5) for the period of (2035-2064), and by +73.5% (RCP 

4.5) and +127.4% (RCP 8.5) for the period (2071-2100) as compared to the baseline 

period (1960 to 2005). In the same watershed, Nigatu et al. (2016) reported that the 

streamflow increased up to 28% from 2071 to 2100. Whereas, Setegn et al. (2011) 

observed a statistically significant decline in streamflow magnitude from 2070 to 

2100 compared to 1980-2000 in the Lake Tana basin.  In the Blue Nile river basin in 

northern Ethiopia, runoff showed an increasing trend within the period (2040 to 2069) 

compared to (1961 to 1990) (Kim and Kaluarachchi 2009). Whereas Dile et al. (2013) 

reported, the basin discharge is decreased from 2010 to 2039 and increase from 2070 

to 2100. Wagesho et al. (2013) examined the climate change impacts on Blate and 

Hare watersheds' runoff in southern Ethiopia. The increase in the streamflow varies 

from -4% to 18% and -4% to 14% for Hare and Blate River basins, respectively, 

during the simulation period (2081 to 2090) compared to the baseline period (1990-

1999). Abraham et al. (2018) revealed a high water availability reduction in the future 

in the Katar and Meki sub-watersheds of Lake Ziway in southern Ethiopia. They 

reported that annual runoff depth was reduced by up to 19.45% and 20.28% in Katar 

and Meki sub-watersheds, respectively, by 2080s (2071 to 2099) compared to the base 

period (1980 to 2005). Another study in the same watershed by Zeray et al. (2006) 

also indicates that the watershed's water resource is greatly affected by climate change 

in the future. They used B2A and A2A scenarios and SWAT to analyze the future 

interaction between climate change and water resources in the Lake Ziway watershed. 

They reported that the average inflow volume to Lake Ziway decreases notably by 
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about 19.47% and 27.43% for A2A and B2A scenarios, respectively, from 2001 to 

2099 relative to 1981-2000. A study carried out by Chaemiso et al. (2016) in the 

Omo-Gibe basin in southern Ethiopia indicated that the surface water availability is 

declining within the dry period and rising within the wet period in the future (the 

2030s and 2090s) relative to the base period (1980 to 2005). In Kerala, India's humid 

tropics, Raneesh and Santosh (2011) reported that, for the southwestern monsoon 

period in the A2 emission scenario, streamflow decrease by and 7.53%, and in the B2 

scenario, streamflow decreased by 4.62% from 2071 to 2100 compared to 1981 to 

2010.  Adhikari and Nejadhashemi (2016a) assessed the impact of global change on 

water resources in Malawi using six GCMs, based on RCP8.5. The runoff increases 

by 7.5% to 50% at the country level from 2041 to 2060 compared to 1981-2000. At 

the sub-basin level, the north's annual runoff increases and declines in the south part 

of the country. Furthermore, Adhikari and Nejadhashemi (2016b) used the same 

GCMs and emission scenarios to evaluate the effect of global warming on water 

resources in Tanzania by the 2050s. A significant increase in surface runoff (18.3 to 

104.8%) was reported for the wet seasons.  Overall, the sub-basin, watershed, and 

country levels revealed an increase in Tanzania's water resources during the wet 

seasons in the 2050s (2040-2059) compared to the 1990s (1980 to 1999).  

The climate change influence on streamflow in the Gorganround basin in Iran was 

studied by Mahmood et al. (2016). They found an increase in streamflow of 9.5%, 

2.8% and 5.8% for the B1, A2, and A1F1 emission scenarios, respectively, by 2050s 

(2040-2069) compared to the baseline period (1971 to 2000). Zhu et al. (2016) used 

the RCP2.6, RCP4.5, and RCP8.5 emission scenarios to predict climate change's 

influence on the water resources of the Yellow river basin in China. They found a 

considerable reduction of water resources up to 30% in the early and mid-21st century 

(up to 2080) relative to the reference period (1962 to 2005). Changkun et al. (2015) 

analysed the climate change effect on streamflow in Central Asia's Chu river basin. 

They found that in the short (1916-2045) and far future (2066-2096) periods, a 

general reduction trend was recognized in mean annual runoff in streamflow (-27.7% 

to - 6.6%), snow (-21.4% to 1.1%) and glacier (-26.6% to -1%) compared to the 

reference period (1966-1995). 
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There are two general approaches to controlling the undesirable impacts of ongoing 

climate change: mitigation and adaptation, slowing down GHG emissions, and 

reducing their consequences, respectively. Concerning water resource and crop 

production, adaptation measures consist of using varieties and drought-resistant crops, 

using water-efficient irrigation techniques like drip irrigation, implementing water 

harvesting technology, and adjusting crop calendars (Bates et al.  2008). Hadgu et al. 

(2015) point out that alteration in crop type/variety, watershed management measures, 

crop diversifications, an adjustment in planting calendar, and water-efficient irrigation 

practices are adaptation measures that have been implemented in Tigray regional state 

in Northern Ethiopia. Another report by Atreya et al. (2005) showed that the above-

listed adaptations strategies are commonly implemented by farmers in Ethiopia's 

central Rift valley. 

4.7 Closure 

In general, the study revealed that the Bega, Kiremt, and annual rainfall increased in 

both the mid and end century for all scenarios. Whereas, the Belg rainfall decreased in 

all cases except for RCP8.5 in the end century. The rainfall increased more in the end 

century than in the mid-century. The increase in precipitation is higher in the Bega 

compared to Belg and Kiremt season. No significant change in variability was 

observed in rainfall in the study area. Both the average minimum and maximum 

temperature increased for all scenarios and time horizons. In all cases, the Belg season 

streamflow will be reduced in the future compared to the baseline time. The reduction 

in streamflow in the Belg season is related to the decrease in Belg rainfall in the future 

in the area. Whereas the Kiremt season streamflow increased in the future in both 

scenarios compared to the baseline period. The annual average streamflow in TWW 

disclosed that the streamflow increased in all cases except a slight reduction in the 

RCP4.5 scenario in mid-century. Climate change affects the streamflow in the study 

watershed by increasing the wet season flow and reducing the dry season flow.  
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CHAPTER 5: HYDROLOGICAL RESPONSES TO LAND 

USE/LAND COVER CHANGE  

5.1 General 

This section provides insight into the LU/LC change dynamics from 1978 to 2017 in 

the Tikur Wuha watershed. It also provides the LU/LU change impacts on 

streamflow. 

5.2 LU/LC Change Detection 

5.2.1 Classification accuracy assessment   

The LU/LC map of the Tikur Wuha watershed from 1978 to 2017 was developed 

using four historical Landsat satellite images, and a maximum likelihood supervised 

classification algorithm to a satisfactory level of accuracy. The results of the 

assessment identified the presence of seven LU/LC classes in the TWW. The LU/LC 

includes intensively cultivated, moderately cultivated, swampy, built-up, shrubland, 

water, and grassland. The accuracy of the classified maps was assessed by a set of 600 

points based on Google Earth and the user's experience. The summary of the accuracy 

report of the four classified images is given in Table 5.1.  

Table 5.1. Summary of accuracy assessment of LU/LC 

LU/LC 

Map 

Accura

cy (%) 

URHD RNGE AGRR WETN AGRC RNGB WATR Overall 

accuracy 

1978 

User 

acc. 78.57 81.45 73.85 79.59 75.51 75.71 74.67 77.50 

 Prod. 

acc. 
72.37 80.80 72.73 80.41 80.43 72.60 78.87 

1988 

User 

acc. 86.30 81.55 84.55 84.88 82.65 78.33 74.29 82.17 

 Prod. 

acc. 
79.75 81.55 86.92 82.95 81.82 77.05 82.54 

1998 
User 

acc. 
85.19 86.92 86.67 83.78 86.49 79.03 81.94 

84.83 

 



 

112 
 

Prod. 

acc. 83.64 86.11 86.67 83.78 84.96 79.03 86.76 

2017 

User 

acc. 90.28 89.47 87.60 84.06 88.69 86.11 82.14 87.33 

 Prod. 

acc. 87.84 87.63 89.08 84.06 87.18 84.93 90.20 

Note: URHD = Built up, RNGE = Grassland, AGRR = Intensively Cultivated, WETN 

= Swampy, AGRC = Moderately Cultivated, RNGB = Shrubland, WATR =Water, 

User acc. = user’s accuracy and Prod. acc. = producer’s accuracy 

Accuracy assessment with the help of Google Earth samples has yielded agreeable 

results (Table 5.1). The accuracy assessment results for 1978, 1988, 1998, and 2017 

LU/LC maps showed an overall accuracy of 77.50%, 82.17%, 84.83%, and 87.33%, 

respectively. Overall accuracy is a descriptive statistic computed by dividing the total 

sum of correctly classified by the total number of reference pixels in the error matrix 

(Lillesand 2015). The producer's accuracy ranges from 72.37% to 90.20%, and the 

user's accuracy varies from 73.85% to 90.28% for the different categories in the study 

period. Producer accuracy measures how much of the land in each category were 

classified correctly (it measures the proportion of the land base correctly classified). 

User accuracy measures the proportion of each thematic map class which is correct. 

The higher the proportion of the pixels within the user and producer accuracies for the 

individual class in question, the more accurate the classified maps are.  All producer's 

accuracy, user's accuracy, and overall accuracy for 1978 are relatively less than 1988, 

1998, and 2017. The reason may be due to the low resolution of the 1978 images 

compared to images acquired in 1988, 1998, and 2017. The quality of Google Earth 

image is also relatively less for 1978. The accuracy of the classified LU/LC types 

depends on the images' quality and spectral contents, and ground truth data quality 

(Lillesand et al. 2004). 

5.2.2 The magnitude of LU/LC changes 

Figures 5.1 to 5.4 illustrates the LULC map for the Tikur Wuha watershed during 

1978, 1988, 1998, and 2017 respectively. Table 5.2 revealed the size (spatial extent) 

and percentage of the area covered by each LU/LC class to the watershed area. The 



 

113 
 

LU/LC classes (Table 5.1) extracted from the classification indicated that grassland 

was the most dominant LU/LC class in 1978. Grassland occupied 38.49 % (262.07 

km2) in1978 and diminished to 20.79% in 2017. However, in all other years, 

cultivated land (a combination of intensively and moderately cultivated) was the most 

dominant LU/LC class in the study period. Cultivated land occupied 32.82%, 46.82%, 

50.34%, and 56.99% in 1978, 1988, 1998, and 2017, respectively. The study area is 

predominantly cultivated land. 

 

Figure 5.1. LU/LC map of the Tikur Wuha watershed in 1978 
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Figure 5.2. LU/LC map of the Tikur Wuha watershed in 1988 

 

Figure 5.3. LU/LC map of the Tikur Wuha watershed in 1998 
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Figure 5.4. LU/LC map of the Tikur Wuha watershed in 2017 

Table 5.2. The areal extent of LU/LC classes in the Tikur Wuha watershed in 1978, 

1988, 1998 and 2017  

LU/LC 

Type 

1978 1988 1998 2017 

Area 

(Km2) 

Area 

(%) 

Area 

(Km2) 

Area 

(%) 

Area 

(Km2) 

Area 

(%) 

Area 

(Km2) 

Area 

(%) 

URHD 8.11 1.19 9.94 1.46 14.73 2.16 65.16 9.57 

RNGE 262.07 38.49 213.11 31.30 190.71 28.01 141.58 20.79 

AGRR 49.18 7.22 116.66 17.13 170.85 25.09 217.32 31.92 

WETN  31.52 4.63 14.12 2.07 11.57 1.70 10.14 1.49 

AGRC 167.47 24.60 202.12 29.69 171.94 25.25 170.70 25.07 

RNGB 144.13 21.17 114.85 16.87 112.71 16.55 71.38 10.48 

WATR 18.40 2.70 10.08 1.48 8.37 1.23 4.60 0.68 

Total 680.88 100.00 680.88 100.00 680.88 100.00 680.88 100.00 

Note: URHD = Built-up, RNGE = Grassland, AGRR = Intensively Cultivated, WETN 

= Marshy, AGRC = Moderately Cultivated, RNGB = Shrubland and WATR = Water 
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A significant amount of LU/LC changes occurred in the Tikur Wuha watershed in the 

study period. Among the other land classes, the area under built-up and intensively 

cultivated shows continuously an increasing trend in the study period. Built-up area 

increased from 8.11Km2 (1.19%) in 1978, to 14.73 Km2 (2.16%) in 1998, and to 65.16 

Km2 (9.57%) in 2017. During the whole analysis period, there was a net gain of 57.05 

Km2. A rapid per cent change in built-up areas during the 1998 to 2017 period was 

observed. The expansion of Hawassa town (the regional capital city) and the recently 

introduced industry zone in the watershed are the main reasons for the fast growth in 

the built-up area in the watershed. Intensively cultivated land covered 49.18 Km2 

(7.22%) in 1978 was increased to 116.66 Km2 (17.13%), in 1988, 170.85Km2 

(25.09%) in 1998 and to 217.32 Km2 (31.92%) in 2017. The population growth and 

the decline of land productivity may be the possible reasons for such changes. 

