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ABSTRACT OF THE THESIS
Image restoration and enhancement are the two inevitable pre-processing activities that

we come across in almost all imaging applications. Apparently, these two requirements

contradict each other as one is a complement of the other. The image restoration aims

at smoothing out the signal to reduce the noise interventions. On the other hand, en-

hancement seeks for an image with non-smooth features. Therefore, one should aim for

a trade-off between these two requirements when providing a solution. Perceptually in-

spired frameworks have taken a considerable lead in image restoration and enhancement

activities, as they seek for a visually appealing solution in addition to their excellent per-

formance in terms of statistical quantifications. Retinex framework is being explored

extensively in the literature to provide the desired enhancement to the images under

consideration. This thesis provides an in-depth insight into various restoration frame-

works and contributes a set of state-of-the-art restoration and enhancement models to

assist the preprocessing step of various imaging applications with specific relevance to

satellite and medical imaging. The degradation analysis is the primary step in an au-

tomated restoration framework. As one cannot apply a blanket restoration model for

all kinds of distortions, the appropriate models are designed in due respect to the noise

distribution of the input data. The second chapter of the thesis contributes a fully au-

tomated framework for analysing and detecting the noise distribution of the noise from

input data. Analysis of noise distribution duly provides an insight to choose appropriate

variational model to restore the images from the specific degradation analysed therein.

A machine learning approach is employed to analyse the noise distribution from the

input image characteristics. Various statistical and geometric features of the images are

analysed to arrive at the conclusion regarding the distribution. Subsequent to the noise

distribution analysis, the respective retinex based variational models are chosen to re-

store and enhance the images. One of the major issues with the variational models is

that, they converge slowly when explicit numerical schemes are used for solving them.

Many models designed under this framework use the explicit schemes due to the ease of

implementation. Fast numerical implementations are one of the requirements of a real-

time application model. This thesis investigates some of the fast numerical schemes

such as Bregman iteration scheme redesigned for the problem under consideration to

effectively solve the problems. Moreover, the computational cost is a major matter for
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concern among the scientists, as most of the practically viable systems should be com-

putationally efficient to be used under a real-time scenario. This thesis addresses this

issue considerably well by employing parallel computing algorithms designed to be ex-

ecuted under multi-processing environments to improve the computational efficiency of

the model.

Keywords: Perceptually inspired model, Retinex framework, Variational restoration mod-

els, Data-correlated noise, Image enhancement, Satellite and medical image enhancement.
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CHAPTER 1

Introduction

Remote sensing and medical imaging technology has witnessed tremendous improve-

ments in the quality of captured images due to various enhancements applied to them

during capture or post capture phases. Nevertheless, the images are still far away from

providing a foolproof analysis due to various reasons. The main factors that contribute

to the spurious analysis are; noise, device artefacts and contrast degradations present

in captured data. In general, images are formed by sensing the signals reflected back

from the imaging object. In medical imaging domain, for creating different scan re-

sults, experts make use of ultrasound waves, X-rays, radio waves, magnets, tracers etc.

Similarly, in remote sensing, different bands of electromagnetic signals are being used

for creating corresponding images. All these images are formed under various sur-

rounding conditions. Hence the signals used for imaging gets attenuated or scattered

which eventually leads to errors and degradations in the final image Zamperoni (2013).

Moreover, the sensors used for imaging also contribute to the distortion scenario. As

the images are formed in different ways in various imaging modalities, the distortion

that occurs in them are also not uniform in nature. For instance, the Synthetic Aper-

ture Radar (SAR) images are formed by capturing the reflections of microwave signals

sent to probe the details of the object on Earth’s surface. During the transmission or

return, these waves undergo constructive or destructive interferences causing undesired

features in the captured data Demirel et al. (2010). The waveforms thus captured are

observed to be distorted and therefore need to be restored before subjecting them to any

kind of analysis, else may result in spurious inferences. So is the case with medical

data. Many medical imaging modalities also suffer from various distortions, despite of
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the fact that the devices have become more sophisticated over the years. Therefore, the

images captured are susceptible to various distortions which hampers the further anal-

ysis of data in several applications. This has been a major concern of the imaging and

image processing community for decades altogether.

Though various restoration models are proposed over the years, they have their own

merits and demerits. None of them are efficient enough to tackle different distortions

uniformly. Moreover, the image restoration and enhancement are two complementary

requirements. As we try to refine one, the other becomes coarse. Furthermore, restora-

tion is an ill-posed problem whose solution may not be unique even if one exists and the

uniqueness does not guarantee a continuous dependence of data on the solution. There-

fore, one cannot guarantee a regular solution to such ill-posed problems in an obvious

manner Hadamard and Morse (1953). Therefore, achieving a regular solution to such

conflicting requirements is practically tedious. The detailed degradation aspects in the

images are discussed in the sections to follow.

1.1 Image degradations

Image degradations are mainly due to the noise interferences, intensity inhomogeneity

or contrast unevenness and equipment defects during data capture. The device artefacts

are deterministic and can be modeled mathematically. The common artefact includes

blur. The blurring artefacts causes the sharp details to be hardly distinguishable. There

are various resolutions proposed for this defect, including improving the devise capabil-

ities to enhance the images during capture or perform a post processing of stored data.

Nevertheless, it is not a matter of major concerns for the imaging community as it can

be addressed to a considerable extent. Noise and intensity or contrast unevenness is one

of the major causes of misinterpretation of the data in later phases. The images repre-

sent different information, therefore, noise does not necessarily mean an unimportant

information as it names to be. Therefore, denoising is a critical preprocessing step in

image analysis phase. Since, noise is a non-deterministic quantity, it has to be modeled

as a random process. The noise being a random variable, it follows a particular noise

distribution. The noise intervention results in various noise distortions in terms of their

2
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Figure 1.1 Noisy 1D signals (a) Data independent (b)Data dependent

distribution. The common assumption on the distribution includes an average white

Gaussian noise, Gamma distributed noise, Poisson noise etc.

1.1.1 Noise models

Based on how noises interact with the image intensity, it can be classified into either

data independent or dependent. In Figure 1.1(b), the noise intensity increases as the

amplitude of the signal increases, this implies signal dependent nature of the noise,

whereas, in sub-figure (a), noise intensity is constant and does not vary according to the

signal amplitude. Additive noise like white Gaussian or thermal is considered as data

independent Zamperoni (2013). If I0 is a given noisy image, and n the noise and I the

actual data, then an additive noise in an image is modeled as follows:

I0(x) = I(x)+n(x), (1.1.1)

where x represents the spatial coordinates of pixels in an image. If the noise is assumed

to be generated due to a random process and the number of such samples are large,

then based on the central limit theorem, the samples follow a Gaussian distribution.

This is the most common type of noise model and seen in images as thermal or sensor

noise. A test image with additive noise is given in Figure1.2(a) and the histogram

of the highlighted homogeneous region is given in sub-figure(b), where the Gaussian

Probability Density Function (PDF) shows a better fit. The PDF (Hogg and Craig,

1970) for the Gaussian noise is given by,

G(z) =
1

σ
√

2π
e
(z−µ)2

2σ2 , (1.1.2)

where z is any real value (0,∞), µ is the mean and σ is the standard deviation.

If the noise is correlated to the data itself, then they are generally categorized as

3



(a) (b)

Figure 1.2 (a) Gaussian Noisy image with homogeneous area marked in Green. (b)
Fitting of Gaussian, Poisson and Gamma distributions on the data.

