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ABSTRACT

In large scale Wireless Sensor Networks (WSNs) the amount of data generated is enor-

mous. Data gathering in an energy efficient way is one of the important phenomenon.

The nodes in WSNs are randomly deployed, the data emerging from these nodes are

highly correlated either spatially or temporally. The data has to be processed efficiently

before it reaches the Base Station (BS) by using an efficient routing algorithm as well as

data aggregation methods. The data aggregation scheme should employ simple encod-

ing since the sensor nodes are battery operated. The proposed method discusses about a

data aggregation scheme using Compressive Sensing (CS) technique which makes use

of correlation among the sensor nodes. Using CS we can preserve the information con-

tained in a signal through linear projections and recover the signal using reconstruction

algorithm.

Ensuring energy efficiency, data reliability and security is important in WSNs. A

combination of variants of the cryptographic secret sharing technique and the disjoint

multipath routing scheme is an effective strategy to address these requirements. While

Shamir’s Secret Sharing (SSS) provides the desired reliability and information theoretic

security, but it is not energy efficient. Alternatively, Shamir’s Ramp Secret Sharing

(SRSS) provides energy efficiency and data reliability, but it is only computationally

secure. We argue that both these approaches can suffer from a Compromised Node

(CN) attack when a minimum number of nodes are compromised, and propose a new

scheme, which is energy efficient, provides data reliability, and is secure against a CN

attack. Proposed method, which we call Split Hop AES (SHAES) is highly energy effi-

cient, is independent of the underlying routing scheme and provides Semantic Security,

which helps in resisting CN attacks.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to Wireless Sensor Networks (WSNs)

The decision making process of human being is carried out based on the observation by

collecting the surrounding information. A Wireless Sensor Network (WSN) mimics this human

intelligence but in a larger scale, which can be utilized for different applications. Figure.1.1

shows several applications of WSN.

Figure 1.1: Applications of WSNs

WSNs consist of miniaturized nodes termed as sensor nodes which have limited power,

as they are battery operated. The tiny nodes are composed of a sensor and mote. The phys-

ical parameters such as temperature, humidity, light etc are picked up by the sensor. Mote is

accountable for communication as well as computation.

The ultimate goal of WSNs is to gather information on environment factors or object con-

ditions on behalf of human being. To achieve this goal, wireless sensor devices have been



designed and characterized as follows : First, they should be realized at low cost. Second,

they should have self-organizational capability. Third, they should be implemented as small as

possible. Last, but most important, they should have long lifetime Kim et al. (2015).

This chapter has been organized in the following sections. Section 1.2 provides a general

introduction of data aggregation in WSN’s. Section 1.3 gives an insight into Compressed Sens-

ing (CS) for data aggregation in WSNs. Section 1.4 gives details about how the Distributed

Compressive Sensing (DCS) helps to reduce data transmission. Section 1.5 elaborates the need

for security in WSN’s. Finally in 1.7, a brief outline of the contribution and the organization of

this thesis is given.

1.2 Data Aggregation in WSNs

The significant purpose of data aggregation schemes in WSNs, is to collectively accumulate

the data in an energy efficient way. The collected data has to be processed before arriving

at the Base Station (BS). At the BS, necessary action is taken depending on the information

collected by these tiny sensors deployed in the region of interest. For certain applications the

data outcome is really massive as well as redundant. The redundancy is introduced because

of the correlation, which exists among the collected data. The end objective at the BS is to

take necessary action, from the sensors with minimal amount of collected data, which in return

enhances the life span of the network. Collection, processing and delivery of the sensor data

are to be managed in an efficient way. When the purpose to achieve is, an energy-efficient

data collection without compromising the fidelity of the recovered data then data, aggregation

methods play a very important role.

Sensing, data processing and transmission are the three different phases of a sensor node

which consume energy. But data processing usually consumes lesser power than the commu-

nication module. Data delivery from the nodes to the BS happens in a multi-hop manner. The

consumption of energy, of a particular node may lead to network disconnections leading to the

data unreachable to the BS Jung et al. (2011); Marcelloni and Vecchio (2008). Thus, there is a

need to aggregate the data before transmission for the betterment of the entire network.

Few data aggregation schemes involve only simple function values of the sensed data. In

certain applications, we do not expect full recovery of the sensed data. In such cases the aggre-

gate module only extracts certain quantities from the collected data Madden et al. (2002). By

2



using Slepian-wolf coding Slepian and Wolf (1973), the original data can be exactly recovered;

nevertheless prior knowledge of the spatial data correlation is required. Several distributed

coding algorithms have been developed which involve inter-sensor communication overhead

that affects the power consumption of the involved nodes. In distributed coding, only limited

progress has been achieved, the direct implementation would need huge look-up tables, and ap-

proaches combining pre or post processing of the data to remove spatial correlations combined

with Slepian wolf coding Slepian and Wolf (1973) appear to have limited applicability Duarte

et al. (2006).

1.3 Compressed Sensing fog data aggregation

Data aggregation scheme for a WSN, must minimize the information complexity without

the loss of fidelity of the acquired data. The outcome of such aggregation scheme reflects in

the energy consumption of the sensor nodes which in turn enhances the life span of the entire

network. The objective can be achieved by taking correlation properties into account either

spatial, temporal or both.

1.3.1 Temporal correlation

In WSNs, few applications require periodic data update, for example, event tracking needs

the data to be monitored as well as periodic transmission. The periodic data may be correlated

depending on the correlation present between the periodic data. The amount of correlation

between successive sensor measurements defines the degree of temporal correlation. The re-

dundancy of the network is determined by the degree of correlation among the periodic mea-

surements.

1.3.2 Spatial correlation

Certain WSN applications require the sensor nodes to be deployed densely and spatially. In

that case few sensors in the deployed region record similar phenomenon, in that case the data

from these sensors are spatially correlated. As these sensors are randomly deployed there may

be few sensors which fall in the same vicinity. The overlap of the coverage area of these sen-

sors, introduces redundancy into the network which further degrades the lifetime of the entire

network.

3



WSN equipped for an environmental, habitat monitoring collects information like tem-

perature, humidity, pressure, light intensity etc, which may be correlated either spatially or

temporally. While designing a WSN, one has to give importance to criteria such as energy

consumption, lifetime, delay etc. As these sensor nodes are battery powered, energy consump-

tion is a primitive factor while designing the network. The process of efficient collection and

transmission of the sensed data over the network for final decision at the sink, along with ex-

panding the life span of the network can be done through Compressive Sensing. The same can

be achieved by exploring the correlations among the sensed data.

1.4 Security in WSNs

The sensor networks deployed for mission-critical tasks, such as military applications must

employ certain security needs during its design. In wireless system, it is easy to extract in-

formation, which results in a leakage of information as well as chance of eavesdropping and

packet inflow by an adversary. Thus security to WSN to ensure secrecy and privacy of the data

has to be properly addressed. One of the major internal attacks is, node compromise, by which

an adversary can inject an internal attack. A Compromised Node (CN) attack is an attack in

which an adversary compromises a certain subset of nodes to passively intercept data packets

traversing the compromised nodes Lou and Kwon (2006a); Liu et al. (2012a). Attacks by a

Compromised node happens in the following ways:.

• It can steal information from the encrypted/non encrypted data which is forwarded by the
compromised node.

• It can convey false message to the network.

• It can give false information about a normal node as a Compromised node.

• It can breach routing by initiating routing attacks such as manipulating the routing table,
selective forwarding etc.

• It may collude with other compromised node and interrupts its normal networking func-
tion.

In addition to security issues, Reliability also becomes important, particularly in multi-

path routing that is often achieved with the help of data redundancy. Typically, reliability is

achieved in multi-path routing by creating multiple copies of the same data and routing them

4



via different paths. When security is combined with reliability in multi-path routing, creating

copies of data increases the chances of an adversary accessing the data, unless some security

mechanism is employed (like encryption). A common method for combining reliability and

security in multi-path routing is to split the data based on secret sharing schemes then send the

shares on different paths to reach the BS. In order to achieve greater security, previous works

have used the approach of dispersing the shares randomly and then sending the data towards

the BS. Original data is reconstructed only when the required number of shares reaches the

BS. Higher the dispersion of shares, higher the associated communications and thus, higher the

communication energy drain. Even after investing more communication energy in dispersion,

degree of security achieved may be small because all shares must converge at the BS. There-

fore, the dispersion of shares may not completely solve the security problem when multi-hop

communication routing is used and when the shares converge to single BS. Therefore, we opted

not to disperse the data for security purposes and thereby reduced the communication energy

drain. Instead of dispersion, the approach followed in this work invests a small amount of com-

putation energy to achieve better security over the entire network including the area near the

BS.

1.5 Problem formulation

In WSNs the sensor nodes are randomly deployed, thus the chances of existence of redun-

dancy among the nodes are very high. Due to this redundancy there is unnecessary exhaustion

of energy of the sensor nodes. One of the major issues in WSN is the energy efficiency, as

these tiny sensor nodes are battery operated in which the battery can be neither replaced nor

charged. Thus there should be a mechanism which evaluates the correlation, and finally reduces

the redundant data traversing in the network which finally improves the network lifetime. The

data aggregation method must involve simple procedure at the encoding side so that the sensor

nodes must not expel much of its energy. A method in which the complexity must be moved to

the BS which does not pose energy saving constraint.

Aging of WSN can be minimized by, compressing the data of individual sensor node, which

cumulatively serves the purpose. Due to random deployment of sensor nodes there exists intra

and inter correlations among the sensor nodes. Data aggregation using Compressive Sensing

can be used to explore the intra correlation. Further the data can still be aggregated by exploring
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intra as well as inter correlations, which can further enhance the lifetime of the network.

The sensors are usually deployed in remote and hostile environment, which are susceptible

to internal/external attacks. The aggregated data, traverses in the network through multi-hop

manner and finally reaches the BS, where finally the data is reconstructed. But if the node or

group of nodes gets compromised the data can not be reconstructed accurately. As compared

to the traditional networks WSNs faces more security issues as they are deployed in hostile

environment.

In order to achieve secure reliable communication in WSN, the data is split into multiple

shares using secret sharing schemes Lou and Kwon (2006a). Finally the shares need to con-

verge at the BS, thus the nodes around the BS will be pruned to be the prime location for

data compromise. The adversary can compromise a certain number of nodes for the passive

interception of data i.e CN attack.

1.6 Objectives

We propose following research problems towards the research topic Efficient Data Aggre-

gation and Secured Routing in WSN. The first two objectives deal with data aggregation and

the third one with secured routing.

1.6.1 Objective 1

A data aggregation scheme is proposed, which deals with data compression and reconstruc-

tion based on Compressive Sensing (CS), which uses correlation between and within nodes.

The performance metrics namely the lifetime of the network, the throughput and the re-

construction error will be evaluated by considering Low Energy Adaptive Clustering Hierarchy

(LEACH) and Multi Threshold adaptive Range Clustering (MTRAC) algorithms. The com-

pressed data at the BS is recovered using greed based method. Evaluation of the available

greedy methods for data recovery and a comparison of the greedy recovery methods consider-

ing synthetic and real data are carried out.
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1.6.2 Objective 2

Another data aggregation scheme is proposed exploring the intra and inter correlations,

through the concept of Joint Sparse Models (JSM) to reduce the amount of redundant data into

the WSN.

A comparison of joint recovery procedure with separate recovery using Simultaneous Or-

thogonal Matching Pursuit (S-OMP) and Orthogonal Matching Pursuit (OMP) algorithms has

been attempted along with validation of the results with indoor and outdoor data sets.

1.6.3 Objective 3

A new scheme that is energy efficient, reliable, and secure against CN attacks is proposed

by combining Shamir’s Ramp Secret Sharing (SRSS) and a round-reduced AES cipher, which

we call split hop AES (SHAES).

Ensuring energy efficiency, data reliability, and security are important issues in WSNs.

A combination of variants from the cryptographic secret sharing technique and the disjoint

multipath routing scheme is an effective strategy to address these requirements.

1.7 Organization of the Thesis

In chapter 2, a detailed literature survey of the various methods employing CS for data

aggregation in WSNs is provided. It elucidates an insight into the various protocols and al-

gorithms proposed related to the proposed objective. It also includes a detailed survey related

to security issues in WSNs, in which a detailed survey of the possible threats and solutions to

them have been summarized.

Using CS, we can preserve the information contained in a signal through linear projec-

tions and recover the signal using reconstruction algorithm. Introduction to CS along with

the mathematical background has been presented in Chapter 3. Routing plays an important

role in achieving energy efficiency in a network. We employ CS for clustered single hop net-

work by considering LEACH and M-TRAC protocols, we evaluate the lifetime of the network

with/without CS. For different compression ratios the error has been calculated by consider-

ing the real data set. Further we investigate the easy implementation of greedy based methods

for sparse signal recovery. Comparison of the greedy based methods with synthetic and real

7



data has been presented. The detailed study of CS and its implementation for WSN has been

presented in Chapter 3.

Chapter 4 discusses the Joint sparse models and Joint recovery techniques in WSNs. Along

with simulations, validation of the joint recovery procedures has been presented. Explanation

regarding how the reduction of the compressed vector length can be achieved by exploring

Temporal and Spatial correlations is presented. The simulations have been carried out using

greedy based methods. The results of joint recovery and separate recovery have been presented

which shows if there exists correlation among the sensors DCS is a favorable solution.

In Chapter 5, we discuss about Shamir’s Secret Sharing (SSS) and Shamir’s Ramp Secret

Sharing (SRSS) its advantages and drawbacks and propose a method to combat Compromised

Node (CN) attack.

Finally, Chapter 6 provides concluding remarks of the thesis and future scope.
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CHAPTER 2

LITERATURE REVIEW

2.1 Data Aggregation using CS

Data gathering in an energy efficient way is one of the important requirements in WSNs.

With incorporation of CS, as a data aggregation scheme the information contained in the sig-

nal is safely maintained through its projections which can be reconstructed later. Inclusion of

CS for an energy efficient routing technique further enhances the lifetime of the network. The

dimensionality reduction at the transmitter is carried out using a measurement matrix. At the

receiver data is recovered using reliable CS recovery methods. Depending upon the need of

the application, suitable recovery methods can be applied. The reconstruction errors vary de-

pending upon the reconstruction methods. Greedy based recovery methods are more popular,

because of its low complexity and low implementation cost. The success rate of any reconstruc-

tion method depends on the sparsity of the data. Identification of correct basis is an essential

requirement as the signal may not be sparse in the acquired domain. The following section lists

several WSN architectures using CS, as a data aggregation method.