Grassland showed a continuous decline in the entire period considered. Grassland 

declined from 38.49% in 1978 to 20.79% in 2017. 

Similarly, shrubland was reduced by nearly 50% during the entire study period. It 

diminished from 21.17% in 1978 to 10.48% in 2017. The water body was reduced 

from 18.40 Km2 in 1978 to 4.60 Km2 in 2017. It is mainly due to the continuous 

decrease and vanishing of Lake Cheleleka in the Tikur Wuha watershed. The 

reduction and disappearance of Lake Cheleleka in the watershed with time was 

reported (WWDSE 2001; Dadi 2013 and Wondrade 2014). The swampy area was also 

reduced from 31.52 Km2 to 10.14 Km2 from 1978 to 2017.  

The expansion of cultivated and built-up areas and the withdrawal of shrubland, 

grassland, swampy, and water body were observed in the watershed during the entire 

study period. The finding of this study coincides with other research findings in 

Ethiopia. In Ethiopia, it was recorded that cultivated land was rapidly expanding to 

highly steep areas at the cost of the forest (Zeleke and Hurni 2001; Maitima et al. 

2009, Getachew and Melesse 2012, Chakilu and Moges 2017). Expansion of 

cultivated land and build up area at the expense of shrubland and grassland was 

observed in Tekeze Dam watershed (Welde and Gebremariam 2017), in Adanssa 

Watershed (Gashaw et al. 2018), in Ketar watershed (Tufa et al. 2015), Melka Kuntrie 

watershed (Getahun and Van Lanen 2015) in a different part of Ethiopia. In the Dano 

watershed of West Africa, Yira et al. (2016) reported a decrease in Savannah and 
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increased cultivated land and a build-up area. A significant expansion of urban area 

within a short period (1990 to 2006) were observed in the Yom watershed in Thailand 

(Petchprayoon et al. 2010). In Nepal's Bagmati River watershed, built-up areas were 

increased by 6%, whereas the forest, shrubland, grassland, cropland, open field, and 

the water body decreased from 2000 to 2010 (Pokhrel 2018). 

5.2.3 Rate, per cent, and trend of LU/LC change 

Rate, per cent, and trend of change of each LU/LC were summarized in Table 5.3. 

Figure 5.5 showed the trends in LU/LC change for each class. Figure 5.6 

demonstrates the rate of change in LU/LC in the Tikur Wuha watershed.  

Table 5.3. LU/LC per cent of changes with respect to the original area of each class 

and rate of changes from1978 to 2017 in the Tikur Wuha watershed 

LU/LC 

Type 

1978 to 1998 1998 to 2017 1978 to 2017 

Per cent of 

change  

Rate of 

change 

(Km2/yr) 

Per cent of 

change  

Rate of 

change 

(Km2/yr) 

Per cent of 

change  

Rate of 

change 

(Km2/yr) 

URHD 81.57 0.33 342.27 2.65 703.02 1.46 

RNGE -27.23 -3.57 -25.76 -2.59 -45.98 -3.09 

AGRR 247.40 6.08 27.20 2.45 341.89 4.31 

WETN  -63.29 -1.00 -12.36 -0.08 -67.83 -0.55 

AGRC 2.67 0.22 -0.72 -0.07 1.93 0.08 

RNGB -21.80 -1.57 -36.67 -2.18 -50.48 -1.87 

WATR -54.50 -0.50 -45.04 -0.20 -74.99 -0.35 

Note: URHD = Built-up, RNGE = Grassland, AGRR = Intensively Cultivated, WETN 

= Marshy, AGRC = Moderately Cultivated, RNGB = Shrubland and WATR =Water 
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Figure 5.5. LCLU change trend from the year 1978 to 2017 in Tikur Wuha watershed 

 

Figure 5.6. Rate of change of LU/LC (km2/yr) in Tikur Wuha watershed 

The expansions of cultivated and built-up areas and the withdrawal of shrubland, 

grassland, swampy, and water body were observed in the watershed during the entire 

study period. The annual expansion rate (Km2/yr) of the built-up area was 0.33 

Km2/yr and 2.65 Km2/yr from 1978 to 1998 and 1998 to 2017, respectively. The 

result reveals that the rate of gaining of the built-up area between 1998 and 2017 was 

high compared to 1978 and 1998. The intensively cultivated land change rate was 

6.08 Km2/yr and 2.45 Km2/yr from 1978 to 1998 and 1998 to 2017, respectively. It 

discloses that the rate of gaining intensively cultivated land between 1978 and 1998 

was high compared to the period between 1998 and 2017.  Over the entire study 

period, the rate of change of intensively farmed land (4.31 Km2/yr) is higher than the 
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rate of change of the built-up area (1.46 Km2/yr). However, when we come to the per 

cent of change, the built-up area increased by 703.02%, and intensively cultivated 

land increased by 341.89% over the entire study period. The moderately cultivated 

land shows an increasing trend in the 1978 to 1998 period with 2.67% (0.22 Km2/yr);  

and a decreasing trend in the 1998 to 2017 period with 0.72% (0.07 Km2/yr). 

However, it shows an expansion over the study period with a rate of 0.08 Km2/yr. All 

the other LU/LC types were shown a decreasing trend during the study period in the 

watershed. Shrubland declined at 1.57 Km2/yr from 1978 to 1998 and 2.18 Km2/yr 

from 1998 to 2017. The annual rate of grassland change was -3.57 Km2/yr from 1978 

to 1998 and -2.59 Km2/yr from 1998 to 2017.  It showed a decreasing trend over the 

entire study period by 3.09 Km2/yr. The rate of contraction of grassland was high 

from 1978 to 1998 compared to 1998 to 2017. The rate of contraction of shrubland 

was low from 1978 to 1998 compared to 1998 to 2017. The water body and swampy 

area showed a decreasing trend in the watershed with a rate of 0.35 Km2/yr and 0.55 

Km2/yr, respectively. The water body lost 74.99% of the area during the study period, 

and the swampy area lost 67.83% of its size during the study period (Table 5.3, 

Figures 5.5, and 5.6). 

5.3 Hydrological Responses to Land Use/Land Cover Change 

The SWAT hydrological model was calibrated and validated using observed 

streamflow data based on monthly databases. The statistical performance indices of 

the model are discussed under section 4.5. The SWAT model performed well. The 

summary of the result of LU/LC change impacts on streamflow in TWW is presented 

in Table 5.4, and the intera annual variation of streamflow in TWW is demonstrated 

in Figure 5.7. 

Table 5.4. The monthly, seasonal, and yearly average and per cent of change in 

streamflow (m3/s) in different LU/LC  

Months 

1978 

LU/LC 

1988 

LU/LC 

1998 

LU/LC 

2017 

LU/LC 

Per cent of Change in Streamflow 

1978-

1988 

1978-

1998 

1978-

2017 

1998-

2017 

Jan 1.39 1.43 1.48 1.59 2.57 6.53 14.41 7.40 
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Feb 1.85 2.13 2.25 2.49 14.95 21.59 34.63 10.72 

Mar 3.13 3.55 3.79 4.16 13.38 21.07 32.86 9.74 

Apr 4.18 4.51 4.58 4.81 7.75 9.57 15.00 4.95 

May 4.65 4.62 4.63 4.89 -0.60 -0.50 5.11 5.65 

Jun 4.54 4.93 4.56 4.85 8.55 0.44 6.81 6.34 

Jul 5.40 5.99 6.07 6.54 11.00 12.45 21.16 7.74 

Aug 8.37 8.71 9.42 9.94 3.96 12.43 18.75 5.62 

Sep 8.74 9.44 9.66 9.98 7.99 10.50 14.16 3.31 

Oct 6.65 7.23 7.05 7.28 8.74 5.97 9.40 3.24 

Nov 3.57 4.07 3.80 3.84 13.88 6.49 7.65 1.10 

Dec 1.70 1.99 1.82 1.82 16.71 6.50 6.67 0.16 

Bega 3.33 3.68 3.54 3.63 10.50 6.24 9.11 2.70 

Belg 3.45 3.70 3.81 4.09 7.18 10.39 18.35 7.20 

Kiremt 6.76 7.27 7.43 7.83 7.44 9.80 15.74 5.41 

Annual 4.52 4.88 4.92 5.18 8.12 9.07 14.77 5.23 

Dry flow 3.01 3.04 2.78 3.29 0.79 -7.61 9.29 18.30 

Wet flow 6.21 6.73 6.76 7.07 8.29 8.80 13.84 4.63 

Note: Dry flow (December-May) and Wet flow (June-November) 

 

Figure 5.7. Intra annual variation of streamflow for the year 1978 to 2017 
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During the wet season, the average watershed streamflow increased from 6.21 m3/s in 

1978 to 6.76 m3/s in 1998. In contrast, it increased from 6.76 m3/s in1998 to 7.07 m3/s 

in 2017. Wet flow increased by 8.29%, 8.80%, and 4.63% between 1978 and1988, 

1978 and 1998, and 1998 and 2017. The wet season flow had generally risen from 

6.21 m3/s in 1978 to 7.07 m3/s in 2017 by 13.84%. During the dry season, the average 

watershed streamflow decreased from 3.01m3/s in 1978 to 2.78 m3/s in 1998. It was 

reduced by 7.61%. In comparison, it increased from 2.78 m3/s in 1998 to 3.29 m3/s in 

2017 by 18.30%. The dry season flow had generally risen from 3.01m3/s in 1978 to 

3.29 m3/s in 2017. It was increased by 9.29%. The results show that the average 

annual streamflow increased by 8.12%, 9.07%, 14.77% between 1978 and1988, 1978 

and 1998, and 1978 and 2017 (Table 5.4). The maximum flow is observed during 

August and September at the end of the Kiremt Season in the watershed. The Kiremt 

season flow increased by 9.80% during the first half of the study period (1978-1998) 

and by 5.41% in the second half (1998-2017). It increased by 15.74% in 2017 

compared to 1978. The observed changes in the streamflow have resulted from 

LU/LC changes involving reducing shrubland and grassland, expanding cultivation, 

and the built-up area in the TWW.  

The result is in agreement with studies elsewhere in Ethiopia (Bewket and Sterk 2005; 

Getachew and Melesse 2012; Getahun and Van Lanen 2015; Tufa et al. 2015; Chakilu 

and Moges 2017; Gashaw et al. 2018; Welde and Gebremariam 2017), Africa (Yira et 

al. 2016), China (Yang et al. 2014), Pakistan (Younis and Ammar 2018), Thailand 

(Petchprayoon et al. 2010) and Nepal (Pokhrel 2018). Babar and Ramesh 2015 have 

stated that the conversion of forests to agricultural areas and increased built-up areas 

from 2003 to 2013 have affected India's Nathravathi river basin. Increased streamflow 

is expected in the watershed involving reducing shrubland and grassland during the 

expansion of cultivation and built-up. Typically, LU/LC change is influenced by 

human activities rather than natural events. Currently, agricultural expansion, 

fuelwood consumption, industry zone expansion, and urbanization are human-made 

activities, which cause LC/LU changes in TWW. Such changes can have a significant 

impact on the hydrology of the watershed. In general, the LU/LC changes, which had 

occurred from 1978 to 2017, had increased the annual streamflow by 14.77%. The 

result revealed that the LU/LC change had a dominant role in the watershed's 
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hydrological responses. This indicates an immediate need to control the LU/LC to 

ensure water availability in the watershed. 

5.4 Closure 

A significant amount of LU/LC changes occurred in the TWW in the study period. 

The expansion of cultivated and built-up areas and the withdrawal of shrubland, 

grassland, swampy, and water body were observed in the watershed during the entire 

study period. In general, the LU/LC changes, which occurred from 1978 to 2017, 

increased the annual streamflow by 14.77%. The result revealed that the LU/LC 

change had a dominant role in the watershed's hydrological responses. This indicates 

an immediate need to control the LU/LC to ensure water availability in the watershed. 
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CHAPTER 6:TREND AND VARIABILITY OF HYDRO-

METEOROLOGICAL VARIABLES 

6.1 General 

In this section, the trend and variability of hydro-meteorological variables of TWW in 

southern Ethiopia have been presented and discussed. Many meteorological trend 

analyses studies have been conducted in Ethiopia, but no previous study was 

conducted with this study period in the watershed. This study attempts to fill this gap. 

