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ABSTRACT

As hundreds to thousands of Processing Elements (PEs) are integrated into Mul-

tiprocessor Systems-on-Chip (MPSoCs) and Chip Multiprocessor (CMP) platforms,

a scalable and modular interconnection solution is required. The Network-on-Chip

(NoC) is an e�ective solution for communication among the On-Chip resources in

MPSoCs and CMPs. Availability of fast and accurate modelling methodologies en-

able analysis, development, design space exploration through performance vs. cost

tradeo� studies, and testing of large NoC designs quickly. Unfortunately, though be-

ing much more accurate than analytical modelling, conventional software simulators

are too slow to simulate large-scale NoCs with hundreds to thousands of nodes.

Machine Learning (ML) approaches are employed to simulate NoCs to address

the simulation speed problem in this thesis. A Machine Learning framework is pro-

posed to predict performance, power and area for di�erent NoC architectures. The

framework provides chip designers with an e�cient way to analyze NoC parameters.

The framework is modelled using distinct ML regression algorithms to predict perfor-

mance parameters of NoCs considering di�erent synthetic tra�c patterns. Because

of the lack of trace data from large-scale NoC-based systems, the use of synthetic

workloads is practically the only feasible approach for emulating large-scale NoCs

with thousands of nodes. The ML-based NoC simulation framework enables a chip

designer to explore and analyze various NoC architectures considering both 2D & 3D

NoC architectures with various con�guration parameters like virtual channels, bu�er

depth, injection rates and tra�c pattern.

In this thesis, four frameworks have been presented which can be used to pre-

dict the design parameters of various NoC architectures. The �rst framework named

Learning-Based Framework (LBF-NoC) which predicts the performance, power, area

parameters of direct (mesh, torus, cmesh) and indirect (fat-tree, �at�y) topologies.
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LBF-NoC was tested with various regression algorithms like Arti�cial Neural Networks

with identity and relu activation functions, di�erent generalized linear regression al-

gorithms, i.e., lasso, lasso-lars, larsCV, bayesian-ridge, linear, ridge, elastic-net and

Support Vector Regression (SVR) with linear, Radial Basis Function, polynomial ker-

nels among these SVR provided the least error hence, it was selected for building the

framework. The existing framework was enhanced by using multiprocessing scheme

named Multiprocessing Regression Framework (MRF-NoC) to overcome the issue of

simulating NoC architecture `n' number of times for 2D Mesh and 3D Mesh in the

second framework. The third framework named Ensemble Learning-Based Acceler-

ator (ELBA-NoC) is designed to predict worst-case latency analysis and to predict

the design parameters of large scale architectures using the random forest algorithm.

It was designed to predict results of �ve di�erent NoC architectures which consist of

both 2D (Mesh, Torus, Cmesh) and 3D (Mesh, Torus) architectures. Later the fourth

framework named Knowledgeable Network-on-Chip Accelerator (K-NoC) is presented

to predict two types of NoC architectures one with a �xed delay between the IPs and

another with the accurate dealy and it was build using random forest algorithm.

The results obtained from the frameworks has been compared with the most widely

software simulators like Booksim 2.0 and Orion. The LBF-NoC framework gave an

error rate of 6% to 8% for both direct and indirect topologies. It also provided a

speedup of 1000× for direct topologies and speedup of 5000× for indirect topologies.

By using MRF-NoC all the various NoC con�gurations considered can be simulated

in a single run. ELBA-NoC was able to predict the design parameters of �ve di�erent

architectures with an error rate of 4% to 6% and a minimum speedup 16000× when

compared to the cycle-accurate simulator. later, K-NoC was able to predict both NoC

architectures considered one with �xed delay and another with the accurate delay. It

gave a speedup of 12000× and error rate less than 6% in both the cases.

Keyword: Network-on-Chip, 2D NoC, 3D NoC, Simulation, Performance mod-

elling, Machine Learning, Prediction, Regression, Support Vector Regression, Ensem-

ble Learning, Random Forest, Booksim, Performance; Power, Area, Router, Tra�c

Pattern.
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Chapter 1

Introduction

1.1 Overview

In the last few decades, there is an advancement in deep submicron technology which

have given rise to the incorporation of thousands of Intellectual Property (IP) cores

executing simultaneous processes on a single chip following Moore's law. It further

continued to increase using Instruction Level Parallelism (ILP), using faster clock

frequency and incrementing the number of transistors (Schaller [1997], Hennessy and

Patterson [2011]). One of the remarkable characteristics of transistors which fuels

their rapid growth is an increase in speed and cost decrease as their size is reduced.

International Technology Roadmap for Semiconductors (ITRS) illustrates that the

wiring delay is growing exponentially because of the increased capacitance caused by

narrow channel width and increased crosstalk. Therefore, the wiring and consequently

communication between cores is one of the main limiting factors to be concerned.

To overcome the problem of complexity, System-on-Chip (SoC) was proposed as

an e�cient architecture which was useful for simplifying and improving the perfor-

mance of the chip. In SoCs, interconnect structures between IP cores traditionally use

a shared bus design and a point-to-point design. As the number of cores continues to

rise, neither conventional bus-based nor point-to-point architectures provide scalable

solutions to meet the tight power and performance requirements of on-chip communi-

cation requirements. This problem causes a signi�cant change in the architecture of

microprocessors and therefore the current design approach needs to be changed from

computation-based design to communication-based design. Depending on application

domains and versatility, SoC can be classi�ed into two categories: (1) general-purpose
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multiprocessor SoC (MPSoC) and (2) application-speci�c SoC.

Networks-on-Chip (NoCs) have become the tangible on-chip communication tech-

nique as a viable alternative to design for the present and future generation of SoC

designs (Dally and Towles [2001], Benini and De Micheli [2002], Lee et al. [2006]). Cur-

rently, NoCs are the most suitable interconnection architecture for modern many-core

systems. The NoC provides scalable, �exible and parallel communication technology

for the integration of complex logic cores in SoCs. As NoCs become the de facto

on-chip communication standard, methodologies of performance evaluations emerge

as critical components for validating new architectures of NoCs as well as their Design

Space Exploration (DSE). Many industrial products use the NoC technology, such as

Intel SCC (Vangal et al. [2008]), Polaris (Howard et al. [2010]), Tilera64 (Bell et al.

[2008]).

NoC has become an emerging area of research as it has been shown that NoCs

have the potential to be an e�ective and e�cient way of communicating fabric in

CMP and MPSoC systems. NoC is an essential part of system design especially in

situations where the number of cores on the chip will increase in the near future.

With thousand-core systems planned in the future, higher demand for connectivity

and tra�c will bring more pressure on NoCs and will consume more power. However,

energy e�ciency is already a major concern (Borkar [2007, 2010]) for researchers

and designers, as NoCs consume considerable power in modern CMPs (Hoskote et al.

[2007], Taylor et al. [2002]). Research and development of NoCs, therefore, have a key

role to play in designing future large-scale architectures with hundreds to thousands

of cores.

However, the lack of fast modelling methodologies which can provide a high degree

of accuracy is a major obstacle to research and development of large-scale NoCs.

Analytical models such as those proposed in (Peh and Dally [2001], Ogras et al.

[2010]) are extremely fast, but in many cases can incur signi�cant inaccuracy. Thus,

NoC designers often rely on simulation to test their ideas and make design decisions,

which will provide much more accurate evaluation results and insights into the designs.

Simulation is the de facto evaluation method not only in the analysis of NoC de-

sign but in general computer architecture as well. Simulation can provide much more

accurate evaluation results than analytical simulation while providing relatively low

2



development costs compared to hardware prototyping. It also a key component to

study the system design process. This process helps to handle the increasing modern

many-core processors complexity at di�erent levels. Simulation tool allows to perform

large-scale DSE in software and it estimates performance cost, power, and reliability

of the design, etc. Simulators serve the following purposes: 1) Evaluation of di�erent

hardware designs, without actual systems being implemented. 2) Creating opportu-

nities for testing components or systems that do not exist. 3) Estimating various

metrics like performance, power and area parameters of architecture. 4) Simulators

can produce a large set of performance data through a single execution and debug-

ging before system implementation. Upon detection of an error in a real system, it

typically requires re-booting and re-running of the code.

1.1.1 Network-on-Chip Simulators

There are di�erent evaluation tools and methodologies intended to support NoC re-

search. Each developed tool attempts to cover one or more aspects of NoC DSE

like:

� Con�guration of nodes.

� Con�guration of the NoC like topology, routing algorithms, virtual channels and

others.

� Data communication requirements.

� Benchmarking and analysis of results.

Various NoC simulators were built for NoCs space exploration assessment and

design. (Halavar et al. [2019], Achballah and Saoud [2013]) provides a list of NoC

simulators and tools available for simulating and analyzing di�erent NoC types. In

this section, we explore some of the open-source NoC simulators.

Booksim2.0 (Jiang et al. [2013]) is an open-source, cycle-accurate simulator for

NoCs. It o�ers a wide range of con�gurable NoC parameters such as topology, algo-

rithm routing, �ow control, tra�c and injection rate. It supports 10 topologies such as

mesh, torus, cmesh, fat tree and others. Various routing algorithms for the supported

topologies can be con�gured to direct the packets. Booksim2.0 results are validated
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against the Register Transfer Language (RTL) implementation of the NoC router for

accuracy. Noxim (Catania et al. [2015]) is a NoC simulator developed in SystemC. It

has a command-line interface to parametrize various components of NoC. In Noxim

user can customize network size, bu�er size, packet size, routing algorithm, injection

rate, tra�c pattern and it only supports mesh architecture. NoCTweak (Tran and

Baas [2012]) is similar to Noxim simulator developed using SystemC. It supports only

2D mesh topology with a core and network interface consisting of each node. Topaz

(Abad et al. [2012]) supports con�guration parameters for di�erent components of

the network such as router, topology, and tra�c. Users can integrate this simulator

with full-system simulation tools such as GEM5 (Binkert et al. [2011]) for holistic

performance evaluation and Orion (Kahng et al. [2009]) for power analysis. GAR-

NET (Agarwal et al. [2009a]) is an NoC simulator built into the full system simulator

GEM5. Orion2.0 (Kahng et al. [2009]) includes power and area model for accurate

estimation of the power and area of network interconnection routers. These results

can be used in early phases to obtain e�ective exploration of NoC design space.

Cycle accurate simulator and simulation with synthetic workloads has been consid-

ered in this thesis. Where cycle accuracy provides a level of simulation accuracy which

simulates the target design on a cycle-by-cycle basis. With the same input, all the

state elements in the simulation contain the same values at every clock cycle as those

in a real hardware implementation. Thus, the evaluation results obtained from cycle-

accurate simulations are completely reliable. In NoC research speci�cally in computer

architecture research in general, cycle-accurate simulations are extremely important.

Currently, due to the lack of trace data from large-scale NoC-based systems, the use

of synthetic workloads is practically only the feasible approach for emulating large-

scale NoCs with thousands of nodes. In real applications, synthetic workloads are

those based on mathematical modelling of common tra�c patterns. They are high

in �exibility and easy to create. A set of carefully designed synthetic workloads can

provide fairly thorough coverage of emulated NoCs characteristics.

Stand-alone NoC simulators, which often support much more accurate NoC mod-

els, are quicker compared to full-system simulators, but simulating a large-scale NoC

often takes a signi�cant amount of time (Jiang et al. [2013], Kumar and Talawar

[2018], Angepat et al. [2014], Wang et al. [2012], Guo et al. [2015]). Which can be
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seen in Figure 1.1 it shows the study of simulation time versus architecture sizes

for 2D, 3D and 4D architectures. The x-axis speci�es the topology sizes (n×n) and

y-axis speci�es the simulation time in hours. The experiments were done using Book-

sim simulator which is one of the most widely used simulator in NoC community(Chu

et al. [2017], Van Chu [2015], Van Chu et al. [2015]). The experiment was conducted

for Mesh topology with virtual channel 4, injection rate 0.005 and bu�er depth 8 for

uniform random tra�c pattern. The results show that simulation time varies from 6

seconds to 18 days. Because of this, most of the previous studies are limited to NoCs

with around 100 (10×10) nodes. This becomes very di�cult for designers to analyze,

test the MPSoCs and CMPs for next-generation systems. There is a need for a fast

and accurate evaluation of the performance regarding various con�gurations exploring

the design space of large NoC designs as thousands of cores are targeted in many-

core architectures in the near future (Sanchez and Kozyrakis [2013], Borkar [2007],

Kurian et al. [2010]). It is crucial to improve the simulation speed while maintaining

the simulation accuracy to investigate novel designs with hundreds to thousands of

nodes.
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Figure 1.1: Booksim simulation time for k-ary 2, 3, 4-dimensional Mesh
networks(k=2 to 56)

1.2 Problem Statement and Objectives

Simulation plays a key role in NoCs for analyzing and testing new architectures. To

achieve the best performance vs. cost tradeo�, this is important for both the intercon-
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nect designer as well as the system designer in the earlier stages of design. Software

simulators are too slow for evaluating medium and large scale NoCs. Simulation for

optimization purposes is therefore very di�cult to use and these architectures need

to be validated against discrete synthetic tra�c patterns varying topology sizes. To

investigate novel designs with hundreds to thousands of nodes, improving simulation

speed while maintaining the accuracy of the simulation is crucial. To address the sim-

ulation speed problem, there is a need of fast and accurate model which provides the

performance, power and area parameters of di�erent NoC architectures inconsiderable

amount of time which is done using machine learning algorithms.

1.2.1 Objectives

1. Creating a machine learning framework to predict design parameters of NoCs.

� Comparing e�ciency of various machine learning algorithms against cycle-

accurate simulators and identifying the factors a�ecting prediction of NoC

parameters.

2. Enhancement of machine learning framework to predict performance, area and

power parameters of 3D NoC topologies using Multiprocessing.

� Evaluation of enhanced framework by considering various synthetic tra�c

patterns and standard benchmarks.

3. Machine learning framework to analyse the maximum latency values of both 2D

and 3D NoC architectures as they enter the saturation region.

1.3 Contributions

This thesis makes four contributions by developing a machine learning framework

for evaluation of large scale NoC architectures considering various con�gurations and

architectures.

� A highly con�gurable machine learning framework is created which provides

the complete DSE of 2D and 3D NoCs architectures considering various design

constraints. This is done by comparing various machine learning algorithms and

selecting an algorithm which provided e�cient results.
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� Along with machine learning algorithms, multiprocessing scheme is used to over-

come the issue of simulating NoC architecture multiple times. By using multi-

processing scheme various NoC con�gurations can be executed simultaneously.

� Enhancement of the framework to predict the worst-case latency analysis.

� Creating a uni�ed framework which provides the performance, power and area

parameters of two di�erent scenarios, one with a �xed delay between the IPs

and �oorplan based (accurate) delay between the IPs of NoCs.

1.4 Organization of the Thesis

The rest of the part of the thesis is organized as follows:

� Chapter 2: Literature review: This chapter is structured into two sections.

The �rst section gives a brief introduction of NoCs and the second section gives

the survey of various works which have used machine learning in NoCs.

� Chapter 3: Machine Learning based framework for NoCs: This chap-

ter presents comparision of various machine learning algorithms against cycle-

accurate simulators and identifying the factors a�ecting prediction of NoC pa-

rameters. And, enhancing the machine learning framework using multiprocess-

ing.

� Chapter 4: Ensemble Learning-Based Accelerator: This chapter presents

a machine learning framework to analyse worst case latencies of both 2D and

3D NoC architectures along with design parameters.

� Chapter 5: Floorplanned-Based Learning Framework: This chapter

presents framework which predicts design parameters of two di�erent simula-

tors one with �xed delay and another with �oorplan based delay of 2D Mesh

architecture.

� Chapter 6: Summary and Conclusions: The contributions of this thesis,

along with some important conclusions, outlines for future research directions

have been summarized.
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Chapter 2

Literature Review

This chapter includes two sections. The �rst section gives a basic introduction to

NoCs. The second section provides the various works done using machine learning on

NoCs.

2.1 NoC Basics

NoC has emerged as a highly structured and e�cient On-Chip reliable communica-

tion framework in CMPs and SoCs to achieve high-performance and scalability. It

has appeared as an infrastructure for interconnection to reduce global wire delays

by designing separate, �exible interconnection fabrics to enable high-speed commu-

nication between cores. NoC platforms will allow design productivity to develop as

fast as technology capabilities, and eventually close to the design productivity gap

(Jantsch et al. [2003]). Furthermore, NoCs have inherent redundancy which helps

tolerate failures and communication bottlenecks (Dally and Towles [2001]). In NoC,

data is generally transferred via wormhole switching through virtual channel-based

switches. Data packets are broken down and transmitted in the form of �ow control

units or �its that signify the smallest amount of information in a packet that can be

transmitted in one clock cycle between adjacent switches (Duato et al. [2002]).