(a) (b)

Figure 1.3 (a) Poisson Noisy image with homogeneous area marked in Green. (b) Fit-
ting of Gaussian, Poisson and Gamma distributions on the data.

data-dependent. Noises like multiplicative Gaussian, Gamma and Poisson are regarded

under this category of distortions. Satellite and medical images are usually affected by

these kinds of noises and their removal is comparatively tedious. A multiplicative noise

is modeled as given below:

I0(x) = I(x)n(x). (1.1.3)

Gamma and Rayleigh noises are observed to follow the above model.

Poisson noise is commonly seen in PET scans or satellite images and it is formed as

a result of a Poisson process (Luisier et al., 2011). A test image with Poisson noise is

given in Figure1.3(a) and the histogram of the highlighted homogeneous region is given

in sub-figure(b), where the Poisson PDF shows a better fit. The Poisson distribution

with parameters mean and variance λp is given by,

Pλp(z) =
eλpλ z

p

z!
,z≥ 0. (1.1.4)
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(a) (b)

Figure 1.4 (a) Gamma Noisy image with homogeneous area marked in Green. (b)
Fitting of Gaussian, Poisson and Gamma distributions on the data.

Gamma noise is commonly seen in the radar and ultrasound images (Zamperoni,

2013). Gamma noise is usually multiplicative in nature and follows the model given in

(1.1.3). A test image with Gamma noise is given in Figure1.4(a) and the histogram of

the highlighted homogeneous region is given in sub-figure(b), where the Gamma PDF

is shown to fit better. The distribution is given by,

Ps,θ (z) =
zs−1

θ sΓ(s)
exp
(
− z

θ

)
, (1.1.5)

where s is the shape parameter, θ is the scale parameter, mean µ = s
θ

and variance

is σ2 = s
θ 2 .

1.1.2 Degradations in satellite/remote sensing images

Remote-sensing is the process of obtaining information about an object or a process

without directly contacting the same. It has wide range of applications in environmen-

tal studies and monitoring. Generally, the remote sensing can be airborne or space-

borne. Satellites are used for space-borne remote sensing. Whereas, airborne sensors

are mounted on space crafts to capture images (Schowengerdt, 2007). Remote sensing

includes SAR (Synthetic Aperture Radar), Multi-spectral, and Hyper-spectral images.

The areal images are also quite popular in remote sensing domain and mostly it uses

airborne sensors or cameras for its capture. This is relatively an old remote sensing tech-

nique and widely popular due to the high resolution of the captured data. However, it is

more expensive to cover a large area of study (Schowengerdt, 2007). A remote sensing

system can be either active or passive in nature based on whether it uses external energy
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source or not (Schowengerdt, 2007). Passive techniques measure the reflections of light

or infrared radiations for imaging purpose. In case of SAR images, microwave signals

are used for imaging whereas, multi and hyper-spectral images make use of a band of

electromagnetic radiations for their representation.

Remote sensing forms images of distant objects, hence the electromagnetic radia-

tions have to travel a long distance through the atmosphere to reach the sensor. Dif-

ferent atmospheric conditions like aerosols, gases, ice crystals etc., causes scattering

and absorption of signals and results in low contrast and noisy image representations.

Moreover, sensors themselves interfere with the received signals to degrade them with

thermal noise and shot noise (Zamperoni, 2013). Even though the sensors are capable

of recording a wide range of intensity variations, in most cases the reflected signals gets

skewed to a narrow range, making the resultant image contrast deficient. As a result

of this, contrast enhancement and denoising are the inevitable key operations in remote

sensing domain.

1.1.3 Degradations in medical images

In medical imaging domain, scan images are heavily used for diagnosing the diseases.

Based on the characteristics of the imaging organ, different modalities are used which

include Ultrasound, Computed Tomography (CT), Positron Emission Tomography (PET)

etc., (see Damerjiana et al. (2014)). In case of CT scan images, change in absorption

of X-rays is recorded. In a human body, bones and different tissues respond to X-rays

differently and if this change in absorption is not significant then the scan results will

be low in contrast. Whereas, PET scan imaging is done by injecting a radioactive tracer

that emits positrons into the patients body. This emitted positrons interacts with elec-

trons in the body and end up in emitting gamma rays. Later, Gamma cameras are used

for generating the scan results. Both CT and PET scan images are affected by the miss-

ing X-rays or Gamma rays, which eventually degrades the scan result. This is generally

modeled using a Poisson process or yields a data dependent Poisson noise.

Ultrasound scanning is a well known technique due to the lack of ionizing radiations

(Damerjiana et al., 2014). It is extensively used in gynaecology, cardiovascular study

and so on. Real-time ultrasound imaging is also popular in studying development of
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foetus. Ultrasound beams passing through a patient’s body gets reflected, refracted, or

scattered during its passage. When the passing wave encounters a difference in acoustic

properties, a portion of the wave gets reflected and will be recorded. The ultrasound

beam also gets attenuated as they travel through the body, hence the beams reflected

from deep tissues will be less in intensity. Scattering of this wave occurs when the signal

strikes objects of size same or smaller than its wavelength (Damerjiana et al., 2014). The

constructive and destructive interferences of the scattered signals form speckle noises

in the resultant image. The echo imaging technique used in ultrasound is similar to the

radar based imaging, hence the presence of speckle noise is also common in both the

cases. The speckle noises are multiplicative in nature and it degrades the quality and

contrast of the scan result. Resultantly, ultrasound scan images are grainy and low in

contrast which needs proper enhancement and restoration for accurate analysis (Moreira

et al., 2013).

1.2 Restoration models

Given certain prior information such as the degradation scenario and the noise charac-

teristics such as distribution of the random variable, image restoration aims to retrieve

the approximation of the original image from its distorted version. As stated before,

given the degradation model as additive with Gaussian distributed noise intervention,

one can model it as

I0(x) = I(x)+n(x), (1.2.1)

here I is the original image and I0 is the observed distorted image and n is the noise

following a Gaussian distribution with zero mean (µ) and noise variance σ2. All de-

noising models tend to reduce the fluctuations in the data in order to reduce the noise.

The pioneer denoising models perform this task by averaging near by pixels. The com-

mon averaging filters reduce the noise by subsidizing the intensity variations. The linear

heat kernel is a good example. The solution to a linear heat equation is a convolution

with heat/Gaussian kernel with a specified standard deviation. As the time progresses,

the diffusion spreads isotropically to more intensity pixels around the central one and

results in fading of intensity variations (Aubert and Kornprobst, 2006). However, such
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a denoising is undesirable in many imaging applications as the images themselves con-

tain various features that contributes to the intensity fluctuations whose removal could

result in serious setbacks during the image analysis phase. A linear diffusion model

takes the form:

It = c(Ixx + Iyy), (1.2.2)

where It is time derivative of the image function I and Ixx and Iyy are the second order

space derivatives of I, and c is the coefficient of diffusion which is a constant here.

Therefore, selective smoothing models were introduced in the literature. Non-linear

diffusion model or anisotropic diffusion model has set a good example in this regime

(Aubert and Kornprobst, 2006). The introduction of anisotropic models in image pro-

cessing is attributed to Perona-Malik model (Perona and Malik, 1990). This is a well

known non-linear diffusion model whose diffusion coefficient is controlled by a non-

linear function of image gradient. Anisotropic model introduced in (Perona and Malik,

1990) is

It = ∇.(c(|∇I|)∇I), (1.2.3)

where ∇I is the gradient field of I and ∇. is the divergence function. Here c(|∇I|) =

1/1+(|∇I|/k)2 is the coefficient of diffusion which is a function of the gradient magni-

tude. The magnitude of diffusion is controlled by the diffusion coefficient whose value

is (0,1]. It takes the value 1 when the gradient magnitude is close to zero and approaches

zero when magnitude is very high. Therefore, high gradient points such as edges and

discontinuities are preserved in the course of evolution whereas, the noise features are

eliminated only from low-gradient regions. This is one of the notable setbacks of the

non-linear diffusion model. There were many modifications suggested for this model

by various researchers in the literature (Marquina and Osher, 2000; Lee and Seo, 2005)

etc.