The study used daily rainfall, maximum temperature, minimum temperature, and PET 

from 1978 to 2017 and streamflow from 1980 to 2002. The M-K trend test and Sen’s 

slope estimator were used to examine the trend and magnitude of the changes, 

respectively. Also, the CV value was computed for variability analysis. PET was 

estimated by FAO-56 PM and Hargreaves models. 

6.2 Rainfall Variability and Trend  

Rainfall is one of the primary input climate variables for water resource planning and 

hydrological analysis. Table 6.1 describes the complete information about the four 

rain gauge stations used for the study. For the total yearly average rainfall and both 

Belg and Kiremt rainfall season, the lowest rainfall occurred at Shashemene in the 

northern portion of the watershed, while the highest annual average rainfall occurred 

over Haisawita in the southern portion of the watershed. Both yearly and seasonal 

rainfall depicted an increasing trend from the northern part to the watershed's southern 

part. Figure 6.1 describes the 40 years average annual rainfall of each station. Figure 

6.2 shows the seasonal variation of precipitation in the TWW. The rainfall system in 

TWW is a bimodal type (Figure 6.2), where the primary rainy season (Kiremt) is led 

by a minor rainy season (Belg).  In the study area, the contribution of Kiremt seasons 

for the total annual rainfall was very high across stations. The Belg rainfall also 

contributes a substantial amount to the total yearly rainfall of stations. For the case of 

TWW, 46.54%, 37.75%, and 15.75% of the annual rain are subsidized from Kiremt, 

Belg, and Bega rainfall, respectively (Figure 6.2). The variability of annual rainfall 

was lowest compared to the seasonal variations. Rainfall variability was highest for 

Bega (dry season) compared to Belg and Kiremt. The 40 years mean monthly rainfall 
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analysis uncovered that the minimum average monthly rainfall was recorded in 

December in all the measuring stations, whereas September received the maximum 

average rain in all the stations except Shashemene. Shashemene received the 

maximum average rainfall in August (Tables 6.2 to 6.5). 

Table 6.1. Features of stations for measured rainfall 

Station 

name 

Latitude Longitude Altitude 

(m) 

Area 

(km2) 

area 

in % 

Average annual 

precipitation (mm) 

Hawassa 703’51’’ 38028’50’’ 1701 136.28 20.02 962.33 

Haisawita 6054’7’’ 38033’32’’ 2249 209.94 30.83 1146.37 

Shashemene 7011’27’’ 38035’30’’ 1943 32.28 4.74 894.58 

wondogenet 702’52’’ 38036’53’’ 1770 302.38 44.41 1087.29 

 

Figure 6.1. Average annual rainfall (mm) of each rain gauge station in TWW (1978-

2017) 



 

125 
 

 

Figure 6.2. Seasonal distribution of rainfall in the watershed (1978-2017)  

The M-K trend test results of Hawassa station shown, there is no statistically 

significant trend in all months, seasons, and the annual rainfall during the study period 

at a 0.05 level of significance. Nevertheless, insignificant rising and declining trends 

are observed at the Hawassa station of TWW (Table 6.2). Results revealed that annual 

rainfall showed negligible change for the study period. It increased only at the rate of 

7.2 mm/decade.  The yearly rainfall at Hawassa station varies from 670.90mm to 

1197.90mm, with an average of 962.33mm. At this station minimum, monthly 

average rainfall was recorded during December, and the maximum monthly average 

rainfall was observed during May. 48.59% of the annual rainfall is contributed during 

the Kiremt season, and the rest, 36.02% and 15.39%, were subsidized from Belg and 

Bega seasons, respectively. Relatively less rainfall variability is observed in annual 

rainfall (CV=0.14), moderate variability in Kiremt (CV= 0.23) and Belg (CV=0.27) 

season, and high variability in dry (CV=0.47) season. Although in all the stations' 

understudy, annual rainfall was classified under low variability. Relatively less 

rainfall variability was observed at Hawassa compared to other stations (Tables 6.2 to 

6.5). Belg season rainfall variability at Hawassa was moderate, while other stations 

showed high variability.  A high variation of rainfall has been observed in the dry 
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season (October–January). This result indicates that the rain in the dry season is 

highly inconsistent and uncertain. Nevertheless, it is recognized that the dry season 

contributes nearly 15% of the annual rainfall. Figure 6.3 supports the M-K trend test 

and shows the interannual precipitation variability at Hawassa station in TWW.  

Table 6.2. Summary statistics of Hawassa rainfall (1978-2017) 

Variable 𝝁 𝝈 CV 𝝉 

p-

value 

Sen's 

slope 

Trend 

nature 

Trend 

sig. 

Oct 72.52 43.45 0.592 -0.08 0.49 -0.41 Negative Not Sig. 

Nov 30.20 32.68 1.068 0.14 0.21 0.28 Positive Not Sig. 

Dec 20.69 30.19 1.441 0.05 0.64 0.03 Positive Not Sig. 

Jan 24.74 27.96 1.116 0.11 0.34 0.08 Positive Not Sig. 

Feb 35.44 37.15 1.035 -0.13 0.24 -0.49 Negative Not Sig. 

Mar 74.16 42.63 0.568 0.05 0.63 0.28 Positive Not Sig. 

Apr 112.60 51.00 0.447 -0.12 0.28 -0.69 Negative Not Sig. 

May 124.43 58.40 0.463 0.11 0.33 0.97 Positive Not Sig. 

Jun 103.56 45.50 0.434 -0.10 0.38 -0.48 Negative Not Sig. 

Jul 120.71 37.10 0.303 0.06 0.62 0.26 Positive Not Sig. 

Aug 120.09 36.94 0.304 -0.01 0.96 -0.01 Negative Not Sig. 

Sep 123.21 46.94 0.376 -0.03 0.77 -0.18 Negative Not Sig. 

Bega 148.14 70.07 0.467 0.10 0.36 1.03 Positive Not Sig. 

Belg 346.62 93.35 0.266 0.04 0.74 0.57 Positive Not Sig. 

Kiremt 467.57 107.03 0.226 -0.03 0.77 -0.30 negative Not Sig. 

Annual 962.33 140.70 0.144 0.04 0.75 0.72 Positive Not Sig. 

Where μ=average; σ=standard deviation; CV= Coefficient of variance; τ= Kendall's tau; Not Sig. = 

not significant 
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Figure 6.3. Trend and interannual variability of annual rainfall Hawassa (1978 -2017) 

At Haisawita station, there is no statistically significant increasing/decreasing trend in 

all the months, seasons, and annual rainfall. Notwithstanding, rainfall shows an 

insignificant decreasing trend in Belg, Kiremt, and yearly rainfall at a rate of 16.8, 

3.0, and 10.4 mm per decade, respectively (Table 6.3). The relatively maximum 

annual average rainfall was recorded at Haisawita station compared to other stations. 

The annual rainfall ranges from 810.10mm to 1494.90mm, with an average value of 

1146.37mm. The Kiremt season contributes 42.62% of annual rainfall, with the 

remaining 40.09% and 17.27% coming from the Belg and Bega seasons, respectively. 

At this station minimum, monthly average rainfall was recorded during December, 

and the maximum monthly average rainfall was observed during September. Even 

though the CV value of all the months and seasons varies from moderate to high, 

annual rainfall is less variable (CV=0.17) at the station. Seasonally, Kiremt and Belg 

showed moderate variability, whereas the Bega showed a very high rainfall 

variability.  Figure 6.4 strengthens the non-significant decreasing trend and shows the 

interannual variability of annual rainfall at Haisawita station.  

Table 6.3. Summary statistics of Haisawita rainfall (1978-2017) 

Variable 𝝁 𝝈 CV 𝝉 

p-

value 

Sen's 

slope 

Trend 

nature 

Trend 

sig. 

Oct 101.79 55.29 0.54 0.08 0.46 0.58 Positive Not Sig. 

Nov 42.97 28.43 0.65 0.12 0.26 0.50 Positive Not Sig. 
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Dec 23.38 25.35 1.07 -0.12 0.30 -0.19 Negative Not Sig. 

Jan 29.89 33.90 1.12 0.01 0.92 0.00 positive Not Sig. 

Feb 40.77 31.65 0.77 -0.18 0.10 -0.72 Negative Not Sig. 

Mar 122.05 60.91 0.49 -0.10 0.36 -0.70 Negative Not Sig. 

Apr 144.52 62.02 0.42 -0.04 0.69 -0.32 Negative Not Sig. 

May 152.35 73.97 0.48 0.10 0.36 1.27 Positive Not Sig. 

Jun 85.47 42.01 0.49 -0.06 0.62 -0.19 Negative Not Sig. 

Jul 108.27 48.33 0.44 -0.08 0.46 -0.29 Negative Not Sig. 

Aug 131.21 49.45 0.37 0.01 0.90 0.12 Positive Not Sig. 

Sep 163.70 47.03 0.28 0.02 0.90 0.14 Positive Not Sig. 

Bega 198.03 71.34 0.36 0.11 0.32 1.20 Positive Not Sig. 

Belg 459.69 141.11 0.30 -0.08 0.45 -1.68 Negative Not Sig. 

Kirmt 488.65 111.07 0.22 -0.02 0.84 -0.30 Negative Not Sig. 

Annual 1146.37 199.65 0.17 -0.04 0.75 -1.04 Negative Not Sig. 

Where μ=average; σ=standard deviation; CV= Coefficient of variance; τ= Kendall's tau; Not Sig. = 

not significant 

 

Figure 6.4. Trend and interannual variability of annual rainfall Haisawita 

The maximum reduction rate is noticed at Shashemene station. Unlike other stations 

in TWW, the results of the M-K trend test at Shashemene station indicated a 

statistically significant decreasing trend at 0.05 significance level in both Belg and 

annual rainfall and a non-significant decreasing trend in Kiremt season (Table 6.4). 

The yearly rainfall at the station reduces at a rate of 49.3mm per decade. It is a 
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relatively high rate compared to other stations and areal weighted average annual 

rainfall. It is noted that this reduction in the annual rainfall was caused by a decline in 

the Belg season in the northern part of the watershed. Shashemene received a 

relatively minimum yearly average rainfall. Annual precipitation ranges from 

627.80mm to 1234.20mm, with an average value of 894.58mm. 47.51% of the yearly 

rainfall is contributed during the Kiremt season, and the rest 38.15% and 14.54% were 

subsidized from Belg and Bega seasons, respectively. In terms of variability, both 

Kiremt and annual rainfall depict less variability (CV= 0.18), whereas rainfall is 

highly unpredictable with high CV values in Bega and Belg seasons. Compared to 

other stations, Kiremt rainfall at Shashemene exhibits relatively less variability. 

Figure 6.5 also supports the results obtained from the M-K trend test. At this station 

minimum, monthly average rainfall was recorded during December, and the 

maximum monthly average rainfall was observed during July. 

Table 6.4. Summary statistics Shashemene rainfall (1978-2017) 

Variable 𝝁 𝝈 CV 𝝉 

p-

value 

Sen's 

slope 

Trend 

nature 

Trend 

sig. 

Oct 49.11 43.65 0.88 0.25 0.03 1.60 

 

Positive 

 

Sig. 

Nov 29.09 30.91 1.05 0.21 0.06 0.61 Positive Not Sig. 

Dec 19.54 21.62 1.09 -0.06 0.57 -0.04 Negative Not Sig. 

Jan 32.35 40.51 1.24 -0.23 0.05 -0.68 Negative Sig. 

Feb 53.19 51.74 0.96 -0.17 0.12 -1.02 Negative Not Sig. 

Mar 90.18 67.67 0.74 -0.26 0.02 -1.90 Negative Not Sig. 

Apr 89.29 54.90 0.61 -0.13 0.26 -0.77 Negative Not Sig. 

May 108.61 48.69 0.44 -0.02 0.84 -0.16 Negative Not Sig. 

Jun 88.95 41.69 0.46 -0.13 0.23 -0.70 Negative Not Sig. 

Jul 113.37 36.13 0.31 0.17 0.12 0.82 Positive Not Sig. 

Aug 128.10 41.99 0.32 -0.04 0.72 -0.18 Negative Not Sig. 

Sep 94.55 50.36 0.53 0.12 0.27 0.80 Positive Not Sig. 

Bega 130.08 68.08 0.52 0.16 0.15 1.42 Positive Not Sig. 