A basic NoC architecture consists of various techniques and blocks that are con-

nected to form interconnected architecture for an SoC. The main aspects of the NoC

architecture are:

� Network topology

� Router
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� Flow control

� Routing algorithm

� Network interface

2.1.1 Network Topology

Network topology is the interconnection and organization of a number of nodes and

links in the network. In NoC, the topology relies on many factors, i.e. e�ciency,

scalability, power consumption, design complexity, etc (Moadeli et al. [2009]). In

addition, network topology helps determine the number of nodes within NoC and

determines the length of links between nodes. NoC topology can be divided into two

main groups, i.e., direct and indirect topology (Jantsch et al. [2005]) which can be seen

in Figure 2.1. In direct topology, each router is directly connected to its neighbouring

routers and its local IP core (Cota et al. [2011], Benini and De Micheli [2002]). In

indirect topology, however, not all routers are connected to the IP cores, since some

of these routers are only used to relay packets inside the network. Furthermore, the

number of routers is greater in indirect topology than the IP cores. In comparison,

direct topology, the number of routers and cores will be the same. One of the most

common examples of direct topology are Mesh, Torus, and Cmesh along with Fat-

Tree and Flat�y topologies is one of the most common examples of indirect topology.

These examples of direct and indirect topology are the commercial types most popular

in NoC (Duato et al. [2003]). The most popular commercial types in NoC are these

examples of direct and indirect topology, which will be explained in detail in the

section below.

� Mesh Topology: Mesh topology is the simplest and most e�ective topology for

NoC so far, because of its regular structure with uniform router design (Pande

et al. [2005]). It is used in most recent multi-core chips, such as the Intel SCC

48-core (Howard et al. [2010]), TFlops 80-core (Vangal et al. [2007]), and Tilera

64-core (Bell et al. [2008]). The mesh topology consists of a grid of routers

positioned alongside the routers with interconnecting nodes. Each router is

linked to four neighbouring routers and one heart, except those at the edges.

Thus, the mesh has a radix (number of ports) of �ve. Figure 2.2(a) shows the
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Figure 2.1: Direct and indirect networks (P: Intellectual Property) (Vangal [2007]).

layout for a mesh of (4 ×4) 16 nodes. The mesh topology presumes all links

are of the same length. The area requirements for mesh topologies are easier

to predict since area requirements grow almost linearly with an increase in the

number of cores.

Figure 2.2: (a) Mesh Topology, (b) Torus Topology, (c) Cmesh Topology

� Torus Topology: Torus topology in terms of implementation is more compli-

cated than mesh topology since it uses wrap-around links to connect the routers

at the edges with the other routers at the opposite edges as shown in Figure

2.2(b). A major advantage of torus topology over mesh topology is the decreased

diameter of the network which will reduce by half the maximum number of hops

and it has a larger bisection width.

� Concentrated Mesh Topology: Balfour and Dally introduced the Concen-

trated mesh (Cmesh) topology (Balfour and Dally [2006]) to preserve the ad-

vantages of a mesh with a decreased diameter and it is obtained by increasing
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the degree of the router and the concentration of a larger number of nodes at a

single router which can be observed in Figure 2.2(c). Because of its lower hop

count, it scales better than the 2D Mesh topology and consequently improved

latency. In this work, we use a degree of four. Despite the larger number of

ports, having a quarter of the number of 2D mesh routers leads to signi�cant

power consumption savings (Camacho et al. [2011]).

� Fat Tree Topology: This is indirect network topology and, it depicts a tree,

as the name suggests, as shown in Figure 2.3. There is a root node in Fat-Tree

network topology which expands into the branch nodes, also known as child leaf

nodes. The IPs are connected only to the child leaf nodes. The number of links

to the leaf nodes downwards is the same as the number of links upwards to the

root node (Ansari et al. [2015]).

Figure 2.3: Fat Tree Topology.

� Flattened Butter�y Topology: Flattened Butter�y topology (Flat�y) (Kim

et al. [2007]) is a cost-e�ective topology for use with high-radix routers. The

Flat�y is obtained by combining (or �attening) the routers in each row of a

conventional butter�y topology while retaining the links between the routers.

It reduces the topology's wiring complexity signi�cantly, allowing it to scale

more e�ciently.

2.1.2 Router

The router is the most critical part of any network and is the backbone of NoC

communication. Routers in the centre nodes in NoC have �ve ports: East, West,
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Figure 2.4: Flattened Butter�y Topology (Grot et al. [2009]).

South, North and a Local. The �rst four ports are linked to the neighbouring routers

(East, West, North, and South), and the Local port is linked to the IP core. The

router's main function in NoC is to receive packets and to decide the direction each

packet should take to the destination (Jerger and Peh [2009]). This is determined

by the use of routing protocols already implemented within the router. Figure 2.5

depicts the micro-architecture of the router (Pande et al. [2005]). The router's key

components are virtual channel bu�ers, route compute logic, virtual channel allocator,

switch allocator, and crossbar switch. Bu�ers hold the �it as it enters into the routers.

Router logic would compute the next router port that the �it would have to traverse.

The allocators decide the �its need to be selected and sent through the crossbar switch.

The crossbar switch is responsible for physically transferring the �its from bu�ers to

the output ports.

2.1.3 Flow Control

Flow control de�nes resource allocation for network bu�ers and links. This scheme

regulates the way routers communicate with each other; In particular, it de�nes when

packets or �xed-size parts of packets called �its can be forwarded from one router

to the next in many practical implementations. Flow control thus controls resource

utilization and thus has a major impact on performance. Furthermore, the bu�er

space requirements imposed by a given �ow control scheme directly impact the cost

of each router of implementation and power consumption.
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Figure 2.5: Router Micro-architecture (Pande et al. [2005])

2.1.4 Routing algorithm

A routing algorithm's purpose is to ensure low latency and high throughput in an NoC.

It can be achieved by distributing the tra�c, avoiding hot spots and reducing packet

contention. Signi�cant challenges in implementing routing algorithms are deadlock,

livelock, starvation and distribution of tra�c to achieve an improved quality of service

(QoS). Deadlock occurs when two or more packets in a network waiting to be routed

forward. Livelock occurs when a packet starts to rotate around its destination without

ever reaching it. Starvation occurs when various priorities of lower priority packets are

used, so there is often a higher priority packet that would never reach the destination.

The issues listed in routing algorithms can be solved in the algorithm with certain

techniques.

Di�erent types of routing algorithms which are used in NoC connections that

can be generally classi�ed as follows: Deterministic Routing, Source Routing,

Adaptive Routing.

� Deterministic Routing: The path is determined by the source and destination

alone, in deterministic routing. The path from source to destination is always the

same. The next hop is computed on each intermediate router. To decide on the

next hop it requires only the destination address. One common deterministic

routing scheme for NoC is XY routing (Bjerregaard and Mahadevan [2006],

Agarwal et al. [2009b]). The XY routing occurs when the packets are routed
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along the X-axis than the Y-axis to reach their destination (Zhang et al. [2009]).

� Source Routing: In source routing, the source core determines entire path

to the destination. The path of all intermediate routers can be an ordered list

of addresses. Usually the path is modi�ed in the intermediate router to re�ect

the appropriate routing choice for the next router (Bjerregaard and Mahadevan

[2006]).

� Adaptive Routing: The routing path is decided in adaptive routing on a per

hop basis. The decision on every intermediate router is not entirely based on

the destination address. The tra�c information is also taken into account. This

leads to more complicated router implementations but provides advantages such

as dynamic load balancing (Bjerregaard and Mahadevan [2006], Duato et al.

[2003]).

2.1.5 Network Interface

Network interfaces are modules that connect the routers to IPs. It also provides router

path information based on route computation within the router. It can be split into

two parts: front end and back end. The front portion handles the requests from the

IP core, and it is not aware of the network's existence. The back end component is

directly connected to the network and handles the network protocol, ordering and

reordering packets, bu�ers and helps the router in terms of storage.

2.2 3D Networks-on-Chip

The previous section discussed 2-Dimensional (2D) NoCs. Over the last few years,

2D NoC architectures have been well researched and studied. A 3D NoC, however,

is a very new research area with immense possibilities. Since they o�er an appealing

alternative to conventional 2D NoCs and it o�ers shorter global interconnects, higher

packing density, lower interconnect power consumption and higher performance (Feero

and Pande [2008], Xie et al. [2006], Topol et al. [2006]). A 3D Network-on-Chip is

created by stacking layers of integrated chips and connecting the layers with vertical

link interconnects.
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2.3 Various Machine Learning Methodologies used

in On-Chip Networks

Machine learning is a fast-growing area in computer science and refers to a collection

of pattern recognition techniques that allow algorithms to recognize patterns and

make predictions or decisions that are driven by data. Machine learning has been

classi�ed into three �elds which include supervised learning, unsupervised learning,

and reinforcement learning (Biship [2007]). In this section, various works are explained

which used machine learning algorithms in NoCs.

In Farahnakian et al. [2014] proposed congestion-aware routing algorithm which

was implemented using Q-learning approach for avoiding congested areas in the net-

work.The routing algorithm which was presented divides the network into many clus-

ters that each hold a CQ-table. This table stores information on local and global

congestion about alternate routes for forwarding a packet to the destination cluster.

It mainly concentrates on estimating the tra�c status of the network. Based on infor-

mation from CQ-table, each cluster will select the less congested output channel. The

results showed a signi�cant improvement in performance over traditional methods.

In Jeong et al. [2010] proposed a framework for modelling on-chip router power,

area and performance using nonparametric regression algorithm multivariate adaptive

regression splines (MARS). The framework o�ered a substantial estimate of error

reductions between 85% and 89%, relative to ORION 2.0 (Kahng et al. [2010]) and

parametric models on average.

In Ebrahimi et al. [2012] proposed an adaptable routing algorithm based on mini-

mal and non-minimal paths for on-chip networks to predict the latency of the output

channel using Q-learning. In the learning model, the switches maintain distributed

tables to store the global congestion information form various regions of the network

and thereby to choose a less congested channel to process the output.

In DiTomaso et al. [2015] proposed QORE a liable NoC architectural solution

using converse channel bu�ers. Decision trees algorithms were used to forecast the

tra�c direction of connections to improve the weak connections. QORE showed an

accelerated execution of 1.3× and better throughput by 2.3× on synthetic tra�c.

In Jin et al. [2011] created a hybrid network named duo using di�erent tra�c
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classes to identify similar behaviour in the network by applying a clustering method

which provides a global view of communication behaviour. By using the results a

hybrid network is designed which provided a recon�gurable spanning channels network

allowing higher latency and energy consumption through global coordination for a

large portion of long-distance communication.

In Kumar et al. [2018] a machine learning model was proposed and validated for

various NoC topologies and synthesized on Virtex 5 FPGA. The model predicted all

the synthesis results and design parameters with an accuracy of 98%. The primary

bene�t of using such models is that when there is a change in design requirements,

HDL design is not required every time.

In Farahnakian et al. [2012] proposed a congestion- aware routing algorithm based

on dual reinforcement Q- routing. It collects local and global congestion statistics

and updates according to the tra�c condition. A maximum and minimum threshold

values are set to check the empty bu�er slots at a particular intermission. Results

showed the proposed method was more e�ective than other already existing routing

methods.

In Carloni et al. [2009] proposed an estimation model for delay, power and area of

global interconnects which used in the early phases of system-level exploration. The

model was later integrated into COSI-OCC communication synthesis model (Pinto

et al. [2007]), it was found that it improved the quality the NoC synthesis results.

In Feng et al. [2010] proposed a fault-tolerant de�ection routing algorithm (FTDR)

focused on local & global congestion information which was built using Q-learning

method. It was used to recon�gure the routing table to avoid faults and to reduce

the routing table size. Another optimized routing algorithm was proposed using

hierarchical Q-learning (FTDR-H). Both the algorithms were compared and FTDR-

H switch saved the area around 27%.

In DiTomaso et al. [2017] proposed LESSON (Learning Enabled Sleepy Storage

Links in NoCs) to reduce both static and dynamic power consumption. Decision tree

algorithm was used to predict tra�c �ow and link utilization. By the predictions

made it can provide more bandwidth when required to improve the performance and

it can accurately power-gate links and bu�ers to adjust the power dissipation. Results

showed an improved total network power between 31.7% - 85.6% and improved packet
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latency by up to 14%.

In Qian et al. [2013, 2015] proposed a framework named SVR-NoC which used

the average channel waiting time and the tra�c �ow latency to predict the average

packet latency of both synthetic tra�c & real-time tra�c with an average error less

than 12% and speedup of more than 100×.

In Das et al. [2016] proposed a robust design development methodology to boost

the energy e�ciency of 3D NoC architectures. Online machine learning algorithm

was utilized, combining the bene�ts of small-world networks and machine learning

techniques (Boyan and Moore [2000]). The proposed model achieved a reduction of

35% Energy Delay Product (EDP) over conventional 3D Mesh.

In Park et al. [2017] presented the combination of machine learning and bayesian

optimization for optimizing the electrical and thermal performance of 3D ICs and

systems. This method has also demonstrated the ability to manage a large number of

input parameters with fast convergence and �exibility. The results showed an average

improvement of 4.4%, 31.1% for temperature gradient, and CPU time.

In Yin et al. [2018] demonstrated the e�cacy of applying deep Q-learning to the

design of NoC arbitration policies. Through online learning, the model is learning

to make decisions that maximize long term NoC performance. Results from the

experiments show that the DQL arbitration model is e�ective in reducing packet

latency. While a complete DQL algorithm is not practical to implement directly in a

real NoC.

In Ra�e et al. [2014] presented a new mapping generator which uses metrics like

obustness index, contention factor, and communication cost for unique mapping. The

experimental results showed that, in comparison with the ordinary algorithm, the

proposed algorithm has more than �fteen times performance and more supervision in

�nding the best mappings from numerous generated solutions.

In Shen et al. [2013] proposed Power-aware and Reliable Encoding Schemes Sup-

ported recon�gurable Network-on-Chip (PRESSNoC) for problematic issues, like crosstalk

interferences and wire power consumption, in NoCs. It includes a novel recon�gurable

NoC design, four data encoding strategies and an intelligent REasoning And Learning

(REAL) encoding strategy selection framework. Experiments showed that PRESS-

NoC induces a higher probability towards reduction of crosstalk interferences and
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dynamic power consumption at the same overheads of performance and hardware

resources.

In Tosun [2011] proposed a cluster-based method for application mapping onto

NoC architectures. The proposed method was a superior version of Integer Linear

Programming based methods because in very short time it can decide optimum or

very close to optimum results.

In Dageleh and Jamali [2018] V-CastNet 3-D mapping method was proposed for

graphs with large tasks for reducing power consumption and delay in NoCs. Initially

clustered nodes of task graphs based on communication weights were created. Later

CastNet 2-D method was used to map each cluster on a 2-D layer. As a result it chose

the best network arrangement. V-CastNet as compared with the Tabu search-based

mapping method it was able to reduce mapping execution time signi�cantly.

In Aravindhan et al. [2016] presented a new cluster mapping method which was

used to reduce communication cost and cut degree. The performace and e�ciency of

the proposed method was checked with the experiments carried out in NoC for various

benchmarks. Experimental results showed a 3.8% reduction in communication costs

for MPEG4, and a 3.0% reduction in communication costs for the PIP benchmark.

In Farahnakian et al. [2011] presented a congestion-aware routing algorithm named

QCA: Q-learning based Congestion-aware Algorithm for NoCs. It mainly concen-

trated on estimating the tra�c status of the network. Routers maintained congestion

information which was updated by learning packets. This routing table information

was used to pick a less congested path, and the packets forwarded in that direction.

In Juan and Marculescu [2012] author used semi-supervised reinforcement learning

based approach was prposed for performing dynamic voltage and frequency scaling

(DVFS). It was evaluted for controlling cores and uncores in synergy for NoC-based

CMPs. Experimental results showed an 11% reduction on the program execution

time.

Most of the existing works have considered only Mesh topology or any single

topology for their works and considered individual parts of NoCs like local, global

congestion, routing tables, the power consumption of di�erent router components,

latencies and experiments have been done by considering the architecture sizes less

than 10×10 which is 100 nodes.
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2.4 On-Chip simulations using FPGAs

Other than machine learning approaches there are other attempts have been made to

address the simulation speed problem using Field-Programmable Gate Arrays (FP-

GAs) (Genko et al. [2005], Wolkotte et al. [2007], Krasteva et al. [2008], Lotlikar et al.

[2011], Papamichael [2011], Papamichael et al. [2011], Wang et al. [2012], Drewes et al.

[2017], Kamali and Hessabi [2016], Kamali et al. [2017]). But these NoC emulators

su�er from the problem of scalability. Because of the FPGA logic and memory con-

straints they can not scale up to large NoCs. A recent study in Wang et al. [2012]

has shown that even an extremely large FPGA doesn't have su�cient logic blocks to

�t around 150 nodes in a moderately complex NoC design.

2.5 Machine Learning based NoC simulations in this

Thesis

The main goal of this thesis is to create frameworks which can be used to predict

the design space exploration of large-scale architectures, hence it becomes an very

essential tool for the chip designers. It helps them in understanding the impact of

various design parameters in the early stage thus reducing the actual development cost

and simulation time. By using the proposed framework, chip designer can explore and

analyze various NoC architectures like direct topologies (2D Mesh, Torus, Cmesh, 3D

Mesh and Torus), indirect topologies (Fat-Tree, Flat�y) with various con�guration

parameters like virtual channels, bu�er depth, injection rates and tra�c pattern.