2.1.1 Related work on CS in WSNs

Zheng et al. (2015) in his paper, Data Gathering with Compressive Sensing in Wireless

Sensor Networks: A Random Walk Based Approach, proposed a random walk algorithm for

data gathering in WSNs. The paper provides mathematical foundations to allow random mea-

surements to be collected in a random walk based manner. Simulation results show that the pro-

posed scheme can significantly reduce the communication cost compared to existing schemes

using dense random projections and sparse random projections.

Zhu et al. (2015) proposed an energy efficient Data Gathering Scheme (DGS) for unreli-

able WSN using CS, which addresses packet loss problem in CS based aggregation. DGS-CS

consists of 3 procedures. i) Procedure of the Source Node (PSN) ii) Procedure of the Interme-

diate Node (PIN) iii) Procedure of the Sink Node (POS) Performance comparison of DGS-CS



and TRS through numerical analysis has been carried out. Energy consumption of TRS and

DGS-CS have been derived by defining Energy Saving efficiency (ESE), Performance analysis

of Traditional Routing Scheme (TRS) and DGS-CS is carried out by considering WSN appli-

cation such as temperature or humidity capture (data packets have high degree of correlation).

Qin and Yin (2015) proposed a robust sparsity estimation method in CS. In this paper a

greedy algorithm that uses relative threshold to estimate the sparsity is proposed. Results show

that estimation methods do not require the reconstruction of the whole signal and they do not

rely on the power of the signal. Comparison of the estimation with traditional methods with

different measurements and SNR scenarios is presented. When the measurements are large

enough both methods present almost same performance. Nevertheless, proposed method shows

20% improvement when the measurements gets reduced than traditional method.

Xing et al. (2015) in this paper, Energy-Balanced Data Gathering and Aggregating in

WSNs: A Compressed Sensing Scheme proposes Energy-balanced data Gathering and Aggre-

gating (EDGA) scheme that integrates a clustering hierarchical structure with the CS. Design

of a data reconstruction algorithm is based on orthogonal matching pursuit theory. Results

shows that for the sparse network settings, proposed EDGA scheme achieves an improvement

by 15.9% and 30.6% in terms of the network lifetime compared with Multi Channel singular

Spectrum Analysis (MSSA) and Energy Efficient Information Collection (EEIC) algorithms,

In dense and mediated network settings, EDGA scheme achieves the enhancement in network

lifetime by an amount of 25.1% and 76.6%, 21.1%, and 54.2% . Claims scheme achieved better

reconstruction accuracy with less than 20% error in face of 90% data missing probability.

Liu et al. (2015) proposed The Method of data aggregation for WSNs based on LEACH-

CS. Here, the Formation LEACH protocol is used for the cluster formation. Gaussian random

matrix is used to perform linear compression of the sensor data at each cluster head. Results

show that the energy consumption at each node is one of critical issues. Reconstruction of the

data at the BS is done considering, compression ratio of 0.4, 0.6 and ,0.8. Errors of recon-

structed data using Total Variation (TV) method are 0.0007, 0.0001, 0.00009 respectively. TV

matching method is claimed to be better compared to Orthogonal Matching Pursuit (OMP) and

optimal OMP.

Rossi et al. (2015) in their paper, Evaluating the Gap Between Compressive Sensing and

Distributed Source Coding in WSN presented a comparative performance analysis of CS and
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DSC in terms of reconstruction error vs energy requirements. Authors have compared Temporal

Correlation (TC) based algorithms (LTC, DCT) against Source Coding based (DSC) and CS-

based techniques. If the correlation statistics are unknown, CS is deemed a valid compression

approach as it often outperforms competing algorithms and, in the worst cases it performs in

between temporal and spatial correlation-based compression.

Caione et al. (2014) in their paper, Compressive Sensing Optimization for Signal Ensembles

in WSNs presented an investigation of the two frameworks on sparsity and compressibility of

multidimensional signals and signal ensembles, Distributed compressed sensing (DCS) and

Kronecker compressive sensing (KCS). Authors have exploited the inter-signals correlations

present in WSNs data-sets to achieve a better compression factor. A better reconstruction

quality under energy constrains is achieved. However a trade-off between recovery quality and

energy spent in compression is needed. DCS and KCS schemes have been compared. From

the results the recovery complexity for KCS can be seen, which infers that DCS is preferred for

signal recovery in WSNs when CS is used for medium-sized networks.

Xu et al. (2013) proposed a power-efficient Hierarchical data aggregation scheme using

CS in WSNs. Integration of a multi-resolution hierarchical structure with CS is presented to

optimize the amount of data transmitted. Authors proposed a multiple compression threshold,

which adapts based on the cluster sizes at different levels. Paper presents simulations of the

SNR graph for the proposed HDACS for networks of sizes 300,400,500,600,700. It is seen that

the performance of HDACS method is independent of network size. Cost comparison chart of

HDACS with Plain CS (PCS) and Hybrid CS (HCS) is presented. HDACS method gives the

best energy efficiency especially for nodes working as cluster heads.

Xiang et al. (2013) in their paper Compressed Data Aggregation: Energy-Efficient and

High-Fidelity Data Collection presented a data aggregation using CS that achieves both re-

covery fidelity and energy efficiency in WSNs. Diffusion wavelets are used to find a sparse

basis. A minimum-energy data gathering problem has been proposed (MECDA) Investiga-

tion of minimum-energy CDA problem providing both an exact solution (for small networks)

and approximate solutions (for large networks) is presented. Authors have designed a proper

sparse basis based on diffusion wavelets to achieve high-fidelity recovery for data aggregated

from arbitrarily deployed WSNs. Comparison plot of CDA with plain CS is presented in the

paper. Comparison of CDA against non-aggregation and bench marking MECDA GREEDY
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for large-scale networks and comparison of non-aggregation and CDA with/without network

partition is done to validate the better energy efficiency of CDA with network partition.

Fragkiadakis et al. (2013) proposed a joint compressed-sensing and matrix-completion for

efficient data collection in WSNs. Minimizing the data to be transmitted to the sink is done

by applying the compressed sensing principles. Missing information due to packet loss is effi-

ciently recovered using the matrix completion theory. Using CS sensors compress the temper-

ature measurements using one out of three possible compression ratios (25%, 50%, and 75%).

The compressed measurements are transmitted to the sink using a suitable protocol over UDP.

The transmitted packet rate is varied so as to create an average packet loss in WSN that varies

from 10% to 80%, with a step of 10%. Each experiment is repeated for 50 times.

Quer et al. (2012) in their paper Sensing, Compression, and Recovery for WSNs (SCoRe1):

Sparse Signal Modeling and Monitoring Framework proposed a sparsity model that allows the

use of CS for the online recovery of large data sets in real WSN scenarios, exploiting Principal

Component Analysis (PCA) to capture the spatial and temporal characteristics of real signals.

Bayesian analysis is utilized to approximate the statistical distribution of the principal com-

ponents and to show that the Laplacian distribution provides an accurate representation of the

statistics of real data. SCoRe1 accommodates diverse interpolation techniques, either deter-

ministic or probabilistic, and embeds a control mechanism to automatically adapt the recovery

behavior to time varying signal statistics, while bounding the reconstruction error. Authors

claim that the proposed method is also robust to unpredictable changes in the signal statistics.

Wang et al. (2010) proposed a CS based random routing for multi-hop WSNs. The paper

focuses on a novel random routing scheme for efficient data gathering. The basic approach of

CS, recent technical advancements and their applications are presented. The paper proposes a

random routing method executed with CS. The paper presents a comparison Random routing

(RR)-CS with i) Sparse random sampling with CS SRS-CS ii) Dense sampling with CS (DS-

CS). The following are the inferences in the paper a) SRS-CS is not suitable for data gathering

with deficient sampling b) (RR-CS) is efficient for data gathering, performance is much better

than that of SRS-CS, and is very close to that of DS-CS, when the number of measurements

is relatively large. The energy consumption of SRS-CS and that of RR-CS is nearly the same.

But DS-CS is much higher than those of the other two schemes.
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Cao et al. (2008) in their paper Data Aggregation and Recovery in Wireless Sensor Net-

works Using Compressed Sensing addresses QoS issues by considering packet loss and energy

dissipation. A CS-oriented data aggregation technique for the multi-hop topology has been pre-

sented. Results of recovered lost data using CS (OMP) are presented. Paper gives simulation

results based on Recovery via the RIP properties.

2.2 Data aggregation using DCS

The inter-signal and intra-signal correlations are explored in DCS through the concept of

joint sparse models. Under DCS there are few Joint sparse models which fits into particular

situations pertain to WSN. Reconstruction of these models are done using Joint recovery pro-

cedures. In the literature we can find several recovery procedures. In DCS the data is reduced

based on the intra and inter correlations present among the data from the sensor nodes. Com-

pared to plain CS, in DCS it needs lesser measurements to reconstruct the data at the receiver.

Related work on data aggregation using DCS

A rich literature is available for collection of data ensemble in WSNs, most of the methods

exploit the correlation (intra/inter) among the collected data. The basic idea behind DCS theory

can be found in Baron et al. (2009), in which primary focus is on, compressing the vector

length, which further effects the communication cost of the signal to be transmitted. It also

explains the different joint sparsity models, relating the models with practical scenario and

modeling the framework through suitable joint sparsity model. With graphical model and proof

of theorems it also analyses the theoretical bound on measurement rates which is essential to

guarantee the perfect recovery of the signal through the compressed sparse signal.

Liu et al. (2018) proposes common-innovation subspace pursuit (CISP), to estimate the

common and innovation support sets separately, in order to minimize the reconstruction error

and computing time. Sundman et al. (2011) explored joint sparsity using joint OMP and joint

SP, but not experimented by considering real data. The work described in paper by Duarte et al.

(2006) explains DCS for WSN which can be widely applicable in sensor network environment.

By considering different sensor network datasets, implemented joint sparsity model to recover

the sensor signals. Even though the signals are not perfectly sparse the Joint Sparse Model

(JSM) provides a better approximation to explore the intra/inter correlations which exists in the
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collected data from sensors.

Alippi et al. (2013) described an aggregation method for WSN, making use of temporal

and spatial data dependencies present among the sensor nodes. In this paper these dependen-

cies are used to reconstruct the missing data, from the sensors. Authors in Wimalajeewa and

Varshney (2017) proposed a DCS method which is based on the covariance information of the

uncompressed samples but did not experiment with real data.

Implementation of a multi-channel EEG monitoring, based on CS is explained in the paper

by Djelouat et al. (2017). Recovery of the multi-channel signals through greedy based system

is presented. Caione et al. (2013) explained two framework DCS and Kronecker Compressive

Sensing (KCS) to reduce the amount of data, and to improve the network lifetime.

2.3 Energy-efficient and reliable data collection in WSNs

In the literature, there are various contributions towards security in WSNs. Liu et al. (2013)

proposes an authenticated group key agreement (AGKA) protocol, and demonstrates how it can

tackle node replication and Sybil attacks.

Zhou (2013) discusses efficient and secure routing protocol based on encryption and au-

thentication. This method involves encryption of all communicated packets. A few similar

security management methods can be found in Liu et al. (2013), which is based on trust-based

management Pan et al. (2013), signcryption Gu et al. (2013), key pre-distribution scheme, and

so on.

In Liu et al. (2009), reliability is achieved through re transmissions. Dong et al. (2016)

proposed a routing scheme called Reliability and Multipath Encounter Routing (RMER), to

achieve reliability and energy efficiency.

The first major contributions to the secure reliable data collection of sensor networks started

with H-SPREAD proposed by Lou and Kwon (2006a), which used Samir’s Secret Sharing

(SSS) scheme to generate multiple shares of the data. Additionally, a hybrid multipath scheme

was used to route the shares. However, the achieved security was low, because fixed multi-

paths were used to send the data. In addition, the presence of an adversary near the BS was not

considered in their approach.
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The work by Shu et al. (2010a) addresses the shortcomings of H-SPREAD by using the

randomized and highly dispersive nature of routing. This approach increased security compared

to H-SPREAD with the help of random dispersion.

Network lifetime and security were jointly considered in Liu et al. (2012a) with a com-

bination of randomized and deterministic multipath routing; however, the approach was very

specific to one particular type of deployment strategy, with respect to the deployment of nodes

(circular) and the BS (center of the network area).

Table 2.1: A summary of existing works

Works Core objective Assumption of secure Type of secret Encryption Security

area around BS sharing used used achieved

Anfeng Secure and Yes SSS No Medium

Liu et.al energy efficient (CN attack

(2012) reliable data is possible and random

collection dispersion of shares)

Tao Shu Secure Data Yes SSS No Medium

et.al (2010) Collection (CN attack

is possible and random

dispersion of shares)

Wenjing Secure and explicitly SSS No Low (CN

Lou and reliable data not attack is possible

Younggoo collection mentioned and no random

Kwon (2006) dispersion of shares)

Ching-Fang Secure group explicitly SRSS No Low (CN

Hsu et.al (2011) communications not attack is possible

mentioned with lesser number

of shares (SRSS))

Our Secure and No SRSS Yes High

approach energy efficient (achieves semantic

reliable data security and CN attack

collection is not possible)

The objective of the paper by Challal et al. (2011) was to achieve fault tolerance with

the help of the secure and efficient disjoint multipath routing strategy. The authors used data

duplication and the Information Dispersal Algorithm (IDA) to create multiple data for routing.

Similarly, this work assumed the perimeter area around the BS to always be secured. None of
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the previous approaches considered the possibility of adversaries being near the BS, which is

the prime location for obtaining maximum information from the complete network area. If an

adversary compromises enough nodes to obtain the threshold shares, then security is lost. The

work by Claveirole et al. (2008) addresses securing the data from aggregator node compromise,

making use of secret sharing and multi path routing.

A brief consolidated comparison of the previous works that relate to our proposed core objective

is presented in Table2.1.

In Perrig et al. (2002), the challenges in the security design of sensor networks are explored.

The notion of semantic security in the area of sensor networks was used in their Secure Network

Encryption Protocol (SNEP) design. Additionally, the authors emphasized that their first choice

was the use of the AES block cipher algorithm; however, due to constraints in sensor node

memory at that time, they opted for the RC5 algorithm. The need for semantic security in sensor

networks to avoid information leakage via eavesdropping has been reported in Shaheen et al.