Belg 341.27 118.49 0.34 -0.35 0.00 -4.46 negative Sig. 
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Kiremt 424.97 77.40 0.18 -0.01 0.95 -0.04 Negative Not Sig. 

Annual 894.58 159.19 0.18 -0.23 0.04 -4.93 Negative Sig. 

Where, μ=average; σ=standard deviation; CV= Coefficient of variance; τ= Kendall's tau; Sig. = 

Significant at 0.05 confidence level; Not Sig. = not significant 

 

Figure 6.5. Trend and interannual variability of annual rainfall Shashemene 

The Wondogent station showed a statistically insignificant downward trend in all the 

months except August for all seasons and annual rainfall (Table 6.5). Except for 

yearly and Kiremt rainfall, rainfall exhibited a high variability at Wondogent (Eastern 

part of the watershed) in all the months and seasons. At this station minimum, 

monthly average rainfall was recorded during December, and the maximum monthly 

average rainfall was observed during August. The Kiremt season contributes 47.44% 

of annual rainfall, with the remaining 36.73% and 15.83% subsidized from the Belg 

and Bega seasons, respectively. Annual precipitation ranges from 644.30mm to 

1423.90mm, with an average of 1087.29mm at Wondogenet for the study period. 

Yearly rainfall variability was less compared to seasonal rainfall variability. While 

seasonal rainfall variability is high in Belg and Bega, annual and Kiremt rainfall 

variability is less to moderate, with CV values of 0.18 and 0.24, respectively. Figure 

6.6 displays a decreasing trend and interannual variability of precipitation at the 

station. 
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Table 6.5. Summary statistics of Wondogenet Precipitation (1978-2017) 

Variable 𝝁 𝝈 CV 𝝉 

p-

value 

Sen's 

slope 

Trend 

nature 

Trend 

sig. 

Oct 89.14 57.00 0.63 -0.13 0.25 -0.82 Negative Not Sig. 

Nov 33.85 39.27 1.15 -0.05 0.68 -0.08 Negative Not Sig. 

Dec 20.61 21.77 1.04 -0.13 0.23 -0.23 Negative Not Sig. 

Jan 28.51 31.21 1.08 -0.02 0.85 0.00 Negative Not Sig. 

Feb 42.44 41.82 0.97 -0.17 0.12 -0.77 Negative Not Sig. 

Mar 95.98 53.97 0.56 -0.14 0.21 -1.01 Negative Not Sig. 

Apr 135.38 65.73 0.48 -0.09 0.42 -0.80 Negative Not Sig. 

May 125.54 65.17 0.51 -0.03 0.77 -0.22 Negative Not Sig. 

Jun 96.07 51.48 0.53 -0.21 0.06 -1.27 Negative Not Sig. 

Jul 133.09 67.64 0.50 -0.05 0.63 -0.34 Negative Not Sig. 

Aug 142.92 47.13 0.33 0.11 0.32 0.69 Positive Not Sig. 

Sep 143.78 40.59 0.28 -0.06 0.59 -0.44 Negative Not Sig. 

Bega 172.11 90.12 0.52 -0.06 0.58 -0.72 Negative Not Sig. 

Belg 399.33 131.24 0.32 -0.18 0.10 -3.21 Negative Not Sig. 

Kiremt 515.85 126.49 0.24 -0.01 0.92 -0.18 Negative Not Sig. 

Annual 1087.29 194.21 0.18 -0.14 0.20 -3.54 Negative Not Sig. 

Where μ=average; σ=standard deviation; CV= Coefficient of variance; τ= Kendall's tau; Not Sig. = 

not significant 

 

Figure 6.6. Trend and interannual variability of annual rainfall Wondogenet 
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The annual rainfall varies from 747.89mm to 1321.87mm at the watershed level, with 

a weighted average of 1071.35mm. The results depicted no statistically significant 

trend at the 0.05 level of confidence in the areal weighted average rainfall in TWW. 

However, the watershed's annual rainfall exhibited an insignificant declining trend of 

20.8 mm/decade (Table 6.6). In general, there was no statistically significant change 

in yearly weighted average rainfall throughout the studied period in the watershed. 

This finding agrees with the report of the NMSA of Ethiopia. They reported that from 

1951 to 2005, the annual rainfall average from 42 rain gauge stations over the entire 

country remained almost constant. Also, Bega rainfall showed more variability than 

Belg and Kiremt (NMSA 2007). 

Overall the findings from this study are in close agreement with prior studies that 

analysed the rainfall trends in Ethiopia. The spatiotemporal dynamics of rainfall in 

Ethiopia were investigated by Cheung et al. (2008). They used historical rain gauge 

data from 134 stations in 13 basins from 1960 to 2002. They stated no notable change 

in the yearly rainfall at the country and watershed level in Ethiopia. Although there is 

a significant decline in Kiremt season rainfall in the country's central and 

southwestern parts, the Belg rainfall shows an insignificant increment with higher 

variability. Wagesho et al. (2013) examined the variability of seasonal and annual 

rainfall over Ethiopia based on 0.50 resolution gridded monthly rainfall data (381 grid 

points) for the duration of 1951 to 2000. The yearly and Kiremt rainfall showed 

significant decreasing trends in Ethiopia's western and northern portions, whereas an 

increasing annual rainfall trend was detected in a small area in eastern parts of 

Ethiopia. 

Statistically, insignificant trends were observed in most regions (77%) of Ethiopia. In 

Ethiopia's highlands, Alemayehu and Bewket (2017) measured monthly rainfall 

trends (1883 to 2013). They found that both the Kiremt and annual rainfall show 

statistically insignificant rising trends, while Belg rainfall shows significant declining 

trends. Since 1982, yearly and Kiremt rainfall in southern, eastern, and south-western 

Ethiopia has decreased significantly (Seleshi and Zanke 2004). Admassu and Seid 

(2006) assessed the trend of rainfall over Ethiopia from 1973 to 2002. They reported 

that the annual total rainfall exhibits a statistically significant declining trend while 
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Belg rainfall does not show any significant trend in the analysis period. Abrha and 

Simhadri (2015) analyzed the monthly, seasonal, and annual rainfall trends in 

southern Tigray for 34 years (1978 to 2012). They reported a statistically significant 

increase in Kiremt rainfall in the area, while Belg rainfall exhibits an insignificant 

declining trend. Annual rainfall does not show any significant change in the area for 

the period. In West Africa (Benin), no significant annual rainfall trends were noticed 

from 1940 to 2015 (Ahokpossi 2018). Annual, seasonal, and monthly rainfall trends 

were examined in 30 subregions in India over the 1871–2005 years by Kumar et al. 

(2010). They concluded that rainfall exhibited a decreasing trend for the annual and 

monsoon season on the country's scale, whereas it showed an increasing trend in other 

seasons. 

Figure 6.7 supports the decreasing but statistically insignificant trends of average 

annual rainfall in the TWW. The CV value is relatively low (CV=0.15), indicating no 

substantial annual yearly average rainfall variability in the watershed for the study 

period. In general, rainfall exhibited high variability in the Bega and Belg seasons, 

moderate variability in the Kiremt season, and annual rainfall showed less variability. 

In the Woleka watershed of Ethiopia, Asfaw et al. (2018) reported that the Kiremt and 

annual rainfall had declined significantly at a rate of 15mm and 13mm per/decade, 

respectively. As well, highly variable and erratic, but an insignificant declining trend 

of Belg rainfall was noted.  

Table 6.6. Summary statistics of the areal weighted average annual rainfall of TWW 

(1978-2017) 

Variable 𝝁 𝝈 CV 𝝉 

p-

value 

Sen's 

slope 

Trend 

nature 

Trend sig. 

Weighted 

average 

rainfall 1071.35 161.19 

 

 

0.15 -0.13 0.26 -2.08 

 

 

Negative 

 

 

Not Sig. 

Where μ=average; σ=standard deviation; CV= Coefficient of variance; τ= Kendall's tau 
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Figure 6.7. Trend and interannual variability of the areal weighted average annual 

rainfall of TWW 

6.3 Temperature Variability and Trend 

Temperature is the principal element of climate and usually helps to perceive the 

variation of climate. Temperature impacts the hydrological processes in a watershed. 

Trend analysis of temperature in TWW was conducted with daily minimum and 

maximum temperature data from 1978-2017. The result discovered a significantly 

rising trend for both minimum and maximum temperatures. The minimum 

temperature showed a more significant rising trend than the maximum at both stations 

(Hawassa and Haisawita). An increasing trend of both minimum and maximum 

monthly temperature at the Woleka watershed in Ethiopia was noted by Asfaw et al. 

(2018).  

Figure 6.8 manifests Intra annual variation of temperature in TWW. The monthly 

average daily maximum temperature was relatively high in Bega and Belg at both 

stations and less in Kiremt. In contrast, the monthly average daily minimum 

temperature is higher in Kiremt compared to other seasons. The highest monthly 

average maximum daily temperature at both stations occurred during February, 

whereas the highest monthly average minimum daily temperature occurred during 

July and March, at Hawassa and Haisawita, respectively. Also, the lowest monthly 
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average maximum daily temperature occurred at both stations during July, whereas 

the lowest monthly average minimum daily temperature occurred during December. 

Figure 6.9 illustrates the interannual variation in annual average minimum and 

maximum daily temperatures. Yearly average maximum daily temperature ranges 

from 21.670C to 24.860C with an average of 22.760C at Haisawita station, and it 

ranges from 25.360C to 28.560C with an average of 27.220C at Hawassa station. On 

the other hand, the yearly average minimum daily temperature varies from 10.310C to 

11.980C, with an average value of 11.180C at Haisawita station. It varies from 

10.630C to 14.890C, with an average of 12.830C at Hawassa station during the study 

period. In both cases, the temperature in Hawassa is higher than that of Haisawita. 

This implies that the watershed is warmer in the west and northwest portions than the 

south and southwest portions. Local increases and variability in temperature affect 

soil moisture and evapotranspiration. It, in turn, has associations to decide appropriate 

crop types and cropping calendars in the area. 

 Figure 6.10 markedly discloses that there has been a warming trend in the annual 

minimum and maximum temperature during the study period in the watershed. The 

M-K trend test revealed that seasons and yearly average daily minimum and 

maximum temperature exhibited a statistically significant rising trend in all seasons 

and annual average daily minimum and maximum temperature. The monthly average 

daily minimum, and maximum temperature also showed a statistically significant 

rising trend except for November, December and January for the case of maximum 

temperature. It is found that both the minimum and the maximum temperature have 

been increased intensely from 1978 to 2017. The average minimum temperature 

increased more rapidly than that of the average maximum temperature in TWW. The 

yearly average of daily minimum temperature in TWW has been rising by 0.360C and 

0.60C per decade at Haisawita and Hawassa station, respectively (Table 6.7 and Table 

6.8). Averaged over 40 stations in the country over the last 55 years (1951-2005) 

indicated that the temperature had been shown a warming trend due to ongoing 

climate change. The minimum temperature in Ethiopia has been increasing by about 

0.37 0C per decade (NMSA 2007).  Nearly the same result is found at Haisawita 

station in TWW. The yearly average daily maximum temperature increases with the 
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magnitude of 0.4 and 0.450C per decade at Hawassa and Haisawita stations, 

respectively (Table 6.8 and Table 6.10). Although both minimum and maximum 

temperatures showed an increasing trend, their variability is considerably less in all 

months, seasons, and years (Tables 6.7 to 6.10).  

The result of the temperature trend analysis is consistent with the results of previous 

researchers in the country. In the Ethiopian context, several researchers have reported 

an increase in temperature. Jury and Funk (2013) evaluated the long-term (1948 to 

2006) temperature trend over Ethiopia. They observed that the temperature increases 

(0.3 °C per ten years) across most of Ethiopia. A rise in temperature and PET were 

recognized in Belg throughout 1987-2007 in Ethiopia's highlands (Resoll 2011). Both 

the maximum and minimum temperatures exhibited a statistically significant warming 

trend across Ethiopia's central highlands from 1981 to 2011, as Alemayehu and 

Bewket (2017) testified. Variability and trend of the seasonal and yearly temperature 

of the UBNRB in Ethiopia were investigated from 1981 to 2010 by Mengistu et al. 

(2014). Annually, both the minimum and maximum temperatures exhibited a 

statistically significant warming trend in the area except in the basin's small western 

side. In general, they concluded that the mean maximum temperature is augmented at 

a lower speed than that of the minimum temperature, and there is no statistically 

significant trend in yearly precipitation in the Basin.  