This thesis considers synthetic tra�c patterns for conducting the experiments as

they are the ones focused on mathematical modelling in real applications of common

tra�c patterns viz,. uniform, tornado, bitrev, bitcom, shu�e, transpose (Dally and

Towles [2004]). These tra�c patterns have a high degree of �exibility and easy to

create. A collection of carefully designed synthetic workloads may provide reasonably

detailed coverage of emulated NoCs characteristics. Other than synthetic workloads,

there are trace-driven workloads which cannot be used in this thesis because of the

lack of trace data from large-scale NoC-based systems, the use of synthetic workloads

is practically the only feasible approach for emulating large-scale NoCs with thousands

of nodes.
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2.6 Summary

This chapter provides the basic concepts of NoCs and also reviews the e�orts that have

been made over the years on NoCs using machine learning. It also gives insight into

various works done using FPGAs on NoCs. Later it provides the various architectures

and con�gurations considered in this thesis and speci�es why synthetic tra�c patterns

were considered for experimentation purpose.
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Chapter 3

Machine Learning based Framework

for NoCs

In this chapter, a machine learning-based framework named Learning-Based Frame-

work (LBF-NoC) is presented to predict performance, power and area parameters of

direct (Mesh, Torus, Cmesh) and indirect (Fat-Tree, Flat�y) NoC architectures. It is

designed using supervised machine learning regression algorithms. Various machine

learning algorithms were explored to predict the design parameters of NoC architec-

tures and selecting the algorithm which provided e�cient results. Later the frame-

work is extended using multiprocessing scheme to overcome the issue of simulating

NoC architectures `n' number of times.

3.1 Learning-Based Framework (LBF-NoC)

LBF-NoC is a machine learning (ML) framework proposed by considering six synthetic

tra�c patterns viz, uniform, tornado, transpose, shu�e, bitrev and bitcom. It is

designed to predict di�erent performance, power and area parameters of �ve di�erent

NoC architectures. Figure 3.1 shows the overview of LBF-NoC where it has been

divided into three phases pre-processing phase, training phase and testing phase.

3.1.1 Pre-processing phase

The Booksim2.0 (Jiang [(accessed 2012]) cycle-accurate simulator is used to generate

reference data over various NoC con�gurations. Booksim provides the performance,

power and area for each architecture. Figure 3.1 shows how the various con�gurations

are provided to Booksim simulator. Results are accumulated from Booksim simula-
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Figure 3.1: Overview of the Learning Based Framework

tor for di�erent architectures considering various con�gurations as shown in Table

3.1. Among all the parameters topology sizes, injection rates, virtual channels (VCs),

bu�er depth, & tra�c patterns have been considered as input parameters for exper-

iments. Performance parameters: average network latency, average packet latency,

average �it latency, average hop count, the power consumption of router, the total

power of NoC, router area, and total area are considered as output parameters as

shown in Table 3.2.

A Data for Direct topologies

Raw results from Booksim simulator are partitioned as test and train data for LBF-

NoC. For uniform and tornado tra�c patterns 32% of data was considered as training
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Table 3.1: Con�guration parameters for creating datasets

Input Parameters Description Values

Network

topology
Layout and connectivity of the nodes in

the network is NoC topology.

Mesh, Torus & Cmesh (Direct)

Fat-Tree & Flat�y (Indirect)

k Topology radix
2 to 45 for Mesh, Torus, & Flat�y

2 to 30 for Cmesh, Fat-Tree

n Network dimension 2

c Concentration (No. of PEs per router) 4

Router

num_vcs Total number of Virtual Channel per port 2, 3, 4, 5

vc_buf_size Bu�er size per Virtual Channel 8, 10

routing_function The name of the routing function Deterministic XY routing

Simulation parameters

injection rates
It is the rate at which packets are

inserted into the network by a node.
0.001, 0.0015, 0.002,.....0.1

tra�c Patterns Type of tra�c in network
uniform, tornado, transpose,

bitrev, bitcom & shu�e

sample_period Total Number of measurements cycles 100000cycles

data over topology sizes (2×2 to 17×17). Remaining 68% of the data was used as

test data and to validate LBF-NoC over topology sizes (18×18 to 45×45) for Mesh,&

Torus architectures. For Cmesh topology (2×2 to 10×10) was considered as training

data and (11×11 to 30×30) was considered as testing data.

For shu�e, transpose, bitrev, and bitcom dataset consisting of data associated

with injection rates ranging from 0.001, 0.0015, 0.002 till 0.009 have been considered

(any 12 injection rates can be used for training and the remaining 5 can be used for

testing).

B Data for Indirect topologies

For Fat-Tree the data from k=1 to 15 is considered as training and data from k=16 to

30 is considered for testing for uniform, tornado and neighbor tra�c patterns. Flat�y

topology the architecture size from k=2 to 24 is considered as training data and k=26

to 50 is considered as testing data for uniform, tornado and neighbor tra�c patterns.
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Table 3.2: Di�erent output features considered for LBF-NoC.

Output Features

Performance Parameters Power Parameters Area Parameters

Average Network Latency(ANL) Crossbar power(CBP) Router Area(RA)

Average Packet Latency(APL) Switch arbiter power(TP) Total Area(TA)

Average Flit Latency(AFL) Virtual Channel arbiter power(VCAP)

Average Hop Count(AHC) Bu�er power(BP)

Router power(RP)

Total power(TP)

For shu�e, transpose and bitrev dataset consisting of data associated with di�er-

ent injection rates among all the injection rates 50% was considered as training and

remaining 50% data is considered as testing for both Fat-Tree and Flat�y architec-

tures.

3.1.2 Training phase

In this phase, various ML regression algorithms are trained using the training dataset

which is generated in the previous phase. As speci�ed earlier �ve di�erent input fea-

tures were considered viz, architecture size, injection rates, virtual channels, bu�er_size

and tra�c patterns. Table 3.2 lists the di�erent output features considered. Di�erent

regression algorithms like Arti�cial Neural Network (ANN) with identity and relu ac-

tivation functions, di�erent generalized linear regression algorithms, i.e., lasso, lasso-

lars, larsCV, bayesian-ridge, linear, ridge, elastic-net and Support Vector Regression

(SVR) with linear, Radial Basis Function (RBF), polynomial kernels are used to train

the model for each parameter separately for direct and indirect topologies with var-

ious tra�c patterns. All the trained algorithms are tuned until it provides the least

error.

Mean Absolute Percentage Error (MAPE) is used to calculate the error rate in

percentage and its complement has been considered as the accuracy. Figure 3.2 shows

the range of accuracies produced by the regression algorithms. Where each algorithm

was trained for all the architectures considered with various synthetic tra�c patterns.

Few algorithms like ANN and linear regression were able to predict the performance

parameters but failed to predict all the output features considered. The accuracy
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Figure 3.2: Di�erent algorithms tested for creating Learning Based Framework.
[GLRA: generalized linear regression algorithms]

of each algorithm was tuned until it provided better results. The algorithm which

provided accuracy more than 85% for all the output features was considered. Among

all the algorithms SVR provided accuracy more than 90% for all the parameters con-

sidering di�erent synthetic tra�c patterns. Remaining algorithms provided accuracy

in the range 40% to 75%.

Hence LBF-NoC is built using SVR algorithm (Cristianini and Shawe-Taylor

[2000], Smola and Schölkopf [2004]) with both variants of SVR i.e, ε-SVR and υ-

SVR using linear, RBF and polynomial kernels have been used and among those the

least error provided kernel was considered.

Support Vector Machine (SVM) is one of the supervised learning methods

which can be used to perform classi�cation and regression. The regression form of

SVM is named as Support Vector Regression. Vapnik developed the theory of SVR

in 1997. It is known as one of the essential techniques in terms of solving a regression

problem (Cristianini and Shawe-Taylor [2000], Smola and Schölkopf [2004]).

The structure of SVR is similar to the SVM. In contrast, the SVR tries to �t a

line or curve to the data by minimizing the cost function. The strategy of SVR is to

construct a hyperplane in high-dimensional space with consideration of constraints to

create a boundary for data points with upper and lower bounds as shown in Figure
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3.3 (Smola and Schölkopf [2004]). The distance between the hyperplane and upper

bound or lower bound is measured by ε. One advantage of using this function is that

it can tolerate noise.

Figure 3.3: ε insensitive loss function for a linear SVM.

SVR approximates a linear function g(x) in the following form:

g(x) = aTx+ b (3.1)

where a and b are the weight vector and bias term, respectively. (3.1) can be con-

strained as:

minimize
1

2
‖a‖2 + C ×

l∑
i=1

(ξ+ + ξ−) (3.2)

Figure 3.4: Mapping non-linear model into the feature space.

where ξ+ and ξ− are the two nonzero slack variables in either directions. ε �ts the

data between the boundary and constant C ≥ 0 optimizes (3.1). The data samples
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that are outside of the restricted zone within the distance of slack variables are the

support vectors. The minimization function (3.1) is subject to:

y − (aTx+ b) ≤ ε+ ξ+

(aTx+ b)− y ≤ ε+ ξ−

ξ+, ξ− ≥ 0

(3.3)

Standard dualization can solve the constrained optimization problem (3.1) and

(3.2). Dual formulation reformulates the optimization function using the Lagrange

multipliers with the help of a double set of parameters. After a set of steps explained in

(Smola and Schölkopf [2004]), dual optimization problem yields the following solution:

f(x) =
n∑

i=1

(α− α∗)K(di, d) + b (3.4)

where α and α∗ are Lagrange multipliers; and the kernel function is represented

by K(di, d).

The SVR method is also able to solve non-linear problems. Selecting an appro-

priate non-linear function with the Lagrange dual formulation provides an excellent

solution in non-linear models. Figure 3.4 shows the mapping of the non-linear regres-

sion model in a high-dimensional feature space (Mahdevari et al. [2014]). Value of ε

controls the data points in ε-insensitive margin. Fewer support vectors are present

when ε value is large. Complexity of the model can be adjusted using C. When C

increases the complexity of model reduces and vice-verse (Burges [1998], Kuhn and

Johnson [2013]).

Hence, a proper set of parameters can lead to a suitable SVR solution that can be

the best model for the dataset used. Once the parameters are appropriately selected,

it can be expected for a better generalization performance from the constructed SVR

model.

In non-linear case a is not speci�ed explicitly. The functions k(di , d ) needs to

satisfy the Mercer's condition (Smola and Schölkopf [2004]).

The kernel functions of nonlinear regression models are (Chapelle and Vapnik

[2000]).

Linear : K(di, d) = dTi x
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Polynomial : K(di, d) = (φ(di ∗ d) + 1)x

Radial Basis Function :K(di, d) = exp(−γ‖(di − d)‖2 )

Another method of using SVR is by applying υ-SVR. ε-SVR and υ-SVR handle

margin control and penalty parameters di�erently.

(Schölkopf et al. [1998]) put-forward an SVR algorithm, called υ−SV R, adjusting

the parameter epsilon automatically. υ − SV in υ − SV R controls the number of

support vectors in the solution based on the samples in the dataset. In ε-SVR, ε

stands for insensitive loss function, which needs to be set before the training phase.

Guessing the value of ε in advance is the major drawback of this scheme; hence,

υ − SV R is used to handle the situation (Schölkopf et al. [2000]).

As speci�ed above, SVR has two variants ε-SVR and υ-SVR where each can use

three kernels. Hence, a generalized SVR model was created which provided the infor-

mation regarding the kernel and the hyper-parameter values for each output feature

and the model gave the values and kernels where the error rate was less than 5% to 6%.

The model was tested with various combinations of (ε, C, γ) and (υ, C, γ) for every

output features. The hyper-parameters which provided the least error was selected.

The overview of the generalized SVR model is shown in Figure 3.5. This complete

process was done while collecting the data. Hence, no extra time was consumed for

getting the hyper-parameter values for every output features.

Mean Square Error (MSE) was used to evaluate the performance of LBF-NoC

against Booksim results. MSE is given by:

MSE=
1

l

∑l
i=1(ai − a∗i )2

Where ai is the actual value, a∗i is the predicted value and 'l ' is the number of data

points.

3.1.3 Testing phase

The decision will be made in this phase based on the knowledge gathered during the

training phase. The output of the training phase is SVR model with the least error.

This model is used to predict the NoC output features and validated against the

Booksim2.0 simulator.
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Figure 3.5: Generalized SVR Model

3.1.4 Experimental results

A Validation of Analytical Model for Performance Parameters

The Initial set of experiments on the Booksim simulator were conducted to analyze

the dependency of output performance parameters v/s architecture size. Simulation

results showed that there was a linear relationship between output performance pa-

rameters and the architecture size, which is also mentioned in Jiang et al. [2013].

Hence, we used curve �tting algorithms namely Least Squares Solution methods to

get linear equations Arlinghaus [1994].

Analytical models were derived for each performance parameter viz, Average Net-

work Latency (ANL), Average Packet Latency (APL), Average Flit Latency (AFL),

Average Hop Count (AHC). Table 3.3 shows the con�guration considered for the ex-

periment and the linear curve expressions derived. The relationship between perfor-

mance parameters, like ANL, APL, AFL, and AHC against topology size was studied.

Experiment results show that these parameters depend linearly on the topology size

(Figure 3.6).

LBF-NoC extends the simple analytical model to accept multiple input parame-

ters (topology size, virtual size, injection rates, tra�c pattern) and output multiple
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Table 3.3: Con�guration and results of Analytical Models

Con�guration Parameters

Topology Mesh

Topology size 2X2 to 50X50

VC 4

Injection rate 0.002

Tra�c pattern Uniform Random

Analytical Models

Performance parameters Learning Curve

ANL 4.87+2.74*(topology size)

APL 4.50+2.67*(topology size)

AFC 5.35+2.71*(topology size)

AHC 0.88+0.67*(topology size)

simulation results which consist of performance, power, and area parameters.
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Figure 3.6: Correlation study of Performance parameters between Booksim
simulator vs Analytical model for Mesh topology, where (a) Average Network
Latency, (b) Average Hop count with injection rate 0.02, VC=4 respectively.

B LBF-NoC for Direct Topologies

LBF-NoC sub-models were created for each output parameter and for each tra�c

patterns. SVR ML algorithm was used for experiments. For performance parameters

prediction linear and RBF kernels worked e�ciently. For power, area parameters

prediction RBF and polynomial kernels worked e�ciently. All the output parameter

values have been normalized using logarithmic functions.

32



Performance parameters comparison was done with six tra�c patterns as shown

in Figures 3.7, 3.8(a), 3.9, and 3.10 (a). Results have been shown for uniform and

transpose tra�c pattern only. The results for the tornado tra�c pattern are similar

to the uniform tra�c results. The results for bitcom, bitrev, shu�e are similar to the

transpose tra�c results.

Figure 3.7(a) shows the comparison of ANL for Mesh, Torus and Cmesh topologies

against Booksim. In the �gure, the x-axis represents the topology size and the y-

axis represents normalized network latency. LBF-NoC provided the highest accuracy

of 96.7% for Mesh, 99.26% for Torus, and 97.8% for Cmesh topologies. Table 3.4

presents the MSEs of linear and RBF variants of ε and υ-SVRs for performance

parameters. Table 3.5 presents the algorithm with accuracy which worked better in

terms of accuracy for performance parameters. Figure 3.7(b), 3.8(a), 3.9 and 3.10(a)

depicts the similar results for di�erent performance parameters.
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Figure 3.7: Comparison of LBF-NoC with simulation results for Mesh-based
topologies with Uniform tra�c pattern (a) Average Network Latency, (b) Average

Packet Latency

X-axis of 3.8(b) and 3.10(b) represents three topologies namely Mesh, Torus and

Cmesh. Y-axis represents average error rate respectively. These �gures explain the

average error rates of Mesh, Torus and Cmesh topologies against ANL, APL, and

AHC.

Figure 3.11(a) 3.12(a) shows the comparison of area parameters obtained from

LBF-NoC against Booksim. The results are shown for sizes 20×20, 30×30 and 40×40
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Figure 3.8: Comparison of LBF-NoC with simulation results for Mesh-based
topologies with Uniform tra�c pattern (a) Average hop count, (b)Average Error
rates of topologies considered with injection rate 0.002, VC=4 respectively.
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Figure 3.9: Comparison of LBF-NoC with simulation results for Mesh-based
topologies with transpose tra�c pattern (a) Average Network Latency, (b) Average

Packet Latency

the results for remaining architecture sizes are similar. Experiments have been con-

ducted for all the area parameters and results of Router area and total area for each

topology are shown and explained.

The accuracy of the router area and total area for Mesh topology is 99.92%, 98.4%

respectively. For Torus topology the accuracies are 99.13% and 99.82% respectively.
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Figure 3.10: Comparison of LBF-NoC with simulation results for Mesh-based
topologies with transpose tra�c pattern (a) Average hop count, (b)Average error

rates of topologies considered with injection rate 0.003, VC=4 respectively.

Similarly, the accuracy for Cmesh topology is 98.41% and 90.2% respectively. Figure

3.13(a) shows the error rates of LBF-NoC for router area and total area.
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Figure 3.11: Comparison of LBF-NoC with Booksim for Router area and Router
power for 20×20, 30×30 and 40×40.