(2007). The work in Hsu et al. (2011a) considers an ideal linear multi secret sharing (SRSS)

scheme in order to provide secure and energy efficient group communications in wireless mesh

networks. This approach enhanced energy efficiency, but could not overcome the CN attack

problem.
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CHAPTER 3

DATA AGGREGATION USING COMPRESSIVE SENSING

IN WSNs

3.1 Introduction

The main objective of sensors is to sense the physical changes in the area of interest, which

may include environmental monitoring, security applications, health monitoring etc. These sen-

sors finally have to transmit the observations to the control unit usually the Base Station (BS),

in order to perform necessary action. As these sensors are randomly deployed, few nearby sen-

sors may pick up same observations which are redundant. These redundancies cause burden to

the entire network which in turn lead to reduced network lifetime. The energy resources and

communication range of a sensor node, are limited. Thus expensive data transmission costs in

general can be reduced by using a suitable data compression technique.

Data aggregation methods minimize the redundant data transmission in order to reduce the

bandwidth usage of the network. There exists a good amount of correlation between the sensor

nodes. CS is an emerging field in WSNs in which simultaneous sensing and compression offers

a promising result particularly in large scale WSN. It greatly reduces sampling and computa-

tional costs.

CS works on the theory that the signal of interest can be preserved by using dimentionality

reduction technique. CS has already proved to be an effective solution in the field of image

compression as well as signal processing. Because of its attractive features, CS is also becom-

ing popular in the field of wireless communication and sensor networks. CS plays a significant

role in wireless channel estimation, signal detection data gathering and so on. An efficient WSN

must concentrate on enhancing the lifetime of the network by reducing the data transmission

Xu et al. (2013).



3.2 Compressive Sensing (CS)

Methodology followed in data processing involves, sensing or measuring the data in its

full length and then compress the data prior to storage/transmission. The conventional data

acquisition process is termed as full sensing plus compression. CS is a method in which the

length of the acquired data is minimized during sensing itself, so that extra compression step

can be eliminated. In a stage wise method when we get a relaxation in particular step the burden

is still present but is shifted. Similarly in CS since the acquisition step is made easy, but the

burden is moved to BS. Nevertheless the recovery procedures become complex. In order to

accomplish CS, the signal needs to be sparse. A signal is termed as sparse if most of the entries

are zeroes. Thus if it is possible to transform the signal into sparse then it is easy to employ CS

for such signals.

3.2.1 Signal acquisition and method of reconstruction in CS based system

Figure 3.1: Signal/Image acquisition in CS.

Letx = (x1, x2, x3, .......xN)T is the signal of dimension N, and x is k sparse when it consists

of only k nonzero values in the acquired signal either in the domain in which it is acquired or

in the transform domain. Consider the Fig.3.2, which depicts the humidity values captured by

the sensor. The signal in time domain can not be compressed, as it is not sparse. In order to

apply CS, the signal has to be transformed into a sparse signal. We perform the DCT of the

signal, then we can have larger and smaller component of the signal which can be considered

as a sparse signal as in Fig.3.2.

We can define x is k sparse in ψ if there are an orthonormal basis denoted by (ψ1, ψ2, ψ3, .......ψN)

as in equation 3.1.

x =

n∑
i=1

kiΨi or x = Ψk (3.1)
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Figure 3.2: Humidity signal in acquired and transformed domain.

CS theory affirms that a k sparse signal x of N dimension can be confined into y using M

(M� N) linear projections with the help of a M×N matrix as in equation 3.2

y = Φx = ΦΨk = Θk

Where Φ is the projection or measurement matrix.
(3.2)

In order to preserve the information contained in x, the M×N matrix Φ, must maintain the

inherent properties of a k sparse signal during the transformation of x ∈ RN to y ∈ RM.

3.2.2 Reconstruction model

A nonlinear algorithm is used in CS at receiver end to reconstruct original signal. This

nonlinear reconstruction algorithm requires knowledge of a representation basis (original or

transform) in which signal is sparse. There it needs a stable measurement matrix Φ and a

Reconstruction Algorithm to recover x from only m measurements y. Convex optimization and

Greedy pursuits are two primary reconstruction algorithms in CS. Reconstruction algorithms in

CS, try to solve y = Φx, and exploit the fact that solution is sparse, usually by minimizing l0, l1

or l2 norm over solution space. Restricted Isometric Property (RIP) Donoho (2006) guarantees

that we can fully describe the signal in compressed form by the M measurements where M <

N, but does not reveal anything about retrieving the original signal x. For Under-determined

system with M < N, how many directions ‘x’ can move in to preserve Ax =0 ?. The space

of such direction is known as the null space. If me move a point ′u′ in any such direction, we

leave the value of Au = A(u + x) = Au + Ax = Au unchanged.

The signal reconstruction algorithm must take the m measurements in the vector y, the ran-
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dom measurement matrix Φ and the basis Ψ and reconstruct the length-N signal S , or equiva-

lently its sparse coefficient vector S . Therefore we can say that this space can be spanned by

N − M linearly independent directions. For K-sparse signals, since M < N there are infinitely

many x′ that satisfy Ax′ = y. This is because if Ax = y then A(x+u)=y for any vector u in

the null-space of A. Therefore, main goal is to find the signal’s sparse coefficient vector in the

translated null space (dimension (N − M)) Baraniuk (2007)

l0 norm reconstruction

l0 norm counts the number of non-zero entries in x.

x̂ = argmin ‖x′‖0 such that Ax′ = y.

l0 minimization is computationally intractable (in fact, it is an NP-hard problem in general),

this is because l0 minimization is not a convex optimization problem.

l2 norm reconstruction

l2 norm measures the signal energy. Algorithm tries to find the vector in the translated

null-space with the smallest l2 norm(energy) by solving

x̂ = argmin ‖x′‖2 such that Ax′ = y.

l2 optimization has the closed-form solution x̂ = AT (AAT )−1y. But l2 minimization will

never find a sparse solution instead it returns a non-sparse x̂ with many non-zero elements.

Thus when solving an under-determined problem Ax = y, l2 minimization is easy to com-

pute, but often wrong. When x is sparse, l0 minimization is often correct, but very difficult to

compute.

l1 norm reconstruction

Optimization based on l1 norm can exactly recover sparse signals and closely approximate

compressible signals.

x̂ = argmin ‖x′‖1 such that Ax′ = y.

l1 minimization is a convex optimization problem and can be solved fairly quickly by linear

programming methods.
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Figure 3.3: Subspaces containing sparse vector in R3

Figure 3.4: l2 minimization

Figure 3.5: l1 minimization

The set of all K−sparse vectors x in RN is a highly non-linear space consisting of all K-

dimensional hyperplanes that are aligned with the co-ordinate axes as in Figure 3.3.

The l2 minimizer x̂ is the point on the translated null-space, which is closest to the origin.

We can solve this by blowing up a hyper-sphere (l2 ball) until it contacts the plane(light blue

plane) as shown in Figure 3.4. Due to the random orientation of the plane, the closest point
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x̂ will lie away from the co-ordinate axes and that is why the solution is not sparse as well

as will not be close to the actual answer x. Surprisingly when we consider l1 ball has points

aligned with the co-ordinate axes. When we blow the l1 ball it will first contact the translated

null space(light blue plane) as shown in Figure 3.5, at a point near the co-ordinate axes, which

is clearly where the sparse vector x is located.

The recovery of data samples is guaranteed based on the measurement matrix. The matrix

must posses certain property. In that case even from an under determined system, it is possible

to obtain good estimation of the data at the receiving end. The same is verified by the RIP

of the matrix which is used for the dimensionality reduction. Restricted isometric constant

measurement matrix Φ, for a k sparse vector smallest ∆k > 0 such that equation 3.3 holds good

(1 − ∆k)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + ∆k)‖x‖22 (3.3)

Measurement matrix Φ must satisfy the RIP. Successful recovery of the data depends on

RIP. If ∆k = 0 for all k ≤ N, it implies that Φ is orthonormal. But when the signal measurement

M is greater than original acquired signal dimension N, the value of ∆k will be no longer zero.

If the value is nearly zero means that the measurement matrix is nearly orthonormal, which

increases the estimation accuracy of x.

The transformation of the signal from the signal space to measurement space is done with

the help of projection matrix. As we know M < N, thus measurement space is usually lesser

than signal space.Thus RIP property guarantees,that the Euclidean space is not altered by this

transformation.

3.2.3 Compressive sensing in Wireless Sensor Networks

In a networked data gathering method, the collected sensor data are processed through cer-

tain algorithms before transmitting to the BS. This is done in order to filter out the redundant

data and transmit only the necessary amount of data. CS uses dimentionality reduction to

transmit the data. It reduces the complexity at the acquisition end by the complex recovery pro-

cedures Liu et al. (2015). As compared with conventional compression, CS provides a means

to acquire the compressed samples directly rather than processing at the intermediate stages. It

also offers several methods to estimate the original signal from the compressed samples. Now
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suppose that the joint compression is not aimed at and each sensor compresses the signal on its

own. Firstly, the compression achieved by this approach is not optimal as inter-sensor corre-

lation is not exploited at all. The total volume of the independently compressed data is much

larger than that of jointly compressed data. This may produce a large traffic volume in the

WSN, and a large amount of transmission power is wasted from the sensor nodes that transmit

essentially the same information to the BS. Thus, this is an inefficient strategy as well.

In comparison with traditional compression schemes, CS based method directly acquires

the compressed samples. The requirement to achieve the same is that, the signal of interest

must be sparse. It can exhibit sparsity in the acquired or transfer domain. By exploring intra-

sensor correlation CS provides a direct means for signal compression.

In order to compress the high-dimensional signal x into a low-dimensional signal y, algo-

rithm makes use of a M×N projection matrix A j, j ∈ 1, 2, . . . J , where j is the sensor index, as

depicted in Figure 3.6. The dimentionality reduction is achieved by using a projection matrix

which is usually termed as a measurement matrix.

Figure 3.6: Network scheme with Compressive sensing Hu and Hao (2012)

In an aggregation scheme based on CS, each signal picked up by the sensors are compressed

using a projection matrix and then transmitted to the BS. Inter-correlation can be achieved at

the BS using joint recovery. In DCS, both intra and inter correlations are explored which will

be discussed in the next chapter. Thus there is no need to collaborate at a single point before

transmission to explore inter correlation. Relaxation of having intermediate stages offers us to
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reduce the time delay as well. Thus each sensor generates lesser amount of traffic with reduced

time delay which inturn results in the betterment of network lifetime.

3.3 Routing Protocols

Reliability can be achieved through multi-path routing. The data can be routed through

more than one path which improves the accuracy of data reception at the BS.

3.3.1 Impact of using adjustable transmit power levels

The transmission power levels directly influence, the transmission range, communication

energy drain, and connectivity in a sensor network. The transmission range in multi hop com-

munication can also be considered as shorter hops (smaller transmission range between the

hops) and longer hops (larger transmission range between the hops). There have been attempts

in the past to decide which is better in multi hop communication from different perspectives

but no consensus has been reached Haenggi and Puccinelli (2005). As a result we have used

a combination of shorter and longer hops of different transmission ranges in multi-hop com-

munication and verified its effects on network lifetime (considering only the communication

energy drain). The importance of nodes near the BS with respect to network lifetime based on

variable transmission power levels is also presented in these examples.

Most of the time fixed smaller transmission ranges cause a bottlenecking problem with

less nodes near the BS to access the BS for multi hop communication (unless more nodes are

deployed near the BS that can reach the BS with that particular transmission range). Most

often the nodes near the BS die faster than other nodes because they must carry all the data

traffic from the rest of the nodes to reach the BS, thus leading to early network partition. From

the perspective of network lifetime, the biggest advantage of nodes capable of adjusting to

different transmission power levels is that a large number of nodes can reach the BS and can

help to achieve a better overall network lifetime.

The importance of nodes near the BS with respect to network lifetime based on variable

transmission power levels is presented in these examples.

Example 1: Assume there are 100 nodes randomly distributed in an area of 100×100 me-
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Table 3.1: Chipcon cc2420 transceiver supported power levels and its power consumptions

Serial Available Transmit Power consumed Transmission ranges
Number output power in dbm in mW in mtr

TX-Power 1 -25 15.3 4.216
TX-Power 2 -15 17.82 11.00
TX-Power 3 -10 20.16 17.78
TX-Power 4 -7 22.5 23.71
TX-Power 5 -5 25.02 28.72
TX-Power 6 -3 27.36 34.80
TX-Power 7 -1 29.7 42.16
TX-Power 8 0 31.32 50.00

ters. The requirement is to have all the nodes with a node degree (number of nodes that can be

communicated with each node) of at least 6. Let us assume that this can be achieved by having

a transmission power level of -7 dbm corresponding to a range of 23.71m and a power drain of

22.5mW from table 3.1. Using a fixed transmission range or precisely a fixed power level, each

node spends 22.5mW of power for every communication. With the selection of a low power

level such as -10 dbm having lower power loss can result in a large percentage of nodes to have

the connectivity or node degree of at least 6 and the remaining smaller percentage of nodes

have a node degree less than 6 but greater than zero. Then a large section of nodes consume

less power and a smaller section of nodes consume more power to have a node degree of at

least 6. This can minimize the overall communication power drain to a large extent and help in

achieving better network lifetime.

Example 2: Consider another scenario in which a fixed transmission power of -7 dbm is

used corresponding to 22.5mW of power drain by all the nodes. Suppose that the nodes are

relatively far from the BS need to communicate to the BS, then it is achieved through multi

hop communication in sensor networks. If it takes 6 hops to reach the BS, the total end to end

power drain would be 6×22.5mW = 135mW. If a higher transmission power level is used, for

example -3 dbm causing a power drain of 27.36mW and if its HInd gets reduced to 4 hops due

to an enhancement in the transmission range, then the total end to end power drain comes to

4×27.36mW = 109.44mW. It is clear from the calculations that a considerable amount of power

saving can be achieved using a higher transmission power to collect data at the BS through multi

hop communication.
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Example 3: Most of the time fixed smaller transmission ranges cause a bottleneck problem

with less nodes near the BS to access the BS for multi hop communication (unless more nodes

are deployed near the BS that can reach the BS with that particular transmission range). Most

often the nodes near the BS die faster than other nodes because they must carry all the data

traffic from the rest of the nodes to reach the BS, thus leading to early network partition. From

the perspective of network lifetime the biggest advantage of nodes capable of adjusting to

different transmission power levels is that a large number of nodes can reach the BS and can

help to achieve a better overall network lifetime.