In Africa (IPCC 2014) and worldwide (Rosmann et al. 2016), temperature data sets 

have shown an increasing trend. On a global scale, the rise in temperatures is 

undeniable.  Xu et al. (2004) detected a rising trend in temperature in China from 

1955 to 2000. A recent study by Forootan (2019) shows an increasing trend in 

temperature in the central part of Iran. A rising temperature was detected in India 

(Kumar et al. 2010; Wani et al. 2017).  

From the present trend analysis, it can be concluded that there is a tendency to 

increment in temperature. It may occur because of the effect of global change. The 

increasing trend in temperature can lead to weather extremes like a drought in the 

watershed. Therefore, it is recommended that temperature variability be monitored to 

reduce its adverse impacts on the watershed's productivity.   
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Figure 6.8. Trend and intra-annual variability of temperature in TWW 

 

Figure 6.9. Trend and Interannual variability of temperature in TWW 
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Table 6.7. Summary statistics of Hawassa minimum temperature (1978-2017)  

Where, μ=average; σ=standard deviation; CV= Coefficient of variance; τ= Kendall's tau; Sig. = 

Significant at 0.05 confidence level  

Table 6.8. Summary statistics of Hawassa maximum temperature (1978-2017)   

Variable 𝝁 𝝈 CV 𝝉 p-value 

Sen's 

slope 

Trend 

nature 

Trend 

sig. 

Oct 26.837 1.009 0.037 0.32 0.00372 0.04 Positive Sig. 

Nov 28.082 0.983 0.035 0.18 0.10578 0.02 Positive Not Sig. 

Dec 28.070 0.782 0.027 0.10 0.38218 0.01 Positive Not Sig. 

Jan 28.799 0.847 0.029 0.23 0.03298 0.03 Positive     Sig. 

Feb 29.696 1.266 0.042 0.32 0.00305 0.05 Positive Sig. 

Mar 29.833 1.365 0.045 0.28 0.00943 0.05 Positive Sig. 

Variable 𝝁 𝝈 CV 𝝉 p-value 

Sen's 

slope 

Trend 

nature 

Trend 

sig. 

Oct 12.39 1.55 0.12 0.46 < 0.0001 0.08 Positive Sig. 

Nov 10.31 1.78 0.17 0.54 < 0.0001 0.10 Positive Sig. 

Dec 10.14 1.71 0.17 0.36 0.00094 0.08 Positive Sig. 

Jan 11.09 1.61 0.14 0.31 0.00463 0.07 Positive Sig. 

Feb 12.04 1.57 0.13 0.24 0.02876 0.05 Positive Sig. 

Mar 13.04 1.37 0.10 0.32 0.00358 0.05 Positive Sig. 

Apr 14.11 0.93 0.07 0.30 0.00567 0.03 Positive Sig. 

May 14.13 1.04 0.07 0.46 < 0.0001 0.06 Positive Sig. 

Jun 14.19 0.81 0.06 0.48 < 0.0001 0.05 Positive Sig. 

Jul 14.45 0.97 0.07 0.59 < 0.0001 0.05 Positive Sig. 

Aug 14.26 0.83 0.06 0.62 < 0.0001 0.06 Positive Sig. 

Sep 13.65 0.91 0.07 0.65 < 0.0001 0.07 Positive Sig. 

Bega 10.98 1.25 0.11 0.61 < 0.0001 0.09 Positive Sig. 

Belg 13.33 0.99 0.07 0.37 0.00054 0.04 Positive Sig. 

Kiremt 14.14 0.76 0.05 0.71 < 0.0001 0.06 Positive Sig. 

Annual 12.82 0.89 0.07 0.67 < 0.0001 0.06 Positive Sig. 
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Apr 28.223 1.494 0.052 0.37 0.00083 0.07 Positive Sig. 

May 27.084 0.873 0.032 0.35 0.00122 0.04 Positive Sig. 

Jun 25.606 0.948 0.037 0.42 0.00011 0.05 Positive Sig. 

Jul 24.255 1.041 0.042 0.60 < 0.0001 0.07 Positive Sig. 

Aug 24.708 0.807 0.032 0.48 < 0.0001 0.05 Positive Sig. 

Sep 25.450 0.831 0.032 0.38 0.00037 0.04 Positive Sig. 

Bega 27.947 0.695 0.025 0.27 0.01245 0.02 Positive Sig. 

Belg 28.709 0.907 0.031 0.50 < 0.0001 0.06 Positive Sig. 

Kiremt 25.005 0.779 0.031 0.58 < 0.0001 0.05 Positive Sig. 

Annual 27.220 0.672 0.024 0.56 < 0.0001 0.04 Positive Sig. 

Where μ=average; σ=standard deviation; CV= Coefficient of variance; τ= Kendall's tau; Not Sig. = 

not significant; Sig. = significant at 0.05 confidence level 

Table 6.9. Summary statistics of Haisawita minimum temperature (1978-2017) 

Variable 𝝁 𝝈 CV 𝝉 p-value 

Sen's 

slope 

Trend 

nature 

Trend 

sig. 

Oct 10.923 0.640 0.058 0.438 < 0.0001 0.034 Positive Sig. 

Nov 10.236 0.665 0.064 0.538 < 0.0001 0.041 Positive Sig. 

Dec 10.090 0.643 0.063 0.250 0.02308 0.020 Positive Sig. 

Jan 10.642 0.867 0.080 0.405 0.000167 0.043 Positive Sig. 

Feb 11.495 0.917 0.079 0.374 0.000541 0.039 Positive Sig. 

Mar 12.106 0.845 0.069 0.371 0.000759 0.029 Positive Sig. 

Apr 12.088 0.689 0.056 0.386 0.000453 0.036 Positive Sig. 

May 11.676 0.739 0.062 0.357 0.001198 0.034 Positive Sig. 

Jun 11.304 0.738 0.064 0.507 < 0.0001 0.043 Positive Sig. 

Jul 11.254 0.626 0.055 0.652 < 0.0001 0.042 Positive Sig. 

Aug 11.274 0.584 0.051 0.353 0.001354 0.023 Positive Sig. 

Sep 11.021 0.638 0.057 0.614 < 0.0001 0.041 Positive Sig. 

Bega 10.473 0.512 0.048 0.585 < 0.0001 0.034 Positive Sig. 

Belg 11.841 0.617 0.051 0.446 < 0.0001 0.035 Positive Sig. 

Kiremt 11.213 0.537 0.047 0.651 < 0.0001 0.036 Positive Sig. 

Annual 11.176 0.488 0.043 0.649 < 0.0001 0.036 Positive Sig. 
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Where μ=average; σ=standard deviation; CV= Coefficient of variance; τ= Kendall's tau; Sig. = 

significant at 0.05 confidence level 

Table 6.10. Summary statistics of Haisawita maximum temperature  

Variable 𝝁 𝝈 CV 𝝉 p-value 

Sen's 

slope 

Trend 

nature 

Trend 

sig. 

Oct 22.348 1.027 0.045 0.304 0.005754 0.043 Positive Sig. 

Nov 23.333 1.055 0.045 0.205 0.063793 0.024 Positive Not Sig. 

Dec 23.577 0.751 0.031 0.036 0.754742 0.003 Positive Not Sig. 

Jan 24.171 0.918 0.037 0.104 0.345273 0.010 Positive Not Sig. 

Feb 24.956 1.281 0.051 0.300 0.006109 0.049 Positive Sig. 

Mar 24.630 1.478 0.059 0.402 0.000265 0.074 Positive Sig. 

Apr 23.610 1.221 0.051 0.364 0.000781 0.057 Positive Sig. 

May 22.678 0.945 0.041 0.241 0.028474 0.030 Positive Sig. 

Jun 21.372 1.004 0.046 0.341 0.001938 0.045 Positive Sig. 

Jul 20.457 1.023 0.049 0.315 0.00387 0.046 Positive Sig. 

Aug 20.758 0.884 0.042 0.426 < 0.0001 0.035 Positive Sig. 

Sep 21.263 1.001 0.047 0.526 < 0.0001 0.056 Positive Sig. 

Bega 23.357 0.710 0.030 0.226 0.040992 0.021 Positive Sig. 

Belg 23.969 0.884 0.036 0.531 < 0.0001 0.055 Positive Sig. 

Kiremt 20.963 0.869 0.041 0.469 < 0.0001 0.045 Positive Sig. 

Annual 22.763 0.692 0.030 0.521 < 0.0001 0.041 Positive Sig. 

Where μ=average; σ=standard deviation; CV= Coefficient of variance; τ= Kendall's tau; Not Sig. = 

not significant;   Sig.= significant at 0.05 confidence level 

6.4 Streamflow Variability and Trend 

Historical streamflow data is the most critical factor in planning and designing water 

resource projects. The decisions on water resources management and policies could 

be affected by recognizing a trend in streamflow. As a contribution to evaluating 

streamflow in the Ethiopian highlands in semi-humid areas, monthly, seasonal and 

annual discharge trends were recognized for one station at the outlet in the 

downstream parts of the TWW. Table 6.11 depicted that yearly streamflow showed a 
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statistically significant increasing trend in TWW. Twenty-three years' average 

monthly maximum streamflow was recorded during October, and the average 

monthly minimum streamflow was measured during February. The Tikur Wuha 

River's streamflow has increased by as much as 21.16MCM per decade in the 

watershed.  

A decrease in streamflow in the absence of a significant rainfall trend resulting from 

human interventions was detected in Iran (Forootan 2019) and China (Xu et al. 2004; 

Wang et al. 2009). Wang et al. (2009) study the impact and relative importance of 

climate variations and human activities on China's runoff. They concluded that human 

activities such as change of LU/LC have relatively more impacts on runoff than 

climate. A report from Nepal shows the annual rainfall displaying an increasing trend, 

whereas runoff displays a decreasing trend (Pal et al. 2017). Casimiro et al. (2012) 

also detected the change in runoff from 1969 to 2004 in Peru with no rainfall 

variation. They believed anthropogenic activities might have changed runoff in the 

region. In Ethiopia, Mulu and Dwarakish (2016) noticed an increase in streamflow by 

about 10.9% from 2001 to 2008 compared to 1993 to 2000 due to a change in LU/LC. 

Streamflow is affected by several factors, such as rainfall variability and human 

interventions (Hassaballah et al. 2017). As stated above, human intervention, 

especially LU/LC change, plays a significant role in these changes.  

From the investigation results, we noticed that the streamflow shows a rising trend 

without a precipitation trend. Previous studies in the area associated the increasing 

runoff pattern with a significant change in LU/LC in the watershed resulting from 

urbanization and deforestation. There was a small lake (Lake Cheleleka, 12 km2) in 

the upstream portion of the watershed. Lake Cheleleka was filled with silt through 

time due to soil erosion, and it changed into marshland and grassland. The water 

previously stored in Lake Cheleleka flows to the Tikur Wuha River (Water Works 

Design and Supervision Enterprise [WWDSE] 2001; Gebreegziabher 2004; MoWR 

2008). In addition to these, there are many discharges of wastewater from several 

newly constructed industries in the river's urban sites. It may be one of the reasons for 

the increasing trend of streamflow in TWW. Recently built urban drainage toward the 

river from Hawassa city is maybe another reason for the increments in streamflow of 
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TWW. However, the increasing streamflow trend without the corresponding increase 

in rainfall in the study area needs further investigation. 

Tikur Wuha River is the only permanent river that fed Lake Hawassa. It subsidizes an 

average of 78.483MCM of water per year to the Lake (Table 6.11). The trend and 

variability of the streamflow and runoff of the Tikur Wuha River directly link with the 

water balance and lake level rise of Lake Hawassa. Previous studies about the water 

balance of Lake Hawassa and Lake level reported that the level of the lake Hawassa 

showed an increasing trend (WWDSE 2001; Gebreegziabher 2004; MoWR 2008). 

They associated it with climate change, land-use change, and lake sedimentation due 

to water erosion. Streamflow and runoff variability were very high during the Belg 

season and moderated in all other seasons. Interannual variability was moderate 

during the study period. Streamflow is affected by several factors, such as rainfall 

variability and human interventions (Mulu and Dwarakish 2016; Hassaballah et al. 

2017). Figure 6.10 displayed the increasing trend and interannual variability of 

streamflow in the study area. 

Table 6.11. Summary statistics of streamflow TWW (1978-2017) 

Variable 𝝁 𝝈 CV 𝝉 p-value 

Sen's 

slope 

Trend 

nature 

Trend 

sig. 

Oct 10.318 2.033 0.193 0.130 0.403319 0.062 Positive Not Sig. 

Nov 8.143 2.729 0.328 0.594 < 0.0001 0.339 Positive Sig. 

Dec 7.009 3.018 0.421 0.650 < 0.0001 0.369 Positive Sig. 

Jan 5.686 2.895 0.498 0.731 < 0.0001 0.362 Positive Sig. 