Similarly, experiments have been done for all the power parameters and results

of router power and total power have been shown and explained. Figure 3.11(b),

3.12(b) shows the comparison of LBF-NoC with Booksim simulator using uniform
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Table 3.4: MSE of Performance parameters for Mesh-based topologies with di�erent
tra�c patterns

Uniform Tra�c Pattern

Algorithms used

in LBF-NoC

Mesh Torus Cmesh

ANL APL AFL AHC ANL APL AFL AHC ANL APL AFL AHC

ε− SV R(Linear) 0.037 0.073 0.076 0.06 0.0074 0.007 0.007 0.013 0.022 0.022 0.023 0.013

ε− SV R(RBF) 0.078 0.072 0.074 0.003 0.015 0.015 0.012 0.01 0.036 0.0365 0.034 0.012

υ − SV R(Linear) 0.033 0.18 0.18 0.04 0.016 0.016 0.014 0.0002 0.025 0.0251 0.026 0.0012

υ − SV R(RBF) 0.042 0.15 0.158 0.02 0.016 0.0163 0.016 0.001 0.030 0.036 0.03 0.015

Tornado Tra�c Pattern

ε− SV R(Linear) 0.2 0.061 0.2 0.066 0.013 0.012 0.013 0.003 0.100 0.100 0.010 0.06

ε− SV R(RBF) 0.05 0.09 0.05 0.021 0.013 0.017 0.018 0.010 0.031 0.030 0.032 0.01

υ − SV R(Linear) 0.12 0.10 0.28 0.085 0.013 0.012 0.0125 0.002 0.21 0.22 0.23 0.03

υ − SV R(RBF) 0.08 0.04 0.08 0.032 0.0077 0.0064 0.016 0.0070 0.3 0.31 0.35 0.010

Transpose Tra�c Pattern

ε− SV R(Linear) 0.098 0.087 0.087 0.006 0.016 0.016 0.016 0.054 0.162 0.162 0.160 0.040

ε− SV R(RBF) 0.045 0.048 0.054 0.005 0.0139 0.013 0.013 0.002 0.075 0.075 0.075 0.040

υ − SV R(Linear) 0.099 0.086 0.085 0.006 0.030 0.030 0.0305 0.001 0.153 0.153 0.151 0.007

υ − SV R(RBF) 0.068 0.043 0.043 0.004 0.030 0.03 0.03 0.001 0.020 0.020 0.021 0.001

Shu�e Tra�c Pattern

ε− SV R(Linear) 0.002 0.003 0.008 0.0046 0.0076 0.0076 0.0077 0.0024 0.003 0.003 0.003 0.005

ε− SV R(RBF) 0.002 0.003 0.001 0.004 0.004 0.004 0.0041 0.0058 0.002 0.002 0.002 0.003

υ − SV R(Linear) 0.003 0.005 0.001 0.001 0.0043 0.0043 0.004 0.001 0.001 0.001 0.001 0.001

υ − SV R(RBF) 0.003 0.004 0.020 0.064 0.0042 0.0042 0.0042 0.0005 0.004 0.004 0.004 0.004

Bitrev Tra�c Pattern

ε− SV R(Linear) 0.107 0.093 0.107 0.008 0.008 0.008 0.008 0.003 0.13 0.1299 0.1296 0.0061

ε− SV R(RBF) 0.152 0.136 0.152 0.008 0.01 0.009 0.009 0.002 0.010 0.0103 0.0103 0.0064

υ − SV R(Linear) 0.106 0.093 0.106 0.007 0.007 0.007 0.007 0.001 0.167 0.166 0.167 0.006

υ − SV R(RBF) 0.046 0.046 0.046 0.005 0.005 0.005 0.005 0.001 0.007 0.007 0.007 0.002

Bitcom Tra�c Pattern

ε− SV R(Linear) 0.015 0.003 0.023 0.052 � � � 0.1421 0.007 0.007 0.007 0.006

ε− SV R(RBF) 0.004 0.003 0.052 0.070 0.0086 0.0086 0.0086 0.01 0.006 0.006 0.006 0.004

υ − SV R(Linear) 0.033 0.003 0.005 0.001 � � � 0.1549 0.009 0.009 0.009 0.0002

υ − SV R(RBF) 0.038 0.014 0.003 0.005 0.0839 0.0839 0.084 0.0096 0.007 0.007 0.007 0.001

tra�c pattern for the router power, total power of Mesh, Torus and Cmesh topolo-

gies. The accuracy of router power for mesh topology is 99.90%, 99.74% accuracy for

Torus topology and 99.89% accuracy for Cmesh topology. Similarly, Cmesh topology

accuracy is 99.70%. The error rates of LBF-NoC for router power and total power

are shown in Figure 3.13(b). Table 3.6 shows the MSEs of remaining tra�c patterns

where it consists MSEs of both router power and total power. The accuracy of router

power and total power for all the tra�c patterns is more than 90%.

An LBF-NoC framework has been compared with SVR-NoC (Qian et al. [2016])
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Table 3.5: Algorithm with Highest Accuracy for six tra�c patterns

Tra�c Patterns

NoC Topologies

Mesh Torus Cmesh

Algorithm Accuracy Algorithm Accuracy Algorithm Accuracy

Uniform ε− SV R(RBF) 94.33 ε− SV R(Linear) 99.14 ε− SV R(Linear) 98

Tornado ε− SV R(RBF) 94.73 ε− SV R(Linear) 98.98 ε− SV R(RBF) 97.43

Transpose υ − SV R(RBF) 96.05 υ − SV R(RBF) 97.73 υ − SV R(RBF) 98.45

Shu�e ε− SV R(RBF) 99 ε− SV R(RBF) 99.67 υ − SV R(Linear) 99.8

Bitrev υ − SV R(RBF) 96.43 υ − SV R(RBF) 98.4 υ − SV R(RBF) 99.43

Bitcom ε− SV R(RBF) 96.78 υ − SV R(RBF) 93.46 υ − SV R(RBF) 99.45
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Figure 3.12: Comparison of LBF-NoC with Booksim for Total area and Total power
for 20×20, 30×30 and 40×40.

Table 3.6: MSE of Power parameters for Synthetic tra�c pattern

MSE of Power parameters for Synthetic tra�c pattern

Tra�c

Patterns

Mesh Torus Cmesh

Router power Total power Router power Total power Router power Total power

Tornado 0.018 0.024 0.091 0.11 0.08 0.14

Transpose 0.007 0.003 0.05 0.006 0.0075 0.002

Shu�e 0.008 0.012 0.01 0.0051 0.012 0.023

Bitrev 0.069 0.021 0.007 0.008 0.018 0.045

Bitcom 0.008 0.003 0.010 0.006 0.018 0.017

and Booksim2.0 (Jiang et al. [2013]). Both the works uses ML approaches. Results

were compared with SVR-NoC and LBF-NoC framework. The SVR-NoC framework

gave an average error rate of 12.5% for bitrev and bitcom tra�c patterns whereas
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Figure 3.13: Error rates of LBF-NoC for router area, total area, router power and
total power where MRA: Mesh Router Area TRA: Torus Router Area CMRA:

Cmesh Router Area,MTA: Mesh Total Area TTA: Torus Total Area CMTA: Cmesh
Total Area MRP: Mesh Router Power TRP: Torus Router Power CMRP: Cmesh
Router Power MTP: Mesh Total Power TTP: Torus Total Power CMTP: Cmesh

Total Power

LBF-NoC framework provided an average error rate of 1.25%. For tornado tra�c

pattern SVR-NoC gave 10.76% average error rate whereas LBF-NoC provided an

average error rate of 0.5%. SVR-NoC framework targeted only Mesh topology for the

experiments. Whereas LBF-NoC targets direct and indirect topologies to experiment

and analyse the results.

Comparison of the execution time of the LBF-NoC framework and Booksim sim-

ulator execution time is made. Timing comparison made for the testing dataset

provided for the LBF-NoC framework. The framework has targeted Mesh, Torus and

Cmesh topologies with various topology sizes, tra�c patterns, injection rates, and

virtual channels. Table 3.7 shows the timing comparison of the simulator for Mesh,

Torus, and Cmesh with LBF-NoC framework. Total time taken to complete the ex-

ecution of all architectural sizes with di�erent tra�c patterns for Mesh topology was

8.31∗106 in seconds, which is 96.13 days for the simulator. Whereas LBF-NoC pro-

vided results in 321.52 seconds, i.e., 5.12 minutes to predict all parameters of NoC. For

Torus topology simulator took 2.72∗106 seconds, which is 31.47 days. LBF-NoC took

1234.92 seconds which is 20.58 minutes. For Cmesh simulator took 1.98∗106 seconds,

which is 22.97 in days. LBF-NoC took 470.25 seconds, 7.84 in minutes. A minimum

speedup of 1000× to 1500× speedup achieved over cycle-accurate simulator.
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A similar comparison was made with SVR-NoC framework where it takes 7 seconds

to predict the latency values of 8×8 Mesh architecture. The LBF-NoC framework

provided the same latency value in 0.3 seconds. For this experiment, LBF-NoC is

23.3× faster than SVR-NoC.

Table 3.7: Timing Comparison of Simulation results with LBF-NoC framework for
di�erent Synthetic Tra�c patterns

Timing Comparison of Simulation results with LBF-NoC framework for di�erent Synthetic tra�c patterns

Tra�c

Patterns

Simulation Timings

for Mesh

LBF-NoC

Timings

Simulation Timings

for Torus

LBF-NoC

Timings

Simulation Timings

for Cmesh

LBF-NoC

Timings

In Seconds In Hours In Seconds In Seconds In Hours In Seconds In Seconds In Hours In Seconds

Uniform 5173049
1436.96

[59.87days]
10.22

767918.45

[8.89days]
213.31 165.15 851560

236.54

[9.86days]
96.56

Tornado 3113207
864.78

[36.03days]
245.41

1932159

[22.36days]
536.71 800.96 1088992

302.5

[12.6days]
106.32

Transpose 4875.84 1.35 5.93 7859 2.18 93.97 11342.96 3.15 64.53

Shu�e 7156.28 1.99 28.14 4716 1.31 54.08 5145.05 1.43 53.08

Bitrev 3629.91 1.01 14.13 2583.23 0.72 65.33 13001.80 3.61 69.09

Bitcom 3878.49 1.08 8.69 3710.43 1.03 55.43 14157.8 3.93 80.67

C LBF-NoC for Indirect Topologies

LBF-NoC sub-models were created for distinct tra�c patterns. For all the output fea-

tures both variants of ε-SVR and υ-SVR with polynomial and RBF kernels performed

e�ciently while predicting the parameters for indirect topologies.

Performance parameters comparison for Fat-Tree and Flat�y topologies have been

made considering six di�erent tra�c patterns. Results of ANL for uniform and trans-

pose tra�c patterns are shown (the results for remaining tra�c patterns are similar)

hence, the MSE values have been shown for each tra�c pattern separately in Table

3.8.

Figure 3.14 illustrates the comparison of ANL to uniform tra�c pattern for Fat-

Tree and Flat�y topologies against Booksim. In the �gure, the x-axis represents

the topology size and the y-axis represents normalized network latency. For Fat-Tree,

LBF-NoC produced 96.9% accuracy and 98.7% for Flat�y topology. Figure 3.15 shows

the comparison of ANL for Fat-Tree and Flat�y topologies against Booksim for bitrev

tra�c pattern. LBF-NoC provided 98.3% accuracy for Fat-Tree and 97.2% for Flat�y

topology respectively. Table 3.8 shows the MSEs of di�erent tra�c patterns where it
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Figure 3.14: Average Network Latency comparison of LBF-NoC with simulation
results for Indirect topologies with Uniform tra�c pattern (a) Fat-Tree Topology,

(b) Flat�y Topology

consists MSE of latencies, router power and total power.
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Figure 3.15: Average Network Latency comparison of LBF-NoC with simulation
results for Indirect topologies with Bitrev tra�c pattern (a) Fat-Tree Topology, (b)

Flat�y Topology

Figure 3.16(a) & 3.17(a) shows the area parameters obtained from LBF-NoC

against Booksim. The results are shown for where k=15, 20, 25 for Fat-Tree & k=30,

40, 50 for Flat�y the results for remaining architecture sizes are similar.

For Fat-Tree topology the accuracy of the router area and total area is 98.72%,

97.34% respectively. The accuracy is 96.86% and 95.67% for �at�y topology, respec-

tively.

Figure 3.16(b) & 3.17(b) shows the comparison of LBF-NoC with Booksim sim-

ulator using uniform tra�c pattern for the router and total power of Fat-tree and
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Figure 3.16: Comparison of LBF-NoC with Booksim for Router area and Router
power for Fat-Tree and Flat�y topologies(where k=15, 20, 25 for Fat-Tree & k=30,

40, 50 for Flat�y).

Flat�y topologies.
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Figure 3.17: Comparison of LBF-NoC with Booksim for Total area and Total power
for Fat-Tree and Flat�y topologies(where k=15,20,25 for Fat-Tree & k=30,40,50 for

Flat�y).

The router power accuracy for Fat-Tree topology is 98.6%, the accuracy for Flat�y

topology is 97.2%. The total power accuracy for Fat-tree topology is 96.3%, the

accuracy for Flat�y topology is 97.4%.

Table 3.8 shows the MSEs of both router power and total power for remaining

tra�c patterns. For all the tra�c patterns the accuracy of router power and total

power is more than 94%.

Comparison of the execution time of the LBF-NoC framework and Booksim sim-
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Table 3.8: MSEs of Di�erent Performance and Power parameters for Synthetic
tra�c patterns

MSE of Performance and Power parameters for Synthetic tra�c pattern

Tra�c

Patterns

Fattree Flat�y

Performance Parameters Power parameters Performance Parameters Power parameters

ANL APL AFL SP TP ANL APL AFL SP TP

Uniform 0.0411 0.0039 0.0044 0.0086 0.0093 0.0134 0.024 0.0121 0.0092 0.0076

Tornado 0.021 0.024 0.026 0.025 0.0058 0.0089 0.0094 0.0082 0.013 0.0028

Neighbor 0.012 0.0135 0.016 0.0061 0.0084 0.0091 0.0099 0.014 0.0073 0.0054

Bitrev 0.0037 0.0028 0.0021 0.031 0.047 0.01 0.0096 0.012 0.0081 0.0033

Transpose 0.0053 0.0061 0.0058 0.0073 0.0066 0.0012 0.0024 0.0016 0.029 0.067

Shu�e 0.0077 0.0062 0.0068 0.0027 0.0094 0.005 0.0064 0.0072 0.0011 0.032

ulator execution time is made. Timing comparison made for the testing dataset

provided for the LBF-NoC framework. The framework has targeted Fat-Tree and

Flat�y topologies with various topology sizes, tra�c patterns, injection rates, and

virtual channels. Table 3.9 shows the timing comparison of the simulator for Fat-Tree

and Flat�y With LBF-NoC framework for individual tra�c pattern. Total time is

taken to complete the execution of all architectural sizes with di�erent tra�c patterns

Fat-Tree topology was 1.66∗108 in seconds for the simulator. Whereas LBF-NoC

provided results in 39195.2 seconds, i.e., 10.89 hours to predict all-out features for

Fat-Tree topology. For Flat�y topology simulator took 1.48∗108 seconds. LBF-NoC

took 38604.8 seconds which is 10.72 hours. A minimum speedup of 5000× to 5500×

speedup for every single architecture achieved over cycle-accurate simulator.

42



Table 3.9: Timing Comparison of Booksim results with LBF-NoC framework for
Fat-Tree and Flat�y topologies

Timing Comparison of Simulation results with LBF-NoC framework for tra�c patterns

Tra�c

Patterns

Simulation Timings

for Fat-Tree

LBF-NoC

Timings

Simulation Timings

for Flat�y

LBF-NoC

Timings

In Seconds In Hours In Seconds In Seconds In Hours In Seconds

Uniform 57553002 15989.94 11520 59858604 16627.39 12902.4

Tornado 53952561 14986.82 11598.4 62319816 17311.06 13824

Neigbhor 52924482 14701.25 10137.6 24278670 6744.08 7372.8

Transpose 114933.82 31.93 1536 1278368 355 2662.4

Shu�e 270870.72 75.24 1843.2 40349.44 11.21 1024

Bitrev 1254776.96 348.55 2560 36579.2 10.16 819.2
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3.2 Enhanced Machine Learning Framework using

Multiprocessing

To provide an e�cient NoC design the chip designers need to simulate the simulator

with various con�gurations considering di�erent architecture sizes, virtual channels,

bu�er sizes, injection rates, tra�c patterns, etc. Hence, it becomes an overhead to

the chip designer as he needs to run the simulator many times to get an e�cient NoC

design.

To overcome this problem multiprocessing scheme was added along with machine

learning model which is entitled as Multiprocessing Regression Framework (MRF-

NoC). This framework generates all combinations of the input con�gurations given

and executes them simultaneously. Along with Booksim simulator, Orion simula-

tor was used which provides detailed power characteristics of on-chip routers in this

enhanced framework. In this section, 2D & 3D Mesh NoC architectures have been

considered. For 2D Mesh architecture size was considered from 2×2 to 50×50 and for

3D Mesh 2×2×2 to 30×30×2 with two layers was considered.