3.3.2 Cluster based Node-disjoint Multi path routing

In multi hop communication, the importance of nodes near the BS often determines the

factors affecting it. The main factors would be the deployment strategies of sensor nodes and

the BS or the BSs.Heinzelman et al. (2002). There is a significant amount of literature available

on the deployment strategies in sensor networks and forms another area of research direction

itself Xing et al. (2015). Routing in sensor networks can be broadly classified into two main

categories: BS selecting and initiating the routing and the other is distributed Nishant et al.

(2012). We opted for the BS selecting the routes and initiating the multi-path. This was due

to possibility of many applications in the field of sensor networks such as secure monitoring

of protected areas or disputed areas or even surveillance applications where the deployment of

sensor nodes is predetermined. There could also be many applications which require nodes to

be location aware, be equipped with GPS units and convey their location information to the BS.

BS selects and conveys the information regarding routing process to all nodes.

The BS selects proper intra transmission and inter transmission power levels associated

with each multi path. The transmit power which is able to provide the minimum node degree

is decided as intra transmit power level, and above intra transmit are the inter transmit power

levels. Selection of CHs is based on the highest degree of a node among the nodes available

in the intra cluster area. During the process of CH selection there may be a few nodes which

do not plunge under the territory of any CH, Those nodes need to have higher power level in

order to get connected with the nearest CH which is termed as Hnode. Selected CH has to bear

the data traffic of the network, thus there is a need to account the number of hops related with
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individual selected CH as defined in Nishant et al. (2012) and given equation 3.4.

HInd =

∑NCH
I=1 HI

NCH
(3.4)

Where HInd is the counter for Average number of Hops of the network.

NCH is the total number of nodes selected as CHs in that particular combination of power levels

HI accounts for number of hops required by individual CH to arrive at the BS.

Average end to end communication energy drain is as given equation 3.5

Edrain = HInd × ICHpd × DTdur (3.5)

Where E(drain) in milli joules accounts for communication energy drain.

ICHpd is the inter CH communication drain in milli watts.

DTdur is the data packet transmission duration in seconds.

HInd is the counter for Average number of Hops of the network.

The choice of proper inter transmit power levels with elected intra transmit power levels for

different path in node disjoint multi-path routing is achieved by minimizing the energy drain of

the network.

Minimize(Edrain) (3.6)

Among the available inter transmission power levels, the power level that satisfies the above

objective function is selected as the inter transmission power level and its corresponding path

will be one of the node-disjoint path in the multipath routing.

3.4 Sparse vector reconstruction approaches

The solution for sparse recovery problem and its related applications can be solved using

CS. From the literature there are two approaches towards sparse vector recovery. The first is the

Convex relaxation approach which can be implemented using linear programming Candes et al.

(2006), where as other one is based on greedy methods in which the problem is solved with its

current form by using an approximation method . Both the approaches have their advantage

and disadvantages.
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3.4.1 Convex Relaxation

The reconstruction algorithm tries to estimate the signal x at the BS, with the help of mea-

surement matrix A and a measurement vector y. The usual solution, is to solve the problem

using Least squares problem. Since the measurement matrix is a column-rank deficient, thus

there will be infinitely many solution. As we know the signal is sparse, it can be solved easily

using l0 norm. But this is computationally complex, thus an approximation is made for CS

recovery problems. Here comes Convex relaxation procedure, in which problem formulation is

relaxed so that the problem can be solved optimally. Thus non-convex l0norm can be replaced

by convex l1 norm, which is termed as Basis Pursuit (BP).

3.4.2 Greedy iterative pursuits

This type of reconstruction solves the recovery process by evaluating the solution, in steps

by an iterative strategy. In each iterative step the current evaluation for the solution vector x

is refined. Halting criteria of the algorithm varies for different matching pursuits, which may

involve the number of iterations or if the residual has a smaller magnitude etc. Most com-

monly used greedy algorithms include Orthogonal Matching Pursuit (OMP) Tropp and Gilbert

(2007), one among the earliest methods of sparse signal recovery method. For several applica-

tions OMP may not offer ample performance, which led to the development of improved pursuit

methods which work better and yield substantially optimal results. Several greedy based algo-

rithms have been listed in the literature to address a few variations of OMP i.e regularized

OMP Needell and Vershynin (2009), Residual Minimization Pursuit Song et al. (2013) and

Stagewise OMP Donoho et al. (2012), CoSaMP Needell and Tropp (2009), Subspace Pursuit

Dai and Milenkovic (2009). The attractive feature of this greedy pursuits is the low implemen-

tation costs and the speed of recovery, but the implementation cost turns to be costly when the

sparsity of the signal is low.

Orthogonal Matching Pursuit (OMP)

OMP Tropp and Gilbert (2007) is an improved method over Matching Pursuit (MP), In MP

we need to approximate, the best matching projection of the data from the dictionary or to be

precise from the sensing matrix in order to approximate the sparse solution. The process of

orthogonalization is an extra addition in OMP, in each iteration of the algorithm it ensures the
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orthogonal direction of projection. A detailed explanation is as follows.

Residual Minimization Pursuit (RMP)

In RMP, the algorithm considers on minimization of the residual rather than considering

the correlation maximization as it is done in OMP. OMP algorithm first finds the columns

of the measurement matrix which is highly correlated with residual signal to estimate one

active element at each iteration. In paper by Song et al. (2013) target localization problem is

considered analogous to sparse recovery problem. In order to achieve the same they used RMP

algorithm, which provides a suitable platform for target localization alternate to OMP based

method. When the sensing matrix has orthonormal rows, RMP converges to OMP.

Orthogonal Matching Pursuit

Input: compressed vector y [M], Measurement/sensing matrix Φ

sparse input signal x [N] M < N

Init: residual r0 = y, k=1, x̂=0, Φ̂0 = ∅

index set=∆s = ∅. ∅ = empty set, δ= small constant.

Repeat until stopping criteria holds, while ‖r‖ < δ

(1) Identify the column vector Φc which is highly correlated with the residual.

δk = argmaxi=1,2,...N = |〈rk−1Φc〉|

(2) Update the index set by augmenting it with chosen column.

along with the matrix

∆k = ∆k−1 ∪ δk, Φk = [Φk−1,Φ∆k]

(3) Estimation of the sparse signal by computing least square problem

xk = argmin‖y − Φkx‖2

(4) Update the residue yk = Φkxk , rk = y − yk

(5) Advance the counter, if k<s go to step 2

End

Output: x̂, Φ̂
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Stagewise Orthogonal Matching Pursuit (St-OMP)

The above mentioned sparse recovery algorithms, OMP and RMP take ’s’ iterations (spar-

sity of the signal). StOMP Donoho et al. (2012) runs faster than OMP and RMP. In OMP based

method, only one coefficient enters at each iteration, but in StOMP many coefficients can enter.

Rather than selecting the largest component of the vector, selection is done based on a threshold

and several coefficients are selected if it is above the specified threshold. Further, residual is

calculated based on least square problem. The algorithm runs only for fixed number of stages.

StOMP is faster than OMP, as it can take many coefficients rather than one as in OMP. StOMP

converges to OMP,when the threshold is set such a way that only one term enters in each stage.

The algorithm is as follows.

St-OMP

Input: compressed vector y [M), Measurement/sensing matrix Φ,

sparse input signal x [N] M < N

Init: residual r0 = y, s=1 (stage counter), x̂=0, Φ̂0 = ∅ , index set=∆s = ∅.

Repeat until stopping criteria holds

(1) Compute the inner product.

Cs = argmaxi=1,2,...N =
∣∣∣〈rs−1Φc j〉

∣∣∣
(2) The algorithm proceeds to find the significant nonzero by performing hard threshold.

Which results in a set Js which has larger coefficients.

ts is threshold value and σs is noise level.

Js = J: |Cs( j)| > tsσs

∆k = ∆k−1 ∪ Js , Φk = [Φk−1,Φ∆k]

(3) Estimation of the sparse signal by computing least square problem

x̂k = argmin‖y − Φkx‖2

(4) Update the residue yk = Φkx , rk = y − yk

End

Output: x̂, Φ̂
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Subspace Pursuit (SP)

The algorithm SP Dai and Milenkovic (2009) is similar to StOMP, in the sense that many

coefficients can enter the algorithm, rather than one as in OMP. But the strategy of finding the k

columns is different than StOMP. Initially it chooses k columns from the sensing matrix, then it

keeps refining the subset of k columns at every iteration. In the current iteration of estimating x

(sparse signal), if y does not exist in the estimated subspace, then the estimate list of k columns

is updated by holding the reliable candidates and releasing the unreliable ones. The process

continues by adding the same number of candidates. In contrast to the other revised versions

of OMP, in SP there is a simple procedure of re-evaluation of the reliability of the candidates

at every iteration step. The algorithm is as below.

Subspace pursuit

Input: Measurement vector y, Measurement/sensing matrix Φ, sparse vector x

Init: residual r0 = y, x̂=0, Θ̂0 = ∅ , index set=∆s = ∅.

Repeat until stopping criteria holds, ‖rk‖2 ≤ ‖rk−1‖2

(1) Compute the inner product. Cs = argmaxi=1,2,...N =
∣∣∣〈rs−1Θc j〉

∣∣∣
(2) Update the index set by augmenting it with chosen columns.

along with the matrix

Js = ’s’ indices which corresponds the largest value of Cs ,

∆k = ∆k−1 ∪ Js

Φk = [Φk−1,Φ∆k]

(3) Estimation of the sparse signal x̂k = argmin‖y − Φkx‖2

(4) Update the residue yk = Φkx , rk = y − yk

End

Output: x̂, Φ̂

3.5 Data aggregation using CS for improved network life-

time

In this section, we will detail, how the life time of a WSN can be improved by using CS.

The simulations are performed in MATLAB. Recovery based on Basis Pursuit are done using
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l1 magic Candès et al. (2006) as well as greedy method.

3.5.1 System Model

In large scale WSNs the amount of data generated is enormous. The data has to be processed

efficiently before it reaches the BS by using an efficient routing algorithm as well as data ag-

gregation methods. The nodes in WSNs are randomly deployed, the data emerging from these

nodes are highly correlated either spatially or temporally. The data aggregation scheme should

employ simple encoding since the sensor nodes are battery operated. The proposed method

discusses about a data aggregation scheme using CS technique which makes use of correlation

among the sensor nodes. Our primary focus is to increase the lifetime of the overall network.

The underlying protocols used are Low-Energy Adaptive Clustering Hierarchy (LEACH) and

Multi-Threshold Adaptive Range Clustering (M-TRAC). We have computed several network

parameters for different network configuration. The reconstruction algorithm is sufficiently ro-

bust against noise. The reconstruction of the data is done using greedy method and l1 norm

regularization. The implementation of the algorithm is done using the real data- set from In-

tel Lab Koushanfar et al. (2006). Simulation results validate that the data aggregation scheme

guarantees data accuracy and doubles the network lifetime.

In order to estimate the transmission energy cost, we have incorporated a standard trans-

mission model Heinzelman et al. (2002). In this model, the energy per bit for transmission over

a wireless link is a function of the distance between a transmitter and a receiver. Let ET X(N, d)

and ERX(N) be the energy consumed for transmitting or receiving a ′N′ bit message over a

distance ′d′, are given in 3.7 and 3.8 respectively.

ET X(N, d) = ET−elec × N + εamp × N × d2 (3.7)

ERX(N) = ER−elec × N (3.8)

ET−elec ,ER−elec are the energy consumption for transmitting and receiving one bit message,

and εamp is the transmission amplifier. Initial simulations were conducted by considering the

parameters given in the Table3.2
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Table 3.2: Simulation Parameters
Parameters Typical Values
Network area 100 m × 100 m
Position of the sink node (50,100)
Initial energy of node 0.5 J
ET−elec 50 nJ/bit
ER−elec 50 nJ/bit
εamp 100pJ/bit
Size of the data packet 128bytes

We have used Intel Lab data Koushanfar et al. (2006) in order to validate the results. The

underlying protocols used are LEACH Akkaya and Younis (2005) and M-TRAC Shivaprakasha

et al. (2013) which uses variable transmission ranges. The sensed data is compressed using a

random Gaussian matrix as the measurement matrix. Then the compressed data is transmitted

to the BS. With the addition of data aggregation using compressive sensing scheme, network

lifetime has been improved.

We have used different compression ratios to compress the data and the corresponding error

in the recovered data has been obtained using the following equation 3.9.

ε =
‖x(n) − ˆx(n)‖2
‖x(n)‖2

(3.9)

Where x(n) is raw data, ˆx(n) is the recovered data.

‖x(n)‖2 =

√∑k=n
k=1 x(k)2

3.5.2 Results and Analysis

In this evaluation, the performance indices like network lifetime and reconstruction error

are used for analysis of the network. The lifetime of the network using LEACH with and

without CS technique is compared and the plot is as shown in Figure 3.7. The plot verifies

that the lifetime of the network is significantly increased with the use of CS technique. The

underlying protocol used for comparison is LEACH. To validate the compression algorithm,

we have considered CS for LEACH, MTRAC by considering 100 nodes random deployment

in 100 m ×100 m area. In every simulation round, the data from the nodes are transmitted to

the CH, and the CH transmits the compressed data to the BS. Then the data is reconstructed
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using l−1 norm regularization and greedy methods. From Figure 3.8 we can infer that using

CS, network lifetime is improved.

Figure 3.7: Network life improvement in LEACH using CS

Figure 3.8: Network life improvement in M-TRAC using CS

Figure 3.9 gives the summary of all dead nodes. LEACH and M-TRAC performance im-

proves with the incorporation of CS. The data from sensor nodes have been reduced signifi-

cantly which results in keeping the nodes alive for longer duration.

Inclusion of CS as a data aggregation scheme, reduces the amount of redundant data along

with network lifetime improvement. Reduction of the redundant data results in increased
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Figure 3.9: Summary of dead nodes in LEACH and M-TRAC

throughput and increased lifetime of the network. Data has been compressed using several

compression ratios and reconstructed at the BS. Corresponding reconstruction error can be cal-

culated using Equation(3.9) which is shown in Figure 3.11. Simulations have been carried out

using temperature and humidity parameters of the Intel dataset. Intra-node correlations have

been considered. The values for 3 days have been considered, collected around 3000 samples.