Feb 4.368 2.429 0.544 0.660 < 0.0001 0.250 Positive Sig. 

Mar 4.543 2.452 0.528 0.621 < 0.0001 0.249 Positive Sig. 

Apr 4.776 2.364 0.484 0.549 0.000138 0.205 Positive Sig. 

May 6.496 2.373 0.357 0.518 0.000364 0.261 Positive Sig. 

Jun 7.318 2.610 0.349 0.455 0.002032 0.209 Positive Sig. 

Jul 7.667 2.254 0.288 0.478 0.001103 0.182 Positive Sig. 

Aug 8.503 2.115 0.243 0.281 0.064601 0.119 Positive Not Sig. 

Sep 9.342 1.992 0.209 0.063 0.672503 0.034 Positive Not Sig. 
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Bega 31.157 9.283 0.291 0.684 < 0.0001 1.207 Positive Sig. 

Belg 20.183 8.700 0.422 0.605 < 0.0001 0.955 Positive Sig. 

kiremt 32.829 7.615 0.227 0.383 0.010247 0.533 Positive Sig. 

Annual 78.483 20.271 0.253 0.684 < 0.0001 2.116 Positive Sig. 

Where, μ=average; σ=standard deviation; CV= Coefficient of variance; τ= Kendall's tau; Not Sig. = 

not significant; Sig. = significant at 0.05 confidence level 

    

 

Figure 6.10. Trend and inter-annual variability of streamflow and runoff in TWW 

6.5 PET Variability and Trend  

The variability and trend analysis of the PET was carried out in the watershed.  The 

results are presented in Table 6.12 and Table 6.13. At Hawassa, there is no 

statistically significant trend in annual and seasonal PET. However, it showed an 

insignificant increasing trend for annual, Belg, and Kiremt seasons and a decreasing 

trend for the dry season (Table 6.12). A statistically significant rising trend was 

detected during July, whereas insignificant increasing and decreasing trends were 

observed in all other months. PET increases at a 5.03, 2.44, and 6.48 mm/decade rate 

during annual, Kiremt and Belg, respectively. 

At Haisawita, except for two months in the dry season (December and January), PET 

exhibits an increasing trend in all the other months. It showed insignificant increments 
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in the Bega and Kiremt seasons, whereas in Belg, it displayed a statistically 

significant rising trend. Annual PET exhibited a statistically significant increasing 

trend by the magnitude of 20.74 mm per decade (Table 6.13). In general, PET shows 

a rising tendency in the TWW. The magnitude of the trend points out that the 

increment rate of PET was more rapid at Haisawita than at Hawassa. The increasing 

trend in PET may be due to the rising temperature in the study period. A slight 

difference in PET at different stations (Hawassa and Haisawita) in TWW may arise 

from the different methods employed in computing the PET, and it may be from the 

slight temperature difference. Figure 6.11 presents both the trend and variability of 

PET in TWW in the study area. Very less PET variability with a CV value of less than 

7% was observed in both stations' months and seasons. Interannual variability is also 

very less.  

Table 6.12. Summary statistics Hawassa PET (1978-2017).  

Variable 𝝁 𝝈 CV 𝝉 

p-

value 

Sen's 

slope 

Trend 

nature 

Trend 

sig. 

Oct 121.150 6.746 0.055 0.026 0.826 0.019 Positive Not Sig. 

Nov 119.950 6.566 0.054 -0.179 0.106 -0.133 Negative Not Sig. 

Dec 120.588 5.541 0.045 -0.249 0.024 -0.166 Negative Not Sig. 

Jan 126.666 6.231 0.049 -0.085 0.452 -0.075 Negative Not Sig. 

Feb 126.892 8.124 0.063 0.108 0.336 0.156 Positive Not Sig. 

Mar 144.793 9.334 0.064 0.044 0.703 0.075 Positive Not Sig. 

Apr 129.916 8.776 0.067 0.256 0.020 0.279 Positive Not Sig. 

May 125.624 6.092 0.048 0.046 0.685 0.029 Positive Not Sig. 

Jun 111.973 5.213 0.046 0.118 0.291 0.081 Positive Not Sig. 

Jul 106.902 5.607 0.052 0.249 0.024 0.181 Positive Sig. 

Aug 112.338 4.527 0.040 0.133 0.232 0.082 Positive Not Sig. 

Sep 113.619 4.266 0.037 -0.064 0.571 -0.041 Negative Not Sig. 

Bega 488.355 18.647 0.038 -0.159 0.153 -0.391 Negative Not Sig. 

Belg 527.225 21.364 0.040 0.213 0.054 0.648 Positive Not Sig. 

Kiremt 444.831 14.007 0.031 0.154 0.167 0.244 Positive Not Sig. 

Annual 1460.411 39.895 0.027 0.097 0.385 0.503 Positive Not Sig. 
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Where μ=average; σ=standard deviation; CV= Coefficient of variance; τ= Kendall's tau; Not Sig. = 

not significant; Sig. = significant at 0.05 confidence level 

Table 6.13. Summary statistics of Haisawita PET (1978-2017) 

Variable 𝝁 𝝈 CV 𝝉 

p-

value 

Sen's 

slope 

Trend 

nature 

Trend 

sig. 

Oct 120.539 7.786 0.064 0.167 0.134 0.128 Positive Not Sig. 

Nov 118.446 6.606 0.055 0.064 0.571 0.063 Positive Not Sig. 

Dec 120.362 5.179 0.042 -0.041 0.720 -0.031 Negative Not Sig. 

Jan 125.450 6.802 0.054 -0.062 0.586 -0.053 Negative Not Sig. 

Feb 123.974 8.903 0.071 0.177 0.111 0.232 Positive Not Sig. 

Mar 138.374 10.019 0.071 0.336 0.002 0.426 Positive Sig. 

Apr 127.783 8.727 0.067 0.251 0.022 0.269 Positive Sig. 

May 123.614 7.674 0.061 0.063 0.568 0.073 Positive Not Sig. 

Jun 109.173 6.981 0.063 0.141 0.206 0.150 Positive Not Sig. 

Jul 106.937 7.595 0.070 0.133 0.232 0.133 Positive Not Sig. 

Aug 112.135 6.504 0.057 0.228 0.039 0.179 Positive Sig. 

Sep 113.209 6.444 0.056 0.295 0.007 0.225 Positive Sig. 

Bega 484.797 19.264 0.039 0.044 0.703 0.125 Positive Not Sig. 

Belg 513.745 23.711 0.046 0.356 0.001 1.095 Positive Sig. 

Kiremt 441.454 23.315 0.052 0.177 0.111 0.567 Positive Not Sig. 

Annual 1439.996 52.549 0.036 0.279 0.011 2.074 Positive Sig. 

Where μ=average; σ=standard deviation; CV= Coefficient of variance; τ= Kendall's tau; Not Sig. = 

not significant; Sig. = Significant at 0.05 confidence level 
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Figure 6.11. Trend and interannual variability of PET in TWW 

6.6 Closure 

From the present trend analysis result, it can be concluded that there is no statistically 

significant trend at the 0.05 level of confidence in the average annual rainfall in 

TWW. However, the watershed's annual rainfall exhibited an insignificant declining 

trend. The results depicted markedly disclose that there has been a warming trend in 

the minimum and maximum temperature during the study period in the watershed. 

The average minimum temperature raised more rapidly than that of the average 

maximum temperature. The streamflow was found to be increased by as much as 

21.16MCM per decade in the watershed. PET exhibits an increasing tendency in the 

TWW.  
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CHAPTER 7: WATERSHED PRIORITIZATION FOR 

CONSERVATION ACTIVITIES  

7.1 General 

In this section, the USLE factors are determined, and the corresponding raster maps 

were developed. The average soil loss rate was estimated, and SLR was reclassified. 

The priority watersheds were recognized for SWC activities based on the magnitude 

of the SLR. The detail of the dataset and methodology employed was found in chapter 

three.  

7.2 USLE Factors Determined 

7.2.1 R-factor 

Based on the rainfall data from four meteorological stations in and near the watershed 

for 40 years from 1978 to 2017, the yearly average rainfall was 1071.35mm. The 

annual rainfall and rainfall erosivity of the area and each station's contribution to 

TWW are summarized in Table 7.1. Figure 7.1 indicates the 40 years average yearly 

rainfall amount and its spatial variation in the TWW. Figure 7.2 displays the spatial 

variation of the R-factor of TWW.  

The R-factor ranges from 530.78 MJ mm ha-1 hr-1yr-1 to 633.85 MJ mm ha-1 hr-1yr-1 

with an average value of 591.84 MJ mm ha-1 hr-1yr-1. It is highest at Haisawita and 

relatively low at Shashemene. This value of the R-factor is less compared to the report 

by Andriyanto et al. 2015. Andriyanto et al. 2015 reported R-factor from 980 to 1439 

MJ MJ mm ha-1 hr-1yr-1 in the Kalikato watershed in Indonesia. This significant 

difference in R-factor arises from the high yearly average rainfall value of 2509mm in 

the area. The result is high compared to Brhane and Mekonen 2009. They reported R-

factor 357 MJ mm ha-1 hr-1yr-1 at Medego Watershed, Northern Ethiopia. 
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Table 7.1. Annual rainfall and the R-factor of TWW 

Station 

name 

Altitude 

(m) 

Latitude Longi

tude 

Area 

(km2) 

Area 

(%) 

Yearly average 

rainfall (mm) 

R-

factor 

Hawassa 1701 703’ 38028’ 136.28 20.02 962.33 530.78 

Haisawita 2249 6054’ 38033’ 209.94 30.83 1146.37 633.85 

Shashemene 1943 7011’ 38035’ 32.28 4.74 894.58 492.84 

Wondogenet 1770 7020’ 38036’ 302.38 44.41 1087.29 600.76 

Average 1071.35 591.84 

 

 

Figure 7.1. Annual rainfall map of TWW 
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Figure 7.2. Rainfall erosivity map of TWW 

7.2.2 K-factor 

Table 7.2 revealed the K-factors for each soil class with the corresponding soil type 

with a percentage of the area in TWW. Figure 7.3 displays the value of the K-factor 

and its spatial pattern in the TWW. The K-factor of TWW ranges from 0.000 to 0.026 

t hr MJ-1mm-1. Panagos et al. (2012) assessed the K-factor for Europe, relying on 

22,000 soil samples collected within Europe.  They found that the K-factor of USLE 

ranges from 0.013 to 0.087 t hr MJ-1mm-1, with a mean of 0.041 t hr MJ-1mm-1 in the 

SI unit. The K-factor values in China are concentrated in the ranges between 0.0229 

and 0.0457 t hr MJ-1mm-1, with an average of 0.0321 in the SI unit (Wang et al. 2016). 

The K-factor of TWW is in the range of other results elsewhere (Panagos et al. 2012; 

Wang et al. 2016). Compared to studies in Ethiopia (Bewket and Teferi 2009; Brhane 

and Mekonen 2009; Amsalu and Mengaw 2014), the K-factor value is relatively less. 

Both Bewket and Teferi (2009) and Amsalu and Mengaw (2014) reported K-factors 

ranging from 0.15 to 0.25 t hr MJ-1mm-1 in Ethiopia. Brhane and Mekonen (2009) 

revealed the K-factor ranging from 0.15 to 0.30 t hr MJ-1mm-1 at Medego Watershed, 
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Northern Ethiopia. Ashiagbor et al. 2013, showed the K-factor values up to 0.351 t hr 

MJ-1 mm-1 in Guana, Africa. This difference in values resulted from using the K-factor 

value without converting it to the SI unit.  

Table 7.2. K-factor values in SI unit and the corresponding area 

Soil Type Area ( km2) Area ( % ) K-factor (U.S. unit) K-factor (SI metric unit) 

Water body 11.94 1.75 0.00 0.000 

Swampy area 67.05 9.85 0.00 0.000 

Hablic Luvisols  233.54 34.30 0.09 0.012 

Xeroic Luvisols  135.25 19.86 0.11 0.015 

Eutric Vertisols 18.99 2.79 0.15 0.020 

Eutric Fluvisols 203.64 29.91 0.18 0.024 

Molic Andosols 10.47 1.54 0.20 0.026 

 

 

Figure 7.3. K-factor map of TWW 
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7.2.3 LS-factor 

The LS-factor is presented in Table 7.3 and displayed as a map (Figure 7.4). It varies 

from zero to greater than 60. A significant part of the area (41.05%) have LS-factor 

less than one, and almost half of the watershed (51.94 %) have LS-factor between one 

and 60. A small portion of the watershed (7.01%) have an LS-factor value greater 

than 60. Bewket and Teferi 2009 also reported that the LS-factor ranges from zero to 

greater than 100 in the Chemoga watershed in the Ethiopian highlands. The LS-factor 

reflects the impacts of topography on water erosion. Steeper slopes can favour higher 

runoff velocities, whereas longer slopes favour runoff accumulation. Both these 

factors can lead to an increase in soil erosion. The steeper and prolonged the hill, the 

higher is the risk of erosion (Hudson 1995). The higher LS-factor are observed in the 

steeper slope area in the study watershed. 