3.2.1 Multiprocessing Regression Framework (MRF-NoC)

MRF-NoC has been divided into two phases: Phase 1 speci�es the ML model, which

works the same as explained in the previous section. Phase 2 speci�es the multipro-

cessing model.

A Machine Learning Model

In this section, the same ML model which was used in the previous section was used.

The ML model is proposed to predict the design parameters of 2D and 3D Mesh

NoC architectures like performance parameters (network latency, packet latency, �it

latency, hop count) power consumption of various router components (bu�er power,

switch arbiter power, crossbar power, virtual channel arbiter power), the total power

of NoC, router area and total area.

Along with MSE, three di�erent error metrics have been used root mean square

error (RMSE), mean absolute error (MAE) and r-squared to evaluate the performance

of ML models which are given by the following equations:
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MAE=

∑l
i=1 |a∗i − ai|

n

RMSE=
√∑l

i=1(a∗i−ai)2

l

R2 = 1−
∑

(ai−a∗i )2∑
(ai−āi)2

where ai is the actual value, a∗i is the predicted value, āi is the mean value of ai

and `l ' is the number of data points.

B Multiprocessing Model

The generated ML model considers various NoC con�guration parameters, such as

topology sizes, virtual channels, bu�er sizes, injection rates, tra�c patterns to gen-

erate di�erent combinations of con�gurations. According to the con�gurations con-

sidered in this work, the aggregated simulations required for 2D mesh is 5628 and

3480 for 3D Mesh which is overcome by using multiprocessing. ML models are cre-

ated for individual parameters and tra�c patterns are simulated simultaneously using

multiprocessing.

Figure 3.18 shows the overview of the MRF-NoC which is the combination of

the ML model and multiprocessing model. ML models are created for individual

parameters and tra�c patterns are simulated simultaneously using multiprocessing.

Multiprocessing is done by utilizing the process class multiprocessing facility pro-

vided by python (McKerns et al. [2012]). Advantage of using multiprocessing is to

improve the performance of the program over sequential programming. The process

class uses FIFO scheduling to allocate the jobs stored in the memory. The MRF-NoC

model designed creates six processes in stage 1 for each of the six tra�c patterns.

Each of these tra�c patterns creates three other subprocesses in stage 2 and future

each subprocess created in stage 2 spawn four other subprocesses in stage 3. The

subprocesses created in stage 3 �nally gives the results which are recorded for further

analysis.

C Experimental Results and Analysis

Booksim2.0 (Jiang [(accessed 2012]) and Orion3.0 (Kahng et al. [2009]) simulators

are used to accumulate the training data for 2D and 3D Mesh topologies, under the

following tra�c patterns: uniform, tornado, transpose, shu�e, bitrev and bitcom.
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Figure 3.18: Flowchart of Multiprocessing Model.

The results for 2D Mesh architecture have been explained in the previous section

3.1.4.2 hence, the results of 3D Mesh architecture have been explained in this section.

Table 3.10: Algorithm with least error rates for various tra�c patterns for 3D Mesh

Performance Parameters of 3D Mesh Topology

Tra�c Pattern ANL APL AFL AHC

Uniform υ-SVR(linear) υ-SVR(linear) υ-SVR(RBF) υ-SVR(RBF)

Tornado ε-SVR(RBF) υ-SVR(RBF) ε-SVR(RBF) υ-SVR(RBF)

Transpose
ANL APL AFL

υ-SVR(RBF) ε-SVR(RBF) υ-SVR(RBF)

Shu�e υ-SVR(RBF) ε-SVR(RBF) ε-SVR(RBF)

Bitrev ε-SVR(RBF) υ-SVR(RBF) ε-SVR(RBF)

Bitcom υ-SVR(RBF) ε-SVR(RBF) υ-SVR(RBF)

Topology sizes from 2×2×2 to 10×10×2 were used for training and 11×11×2 to

30×30×2 for testing. Predictions have been made for all the parameters of NoC from

11×11×2 to 30×30×2 topology sizes for uniform and tornado tra�c pattern. Trans-

pose, shu�e, bitrev and bitcom results have been predicted using di�erent injection
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Table 3.11: Error Metrics of ML models for 3D Mesh architectures

Error Metrics for Di�erent NoC parameters with various Synthetic tra�c patterns for 3D Mesh

Tra�c

Patterns

Error

Metrics

Performance Parameters
Power Parameters

Router Components Power Total Power

ANL APL AFL AHC BP CBP VCAP SAP RP TP

Uniform

MAE 0.29 0.28 0.27 0.06 0.22 0.24 0.08 0.06 0.011 0.01

MSE 0.098 0.0959 0.097 0.0044 0.06 0.07 0.016 0.007 0.0022 0.001

RMSE 0.31 0.314 0.309 0.06 0.25 0.27 0.08 0.27 0.002 0.001

R-squared 0.99 0.99 0.99 0.99 0.95 0.95 0.96 0.97 0.99 0.99

Tornado

MAE 0.21 0.23 0.22 0.08 0.37 0.33 0.15 0.38 0.04 0.01

MSE 0.093 0.095 0.094 0.006 0.19 0.14 0.055 0.16 0.005 0.0021

RMSE 0.26 0.28 0.265 0.08 0.43 0.37 0.23 0.4 0.06 0.0011

R-squared 0.99 0.99 0.99 0.99 0.96 0.95 0.96 0.93 0.99 0.99

ANL APL AFL BP CBP VCAP SAP RP TP

Transpose

MAE 0.01 0.011 0.01 0.20 0.23 0.008 0.003 0.035 0.013

MSE 0.0001 0.0013 0.0012 0.08 0.109 0.00015 0.001 0.004 0.0021

RMSE 0.001 0.0012 0.011 0.29 0.33 0.01 0.01 0.05 0.002

R-squared 0.99 0.99 0.99 0.95 0.94 0.98 0.99 0.99 0.99

Shu�e

MAE 0.01 0.007 0.011 0.07 0.059 0.04 0.048 0.04 0.06

MSE 0.0001 0.0013 0.0013 0.010 0.0061 0.102 0.01 0.006 0.008

RMSE 0.0012 0.0011 0.0013 0.10 0.078 0.101 0.1 0.06 0.01

R-squared 0.99 0.99 0.99 0.95 0.94 0.98 0.99 0.99 0.99

Bitcom

MAE 0.021 0.032 0.022 0.14 0.066 0.016 0.015 0.09 0.08

MSE 0.0006 0.001 0.0006 0.024 0.0055 0.002 0.0006 0.0093 0.0075

RMSE 0.025 0.032 0.026 0.15 0.074 0.016 0.024 0.1 0.093

R-squared 0.99 0.99 0.99 0.90 0.91 0.92 0.95 0.98 0.95

Bitrev

MAE 0.06 0.053 0.06 0.12 0.070 0.018 0.008 0.08 0.09

MSE 0.006 0.0039 0.0062 0.02 0.0076 0.0007 0.008 0.0076 0.0095

RMSE 0.079 0.062 0.078 0.14 0.087 0.02 0.092 0.095 0.1

R-squared 0.99 0.99 0.99 0.92 0.91 0.92 0.90 0.98 0.95

rates.

Table 3.10 lists the algorithms which provided the least error rates for performance

parameters. Error rates for uniform, tornado are 1% to 2%, 2% to 3% and for trans-

pose, shu�e, bitrev,bitcom are 1% to 2% respectively. These results can be seen in

Table 3.11.

Power of router components for all the tra�c patterns υ-SVR with `RBF' kernel

worked e�ciently with an error rate of 7% to 9%. The error rates for router power

and total power is 1% to 2%. For router area and total area the error rates is 1%

to 3%. υ-SVR with `polynomial' kernel worked e�ciently for both area and power
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parameters. Table 3.11 shows the di�erent error metrics of all the NoC parameters.

The complete MRF-NoC framework showed an average error rate of 7% for 3D Mesh

NoC architectures.

Table 3.12: Timing comparison of simulation results with MRF-NoC framework for
di�erent Synthetic tra�c patterns

Tra�c

Patterns

MRF Time

for 2D Mesh

Simulation Time

for 2D Mesh

MRF Time

for 3D Mesh

Simulation Time

for 3D Mesh

(Seconds) (Seconds) (Hours) (Seconds) (Seconds) (Hours)

Uniform

515.64

(8.59 Minutes)

5802298
1611.75

(67.16 days)

876.7056

(14.6 minutes)

5446137
1512.82

(63.03 days)

Tornado 5543384
1539.83

(64.16 days)
25549788

7097.16

(295.72 days)

Shu�e 7156.28 1.99 355737
98.82

(4.12 days)

Transpose 4875.84 1.35 43563.2 12

Bitrev 3629.91 1.01 28397.93 7.89

Bitcom 3878.49 1.08 45329 12.61

Table 5.5 shows the execution times of the Booksim simulator and the MRF frame-

work for Mesh architectures. Total time taken to complete the execution of all archi-

tectural sizes with di�erent tra�c patterns for 2D Mesh architectures was 1.14∗107

seconds for Booksim simulator and 515.64 seconds for MRF. For 3D Mesh architec-

tures, the simulation time was 3.14∗107 seconds and 876.7056 seconds for Booksim

and MRF respectively. Speedup of 1000× to 1500× achieved over Booksim simulator

for both 2D and 3D architectures.

3.3 Summary

In this chapter, a machine learning framework named Learning-based framework

(LBF-NoC) is presented which can be used to predict the performance, power and

area parameters of direct (Mesh, Torus, Cmesh), & indirect (Fat-Tree, Flat�y) NoC

architectures. Analysis of di�erent regression algorithms was done. Among all the re-

gression algorithms, the lowest error rate was observed in the SVR algorithm. Hence,

the SVR algorithm has been considered in LBF-NoC. It predicts the values of NoCs

similar to conventional cycle-accurate Booksim simulator. In the next section, the
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machine learning framework was extended by adding multiprocessing scheme to over-

come the issue of simulating NoC architecture `n' number of times.
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Chapter 4

Ensemble Learning-Based Accelerator

In this chapter, a framework named Ensemble Learning-Based Accelerator (ELBA-

NoC) is presented to predict design parameters of �ve di�erent architectures which

consist of both 2D and 3D architectures. ELBA-NoC was designed to predict param-

eters in two di�erent scenarios. In the �rst scenario, it will predict the worst-case

latency analysis for all the architectures considered by varying topology sizes and vir-

tual channels. In the second scenario, the framework predicts various design param-

eters like performance parameters: average network latency, average packet latency,

average �it latency, average hop count. Power consumption of various router com-

ponents (bu�er power, switch arbiter power, crossbar power, virtual channel arbiter

power), the total power of NoC, router area and total area.

In this chapter, �ve di�erent architectures are considered consisting of 2D (Mesh,

Torus, Cmesh) and 3D (Mesh, Torus) architectures. In previous chapter, the archi-

tecture size was considered till 50×50 which is 2500 nodes. Whereas in the current

chapter has considered the architecture size for 2D NoCs till 75×75 which is 5625

nodes.

ELBA-NoC was created to predict the design space exploration of large-scale ar-

chitectures, hence it becomes an very essential tool for the chip designers. It helps

them in understanding the impact of various design parameters in the early stage thus

reducing the actual development cost and simulation time.
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4.1 Dataset Description

Booksim 2.0 (Jiang [(accessed 2012]) and Orion (Kahng et al. [2009]) simulators are

used to generate reference data over various NoC con�gurations considering both 2D

and 3D architectures. Booksim simulator provides performance, power and area re-

sults for each architecture and Orion simulator provides power for various components

of the router.

In chapter 3, section 3.1.1 have explained how the data is generated using Booksim

simulator and what are the input and output features which will be considered for

the experiments.

4.2 Feature Extraction

As speci�ed earlier experiments have been conducted in two di�erent scenarios. Hence,

datasets are also generated in two di�erent ways.

In �rst scenario, data is recorded from 2×2 to 10×10 for 2D architectures and

2×2×2 to 10×10×2 for 3D architectures. The simulations are done until the archi-

tecture reaches the saturation region. Various injection rates and virtual channels are

used to study saturation points for two tra�c patterns(uniform and tornado tra�c

pattern). Among the data collected, 50% is considered for training data and the

remaining 50% is considered for testing data.

In second scenario, data is recorded from 2×2 to 75×75 for 2D Mesh and Torus

architectures, 2×2 to 30×30 for Cmesh architectures. 2×2×2 to 30×30×2 with two

layers for 3D Mesh and Torus architectures.

For uniform and tornado tra�c patterns the architecture sizes from 2×2 to 20×20

were considered as training data and remaining architectures from 21×21 to 75×75

were considered as testing data for 2D Mesh and Torus architectures, and 2×2 to

10×10 was considered as training data and 11×11 to 30×30 as testing data for Cmesh

architecture. For 3D Mesh and Torus 2×2×2 to 10×10×2 architecture sizes was

considered as training data and 11×11×2 to 30×30×2 was considered as testing data.

For shu�e, transpose, bitrev, and bitcom dataset consisting of data associated

with injection rate is increased from 0.001 �its/cycle to 0.0098 �its/cycle in steps of

0.05 �its/cycle (any 9 injection rates can be used for training and the remaining 8
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can be used for testing).

4.3 Training

ELBA-NoC was built using Random Forest (RF) algorithm. Before using the RF

algorithm, ELBA-NoC was tested with other various regression algorithms like ANN

with identity and relu activation functions, di�erent generalized linear regression al-

gorithms, i.e., lasso, lasso-lars, larsCV, bayesian-ridge, linear, ridge, ridgeCV, lars,

elastic-net, elastic-netCV and SVR with linear, RBF, polynomial kernels. Since RF

algorithm gave a better results it was considered for model development.

The algorithm which has been selected to predict the design parameters of NoC

has to work for the two di�erent scenarios considered. In the �rst case, as speci�ed

earlier, it was tend to predict the latency values when the network enters the saturation

region. Other algorithms failed to predict the values in saturation region but the RF

algorithm was able to predict values as it uses an ensemble learning approach, it can

investigate nonlinear and hierarchical relationships between predictors and response.

In general, while over�tting can cause inaccurate estimation of new test data and

thus negatively a�ect the generality of the model, the RF algorithm is robust enough

against over�tting. Moreover, compared to other machine learning algorithms, such

as ANN and SVM, RF needs only a few tunable parameters and therefore requires

little e�ort for o�ine model tuning (Breiman [2001]).

SVR was able to predict parameters for the second scenario which is parameters

with higher architecture size but failed to predict in the �rst scenario. When compared

to SVR algorithm RF was able to predict parameters in two scenarios and the training

time and execution time is much faster than SVR as there are only a few tunable

parameters.

4.4 Random Forest Regression

The theory behind ensemble learning techniques is based on the fact that its accuracy

is higher than other machine learning algorithms because the prediction combination

is more accurate than any other single model.

RF (Breiman [2001]) is an ensemble method similar to the nearest neighbour
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predictor. An ML (Breiman [1996]) based tree is grown which asserts higher prediction

accuracy by utilizing ensembles of trees.

The accuracy of ensemble learning techniques is higher as composed to the other

ML algorithms. The reason behind it is a combination of predictions provides than a

single consistent model.

Aggregation over the ensemble results in a reduction in variance, thereby increasing

prediction accuracy and by randomly drawing a subset of covariates, RFs aims to

reduce the association between aggregated quantities. In RF, each node is divided

into a subset of randomly selected predictors at that node. An RF algorithm for

regression is explained below.

1. Generate 'n' bootstrap samples from the data.

2. Grow a regression tree by random sampling 'm' of the predictors for each of the

generated bootstrap samples and select the best split among those variables.

3. Average of the aggregating trees are taken for prediction of new data.

Figure 4.1 illustrates the work�ow for random forests for regression. The RF

regression algorithm needs the input data, the number of trees 'n' and the number of

variables to use in each split 'm'. The random property derives from two factors: (a)

each 'n' tree is based on a random subset of observations (b) based on a random subset

of 'm' candidate variables, each split within each tree is created. Out-of-bag samples

can be used to calculate a variable and unbiased error rate, eliminating the need for

a test set or cross-validation. Because a large number of trees are grown, there is a

limited generalization error which means there is no possibility of over�tting, which

is a very useful feature for prediction (Hastie et al. [2009], James et al. [2013]).

4.5 Results and Discussion

This chapter is divided into two parts; the �rst part ELBA-NoC predicts the latency

values of topology sizes from 6 × 6 to 10 × 10 considering various injection rates

starting from 0.001, 0.0015... until it reaches saturation region for two tra�c patterns

i.e. uniform and tornado considering 2D & 3D architectures. The purpose of doing

these experiments is to check whether the framework can predict the latency values
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Training	Data

Sample	1 Sample	2 Sample	n(....)

(....)

Prediction	1 Prediction	2 Prediction	n

Prediction:	The	average	aggregation
of	all	predictions

Building
'n'	Trees

Bootstrap
'n'	samples

Training

Testing

Figure 4.1: The �owchart of Random Forest for regression.

as the load on NoC increases. It is also done to check when the simulator attains

saturation. Advantage of doing this is it helps the researchers and designers to restrict

the amount of load.