Apart from anisotropic models, there are scale-space models proposed for image

restoration. Wavelet models are quite well known in this category (Xizhi, 2008). The

wavelet models transform the image to a spatio-frequency domain and perform thresh-

olding to reduce the noise intervention. Both, soft and hard thresholding methods are

employed therein. Finding an appropriate threshold for the restoration is a tedious task.
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In later works, curvelets were also used for image restoration (Jean-Luc Starck et al.,

2002). Another noticeable set of scale-space models categorically falls under Stockwell

transform (or s-transform) (Parolai, 2009). These models are well known for multi-

resolution image processing. However, they apparently work well with Gaussian or

random noise.

Another promising improvement in the image restoration literature is introduction

of variational models (Tikhonov and Arsenin, 1977; Rudin et al., 1992). The varia-

tional models derive the concepts from penalization theory. The variational models

are quite efficient in defining the restoration framework. The models helps us to study

the theoretical aspects of the model such as existence, uniqueness and stability of the

solution. We are dealing with ill-posed inverse problems for which solutions are not

trivial. As stated before, in case of the ill-posed problems, the solution may not exist

or even if the solutions exist, it may not be unique and may not depend on the data

continuously. In other words, small perturbations in the data may lead to large ones in

the solution. Therefore, a regularization framework serves as an appropriate model to

define the solution for an ill-posed inverse problem. This is the one of the motivations

for employing regularization frameworks in the present study. Apart from providing

a platform for performing a detailed theoretical analysis, variational models have var-

ious other advantages. For instance, in variational regularization framework, one can

redefine the model to handle various noise distributions in the data (Aubert and Aujol,

2008; Le et al., 2007; Kayyar and Jidesh, 2018). Fast numerical solvers which are less

sensitive to the parameters can also be used for the solution of the model. Therefore,

variational models captured the attention of scientists in various imaging disciplines.

The penalization theory defines a optimization function with a regularization and

data fidelity term.

E(I) = min
I
‖I‖2

2 +λ (I− I0)
2, (1.2.4)

this is a L2 regularization problem where ‖I‖2
2 is the L2 norm of I. The data fidelity

term (I− I0)
2 is the squared error term and λ is the regularization parameter (0,∞). So,

the above model is a squared error minimization model or minimum mean square error

model. The solution is defined in L2 space where the functions are normally smoother.
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Therefore, the solution fails to retain edges and details present in the input.

Driven by the penalization theory, a pioneer model in the regularization framework

was proposed in Tikhonov and Arsenin (1977). This model is well known by the name

Tikhonov regularization model is defined as:

E(I) = min
I
‖∇I‖2

2 +λ (I− I0)
2, (1.2.5)

where ∇I denotes the gradient field of I and the other terms have their usual meaning.

The minimization yields smoother versions of I and the solution is defined in the space

of square integrable functions (L2 space) and as mentioned before this space does not

admit discontinuities in the solution, leading to smoother versions of the input image.

Therefore, Tikhonov model is not effective in restoring images with discontinuities as

many of them seems to be.

Total variation (TV) regularization is an improvement of the above mentioned one

(Rudin et al., 1992), in terms of retention of image features such as edges and details.

The total variation is defined as
∫

Ω
|∇I|dΩ, where ∇ denotes the gradient vector, |.|

denotes the L1 norm or the normal magnitude function. The TV regularization is

E(I) = min
I

∫
Ω

{|∇I|+λ (I− I0)
2}dΩ. (1.2.6)

The solution is defined in the space of bounded variation where the variations are

bounded. The BV space is defined as BV (Ω) =
∫

Ω
|∇I|dΩ < ∞, where all cumula-

tive variations are bounded. The space admits discontinuities which makes the space

suitable for image restoration in case of images with details. However, the TV regular-

ization discussed above is designed based on the assumption that the noise is random

and data-uncorrelated. The model is derived using a Bayesian framework by assuming

the prior and the likelihood. The data-fidelity term is directly derived from the distribu-

tion of the likelihood function. The Bayesian formulation takes the form:

P(I|I0) =
P(I0|I)P(I)

P(I0)
, (1.2.7)

where P(I|I0) is the conditional probability and it is generally called the posterior prob-

ability. That is, the probability of occurrence of the event I given I0. In this case, the

symbols I and I0 denotes original and observed images respectively, the posteriori esti-

mate tries to find the conditional probability of I (the probability of the approximation

being close to the original one) given the distorted image I0. So, maximizing the poste-
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rior estimate reduces the approximation error or eventually we get the resultant image

pretty close to the original one. The term P(I) denotes the prior assumption and P(I0|I)

is the likelihood probability. The likelihood estimate approaches the posterior estimate

when the prior probability is constant. Here we observe that the likelihood follows

distribution of the noise. So, for restoring images corrupted with the Gaussian noise,

one should assume the probability distribution of the likelihood as Gaussian. The TV

functional in (1.2.6) is derived using the Bayesian formulation assuming the noise as

Gaussian and the prior as TV. See Appendix A for the detailed derivation.

Apart from TV regularization there were quite a few other regularization models

proposed in the literature (see Marquina and Osher (2000); Aubert and Aujol (2008)).

Many of therm are marginal variations in the regularization prior. For instance, in Liu

and Huang (2010) instead of TV prior the authors propose a Bounded Total Variation

(BTV) prior and claims that the model preserves details better compared to the TV

model. In additions to the variations in the regularization term, there are proposals

which modify the data fidelity terms to incorporate the distribution of the noise present

in the data. As observed in the literature, a model designed for Gaussian noise does

not necessarily perform well with another noise distribution such as Gamma or Pois-

son. Therefore, the researchers have studied various variational frameworks to handle

different noise distribution in the data. The model in Aubert and Aujol (2008) assumes

Gamma noise in the input while designing the model, on the other hand, in Le et al.

(2007), the authors assume a Poisson distributed noise (or the noise is generated as

an aftermath of a Poisson process) and so on. In these models, the authors derive the

framework based on the Bayesian model by assuming that the likelihood follows the

distribution of noise present in the data.

The non-local framework was a considerable improvement in the image restoration

literature (Buades et al., 2005). Motivated by the non-local means (Buades et al., 2005),

Gilboa et al. (Gilboa and Osher, 2008) introduced a non-local variational regularization

model. Unlike the local variational models, the non-local models are observed to work

well with the image details and they preserve them well. In a non-local framework,

the similarity function is defined in terms of a negative exponential. The weighted
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averaging is performed where the weight is a function of the similarity measure. The

patches having high similarity will participate in the averaging process whereas, the

patches with low similarity refrain from the averaging process. This eventually helps in

averaging the similar patches which are even located apart from each other. Whereas, in

local averaging only the nearby pixels take part in the averaging process. The non-local

gradient of a function I, for a pair of points or pixels (x,y) is defined as,

∇NLI(x,y) = (I(y)− I(x))
√

w(x,y), (1.2.8)

where w(x,y) is the weight between x and y, and w(x,y) is calculated as

w(x,y) =
1

T (x)
e
−
(Gσ ∗ |v(Nx)− v(Ny)|2)

h2 , (1.2.9)

where

T (x) =
∫

y∈Ω

e
−
(Gσ ∗ |v(Nx)− v(Ny)|2)

h2 dy,

and Nx denotes a square neighborhood of fixed size and centered at a pixel x and sim-

ilarly for y, Gσ is Gaussian blurring kernel, and h is a filtering parameter. There are

some variations to non-local averaging as well in the literature. A bi-lateral filtering

is a good example (Patil and Kumbhar, 2015; Zhang and Allebach, 2008). This filter

performs averaging based on spatial and radiometric similarity. The exponential func-

tion defining the similarity is based on both spatial similarity and radiometric similarity.