Table 7.3. The LS-factor values and the corresponding area 

LS-factor values 0 -0.5 0.5 -1.0 1.0 - 10 10 - 30 30 - 60 > 60 

Area ( km2) 230.25 49.28 203.04 102.25 48.37 47.69 

Area ( % ) 33.81 7.24 29.82 15.02 7.10 7.01 
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Figure 7.4. LS-factor map of TWW 

7.2.4 C-factor 

The C-factor is the ratio of soil loss from land with specific vegetation to the 

corresponding soil loss from continuous fallow (Wischmeier and Smith 1978). The 

2017 LU/LC class map was used to develop the C-factor map. Most of the watershed 

area (56.99%) is cultivated land. Other LU/LCs in the watershed are grassland, 

shrubland, urban, and swampy. The forest in the study area is too small to be mapped 

(Figure 7.5). Each LU/LC class's C factor values were allocated based on literature 

recommendations in the Rift valley Lake Basin in Ethiopia (MoWR 2008) and 

Ethiopian highlands (Table 7.4). The C-factor map was developed and depicted in 

Figure 7.5. The C-factor of TWW ranges from zero to one, and it is in the range of 

studies elsewhere. Bewket and Teferi 2009 reported that the C-factor ranges from 

0.01 to 0.60 in the Ethiopian highlands. 
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 Table 7.4. Adopted cover and management factor values for different LU/LC 

in the TWW 

LU/LC Area  

( km2) 

Area 

(% ) 

C-factor  

values 

References 

Intensively cultivated  217.32 31.92 0.25 Hurni 1985; MoWR 2008 

Moderately cultivated  170.70 25.07 0.15 Hurni (1985); MoWR 2008 

Built up  65.16 9.57 0.01 Haregeweyn et al. 2017 

Shrub land  71.38 10.48 0.10 MoWR 2008 

Grassland  141.58 20.79 0.05 MoWR 2008; Hurni (1985) 

Marshy  10.14 1.49 0.00 MoWR 2008 

Water  4.60 0.68 1.00 Yesuph and Dagnew(2019) 

 

 

Figure 7.5. Cover and management factor map of the TWW 
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7.2.5 P-factor 

The P-factor gives the ratio between the soil loss expected for a particular soil 

conservation practice to that with up-and down-slope ploughing (Wischmeier and 

Smith 1978). The p-factor raster map was developed based on the LU/LC and slope of 

the watershed. The P-factor values are given in Table 7.5 and depicted in Figure 7.6. 

The P-factor of the watershed ranges from 0.11 to one, and it is in the range of studies 

elsewhere in Ethiopia (Bewket and Teferi 2009; Shiferaw 2011; Ayalew 2015; Mulu 

and Dwarakish 2016). 

Table 7.5. P-factor values 

Land-use class Slope class in per cent P-factor 

 

 

Agricultural land 

 

Zero to five 0.10 

Five to ten 0.12 

Ten to twenty 0.14 

Twenty to thirty 0.19 

Thirty to fifty 0.25 

Fifty to hundred 0.33 

Non-agricultural land All 1.00 
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Figure 7.6. Supporting practice factor map 

7.3 The Soil Loss Rate of Tikur Wuha Watershed 

The SLR of TWW was predicted by using USLE. It is computed by map algebra 

under the raster calculation of ArcGIS 10.3. The predicted SLR was classified based 

on severity class (Table 7.6) and depicted in Figure 7.7.  

It is necessary to validate the model by comparing the model output with numerical 

data independently derived from experiments or observations of the environment. 

Nevertheless, for this purpose, measured data should be available. Usually, it is 

challenging to get observed data for calibration and validation of water erosion 

models in a developing country. It is a problem that model validators often face in a 

developing country. In the case of no measured data for calibration and validation of 

the model, and if the purpose is for prediction of soil loss for watershed management 

(execution of the SWC), researchers usually make a comparison of the result with 

published data with similar watershed results (validating the results of model 
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estimation through comparison of erosion rates with reported measured values in the 

literature) (Bewket and Teferi 2009; Brhane and Mekonen 2009; Meshesha et al. 

2012; Wolka et al. 2015; Fanta et al. 2016; Gashaw et al. 2017). Confidence is gained 

by knowing that the model has performed well in applications to monitored areas of 

similar soil, slope, and vegetation conditions to which it is applied. Also, researchers 

used limited field data by measuring for a short period from in situ experimental plot 

(Olivares et al. 2011; Andriyanto 2015), data from field experiments which were 

established for another purpose (Ubierna et al. 2009; Fanta et al. 2016), critical 

observation in the field (through qualitative erosion surveys by visual estimation of 

erosion status) (Bewket and Teferi 2009; Brhane and Mekonen 2009; Meshesha et al. 

2012; Fanta et al. 2016; Yuan et al. 2016), and soil loss tolerance of the country with 

the respective agro-climatic zone for comparison of the results (Brhane and Mekonen 

2009; Meshesha et al. 2012; Sujaul et al. 2012; Yuan et al. 2016), and a combination 

of the above. For many applications, it may be sufficient to show that a model predicts 

the correct location (spatial variation) of erosion and sedimentation.  

Land managers and policymakers are more interested in the spatial distribution of soil 

erosion risk than in the absolute value of soil erosion loss (Ashiagbore et al. 2013). If 

the model is used to explain erosion processes (for scientific purposes), experimental 

data should be used for validation.  Due to the absence of observed sediment data 

specific to the study area, approaches described by Ketema and Dwarakish (2019) 

were used to ensure the applicability of the USLE in TWW. The results were 

compared with similar studies across the Ethiopian highlands and in the Rift valley 

lake basins. The result was also linked to soil loss tolerance (SLT) and Ethiopia's 

average SLR.  

The SLR of TWW was ranged from 0.00 to greater than 45 t ha-1yr -1 with the mean 

value of 14.13 t ha-1yr -1. It resulted in the gross soil loss of 962083 t yr -1 in the entire 

watershed (from 68088 ha). The average SLR of TWW is found within the range of 

the SLR in areas having the same agro-climatic zone in Ethiopia (Bewket and Teferi 

2009; Brhane and Mokonin 2009; Amsalu and Mengaw 2014; Senti et al. 2014; Sisay 

2014;  Ayalew 2015a,b; Gashaw et al. 2017; Belaynehi et al. 2019). These studies 

discovered that SLR ranged from 9.10 t ha-1yr -1to 93 t ha-1yr -1. The average SLR of 
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TWW is comparable with the annual mean SLR of Ethiopia (12 t ha-1yr-1) (Hurni 

1988). 

Table 7.6. SLR class of TWW based on severity class 

SLR class (t ha-1yr-1) Area in km2 Area in % Severity class 

0 - 5 534.43  78.49 Very slight 

5 - 10 40.41 5.93 Slight 

10 - 25 43.33 6.36 Moderate 

25 - 45 23.17 3.41 Severe 

>  45 39.54 5.81 Very severe 

 

 

Figure 7.7. SLR class map of TWW based on severity class 

Although the result of the study is found to be in the range of results reported in 

Ethiopia, the estimated mean annual SLT is relatively lower than the estimates in 

other watersheds (Bewket and Teferi 2009; Amsalu and Mengaw 2014; Senti et al. 
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2014; Sisay 2014; Gashaw et al. 2017; Belaynehi et al. 2019). This is because 

previous studies in Ethiopia used K-factor values in U.S. units. It results in 

overestimating the SLR and misleading the decision-makers. The major problem in 

water erosion assessment in Ethiopia is the misuse of K-factor values. This study used 

corrected K-factor values in TWW in Ethiopia. Besides, the majority of the study 

watershed (57.83%) is flat to the gentle slope (0-8%). 

The result of the study found that a small portion of the watershed (9.22% of the study 

area) is suffering from severe and very severe SLR (> 25 t ha-1yr-1). The majority of 

the watershed (78.49% of the TWW) are classified under very slight (< 5 t ha-1yr-1) 

potential erosion risk (Table 7.6; Figure 7.7).  The finding of this study matches the 

results carried out in Ethiopia and elsewhere in different parts of the world. Studies 

point out that, within the watershed, small erosion hot spot areas are the source of a 

large amount of soil loss and sediment load (Setegn et al. 2009; Maryam and 

Biswajeet 2014; Adriyanto et al. 2015; Ayalew 2015; Gelagay and Minale 2016; 

Markose and Jayappa 2016; Rejari et al. 2016; Yuan et al. 2016; Gashaw et al. 2017). 

The spatial pattern of the classified SLR map (Figure 7.7) shows areas with severe 

and very severe SLR are found in the east, northeast, and southeast portion of the 

TWW. Managing this small portion of the watershed can significantly improve its 

productivity of the watershed. 

Also, the SLR was classified based on the SLT of the country, specific to the study 

watershed. The SLT of Ethiopia varies from 2-22 t ha-1yr-1 (Hurni 1988). The value of 

SLT depends on the agro-climatic zone. Based on annual rainfall and altitude, the 

agro-climatic region of the TWW is Weynadega and Dega. It implies that the SLT of 

TWW varies from 6 to 12 t ha-1yr-1. The average SLR of TWW (14.13 t ha-1yr-1) is 

beyond the maximum SLT of the watershed. The implication is that there is a need to 

execute proper SWC measures to reduce the extent of SLR from TWW below the 

minimum SLT value, protect Lake Hawassa from sedimentation and pollution, and 

increase the agricultural productivity of TWW. Table 7.7 and Figure 7.8 show the 

area having a SLR higher than the maximum SLT of the study watershed and having 

a SLR less than the area's minimum SLT. 14.41% of the watershed have a SLR higher 

than the maximum SLT. 
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Table 7.7. Soil loss rate class based on soil loss tolerance (SLT) of the TWW 

SLR class (t ha-1yr-1) Area in km2 Area in % Severity class 

0 - 6 545.14  80.06 Low 

6 - 12 37.61 5.53 Medium  

> 12 98.13 14.41 High 

Figure 7.8. Soil loss rate class based on SLT of the area 

Moreover, the SLR of TWW was classified into two levels based on Ethiopia's 

average soil erosion. Reports from Ethiopia (Hurni 1988) show that the average SLR 

nationwide was estimated to be 12 t ha-1yr-1. Even though most of the area (85.59%) 

have SLR below the country's average (Table 7. 8) SLR, the average SLR of the 

watershed is higher than the average SLR of the country. This also uncovers that there 

is a need to implement SWC practices in the TWW. Figure 7.9 showed the watershed 

portion having a SLR higher than the average SLR of the country. 
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Table 7.8. Soil loss rate class based on the average value of soil erosion of Ethiopia 

Soil loss rate class(t ha-1yr-1) Area in km2 Area in % severity class 

0 - 12 582.75  85.59 Low to medium 

> 12 98.13 14.41 high 

Figure 7.9. Soil loss rate class based on Ethiopia average SLR 

7.4 Prioritization of Sub-watersheds for SWC Based on SLR 

It is not practicable to take the whole watershed area at a time for its SWC practice. 

Thus, the entire watershed is divided into several sub-watersheds. The purpose is to 

identify priority watersheds to plan and implement SWC practices. The TWW has 

been divided into seven sub-watersheds to prioritize the sub-watersheds. The area of 

each sub-watershed is ranges from 37.07 km2 to 199.03 km2, which is considered a 

functional working area for the execution of SWC practices. The average SLR was 
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estimated for each watershed (Figure 7.10). The ranking of the watersheds was done 

in decreasing order. A watershed with the highest average yearly SLR value was 

ranked first, and the lowest was last (Table 7.9). 