In the second part of this work, ELBA-NoC is used to predict the performance

parameters: (average network latency (ANL), average packet latency (APL), average

�it latency (AFL), average hop count (AHC)), power parameters: (router, in turn,

has bu�er power (BP), crossbar power (CB), switch arbiter power (SAP), virtual

channel arbiter power (VCAP), total router power(RP), total power(TP)) and area

parameters: (router area (RA), total area (TA)) for 2D and 3D architectures consid-

ering various topology sizes, virtual channel size, bu�er size, injection rates and tra�c

patterns.

Booksim 2.0 (Jiang [(accessed 2012]) and Orion (Kahng et al. [2009]) simulators

are used to validate the ELBA-NoC results under di�erent synthetic tra�c patterns:

uniform, tornado, transpose, shu�e, bitrev and bitcom (Dally and Towles [2004]).
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4.5.1 Scenario-I

Injection rate method was chosen as it is one of the critical factors which a�ects the

e�ciency of the NoC communication. It will be a bene�cial tool for the chip designers

to put a threshold and restrict the amount of injection load on the NoC architectures.

Experimental results have been represented for 2D architectures and 3D architec-

tures separately. Experiments were conducted from injection rate 0.001 to saturation

point but, for representation in graphs, injection rates from 0.01 to saturation point

were considered. Table 4.1 shows the di�erent con�gurations considered for experi-

ments.

Table 4.1: Con�gurations considered for Scenario-I

Booksim Network Con�gurations

Topology
2D Mesh, Torus, Cmesh

3D Mesh, Torus

Topology Size 2 x 2, 3 x 3, .... 10 x 10

Tra�c Pattern Uniform, Tornado

Number of

Virtual Channels(VCs)
2, 3, 4, 5

Bu�ers 6, 8

Injection rates 0.001, 0.0015, 0.002, 0.0025...until saturation

Sample time 100000 cycles

Figure 4.2 shows the comparison of ELBA-NoC with Booksim for Mesh archi-

tectures. In Figure 4.2 (a), (b), (c) represent results for uniform tra�c pattern and

Figure 4.2 (d), (e), (f) represent for tornado tra�c pattern with VCs 2, 3 and 4 for

topology sizes 7×7 to 10×10. As it can be observed in both tra�c patterns VC2

saturates �rst, VC3 saturates second, then VC4 saturates later as shown in Figure

4.2. ELBA-NoC was able to predict the latency values with less than 3% error rate.

Figures 4.3, 4.4 shows the comparison for Torus and Cmesh architectures with

VCs 2, 3 and 4 where (a), (b), (c) shows the results of uniform tra�c pattern & (d),

(e), (f) shows the results of tornado tra�c pattern. ELBA-NoC was able to predict

the latency values with an error rate between 2% and 4%. Both Torus and Cmesh

saturate before the injection rate 0.01. Hence, for representation, injection rate from
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0.006 as the initial point for plotting �gures.

As speci�ed earlier if MAE, MSE, RMSE are close to 0 and R-squared close to 1

it implies the predicted results are close to the actual results.

Table 4.2 represents the di�erent error metrics for Mesh, Torus and Cmesh archi-

tecture. It can observed that MAE, MSE, RMSE are close to 0 and R-squared close

to 1. Hence, it speci�es the ELBA-NoC was able to predict the values which are very

close to the actual results.
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Figure 4.2: Latency comparison of ELBA-NoC with Booksim for 2D Mesh with
Uniform and Tornado tra�c patterns

Table 4.3 shows the execution timings of the Booksim simulator and the ELBA-

NoC for 2D NoC architectures. The average simulation time to complete execution

for architecture sizes from 6×6 to 10×10 with uniform and tornado tra�c patterns

for 2D architectures is 4.07∗106 seconds (47.08 days) and 3 seconds for ELBA-NoC.

Figure 4.5, and Figure 4.6 shows the comparison of 3D Mesh and Torus archi-

tectures where (a), (b), (c) shows the results of uniform tra�c pattern & (d), (e),

(f) shows the results of tornado tra�c pattern. ELBA-NoC was able to predict the

latency values of both 3D Mesh and Torus error rate between 2% to 5%. In the case

of 3D architectures Torus with tornado tra�c pattern saturates before 0.01 injection

57



 24

 27

 30

 33

 36

 39

 42

 45

 48

 51

 54

 57

 60

 63

 66

 69

 72

 75

 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

L
at

en
cy

(c
y

cl
es

)

(a)

7x7 Booksim

7x7 ELBA-NoC

8x8 Booksim

8x8 ELBA-NoC

9x9 Booksim

9x9 ELBA-NoC

10x10 Booksim

10x10 ELBA-NoC

 24

 27

 30

 33

 36

 39

 42

 45

 48

 51

 54

 57

 60

 63

 66

 69

 72

 75

 0.02  0.04  0.06  0.08  0.1

L
at

en
cy

(c
y

cl
es

)

(b)

7x7 Booksim

7x7 ELBA-NoC

8x8 Booksim

8x8 ELBA-NoC

9x9 Booksim

9x9 ELBA-NoC

10x10 Booksim

10x10 ELBA-NoC

 24

 27

 30

 33

 36

 39

 42

 45

 48

 51

 54

 57

 60

 63

 66

 69

 72

 75

 0.02  0.04  0.06  0.08  0.1

L
at

en
cy

(c
y

cl
es

)

(c)

7x7 Booksim

7x7 ELBA-NoC

8x8 Booksim

8x8 ELBA-NoC

9x9 Booksim

9x9 ELBA-NoC

10x10 Booksim

10x10 ELBA-NoC 

 39

 42

 45

 48

 51

 54

 57

 60

 63

 66

 69

 72

 75

 0.006  0.008  0.01  0.012  0.014  0.016

L
at

en
cy

(c
y

cl
es

)

(d)

7x7 Booksim

7x7 ELBA-NoC

8x8 Booksim

8x8 ELBA-NoC

9x9 Booksim

9x9 ELBA-NoC

10x10 Booksim

10x10 ELBA-NoC

 36

 39

 42

 45

 48

 51

 54

 57

 60

 63

 66

 69

 72

 75

 0.01  0.015  0.02  0.025  0.03  0.035

L
at

en
cy

(c
y

cl
es

)

(e)

7x7 Booksim

7x7 ELBA-NoC

8x8 Booksim

8x8 ELBA-NoC

9x9 Booksim

9x9 ELBA-NoC

10x10 Booksim

10x10 ELBA-NoC

 36

 39

 42

 45

 48

 51

 54

 57

 60

 63

 66

 69

 72

 75

 0.01  0.015  0.02  0.025  0.03  0.035  0.04

L
at

en
cy

(c
y

cl
es

)

(f)

7x7 Booksim

7x7 ELBA-NoC

8x8 Booksim

8x8 ELBA-NoC

9x9 Booksim

9x9 ELBA-NoC

10x10 Booksim

10x10 ELBA-NoC 

Figure 4.3: Latency comparison of ELBA-NoC with Booksim for 2D Torus with
Uniform and Tornado tra�c patterns
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Figure 4.4: Latency comparison of ELBA-NoC with Booksim for Cmesh with
Uniform and Tornado tra�c patterns

rate, hence 0.005 has been considered as the initial point in representation.

Table 4.2 represents di�erent error metrics for Mesh and Torus architectures. This

implies that ELBA-NoC is able to predict latency values close to the actual values

provided by Booksim simulator.
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Table 4.2: Error Metrics of ELBA-NoC for Latency values with Uniform and
Tornado tra�c patterns for 2D & 3D architectures

Error Metrics of 2D & 3D Topologies

Topologies
Mesh Torus Cmesh 3D Mesh 3D Torus

Tra�c Patterns

Uniform

MAE 0.0446 0.091 0.064 0.019 0.10

MSE 0.0084 0.02 0.06 0.0078 0.023

RMSE 0.072 0.132 0.09 0.02 0.15

R-Squared 0.98 0.97 0.98 0.99 0.98

Tornado

MAE 0.061 0.109 0.026 0.052 0.035

MSE 0.019 0.0085 0.036 0.007 0.0025

RMSE 0.126 0.114 0.103 0.08 0.05

R-Squared 0.99 0.99 0.97 0.989 0.989

Table 4.3: Timing comparison of simulation results with ELBA-NoC for 2D
Architectures

Tra�c

Patterns

ELBA-NoC

Time

for Mesh

Simulation Time

for Mesh

ELBA-NoC

Time

for Torus

Simulation Time

for Torus

ELBA-NoC

Time

for Cmesh

Simulation Time

for Cmesh

(Seconds) (Seconds) (Hours) (Seconds) (Seconds) (Hours) (Seconds) (Seconds) (Hours)

Uniform 1.2 140352
38.99

(1.62 days)
1.6 1110033

308.34

(12.85 days)
2.1 700860

194.68

(8.11 days)

Tornado 2.3 445049
123.62

(5.15 days)
1.9 722309

220.6

(8.36 days)
3.3 949252

263.68

(10.99 days)

Table 4.4: Timing comparison of simulation results with ELBA-NoC for 3D
Architectures

Tra�c

Patterns

ELBA-NoC

Time

for Mesh

Simulation Time

for 3D Mesh

ELBA-NoC

Time

for Torus

Simulation Time

for 3D Torus

(Seconds) (Seconds) (Hours) (Seconds) (Seconds) (Hours)

Uniform 1.9 1503406
417.6

(17.4 days)
3.6 928572

257.94

(10.75 days)

Tornado 2.5 153368
426.02

(17.75 days)
4.3 2327464

646.02

(26.01 days)
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Table 4.5: Error Metrics of ELBA-NoC for NoC parameters with various Synthetic
tra�c patterns for Mesh architectures

Error Metrics for Di�erent NoC parameters with various Synthetic tra�c patterns for 2D Mesh

Tra�c

Patterns

Error

Metrics

Performance Parameters
Power Parameters

Router Components Power Total Power

ANL APL AFL AHC BP CBP VCAP SAP RP TP

Uniform

MAE 0.12 0.21 0.12 0.048 0.022 0.025 0.0013 0.0003 0.002 0.0025

MSE 0.020 0.065 0.023 0.005 0.0045 0.0048 0.00018 0.00087 0.0001 0.00013

RMSE 0.15 0.25 0.15 0.07 0.067 0.069 0.004 0.009 0.002 0.003

R-squared 0.99 0.99 0.99 0.99 0.96 0.964 0.98 0.979 0.99 0.99

Tornado

MAE 0.211 0.22 0.21 0.10 0.035 0.028 0.0014 0.00046 0.148 0.0021

MSE 0.086 0.085 0.087 0.014 0.0087 0.0059 0.0002 0.00012 0.096 0.0023

RMSE 0.29 0.3 0.294 0.11 0.093 0.077 0.0044 0.0011 0.31 0.0032

R-squared 0.99 0.99 0.99 0.99 0.964 0.965 0.97 0.96 0.93 0.98

ANL APL AFL BP CBP VCAP SAP RP TP

Transpose

MAE 0.09 0.089 0.068 0.047 0.06 0.08 0.001 0.03 0.18

MSE 0.015 0.016 0.007 0.0032 0.018 0.013 0.009 0.002 0.11

RMSE 0.12 0.124 0.089 0.056 0.13 0.11 0.03 0.04 0.3

R-squared 0.99 0.99 0.998 0.94 0.946 0.95 0.935 0.96 0.94

Shu�e

MAE 0.014 0.0144 0.0141 0.054 0.059 0.02 0.038 0.025 0.05

MSE 0.003 0.0034 0.00033 0.004 0.011 0.009 0.0017 0.008 0.007

RMSE 0.018 0.017 0.0181 0.06 0.1 0.03 0.1 0.02 0.08

R-squared 0.99 0.99 0.99 0.94 0.954 0.94 0.932 0.90 0.95

Bitcom

MAE 0.18 0.10 0.039 0.043 0.03 0.14 0.17 0.15 0.116

MSE 0.03 0.014 0.003 0.04 0.03 0.028 0.04 0.06 0.04

RMSE 0.19 0.11 0.05 0.12 0.018 0.18 0.175 0.25 0.2

R-squared 0.99 0.99 0.99 0.95 0.97 0.99 0.99 0.89 0.972

Bitrev

MAE 0.75 0.08 0.094 0.088 0.02 0.16 0.16 0.16 0.101

MSE 0.008 0.016 0.0167 0.023 0.005 0.039 0.03 0.06 0.03

RMSE 0.09 0.12 0.129 0.15 0.02 0.198 0.19 0.26 0.17

R-squared 0.99 0.99 0.99 0.94 0.97 0.99 0.98 0.941 0.97

Table 4.4 shows the execution timings of the Booksim simulator and the ELBA-

NoC for 3D NoC architectures. The average simulation time to complete execution for

architecture sizes from 6×6×2 to 10×10×2 with uniform and tornado tra�c patterns

for 3D architectures is 4.19∗106 seconds (56.86 days) and 4 seconds for ELBA-NoC.

4.5.2 Scenario II

This section provides a detailed study on the accuracy, errors and runtime of proposed

ELBA-NoC approach. Predictions have been made for all the parameters of NoC from

21×21 to 75×75 topology sizes for uniform, tornado tra�c pattern for Mesh and Torus

architectures. 11×11 to 30×30 topology sizes for Cmesh architecture. Transpose,
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Table 4.6: Error Metrics of ELBA-NoC for NoC parameters with various Synthetic
tra�c patterns for Torus architectures

Error Metrics for Di�erent NoC parameters with various Synthetic tra�c patterns for 2D Torus

Tra�c

Patterns

Error

Metrics

Performance Parameters
Power Parameters

Router Components Power Total Power

ANL APL AFL AHC BP CBP VCAP SAP RP TP

Uniform

MAE 0.09 0.096 0.1 0.009 0.02 0.015 0.0013 0.0002 0.039 0.0048

MSE 0.01 0.032 0.041 0.002 0.0037 0.0021 0.00018 0.00037 0.0067 0.00015

RMSE 0.15 0.25 0.15 0.05 0.061 0.046 0.004 0.00061 0.082 0.0013

R-squared 0.98 0.987 0.98 0.99 0.97 0.97 0.98 0.964 0.955 0.95

Tornado

MAE 0.08 0.09 0.12 0.003 0.02 0.023 0.0013 0.00024 0.051 0.0026

MSE 0.006 0.008 0.0075 0.003 0.0004 0.0039 0.00016 0.00041 0.118 0.0013

RMSE 0.19 0.2 0.21 0.08 0.06 0.062 0.004 0.0006 0.108 0.0028

R-squared 0.99 0.99 0.99 0.99 0.97 0.966 0.973 0.98 0.95 0.98

ANL APL AFL BP CBP VCAP SAP RP TP

Transpose

MAE 0.06 0.08 0.07 0.047 0.06 0.08 0.001 0.03 0.18

MSE 0.02 0.013 0.004 0.0032 0.018 0.013 0.009 0.002 0.11

RMSE 0.09 0.096 0.088 0.056 0.13 0.11 0.03 0.04 0.3

R-squared 0.99 0.98 0.998 0.94 0.946 0.95 0.935 0.90 0.94

Shu�e

MAE 0.02 0.016 0.011 0.054 0.059 0.02 0.038 0.025 0.05

MSE 0.0025 0.0012 0.00038 0.004 0.011 0.009 0.0017 0.008 0.007

RMSE 0.012 0.015 0.016 0.06 0.1 0.03 0.1 0.02 0.08

R-squared 0.99 0.99 0.99 0.94 0.954 0.94 0.932 0.90 0.95

Bitcom

MAE 0.08 0.03 0.06 0.043 0.03 0.14 0.17 0.15 0.116

MSE 0.008 0.009 0.0077 0.04 0.03 0.028 0.04 0.06 0.04

RMSE 0.02 0.018 0.028 0.12 0.018 0.18 0.175 0.25 0.2

R-squared 0.979 0.99 0.98 0.95 0.97 0.99 0.99 0.89 0.972

Bitrev

MAE 0.02 0.06 0.05 0.088 0.02 0.16 0.16 0.16 0.101

MSE 0.005 0.007 0.0065 0.023 0.005 0.039 0.03 0.06 0.03

RMSE 0.02 0.024 0.03 0.15 0.02 0.198 0.19 0.26 0.17

R-squared 0.99 0.98 0.99 0.94 0.97 0.99 0.98 0.953 0.97

shu�e, bitrev and bitcom results are predicted using di�erent injection rates.

Table 4.5 shows the error metrics for Mesh architecture with various synthetic

tra�c patterns and error metrics for each tra�c pattern have been shown separately.

Performance parameters error rate for uniform, tornado is less than 2% to 3%, for

transpose, shu�e, bitrev, bitcom is 1% to 2% respectively. Error rates for power

parameters are 3% to 4% for uniform and tornado tra�c pattern and transpose,

shu�e, bitrev, bitcom is 4% to 6% respectively.

Table 4.6 shows the error metrics for Torus architecture with various synthetic

tra�c patterns and error metrics for each tra�c pattern have been shown separately.