The spatial similarity or spatiometric distance decreases as the spatial distance of the

patches increases. In other words, the spatiometric similarity is inversely proportional

to the spatial distance between the patches. The radiometric similarity depends only

on the intensity values. If the intensity values are similar in a patch, they tend to have

high radiometric similarity. Non-local variational models were modified to handle dif-

ferent noise distributions in the data as well. In Kayyar and Jidesh (2018), the authors

designed a model to handle Poisson noise. Similarly, in Jidesh and Balaji (2018); Holla

and Jidesh (2018), authors developed models that can handle Gamma and Rayleigh

noise. In Jidesh and Holla (2018), the authors propose a model to handle MR data

corrupted by Rice and Chi noise distribution.

Perceptual driven models are introduced for enhancing images with intensity inho-

mogeneity or contrast deficiency. The retinex framework redefines the image function
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in terms of intensity, luminance and reflectance.

I = L×R, (1.2.10)

where I, L, and R are intensity, illumination and reflectance respectively. Here re-

flectance is the property of the object on which the light falls and intensity and illumi-

nation are related to the light source. Retinex based methods are popular in enhancing

images in various domains like remote sensing (Huifang Li and Shen 2012), underwater

imaging (Zhang et al. 2017), medical imaging (Setty et al. 2016), microscopic imaging

(Mohamed et al. 2017) etc.

1.3 Dataset

For experimental studies, we have used publically available hyperspectral datasets such

as Indian Pines, Jasper Ridge (courtesy, Pursues university MultiSpec), and Cuprite

(courtesy, AVIRIS NASA). All these images are obtained using AVIRIS (Airborne Vis-

ible InfraRed Imaging Spectrometer) sensor and includes 224 spectral bands in the

range of wavelength 400 to 2500 nanometers. The Indian Pines dataset includes im-

ages of size 145× 145 and the Cuprite data images are of size 250× 190 pixels. In

the case of the Jasper Ridge, the original image size is 512× 614 pixels, but we are

using only a 100× 100 sub-image of the same. Moreover, the Washington DC data

(courtesy, Pursues university MultiSpec) obtained using HYDICE (Hyperspectral Dig-

ital Imagery Collection Experiment) sensor has also been used in our experimental

study. It includes 210 spectral bands in the wavelength range same as AVIRIS. The

size of the data is 1208× 307. In addition to the hyperspectral images, some aerial

images are also been used in the comparative analysis. We have used the publicly

available Massachusetts Buildings Dataset (http://www.cs.toronto.edu/ vmnih/data/),

which is a collection of aerial images of Boston city in the USA. Each of these im-

ages is of size 1500× 1500 pixels. A satellite-based overhead object detection data

called xView (http://xviewdataset.org/dataset) has also been included in our analysis.

It contains high-resolution images collected by using WorldView-3 satellites. Fur-

ther, for the speckle-noise study, we are using B-mode ultrasound images of the com-

mon carotid artery (CCA) (courtesy, Signal Processing Laboratory, Czech Republic:
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http://splab.cz/en). These images are of resolution 390× 330 pixels and two linear

transducers of frequencies 10MHz and 14MHz were used to capture the same.

1.4 Motivation

A generalized framework for restoring and enhancing images from multiple imaging

domains is not explored much the in literature. Such a framework has enormous appli-

cations in the contemporary imaging science. As most of the imaging modalities pro-

duce distorted images, their analysis demands an efficient pre-processing step. Satellite

and medical imaging applications analyze a large number of images for various studies.

Moreover, these modalities produce distorted images despite of the quality of devices

used for image acquisition. The distortions in the captured data in these modalities

are unique and depends on the characteristics of the modality under which the images

are formed. Though there are models designed for restoration in each of these modali-

ties, they tend to address one of the distortions for which it is designed. There lacks a

common framework which handles different kinds of distortions while performing an

enhancement to them. This thesis intents to bridge this gap by providing a common

framework for medical and satellite imaging application to restore and enhance the im-

ages corrupted with various kinds of distortions without affecting the prominent details

required for their further analysis. Therefore, this designed framework can be plugged

into the preprocessing step of various imaging applications. Moreover, the model thus

designed will converge at a faster rate and would be computationally efficient so that it

can be employed for images of bigger size as the ones that commonly appear in medical

and satellite imaging applications.

1.5 Research Objectives

Image enhancement is an inevitable pre-processing activity in many of the image pro-

cessing applications. The images captured are degraded during various stages of imag-

ing and image processing. Image acquisition and storage are the two prominent stages

which are prone to the degradation scenario. Since image enhancement and restoration

is an ill-posed problem, its solution is not trivial. Various regularization frameworks
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are to be employed for the design of an effective solution. Though there are a few ap-

proaches highlighted in the recent literature for enhancing and restoring images from

satellite and medical imaging domain, they have their own pros and cons. Analysis of

the noise distribution is another important requirement as far as the design of a restora-

tion model is concerned. There are no blanket restoration models available to date to

handle all kinds of noise distributions uniformly. So, analyzing the noise distributions

from the input data is a crucial requirement in the design of an appropriate enhancement

and restoration framework. The thesis addressees these issues to a considerable level.

The overall objectives are highlighted below.

• Analyse and estimate the noise distribution and noise parameters of input images

from medical and satellite imaging application using automated machine learning

algorithms.

• Designing variational frameworks equipped with retinex models to enhance and

restore various kinds of images corrupted by different noise distributions such as

Gaussian, Poisson and Gamma.

• Analyse and study the model both theoretically and experimentally and compare

with the state of the art restoration models.

• To enhance the computational efficiency of the models using fast numerical ap-

proaches such as Split-Bregman scheme in order to improve the convergence rate

of the model.

• Further to improve the computational speed by parallelizing the algorithms to be

executed under a multi-core processing environment such as GPU.

1.6 Organization and Contribution of the Thesis

The degradation analysis is the primary step in an automated restoration framework. As

one cannot apply a common restoration model for all kinds of distortions, appropriate

models are designed in due respect of the noise distribution of the input data. Chapter

two of the thesis contributes a fully automated novel framework for analyzing and de-

tecting the distribution of the noise from the input data. Analysis of noise distribution
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duly provides an insight to choose appropriate variational model to restore the images

from the specific degradation analysed therein. A machine learning approach is em-

ployed to analyse the noise distribution from the input image characteristics. Various

statistical and geometric features of the images are studied to arrive at the conclusion

regarding the distribution. Subsequent to the noise distribution analysis, the respective

retinex based variational models are chosen to restore and enhance the images.

Third chapter highlights the model proposed for restoring and enhancing low con-

trast Gaussian noisy images from satellite imaging applications. As a matter of fact,

many remote sensing images are low-contrast and noisy in nature, therefore, we intent

to address these issues using a perceptually driven variational retinex framework under

a non-local strategy.

Generally, noises present in remote sensing images can be categorized as data-

independent thermal noise, stripping noise and data-dependent shot noise (Poisson

noise). Removal of data-correlated noise like shot noise is comparatively challeng-

ing than the common data-independent counterparts. The noise distribution is analysed

from the input image using the model described in Chapter 2. Subsequently, the fourth

Chapter highlights a model proposed for restoring and enhancing low contrast and Pois-

son noisy satellite images.

