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“Salutations to the great guru, who elucidates the supreme truth which

is infinite and all–pervading.”

“Salutations to the great guru, who, by means of the medicated needle of

knowledge, opens the eyes of people blinded by ignorance.”

To my teachers, parents, in-laws, and my wife Shilpa.





Acknowledgements

At the very outset, I wish to express my profound gratitude and respect
to my music teachers who initiated me to the eternal world of Karn. ātic
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Abstract

In this work, we propose a spectral model to efficiently synthesise Karn. ā-
t.ic bamboo flute music from the notes, duration, and rāga information of a
song. Karn. āt.ic flute music synthesis from basic notations is a challenging
problem due to two major reasons. The first one is that the gamakas
are generally omitted from the musical notations in the tradition of KM.
Hence, for the automatic synthesis of KM, the gamakas associated with
every note need to be predicted from the musical notations. The second
reason is the continuously varying pitch contour of a note in the presence
of gamakas.

We propose a method to detect the presence and type of gamakas associ-
ated with each note in a data-driven manner, from the annotated symbolic
music alone. In this regard, we propose features based on the notes of the
song. These features are used as inputs to a Random Forest Classifier
(RFC). From our experiments, the accuracy values obtained for predict-
ing the presence and type of gamakas are ∼77% and ∼70%, respectively.
These are significantly better than random classification accuracies. We
also analyse the importance of neighbourhood of notes for the detection
and classification of gamakas. It is observed that the best accuracy is ob-
tained for gamaka presence detection when a both-sided neighbourhood
of size three is considered; and the best accuracy for gamaka type pre-
diction is obtained with a both-sided neighbourhood of size one. The
analysis performed on the training data reveals that there is information
contained in these neighbourhoods for distinguishing between gamaka and
non-gamaka notes.

For synthesising Karṅāt.ic flute music, we model three different compo-
nents of the flute sound, namely, pitch contour, harmonic weights, and
time domain amplitude envelope. Cubic splines are used to parametrically
represent these components. Subjective analysis of the results shows that
the proposed method is better than the existing popular methods in terms
of tonal quality as well as the propriety of rendering gamakas. Hypothesis
test results show that the observed improvements over other methods are
statistically significant at 95% confidence interval.

Keywords: Gamaka , Karṅāt.ic Music, note-based features, Random For-
est Classifier, symbolic music, flute music synthesis, cubic spline interpo-
lation.
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ŝh(t) Harmonic part of the synthesised signal.

f0(t) Time varying pitch contour of the original signal.

fk(t) Frequency of the kth harmonic of the synthesised signal.

s(t) Original signal.

xi





Chapter 1

INTRODUCTION

Music is one of the oldest art forms ever known to man. From the primitive to the

modern era, it was an integral part of all human civilizations. Throughout the evolu-

tion of man as a social being, music has played an important role in communication,

entertainment, and spiritual as well as socio-cultural conditioning. Studies suggest

that the musical ability of a man is to be judged on the basis of his creative listening,

rather than the ability to produce or compose any sort of music. From this perspec-

tive, human beings are inherently musical, since they possess the fundamental quality

of being musical – the ability to perceive and differentiate sound classes. Music is a

daily activity in man’s life, regardless of the amount of musical training received by

him (Blacking 1974, Rao 2012).

India has one of the oldest musical traditions in the world, dating back to the

Vedic era. Indian music is one of the most complicated and intricate musical system

compared to other musical traditions. In India, music evolved as a divine mode of

communication for religious and spiritual observances. Music was a sacred art form

for Indians since the gods and other celestial beings are regarded as exceptionally

skilled musicians according to ancient Indian myths and epics(Shahinda 1914).

Music in India was originally taught and formulated by ancient saints, and their

expositions were written in Sanskrit. As the Northern part of India underwent more

cultural and political invasions thereafter, the musical tradition deviated from ancient

treatises. The primeval Indian Music is more or less preserved in its original form in

the southern part of India. Presently, the music of the north is called Hindusthāni

Music (HM), while the musical tradition followed in the south is called Karṅāt.ic Music

(KM). Even though there are obvious differences in the singing styles as well as the
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melodic elements, one can observe that they have a lot of fundamental rules and key

concepts in common, indicating their common lineage(Day 1891). In this thesis, we

are focusing our attention on the intricacies involved in KM.

Musical instruments have a pivotal role in the evolution of music around the world,

across civilizations. Instruments such as Chinese pipes led to the invention of different

musical scales and even the arrangement of finger holes along the bore of a flute.

Musical instruments were, to a great extent, responsible for developing the tonal

perception of man. They produce the music in its true sense, surpassing the barriers

of language (Sambamoorthy 1982).

The flute is one of the earliest musical instruments used by man (Conard et al.

2009). Based on the style of blowing, they are classified into three, namely, side-

blown flutes, direct flutes, and vertical flutes. Flutes of different kinds are used in

different musical traditions around the world. In the tradition of Indian music, side-

blown bamboo flutes are used for solo performances and also as one of the major

accompaniments for the vocal music concerts (Sambamoorthy 1982).

Karnatic flutes are made from bamboo and contain eight finger holes (tone holes)

and one embouchure hole (Ramamurthy and Raghavan 2013). Sound is produced

when the air jet from the player’s mouth hits the edges of the embouchure hole and

excites the air column inside the cylindrical body of the flute (Helmholtz 2013). The

effective length of the air column can be adjusted by means of opening and closing

the tone holes. This changes the resonance frequency, thereby generating different

notes in the octave (Benade 1990). Higher or lower octaves of the same note can be

generated by increasing or decreasing the blowing pressure, respectively (Helmholtz

2013).

1.1 Challenges

Musical instrument synthesis has been a topic of interest for several decades. A lot

of models and techniques were invented to faithfully synthesize the sound of different

musical instruments. These advancements have yielded excellent results in terms of

the quality and naturalness of some musical instrument tones. But, still, there is a lot

of scope for improvement in modelling continuously excited musical instruments such

as flute (Pérez 2009).

Synthesizing Karnatic music in bamboo flutes is a challenging problem. This is
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mainly due to two reasons. The flute tone has a complex nature with the relative

strengths of its different harmonics varying from time to time. The second reason is

the continuously varying pitch contour in Karnatic music. Gamaka, the pitch bends

used as essential ornamentations, is one of the important characteristics of KM. In

the context of KM, notations contain only skeletal information such as the name of

the note and its duration. No information on gamakas is present in the KM notation.

Hence, the presence and type of gamakas need to be predicted and their continu-

ous pitch bends need to be properly modelled for implementing an automatic music

synthesis system.

1.2 Motivation

KM is extremely complex due to the Micro-tonal variations (MTV) called gamakas

applied to different notes. Furthermore, gamakas need to be predicted from basic

notations since they are generally omitted from the KM notations. Neither the pre-

diction of gamakas nor their modelling is addressed by the existing works in flute

music synthesis. Moreover, certain gamakas in KM cannot be reproduced on a bam-

boo flute due to the limitations imposed by its physical structure. Hence, a flute

synthesis system can be thought of as an extension of the actual flute, overcoming its

structural limitations. Such a system can be useful in applications such as concert

synthesis. Also, this system enables a music enthusiast to generate music on the flute,

irrespective of his proficiency in playing the actual instrument. This feature will be

very useful for music composers.

1.3 Background of Karṅāt.ic Music

As mentioned earlier in this chapter, Karṅāt.ic Music (KM) is the musical tradition

followed in the southern states of India, while Hindusthāni Music (HM) is the mu-

sic tradition of the north. Both the streams rely on the fundamental concepts of

rāga (roughly equivalent to the ‘mode’ in western music), tāl.a (rhythm), s̀ruti (tonic),

and swara (note). There are many similar rāga and tāl.a names shared by both of

these traditions. But, the actual pitch variations in the rāga, the way of rendering the

musical phrases, the styles of ornamentations used, and the measure of the tāl.a are

usually different (Day 1891). In our discussions, we will be concentrating more on
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KM and its characteristic features.

1.3.1 Swara (Swaram)

Sangītaratnākaram, a thirteenth-century treatise of Indian Music, defines swara as the

one which is capable of inducing pleasure by itself. Thus, independent of all other

factors, swara can generate the melody. Hence, it is treated as the elementary unit

of melody in Karnatic Music (Sathyanarayana 2004).

Swara can be roughly translated as a note in the western music perspective.

There are seven swaras in KM in one octave. They are: Shadjam (Sa), Ṙshabham

(Ri), Gāndhāram (Ga), Madhyamam (Ma), Panchamam (Pa), Dhaivatam (Dha) and

Nishādam (Ni). Except for Sa and Pa, all the other five swaras have multiple note

positions (swara sthānam). The number of note positions in an octave is still a sub-

ject of discussion among musicologists. But, most of the Karnatic musicians follow the

twelve–note system. In this, there are only 12 distinct note positions; but four of them

are shared by eight swaras (same note position, but, different note label). Irrespective

of the systems used to represent swara sthānams, the scholars are unanimous about

the variability of swaras from their respective note positions. In KM, each swara is

articulated within a range centred about its note position. And, most of the time, an

articulated swara will be sung with a less articulated or unarticulated swara on its

either end (?). Hence, while the swara sthānams are regarded as the technical note

positions in an octave, swaras are treated as the melodic atoms in KM. Seven swaras,

twelve swara sthānams, and their frequency ratios with respect to Sa are given in

table 1.1.

1.3.2 Rāga (Rāgam)

Rāga is one of the most important features of Indian Music that separates it from

other musical traditions in the world. Ancient Indian musician and saint Mātanga

defined rāga as the special series of musical sounds, ornamented with the notes, note

sequences, and melodic sequences in such a way as to induce musical delight in the

mind of the listener. Rāga is a melodic structure, formed by the characteristic arrange-

ment of swaras. A rāga may contain four to seven swaras. It can also be visualized

as the musical locus of a set of swaras (Sathyanarayana 2004).

Each rāga is governed by some rules, which restrict the use of certain swaras and
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Table 1.1: Seven Swaras, twelve swara sthānams, and their frequency ratios (James
2012)

Swara Representation Ratio

Shadjam Sa 1

Shuddha Ṙshabham Ri 1 16/15

Chathushruthi Ṙshabham / Shuddha Gāndhāram Ri 2 / Ga 1 9/8

Shadshruthi Ṙshabham / Sādhārana Gāndhāram Ri 3 / Ga 2 6/5
Anthara Gāndhāram Ga 3 5/4
Shuddha Madhyamam Ma 1 4/3
Prathi Madhyamam Ma 2 45/32
Panchamam Pa 3

2
Shuddha Dhaivatham Dha 1 8/5
Chathushruthi Dhaivatham / Shuddha Nishādam Dha 2 / Ni 1 27/16
Shadshruthi Dhaivatham / Kaishiki Nishādam Dha 3 / Ni 2 9/5
Kākali Nishādam Dha 3 / Ni 2 15/8

specify their patterns. These rules define the characteristic features like ascending pat-

tern of swaras (ārohana), descending pattern of swaras (avarohana), and the gamakas

(Micro-tonal variations), which give that rāga its identity (called rāga bhāva) (Rao

2012, Nagavi and Bhajantri 2011, Day 1891). The similarity between the composi-

tions based on the same rāga is because of the presence of these features. Musical

sequences are so important that even the rāgas with the same set of swaras can have

entirely different rāga bhāva. Adhering to the rules, a musician has all the freedom to

use his skill, experience, and imagination to express his emotions (Day 1891).