Performance parameters error rate for uniform, tornado is less than 1% to 2%, for
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Table 4.7: Error Metrics of ML models for NoC parameters with various Synthetic
tra�c patterns for Cmesh architectures

Error Metrics for Di�erent NoC parameters with various Synthetic tra�c patterns for Cmesh

Tra�c

Patterns

Error

Metrics

Performance Parameters
Power Parameters

Router Components Power Total Power

ANL APL AFL AHC BP CBP VCAP SAP RP TP

Uniform

MAE 0.06 0.075 0.09 0.006 0.0069 0.054 0.0035 0.0007 0.081 0.15

MSE 0.003 0.0045 0.006 0.0002 0.0127 0.0079 0.0033 0.0057 0.0067 0.004

RMSE 0.08 0.09 0.1 0.08 0.112 0.089 0.0057 0.0012 0.25 0.006

R-squared 0.99 0.98 0.97 0.99 0.97 0.967 0.975 0.96 0.98 0.98

Tornado

MAE 0.055 0.073 0.069 0.005 0.042 0.051 0.035 0.0027 0.017 0.0072

MSE 0.0028 0.0041 0.0032 0.00049 0.0002 0.0024 0.00132 0.0007 0.09 0.0014

RMSE 0.076 0.084 0.034 0.006 0.073 0.084 0.064 0.0057 0.12 0.0026

R-squared 0.99 0.98 0.99 0.99 0.98 0.978 0.972 0.98 0.975 0.99

ANL APL AFL BP CBP VCAP SAP RP TP

Transpose

MAE 0.08 0.084 0.072 0.052 0.059 0.074 0.002 0.026 0.062

MSE 0.017 0.024 0.0178 0.009 0.0096 0.019 0.0006 0.006 0.011

RMSE 0.098 0.101 0.086 0.081 0.088 0.093 0.004 0.035 0.077

R-squared 0.98 0.98 0.992 0.99 0.99 0.98 0.98 0.975 0.981

Shu�e

MAE 0.026 0.017 0.018 0.053 0.057 0.023 0.032 0.027 0.056

MSE 0.0028 0.0019 0.0004 0.0043 0.012 0.014 0.0027 0.0073 0.0092

RMSE 0.014 0.017 0.015 0.09 0.13 0.046 0.16 0.029 0.082

R-squared 0.99 0.99 0.99 0.96 0.956 0.97 0.965 0.96 0.95

Bitcom

MAE 0.078 0.038 0.062 0.044 0.037 0.15 0.165 0.18 0.125

MSE 0.009 0.005 0.0075 0.0065 0.034 0.04 0.051 0.062 0.023

RMSE 0.024 0.021 0.035 0.027 0.016 0.14 0.155 0.27 0.124

R-squared 0.97 0.98 0.974 0.968 0.971 0.98 0.99 0.955 0.961

Bitrev

MAE 0.047 0.082 0.073 0.096 0.043 0.086 0.081 0.094 0.076

MSE 0.007 0.0093 0.0087 0.048 0.0073 0.061 0.053 0.084 0.059

RMSE 0.041 0.044 0.055 0.023 0.046 0.038 0.033 0.057 0.038

R-squared 0.99 0.98 0.985 0.96 0.98 0.98 0.98 0.976 0.984

transpose, shu�e, bitrev, bitcom is 2% to 3% respectively. Error rates for power

parameters are 2% to 3% for uniform and tornado tra�c pattern and transpose,

shu�e, bitrev, bitcom is 3% to 5% respectively.

Table 4.7 shows the error metrics for Cmesh architecture with various synthetic

tra�c patterns and error metrics for each tra�c pattern have been shown separately.

Performance parameters error rate for uniform, tornado is less than 3%, for transpose,

shu�e, bitrev, bitcom is 2% to 3% respectively. Error rates for power parameters are

2% for uniform and tornado tra�c pattern and transpose, shu�e, bitrev, bitcom is

4% respectively.

The error rate of router area and total area for Mesh topology are 0.08% and 1.2%
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Table 4.8: Timing comparison of simulation results with ELBA-NoC for 2D NoC
architectures

Tra�c

Patterns

ELBA-NoC

Time

for Mesh

Simulation Time

for Mesh

ELBA-NoC

Time

for Torus

Simulation Time

for Torus

ELBA-NoC

Time

for Cmesh

Simulation Time

for Cmesh

(Seconds) (Seconds) (Hours) (Seconds) (Seconds) (Hours) (Seconds) (Seconds) (Hours)

Uniform 1792.8 26982000 7495 972 11058930 3071.92 60 6393020 1775.84

Tornado 2592 33744330 9373.42 1101.38 15626790 4340.78 84 8043888 2234.41

Shu�e 128 473280 131.47 48 100616.96 27.95 54 109761.08 30.49

Transpose 76.8 337920 93.87 62 167658.75 46.57 68 241977.85 67.22

Bitrev 132 460864.992 128.02 36 55108.48 15.31 72 277371.9 77.05

Bitcom 103 438400 121.78 68 112073.85 31.13 74 302033.15 83.9
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Figure 4.5: Latency comparison of ELBA-NoC with Booksim for 3D Mesh with
Uniform and Tornado tra�c patterns

respectively. For Torus topology, the errors are 0.7% and 0.2% respectively. Similarly,

the errors for Cmesh topology is 2.1% and 3.2% respectively.

The training time of ELBA-NoC is about 1 to 2 hours for Mesh, Torus and Cmesh

with six di�erent tra�c patterns. However, the training process is taken o�-line and

during the performance prediction, it does not incur additional overhead. Timing

comparisons have been made for the testing con�gurations considered. The simula-

tion time for Mesh architecture with six tra�c patterns using Booksim simulator is

6.2∗107 seconds which is 718 days whereas ELBA-NoC was able to predict the same
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Figure 4.6: Latency comparison of ELBA-NoC with Booksim for 3D Torus with
Uniform and Tornado tra�c patterns

results in 4692.6 seconds which is 1.3 hours. For Torus architecture the simulation

time is 2.71∗107 seconds which is 313.9 days and ELBA-NoC took 2287.38 seconds.

For Cmesh the simulator took 1.54∗107 seconds which is 177.8 days and ELBA-NoC

provided results in 412 seconds.

Table 4.8 shows the detailed time comparison of Mesh, Torus and Cmesh architec-

tures for all the tra�c patterns considered. Speedup of 16K× to 18K× for individual

architecture was achieved over Booksim simulator.

Table 4.9 shows the error metrics for Mesh architecture with various synthetic

tra�c patterns and error metrics for each tra�c pattern have been shown separately.

Performance parameters error rate for uniform, tornado is less than 1% to 2%, for

transpose, shu�e, bitrev, bitcom are 3% to 4% respectively. Error rates for power

parameters are 2% to 3% for uniform and tornado tra�c pattern and transpose,

shu�e, bitrev, bitcom is 3% to 5% respectively.

Table 4.10 shows the error metrics for Mesh architecture with various synthetic

tra�c patterns and error metrics for each tra�c pattern have been shown separately.

Performance parameters error rate for uniform, tornado is less than 3%, for transpose,

shu�e, bitrev, bitcom is 2% respectively. Error rates for power parameters are 3% for

uniform and tornado tra�c pattern and for transpose, shu�e, bitrev, bitcom is 4%
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Table 4.9: Error Metrics of ML models for NoC parameters with various Synthetic
tra�c patterns for Mesh architecture

Error Metrics for Di�erent NoC parameters with various Synthetic tra�c patterns for 3D Mesh

Tra�c

Patterns

Error

Metrics

Performance Parameters
Power Parameters

Router Components Power Total Power

ANL APL AFL AHC BP CBP VCAP SAP RP TP

Uniform

MAE 0.055 0.073 0.081 0.0074 0.0061 0.059 0.0031 0.0008 0.083 0.06

MSE 0.0028 0.0051 0.0072 0.00034 0.017 0.0072 0.0037 0.0045 0.0063 0.0038

RMSE 0.078 0.092 0.11 0.08 0.09 0.084 0.0054 0.0011 0.09 0.05

R-squared 0.99 0.98 0.972 0.99 0.97 0.98 0.975 0.98 0.98 0.98

Tornado

MAE 0.065 0.078 0.061 0.0045 0.047 0.053 0.038 0.0021 0.012 0.0078

MSE 0.0023 0.0044 0.0037 0.0005 0.00027 0.0020 0.0018 0.0009 0.085 0.0013

RMSE 0.076 0.082 0.031 0.0067 0.079 0.080 0.062 0.0055 0.17 0.0022

R-squared 0.99 0.98 0.99 0.99 0.98 0.978 0.976 0.98 0.978 0.99

ANL APL AFL BP CBP VCAP SAP RP TP

Transpose

MAE 0.078 0.081 0.077 0.056 0.054 0.072 0.0025 0.023 0.069

MSE 0.013 0.027 0.0181 0.00902 0.0092 0.021 0.00074 0.0063 0.016

RMSE 0.093 0.14 0.088 0.083 0.088 0.090 0.0044 0.039 0.072

R-squared 0.98 0.98 0.983 0.99 0.99 0.98 0.98 0.975 0.987

Shu�e

MAE 0.022 0.011 0.013 0.052 0.058 0.026 0.034 0.027 0.053

MSE 0.0026 0.0014 0.00042 0.0051 0.016 0.011 0.0022 0.0074 0.0096

RMSE 0.012 0.011 0.017 0.093 0.134 0.0446 0.128 0.0275 0.0831

R-squared 0.99 0.99 0.99 0.968 0.96 0.97 0.972 0.978 0.963

Bitcom

MAE 0.042 0.048 0.051 0.044 0.032 0.11 0.174 0.162 0.173

MSE 0.0092 0.0057 0.0082 0.0072 0.033 0.046 0.0525 0.0694 0.0254

RMSE 0.0232 0.0225 0.0365 0.0285 0.0159 0.19 0.184 0.282 0.161

R-squared 0.98 0.98 0.979 0.975 0.973 0.98 0.99 0.956 0.952

Bitrev

MAE 0.052 0.055 0.059 0.092 0.041 0.083 0.087 0.096 0.071

MSE 0.0065 0.009 0.0082 0.046 0.00701 0.063 0.057 0.084 0.0532

RMSE 0.043 0.047 0.052 0.026 0.041 0.042 0.0365 0.0575 0.0392

R-squared 0.99 0.98 0.98 0.968 0.98 0.98 0.98 0.972 0.98

respectively.

The training time of ELBA-NoC is about 1.5 hour for Mesh and Torus with six

di�erent tra�c patterns. However, the training process is taken o�-line and during the

performance prediction, it does not incur additional overhead. Timing comparisons

have been made for the testing con�gurations considered. The simulation time for

Mesh architecture with six tra�c patterns using Booksim simulator is 1∗108 seconds

whereas ELBA-NoC was able to predict same results in 2460 seconds. For Torus

architecture the simulation time is 9.23∗107 seconds whereas ELBA-NoC took 2803

seconds.

Table 4.11 shows the detailed time comparison of Mesh and Torus architectures
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Table 4.10: Error Metrics of ML models for NoC parameters with various Synthetic
tra�c patterns for Torus architecture

Error Metrics for Di�erent NoC parameters with various Synthetic tra�c patterns for 3D Torus

Tra�c

Patterns

Error

Metrics

Performance Parameters
Power Parameters

Router Components Power Total Power

ANL APL AFL AHC BP CBP VCAP SAP RP TP

Uniform

MAE 0.042 0.055 0.058 0.0063 0.0053 0.052 0.0043 0.009 0.063 0.053

MSE 0.0016 0.0029 0.0032 0.00047 0.0084 0.0083 0.0073 0.00843 0.022 0.0072

RMSE 0.053 0.048 0.051 0.068 0.0492 0.0481 0.037 0.067 0.042 0.039

R-squared 0.99 0.99 0.991 0.99 0.98 0.98 0.982 0.97 0.98 0.98

Tornado

MAE 0.0712 0.0742 0.0634 0.00381 0.047 0.053 0.0427 0.0031 0.023 0.0081

MSE 0.0034 0.0039 0.0029 0.0011 0.037 0.043 0.0364 0.00102 0.024 0.00112

RMSE 0.081 0.084 0.078 0.0063 0.071 0.0736 0.0711 0.0061 0.029 0.0887

R-squared 0.99 0.99 0.99 0.99 0.99 0.983 0.971 0.99 0.986 0.984

ANL APL AFL BP CBP VCAP SAP RP TP

Transpose

MAE 0.058 0.061 0.057 0.036 0.034 0.052 0.0015 0.003 0.049

MSE 0.003 0.004 0.0028 0.0073 0.0072 0.0014 0.00054 0.0043 0.006

RMSE 0.073 0.034 0.068 0.063 0.068 0.071 0.0022 0.009 0.052

R-squared 0.99 0.989 0.99 0.99 0.99 0.98 0.99 0.973 0.981

Shu�e

MAE 0.012 0.001 0.003 0.042 0.048 0.016 0.024 0.017 0.043

MSE 0.0015 0.0005 0.00032 0.0041 0.008 0.006 0.0012 0.0064 0.0086

RMSE 0.006 0.001 0.013 0.083 0.093 0.075 0.094 0.064 0.0661

R-squared 0.99 0.99 0.99 0.973 0.971 0.98 0.977 0.98 0.969

Bitcom

MAE 0.022 0.028 0.031 0.022 0.012 0.02 0.03 0.041 0.037

MSE 0.0072 0.0031 0.0062 0.0053 0.013 0.027 0.039 0.057 0.003

RMSE 0.014 0.017 0.018 0.016 0.011 0.014 0.0175 0.021 0.019

R-squared 0.99 0.99 0.99 0.99 0.98 0.978 0.974 0.971 0.972

Bitrev

MAE 0.032 0.035 0.039 0.072 0.021 0.063 0.067 0.076 0.051

MSE 0.0045 0.007 0.0062 0.025 0.0042 0.043 0.035 0.064 0.031

RMSE 0.023 0.027 0.032 0.026 0.021 0.042 0.049 0.054 0.043

R-squared 0.99 0.99 0.99 0.98 0.99 0.98 0.98 0.986 0.984

for all the tra�c patterns considered. Speedup of 18K× to 20K× for individual

architecture was achieved over Booksim simulator.

4.6 Summary

In this chapter, a framework named Ensemble Learning-Based Accelerator (ELBA-

NoC) was presented for NoC parameters prediction. ELBA-NoC is built using Ran-

dom Forest Ensemble regression algorithm for �ve di�erent architectures including

both 2D and 3D architectures (2DMesh, 2DTorus, Cmesh, 3DMesh, 3DTorus). The

Framework has been used in two scenarios, �rst, it is used to predict average latency

until the architecture reaches its saturation area for 6×6 to 10×10. Second, it is
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Table 4.11: Timing comparison of simulation results with ELBA-NoC for 3D NoC
architectures

Tra�c

Patterns

ELBA-NoC

Time

for 3D Mesh

Simulation Time

for 3D Mesh

ELBA-NoC

Time

for 3D Torus

Simulation Time

for 3D Torus

(Seconds) (Seconds) (Hours) (Seconds) (Seconds) (Hours)

Uniform 1100 45149670 12541.57 1167 39842447.4 11067.35

Tornado 880 51871277.7 14408.96 1362 49818420 13838.48

Shu�e 102.4 603459.45 167.63 62 267533.84 74.31

Transpose 96 813253.16 225.9 58 259276.8 72.02

Bitrev 128 886701.44 246.31 66 273250.56 75.9

Bitcom 153.6 965830.4 268.29 88 1888931.975 524.7

used to predict performance, power and area parameters. To enable design space

exploration of NoC, all the micro-architectural parameters like architecture sizes, in-

jection rates, virtual channels, bu�ers and tra�c patterns were considered. This

allows system-level designers to perform design space exploration e�ciently which is

fast and accurate without having to know the details of the underlying architecture.

The overall accuracy of 94% to 96% has been observed for both 2D and 3D NoC

architectures. Framework predicts the values of NoCs similar to the conventional

cycle-accurate Booksim simulator while providing a minimum 16K× speedup with

4% to 6% error rate.
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Chapter 5

Floorplan-Based Learning Framework

In this chapter, two di�erent simulators are explored one with a �xed delay between

the IPs and another with the accurate dealy. Current simulators consist of a �xed

delay component, and the length of the connection is determined by the physical

dimension of the chip components. To determine the correct length of the link the

integration of physical characteristics of the chip is required. Therefore ties of vary-

ing length and latency exist in the chip depending on the topology. Floorplan of a

topology refers to the exact physical arrangement of nodes in the network. Based on

the communication link in possible cases there may be many �oorplans for the same

topology.

In Booksim2.0 (Jiang et al. [2013]) simulator the architecture will have a �xed link

delay length between the nodes. In (Halavar and Talawar [2018]) author has modi�ed

the Booksim simulator to work for �oorplan based (accurate delay) architectures.

Hence, both simulators one with �xed delay length and another with accurate delay

are used in this thesis. Figure 5.1 shows both working of standard Booksim simulator

and modi�ed Booksim simulator.