Ultrasound images are very popular in medical domain and it commonly gets de-

graded due to speckle noise which in most of the literatures assumed to follow a Gamma

distribution. In Chapter 5 a model for restoring ultrasound images is introduced. The

model duly analyses the noise distribution in the data using the procedure discussed in

Chapter 2 and designs a retinex based variational framework to enhance and restore the

images.

The last chapter provides a conclusion of the thesis throwing some light on future

enhancements. The models designed as a part of this thesis are implemented using

C++ under parallel CUDA programming environment of NVIDIA GPU processor Tesla

V100. This improves the overall computational efficiency of the model. The non-local

variational frameworks deal with huge matrices, therefore, a sequential processing of

the data is computationally demanding and consumes enormous CPU time. This was
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considerably addressed in this thesis by employing parallel algorithms for processing

the data. On the machines which does not possess the parallel computing facility, the

models run under the sequential schemes without categorically demanding a specific

platform for their computation. The users are to be least worried about the computing

platform, as the model gives optimal results under different computing environments

no matter whether the parallel computing environments are available or not. Some of

the future enhancements being planned to undertake in order to further improvise the

models studied herein has been discussed in this chapter.

Some of the bulky derivations and definitions are provided in Appendix A of the

thesis.
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CHAPTER 2

Degradation analysis from the data

2.1 Introduction

Noise is an unexpected intervention in an image and it gets included during its capture,

transmission or processing. As mentioned earlier, presence of degradation such as noise

restrict the proper information retrieval from an image, hence it is a major concern in

image analysis. Removing noise from an image without losing the data is a tedious task

and without prior information about the nature of noise, this can even cause blurring or

loss of information. Resultantly, identifying the nature of noise is essential to perform

an appropriate restoration of the degraded image.

Despite of its importance, noise classification is comparatively a less studied area

and only a few initiatives are available on this topic. Many methods are proposed for es-

timating noise parameters and noise density from data, refer Liu et al. (2006), Liu et al.

(2013), and Liu et al. (2014). However, these methods fail to analyze the noise distribu-

tions. Initial research on identifying the nature of noise was done in Chehdi and Sabri

(1992), which is elaborated in Beaurepaire et al. (1997) by additionally analyzing local

histograms. In Vozel et al. (2006), authors tried to recognize the additive or multiplica-

tive noises by fitting a polynomial regression and Chen and Das (2007) uses existing

filters like Weiner, homomorphic and median for estimating noise. In this Chapter, we

propose a framework for identifying the nature of noise present in a degraded image.

Noise can be classified into different categories based on its distribution.

Noise classification is a preliminary step in the regularization frameworks, which are

popular in preserving details while restoring distorted images (Jidesh, 2014). Among
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Figure 2.1 Automatic Restoration system

the regularization models, non-local algorithms have an edge over the others in terms

of preserving local features like textures and details, see Antoni Buades and Morel

(2005), Aubert and Aujol (2008), and Gilboa and Osher (2008) for the details. Many

regularization algorithms are proposed for different image processing applications, see

Lu et al. (2014) and Lu et al. (2013). Many among them, are designed specifically for

a particular type of noise intervention in the data. For instance, Liu and Huang (2014),

Le et al. (2007), and Jidesh and Balaji (2018) are designed for Gaussian, Poisson and

Gamma noises, respectively. An adaptive framework which automatically chooses the

best regularization algorithm based on noise characteristics and does enhancement and

denoising will be handy to the end users who do not possess knowledge about the

type degradations present in the data. The different noise distributions considered in

this study are Gaussian, Poisson and Speckle following Gamma, as these are the most

common type of noises present in remote sensing and medical imaging applications.

The block diagram of the automated restoration system proposed in this Chapter is as

in Figure 2.1. The details of noise classification and estimation module is elaborated
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in the next section. The design and analysis of various restoration models under the

variational framework for Gaussian, Poisson, Gamma noises are explained in Chapters

3, 4, and 5 respectively.

2.2 The proposed Methodology

The methodology adopted for automatic noise classification includes mainly three steps

namely: Homogeneous region extraction, Feature extraction, and classification. Over-

all work-flow of the framework is given in Figure 2.2. The nature of noise can easily

be analyzed if the intensity values are constant over the region. Hence, the first step

towards automatic noise identification is the extraction of such homogeneous intensity

regions within the image. Afterwards, the histogram of these uniform intensity regions

provides an insight to the underlying noise distribution. However, automatically detect-

ing the appropriate distribution from a list of possible outcomes is a tricky task and to

address this issue we use a machine learning technique in this study. Feature extrac-

tion is the next important step, which in turn is the process of identifying features with

high discrimination capability. After extracting the features, a classifier is designed

accordingly to effectively classify the noise distribution.

2.2.1 Homogeneous region Extraction

Extracting homogeneous regions is an important step in noise analysis phase as in those

areas, intensity values are almost constant and the variations are mainly due to the

noise components. Homogeneous region extraction from a noisy input is a challenging

task for which we have adopted a fast segmentation method based on region-merging

technique (Shui and Zhang, 2014). In this method, a Ratio-based Edge Strength Map

(RESM) is extracted from an input image which gets thresholded to reduce local min-

ima inside the homogeneous regions. Afterwards, the watershed transform is applied

on thresholded RESM to form the initial partition. Initial partitions always give an

over-segmented result which again gets merged to form the final one by using a new

cost function for merging with relative common boundary length penalty (RCBLP). To

form a fast algorithm, region-merging is combined with region adjacency graph (RAG)

to represent segmentation result and nearest neighbor graph (NNG) to do fast minimal
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edge searching. Around thirty homogeneous regions are extracted from every input im-

age in this study. Homogeneous region extracted from synthetic and real noisy images

are given in Figures 2.3 and 2.4, respectively.

2.2.2 Feature Extraction

In case of noisy data, the histogram obtained from the homogeneous intensity region

essentially follow the distribution of the noise present in it. Finding the similarity of

this image PDF with different noise distributions provides an insight to the nature of the

noise present in the image. For this purpose, Jensen-Shannon (JS) Divergence which

is an extension of the popular Kullback-Leibler (KL) divergence is being used. Apart

from JS divergence, skewness, kurtosis, entropy, and fifth central moment are evaluated

to get the information about the shape and nature of the distribution. Along with these

features, we have also extracted the steepness of mean-variance curve to distinguish

between the additive and multiplicative nature of the noise.

JS Divergence:

It is a measure of dissimilarity between two distributions and it is considered as an

extension of popular KL divergence (Menendez et al., 1997).

KL Divergence: It measures how one probability distribution differs from another one

(Kullback and Leibler, 1952). This method was introduced by Solomon Kullback and

Richard Leibler. The KL divergence from X to Y is generally denoted as DKL(X ||Y ),

where X and Y denote two distributions. For a discrete case (i.e where probability

distributions X and Y are discrete), DKL is as shown below (Menendez et al., 1991)

DKL(X ||Y ) = ∑
x∈Ω

X(x)log
X(x)
Y (x)

(2.2.1)

and for the continuous case, it is defined as

DKL(X ||Y ) =
∫ +∞

−∞

X(x)log
X(x)
Y (x)

dx (2.2.2)

DKL is a non-negative (DKL>=0) and non-symmetric (DKL(X ||Y ) 6= DKL(Y ||X)) mea-

sure. If two distributions are exactly similar, then DKL approaches zero and it increases

with the increase in dissimilarity. KL divergence is very closely related to relative en-
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Figure 2.2 Overview of the Noise estimation and classification system
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(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

Figure 2.3 Homogeneous region extraction in a noisy synthetic image: Row 1: Image
with Gamma Noise: (a1) Noisy image (a2) Initial partition (a3) Final segmented image;
Row 2: Image with Gaussian noise: (b1) Noisy image (b2) Initial partition (b3) Final
segmented image; Row 3: Image with Poisson noise: (c1) Noisy image (c2) Initial
partition (c3) Final segmented image;
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Original image.