The reconstruction has been done by considering different compression ratios. The real data

are not usually sparse, but compressible. In this simulation, we have transformed the data into

an appropriate sparsifying basis, then the data have been compressed.

Figure 3.12 shows the original and reconstructed values for different compression ratios for

temperate and humidity values respectively. Depending on the correlation among the nodes

and the amount of sparse data, there will be variation in the reconstruction error. Figure 3.11

shows the reconstruction errors for different compression ratio’s for temperature and humidity

values

35



0.4 0.6 0.8
0.00

0.05

0.10

0.15

0.20

 

 

R
e

c
o

n
s
tr

u
c
ti
o

n
 E

rr
o

r

Compression ratio

 OMP

 L1-Norm

Figure 3.10: Comparison of Reconstruction error using l1 Regularization and OMP
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Figure 3.11: Reconstruction error for temperature and humidity values using l1-norm regular-
ization

3.5.3 Experimental results of CS recovery based on Greedy Algorithms.

Greedy algorithms for CS reconstruction, give the similar results as compared with Convex

relaxation methods by using different algebraic tools. Reconstruction of the data, is based on

iteration procedure by projecting the data on significant column only. The categorization of

greedy methods lies in the selection of the column (one or many), and the convergence rate,

termination condition.
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Figure 3.12: Reconstruction of temperature and humidity values using l1-norm regularization

To evaluate the performance, we have considered the data N=512 and the measurements

varying in steps for different sparsity levels. The measurement matrix is independent and iden-

tically distributed (i.i.d) Gaussian matrix. The platform for simulation is MATLAB. Simula-

tions are done based on greedy algorithms (OMP, RMP, StOMP, SP), and the plots depicts

percentage of recovery and the error. Relative error is calculated as given in equation 3.10. The

tolerance limit for perfect recovery is 1e-6. The figures 3.13-3.20 shows recovery and error rate

of the greedy methods (OMP, RMP, StOMP, SP).

relativeerror =
‖x − x̂‖2
‖x‖2

(3.10)

In Fig.3.21 we can see that the performance of the greedy methods for varying sparsity (k)

and measurements (M). When the sparsity is less, almost all the methods convergence rate is

similar except OMP. The time required to recover the data depends on the type of iteration, the

algorithm performs. When the sparsity is less, all greedy methods convergence rate is almost

same, but as K increases we can make a clear distinction of the convergence rate of various

greedy methods.

Simulations are carried out by considering the dataset from Intel lab Koushanfar et al. (2006)

which comprises of temperature and humidity data set. The signals are not sparse when they

are acquired, we used DCT in order to sparsify the data. As we can see from Fig.3.23 and

Fig.3.24 for temperature and humidity, SNR of all the methods are almost same but it differs

with the rate of convergence. In order to meet the same SNR, the iterations taken by the

greedy methods are different. WSN generates huge amount of data, it has to be processed and
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Figure 3.13: CS recovery using OMP.
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Figure 3.14: Relative error using OMP.

transmitted to the control unit in order to take necessary action. Further certain applications

needs speedy processing and few may not. Thus based on the nature of the application suitable

greedy algorithms can be selected.

If we consider CS as a data aggregation scheme along with the multi path routing strategy,
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Figure 3.15: CS recovery using RMP.
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Figure 3.16: Relative error using RMP.

network lifetime can be enhanced. With CS, the number of packets to be transmitted can be

significantly reduced. Since the nodes are deployed randomly, the data exhibits correlation

either spatially or temporally. If the source nodes use lower intra transmission power levels to

get connected to one hop CH, then we can significantly reduce the power consumption of the

network.
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Figure 3.17: CS recovery using StOMP.
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Figure 3.18: Relative error using StOMP.

3.6 Concluding Remarks

The proposed algorithm deals with data compression and reconstruction based on CS,

which uses correlation property to compress the data. The traffic cost of the network has been

reduced which reflects on the network lifetime. The performance metrics namely the lifetime
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Figure 3.19: CS recovery using SP.
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Figure 3.20: Relative error using SP.

of the network and the reconstruction error were analyzed and the results have been validated.

It was observed that the network lifetime is doubled in both LEACH and MTRAC. M-TRAC

algorithm proved to be a good algorithm over LEACH in terms of the lifetime of the network.

Reconstruction is done using l1 norm regularization and greedy methods. The outcome of our

analysis is that applying CS may not bring the improvement in all cases, but could be applicable
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Figure 3.21: CS recovery using greedy methods.
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Figure 3.22: Relative error using greedy methods.

where correlation among nodes exists. The temperature values are highly correlated, thus the

reconstruction error is comparably less. Analysis of correlations among nodes must be done

before applying CS methods.

In order to improve network lifetime under multi-path strategy, we propose routing strat-
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Figure 3.23: CS recovery using greedy methods for temperature data.
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Figure 3.24: CS recovery using greedy methods for humidity data..
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egy with tunable power levels along with data aggregation using CS. In order to achieve better

network lifetime under node-disjoint multi path routing, sensor nodes adjust themselves to the

best possible transmission power levels as per requirements. Since CS is used along with an

efficient routing protocol, it is possible to reconstruct lost packets which gives an added advan-

tage. CS reconstruction using greedy algorithm is found to be better than other reconstruction

methods, in terms of computation time and complexity. Simulations prove that, recovery of

synthetic and real data using greedy methods diminishes data stream into the network and in

turn enhances the lifetime of the network.
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CHAPTER 4

DISTRIBUTED COMPRESSIVE SENSING FOR WSNs

4.1 Introduction

WSNs consist of numerous nodes, randomly deployed in a geographical area that sense the

environmental condition (temperature, humidity etc) and collectively work to manage and route

the sensed signal to the BS. Data aggregation is a fundamental action in WSN’s, where sensors

are accountable for accumulating all the sensed values, and finally delivering them to the BS.

In order to increase the life span of the network, we try to compress the data of individual

sensor node. We use CS method to compress the data, further we emphasize with the method

of Distributed Compressed Sensing (DCS) we can explore inter/ intra signal correlation with

the concept of joint sparsity.

CS outperformed conventional compression methods and justifies a better trade-off between

the quality of reconstruction and minimum power consumption. The high-dimensional signal

which is sparse either in the acquired domain or transfer domain say x ∈ RN can be compressed

by projecting the signal into a low dimensional signal y ∈ RM . In order to carry this out the

signal ‘x′ has to be multiplied with a projection matrix A ∈ RMxN . At the receiver the estimation

of x̂ has to be done from the under-determined system since fewer equations than unknowns.

CS theory affirms that, the probability of having a unique solution depends on the sparsity of

the signal vector x. The chances of having a unique solution increases if the signal is suffi-

ciently sparse. In a WSN based on CS scheme, the sensed signals are compressed using linear

projections and then transmitted. At the BS estimation of the signal is done through CS based

recovery algorithms. In general, if we want to explore the inter- correlation among the signals,

then we need to collect the samples in a single location and perform the compression. With the

concept of Distributed Compressive Sensing (DCS), there is no need to gather the samples in

one location, rather than that it needs a joint recovery at the decoding point. In case of DCS,

each sensor senses the signals which are sparse in a particular basis and might be correlated

from a sensor to another sensor. Thus, individual sensed signals are independently encoded



using a measurement matrix, which performs dimensional reduction of the sensed signal. Fur-

ther these reduced samples are transmitted to the BS. At the receiving end, reconstruction takes

place (exploring inter/ intra signal) by using one among the CS recovery algorithms. DCS the-

ory relies on the concept of joint sparsity of the signal. The number of measurements in DCS is

significantly less, as joint sparsity is usually smaller as compared to individual signal sparsity.

4.2 Intra and Inter correlation effects

The sensors are deployed randomly in the region of interest, thus the data values sensed

from these sensors have either spatial or temporal correlation. In network data, aggregation and

compression are the fundamental means to reduce communication cost and to extend network

lifetime.

The inter node correlation Φinter(m) and the intra node correlation Φintra(m) which is calcu-

lated as given in equation 4.1 and 4.2 follows-

Φinter(m(.)) =

i=N∑
i=1

∑
j>i

(m(k)
i − E[mi])(m

(k)
j − E[m j])

σmiσm j

(4.1)

Φintra(m(.)) =

i=N∑
i=1

(m(k)
i − E[xi])(m

(k+t)
i − E[xi])

σx2
i

(4.2)

4.3 Distributed Compressive Sensing.

The sensor nodes are randomly deployed in the area of interest, and a certain physical phe-

nomenon are picked up by more than a single sensor node. CS can be employed to the sensed

data from the sensor, if there is temporal correlation. But there might exist a spatial correla-

tion among the sensed data, which further decreases the amount of data, thus improving the

performance of WSN. CS based network can exploit either only temporal correlation or spatial

and temporal depending on the reconstruction methods. It can exploit both correlation types

if the decoding process is based on joint reconstruction methods. With out the nodes being

communicating to each other, along with intra sensor correlation benefit with the help of joint

reconstruction method we can exploit inter sensor correlation too. DCS is a strategy in which

data is compressed depending upon, intra and inter correlations with out the sensors commu-
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nicating to one another Baron et al. (2005); Sarvotham et al. (2005); Wakin et al. (2006) The

underlying theory for DCS is ‘joint sparsity ‘ of the data signals. Let us go through the different

joint sparsity models with the help of which we can recover the signals based on joint decod-

ing at the receiver. Joint sparsity models show that even with out the sensors collaboration

at the transmitter, it is possible to recover the data signals with reduced number of measure-

ments. With the help of joint decoding we further can reduce the number of measurements than

required if it is recovered separately.

4.3.1 Models based on joint sparsity

When we consider jointly sparse signals, there exists three separate models and each model

fits for separate class of ensembles. Most of the time, signals in transformed domain is sparse

thus signals can be encoded using CS which is termed as separate reconstruction which does

not explore inter signal correlation. But there exists a joint sparse reconstruction which helps

to recover the signal with less number of measurements.

We employ the following notation for the signal ensemble and the encoding/decoding

model. The signal ensembles are denoted by xl, with l∈ {1, 2, 3, 4...L}. There exists a sparse

basisΨ ∈ RN for each signal in which the signal ensemble xl is represented sparsely. By con-

sidering suitable measurement matrix Φ ∈ RMl×N , the signals are compressed yl= Φxl which

posses the Ml < N measurements of xl

The Joint Sparsity Signal Models (JSM) are introduced in Baron et al. (2005); Sarvotham

et al. (2005); Wakin et al. (2006). The joint sparsity model can be depicted as given in equation

4.3

X =



x1

x2

x3

...

xl


Y =



y1

y2

y3

...

yl


Φ =



Φ1, 0 · · · , 0

0,Φ2, · · · , 0
...

0, 0, · · · ,ΦL


(4.3)

Signal modeling using DCS, consists of representing the signal using two components :

common sparse components (present in all the signals under consideration) and sparse innova-
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tion component (pertaining to individual signal).

xl = ZC + ZI , l ∈ {1, 2, ...L} (4.4)

with ZC = ΨθC, ‖θC‖0 = K and ZI = ΨθI , ‖θI‖0 = KI .

The signal which is split into two components, ’ZC’ components is common to all the signal

and ZI is a special component of each signal.

Depending on the type of correlation, which exists among the sensors following joint spar-

sity models are configured namely Joint Sparsity Model (JSM) -1, JSM-2, JSM-3. In JSM-1 all

the signals have similar set of sparsity (non zero components) which we can call it as common

sparsity and an innovation component pertain to the individual signal. As in equation 4.4 The

component which is common to all signals is ZC, and innovation component is ZI .

x1 = ZC + Z1

x2 = ZC + Z2
...

xl = ZC + Zl, l ∈ {1, 2, ...L}

Where K and Kl are the corresponding values of ZC and Zl respectively, and yl = A × xl. The

encoded signal further transmitted to the BS. At the BS, joint recoveries of the signals are done,

because of intra and inter correlation effects the original signals can be recovered with slightly

reduced number of measurements than separate recovery. In order to recover the jointly sparse

signals, we conduct simulations, considering the synthetic signals as well as considering the

real data . In both cases joint recovery proves better than separate recovery as joint decoding

exploits intra and inter correlations.

4.3.2 Recovery of Jointly sparse signals

In this section we discuss the recovery algorithm for JSM. In JSM-1 the signals will share

the same common non zero coefficients (the location of these elements will be same) but the

amplitude and phase might be different. We can term this as common support set. These signals

further posses different non-zero components(location of these elements need not be same).

We can term these elements as innovation sparsity. But where as in JSM-2, all the signals

coefficients are different (common sparse+innovation) but the location of these components

are exactly the same. Where as JSM-3 models, consist of a non-sparse common component

48



and a sparse innovation component Hormati and Vetterli (2008). Large scale WSN signals can

be modeled using the JSM, where global variations i.e sun, temperature, humidity, wind affect

the sensors collectively but local variations such as water flow, shade, animal/human presence

affects the smaller group of sensors. Recovery of CS signals can be either based on greedy or

gradient based algorithms.

For our initial simulation we consider the synthetic signals which represent the real WSN

scenario, by considering multiple sensors and recovery is based on joint recovery. Each sen-

sors sensed data is transmitted to the BS, and by joint recovery procedure the intra and inter

correlations are explored. Simulations are carried out using YALL1 package Zhang (2009) in

MATLAB which uses basis pursuit to recover the signals. In order to show the difference be-

tween joint recovery and separate recovery we have used Orthogonal Matching Pursuit (OMP)

Tropp and Gilbert (2007) and Simultaneous Orthogonal Matching Pursuit (SOMP)Tropp et al.

(2005) which is summarized below.

4.3.3 Separate recovery using OMP

In order to validate DCS we retrieve the data at the BS separately, i.e decoding each sensor

data but result decision is on the basis of collective recovery. We decode each branch of the

sensor data in a group of say ’N’ sensors but we declare success after all the ’N’ sensor data’s

are separately recovered using OMP. The ’s’ sparse signal xl ∈ Rn,from l sensors, where l=

{1, 2, 3....L} are encoded using the measurement matrix Φ where m<n, generating the measure-

ments yl = Φx ∈ Rm. Let Φ j be the jth column, j∈ n, n={1, 2, ...n}. The measurement vector yl is

generated by the linear combination of ’s’ columns of Φ. Thus estimation of ’xl’is identifying

those columns of Φ. In OMP this problem is solved in a greedy fashion, at each iteration of

OMP algorithm selects the column which is mostly correlated with the residual of yl. Further

it eliminates the significance of this column to compute updated residual. Figures .4.1 and 4.2

show the result of separate recovery for L=8 and 16.