A uni�ed framework named Knowledgeable Network-on-Chip Accelerator (K-NoC)

is presented which predicts design parameters of both simulators considered. Random

Forest algorithm is used to build K-NoC and multiprocessing scheme is added along

with K-NoC such that all the considered con�gurations can be evaluated simultane-

ously.
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Figure 5.1: Working scenarios of Standard and Floorplan based Booksim simulators.

5.1 Study of Floorplan-Based Simulator

A detailed study was done on working of both simulators one with �xed delay and

another with accurate delay. By the results it can be seen that the accurate delay

simulator gives more latency when compared to the �xed delay simulator which can be

observed in the Figure 5.2 where x-axis speci�es the topology sizes with latency values

of both simulators and y-axis speci�es the average network latency in cycles. The ex-

periment was done for uniform tra�c pattern with virtual channel 4 and bu�er depth

10. Latency values of two simulators specify that �oor plan (accurate delay) simulator

gives more latency when compared to standard (�xed delay) simulator (Halavar and

Talawar [2018]).

5.2 Experimental Results

In this section, experiments were conducted for two simulators considered. Results

are represented in two scenarios, the �rst scenario predicts the worst-case latency

analysis and second scenario predicts the performance, power, and area parameters

of Mesh architectures.
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Figure 5.2: Latency values of Standard and Floorplan based Booksim simulators.
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Figure 5.3: Saturation points of Booksim and Modi�ed Booksim simulators for
various architecture sizes

5.2.1 Worst Case Latency analysis

By the observed results it can be seen that modi�ed Booksim (accurate delay) simu-

lator saturates early when compared the actual standard Booksim (�xed delay) sim-
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ulator which can be observed in Figure 5.3. As speci�ed earlier the latency value is

more for accurate delay simulator when compared to �xed delay simulator which can

be seen in Figure 5.2. Hence experiments for both simulators have been done and

results have been shown for 7×7, 8×8, 9×9 and 10×10 with di�erent VCs results for

other architecture sizes are similar to the results shown.

Experiments were conducted from injection rate 0.001 to saturation point but,

for representation in graphs, injection rates were considered from 0.01 to saturation

point.

Figure 5.4 shows the comparison of K-NoC with standard Booksim for Mesh ar-

chitectures. The �rst three �gures represent results for uniform tra�c pattern and

next three �gures represent results for tornado tra�c pattern with VCs 2, 3 and 4

for topology sizes 7×7 to 10×10. As it can be observed in both tra�c patterns VC2

saturates �rst, VC3 saturates second, then VC4 saturates last as can be seen in Figure

5.4. K-NoC was able to predict the latency values with less than 3% error rate.

Figure 5.4 shows the comparison of K-NoC with standard Booksim for Mesh ar-

chitectures. Where (a), (b), (c) shows the results of uniform tra�c pattern & (d), (e),

(f) shows the results of tornado tra�c pattern with VCs 2, 3 and 4 for topology sizes

7×7 to 10 × 10. As it can be observed in both tra�c patterns VC2 saturates �rst,

VC3 saturates second, then VC4 saturates last as can be seen in Figure 5.4. K-NoC

was able to predict the latency values with less than 3% error rate.

Figure 5.5 shows the comparison of K-NoC with modi�ed Booksim for Mesh ar-

chitectures. Where (a), (b), (c) shows the results of uniform tra�c pattern & (d),

(e), (f) shows the results of tornado tra�c pattern with VCs 2, 3 and 4 for topology

sizes 7×7 to 10×10. K-NoC was able to predict the latency values with less than 4%

error rate.

K-NoC was able to predict the latency values of both simulators considered with

an error rate of less than 4%. Table 5.1 represents the saturation points of various

architecture sizes and di�erent VCs for both simulators considered.

The following table will be very bene�cial for the chip designers as they can limit

the injection load to the architectures by referring the table in both �xed and accurate

delay scenarios.

Table 5.2 represents the di�erent error metrics for both simulators. It can be
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Figure 5.4: Latency comparison of K-NoC with Standard Booksim for Mesh with
Uniform and Tornado tra�c patterns.

Table 5.1: Saturation points of Standard and Modi�ed Booksim Simulator for
Di�erent Architecture sizes with various Virtual Channels.

Saturation Points of Booksim Simulators for Di�erent Virtual Channels

Saturation points for Fixed-Delay simulator Saturation points for Accurate-Delay simulator

Topology

Sizes

Uniform Tra�c Pattern Tornado Tra�c Pattern Uniform Tra�c Pattern Tornado Tra�c Pattern

VC=2 VC=3 VC=4 VC=2 VC=3 VC=4 VC=2 VC=3 VC=4 VC=2 VC=3 VC=4

6x6 0.095 0.15 0.2 0.075 0.15 0.2 0.055 0.09 0.15 0.035 0.06 0.085

7x7 0.085 0.15 0.2 0.07 0.08 0.15 0.045 0.08 0.1 0.03 0.04 0.065

8x8 0.07 0.15 0.15 0.045 0.075 0.1 0.035 0.065 0.095 0.02 0.035 0.06

9x9 0.06 0.1 0.15 0.04 0.07 0.09 0.03 0.055 0.085 0.015 0.03 0.055

10x10 0.055 0.09 0.15 0.035 0.06 0.085 0.03 0.05 0.075 0.015 0.03 0.045
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Figure 5.5: Latency comparison of K-NoC with Modi�ed Booksim for Mesh with
Uniform and Tornado tra�c patterns.
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observed that MAE, MSE, RMSE are close to 0 and R-squared close to 1. Hence, it

speci�es the K-NoC was able to predict the values which are very close to the actual

results.

Table 5.2: Error Metrics of K-NoC for Latency values with Uniform and Tornado
tra�c patterns

Error Metrics of K-NoC for Booksim Simulators

Metrics
Standard Booksim Modi�ed Booksim

Uniform Tornado Uniform Tornado

MAE 0.0446 0.061 0.085 0.092

MSE 0.0084 0.019 0.032 0.38

RMSE 0.072 0.126 0.24 0.302

R-Squared 0.98 0.97 0.962 0.966

5.2.2 Predictions for Di�erent Mesh NoC Architectures

In this section, results for di�erent architecture sizes with various con�gurations are

shown. Predictions have been made for all the parameters of NoC from 21×21 to

75×75 topology sizes for uniform and tornado tra�c patterns for both standard and

modi�ed Booksim simulators.

Table 5.3 shows the di�erent error metrics for standard Booksim simulator. All the

values shown in the table are the average error rates of all the experiments conducted.

Experiments have been demonstrated for all tra�c patterns separately by varying

input parameters. K-NoC was able to predict performance parameters with the error

rate of 3% to 5%. In table NL (Network Latency), PL (Packet Latency) and FL

(Flit Latency) speci�es the mean of average and maximum latencies. For power

parameters, the error rate was 4% to 6%. It showed an average accuracy considering

all the parameters is around 95% to 97% for all the architectures.

Table 5.4 shows the di�erent error metrics for modi�ed Booksim simulator. All the

values shown in the table are the average error rates of all the experiments conducted.

Experiments have been demonstrated for all tra�c patterns separately by varying

input parameters. K-NoC was able to predict performance parameters with the error
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Table 5.3: Error Metrics of K-NoC for NoC parameters of Standard Booksim
Simulator

Error Metrics for Di�erent NoC parameters with various

Synthetic Tra�c Patterns

Tra�c

Patterns

Error

Metrics

Performance Parameters Power Parameters

NL PL FL AHC RP TP

Uniform

MAE 0.12 0.21 0.12 0.048 0.010 0.049

MSE 0.020 0.065 0.023 0.005 0.0001 0.004

RMSE 0.15 0.25 0.15 0.07 0.013 0.07

R-squared 0.99 0.99 0.99 0.99 0.95 0.978

Tornado

MAE 0.211 0.22 0.21 0.10 0.098 0.12

MSE 0.086 0.085 0.087 0.014 0.016 0.02

RMSE 0.29 0.3 0.294 0.11 0.12 0.024

R-squared 0.99 0.99 0.99 0.99 0.95 0.974

Transpose

NL PL FL RP TP

MAE 0.09 0.089 0.068 0.03 0.18

MSE 0.015 0.016 0.007 0.002 0.11

RMSE 0.12 0.124 0.089 0.04 0.3

R-squared 0.99 0.99 0.998 0.90 0.94

Shu�e

MAE 0.014 0.0144 0.0141 0.025 0.05

MSE 0.003 0.0034 0.00033 0.008 0.007

RMSE 0.018 0.017 0.0181 0.02 0.08

R-squared 0.99 0.99 0.99 0.90 0.95

Bitcom

MAE 0.18 0.10 0.039 0.15 0.116

MSE 0.03 0.014 0.003 0.06 0.04

RMSE 0.19 0.11 0.05 0.25 0.2

R-squared 0.99 0.99 0.99 0.89 0.972

Bitrev

MAE 0.75 0.08 0.094 0.16 0.101

MSE 0.008 0.016 0.0167 0.06 0.03

RMSE 0.09 0.12 0.129 0.26 0.17

R-squared 0.99 0.99 0.99 0.93 0.97

rate of 4% to 6% and for power parameters, the error rate was 5% to 7%. It showed

an average accuracy considering all the parameters is around 94% to 96% for NoC

architectures. The error rates of router area and total area for Mesh topology are 1%

to 2% respectively.

According to the con�gurations considered in this work, the individual simulator

needs to simulated for around 10860 times to get the results of various NoC architec-
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Table 5.4: Error Metrics of K-NoC for NoC parameters of Modi�ed Booksim
Simulator

Error Metrics for Di�erent NoC parameters with various

Synthetic Tra�c Patterns

Tra�c

Patterns

Error

Metrics

Performance Parameters Power Parameters

NL PL FL AHC RP TP

Uniform

MAE 0.19 0.26 0.21 0.052 0.018 0.062

MSE 0.026 0.074 0.031 0.006 0.0093 0.0086

RMSE 0.21 0.3 0.26 0.082 0.014 0.081

R-squared 0.98 0.98 0.98 0.99 0.95 0.963

Tornado

MAE 0.29 0.27 0.26 0.2 0.12 0.16

MSE 0.091 0.093 0.0912 0.022 0.021 0.03

RMSE 0.34 0.38 0.4 0.16 0.18 0.036

R-squared 0.98 0.98 0.98 0.98 0.94 0.96

Transpose

NL PL FL RP TP

MAE 0.11 0.093 0.076 0.043 0.23

MSE 0.027 0.023 0.0091 0.0046 0.26

RMSE 0.23 0.27 0.093 0.08 0.41

R-squared 0.97 0.98 0.98 0.94 0.93

Shu�e

MAE 0.027 0.019 0.026 0.034 0.061

MSE 0.008 0.0071 0.0023 0.0092 0.0082

RMSE 0.028 0.031 0.025 0.033 0.086

R-squared 0.98 0.98 0.98 0.93 0.96

Bitcom

MAE 0.22 0.21 0.044 0.23 0.28

MSE 0.051 0.023 0.0041 0.071 0.061

RMSE 0.22 0.18 0.081 0.29 0.31

R-squared 0.98 0.98 0.98 0.92 0.96

Bitrev

MAE 0.62 0.091 0.11 0.24 0.20

MSE 0.012 0.027 0.022 0.073 0.042

RMSE 0.093 0.18 0.19 0.33 0.29

R-squared 0.98 0.98 0.98 0.93 0.95

tures. The advantage of using multiprocessing scheme in ML framework is that all

21720 simulation results can be obtained in a single run with good accuracy and with

a minimum speedup of 12K×.

Timing comparisons have been made for the testing con�gurations considered.

Table 5.5 shows the execution times of the Booksim simulators and the K-NoC for

Mesh architectures. Total time taken to complete the execution of all architectural
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sizes with di�erent tra�c patterns for standard Booksim simulator was 6.1∗107 sec-

onds which is 706.63 days whereas K-NoC was able to predict same results in 4824.6

seconds which is 1.34 hours. Whereas modi�ed Booksim simulator took to simulate

all the architectures is 3.8∗107 seconds which is 440.1 days and K-NoC predicted the

same results in 4530 seconds which is 1.26 hours. A minimum speedup of 12K× to

15K× speedup achieved over cycle-accurate simulator for both simulators considered.

Table 5.5: Timing Comparison of Simulation results with K-NoC for di�erent
Synthetic Tra�c patterns

Tra�c

Patterns

K-NoC Timings for

Standard Booksim

Standard Booksim

Simulation Timings

K-NoC Timings for

Modi�ed Booksim

Modi�ed Booksim

Simulation Timings

(Seconds) (Seconds) (Hours) (Seconds) (Seconds) (Hours)

Uniform

4824.6

(1.34 hours)

26955540
7487.65

(311.99 days)

4530

(1.26 hours)

19194120
5331.7

(222.15 days)

Tornado 33720300
9366.75

(390.28 days)
18818415

5227.34

(217.81 days)

Shu�e 167136 46.43 2932 0.81

Transpose 198411.36 55.11 2680.32 0.74

Bitrev 129648 36.01 3241 0.9

Bitcom 147456 40.96 3091 0.86

5.3 Summary

A uni�ed framework named Knowledgeable Network-on-Chip Accelerator (K-NoC)

has been proposed to predict the performance, power, and area parameters of Mesh

topology for the �xed delay and accurate delay between IPs under various synthetic

tra�c patterns. Experiments were conducted to predict results in two di�erent situa-

tions, �rst was predicting worst-case latency analysis and second was to predict the all

output parameters like network latency (average, maximum), packet latency (average,

maximum), �it latency (average, maximum), average hop count, switch area, total

area, switch power and total power for Mesh topology. The overall accuracy of K-NoC

for standard Booksim results is 95% to 97% has been observed and for modi�ed Book-

sim results K-NoC predicted with the accuracy of 94% to 96%. K-NoC predicted the

values of NoCs similar to the conventional cycle-accurate Booksim simulators while

providing minimum 12K× speedup with an error rate less than 8%.
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Chapter 6

Summary and Conclusions

NoCs became an integral part of modern many-core processors; NoCs research and

development play a key role in the design of future large-scale architectures with

hundreds to thousands. However, the lack of fast modelling methodologies that can

provide a high degree of accuracy is a major obstacle to research and development

of large-scale NoCs. This dissertation proposed frameworks to resolve the problem of

simulation speed, thus allowing for fast and accurate simulation of NoCs with up to

thousands of nodes.

This thesis summaries the research work is done so far. Firstly, a detailed study

of Booksim NoC simulator was done as it is one of the most widely used simulator in

NoC community. Simulation time increases as the resources and size of the architec-

ture increases. To overcome this problem, a highly parameterized machine learning

framework named Learning-Based Framework (LBF-NoC) was proposed which can be

used to predict the performance, power and area parameters of direct (Mesh, Torus,

Cmesh), indirect(Fat-Tree, Flat�y) NoC architectures. Analysis of di�erent regres-

sion algorithms namely arti�cial neural networks with identity and relu activation

functions, di�erent generalized linear regression algorithms, thatis lasso, lasso-lars,

larsCV, bayesian-ridge, linear, ridge, elastic-net and support vector regression (SVR)

with linear, radial basis function, polynomial kernels have been made while build-

ing the framework. Among all the regression algorithms, the lowest error rate was

observed in the SVR algorithm. Hence, the SVR algorithm has been considered in

LBF-NoC. It predicts the values of NoCs similar to conventional cycle-accurate Book-

sim simulator while providing a 5000× speedup with 5% to 6% error.

To get an e�cient NoC design, chip designers need to simulate the simulator or
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the proposed framework with various con�gurations. To overcome this problem mul-

tiprocessing scheme was added along with machine learning framework such that all

combinations of considered NoC con�gurations can be executed in a simultaneously.

Another framework was proposed named Ensemble Learning-Based Accelerator

(ELBA-NoC) which was used to predict parameters in two di�erent scenarios. In the

�rst scenario, it is used to predict the worst-case latency analysis, as injection rate is

one of the critical factors which a�ects the e�ciency of the NoC communication. In

the second scenario, it predicts the complete design space exploration of �ve di�erent

architectures considering both 2D and 3D NoCs. ELBA-NoC was tested with above-

mentioned regression algorithms and failed to predict the latency values when the

network enters the saturation region. Random Forest algorithm was able to predict

the latency values as the network reaches the saturation region and the same RF

algorithm was used to predict the NoC parameters as it worked e�ciently than SVR.

The overall accuracy of 94% to 96% has been observed for both 2D and 3D NoC

architectures. ELBA-NoC predicts the values of NoCs similar to the conventional

cycle-accurate Booksim simulator while providing a minimum 16K× speedup with

4% to 6% error rate.

A modi�ed Booksim simulator was adopted as it had an accurate delay between

the nodes and the standard Booksim has a �xed delay between the nodes. A uni�ed

framework was proposed which predicts the complete design space exploration of two

simulators. The overall accuracy of the proposed framework for standard Booksim

results is 95% to 97% and for modi�ed Booksim results it is 94% to 96%. A minimum

12K× speedup with error rate less than 6% was achieved.

The future work focus on creating a generalized framework which can be used to

predict all 2D and 3D topologies by considering other NoC simulators. Evaluating

the machine learning framework with real time benchmarks.
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