(a1)

 Initial partition. 

(a2)

 Final segmentation result. 

(a3)
Original image.

(b1)

 Initial partition. 

(b2)

 Final segmentation result. 

(b3)
Original image.

(c1)

 Initial partition. 

(c2)

 Final segmentation result. 

(c3)

Figure 2.4 Homogeneous region extraction in real noisy images: Row 1: SAR im-
age (Intensity AIRSAR image of Flevoland, Netherlands 500×500,HH polarization,
four looks) : (a1) Noisy image (a2) Initial partition (a3) Final segmented image; Row
2: Ultrasound image (Pleomorphic adenoma in the submandibular gland,Courtesy of
www.ultrasoundcases.info): (b1) Noisy image (b2) Initial partition (b3) Final seg-
mented image; Row 3: Confocal Microscopic image (Mouse fibroblast cell, Courtesy
of www.cellimagelibrary.org, doi:10.7295/W9CIL1315): (c1) Noisy image (c2) Initial
partition (c3) Final segmented image;
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tropy and DKL(X ||Y ) can be considered as the difference between the cross-entropy of

X and Y (H(X ,Y )) and the entropy of X (H(X)).

DKL(X ||Y ) = H(X ,Y )−H(X). (2.2.3)

Though JS divergence is defined based on KLD, it is a symmetric measure and it al-

ways gives a finite value. JS divergence is also measured as the total divergence to the

average. JS divergence (JSD) is defined as follows (Fuglede and Topsoe, 2004).

JSD(X ||Y ) = 1
2

DKL(X ||M)+
1
2

DKL(Y ||M) (2.2.4)

where M = 1
2(X +Y ) i.e,

JSD(X ||Y ) = ∑
x∈Ω

X(x)log
X(x)

1
2X(x)+ 1

2Y (x)
+ ∑

x∈Ω

Y (x)log
Y (x)

1
2X(x)+ 1

2Y (x)
. (2.2.5)

Based on entropy it can be formulated as below

JSD(X ,Y ) = H(
X +Y

2
)− 1

2
H(X)− 1

2
H(Y ). (2.2.6)

The general form is, JSD(X ,Y ) = H(π1X + π2Y )− π1H(X)− π2H(Y ) where π1, π2

are the weights for probabilities X and Y respectively. When there is more than two

probability distributions (Menendez et al., 1991) then

JSD(X1,X2, ...,XN) = H(
N

∑
j=1

π jX j)−
N

∑
j=1

π jH(X j). (2.2.7)

Skewness:

Skewness is the measure of asymmetry of the distribution (Doric et al., 2009), it is the

third central standardized moment, which is also known as First Pearson’s coefficient.

Skewness Sk of random variable z can be defined as below

Sk = E
[(z−µ

σ

)3]
, (2.2.8)

where µ represents mean, E is the expectation operator and σ represents the standard

deviation. In accordance with the asymmetry, one distribution can be positively or neg-

atively skewed. Negative skewness indicates the long left side tail. Similarly, positive

skewness indicates that the right side tail is longer. For positive skewness, median and

mean of the distribution will appear on the right side of the Mode whereas, for negative

skewness it appears on left side.

Normal distribution (Gaussian distribution) is always symmetric and consequently,
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Figure 2.5 Fitting and JSD estimate on different noisy images Row 1: (a) Poisson noisy
input (b) Speckle noisy input (c) Gaussian noisy input; Rows 2-5 : fitting on different
homogeneous regions marked using the corresponding estimated parameters

27



its skewness value will be always close to zero. For Gamma distribution, the skewness

is defined as below

SkGamma =
2√
s

(2.2.9)

where s is the shape parameter. As the value of s increases, skewness approaches to

zero and the distribution tends close to a Gaussian.

For a Poisson distribution, skewness is defined as

SkPoisson = λ
−1/2
p (2.2.10)

here λp is the average number of events per interval.

Kurtosis:

Kurtosis is sometimes considered as the measure of peakedness, but it is more related

to the tails of the distribution, hence it can be treated as a measure of "tailedness" of

the probability distribution. It is the fourth standardized moment, popularly known as

second Pearson’s coefficient. Kurtosis Ku of random variable z is defined as

Ku = E
[(z−µ

σ

)4] (2.2.11)

where µ represents mean, E is the expectation operator and σ represents the standard

deviation.

The kurtosis of a popular normal distribution is 3. If kurtosis distributions is less

than 3 it is known as platykurtic and those with kurtosis greater than 3 are called lep-

tokurtic (Doric et al., 2009). Laplace distribution is an example for leptokurtic as its tail

approaches zero more slowly. Kurtosis of a Gamma distribution is defined as

KuGamma = 3+
6
s

(2.2.12)

where s is the shape parameter and as s approaches infinity, Kurtosis of Gamma dis-

tribution approaches three and subsequently, the distribution tends closer to a Normal

(Gaussian) distribution. Kurtosis of the Poisson distribution is defined as

KuPoisson = λ
−1
p (2.2.13)

here λp is the average number of events per interval.
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Entropy:

Entropy is the measure of unpredictability, it is also known as the average information

content (Azzam and Awad, 1996). Entropy is measured as the negative logarithm of

probability mass function, which means a less probable event contains more informa-

tion or it carries more uncertainty. Entropy H(z) for the discrete domain can be defined

as below

H(z) =−
N

∑
j=1

logP(z j) (2.2.14)

The entropy of a Normal distribution is

HNormal =
1
2

log(2πeσ
2) (2.2.15)

and for Gamma and Poisson distributions, entropy is as shown below (Azzam and

Awad, 1996)

HGamma = s+ lnθ + lnΓ(s)+(1− s)ψ(s) (2.2.16)

where s and θ represents the shape and scale parameters of Gamma, Γ is the gamma

function , and ψ denotes the digamma function.

HPoisson = λp[1− log(λp)]+ e−λp
∞

∑
kp=o

λ
kp
p log(kp!)

kp!
, (2.2.17)

where kp represents the number of occurrences of an event.

Fifth central moment (FCM):

Central Moment is the moment about the mean, and fifth central moment can be defined

as below

FCM = E((z−µ)5). (2.2.18)

It acts as a measure of relative importance of tail versus Mode for causing the skewness.

The Steepness of Mean-Variance curve:

With reference to Chehdi and Sabri (1992), in a homogeneous region of an image (gh),

if the variance is constant then the noise present in it will be additive in nature and if

the variance (σ2[gh]) according to the average(E[gh]) is a parabola passing through the

origin, then it is more likely to be multiplicative in nature.

29



The noisy image can be expressed as I0 = I +n (in additive case). Therefore,

σ
2[I0] = σ

2[I]+σ
2[n]. (2.2.19)

In a homogeneous region, σ2[gh] = σ2[n], where gh indicates an observation relative to

a homogeneous region. In case of multiplicative noise, I0 = I ∗n , so,

σ
2[gh] = E2[gh]σ

2[n]. (2.2.20)

This implies that the nature of the mean-variance curve, especially steepness of the

curve will be different for different kind of noises. Thus steepness or slope of the mean-

variance curve can be regarded as an important feature to distinguish additive noise like

Gaussian from multiplicative noise like Gamma.