4.3.4 Recovery using Simultaneous- OMP

In order to recover jointly sparse signals simultaneous greedy approximation has been pro-

posed Tropp et al. (2005). The algorithm is much similar to other greedy methods with minor

changes. This in general is known as DCS-SOMP. The algorithm is as follows. The procedure
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Figure 4.1: Separate recovery using OMP, convergence in case of L=8.
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Figure 4.2: Separate recovery using OMP, convergence in case of L=16.

of S-OMP is similar to OMP except the fact that here there are ’L’ compressed samples yl where

l={1, 2, 3...L}. And SOMP reduces to OMP when L=1.
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Simultaneous Orthogonal Matching pursuit for jointly sparse signals

Input: Measurement vector {y}l, Measurement/sensing matrix {Φ}l,

sparse vector {x}l , l ∈ {1.2.3...L}, sparsity = K

Initialization: residual {rl,0} ={yl,0}, k = 1, {x̂}l=0, Φ̂0 = ∅

index set=∆s = ∅.

∅ = empty set, δ= small constant.

Repeat until stopping criteria holds

(1)Identify the column vector Cs which is highly correlated with the residual.

δk = argmaxi=1,2,...N =
∑L

l=i

∣∣∣〈rl,k−1Θli〉
∣∣∣

(2)Update the index set by augmenting it with chosen column along with the matrix

∆k = ∆k−1 ∪ δk

Φk = [Φk−1,Φδk]

(3) Estimation of the sparse signal by computing least square problem

xl,k = argmin‖yl − Φkxl‖2

(4) Update the residue

ŷl,k = Φkxl,k

rl,k = yl − ŷl,k

(5) Advance the counter, if k<K go to step 2

End

Output: {x̂}l, {Φ̂}l

4.4 Results and analysis

To carry out the simulations, we consider the synthetic data, which is similar to the real

world data with N=512 and L=8. The signal under consideration comprises a common compo-

nent Kc, which is sparse in DCT basis which symbolizes to the common temperature as well as

an innovation component which represents the abnormalities in the temperature reading. Plot-

ting the values of signal recovery versus the measurements M required to compress the signal.

The success is declared depending upon the recovered signal, i.e ε=‖x̂ − x‖2/‖x‖2 ≤ 10−2. Fig-

ures.4.3 and 4.4 depict the performance of YALL1 and SOMP for various values of Kc and Kl

with N=512, sparsity of the signal= 75, L=8, across the number of measurements.
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Figure 4.3: Joint recovery using YALL1 L=8, by considering different values of,Kc and Kl
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Figure 4.4: Joint recovery using Somp L=8, by considering different values of,Kc and Kl

We know that in CS as the sparsity increases the probability of exact reconstruction de-

creases. Thus we try to figure out the relation of sparsity and exact reconstruction for jointly

sparse signals and then compare the same with separate reconstruction. Recovery of the jointly

sparse signals, using YALL1 and SOMP are presented in Fig.4.5, Fig.4.6 and Fig.4.7 by letting

N=512, M=256 and varying ’L’.As the number of sensors (L) increases, even for less sparse

data, recovery is assured which can be concluded as shown in figures 4.5 and Fig.4.6. But

if you consider the separate recovery using OMP there is no considerable changes, and as L

52



increases the result is opposite as in the case of jointly sparse recovery. In both cases we try

to solve yl=AlXl , but in joint recovery the support set is shared, thus even though ’s’ increases

recovery can be done with reduced values of measurement, but same is not true with separate

recovery.
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Figure 4.5: Joint recovery using YALL1 ,for varying values of L and sparsity
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Figure 4.6: Joint recovery using SOMP,for varying values of L and sparsity

Figures.4.8 and 4.9 show the result of joint recovery using YALL1 and SOMP by varying

the number of measurements and numbers of sensors (L). With the increase in the number of
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Figure 4.7: Joint recovery using OMP, for varying values of L and sparsity
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Figure 4.8: Joint recovery using YALL1 ,for L=1,4,8,32,64

sensors, there is a decrement in the number of measurements required for reconstruction. A

sparse signal with sparsity s=75 has been considered, with L varying from L=1 4 8 32 64 as

in Fig.4.8 and Fig.4.9. There is a drastic decrement when we consider L=1 and 4. Further

when we consider L=32 and 64, the measurement required is almost same. More details about

the lower bound for the measurement required for jointly sparse signals can be found in Baron

et al. (2005)
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Figure 4.9: Joint recovery using Somp ,for L=1,4,8,32,64
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Figure 4.10: Joint recovery using YALL1 and separate recovery using OMP ,for L=2,8,32

Fig.4.10 shows recovery using YALL1 and separate recovery using OMP and Fig.4.11 us-

ing SOMP and separate recovery using OMP by varying number sensors (L) and the number

measurement (M) by letting sparsity of the signal s=75. Thus if the signals are correlated

then joint recovery promises reduction in the measurements required for reconstruction. Thus

by joint recovery we can reduce the number of transmission required by the sensor with out

communicating to each other. If the sensor signals are correlated then joint recovery has an ad-

vantage which in turn reduces the burden of sensor nodes thus helps to improve overall network
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lifetime. Fig.4.12 shows joint recovery using SOMP and separate recovery using OMP for L=

1 2 4 8 16 32. As from the above results we can conclude if the recovery is separate then the

number of measurements increases with number of sensors. In separate recovery only the intra

correlation is explored, but in joint recovery intra as well as inter correlations are explored.
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Figure 4.11: Joint recovery using SOMP and separate recovery using OMP ,for L=2,8,32
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Figure 4.12: Joint recovery using SOMP and separate recovery using OMP, for L=1, 2, 4, 8,
16, 32

In this section we considered the data set from Berkley lab ,which is recorded in an office

environment which exhibits regular variation during day and night time. Figures.4.13 and 4.14

show the result of joint recovery, by considering the real data set-I and Figures 4.15 and 4.16
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Figure 4.13: Joint recovery using SOMP by considering real data-I,M=75
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Figure 4.14: Joint recovery using SOMP by considering real data-I,M=300
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Figure 4.15: Joint recovery using SOMP by considering real data-II,M=75
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Figure 4.16: Joint recovery using SOMP by considering real data-II,M=950
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for dataset-II. The signal is not exactly sparse. The signals have smooth variation in space and

time. If we consider the DCT, the signal can be represented as sparse, and can be modeled

using JSM-2 model.

Figures.4.13 and 4.14 depict recovery based on joint recovery and separate recovery tech-

niques for dataset-I, with N=1500 and M= 75 and 275 respectively. With the SOMP as re-

construction methods we are able to recover the signal with SNR of 15.25 but if we consider

separate recovery, the data is unrecoverable. Thus we increase the number of measurements to

275, we could successfully recover using separate reconstruction. But if we consider the data

recovery using separate reconstruction, with the same constraints it is impossible to recover

unless there is an increase in the length of compressed vector (y). When we considered dataset-

II, with N=1500 and M=75, using SOMP we are able to recover even with reduced number

of measurements, SNR= 14.29 and using separate recovery it s not possible to recover. But

in this case, M=950, This depends on the sparsity of the data in the transformed domain. In

this particular data set sparsity is low thus it requires more number of iterations to compute the

coefficients while reconstruction using OMP.
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Figure 4.17: Joint recovery using SOMP by considering Temperature data (outdoor) N = 1024

Figures. 4.17 and 4.18 show the SNR versus compressed vector length (y) in case of real

signal (outdoor). In this case we have considered N=1024 and varying values of M i.e com-
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Figure 4.18: Joint recovery using SOMP by considering Humidity data (outdoor) N=1024

pressed vector length. This outdoor data set is taken from senor-scope Ingelrest et al. (2010)

which contains the temperature as well as humidity data sets. The plot depicts variation of SNR

for different values of compressed vector for different values of L. As we can see from the plots

using joint sparsity models it is able to recover the data with lesser values of y. There is an

improvement in the quality of the signal when we increase the number of sensors. When we

consider separate recovery it is not possible to recover the original signal with lesser value of

the compressed vector y.

4.4.1 DCS for multi-channel EEG

The electrical activities related to the brain are measured using EEG signals. Various

types of neurological disorders are detected using EEG which include epilepsy, sleep disor-

ders, stroke, dementia etc. The activities of brain are recorded, through the electrodes which

are attached to the scalp of the person.The muti-channel and muti trial EEG generates huge

amount of data, which has to be either stored or transmitted. The aggregation method prior

to storage/transmission motivates to employ CS to EEG signals. In literature there are several

papers on, CS application in EEG signals. The performance evaluation of those CS-oriented

system is dominated by two main metrics, employed recovery and the domain of sparsification.

In this case for EEG signals, we consider wavelet transform as the sparsifying basis. By using
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Figure 4.19: Joint recovery using SOMP by considering real data-III,M=175

CS frame work, we compress and reconstruct the multichannel EEG signals. Fig. 4.19 shows

the 8 channel EEG signals with N=256, using wavelet transform as sparsifying basis.

4.5 Conclusion

The idea of joint sparse models, fits into WSNs, as the nodes are correlated among each

other. In WSN power consumption is an important parameter to consider, as to reduce the ex-

haustion, and increase network lifetime. How we can save the transmission power by reducing

the measurements needed to recover the signal at the receiver, has been presented in this work.

Since we have used joint sparsity techniques, we could explore the intra as well as inter corre-

lation among the data signals. By comparing the jointly sparse signals with separate recovery,

we demonstrated how efficiently data can be reduced in joint sparsity techniques. We have sim-

ulated the results by considering the synthetic signals as well as real data, which proves that by

using joint sparse model we can further reduce the number of measurements needed to recover

the data.
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CHAPTER 5

ENERGY EFFICIENT, SECURE AND RELIABLE DATA

COLLECTION IN WSNs

5.1 Introduction

WSN applications are becoming ubiquitous in this era of highly networked life. With ad-

vances in technology, todays sensor nodes can gather and process more data; leading to the

creation of new applications over recent years. To achieve cost effectiveness, sensor nodes are

not typically equipped with tamper-proof facilities Lou and Kwon (2006a); Liu et al. (2012a);

Challal et al. (2011); Shi and Perrig (2004); Deng et al. (2006). Due to the hostile and unat-

tended environments, there is a very high chance of nodes being compromised in a WSN. Due

to the relative ease with which node compromise can be achieved, it is a key part of many

unique network insider attacks Shi and Perrig (2004). A Compromised Node (CN) attack is an

attack in which an adversary compromises a certain subset of nodes to passively intercept data

packets traversing the compromised nodes Lou and Kwon (2006a); Liu et al. (2012a).

We validate the vulnerability of secret sharing schemes under the relaxation of a secure area

around the BS, by a combination of energy efficient Shamir’s Ramp Secret Sharing (SRSS)

method and round reduced AES symmetric encryption, termed as ’Split Hop AES (SHAES)’to

address the CN attack problem.We analyse the energy efficiency and security of the proposed

approach through theoretical analysis. It shows that the proposed combination achieves both

semantic security and reliability in an energy efficient way.

Reliability in multipath routing is often achieved with the help of data redundancy. Typi-

cally, reliability is achieved in multipath routing by creating multiple copies of the same data

and routing them in different paths. When security is combined with reliability in multipath

routing, creating copies of data increases the chances of an adversary accessing the data, unless

some security mechanism is used (like encryption). A common method for combining reliabil-

ity and security in multipath routing is to split the data based on secret sharing schemes then

send the shares on different paths to reach the BS. In order to achieve greater security, previous



works have used the approach of dispersing the shares randomly and then sending the data to-

wards the BS. Original data is reconstructed only when the required number of shares reaches

the BS. The higher the dispersion of shares, the higher the associated communications and thus,

the higher the communication energy drain. Even after investing more communication energy

in dispersion, security achieved may be lower because all the shares must converge at the BS.

Therefore the dispersion of shares may not completely solve the security problem when multi-

hop communication routing is used and when the shares converge to single BS. Therefore we

opted not to disperse the data for security purposes and thereby reduced the communication

energy drain. Instead of dispersion, the approach followed in this work invests a small amount

of computation energy to achieve better security over the entire network including the area near

the BS.

A brief overview of the approach followed in this work to achieve energy efficient secure

reliable data collection is presented as follows. When any node generates data to send, it

acts as the Source Node (SN). Every node has a routing table with entries of one-hop Cluster

Heads (CHs) belonging to each path. The neighborhood CH table would be created during the

route setup phase and is used when a node is acting as a source node. The SN splits the data

into shares using SRSS and forwards the shares by adjusting itself to the minimum available

intra cluster transmission power levels associated with each of its one-hop CHs belonging to

different paths. After receiving the shares from the source node, the one-hop neighboring CHs

of different paths will encrypt their shares using SH-AES (provided that the adversary is not

located near the SN, otherwise SH-AES encryption is performed on shares at the source node

itself). CHs adjust their transmission power levels to corresponding inter cluster transmission

power levels associated with each path and then send the data to the next CHs of the same path.

CHs on each path use higher inter cluster transmission power levels and sends the data to the

next CHs until the shares reach the BS. CHs on each path are unique, in other words disjoint

nodes. Therefore a node-disjoint multipath with variable multihop routing is used to route the

data. The BS has complete information of symmetric keys associated with each sensor node.

After receiving the encrypted shares, the BS will decrypt the shares using the same symmetric

key associated with each node that has encrypted those shares. Now the required numbers of

decrypted shares are used for the reconstruction of original data. Since only threshold numbers

of shares are required for the reconstruction of data, the network sustains the loss of few data

packets and achieves desired reliability. The complete process of combining SRSS and SH-
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AES is presented graphically in the Figure 5.1.

Figure 5.1: Overview of SRSS and SH-AES combination process

5.2 Secret Sharing Schemes - Overview

Shamir’s (t, n) threshold secret sharing (SSS) scheme splits the secret data into n shares

(Lou and Kwon, 2006a). Out of n shares, only t shares are required to reconstruct the complete

original data. Any t−1 shares reveal no information about the message. This desirable property

of SSS scheme helps to generate the data redundancy required to achieve reliability and yet

provides information theoretic security. Share generation is quite simple and is obtained by

evaluating the polynomial of degree t − 1 under a Galois Field (GF) given by equation 5.1

Stinson (2005).