1.3.3 Ornamentation In Karnatic Music

In KM, the ornamentation or embellishment is called alamkāra. The word alamkāra

has two meanings, namely, adequacy and embellishment. In KM, both these mean-

ings are realized by alamkāra in three different layers. The first one is called swara

alamkāra, which adds beauty to a single note. The second layer is called varṅa

alamkāra, which is a pattern of multiple notes. The third one is sthāya, which is

the melodic figure of a rāga (Sathyanarayana 2004).
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1.3.3.1 Gamaka (Gamakam)

Sangītaratnākaram describes gamaka as the “shaking of a note imparting pleasure

to hearing and mind”(Shringy and Sharma 1978). The variable nature of swara is

achieved by means of gamaka. Gamakas are often translated as the ornamental in-

flexions given to the notes, which indirectly assigns an ‘optional’ nature to their use.

In the context of KM, the shaking, curvature or the dynamics present in the pitch

contour of a note are not ancillary elements used for mere beautification (Sathya-

narayana 2004). Nor they are deliberately added to show off the musical knowledge

of the performer. There are certain phrases in which the use of a particular type of

gamaka is mandatory, while rendering some notes. In such situations, gamaka is not

at all an optional embellishment; but the integral part of the swara itself. Thus, it

demonstrates both the meanings of the word alamkāra. Hence, gamaka is considered

as the alamkāra of swara. There are very few occasions where the musician has all

the freedom to choose the type of gamaka, or can even decide whether to use them

or not. Only in such cases, gamakas can be thought of as the ‘optional’ ornamental

elements.

The shaking or curving of oscillating a note can be performed in almost infinite

number of ways. The methods to impart this variability is subjective, depending on

the level of musical knowledge and the musical tradition followed by the performer and

also the style of the composition. Sangītaśāstra, an ancient musical treatise, points out

that listing all the various possibilities in gamakas is practically impossible. Different

treatises have tried to classify gamakas into broader categories instead of listing the

entire set of possible variations. Some of the gamakas are specific to vocal music, and

some others are specific to musical instruments such as vīṅa (Sathyanarayana 2004).

The Mahābhārata C̀ood. āmān. i speaks about 10 types of gamakas (Krishna and Ishwar

2012), namely, ārōhan. am, avarōhan. am, āhatam, pratyāhatam, sphuritam, tripuc̀c̀ham,

dhālu, kampitam, āndōl.am and moorc̀c̀hana (James 2012). Subbarāma Dīkshita, has

also classified gamakas into ten broad categories in his work Sangīta Sampradāya

Pradarśini (Dikshitar 2008).

1.3.4 Tāl.a (Tāl.am)

Tāl.a is the rhythmic framework in KM. It divides time into fixed and equal length seg-

ments called āvartas. Each āvarta can be subdivided into smaller time units. Tempo

6



of the entire musical piece can be changed by changing the duration of these smaller

units. Tāl.a decides duration and onset of each and every syllable and swara (Sathya-

narayana 2004). There are different Tāl.a arrangements in KM, each having a unique

set of āvartas. Hundreds of tāl.as are mentioned in the ancient treatises. In the modern

Karṅāt.ic Music, 35 different tāl.a arrangements are used (Day 1891).

1.4 Objective

• To predict the presence of gamaka associated with a note from the textual

information containing the note labels, note durations, and the rāga information

of a song.

• To predict the type of gamaka from the textual information of a song.

• To synthesise bamboo flute tone of a plain note by modelling the frequency

contours, amplitude envelope, and wind noise by means of a modified sinusoids

plus noise model.

• To synthesise bamboo flute tone for gamakas and non-gamaka transitions by

means of modelling the continuous–time behaviour of the frequency contour,

amplitude envelope, and wind noise.

1.5 Major Contributions of the Thesis

The main contributions of the thesis are summarized in this section.

1. A system for predicting the presence and type of gamakas from the skeletal

notations is proposed. The input to this system is a text file containing infor-

mation regarding notes, their duration and the rāga of the song. Random Forest

Classifier is used for prediction and classification. The proposed system proves

to be effective in detecting and classifying gamakas from the textual notations

alone.

2. A system is proposed to synthesize bamboo flute tones by extending the sinu-

soidal model. Pitch, its other harmonics, spectral envelopes, and time domain

envelopes are modelled for generating the flute tone.
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3. A system for synthesizing the continuous pitch contours in the context of Karṅāt.ic

Music (KM) is proposed. Towards this, a continuous–time model for the fre-

quency contours, spectral envelopes for the harmonics, and time domain am-

plitude envelope is developed based on cubic spline interpolation. This system

is able to generate Karn. āt.ic flute music involving different gamakas and non-

gamaka transitions.

1.6 Organization of the Thesis

In Chapter 1 we try to brief the background of gamakas in Karṅāt.ic Music and the

need for a system to predict and model the gamakas. Chapter 2 discusses the existing

methods for the synthesis of flute music and related literature. In Chapter 3, we try

to give a detailed description of the prediction and classification of different types

of gamakas. In Chapter 4 a new model is proposed for synthesizing the plain notes,

gamakas and non-gamaka transitions for Karn. āt.ic flute music. The thesis is concluded

in Chapter 5.
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Chapter 2

LITERATURE REVIEW

The objective of this thesis can be broken down into two sub-problems. The first one

is predicting the gamakas from the input textual information, and the second one is

to synthesise flute music corresponding to the input notes and the gamakas. In this

chapter, we present an overview of the existing literature related to the sub-problems

mentioned above.

2.1 Flute Music Synthesis

Two major approaches towards the synthesis of flute tones are discussed in the liter-

ature – physical models and spectral models. While the physical models are based on

the sound production mechanism of the flute, spectral models rely on the perception

of sound by the human ear (Smith III 1991).

Physical models for flute dates back to the early 1980s, where the model comprised

of an energy source, an energetically active non-linear element, and an energetically

passive linear element. The non-linear element was used to model the air jet and

the linear, element represented the bore of the flute. A delay is incorporated in the

non-linear element to account for the dependence of the frequency of sound on the

blowing pressure (McIntyre et al. 1983). Later on, this model was improved by adding

the dispersive effect of finger holes on the air column inside the flute bore.

A real-time implementation of the flute model was proposed in which filters were

used to model the reflection, dissipation, and losses inside the flute body. Effect of

over-blowing and vibrato were also modelled (Valimaki et al. 1992). A transmission

line model for the transverse flute was developed which modelled six finger holes. But,
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the partial closing of the holes was not modelled (Keefe 1990). Later on, a digital

waveguide model was proposed, which modelled only the first two or three open finger

holes (Välimäki et al. 1993). Later, the system was extended by modelling 15 finger

holes (Välimäki et al. 1996).

A distributed tone hole model using the digital waveguides was also proposed which

modelled the open, partially open and closed tone holes in real time (Scavone and Cook

1998). The model was again improved by modelling dispersion and dissipation inside

the bore, keypad noise, vibrato, and tremolo (Ystad and Voinier 2001).

A filter design based approach was proposed to synthesize Indian bamboo flute

tones (Ramamurthy and Raghavan 2013). For each group of the notes, spectra of

individual notes were combined to generate a composite spectrum, and the coefficients

were found out. Attack and decay portions were not modelled.

Spectral models date back to the late 1960s. A 700 millisecond-long flute tone

(along with other wind instrument tones) was generated by means of spectral anal-

ysis method (Strong and Clark 1967) using the weighted sum of 30 sinusoids. Later

on, another additive synthesis method called Spectral Model Synthesis (SMS) based

on overlap–add method was developed, which modelled the spectrum as the sum of

deterministic and stochastic components (Serra et al. 1997, Serra and Smith 1990).

Time domain envelope was not explicitly modelled.

SMS model was, later, improved by adding a provision to model transients in

addition to sinusoids and noise (Verma and Meng 2000). The basic sinusoidal model

was improved by modifying the pitch and harmonic magnitude (Suyun and Yibiao

2016). Instead of using the peaks from the spectrum directly, the amplitude values

in the gaps between the peaks were estimated by fitting a cubic spline between all

the peaks. Another improved version of SMS incorporated the noise part into the

sinusoidal part itself (Kreutzer et al. 2008). The harmonic amplitude envelope for the

entire note was modelled using a sixth–degree polynomial.

A contiguous group synthesis approach for synthesising Chinese flutes was devel-

oped based on the grouping of harmonics (Horner and Ayers 1998). The amplitude

envelope for group 1 was designed using line segment approximation, and the powers

of this envelope were used for the other groups. Later on, this method was modified

for synthesizing trills (Ayers 2003) and tremolos (Ayers 2004). the frequency of the

trill was modelled as a line segment approximation of the average frequency contour

shape of trills. An amplitude envelope using line segments was also proposed. This
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was again improved by creating a timbre database and adding provisions for changing

the attack and decay rates (Rocamora et al. 2009).

Different Chinese flutes were modelled using additive synthesis making use of

around thirty harmonic components (Ayers 2005). In additions to trills and tremo-

los, vibrato also was modelled. A harmonic band wavelet transform based method

was developed to model the breath noise of a flute sound as pseudo periodic 1/f-like

noise (Polotti and Evangelista 2001; 2007). Synthesis of Andean quena tones was also

performed based on this method (Dı̈az and Mendes 2015).

A method for modelling and synthesizing gamaka was proposed for Karnatic music

(Subramanian 2013). Automatic addition of gamakas for some popular songs was

implemented. For other songs, the user needed to manually specify the constituent

notes and their time durations involved in each gamaka. Synthesis was done using

contiguous group synthesis. Amplitude envelope and the attacks and decays were not

modelled.

Another work synthesized gamakas in Karnatic flute music using a modified har-

monics plus noise model (Ashtamoorthy et al. 2018). Gamakas were approximated

using combinations of decaying and increasing exponential functions. Only three types

of gamakas were synthesized. A common amplitude envelope having a predefined at-

tack, sustain and decay characteristics was designed for all the notes.

Most of the methods discussed in the literature were developed for synthesizing

isolated notes. Synthesizing complete songs with automatic addition of ornamenta-

tions was not achieved in most of the methods. Moreover, very few works focused

on the special features of Karnatic music. Most of the methods approximated the

pitch contour as a discrete set of constant pitch segments. This violates the essen-

tial characteristic of Karṅāt.ic Music, which is the continuously varying pitch contour.

Automatic modelling and synthesis of the gamakas are discussed in only one paper

(Ashtamoorthy et al. 2018). This work addresses only three gamakas, that too, as a

coarse approximation of the actual shape. This approximation will not be sufficient

enough to model other gamakas used in KM.

2.2 Ornament Predicion

For any system to synthesize Karn. āt.ic flute music, gamakas need to be properly

addressed. Our goal is to synthesize flute music from the skeletal notations alone,
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which contain only the note names, note duration, and the rāga information. Such

an end-to-end system needs a provision to predict the presence and type of gamakas

associated with each note.

There are very few works done on predicting the gamakas in Karṅāt.ic Music (KM).

To the best of our knowledge, all the existing works on gamaka analysis focus on

acoustic data for this task (Vyas et al. 2015, Narayan and Singh 2014, Gupta and

Rao 2011, Pratyush 2010, Miryala et al. 2013). Other works on Indian Classical

Music (ICM) such as automatic music composition and singing voice synthesis do not

address the problem of predicting gamakas from the symbolic music (Varadharajan

et al. 2014, Mohapatra et al. 2010, Sinha 2008, Das and Choudhury 2005, Arora et al.

2009, Belle et al. 2009, Viraraghavan et al. 2017, ?, Ranjani et al. 2017). In Western

music, the studies performed on detection and analysis of ornamentations as well

as expressive music performance use audio data for these tasks (Gómez et al. 2011,

Giraldo and Ramı́rez 2016, Giraldo and Ramirez 2016).