2.2.3 Classification

For classification, we have used multi-class Support Vector Machine (SVM) with RBF

(Radial basis function) Kernel. SVM is a supervised learning technique which analyses

the training data to build a model that later correctly categorizes the unknown testing

inputs. In SVM, one can achieve a non-linear classification by using Kernel tricks

(Cortes, 1995). An RBF Kernel on two samples z and z
′
is defined as

Krb f (z,z
′
) = e−

‖z−z
′
‖2

2σ2 (2.2.21)

where γ
′
= 1

2σ2 , therefore, it is also defined as Krb f (z,z
′
) = e−γ

′‖z−z
′‖2

Mostly, multi-class SVMs are developed by dividing it into multiple binary clas-

sification problems (Duan and Keerthi, 2005). Common two approaches for this are

‘one-versus-all’ and ‘one-versus-one’. In ‘one-versus-all’ we build a binary classifier

to distinguish one of the labels from the rest, whereas, in ‘one-versus-one’ we build

it to distinguish between every two classes. The ‘one-versus-all’ classification makes

use of ‘winner-takes-all’ strategy whereas the ‘one-versus-one’ approach uses a voting

strategy. We have used the ‘one-versus-all’ method for classification. For training the

classifier, we have created a set of 150 images, each of which is manually corrupted

with a Gaussian, Poisson, or Gamma noise. To increase the reliability of the system, we

have used different noise variances. Furthermore, a set of images that consists of real

noisy data such as medical and satellite images are also created for the testing purpose.
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2.2.4 Testing of the system using pioneering Non-local regulariza-
tion frameworks

For testing the complete system, we use the state of the art non-local regularization

algorithms for each noise distributions under consideration. Inspired from the models

in Rudin et al. (1992); Gilboa and Osher (2008), we employed the following functional

to restore Gaussian noisy images.

min
I

{
E(I) =

∫
Ω

|∇NLI|dx+λ/2
∫

Ω

(I− I0)
2dx
}
, (2.2.22)

where λ > 0 is the regularization parameter, Ω is the area of image support and ∇NLI

is the non-local Total Variation (TV) of I (where TV (I) =
∫

Ω
|∇I| dΩ) (refer Liu and

Huang (2014),Gilboa and Osher (2008) and Antoni Buades and Morel (2005)).

The speckle reducing model in Jidesh and Balaji (2018) is being used to restore

images with Gamma noise distribution and the functional used for this is given below:

min
I

{
E(I) =

∫
Ω

|∇NLI|dx+λ/2
∫

Ω

(
I0

I
+ log I

)
dx
}
. (2.2.23)

However, in Chapter 5, a more efficient framework is proposed for restoring speckled

data.

The non-local regularization framework for denoising photon-limited images is stud-

ied in Le et al. (2007),Liu et al. (2017a) and the corresponding energy functional has

been used to restore images with Poisson noise distribution. The functional takes the

form:

min
I

{
E(I) =

∫
Ω

|∇NLI|dx+λ/2
∫

Ω

(I− I0 log I)dx
}
. (2.2.24)

An advanced model for Poisson noise removal is proposed in Chapter 4 of this thesis.

The overall process is detailed in Algorithm 1.

2.3 Experimental Results and Analysis

Gaussian, Gamma and Poisson noise distributions are subjected for the present study.

For a single image, we have extracted features from thirty different homogeneous re-

gions to make the process more reliable. The segmentation method we have used (Shui

and Zhang, 2014) was proposed for SAR images, but it has been observed to work well

for the other noisy images too. The segmentation results obtained on Gaussian, Gamma

and Poisson noisy images are shown in Figure 2.3. Real SAR, Ultrasound and Micro-
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scopic images are used to show the segmentation results, refer to Figure 2.4 for the

details. The homogeneous regions extracted are free of any other intensity variations

except the noises, hence it helps in analyzing noise distributions more accurately. The

JSD/KLD features obtained from fitted curves give significant information about noise

distribution. The Figure 2.5 shows the fitting of curves on different noisy inputs. The

JSD/KLD shows very small values when the fitting is close to the noise PDF.

Algorithm 1 Algorithm to implement the method
Input I0← Image corrupted by the noise
Output Restored image I

1: Extract homogeneous intensity regions h from input image using the fast segmen-
tation method proposed in Shui and Zhang (2014).

2: for each region h do
3: Find the probability density function of the identified homogeneous region h.
4: Estimate the parameters for different assumed noise distributions (Gaussian,

Gamma and Poisson) using Maximum Likelihood estimate (MLE).
5: Perform curve fittings using the estimated parameters.
6: Evaluate the JS/KL divergence between the actual estimated PDF and different

fitted PDFs.
7: Find Skewness, Kurtosis, Entropy and Fifth central moment from region h.
8: Calculate steepness of mean-variance curve using the method proposed in

Chehdi and Sabri (1992).
9: Combine results of step: 6,7 and 8 together to form the final feature vector v.

10: end for
11: Feed v into trained multi class SVM to obtain noise distribution label L
12: ε ← small scalar positive value.
13: Initialize I0,
14: while ‖Ik− Ik−1‖/‖Ik‖< ε do
15: if L is Gaussian then

Ik+1 = min
I

{
E(I) =

∫
Ω

|∇NLI|dx+λ/2
∫

Ω

(I− I0)
2dx
}
,

16: else if L is Gamma then

Ik+1 = min
I

{
E(I) =

∫
Ω

|∇NLI|dx+λ/2
∫

Ω

(
I0

I
+ log I

)
dx
}
,

17: else if L is Poisson then

Ik+1 = min
I

{
E(I) =

∫
Ω

|∇NLI|dx+λ/2
∫

Ω

(I− I0 log I)dx
}
,

18: end while
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Figure 2.6 Confusion matrix

Table 2.1 Precision and Recall for each class

Poisson Gaussian Speckle
Precision 93.5 96.6 100

Recall 96.7 93.3 100

For training, we used 150 different images (50 from each class) and the testing is

performed on 90 images (30 from each category). Test images obtained from decsai

(http://decsai.ugr.es) are synthetically corrupted with different noise (following differ-

ent noise distributions) and being used as the training set. To make the system more

robust, the training set was inclusive of Gaussian Noises with different variances, Pois-

son Noises with different λ values (very high λ values are excluded to avoid the pos-

sible similarity with Gaussian) and Gamma noises with different values of shape and

scale parameters (Gamma distribution with high shape value will be close to a Gaus-

sian distribution which is excluded to reduce mis classification). Furthermore, the ad-

ditional testing set was made of background images obtained from computational vi-

sion lab at Caltech (Collected by Markus Weber at California Institute of Technology)

and these images were synthetically corrupted with Poisson noise.The SAR dataset is

obtained from Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/home)

and ESA PolSARpro (https://earth.esa.int/web/polsarpro), Ultrasound images were ob-

tained from Signal Processing Laboratory and Ultrasoundcases.info, and Microscopic

images were obtained from the Cell Image Library (www.cellimagelibrary.org). The
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Table 2.2 Different performance measures evaluated for the system.

Average accuracy 97.7%
Error rate 2.22%

PrecisionM 96.7%
RecallM 96.7%

testing set also includes noises with different variances and peaks. The trained sys-

tem classified the testing set with 96.7% accuracy, see confusion matrix in Figure 2.6.