S = (a0 +

t−1∑
i=1

aixi) (5.1)

a0 the secret data.

ai the random data and

S are the shares generated for each value of x

Reconstruction of shares can be achieved by Lagrange’s interpolation method as explained by

Stinson (2005), and is achieved at the BS, which is not usually constrained by resources. In
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order to achieve information theoretic security, the data co-efficients are used only at the a0

position. This leads to an increase in the required communications to convey overall data.

In order to reduce the overall communications and thereby reduce excessive energy drain,

Shamir’s (t1, t2, n) Ramp Secret Sharing (SRSS) as explained by Stinson (2005) can be used

in WSNs. SRSS allows more data to be used in the polynomial computations of S given by

equation 5.1 by replacing t with t2. The first t0 values of equation 5.1 are obtained from the

secret data and remaining t1(t1 = (t2 − t0)) values are obtained from the random data. Thus, no

information about the message is leaked until an adversary is able to access the t1 shares. If

an adversary has t1 + 1 shares or more, then information leakage begins and increases until it

reaches t2 shares, where the complete information is obtained (Stinson, 2005).

Assumptions

Sensor nodes are not equipped with tamper-proof facilities and are prone to be compromised

by adversary and can perform SRSS and SHAES operations having unique 128bit keys. The BS

is always secure with unlimited energy, processing power and having the complete knowledge

of the unique 128-bit key associated with each node. Compared to other previous related works,

the assumption of the secure area around the BS is relaxed in our approach.

5.3 Proposed work

5.3.1 Near-Sink CN Attack

The security of secret sharing schemes lies in the divergence of the shares from the ad-

versary. If the threshold shares converge near the adversary then secret sharing schemes can’t

provide any security, as the adversary can reconstruct the secret data. In sensor networks, all

the data needs to be collected at the BS, therefore all shares need to converge at the BS. Since

a wireless medium and multihop communication is used for the data communication, nodes

near the BS will forward all the shares that reach the BS. If the adversary compromises a few

nodes near the BS, then the adversary can attempt to get the required shares for reconstructing

the complete data. We term this type of attack as a near-sink CN attack. The near-sink CN

attack can compromise the security achieved by secret sharing schemes used in WSN applica-

tions. In order to validate the near-sink CN attack, two deployment strategies are considered:
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Centralized sink deployment, wherein the BS is located at the center of the random nodes, and

Corner sink deployment, wherein the BS is located in the corner of the network area containing

randomly deployed nodes. These stratergies are shown in Figure 5.2 and Figure 5.3.

A single node is assumed to be compromised by the adversary near the BS. To study the

effect of a near-sink CN attack with respect to its distance from the BS, the compromised node

is located at different distances from the BS. The transmission power level and communication

channel path loss model determines the range and successful reception of data. The near-

sink CN attack is tested with different transmission power levels: 0,-1,-3,-5 in dBm. The

channel is characterized by the log normal path loss model having a path loss exponent η =

2.4 and with slow fading characterized by different standard deviation σ values of 0,1,3,5 in

dB. Simulations are carried out in the Castalia, a discrete network simulator, with nodes near the

BS communicating the shares to the BS and having a receiver sensitivity of -95dBm. Figure 5.4

clarifies that under the centralized BS scenario, the circumference area around the BS having

a radius of 20m can overhear 80% of the shares under all transmission power levels. With a

transmission power level of 0 dBm, a compromised node can overhear 75% of shares in the

perimeter area around the BS having a radius of 45m. Therefore a near-sink CN attack is a

prominent attack in the applications of WSNs that use secret sharing schemes. Furthermore,

from figure 5.4 it is evident that the monetary burden of equipping video cameras to monitor the
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area around the BS could be high, since a large area needs to be monitored. The near-sink CN

attack is even more effective in the corner-deployed BS model compared to the model where

the BS is deployed at the center of the network area. When the BS is deployed to any of its

network corners, the area around the BS is smaller. Therefore, shares converge well before

they reach the BS. Figure 5.5 justifies that at the 0 dBm power level, a compromised node

that is 50m away from the BS can overhear as much as 90% of shares received by the BS.

Although the security achieved by the SSS is higher than the SRSS, the communication energy

efficiency required for sensor networks can not be achieved. If the required number of nodes is

compromised anywhere in the network area or specifically the nodes near the BS (near-sink CN

attack), then security is compromised. If we use SRSS communication, then energy efficiency

can be achieved, but relatively smaller number of compromised nodes can compromise the

security. Neither schemes are sufficient to address the problem of an adversary compromising

nodes anywhere in the network (CN attack), occurring most often near the BS. From Figure 5.4

and 5.5, it is evident that the near-sink CN attack is effective with secret sharing schemes in

WSNs under the relaxation of a secure area around the BS. Therefore secret sharing schemes

alone can’t provide security to the sensor network applications. One way to address this attack

is to encrypt the shares. Therefore, in this research work a round reduced AES symmetric

encryption termed as SHAES is considered to encrypt the shares.
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Figure 5.4: Near-Sink CN attack on Centralized Sink deployment under different power levels

5.4 SHAES scheme

In 2000, the NIST (US National Institute of Standards and Technology) selected the Rijn-

dael algorithm submission as the AES (Advanced Encryption Standard) and since its adoption

it has become a de facto cryptographic standard in many areas such as banking, administration

and others (Daemen and Rijmen, 2002). The evaluation criteria for the AES selection were

based on security, cost and algorithm and implementation characteristics. During the selection

process and over the last decade, AES has proved its security through an extensive cryptanal-

ysis. We make use of this extensive literature available on AES cryptanalysis for the security

analysis of our round reduced AES.

AES is even suitable for devices that work on 8-bit processors or micro-controllers, having

low program memory and a restricted amount of RAM (Random Access Memory) for working

memory. An IEEE 802.15.4 standard that recommends the use of AES in low power devices

has reiterated the versatility of this cipher. Today low power sensor nodes often follow the

IEEE 802.15.4 standards and commercial manufacturers of sensor nodes are coming out with

inbuilt AES modules in their sensor nodes. This creates a strong motivation for the use of an

AES cipher in our approach for secure reliable data collection for sensor networks. Although

AES in its original form is energy efficient, there is a scope to modify the AES cipher. Since

sensor networks are application-specific, the security concerns and desired level of security may

vary with the application-specific needs (Karlof and Wagner, 2003). For example, military and
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Figure 5.5: Near-Sink CN attack on Corner Sink deployment under different power levels

health care applications will require very high security compared to the environmental forest

fire detection application.

AES is an iterated block cipher with round keys. It consists of the repeated use of a round

transformation on the 128 bit plaintext represented in the form of state matrix having four rows

and columns, where each entry in the matrix is of bytes having a value in GF(28) (Daemen and

Rijmen, 2002). We restrict the explanation to 128-bit key AES because our proposed variant is

of a 128-bit key. The round transformation consists of four steps operated on the state matrix.

1. SubByte (SB): the same invertible S-box of matrix 16×16 is applied on each byte of the
state matrix.

2. ShiftRows (SR): Each row of the state matrix is cyclically shifted left based on the offset
i (0 ≤ i ≤ 3).

3. MixColumns(MC): Each column is multiplied by a constant 4×4 matrix having the val-
ues in GF(28).

4. AddRoundKey (AK): The 128-bit state matrix is xored with a 128-bit round key gener-
ated by the key schedule.

There is one extra AK which operates on the initial 128-bit state matrix, acting as the key

whitening, then the nine full rounds having all four steps mentioned above and in the final

round the MC is omitted. The key expansion and remaining details of AES can be found in the

book by Daemen and Rijmen (2002).
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The SHAES is a reduced round version of AES with 3 full rounds and the MC omitted

in the last round. The initial AK is retained and it acts as the key whitening. From the key

schedule we require only 5 round keys to be generated to be used in the AK step. We use

a separate name for this round-reduced version of AES:SHAES. Since sensor networks use

multihop communication H̀oṕ is used. Rather than using complete AES, we split it into reduced

round of 4 S̀plit́ is used. This encryption is used in a somewhat different manner compared to

the normal AES and is used in combination with secret sharing. The SHAES is pictorially

represented in figure 5.6.

Figure 5.6: SHAES graphical representation

Doomun and Soyjaudah (2009) give a detailed analysis of the basic processing operations

required for the AES cipher, and the processing overhead and energy consumption of the AES

cipher has been presented. They also compare its performance with the RC5 encryption and

conclude that the AES is best suited for resource constrained devices. The inventors of AES,
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in their book on AES (Daemen and Rijmen, 2002), have mentioned that the MC operation is

not preferred for 8-bit micro controllers or processors because it consumes the highest energy

among all other operations. The same can be seen in the paper by Doomun and Soyjaudah

(2009) where they show that the MC operation consumes 63 % of the total computational time,

75 % of the total AND operations, 72 % of the total OR operations and 95 % of the total shift

operations required to complete the 10 round transformations. These basic operations: AND,

OR and shift, indicate the energy consumption. It can be easily seen that MC is the highest

energy consuming operation among the round transformation operations. Furthermore, the

fourth round MC does not affect the linear and differential cryptanalysis bounds (Daemen and

Rijmen, 2002). Therefore, the MC operation has been removed from the fourth round of the

SHAES.

Doomun and Soyjaudah (2009) mention that 10 rounds of encryption plus the key sched-

ule generating 11 subkeys of the AES consumes 3638 clock cycles and (23.6µJ) of energy.

These values are for the complete AES, but we are using only 4 rounds of the AES and the

corresponding 5 round keys generated by the key schedule. There is a reduction of 6 round

transformations from encryption and 6 round key generations from the key schedule compared

to the original AES. Based on the results quoted by Doomun and Soyjaudah (2009), we can

conclude that in the SHAES, 1560 clock cycles [obtained by (3638/(10 + 11)) × (5 + 4)] and

(10.11µJ) of energy [obtained by (23.6/(10 + 11)) × (5 + 4)] are consumed.

5.5 Security analysis of the SHAES:

The two rounds of AES provide full diffusion, i.e. any one change in a state bit affects half

of the total state bits after two rounds (Daemen and Rijmen, 2002). Therefore in SHAES we

use 4 rounds, i.e. two full diffusion steps. As mentioned in the work by Daemen and Rijmen

(2002), the wide trail strategy is used to determine the bounds offered by the AES to provide

resistance against differential and linear cryptanalysis. The bounds calculated on 4 rounds are

given by Daemen and Rijmen (2002) as follows.

1. A minimum weight of 150 for the differential trail and a maximum of 2−75 for correlation
contribution in the linear trail. These bounds are true for all blocks of length and are
independent of round keys.

2. The number of active S-boxes for differential and linear trails is lower bounded by 25.
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Table 5.1: Consolidated cryptanalysis attack complexity on 4 round AES

Work Adversary type Attack type Data Complexity Time Complexity
Bouillaguet et al. (2012) Highly Resource Diff and MiTm 2 CP 280

bounded in data
4 CP 232

Bouillaguet et al. (2010) Highly Resource Diff and MiTm 5 CP 264

bounded in data
10 CP 240

254.5 KP 264

Tunstall (2011) Highly Resource Differential 12 CP 255

bounded in data
30 CP 254

Moderately Resource Differential 211 CP 252

bounded in data
214.4 CP 251

Biham and Keller (2000) Moderately Resource Square 29 28

bounded in data
Daemen and Rijmen (2002) Moderately Resource Square 29 CP 29

bounded in data

3. The Mix column of the fourth round does not have any effect on this bound and is not
considered in proving this bound.

The consolidated cryptanalysis attack and its complexity presented in the literature of 4

round AES is presented in a tabular form in table 5.1.

From table 5.1, it is clear that under the data resource bounded adversary, the complexity of

breaking the 4 round cipher is very high. However, for an adversary who is moderately resource

bounded in data, the complexity is very low in a square attack. These results are based on the

attacks performed on normal deterministic AES encryption either under the Known Plaintext

(KP) or Chosen Plaintext (CP) attack model. Table 5.1 presents the security level achieved

from normal 4-round deterministic AES.

5.6 SRSS and SHAES Combination

The combination of secret sharing schemes with encryption is one possible way to over-

come the near-sink CN attack. The other advantage of this combination is reliability. With

n ≥ t in equation 5.1, this method can provide the desired reliability. Properly grouping shares

and then encrypting them can provide both reliability and security. Figure 5.7 shows the proper

way of combining the SRSS scheme with the SHAES encryption, providing both reliability

and security. Sensor nodes can select proper values for t1,t2 and n based on the application

requirements and generate the shares. The shares are grouped based on the share numbers as
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explained in figure 5.7. Only n − t1 grouped shares are encrypted. Since an adversary hav-

ing only t1 unencrypted shares can’t learn any information about the secret data, we encrypt

the remaining shares (Stinson, 2006). The proposed optimized SRSS and SHAES (SRSS +

SHAES) combination to provide both security and reliability is as shown in figure 5.7. Nodes

transmit the encrypted shares to the BS. The combination scheme provides a resilience of n− t2

share losses. Since only t2 shares are required to reconstruct the transmitted data, the BS does

the operations as shown in figure 5.8 to obtain the original data. If shares are encrypted then

they are decrypted and finally, using interpolation, the data is recovered. All the operations are

performed under GF(28).
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Figure 5.7: Graphical representation of achieving the Secret sharing and SHAES combination

5.6.1 SRSS+SHAES Security Analysis

The definition for the probabilistic public-key encryption is provided in the book by Stinson

(2006) and if we extend the same definition to probabilistic symmetric encryption it would be
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and SHAES combination at the BS

as follows.