The ornamentation for Jazz guitar performances was predicted as a part of expres-

sive music synthesis (Giraldo and Ramı́rez 2016). The dataset contained 16 commer-

cially available songs performed by an artist and their score files. Pitch and duration

of the current note and neighbouring notes along with the perceptual parameters, key,

and chord were extracted as features. RIPPER algorithm (Cohen 1995) used with a

reduced feature set gave the best prediction accuracy of around 70%, which was only

3.5% better than a random classifier. Later, the dataset was increased to 27 songs,

and the machine learning techniques such as Support Vector Machine (SVM), Artifi-

cial Neural Network (ANN), Decision Tree (DT) and K Nearest Neighbours (KNN)

were used for classification (Giraldo 2016). Decision Trees yielded the best accuracy

of around 79%, which was an improvement of only 5% over random classifier.

2.3 Research Gap Analysis

• To the best of our knowledge, predicting the presence and type of gamakas from

the textual notations alone has not been attempted so far. All the existing

gamaka prediction systems rely on the audio data for performing this task. It is

not practical to input the audio information in problems such as music synthesis

or automatic music composition, where the objective of the system is to generate

audio files.
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• Except one, all the existing works in flute synthesis do not consider the gamakas

and the continuous nature of pitch contour in Karṅāt.ic Music (KM). Discrete

approximation of the pitch contour will not be adequate for any system to prop-

erly synthesize a song in the KM perspective. A continuous time model is needed

to address this problem.
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Chapter 3

GAMAKA PREDICTION AND

CLASSIFICATION

One of the major differences between Karṅāt.ic Music (KM) and western classical

music is the use of Micro-tonal variations (MTV). MTV fall in the category of or-

namentations and embellishments in the western music perspective. In KM, such

tonal variations are called gamakas. They tend to alter the pitch of a note from

its actual position. This variability of note adds naturalness to the rendition in the

perspective of KM. Gamakas are considered as the integral parts of melody in KM

(Krishnaswamy 2003). KM performances are predominantly improvisational and the

usage of gamakas varies considerably across musicians. For a particular melodic struc-

ture, there can be multiple correct usages of gamakas for the same series of notes. It

is not practical to list out all the musically correct combinations of gamakas for any

song. Hence, it is a common practice to omit the gamaka information in the musical

notation (Viswanathan 1977).

This poses a serious problem in applications such as automatic music composition

and synthesis of KM, as a note in KM is properly defined only when the associated

gamakas are taken into consideration (Viswanathan 1977), (Sambamoorthy 1964).

A considerable amount of musical expertise is required to add the most accurate

and aesthetically pleasing gamaka to the plain notes. For the applications such as

music synthesis, audio will not be available as input. Hence, for designing a stand–

alone system for the synthesis/composition of KM, the gamakas need to be properly

predicted from the musical notations alone, without any audio input. We try to

predict the presence and type of gamakas from the musical notations in a data–driven

15



manner, from the plain note information.

3.1 Challenge

The rules to assign a particular type of gamaka to a note in KM are neither too strin-

gent, nor too flexible (Subramanian 2013). For example, in certain melodic frame-

works, a performer is allowed to add a gamaka of his choice to a note. In some other

cases, the use of specific gamakas is mandatory. The choice of a gamaka varies with

the fundamental melodic structure of the song and also with the performer’s musical

expertise. The ability to decide the most aesthetically pleasing gamaka from the avail-

able alternatives develops with the experience and the knowledge about the melodic

structure of the song (Swift 1990). Since this is challenging for even the human singers

without much musical expertise, this is a difficult problem in the machine learning

viewpoint (Gayathri 1987).

3.2 Dataset

Over the years, musicologists have described and classified gamakas in different ways

(Swift 1990). One of the widely accepted textbooks for gamakas in the twentieth

century is Sanḡita Sampradāya Pradarshini (SSP). This book classifies gamakas into

ten, based on the playing techniques of Vīna (an Indian musical instrument) (Dik-

shitar 2008). We use this as the reference book for creating dataset for our exper-

iments. We choose two popular melodic structures (rāgas), namely, Kalyāni and

Shankarābharanam, and their derived rāgas1 for this dataset.

We digitize the musical information of all the songs belonging to these rāgas from

SSP. The dataset covers 80 songs across nine composers from 22 rāgas. Table 3.1 lists

all the 22 rāgas in the dataset and the number of songs in each of them.

1A derived rāga contains only a subset of notes that are present in its parent rāga(Sambamoorthy
1964).
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Table 3.1: Number of songs in each rāga in the dataset

Parent
Rāga

Training Seen rāga Unseen rāga Total

Rāga Set Test Set Test Set Songs
K

al
y
ān

.i

Kalyān. i – – 9 9

Mōhanam – – 5 5

Sāranga – – 4 4

Yamunā kalyān. i – – 5 5

Hamv̄iru – 2 – 2

S̀
an

ka
rā

b
h
ar

an
.a

m

S̀ankarābharan. am 10 4 – 14

Ārabhi 2 1 – 3

Sāma 2 1 – 3

Pūrvagaul.a 1 – – 1

Nāgadhwani 1 – – 1

Kurinji 2 1 – 3

Hamsadhwani 1 1 – 2

Bilahari 3 1 – 4

Nārāyan. i 1 1 – 2

Bēgad. a 2 1 – 3

Dēvagāndhāri 2 2 – 4

Kēdāram 1 1 – 2

Navarōj 1 1 – 2

Nīlāmbari 3 2 – 5

Pūrn. achandrika 1 2 – 3

Saraswathimanōhari – 2 – 2

S̀uddhavasantham – 1 – 1

Total 33 24 23 80

A total of around 30000 notes are present in the dataset, out of which roughly

20000 do not contain any gamaka while the remaining 10000 notes contain gamakas.

Even though ten distinct classes of gamakas are found in the dataset, we do not include

two of them due to the lack of samples. The eight different gamakas considered in

our experiments are: Podi, Kampitham, Sphuritham, Nokku, Ētra Jāru, Irakka Jāru,

Othukkal and Orikkai. Out of the 55 songs belonging to rāga S̀ankarābharan. am and
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Table 3.2: Notes in the dataset

Set
Gamaka Plain Total

Notes Notes Notes

Training 3478 8103 11581
Seen 2385 5948 8333
Unseen 3853 5608 9461

Table 3.3: Number of gamakas used in the experiments

Gamaka
Training Seen rāga Unseen rāga

Set Test Set Test Set

Podi 315 186 158
Kampitham 195 100 377
Sphuritham 588 596 527
Nokku 802 440 691
Ētra Jāru 951 574 959
Irakka Jāru 423 273 355
Othukkal 525 293 549
Orikkai 475 302 975

its derived rāgas (containing only a subset of notes present in S̀ankarābharan. am), we

choose 33 songs for training the classifier, while the remaining 22 songs are included

in the test set 1. We name this set as ‘seen rāga test set’ since the characteristics

of the songs in this set are similar to those used for training the classifier. Twenty

three songs belonging to Kalyān. i and its derived rāgas are used to form the test set

2. Since the melodic structure of these songs is different from that used for training,

we term this set as ‘unseen rāga test set’. The remaining two songs belong to the

rāga Hamvīru. Even though this rāga is a derived rāga of Kalyān. i, it shares some

common musical features with S̀ankarābharan. am. Hence, we include these two songs

also in the seen rāga test set. The number of plain notes and gamaka notes for the

training and test sets are listed in Table 3.2. The different gamakas used for the

experiments, and their number of occurrences are listed in Table 3.3. An excerpt

from our dataset is shown in Table 3.4. It contains the note labels, note duration in

terms of beats and the information about presence and type of gamaka.
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Table 3.4: An excerpt from a song belonging to rāga Hamsadhwani contained in the
training dataset

Note
Duration Gamaka Gamaka

Rāga
(beats) Presence Type

...

G2 1 NO – Hamsadhwani
P2 1 YES Ētra Jāru Hamsadhwani
R2 2 YES Irakka Jāru Hamsadhwani
R2 2 NO – Hamsadhwani
N2 1 NO – Hamsadhwani
G2 1 NO – Hamsadhwani

...

3.3 Methodology

The input to our system is the notations of a song containing the note labels (first

column in Table 3.4), durations (second column in Table 3.4) and the rāga of the

song (fifth column in Table 3.4). The goal is to predict the presence and type of

gamaka associated with each note (third and fourth columns in Table 3.4). We extract

features based on the notes and employ a Random Forest Classifier (RFC) for these

tasks.

3.4 Features

The characteristics of any song are defined by the notes used. Hence, we extract the

features based on the notes of the songs for our experiments. Certain gamakas are

observed to be more prominent in specific rāgas (Viswanathan 1977). This necessitates

the inclusion of rāga dependent features into the feature set. Karṅāt.ic musicians

observe that some characteristics phrases are associated with some rāgas and certain

gamakas occur as part of these note sequences (Viswanathan 1977). From this, we

hypothesise that the occurrence of some gamaka on a particular note has a dependence

on the adjacent notes. Based on all these facts, we consider a set of notes – called

neighbourhood notes – adjacent to every note for creating its feature. The extracted

features represent the pitch and duration of the notes in the neighbourhood. The

19



Table 3.5: Note table for feature creation

g1 G1 m1 M1 P1 d1 D1 n1 N1 S2
1 2 3 4 5 6 7 8 9 10

r2 R2 g2 G2 m2 M2 P2 d2 D2 n2
11 12 13 14 15 16 17 18 19 20

N2 S3 r3 R3 g3 G3 m3 M3 P3 d3
21 22 23 24 25 26 27 28 29 30

pitch of a note is represented by the absolute and relative frequency positions of the

note. Duration is represented by the number of beats.

The absolute and relative frequency positions of notes are computed based on a

note table. This table contains all the notes from the lower, middle, and upper octaves,

appearing in the songs contained in the dataset. These notes are arbitrarily labelled

using numbers 1,2,3, etc. This numbering scheme is only for representative purpose,

and does not indicate the actual frequencies (in Hz) of the notes. The note table used

in our experiments is given in Table 3.5.

A neighbourhood of notes adjacent to every note is considered for finding out its

features. We name this note (whose features are being found out) as pivotal note. The

neighbourhood may be selected either 1) only to the left of the pivotal note, or 2) only

to the right of the pivotal note, or 3) on both sides (to the right and the left) of the

pivotal note. The corresponding neighbourhoods are called ‘left-sided’, ‘right-sided’

and ‘both-sided’, respectively.

The corresponding note label for the pivotal note is found out from the note table.

This represents its absolute frequency position and is included in the feature set with

the name current note. For analysing the impact of the neighbourhood notes, we also

add their relative frequency position in the feature set with respect to the pivotal note.

This is obtained by subtracting the current note from the absolute frequency position

of each of the neighbourhood notes.

As an example, let us consider the note sequence G2, P2, R2, R2, G2 from the

snippet of the song given in Table 3.4. Let us consider R2 (third note in the sequence)

to be the pivotal note. For simplicity, here, we consider a neighbourhood of only two

notes on both sides of the pivotal note. From table 3.5, the label for the note R2 can

be found out to be 12, which is used as a feature called current note. The label for

the note which immediately precedes R2 in the given set of notes (i.e., P2 ) is 17. The
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difference between this and the Current Note is 5. This is included in the feature set

with the name Previous Note 1. Previous Note 2 is found out by subtracting Current

Note from the absolute frequency position of G2, which appears two notes before the

pivotal note. Its value is 2. Similarly, the values for the features Post Note 1 (the

note which immediately follows the pivotal note) and Post Note 2 (second note after

the pivotal note) are 0 and 2, respectively.