Table 7.9. Priority watersheds for SWC based on the SLR 

Sub-

watersheds 

Area (Km2) Area (%) Average SLR 

(t ha-1yr-1) 

Rank Priority class 

SW_1 96.26 14.14 19.11 2 High 

SW_2 100.65 14.78 19.06 3 High 

SW_3 75.18 11.04 19.86 1 High 

SW_4 87.13 12.80 16.96 4 High 

SW_5 199.03 29.23 10.41 5 Medium 

SW_6 37.07 5.44 0.66 7 Low 

SW_7 85.56 12.57 8.94 6 Medium 

 

The study results revealed that all the sub-watersheds in TWW except SW_6 are 

needs implementation of SWC practices. Watershed SW_3 (19.86 t ha-1yr-1) was 

ranked first, followed by SW_1, SW_2, and SW_4, respectively. These watersheds 

are found on the eastern side of TWW and having relatively steep slope sides (Figure 

7.10). The implication is that topography is the dominant factor affecting SLR in the 

study watershed (Figure 7.4 and 7.10). The lowest average SLR was generated from 

SW_6 (0.66 t ha-1 yr -1).  
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Figure 7.10. The average SLR of sub-watersheds in TWW 

The TWW was categorized into three prioritization classes; high, medium, and low 

(Table 7.9 and Figure 7.11). The final priority map (Figure 7.11) was developed.  

Figure 7.11 shows, SW_3, SW_1, SW_2, and SW_4, were categorized as high 

priority (priority) sub-watersheds in the TWW that need immediate SWC measures to 

reduce soil loss from the watershed. SW_6 at the downstream side was low priority, 

whereas SW_5 and SW_6 were classified as medium priority (second priority) 

watersheds. The sub-watershed with high priority subsidize more to SLR. Therefore, 

the top priority should be given to them during the planning and execution of SWC 

practices in TWW. 
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Figure 7.11. Priority watersheds for planning and implementation SWC practices in 

TWW 

7.5 Closure 

The average soil loss rate of TWW is 14.13 t ha-1yr-1. The study found that a small 

portion of the watershed is suffering from severe and very severe SLR. The average 

SLR of TWW is beyond the maximum SLT of the watershed. Also, the average SLR 

of the watershed is higher than the average SLR of the country. The implication is that 

there is a need to execute proper SWC measures to reduce the extent of SLR from 

TWW below the minimum SLT value.  The sub-watershed with high priority 

subsidize more to SLR. The study results revealed that the sub-watersheds on the 

eastern side of TWW and having relatively steep slope sides are affected by severe 

erosion.  Therefore, the top priority should be given to them during the planning and 

execution of SWC practices in TWW. 
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CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS 

The weighted average of validated CORDEX data from multiple GCMs was used to 

identify how future temperature and precipitation will change and simulate the 

potential impacts of climate change on streamflow in TWW for the mid and end of 

the century. The performance of the bias-corrected CORDEX data was checked by 

using NSE. The result revealed that precipitation exhibited a worse agreement than 

the temperature in the study area. The minimum temperature was better simulated 

than the maximum temperature, and the weighted average of selected models 

performed better than a single model in the Tikur wuha watershed. The SWAT model 

was used to simulate the streamflow. The SWAT model has performed well in 

simulating the hydrological impacts of climate changes in the study area. The study 

found that the Bega, Kiremt, and annual rainfall increased in the mid and end of the 

century for all scenarios. In contrast, rainfall in Belg decreased in all cases except 

RCP8.5 by the end of the century. Rainfall increased faster at the end of the century 

than it did in the middle. The increase in precipitation is higher in the Bega compared 

to Belg and Kiremt season. No significant change in variability was observed in 

rainfall in the study area. In the mid-century, the annual average daily minimum 

temperature has increased by 1.59 oC for RCP4.5 and 1.85 oC for RCP8.5 relative to 

the baseline period. Compared to the baseline period, the annual average daily 

maximum temperature increased by 1.53 oC for RCP4.5 and 1.43 oC for RCP8.5. In 

the end century, the yearly average daily minimum temperature increased by 2.48 oC 

and 4.39 oC for RCP4.5 and RCP8.5, respectively, compared to the baseline period. 

Compared to the baseline period, the annual average daily maximum temperature 

increased by 2.55 oC for the RCP4.5 and 4.47 oC for the RCP8.5. The average yearly 

streamflow in TWW increased in all cases except a slight reduction in the RCP4.5 

scenario in mid-century. It increased by 4.45% for the RCP8.5 scenario in mid-

century. In the end century, the yearly average streamflow increased by 3.29% and 

19.88% for the RCP4.5 and RCP8.5 scenarios, respectively. In general, the result 

revealed that average streamflow increased in the wet season and decreased in the dry 

season in all cases in the future because of climate change. It agrees with other reports 

in Ethiopia. The increase in streamflow may increase flooding, and a decrease in 
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streamflow may result in draught unless proper watershed management activities are 

implemented to cope with the climate change in the study area. 

This study examined LU/LC dynamics and their impact on streamflow over 40 years 

in the Tikur Wuha watershed in southern Ethiopia. The results of the assessment 

identified the presence of seven LU/LC classes in the TWW. The LU/LC includes 

intensively cultivated, moderately cultivated, swampy, built-up, shrubland, water, and 

grassland. Grassland was the most dominant LU/LC class in 1978, but the study area 

is predominantly cultivated land in all other times. The accuracy assessment results 

for 1978, 1988, 1998, and 2017 LU/LC maps showed an overall accuracy of 77.50%, 

82.17%, 84.83%, and 87.33%, respectively.  It can be inferred from the study that a 

significant shift has occurred in LU/LC in the TWW over the study period. There has 

been a steady expansion of cropland and built-up and the withdrawal of shrubland, 

swampy, water body, and grassland during the 1978-2017 periods. Intensively 

cultivated land and the built-up area were expanded at a rate of 4.31 Km2/yr and 1.46 

Km2/yr, respectively, over the entire study period. Shrubland, waterbody, grassland, 

and swampy show a decreasing trend with rates of 1.87 Km2/yr, 0.35 Km2/yr, 3.01 

Km2/yr, and 0.55 Km2/yr, respectively. The possible reasons for the increase in built-

up and cultivated land and the decrease of other LU/LC categories in the study period 

could be the increased demand for farmland, the expansion of Hawassa town, and the 

newly established industry zone due to the increase in population in the study area. 

The finding of this study coincides with other research findings in Ethiopia. The 

LU/LC changes, which occurred from 1978 to 2017, increased the annual streamflow 

by 14.77%. The streamflow increased in all seasons and all the months in the 

watershed. The result revealed that the LU/LC change had a dominant role in the 

watershed's hydrological responses. This indicates an immediate need to control the 

LU/LC to ensure water availability in the watershed. 

Evaluation of the variability and trend of hydro-meteorological variables is required 

to notice the historical change and future predictions. This study includes both 

variability and trend analysis of hydro-meteorological variables using 40 years (1978-

2017) observed data in TWW. For the annual, Belg, and Kiremt, the minimum rainfall 

was observed at Shashemene in the northern portion of the watershed, whereas the 



 

167 
 

maximum rainfall occurred at Haisawita in the southern portion of the watershed. The 

rainfall system in TWW is a bimodal type. In the study area, the contribution of 

Kiremt seasons to the total annual rainfall was very high across stations. The Belg 

rainfall also contributes a considerable amount. At the watershed level, the yearly 

rainfall ranges from 747.89mm to 1321.87mm. The weighted areal average value is 

1071.35mm. The results depicted that there is no statistically significant trend in the 

areal weighted average rainfall in TWW. However, the watershed's annual rainfall 

exhibited an insignificant declining trend with a magnitude of 20.8 mm/decade. In 

general, rainfall exhibited high variability in the Bega and Belg seasons, moderate 

variability in the Kiremt season, and annual rainfall exhibited less variability. The 40 

years average monthly rainfall analysis uncovered that the lowest average rainfall was 

observed in all the measuring stations in December, whereas September received the 

highest average rainfall in all the stations except Shashemene. Shashemene received 

the maximum average rainfall in August. A significant falling trend was detected at 

Shashemene (northern part of the watershed) and insignificant declining rainfall 

tendencies in Haisawita and Wondogenet. Nevertheless, at Hawassa, annual rainfall 

showed an insignificant rising trend only at the rate of 7.2 mm/decade. Generally, the 

study found less interannual rainfall variability across the studied stations than the 

seasonal rainfall. There was a high rainfall variability during the dry season (Bega) 

and a relatively moderate and less variability during the Belg and Kiremt seasons. The 

finding of the study markedly discloses that there has been a rising trend in the annual 

average of daily maximum and minimum temperature in the last 40 years in the 

watershed. In all the seasons, annual and months, average daily maximum and 

minimum temperature exhibited a statistically significant warming trend. It has been 

found that both the minimum and the maximum temperature have been increased 

intensely from 1978 through 2017. The average minimum temperature increased more 

rapidly than that of the average maximum temperature in TWW. The yearly average 

of daily minimum temperature in TWW has been increasing by 0.36 0C and 0.60 0C 

every ten years at Haisawita and Hawassa station, respectively. A rising trend of 

temperature and a declining rainfall trend in the watershed may reduce available water 

for crop production. The increase in temperature in the watershed may raise the 

possibility of extreme weather events. Therefore, it is recommended that temperature 
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variability be monitored to reduce its adverse impacts on the watershed's 

productivity.  The streamflow of the Tikur Wuha River was found to be increased by 

21.16 MCM per decade in the watershed. The strictly increasing trend of streamflow 

without the corresponding increase of rainfall in the study area resulted from LULC 

change. Streamflow variability was very high during the Belg season and moderated 

in all other seasons. Interannual variability was moderate during the study period. 

Since Tikur Wuha River is the sole permanent river feeding Lake Hawassa, the 

increasing trend and variation have many consequences. Therefore, the variation of 

streamflow should be carefully monitored. In general, PET exhibits a rising tendency 

in the TWW. The nature of the trend-line indicates that the increment rate of PET was 

more at Haisawita than Hawassa. The increasing trend in PET is allied to the 

increasing temperature in the study period. A slight difference in PET at different 

stations (Hawassa and Haisawita) in TWW may arise from the different methods 

employed in computing the PET, and it may be from the slight temperature 

difference. The findings could have vital implications for the management of water 

resources at the watershed scale. The increase in temperature and the variability of 

rainfall affect soil moisture. It, in turn, has associations to decide appropriate crop 

types and cropping calendars in the area. There was a serious need to begin effective 

adaptation measures in the TWW. Stakeholders should be involved in implementing 

mitigation and adaptation techniques to reduce the undesirable impacts on the 

watershed. It is recommended that approaches intended in the agricultural area take 

the trend and variability of temperature and precipitation into consideration in TWW. 

Farmers usually use indigenous water harvesting technologies, water conservation 

strategies, adjusting planting dates (cropping calendars), and mixed cropping systems 

to tackle global change and variability in the Ethiopian highlands. Changes in crop 

type/variety, watershed management measures, crop diversification, a shift in planting 

calendar, and water-efficient irrigation practices are common adaptation measures 

used throughout Ethiopia. Also, this study is based on observed data in the watershed; 

it is needed to conduct an investigation based on forecasted data to realize how the 

hydro-meteorological variables will vary in the future and be affected by global 

change. It is also recommended to extend the study to more stations to conclude at a 

regional level. 
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Planning and implementation of SWC measures are required to reverse the effect of 

soil loss and for sustainable agricultural production. Recognition of priority 

watersheds is very critical in identifying the sub-watersheds needing preferential 

SWC practices. This study quantitatively assessed and mapped SLR in TWW and 

identified the priority watersheds using USLE. The average SLR of the watershed 

(14.13 t ha-1yr-1) is larger than the maximum SLT of the watershed and higher than 

the country's average SLR. The implication is that there is a need to plan and execute 

proper SWC methods in the watershed to decline the extent of SLR from TWW below 

the minimum SLT value and protect the Lake Hawassa from sedimentation and 

pollution increase the productivity of TWW. The result of the study found that the 

majority of the watershed (78.49% of the watershed) are classified under low (< 5 t 

ha-1 yr-1) SLR. A small portion of the watershed (9.22%) is suffering from severe and 

very severe SLR (>25 t ha-1yr-1). Managing this small portion of the watershed can 

significantly increase the productivity of the area. A large amount of SLR originated 

from a small part of the southeast, east, and northeast part of the watershed. Severe 

and very severe SLR were detected in the steep slope portion of the TWW. The 

implication of this is, the slope is the dominant factor affecting SLR in the study 

watershed. The findings of the study are comparable to those made by other studies at 

the same agro-climatic condition in Ethiopia at the watershed level. The generated 

SLR maps concerning sub-watersheds are used to identify areas where corrective 

actions should be commenced. The TWW in Ethiopia has been divided into seven 

sub-watersheds. SWC methods must be carried out, prioritising four sub-watersheds 

(SW_3, SW_1, SW_2, and SW_4), falling under the top priority zone in the 

watershed. The sub-watershed with high priority subsidize more to SLR. Therefore, 

top priority should be given to them during the planning and execution of SWC 

practices in TWW. 
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