A probabilistic Symmetric encryption can be defined as being six-tuple (P,C,K, E,D,R)

where P is the Plaintext set space, C is the set of Ciphertext space, K represents the set of Key

space, R is the set of Randomizer space, and for each key k ∈ K, ek ∈ E is the encryption rule

and dk ∈ D is the decryption rule. The following properties should be satisfied:

1. For each ek : (P,R) → C and dk : C → P are functions such that dk(ek(p, r)) = p for
every plaintext p ∈ P and r ∈ R

This implies that ek(p, r) , ek(p1, r)i f p , p1

2. For any fixed k ∈ K and for any p ∈ P, define a probability distribution f(k,p)(y) on C
where f(k,p)(y) denotes the probability that y is the ciphertext, given that k is the key and
p is the plaintext ( probability should be computed on all random choices of r ∈ R ).
Suppose p, p1 ∈ P, p , p1 and k ∈ K. The probability distributions f(k,p) and f(k,p1) are
not δ distinguishable in polynomial time. If δ is specified security parameter, then this is
how the security of the scheme is defined.
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Property 2 states that ciphertexts encrypting any two plaintexts should be indistinguishable

in polynomial time. This is the desired feature for any security system and it provides strong

semantic security or message indistinguishability (often used as interchangeable).

Any block cipher permutation function needs to be bijection (i.e. one-to-one and onto).

AES is a block cipher and for any k∈K, ek() the encryption function is also bijection. Therefore

property 1 is satisfied.

Proposition 1 : SRSS+SHAES is semantically secure

proof : Let M be the set of all possible messages.

Share generation is a function that maps messages to shares using random co-efficients from

random space and for different values of x as given in equation 5.1.

Let S (mi) be the set of all possible shares generated using share generation function for mi.

Let A={s1, s2....sn} ⊂ S (mi) , v =
{
s1, s2...sq

}
⊆ A , w={s1, s2....sz} ⊆ A, where z ≤ t1 < q ≤ n

SSS scheme is a perfectly secure sharing scheme and from the definition of perfect security

as given by Stinson (2006). SRSS scheme with (t2 − 1, t2, n) is same as the SSS scheme.

Furthermore, SRSS with (t1, t2, n) does not reveal any information to an adversary having only

t1 shares. Therefore,

Pr(m = M|w = S (mi)) = Pr(m = M) (5.2)

This implies that the adversary having less than t1 shares does not learn anything new from

the message.

From Bayes’ theorem we can compute

Pr(w = S (mi)|m = M) = Pr(w = S (mi)) (5.3)

Since share generation is uniformly distributed, the shares in S (mi) are similar. n − t1

shares are encrypted using computationally secure SHAES. Encrypted shares reveal no further

information about the original message. Therefore, an adversary can’t distinguish which cipher
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text has resulted from which plain text. Thus, the scheme achieves semantic security and

property 2 is satisfied.

The SRSS+SHAES combination achieves semantic security and comes under probabilis-

tic symmetric encryption. Therefore, none of the cryptanalysis results of normal deterministic

4-round AES presented in Table 5.1, hold as it is for the proposed approach. However, crypt-

analysis of the proposed probabilistic symmetric encryption that provides semantic security

could be studied separately and this issue is not addressed in this thesis.

If the adversary using a CN attack or a near-sink CN attack overhears the transmitted mes-

sage, then he can’t learn any information from the t1 unencrypted shares, and therefore can’t

reconstruct the original data. The adversary needs to successfully decrypt the encrypted shares

to know the information about the data. Since the SRSS+SHAES combination provides se-

mantic security, the adversary does not learn any new information from the encrypted shares

and will therefore be unsuccessful in decrypting the shares. Thus the proposed optimized

SRSS+SHAES combination overcomes the CN attack problem in WSNs.
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Figure 5.9: Reliability analysis of SRSS and SSS schemes

5.6.2 Energy Efficiency and Reliability Analysis of SRSS+SHAES

Energy efficiency is a crucial requirement for sensor networks. As multihop communi-

cation is often used to communicate data, communication energy efficiency becomes critical.
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Figure 5.10: Computational overhead analysis in terms of number of multiplication operations
for different approaches

Data redundancy is necessary to achieve reliability, therefore as the data size and redundancy

increases, communication energy drain also increases. The requirement is to achieve reliability

with a minimum increase in data size. Figure 5.9 shows the percentage increase in data size for

a 1024 bits data using SRSS and SSS schemes in order to meet various reliability requirements

indicated by n− t2. For instance, in order to being able to afford to lose 7 shares (i.e. n− t2 = 7),

while the SRSS scheme with t0 = 8 presents 100% percentage increase in data size, the SSS

scheme with t0 = 1 would have 800% increase in data size. Note that SRSS with t0 = 1 is same

as the SSS scheme. Further, reliability requirements depend on the wireless channel properties

and therefore vary based on the channel conditions.

Computation energy depends on the complexity of the schemes, hardware implementation

and also on the processor. One general way to analyze computation overhead is to analyze

the complexity of the schemes by calculating the number of complex operations. Major com-

plex operations involved in SRSS and SHAES are addition and multiplication operations under

GF(28). Among these multiplication operations are the most computationally expensive oper-

ations (Daemen and Rijmen, 2002). Therefore more importance is given to multiplication op-

erations. There are different ways to realize the efficient hardware implementation of multipli-

cation and addition operations in GF(28) (Guajardo et al., 2006). In the AES, the MC involves

multiplication operations. Addition operations are involved in AK, MC and key schedule. The
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Figure 5.11: Computational overhead analysis in terms of number of multiplication operations
using only SRSS
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Figure 5.12: Polynomial evaluations for different data sizes using various SRSS parameters

number of addition and multiplication operations required to realize AES are calculated and are

equal to 752 and 576 operations respectively. Refereeing to the AES, the number of addition

and multiplication operations needed to realize SHAES are equal to 272 and 192 respectively.

The polynomial evaluation of secret sharing schemes also involves addition, multiplica-

tion and exponential operations. The exponential operations can also be realized with repeated
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Figure 5.13: Computational overhead analysis in terms of number of multiplication operations
using SRSS+AES

multiplication operations. The number of multiplication and addition operations needed to

communicate the data size of D̀ bytes using SRSS are given by equations 5.4 and 5.5, respec-

tively. Figures 5.10 and 5.11 show the multiplication operations needed to communicate the

data size of 1024 bits using only the SSS and the SRSS schemes, respectively. For instances, at

SSS(t2 = 5,n = 5) and SSS(t2 = 10,n = 10) the numbers of multiplication operations needed are

6400 and 57600, respectively. At SRSS(t0 = 4,t2 = 5,n = 5) and SRSS(t0 = 8,t2 = 10,n = 10)

the numbers of multiplication operations needed are 1600 and 7200, respectively. As t2 in-

creases, the number of multiplication operations also increases, as indicated in figures 5.10 and

5.11. Therefore, to reduce the computation burden under secret sharing schemes, one needs to

select parameters with lesser t2 resulting in less multiplication operations.

D̀/t0 × N ×
t2−1∑
i=1

i (5.4)

D̀/t0 × N × (t2 − 1) (5.5)

The proposed optimized SRSS and SHAES combination encrypts minimum group of shares

(total size = 128 bits) as explained in figure 5.7. If the encrypting share group size is less than
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Figure 5.14: Computational overhead analysis in terms of number of multiplication operations
using SRSS+SHAES

128 bits then extra bits must be added. As operations are performed in GF(28), each share

will be of 8 bits. A group of 16 shares would be equal to the required 128 bits. Therefore,

proper selection of SRSS parameters based on the data size lengths helps to reduce the extra

bits and achieves better communication energy efficiency. Figure 5.12 shows the number of

polynomial evaluations for different data sizes using various SRSS parameters. The SRSS

parameter combinations for different data sizes in the lower half of the demarcated line of

figure 5.12 are not efficient as they require extra bits to make the share group size reach 128

bits. In the SRSS analysis, we have restricted up to t0 = 8, the lowest data size that results in an

efficient combination using t0 = 8 is equal to 1024 bits. Therefore, the results of 1024 bit data

size are presented in this Thesis.

Figure 5.10 shows the total number of multiplication operations required to realize the com-

bination of SSS with the AES and the SHAES, encrypting each group of shares. The numbers

of multiplication operations needed to realize the combination of SRSS with the AES and the

SHAES, encrypting each group of shares are shown in figures 5.13 and 5.14, respectively. For

instances, at SRSS[(t0 = 4,t2 = 5,n = 5) and (t0 = 8,t2 = 10,n = 10)] the numbers of multipli-

cation operations needed for SRSS+SHAES and SRSS+AES are [3520 and 9120] and [7360

and 12960], respectively. The combination of SSS + SHAES with minimum share group en-

cryption has high computational overhead and communication overhead as indicated in figures
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Figure 5.15: Computational overhead analysis in terms of number of multiplication operations
using optimized SRSS+SHAES
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Figure 5.16: Communication overhead analysis in terms of data size expansion using SSS and
SRSS schemes

5.10 and 5.16. The proposed optimized combination of SRSS+SHAES achieves low compu-

tational and communication overhead as explained in figures 5.15 and 5.16. For instances,

at SRSS[(t0 = 4,t2 = 5,n = 5) and (t0 = 8,t2 = 10,n = 10)] the numbers of multiplication

operations needed for optimized SRSS+SHAES is [3136 and 8736].

The SSS+AES combination is least energy efficient and the proposed optimized SRSS +
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Table 5.2: Consolidated analysis of different approaches
The Works Objective CN attack Computation Communication

Overhead in terms Overhead in terms
of (x) operations of data size

Previous
Lou and
Kwon
(2006b),

Only SSS Yes Medium High

Shu et al.
(2010b),

Works
Liu et al.
(2012b)
Hsu et al.
(2011b)

Only SRSS Yes Lowest Low

Different

SSS+AES No Highest High

approaches

SSS+SHAES No High High

examined in

SRSS+AES No High Low

proposed works

SRSS+SHAES No Medium Low

SSS+AES No High High
optimized
SRSS+SHAES No Low Low
optimized

SHAES with minimum share group encryption is highly energy efficient compared to other

combinations. Computational overhead of different approaches are analyzed using number of

multiplication operations. With lot of options in selecting the parameters of SSS and SRSS,

it is difficult to exactly analyze and compare the different schemes. The different approaches

are given different levels of computational overhead ranging from lowest to highest based on

the overall trend observed with increase in t2 and data size. The communication overhead of

different approaches depends on the selection of secret sharing schemes. SSS has the high

communication overhead and the SRSS has the low communication overhead.The consoli-

dated analysis of different combination objectives is presented in tabular form in table 5.2.The

proposed optimized SRSS+SHAES combination approach achieves energy efficiency and also

overcomes the CN attack.

5.7 conclusions

In this chapter, the vulnerability of secret sharing schemes under the relaxation of a com-

pletely secure area around the BS to near-sink CN attacks was validated through simulation

results. Simulations were carried out using MATLAB and Castalia, a discrete network sim-

ulator. The theoretical analysis validated the achieved energy efficiency and desired semantic

security. The proposed combination works independently from the underlying routing schemes.
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Therefore, it can be easily incorporated into existing related works in secure data collection of

WSNs.
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CHAPTER 6

CONCLUSIONS AND FUTURE SCOPE

6.1 Conclusions

The following research objectives have been achieved.

• A data aggregation scheme is proposed, which deals with data compression and recon-

struction based on Compressed Sensing (CS), which uses correlation between and within

nodes.

In this thesis, with incorporation of CS as a data aggregation scheme, the information con-

tained in the signal is safely maintained through its projections which can be reconstructed

later. Inclusion of CS for an energy efficient routing technique further enhances the lifetime

of the network. To improve network lifetime, CS has been employed at level 1 (at the leaf

nodes). The dimensionality reduction at the transmitter is done using a measurement matrix.

At the receiver data is recovered using l1magic (convex relaxation) and greedy based methods.

Greedy based method offers low complexity and low implementation cost. The success rate of

greedy method depends on the sparsity of the data. Performance evaluation of greedy based

methods is analyzed by considering varying sparsity, and plotted against number of measure-

ment required to reconstruct the signals along with reconstruction errors. The same is analyzed

by considering the real temperature and humidity data sets.

• Another data aggregation scheme is proposed exploring the intra and inter correlations,

through the concept of Joint Sparse Models (JSM) to reduce the amount of redundant

data into the WSN.

The inter-signal and intra-signal correlations are explored in DCS through the concept of

joint sparse models. We conducted an analysis of joint sparse models and reconstruction of the



signal using joint recovery. Using synthetic signals which posses the inherent qualities of nat-

ural signals, we analyzed reconstruction performance using joint recovery (using S-OMP) and

separate recovery (using OMP). Further we employed DCS on real data to evaluate the amount

data reduction, by comparing the same using separate recovery. Depending on the amount of

intra and inter correlation DCS proves to be a better data aggregation technique. Simulation

results show that even in less sparse environment, DCS performs better than separate recovery,

which is well suited for real signals. Simulations also prove that with DCS, we can further re-

duce the number of measurements (compressed vector length), required for data reconstruction

as compared to separate recovery. Simulation results show nearly 50% reduction in the data

required for reconstruction in case of synthetic signals and 27% in case of real signals. We also

considered a data set with EEG signals, with 8 channel DCS Compression. In this case identi-

fying the correct sparsifying basis is very important. For EEG signals, we considered wavelet

transform as the sparsifying basis.

• A new scheme that is energy efficient, reliable, and secure against CN attacks is proposed

by combining Shamir’s Ramp Secret Sharing (SRSS) and a round-reduced AES cipher,

which we call split hop AES (SHAES).

In this thesis, an energy efficient SRSS and SH-AES is combined to provide both strong se-

mantic security and reliability in an efficient way. A possible way of combining two schemes is

proposed, and the combination works independently of the underlying routing schemes. There-

fore, it can be easily accommodated with the existing related works in the area of secure data

collection of WSNs. Extensive theoretical analysis of which also considers the vast available

literature on crypt analysis validates the achieved energy efficiency and the desired strong se-

curity. The unique characteristic and practicality of a CN attack in sensor networks raises some

serious threats on data security. Hence we addressed the CN attack by providing the strong

semantic security in an energy-efficient way. As future extension of this work, the following

ideas can be considered.
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6.2 Future Scope
• While considering multi hop WSNs, CS can be applied at the leaf nodes which can help

to reduce the network burden.

• Further by considering cross-layer design the performance can be improved.

• Estimation of measurement matrix can be done so as to get the optimum result of Data

aggregation using CS/DCS.

• The objective is to relax the assumption of secure area around the BS and to analyze

the vulnerability of secret sharing schemes under CN attack. Proposed a method that

combats CN attack in an energy efficient way.

• Optimized selection on the ramp secret sharing parameters based on the sensor network

routing constraints.

• Further crypt analysis of the proposed probabilistic symmetric encryption scheme.
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