In addition to these, another set of features are included for representing the rāga-

dependent relative frequency position of the neighbourhood notes. Another note table

is constructed based on the rāga of the song for computing these features. This rāga-

dependent note table contains only those notes which are present in the rāga of the

song. Relative frequency positions of the neighbourhood notes are found out based on

this table. For example, the rāga-dependent note table for the rāga Hamsadhwani is

shown in Table 3.6. It contains only five notes per octave. Assuming the same sequence

of notes and neighbourhood used in the previous example, the rāga-dependent features

Previous Note Rāga 1, Previous Note Rāga 2, Post Note Rāga 1 and Post Note Rāga

2 for the note R2 can be found out to be 2, 1, 0 and 1, respectively.

The duration of the notes in the neighbourhood, as well as the pivotal note, are

also included in the feature set. These are represented in terms of the number of

beats. Assuming the same sequence in the previous examples, it can be seen from

Table 3.4 that the duration of the pivotal note is two. Similarly, the durations of the

preceding two notes succeeding two are 1, 1, 2 and 1, respectively. Thus, if a both-

sided neighbourhood of five notes is considered, there are 11 features for representing

the durations, 11 for note frequency positions and 10 for rāga-dependent relative

frequency positions. Thus, a total of 32 features are extracted for every note.

Table 3.6: Rāga-dependent note table for rāga Hamsadhwani

G1 P1 N1 S2 R2 G2 P2 N2 S3 R3 G3 P3
1 2 3 4 5 6 7 8 9 10 11 12

3.5 Random Forest Classifier

The model–based classifiers such as Gaussian Mixture Model (GMM) as well as the

Artificial Neural Networks (ANN) assume the feature vectors to be real–valued (Larose
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2015). Since our features are nominal and not real–valued, we use a Random Forest

Classifier for the detection and classification of gamakas. RFC is an ensemble of

Decision Trees (Breiman 2001). Decision Trees try to classify the data based on a

sequence of binary decisions. The process starts with all the data samples at the

root node. The data is split into two different groups at each node depending on a

yes/no question based on a feature. The best feature enabling maximum separation

between the two classes is chosen by the algorithm. The splitting process is continued

to subsequent nodes until the entire data is classified (Duda et al. 2012). Parameters

of RFC include the number of trees, maximum number of leaf nodes, depth of the

trees, minimum number of samples needed to split a node, etc. We try to optimise

some of these parameters on the basis of cross validation. The optimal features are

then used on the test sets for finding the performance of the classifier.

3.6 Experiments

We try to predict the presence and type of gamakas from the skeletal notations of a

song. This is performed in two phases. In the first phase, we try to check whether

there is any gamaka associated with a note. This phase is called gamaka detection.

In the next phase, the type of gamaka associated with a note is predicted. This phase

is called gamaka classification. For gamaka classification task, we consider only those

notes having any gamaka associated with them. The notes which do not contain

gamakas are manually removed from the data before the classification task. Initially,

the experiments are conducted using the default parameters for the classifier. Sub-

sequently, the parameters and the type and size of the neighbourhood are optimised

based on cross–validation results. There are 33 songs in the training set. A 33-fold

cross–validation is performed, each time leaving out a song completely and training on

the other 32 songs. The left-out song is used as the validation set and the prediction

accuracy is found out. This process is repeated for the entire 33 songs in a round-

robin manner. The cross–validation accuracy is found out by averaging the individual

accuracy values obtained for each of these 33 songs.
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3.6.1 Gamaka Detection

For detecting the gamakas, we use the features based on different types of neigh-

bourhoods. The neighbourhoods considered here are of three types – ‘left–sided’,

‘right–sided’ and ‘both–sided’. A left–sided neighbourhood of ‘N’ notes contains the

pivotal note along with N notes to the left of it (a total of N+1 notes). Similarly, a

right–sided neighbourhood of N notes contains the pivotal note and N notes to the

right of it. A both–sided neighbourhood of N notes contains the pivotal note, N notes

to the left of it and N notes to the right of it (a total of 2N+1 notes). We consider

different values for N, ranging from zero to ten. A neighbourhood of size zero contains

only the pivotal note. We try to optimise the classifier parameters such as the number

of trees and the minimum number of samples required to split a node. A grid search of

these parameters is performed jointly, along with the size and type of neighbourhood.

Fig. 3.1 shows the variation of cross validation accuracy with respect to different

neighbourhoods. From the results, it is concluded that a both–sided neighbourhood

of size 3 (a total of 7 notes) yields the best cross validation accuracy.

Fig. 3.2 shows the variation of cross–validation accuracy with respect to the num-

ber of trees. From the plot, the optimal value for the number of trees can be found

to be 1536. Minimum samples needed to split a node is varied from one to ten, and

the optimal value for this parameter is found to be four. The cross–validation ac-
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Figure 3.1: Accuracy values corresponding to different neighbourhoods.
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Figure 3.2: Variation of accuracy with respect to number of trees (both–sided neigh-
bourhood of size 3).

Table 3.7: Cross validation accuracies (for the both-sided neighbourhood of 3 notes).

Default Parameters Tuned Parameters

75.1% 76.5%

curacies are listed in Table 3.7. Tuning of hyper parameters seems to have minimal

impact on the classifier’s performance. The cross–validation accuracy is improved by

approximately 1.4%.

We try to evaluate the performance of these features and tuned parameters on the

test sets. Experimental results are shown in Table 3.8. We compare the accuracy

of our tests with random classification accuracy. Random classification is performed

by choosing the class which occurs the most in the dataset. In our training data,

non—gamaka occurs the most. Hence, deciding any sample as non-gamaka yields

an accuracy of 71.3%. From the results, it can be seen that the accuracy values

obtained by the use of RFC are better than the random classification accuracy. In the

seen rāga test set, the accuracy is improved by approximately 5.2% over the random

classification accuracy. In the case of unseen rāga test set, the improvement is around

8.3%. Since the non-gamaka class is more probable than the gamaka class in our

training data, accuracy cannot be considered as a meaningful measure. For example,

the random classifier described above gives an accuracy of 71.3% even though it does
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Table 3.8: Test accuracies for gamaka detection

Test Set
Random

Classification
RFC

Accuracy F score Accuracy F score

Seen Rāgas 71.3% 0 76.5% 0.45
Unseen Rāgas 59.9% 0 68.2% 0.42

not detect even a single gamaka from the seen rāga test set. Hence, to assess the

performance of the classifier, we also compute the F score for both the seen and

unseen rāga test sets. F score is a measure of the classifier’s performance in selecting

the positive class. It is computed as the harmonic mean of precision and recall (Powers

2011). Since the random classifier does not detect any sample as the positive class

(gamaka in this case), its F score is zero. RFC outperforms the random classifier by a

huge margin in terms of F score also. F score of RFC is found to be 0.45 and 0.42 for

the seen and unseen test sets, respectively. The melodic structure of the songs in Seen

rāga test set and training set is the same, and hence they have similar characteristics.

This accounts for the increased accuracy and F score for the seen rāga test set.

3.6.2 Analysis of the Results

Our experiments show that the gamakas depend on the neighbourhood notes. An ele-

mentary analysis of the training data is conducted to study this dependence. The num-

ber of distinct note sequences that are common to the gamaka and non-gamaka classes

is computed for a fixed neighbourhood size. We compare these with the number of dis-

tinct common sequences if the labelling were to be random. If there is no gamaka in-

formation contained in the neighbourhood notes, the number of distinct common

sequences obtained from the actual and random labelling will be similar.

We consider both–sided neighbourhood of size ranging from zero to ten for find-

ing out the distinct common sequences in the training data. Random labelling is

performed in such a way that the probabilities of gamaka and non-gamaka notes are

the same as those in the actual labels (only 30% of notes in the training data con-

tain gamakas). Mean and standard deviation of the number of common sequences

for all neighbourhood sizes are computed for ten random labellings. Fig. 3.3 shows

the number of sequences for different neighbourhood sizes for the training data using
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Figure 3.3: Number of sequences common to both gamaka and non-gamaka notes for
different neighbourhood sizes. The plot for the random labelling shows mean and the
error bar shows ±3σ for 10 random labelling.

actual labels and random labels for gamaka. In the plot, the number of common

sequences for random labelling is represented using the mean. The error bars repre-

sent three times the standard deviation (±3σ). It can be seen that the number of

common sequences is always less for the actual labelling as compared to the random

labelling. This shows that there is more distinction between the sequences belonging

to the gamaka and non-gamaka classes in the actual labelling as compared to the

random labelling. Hence, there is a certain amount of information contained in the

neighbourhood notes.

For example, from Fig. 3.3, it can be seen that the average number of common

sequences found for ten random labellings is 1197. But, the number of common

sequences using the actual labels is only 897. There is a reduction of around 25%

in the number of sequences common to both the gamaka and non-gamaka classes

compared to the randomly labelled data. This reduction is significant since it is larger

than the 3σ (±64) range. This trend is always followed in all the neighbourhood sizes

considered in our experiments.

The number of overlapping sequences for the actual labelling as well as the ran-

dom labelling decreases towards both the ends of the plot shown in Fig. 3.3. The

reduced number of overlapping sequences on either side of the plots can be explained
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Figure 3.4: Total number of distinct sequences (for both gamaka and non-
gamaka notes) for different neighbourhood sizes

by two different phenomena. For smaller neighbourhood sizes, the number of dis-

tinct sequences is less. Hence, naturally, the number of overlapping sequences are

also less. Fig. 3.4 shows the total number of distinct sequences for both gamaka and

non-gamaka notes in the training data for different neighbourhood sizes. It is seen

that the number of distinct sequences saturates as the neighbourhood size increases.

Even though the number of combinations increases with the length of the sequence,

all these combinations are not musically viable. This is the reason for the saturation

of the curve for larger neighbourhood sizes. As the total number of sequences for

gamaka and non-gamaka remains fixed, and the length of the sequences increasing,

the number of matching sequences reduces. This is the reason for the reduction in the

number of common sequences towards the right end of the curve shown in Fig. 3.3.

The optimal neighbourhood obtained after cross–validation corresponds to the

mid–region of the curve shown in Fig. 3.3. The reduction in the number of common

sequences is prominent in this neighbourhood. The analysis performed here takes only

the note frequencies into consideration. Information contained in the rāga and the

durations of the note are omitted from this analysis. The inclusion of this information

may provide a better distinction between gamaka and non-gamaka classes.
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3.6.3 Gamaka Classification

In this phase, we try to predict the type of gamaka from the notes. We consider only

eight different types of gamakas for this task. Features are the same as those used in

the previous set of experiments. Training and test sets also contain the same songs as

in the detection experiment. But, we manually remove all the plain notes from these

songs and use only the gamaka notes for the classification experiment.

We consider the same types and sizes of the neighbourhoods as in the detection

experiment and perform the neighbourhood optimisation. Left, right and both–sided

neighbourhoods are considered, while the number of neighbourhood notes are varied

from zero to ten. We also perform optimisation of the hyper–parameters as in the

previous experiment. We perform a round–robin cross–validation as in the detection

experiment to find the optimum neighbourhood, and the results are illustrated in Fig.

3.5. It can be seen that the best accuracy is obtained when a both–sided neighbour-

hood of size one is considered (total the notes). Optimum values for the minimum

number of samples needed for RFC to split a node is found to be two, and the op-

timum value for the number of trees is found to be 128. Variation of accuracy with

respect to the number of trees is shown in Fig. 3.6.

The cross–validation accuracies under different experimental conditions are listed

in Table 3.9. Only a very small change (∼1.3%) in the accuracy values are observed

after parameter optimisation. We use the optimum parameter values to perform

experiments on the test sets. Test results are tabulated in Table 3.10. Here also we

try to compare the results with random classification. In the seen rāga test set, the

most repeated type of gamaka is Sphuritham. Classifying every gamaka as Sphuritham

yields an accuracy of 25.5%. In the unseen rāga test set, the most repeated type of

gamaka happens to be Orikkai, and the blind assignment of Orikkai to all samples

yields an accuracy of 25.7%. From the results, it is clear that the RFC with tuned

parameters outperforms the random classifier by ∼45% in the seen rāga test set, and

by ∼33% in the unseen rāga test set.

The F scores for distinguishing a specific gamaka from the other seven classes in

the test sets are displayed in Fig. 3.7. From the figure, it can be seen that the F

score for the gamaka Kampitham is low in both the seen and unseen rāga test sets.

This can be attributed to the lesser number of samples for this gamaka (less than 200

samples) compared to the other gamakas in the data set. In this experiment also, seen

rāga test set has the increased accuracy and F score compared to the unseen rāga test
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Figure 3.5: Accuracy values corresponding to different types and sizes of neighbour-
hoods (gamaka classification).
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Figure 3.6: Variation of classification accuracy with respect to number of trees (for
the both–sided neighbourhood of size 1).
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Figure 3.7: F score of different gamakas for the seen and unseen rāga test sets.

Table 3.9: Cross validation accuracies for gamaka classification(for the both-sided
neighbourhood of size 1)

Default Parameters Tuned Parameters

65.9% 67.2%

set. Again, it can be due to the similarity in the melodic structure between the songs

in the training set and the seen rāga test set.

The confusion matrices obtained for the seen and unseen rāga test sets are shown in

Table 3.11. Both the matrices have similar kinds of confusion between the gamakas.

It can be seen that the gamaka named Kampitham is confused with several other

gamakas. This has the least number of correctly classified instances in both the seen

and the unseen test sets. Prominent confusion is observed in the case of Podi, which is

often misclassified as Othukkal. Another notable confusion is seen between Othukkal

Table 3.10: Test accuracies for gamaka classification

Test Set
Random

AccuracyClassification
Accuracy

Seen Rāgas 25.5% 70%
Unseen Rāgas 25.7% 59%
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Table 3.11: Confusion matrix for seen rāga test set. Correctly classified instances are
listed along the diagonal. Shaded cells represent prominent confusions
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Othukkal 83 2 9 7 160 0 177 4

Orikkai 0 2 9 4 4 53 6 225

Actual Class

and Ētra Jāru. Similarly, Irakka Jāru class is wrongly classified as Orikkai. For the

unseen rāga test set, two more prominent confusions are observed, which are not

present in the seen rāga case. One is between Irakka Jāru and Orikkai and the other

one is between Orikkai and Sphuritham. In both the test sets, Nokku, Orikkai and

Sphuritham are the most correctly classified gamakas.

3.6.4 Analysis on the Training Data

An elementary analysis on training data is performed to get an insight into the perfor-

mance of gamaka classification system. For this analysis, we focus on the characteristic

phrases in the training set containing gamakas. Towards this, we extract the most

frequently appearing sequences where a gamaka is present in the pivotal note. We try

to analyse the existence of any characteristic note patterns specific to certain gamakas

from these most frequently occurring sequences. We consider two different neighbour-

hoods for this analysis. The first one is both–sided neighbourhood of size one (a total

of three notes including the pivotal note), and the second one is the both–sided neigh-

bourhood of size two (a total of five notes including the pivotal note). We extract all

sequences of length three and five with a gamaka on the pivotal note. From these,
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Table 3.12: Confusion matrix for unseen rāga test set. Correctly classified instances
are listed along the diagonal. Shaded cells represent prominent confusions
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Ētra Jāru 0 88 9 21 497 6 145 150
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five most repeated sequences are determined for each type of gamaka for each of the

neighbourhoods.

We find out the frequencies of notes for all these sequences and normalise them

such that the pivotal note has unit frequency. This is performed to find out the

change in relative frequencies of notes on either side with respect to the frequency of

the pivotal note. The plot of these normalised note frequencies for each of the gamakas

is shown in Fig. 3.8 and Fig. 3.9. Thicker lines represent the more frequent sequences

containing each gamaka. Legend in the plot shows the number of times each sequence

is repeated. From plots, it can be seen that the unique characteristic patterns for

five–note sequences are less than those for the three–note case. This can be a reason

for increased cross validation accuracy in the case of both–sided neighbourhood of size

one.

From the plots in Fig. 3.8, it can be seen that the most frequent patterns of Ētra

Jāru and Othukkal are very similar to each other. This can be a reason for the in-

creased confusion between these gamakas. Similarly, Irakka Jāru and Orikkai share

common patterns in the most repeating sequences, which may be the reason for the

prominent confusion between these two. Nokku has characteristic patterns which are

32



unique, and shares very few note patterns with other gamakas. This can be a rea-

son for reduced confusion and increased F-score of this gamaka. Another interesting

observation is that Kampitham shares note patterns with all other gamakas, thereby

lacking a unique shape for the note pattern. This can be a reason for it being misclas-

sified as several other gamakas most of the times. However, this analysis takes only

the relative frequency of the note patterns into consideration. Other features related

to the note duration and rāgas are omitted from this analysis.

3.7 Conclusion

In this chapter, we try to predict the presence and type of gamakas associated with a

note from the skeletal notations of a song. Towards this, we propose features based on

the frequency and duration of notes present in the song as well as the rāga of the song.

These features are extracted for a neighbourhood of notes around the pivotal note. A

Random Forest Classifier is used for the detection and classification of gamakas.

Optimisation of the type and size of the neighbourhood along with the parameters

of the classifier is performed based on the cross–validation results. Using the opti-

mised values for the parameters, accuracy of around 76.5% is observed for the seen

rāga test set. For the unseen rāga test set, the accuracy obtained is 68.2%. Best ac-

curacy is yielded by a both-sided neighbourhood of size three (a total of seven notes).

Evidence from the training data also suggests that there is information contained in

this neighbourhood which helps distinguish between gamaka and non-gamaka notes.

We follow the same approach for gamaka classification experiment. For seen rāga

test set, we observe classification accuracy of 70%. For unseen rāga test set, the

accuracy is found to be 59%. the optimal neighbourhood is found to be both–sided

with size one (three notes in total). We observe that the gamakas named Sphuritham,

Nokku, Orikkai and Irakka Jāru exhibit characteristic patterns in the note sequences,

and are having a better F score. The accuracy obtained for the unseen rāga test set

is less compared to the seen rāga test set in both the detection and the classification

experiments. Even though we consider around 20000 notes covering 80 songs belonging

to 22 rāgas, it is still very less compared to the wide range of songs belonging to a very

large number of rāgas (around 200 rāgas are listed in SSP (Dikshitar 2008) in KM.

We expect that a larger, diverse dataset containing more rāgas will help the system

detect the presence and type of gamakas more accurately.
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Figure 3.8: Note frequency plots (normalised to the frequency of the pivotal note) of 5
most repeated sequences for each gamaka (Considering the both-sided neighbourhood
of size 1). The legend shows the number of occurrences for each sequence.
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Figure 3.9: Note frequency plots (normalised to the frequency of the pivotal note) of 5
most repeated sequences for each gamaka (Considering the both-sided neighbourhood
of size 2). The legend shows the number of occurrences for each sequence.
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Chapter 4

SYNTHESIS OF KARN. ĀT. IC

FLUTE MUSIC

Karṅāt.ic Music (KM) is different from western music in many ways. One of the major

differences lies in the use of gamaka, which can be thought of as a bend or inflexion

in the pitch contour of a note. These can occur in the transition region between two

notes or during a single note itself. Due to the extensive use of gamakas, the pitch

contour of a note in Karn. āt.ic flute music may fluctuate most of the times. Such a

continuous pitch contour is approximated using discrete segments in the frame–based

synthesis methods. Even though the perceived difference can be made very low by

the use of smaller windows, this method still deviates from the fundamental concept

of continuous pitch contour. In this chapter, we propose a continuous time spectral

model to synthesise bamboo flute music for Karṅāt.ic songs without using a frame–

based approach. Towards this, we model all the important spectral parameters of

bamboo flute tone to synthesise plain notes, gamakas and non-gamaka transitions.

4.1 Karṅāt.ic Music on South Indian bamboo Flute

A bamboo flute tone is rich in harmonic content. Most of the energy present in a

bamboo flute tone is contributed by the fundamental frequency and its harmonics.

Fig. 4.1 shows the spectrogram of a single note played in South Indian bamboo flute.

The dominance of the harmonic components is evident from the spectrogram. There

is also a noise–like energy present in the spectrogram. Thus, a bamboo flute tone can

be decomposed into several harmonically related sinusoids plus coloured noise.
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Figure 4.1: Spectrogram of a single note played on south Indian bamboo flute (win-
dow size=70 ms, overlap=35ms, FFT size=4096). The image is magnified to show the
individual harmonics in the spectrogram.

4.1.1 Pitch Contour

When multiple notes are played on the bamboo flute, the resulting tones will have a

continuous pitch contour if the notes are produced in a single blow. But, in the case

of a piano, pitch contours take only a discrete set of values. In the transition region

between two notes, pitch values of both the notes will be present. To demonstrate

this, we compare the spectrograms of the note sequences produced using a bamboo

flute and a piano. Figure 4.2 shows the spectrograms for KM played on a south Indian

bamboo flute, and western musical notes played on a piano. From the spectrogram

of the piano sample, it can be clearly seen that the frequency contours of individual

notes overlap in the transition region. The sinusoidal components corresponding to

the previous note start to fade out slowly after the beginning of the next note. In

the case of the flute spectrogram, the note transitions are continuous. This smooth

transition is evident in the case of other harmonics too.

Fig. 4.3 shows the pitch contours of two different gamakas. Regions corresponding

to different notes are labelled. Each of these pitch contours corresponds to only a single

note, even though the pitch transitions clearly show the presence of more than one

note in each of them. Traditionally, these additional but essential notes are omitted

while writing the notation of the song. For example, in Fig. 4.3a, pitch contour shape

of the gamaka called Sphuritham is shown. Pitch contour starts from one note, goes
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(a) Flute (b) Piano

Figure 4.2: Spectrograms for Karṅāt.ic Music played on bamboo flute and western
music played on piano
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Figure 4.3: Instantaneous pitch contours for two different gamakas played on flute

down to reach the lower note, and then jumps up to reach the same note and settles

there. The entire pitch bend is traditionally assumed to be one single note. Another

gamaka named Vali is shown in 4.3b. In this, while going from one note to the

other (‘Note #1’ to ‘Note #3’), pitch contour touches another note (‘Note #2’). This

intermediate note is omitted from the musical notation.

4.1.2 Spectral Weights of Harmonics

The spectral weights for different harmonics are not the same for all notes played on the

flute. The relative weights of harmonics with respect to the first harmonic also differ

from note to note. For example, Fig. 4.4 shows the variation of relative weights for the

second and third harmonics for five different notes in a Karṅāt.ic rāga Mōhanam. When

moving from one note to another, not only the pitch and harmonic frequencies change,

but also their respective weights. For a signal consisting of continuous frequency

changes, the weights for the note transition regions and the gamaka regions need to

be interpolated for a perfect representation.
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Figure 4.4: Variation of relative weights for the first two harmonics over five different
notes. Weight of first harmonic is normalized at 0dB.

4.1.3 Time Domain Envelope

Another important characteristic feature of a flute tone is its time domain amplitude

envelope. This can be split into three different regions; namely, attack, sustain and

decay. How the waveform evolves into its actual shape is different for different pitch

contours. Fig. 4.5 shows the amplitude envelopes for different types of flute tones. It

can be observed that the amplitude envelope of a single plain note changes with the

presence/absence of gamaka in the note.

4.1.4 Wind Noise

The wind noise is another important component present in flute sound. In a flute,

while the harmonic part of the signal is generated as a result of the sustained oscilla-

tions produced inside the bore, the wind noise is produced by the turbulent streaming

of the air when it passes through a narrow opening (Serra et al. 1997). In addition

to the harmonic components, a noise–like energy can also be seen in the spectrogram

shown in Fig. 4.1. This noise–like energy also needs to be modelled for adding natu-

ralness to the flute tone. For analysis, wind noise for a note is recorded by blowing into

the flute without creating resonance while maintaining the same finger positions for

generating the actual tone for the note. Fig. 4.6 shows the spectrograms of the wind
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Figure 4.5: Amplitude envelopes for four different note sequences

noise recorded for the notes dha and ga for middle octave. From the spectrograms,

it can be seen that there are dominant peaks present in the noise spectra which are

located very close to the fundamental frequency of the actual note. A similar trend is

observed in other notes too. Thus, it can be seen that the noise is different for different

notes. This demands the noise to be modelled differently for each note for a perfect

reconstruction of the note tone. At the same time, the spectrograms for the noise

signals from different octaves are almost the same, where the spectral peaks appear

almost at the same locations. From this, it can be deduced that the noise signal for

each note is different, but they are independent of the octave positions (for Chinese

flutes, these properties of the breath noise have been reported in the literature (Ayers

2005)). Hence, we feel that modelling the noise for every note from any one octave

will be sufficient in representing the wind noise.

4.2 Flute Music Synthesis

Our goal is to generate flute music from the song notations. The inputs to our system

are note labels, durations and gamakas associated with each note present in the song.

We model the pitch contour, harmonic amplitudes, time domain envelope and the
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(a) dha noise (middle octave) (b) ga noise (middle octave)

(c) dha noise (lower octave) (d) ga noise (higher octave)

Figure 4.6: Spectrograms of the wind noise for two notes in the same octave.

wind noise for each of the notes for this task. Synthesis is based on the modified

Spectral Model Synthesis (SMS) (Serra et al. 1997).

4.3 Baseline: Spectral Model Synthesis (SMS)

This is a frame by frame analysis-by-synthesis method for modelling the sound pro-

duced by any physical system. The spectrum of the sound is approximated as the sum

of sinusoids plus filtered white noise. In the analysis phase, from the spectrum of the

original signal, the parameters such as the number of sinusoids and the time–varying

phase and spectral weight of each of the sinusoid are estimated for every frame. The

weighted sum of these sinusoids is subtracted from the original signal to obtain the

residual signal. By spectral fitting of this residual, the impulse response of the noise
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filter is obtained. White noise is filtered using this filter to obtain the noise part of

the signal. Adding the sinusoidal part and noise part together gives the final synthe-

sized signal for the corresponding frame. For every frame, the synthesized signal is

expressed as

ŝi(t) =
K̂i∑

k=0

Âk,i(t) · cos(2πf̂k,it) + n̂i(t), (4.1)

where K̂i is the estimated number of sinusoids, Âk,i(t) and f̂k,i are the amplitude and

frequency for kth sinusoid for the ith frame, and n̂i(t) is the noise part for ith frame.

Repeating this process for all the frames and performing overlap–addition on them,

using the Hanning window, the final synthesized signal is obtained.

4.4 Proposed System

Karṅāt.ic Music is characterised by the continuous nature of pitch contour. If we

directly implement the SMS in a frame–based approach, this continuity cannot be

achieved perfectly. Frame–based synthesis and overlap–addition would provide only

a discrete approximation of the actual pitch contour. Hence, we propose to synthe-

sise the entire frequency contour of all the notes present at the input without using

windows. We parameterise the pitch contour, f̂0(t), using cubic splines, which makes

the time and frequency scaling much easier. The frequency contours for the other

sinusoidal components are generated as the integer multiples of f̂0(t), as given by

f̂k(t) = k · f̂0(t). (4.2)

We factorise the parameter Âk(t) into two independent components. One compo-

nent accounts for the different spectral weights of harmonic corresponding to different

notes. The second component accounts for the time domain amplitude of the signal

ŝ(t). Hence, Âk(t) depends not only on the frequency domain weights of different

notes but also on the attack, sustain and decay of the time domain waveform. As

depicted in Fig. 4.5, time domain amplitude envelopes for the same notes vary dif-

ferently for different conditions. The waveform of the same note evolves differently in

time domain depending upon whether that note is played as a plain note or as part

of a transition / gamaka. We model these two components separately. We represent

the first component as âk(t), which is used to express only the spectral weights of
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the different sinusoidal components without considering the time domain amplitude

envelope. The second component, Ê(t), is the time domain amplitude envelope of the

signal, which takes the attack, sustain and decay into consideration.

This component plays an important role in defining the timbre of different notes.

Here also, we use parametric representation using cubic splines for making the time

scaling of these contours easier. The synthesized signal for each note is given by

ŝ(t) = Ê(t)




K̂∑

k=0

âk(t) · cos(φ̂k(t)) + n̂(t)


 , (4.3)

where, φ̂k(t) is the time varying phase contour for the kth sinusoid, which is ob-

tained by integrating f̂k(t). A simplified block diagram of the whole process is given

in Fig. 4.7

Notes

Duration

Gamaka

Parameters

Parameter
Modification

f̂0(t) {âk(t)} Ê(t)

{φ̂k(t)}
∫
k · f0(t)

Spectrally
Weighted
Addition

Amplitude
Shaping

ŝ(t)
ŝh(t)

n̂(t)

Noise
Generation

Figure 1: The CTAN lion is an artwork by Duane Bibby.

1

̂

Model

Figure 4.7: Block diagram of the proposed system

4.4.1 Dataset

We choose a popular song from the Karṅāt.ic rāga Mōhanam played by a professional

flautist. We use an F-scale Karṅāt.ic bamboo flute for playing the song. The recording

is manually segmented into three pitch classes, namely, plain notes, gamakas and non-

gamaka transitions. Eight different types of gamakas, two non-gamaka transitions,
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Table 4.1: Different Notes and their corresponding pitch values.

Octave
Note f̂0 Octave

Note f̂0
Label (Hz) Label (Hz)

Lower
P1 286.5

Middle
P2 580.0

D1 322.2 D2 643.0

Middle
S2 382.3

Upper
S3 762.0

R2 438.7 R3 870.0
G2 488.0 G3 970.0

and ten plain notes covering three octaves are present in the recorded samples. The

dataset contains around 300 notes with 220 plain notes, 80 gamakas and about 100

non-gamaka transitions. Samples for individual gamakas vary from 6 to 18.

4.4.2 Estimation of Model Parameters

Model parameters are the spectral weights of different notes, pitch contour and time

domain amplitude envelope shapes for different types of gamakas / transitions, and

the noise waveforms for different notes. We consider ten different notes, eight different

gamakas and two types of non-gamaka transitions in this work. This data is divided

into 11 sub-classes for computing the pitch and amplitude envelope. All the plain

notes fall into one subclass, and the eight gamakas and two transitions form the other

ten sub-classes.

Pitch contour of all the sound files belonging to the class ‘plain notes’ are extracted

manually using PRAAT (Boersma and Weenink 2001). The median pitch value is

found out for each note and is stored as the pitch value, f̂0, of that note. Pitch values

for all the notes used in our experiments are listed in Table 4.1. The alphabet denotes

the note’s name, and the number indicates the octave it belongs to. For example,

‘P1’ stands for the note Pa in the lower octave, ‘P2’ stands for the same note in the

middle octave, and ‘S3’ stands for the note Sa in the upper octave. Pitch contours

of all the sound samples belonging to each gamaka / transition are also extracted

using PRAAT. For each subclass, the pitch contours of each sound are re-sampled to

a standard size of 51 points to compensate for the difference in their duration. We

compute the euclidean distance between all the sample pitch contours belonging to

each subclass. We select the median pitch contour which best represents the subclass,

by choosing the one which has minimum distance from all the other pitch contours
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(b) Median pitch contour and its Spline Approximation

Figure 4.8: Time as well as frequency normalized pitch contours, their median pitch
contour and its spline approximation for the gamaka named Ētra Jāru

belonging to that subclass.

The representative pitch contours for all the subclasses are normalised in time and

frequency such that the time and frequency variations are limited between zero and

one. Such a generalised shape can be then scaled in time and frequency to match the

desired duration and pitch. These normalized pitch contours are parameterised using

cubic spline modelling. A detailed explanation of the cubic spline modeling is given

in Appendix A. We use 50 cubic splines to parameterise each pitch contour. These

coefficients are stored as the representative pitch contour shape for each gamaka /

transition. Fig. 4.8a shows the frequency and duration normalized pitch contours

belonging to the gamaka named Ētra Jāru. The median pitch contour and its spline

approximation are shown in Fig. 4.8b. We have 500 coefficients stored in the param-
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eter set, corresponding to ten different subclasses. Normalized pitch contour shapes

for different gamaka and non-gamaka transitions used in this experiment are shown

in Figure.4.9 and Figure.4.10, respectively.
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Figure 4.9: Normalized pitch contours of different gamakas used in this work.

We repeat the same procedure for creating a parameter set of representative shapes

for the time domain amplitude envelopes, Ê(t) . For this, the time domain amplitude
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Figure 4.10: Normalized pitch contours of different non-gamaka transitions used in
this work.

envelopes of all the sound files are extracted. Representative time domain amplitude

envelope is found out by re-sampling the envelopes for each subclass and selecting

the one with minimum distance from all others, as in the case of pitch contour. The

time and amplitude normalised representative amplitude envelopes are parameterised

using cubic splines, and the coefficients are stored in the parameter set. A total of

550 coefficients are stored for representing the amplitude envelopes for all the ten

subclasses and the plain notes.

For calculating the spectral weights of different notes, we consider only the plain

notes. In the first step, the effect of the amplitude envelope is nullified by dividing

the note waveforms by the corresponding amplitude envelopes. Spectral analysis is

performed on the resultant signal for finding out the weights, ak, of each harmonic. We

consider only the first ten harmonics for our experiments since the magnitude of higher

harmonics is very small for the samples in our database. Thus, ten spectral weights

are extracted for each of the ten plain notes, and they are stored in the database.

A separate dataset of wind noise is recorded using the same F-scale flute by blowing

into the flute without creating resonance. As explained in Section 4.1.4, the octave

difference does not significantly affect the wind noise characteristics. Hence, we use

recorded wind noise corresponding to the notes in the middle octave only. Since

there are five notes in one octave for the rāga used in our experiments, we use the

noise waveforms corresponding to these five notes. Each of the noise waveforms has a

duration of eight seconds.

4.4.3 Synthesis of Plain Notes

Input to our system is a text file containing information such as the note label, note

duration in terms of the number of beat cycles and the gamaka / transition informa-
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tion. If there is no gamaka associated with a note, that note is assumed to be plain.

If there is no gamaka between two notes, a non-gamaka transition is inserted between

them at the time of synthesis. An example of the input text file is shown in Table 4.2.

Table 4.2: An excerpt from input text file.

Note Label Duration Gamaka

...
G2 1 —
G2 1 Sphuritham
R2 2 Irakka Jāru
R2 1 Prathyāhatham
G2 2 —

...

For a plain note, the pitch contour and the spectral weights of the harmonics are

constant for the entire time duration. Based on the note label, the corresponding pitch

value, f̂0 and the weights of different harmonics, âks, are found out from the parameter

set. A constant pitch contour of this frequency is generated for the desired duration

specified in the input. By the integer multiplication of this pitch contour, frequency

contours for different harmonics are generated. Since all the frequency contours for a

plain note are constant in time, the corresponding phase contours can be obtained by

multiplication with time. The phase for the kth harmonic between the time instants

t1 and t2 is given by

φ̂k(t) =

∫ t

t1

ω̂kdt = 2πkf̂0t+ φ̂k(t1), (4.4)

where φ̂k(t1) is the initial phase of the kth harmonic. The initial phase at time t1 is

added to make sure that the phase is continuous at the note boundaries.

For generating the time domain amplitude envelope Ê(t), parameterised represen-

tative shape for the plain note is selected from the parameter set, and it is time–scaled

to match the desired note duration. Abrupt jumps at the note boundaries are avoided

by making the envelope and its first derivative continuous at the endpoints. We dis-

cretize these parameters by evaluating the cubic splines at each sample points. In our

experiments we use a sampling frequency of 32kHz. The sinusoidal part is synthesized

by the weighted addition of sinusoidal components and multiplying the sum with an
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Figure 4.11: Waveform of synthesized note Sa with and without time domain ampli-
tude envelope.
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Figure 4.12: Spectrogram of synthesized plain note Sa

amplitude envelope as given by

ŝh(t) = Ê(t)




K̂∑

k=0

âk(t) · cos(φ̂k(t))


 (4.5)

For generating the noise part, we use pre–recorded noise signals corresponding to the

input notes. The noise signals are lengthened or shortened to match the desired input

duration. Lengthening is performed by looping the same waveform multiple times and

shortening performed by truncation. Duration modified noise signals are modulated

by the amplitude envelope Ê(t), and final synthesis is performed using Equation (4.3).

Waveforms of the synthesised signal with and without amplitude envelope are shown

in Fig. 4.11 and the spectrogram for the final synthesised signal is shown in Fig. 4.12.
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4.4.4 Synthesis of Transitions

In the case of gamaka and non-gamaka transitions, pitch contour is not assumed to be

constant. If two adjacent notes are different and there is no gamaka associated with

the second note, a non-gamaka transition is inserted between the two notes. After

parsing the input, every pair of notes are checked for the presence of gamaka between

them. If no gamaka is present in the second note, information such as the starting

note, ending note, and duration are extracted. Based on the starting and end notes,

the corresponding note frequencies are found out from the parameter set. If the second

note is higher in frequency than the first one, an upward transition is to be added,

and if the second note’s frequency is lower, a downward transition is to be added.

Once the type of transition is finalized, the parametric form of its pitch contour is

selected from the database. The parametric form is stored in the database such that

its time and frequency vary between zero and one. It is scaled in time to match the

duration specified at the input and also scaled in frequency to generate a transition

pitch contour, f̂0(t), between the first note and the second note. For example, if

the starting and ending notes’ frequencies are f1 and f2, and the duration extends

from time instants t1 to t2, then the representative pitch contour is scaled such that

its frequency varies from f1 to f2 and the time duration spans from t1 to t2. The

endpoint slopes of the parametric form are set to zero to enable smooth concatenation

with adjacent pitch contours. Frequency contours of other harmonics are obtained by

integer multiplication of this scaled pitch contour.

Frequency contours of individual harmonics are integrated with respect to time

to obtain the phase contours. Since the cubic splines are used for the parametric

representation of the pitch contour, the result of integration can be obtained in closed

form. Phase contour of kth harmonic between the time instants t1 to t2 is expressed

as

φ̂k(t) = 2πk

∫ t

t1

f̂0(t) dt+ φ̂k(t1), (4.6)

where f̂0(t) is pitch contour. The constant of integration, φ̂k(t1), is the initial phase

of the kth harmonic at the starting point of the current segment being synthesized.

By incorporating this phase correction term, phase smoothly varies across the note

boundaries. Spectrograms for the note boundary with and without phase correction

are shown in Fig. 4.13. Phase contours of the transition are appended smoothly to

the phase contours of the previous note to generate the continuous phase contour for
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(a) without phase continuity (b) with phase continuity

Figure 4.13: Spectrograms of synthesized transition with and without imposing phase
continuity.

the entire input sequence.

As opposed to the plain note case, spectral weights of different harmonics are

not constant in the case of note transitions. For generating the continuously varying

spectral weights, we first extract weights of different harmonics for all the constituent

notes from the parameter set. The regions where each note appears are identified with

the help of pitch contour. For the regions where each note is active, corresponding

spectral weights are assigned. For the region where the note transition occurs, the

weights are found by interpolation. We use cubic spline interpolation for obtaining

the smooth and continuously varying spectral weights, âk(t). An example depicting

the pitch contour for the transition from the note Sa to the note Pa and the corre-

sponding spectral weights for the first three harmonics are shown in Fig. 4.14. As in

the case of plain note synthesis, the parametric form of the time domain amplitude

envelope for the desired transition is selected from the database. It is scaled in time to

match the duration of the actual transition. Smooth concatenation with the previous

note’s amplitude envelope is also performed before using the envelope to modulate

the weighted sum of the sinusoids. The harmonic part of the synthesized signal is

obtained by multiplying the weighted sum of the harmonically related sinusoids with

the amplitude envelope as given by Equation (4.5).

Since there are two notes present in the pitch contour of a transition, noise signals

corresponding to both the notes are to be added at the respective time instants. We

perform a windowed addition of the duration modified noise waveforms to generate the

noise part for the transition. Towards this, we introduce a function called activation

function for each of the notes. The activation function of a note takes the value unity
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Figure 4.14: Pitch contour and corresponding spectral weights of first three harmonics
for an upward transition from the note Sa to the note Pa.

for the entire duration where that note is active. Whenever the note is absent, its

activation function is at zero. The time instances for which a note is present or absent

is located with the help of pitch contour.

For example, activation functions for different notes corresponding to the transition

from note Sa to the note Pa are shown in Fig. 4.15. As can be seen from the pitch

contour shown in Fig. 4.14, when only the Sa is present in the pitch contour, only the

activation function corresponding to Sa is at one for that entire duration. Same is true

for the case of the note Pa. But, in the transition region, corresponding activation

functions for Sa and Pa are found out by spline interpolation. Activation function for

all the other eight notes are at zero for the entire duration. The noise waveforms for

all the notes are selected from the database and are time–scaled to match the input

duration. They are multiplied with the corresponding activation functions to generate

the active noise waveforms for the particular duration. All the active noise waveforms
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Figure 4.15: Activation functions for the notes corresponding to the upward transition
from Sa to Pa.

are added together to generate the noise part of the synthesised signal, as given by

n̂(t) =
N∑

i=1

Ai(t) · ni(t), (4.7)

where N is the number of notes in one octave, Ai(t) is the activation function, and

ni(t) is the duration modified noise waveform corresponding to the ith note in the

database. Adding the harmonic part and the envelope modulated noise part together

gives the final synthesized signal as given in Equation 4.3.

4.4.5 Synthesis of Gamaka

Gamakas are also synthesized in the same manner as that of the transitions. Some

gamakas may contain more than two constituent notes in their pitch contour. In such

cases, the spectral weights of all those constituent notes need to be interpolated to find

the spectral weights of the gamaka region. Also, the noise activation functions for more

than two notes will have non-zero values during the course of such gamakas. The pitch

contour, interpolated spectral weights, noise activation functions, synthesized signal

and spectrum for such a gamaka are shown in Fig. 4.16.
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(d) Synthesised signal
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Figure 4.16: Pitch contour, interpolated harmonic weights, spectrogram of the syn-
thesized signal, waveform of synthesized signal and noise activation functions for a three
note gamaka.
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4.5 Subjective Quality Evaluation

We conduct listening tests for evaluating the quality of the synthesized music. Two

different subjective quality assessments are conducted. The first one is to analyse

the impact of different steps involved in the proposed method in deciding the tonal

quality of the synthesized flute tone. In the second experiment, we compare our

synthesis method with the existing spectral synthesis methods. We try to analyse two

parameters of the synthesized music in this assessment – the tonal quality and the

correctness of gamaka rendition.

For the first listening experiment, we choose five different excerpts from different

songs and generate five different stimuli1 from each of these excerpts. The first one

is the synthesized tone using the proposed method without adding the amplitude

envelope and the wind noise. The second one is the synthesised flute music with

the amplitude envelope and without adding the wind noise. The third one is the

synthesised flute music using the complete model, including the harmonics, amplitude

envelope and noise. Fourth one is the original recording from a real flute, and the fifth

one is generated by passing the original recording through a high pass filter with cut

off frequency 3.5kHz.

We choose trained Karṅāt.ic flautists and vocalists as the listeners for subjective

evaluation. Each listener is asked to listen to the five different versions of all the

five audio files. He/she is asked to rate the tonal quality of each audio file. Tonal

quality is a measure of how well the tone resembles an actual flute tone. A five–point

scale is used to rate the quality, with one corresponding to the worst quality and

five corresponding to the best. Only those responses which rated the original flute

recording as the best one are considered for the evaluation. Acceptable responses for

all the audio files are compiled, and the mean ratings are found out. The results are

summarised in Table 4.3.

The results show that modelling the amplitude envelope and adding the noise help

improve the quality of the synthesised tone. To test the statistical significance of

these improvements, we perform students paired T–test, and the results show that

the improvements are significant at a 95% confidence interval.

For the second listening experiment, we use excerpts from five different songs,

each excerpt consisting of 15 seconds. Each of these five files are synthesised using

1Audio samples of all these versions are available at https://sites.google.com/view/muraleeravam/
.
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Table 4.3: Mean Opinion Score for Assessment I

Method Tonal
Quality

Harmonic Part Only 2.7
Harmonics + Amp. Envelope 2.9
Harmonics + Noise + Amp. Envelope 3.2

Gāyaka (Subramanian 2013), basic SMS (Serra et al. 1997) and the proposed method.

In addition to this, we record the original flute music for each of these five audio

files. We also include a high pass filtered version of the original recording as the fifth

stimulus. We manually add the description for each gamaka to synthesise the song in

Gāyaka software. For every gamaka present in the song, we specify the constituent

notes and the duration for each of them in the entire course of that gamaka.

To synthesise the SMS version of the song, we generate harmonic frequency con-

tours and harmonic weight progressions in continuous time using cubic spline interpo-

lation. These continuous time parameters are then subdivided into frames of length

20 ms. During each frame, the values of frequency contours and the harmonic weights

are made constant by replacing them with the median values of these parameters

in that frame. The noise part is synthesised as explained in the previous section.

The amplitude envelope is not modelled explicitly. After every frame is synthesised,

overlap–addition is performed using Hanning window.

Each listener is asked to listen to the five different versions 2 of all the five audio

files and rate two parameters of each audio file – the tonal quality and the propriety

of gamaka rendition– on a five–point scale. Tonal quality is a measure of how well

the tone resembles an actual flute tone, and the propriety of gamaka rendition is a

measure of how well the gamakas are synthesised in comparison with the traditional,

standard renditions of gamakas in KM. Acceptable responses for all the audio files are

compiled, and the mean ratings are found out. The results are summarised in Table

4.4. There is an improvement of both the tonal quality and the correctness of render-

ing gamakas using the proposed method when compared to the other two methods.

The improvement observed over the conventional frame–based SMS is commendable.

In this experiment also, the statistical test results show that the improvements are

2Audio samples of all these versions are available at https://sites.google.com/view/muraleeravam/
.
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Table 4.4: Mean Opinion Score for Assessment II

Method Tonal Correctness
Quality of Gamaka

Gāyaka (Subramanian 2013) 3 3
SMS (Serra et al. 1997) 2.4 2.3
Proposed 3.5 3.6

significant at a 95% confidence interval.

4.6 Implementation of the Complete System

We combine the gamaka classification system and the flute synthesis system to obtain

the flute music from the textual notations alone. We choose two popular songs from

the rāga Mōhanam to test the performance of the combined system. The skeletal

notations for these songs are prepared in the form of a “.csv” file containing the note

label, duration of each note and the gamakas associated with each note.

The notation file is fed to the feature extraction stage, and the note based features

are extracted. We try to use two different training sets for training the Random Forest

Classifier (RFC). The first one is called Seen Rāga training set, which contains five

songs from the rāga used for testing (Mōhanam). The other training set is called

Unseen Rḡa training set since it does not contain any song from the rāga used in the

test set. We test the performance of the system using both these training sets.

After training the RFC with each of these training sets, we feed the features

extracted from the skeletal notations of the test songs for predicting gamaka presence.

Obtained results are saved as a “.csv” file, where an additional column is added to

indicate the status of the prediction. If a gamaka is predicted, the status is True,

and if no gamaka is predicted, the status is False. Based on this status, only the

gamaka notes are separated from the feature file, and is fed to the gamaka classification

system for predicting the type of gamakas. The same set of songs are used for training

both these systems. RFC predicts the type of gamakas, and the final result is stored

in a “.csv” file. This file contains the entire skeletal notation of the test songs plus a

column named Gamaka. This column contains the type of gamaka if any gamaka is

predicted associated with a note and is left blank if no gamaka is predicted.

This file is fed to the flute music synthesis system for generating flute music corre-
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Table 4.5: Mean Opinion Score for performance assessment of the complete system

Method Propriety of rendition

Non-gamaka synthesis 3.3
Gamaka synthesised using Seen Rāga Training 3.4
Gamaka synthesised using Unseen Rāga training 3.1

sponding to the test songs. We try to generate two different outputs with the synthesis

systems. The first one is synthesised using the predicted gamakas as the input, and

the second one is synthesized without considering any gamakas. This is done for test-

ing the effectiveness of the gamaka prediction system. Even though gamakas are not

considered, non-gamaka transitions are synthesized in both these versions. The same

procedure is repeated with the second training set, and gamaka and non-gamaka ver-

sions are synthesized. Thus, four different versions for each test song are generated

- gamaka and non-gamaka versions corresponding to Seen Rāga and Unseen Rāga

training.

4.6.1 Subjective Quality Evaluation of the complete System

As in the previous listening experiments, we choose the same set of listeners for evalu-

ating the performance of the system. We also choose the same set of songs used in the

previous experiments. We prepare four stimuli corresponding to each excerpt of the

test songs. The first one is the original song played on a bamboo flute, the second one

is the non-gamaka version of synthesized song, the third one is the synthesized song

containing gamakas predicted using the help of Seen Rāga training set, and the fourth

one is the high pass filtered version of the original song. Listeners are asked to rate

the propriety of rendition on a scale of one to five as in the previous experiments. We

select only those responses which rated the original flute rendition with a maximum

rating and the low pass filtered version with a minimum rating. The mean opinion

scores obtained are listed in Table 4.5

We perform a students’ paired T–test to check the statistical significance of these

results. Analysis shows that the results are not statistically significant at a 95%

confidence interval. This can be attributed to the inaccuracy of gamaka prediction

system. There are 50 gamakas in the test songs out of 105 notes. Only six gamakas are

predicted by the system. Thus, the majority of the original gamakas are undetected
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by the system. Out of the six gamakas detected by the system with the Seen Rāga

training, five gamakas are actually present in the original song, and one is false positive.

Hence, even though the precision of our system is good, poor recall resulted in not

detecting most of the actual gamakas.

We believe that the degradation in performance of gamaka prediction and classi-

fication system is due to the class imbalance in the training data. Only 30% of the

notes in the training set contain any gamaka and the rest of the notes are plain

notes, where roughly 50% of the test song contain gamakas. We hope that adding

more samples of gamaka notes into the training data will improve the performance

of the entire system. In addition, the songs used for testing the system belong to a

rāga which has only five songs in the training set.

Even though the gamakas are not synthesised for the non-gamaka synthesis, the

non-gamaka transitions between the notes are synthesised. The upward transition

is somewhat similar to the gamaka called Ētra Jāru in shape. Similarly, the down-

ward transition is similar to Irakka Jāru. Due to this similarity, the above men-

tioned gamakas can be considered “partially synthesised” even in the case of non-

gamaka synthesis. This can be a reason for the lack of significant improvement in

MOS of gamaka and non-gamaka synthesis.

4.7 Conclusion

We propose an efficient method to synthesise plain notes and gamakas for Karn. āt.ic

flute music by extending the sinusoidal model. Towards this, we try to model three

important aspects of flute sounds – the frequency contours, weights of different har-

monics and the time domain amplitude envelope. All these are modelled as continuous

functions of time without using the overlap–add method.

We analyse different recordings to find out a representative shape for the pitch con-

tour and time domain amplitude envelopes of each plain note, transition and gamaka.

We represent them in a parametric form by means of cubic splines to facilitate the

time and frequency scaling to match the input pitch and durations. The progression

of harmonic weights with respect to time is also modelled using cubic splines. Syn-

thesis is performed by weighted addition of harmonically related sinusoids, which is

then modulated by a time domain envelope. We use the pre-recorded wind noise cor-

responding to each of the notes and modulate them using a noise activation function
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before adding to the weighted sum of harmonics.

Mean Opinion Score obtained from the subjective evaluation suggests that mod-

elling the time domain amplitude and adding the wind noise improve tonal quality.

Another evaluation is conducted to compare the performance of the proposed ap-

proach with the existing Karṅāt.ic flute synthesis methods. Results suggest that the

proposed method is better in terms of tonal quality and the correctness of rendering

gamakas. Hypothesis tests performed on the subjective evaluation results show that

the observed improvements are statistically significant over a 95% confidence interval.

We combine two subsystems to build a complete system for synthesising flute music

from the skeletal notations of a song. The first stage predicts the presence and type of

gamakas from the notation file, and based on these predicted gamakas the flute music

is synthesised. The results for gamaka prediction show a low recall value, and most of

the actual gamakas are undetected. As a result, the synthesised songs are similar to

those without gamakas. Statistical analysis of the Mean Opinion Scores also suggests

that there is no significant improvement in the quality of the song even after adding

the predicted gamakas to the notes.
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Chapter 5

CONCLUDING REMARKS

In this work, we implemented a system for synthesising Karṅāt.ic Music (KM) on a

bamboo flute with only minimal textual notations as the input. Input to the system

contained only textual information regarding label of the note, duration of the note

and the rāga of the song. We divided this complete system into two separate sub–

systems. The first one is a gamaka prediction and classification system to predict the

presence and type of gamaka from the skeletal notations. The second sub–system was

designed to take the additional input of gamaka information associated with each note

and to synthesise the bamboo flute music corresponding to the input notations.

We created a textual dataset containing around 30000 notes belonging to 22 rāgas.

We proposed features based on note frequency, duration and rāga, and employed a

Random Forest Classifier (RFC) for predicting the presence and type of gamakas. The

classifier was trained using around 11000 notes, and two different test sets were used to

evaluate the performance of the classifier. Accuracy values obtained for gamaka pres-

ence prediction was around 76.5% and 68.2% for these two test sets. Similarly, the

accuracy values for predicting the type of gamaka was found to be 70% and 59%.

Analyses performed on training data revealed that the gamakas exhibit certain charac-

teristic patterns of note sequences, and the uniqueness of such patterns are prominent

when the length of the sequence is three.

To design the second sub–system, we modelled the parameters of bamboo flute

tone in continuous time domain. The parameters such as frequency contours, spectral

weights of the harmonics, and the time domain amplitude envelope were parameterised

using cubic splines to achieve this. In contrast to the conventional methods for syn-

thesising the flute tones, we did not make use of any window–based methods for the
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synthesis, which helped in reproducing the truly continuous nature of the parameters

mentioned above. We conducted subjective quality assessment to compare the effi-

cacy of the proposed method with the popular methods for synthesising Karṅāt.ic flute

music. On a five–point scale, Mean Opinion Score (MOS) of 3.6 was reported for the

proposed method, while the other frame-based methods scored 2.3 and 3. We com-

bined the two sub–systems to build the complete flute music synthesis system. In this

case too, we observed a MOS of 3.4, which was close to that obtained for the second

sub–system alone.

Our dataset for gamaka prediction system contained only 80 songs, while the

dataset for the second sub–system included only one rāga. Lack of samples in the

training dataset could be the reason for the reduced recall rate associated with the

gamaka prediction and classification tasks. We do hope that a larger dataset for both

the gamaka prediction and synthesis tasks will yield better results, and the proposed

system can be used for synthesising Karṅāt.ic flute music for more rāgas.
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Välimäki, V., M. Karjalainen, and T. I. Laakso, Modeling of woodwind bores

with finger holes. In International Computer Music Conference, ICMC 1993 . 1993.

Varadharajan, J., G. Sridharan, V. Natarajan, and R. Sridhar, Automatic

Synthesis of Notes Based on Carnatic Music Raga Characteristics. In Advanced

Computing, Networking and Informatics-Volume 1 . Springer, 2014, 145–152.

Verma, T. S. and T. H. Meng (2000). Extending spectral modeling synthesis with

transient modeling synthesis. Computer Music Journal , 24(2), 47–59.

Viraraghavan, V. S., R. Aravind, and H. A. Murthy, A Statistical Analysis of

Gamakas in Carnatic Music. In Proceedings of the 19th ISMIR Conference. 2017.

Viswanathan, T. (1977). The Analysis of Rāga ālāpana in South Indian Music.
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Appendix A

Cubic Spline Interpolation

Cubic spline interpolation makes use of a set of third degree polynomials to inter-

polate a set of data points such that the entire fit, its first derivative and second

derivative are continuous at every point. If there are n+ 1 data points represented by

{(t1, x1), (t2, x2), ..., (tn+1, xn+1)}, we can fit n piecewise cubic polynomials between

them. Each polynomial pi(t) fit between the points (ti, xi) and (ti+1, xi+1) can be

expressed as

pi(t) = ait
3 + bit

2 + cit+ di, (A.1)

where, ti < t ≤ ti+1, and i = 1, 2, ... n. Imposing the conditions of continuity,

we obtain the following set of equations for each cubic spline fit between the points

(ti, xi) and (ti+1, xi+1).

pi(ti) = xi i = 1, 2, ... n. (A.2)

pi(ti+1) = xi+1 i = 1, 2, ... n. (A.3)

p′i(ti+1) = p′i+1(ti+1) i = 1, 2, ... n− 1. (A.4)

p′′i (ti+1) = p′′i+1(ti+1) i = 1, 2, ... n− 1. (A.5)

Thus, we obtain a total of 4n− 2 equations. Since we have 4n unknown variables, we

impose two more conditions to find their values. We set the slopes of the function at

the beginning and end points to zero. The new equations are given by

p′1(t1) = 0 (A.6)

p′n(tn+1) = 0. (A.7)
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Figure A.1: Example of two cubic splines fit through three points

By solving these 4n equations, we get all the coefficients for all the individual polyno-

mials. For example, Fig. A.1 shows two cubic splines fit through three points, namely,

(t1, x1), (t2, x2) and (t3, x3). In this case, the set of equations can be written as

p1(t1) = x1 (A.8)

p1(t2) = x2 (A.9)

p2(t2) = x2 (A.10)

p2(t3) = x3 (A.11)

p′1(t2) = p′2(t2) (A.12)

p′′1(t2) = p′′2(t2) (A.13)

p′1(t1) = 0 (A.14)

p′1(t3) = 0 (A.15)

Once the coefficients for the cubic splines for all the representative shapes are found

out, time modification can be easily achieved by changing the dependent variable t.

For example, if the support of a particular function is to be doubled, the time t is

replaced by t
2 , and if the support need to be halved, the time t is replaced by 2t. In our

application, since the frequency contours are continuous in time, phase contours need

to be found out by integration. Since the integral of a cubic polynomial can be found

out in closed form, finding the phase from the cubic spline interpolated frequency

contour is easy.
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