Precision and Recall for each class is given in Table 2.1. According to Sokolova and

Lapalme (2009), the performance of a multi-class classifier can be evaluated using a

number of measures in macro-averaging and micro-averaging category. The Macro-

averaging technique treats all classes equally, while micro-averaging favors the classes

which are big in size. Here we have used the macro-averaging (denoted by suffix M),

as all the classes are of equal size, see Table 2.2 for different performance measures

evaluated. The equations used for calculating the same are given below:

PrecisionM =
∑

l
j=1

t p j
t p j+ f p j

l
(2.3.1)

RecallM =
∑

l
j=1

t p j
t p j+ f n j

l
(2.3.2)

Average accuracy =
∑

l
j=1

t p j+tn j
t p j+ f n j+ f p j+tn j

l
(2.3.3)

Error rate =
∑

l
j=1

f p j+ f n j
t p j+ f n j+ f p j+tn j

l
(2.3.4)

where l is the number of classes used. The terms tp, fn, tn, and fp represents the true

positive, false negative, true negative, and false positive respectively.

The restoration results obtained on different real images are given in Figure 2.7.

After the classification of noise features, the images corrupted by a particular noise is

restored using the corresponding restoration method designed using a variational frame-

work. The subsequent chapters introduces various variational frameworks proposed for

restoring images corrupted by various noise distributions from satellite and medical

imaging applications.
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(a1) (a2) (b1) (b2)

(c1) (c2) (d1) (d2)

Figure 2.7 Noisy and corresponding Restored images for different Noise distributions:
Gaussian Noise: (a1) Noisy image (a2) Restored image; Gamma Noise: (b1) AIRSAR
image of Death Valley (CA), Courtesy of ESA polSARpro and NASA/JPL-Caltech
(b2) SAR Restored image;(c1) Ultrasound image of Submandibular gland, Courtesy of
www.ultrasoundcases.info (c2) Restored image; Poisson Noise: (d1) Confocal micro-
scopic image of Embryo, Courtesy of Cell Image Library (d2) Restored microscopic
image;
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2.4 Summary of the Chapter

To make the restoration of images more effective and dynamic, a method has been pro-

posed in this chapter. The model analyzes and classifies degraded images based on

the statistical distribution of noise. The system designed in this chapter duly deter-

mines the kind of noise distortion (in terms of its probability distribution) present in

the input images. This serves as a pre-processing step in many restoration models. An

appropriate functional based on the noise distribution is chosen to restore images from

corresponding noise intervention. The rest of the thesis focuses on proposing new mod-

els for restoration and enhancement of low contrast and noisy input images from remote

sensing and medical domains.
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CHAPTER 3

Retinex model for data uncorrelated noise
distortion

3.1 Introduction

Data uncorrelated noise interventions are well-known in most imaging domains, and

very commonly seen in hyper-spectral or multi-spectral images as thermal noise or

quantization noise (Rasti et al., 2018). Generally, remote sensing images are heavily

used by various applications to detect and analyse different objects on Earth and at-

mosphere. The visual quality of images plays a dominant role in the image analysis.

However, these images are also more prone to contrast degradations due to the un-

predictable influence of atmospheric conditions like cloud, fog, and poor illumination.

Though there are models proposed for homogenizing the intensity or improving the

contrast aspects of the data and denoising them, there lacks a method which simultane-

ously performs these activities.

The major correction methods studied in the literature include absolute radiomet-

ric/photometric and relative radiometric/photometric corrections. The absolute radio-

metric correction methods require accurate measurements of the data during the ac-

quisition (Huifang Li and Shen, 2012). Since, majority of the archived data does not

possess this information, relative radiometric corrections are usually employed instead

of the absolute ones. The classical image enhancement methods use either histogram

equalization (HE) or homomorphic filtering. The HE model is purely based on the ra-

diometric measures and tends to neglect the spatiometric information present in the data.

Homomorphic filtering has been used for image processing applications for decades al-
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together (Nnolim and Lee, 2008). The basic concept of Homomorphic filtering is to

filter images in order to make them visually appealing by exploring the weakness of

the human visual system. However, when the homomorphic techniques are used, the

colour distortion is quite evident in the enhanced output under the RGB colour model.

Processing of the data based on the visual perception makes the results more sensible

to the human visual system. Retinex theory makes use of this principle. Perceptually

inspired models are found to perform better than the other low-level processing tech-

niques in terms of the visual representation of the output-data (Bertalmio et al., 2009).

These models were inspired by the homomorphic filtering technique which considers

the intensity as a product of the reflectance of the object and the illumination aspects

of the source. The retinex theory is rooted in this concept, a detailed description of the

same is provided down the line. There are many image enhancement models proposed

in the literature under the retinex framework. In Li et al. (2015), the authors propose

a retinex based algorithm for image enhancement using recursive bilateral filtering. In

yet another study detailed in Fu et al. (2014), the authors propose an enhancement

method with illumination adjustment. A fast alternating direction method is used for

its implementation. Another recent work in this field is proposed in Fuyu et al. (2018),

where the authors devise a retinex-based image enhancement framework by using re-

gion covariance filter. They use three different stages for getting the enhanced data

and fuse the inputs to get the final image synthesized. In a similar sense, in Zhang

et al. (2018) a retinex model has been devised for image enhancement using a guided

filter and a variational framework. In this study, the authors propose a contrast lim-

ited adaptive histogram equalization for image enhancement. In Jobson et al. (1997), a

popular multi-scale retinex (MSR) algorithm (also known as NASA’s retinex method)

has been introduced which bridges the gap between colour images and human visual

system. In addition, a dictionary-based image enhancement method is found in Chang

et al. (2015). Nevertheless, these models lack a proper analysis of the noise distortion

present in images. Though there are some efforts to handle noise distortions using the

retinex theory as in Liu et al. (2017c); Li et al. (2018), the performance is limited as the

distribution of the noise is not taken into consideration while designing the model.
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Variational models are the state-of-the-art restoration methods, due to their inherent

capacities to handle various data-related features such as edges and discontinuities dur-

ing the restoration process (Ferradans et al., 2015). Moreover, they provide an effective

framework for theoretically analyzing the model in terms of its existence, uniqueness,

stability etc. These models also incorporate the Bayesian framework when designing

the optimization problem. In this study, we intent to explore the capacity of the varia-

tional models to drive the processing in a perceptually significant direction and improve

the perceptual quality of the data in terms of both visual and quantitative assessments.

Various low-contrast and noisy data are considered from satellite imaging applications

in order to scientifically prove the efficiency of the proposed strategy.

Many satellite images such as SAR and multi-spectral images suffer from contrast

unevenness and noise intervention. The case is not much different for multi-spectral

and hyper-spectral images used in satellite image analysis. These facts eventually pro-

vide an insight to tackle the distorted images using efficient models which can address

these issues to a considerable extent. Since we deal with the problems which are inverse

and ill-posed in nature, certain assumptions are to be made while designing and solv-

ing them in order to improve the approximations of the solutions. These assumptions

form a set of constraints in the constrained optimization framework. In a variational

framework, one can design a constrained optimization problem and solve it effectively.

Typically, a designed energy functional denotes an unconstrained optimization problem,

minimizing which eventually yields the desired solution. An introduction to variational

retinex models and their insights that lead to the design of a new model is highlighted

below.

3.1.1 Retinex Theory

Human visual system perceives the color of an object equally in all lighting variations,

this illusion is known as the Retinex effect (Ng and Wang, 2011). According to Retinex

theory, the intensity of an image can be represented as the product of its illumination

and reflectance i.e.

I(x,y) = L(x,y)R(x,y), (3.1.1)
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where I(x,y) represents the digitized intensity image of size M×N, R(x,y) and L(x,y)

represent the digitized reflectance and illumination of the image respectively. Initially,

retinex got proposed as a random walk algorithm by Land and McCann (Land and

McCann, 1971; Land, 1977, 1983). Based on the study of Land et al. (refer Land

(1977)) most of the retinex methods perform a logarithmic conversion. In a logarithmic

domain, it can represented as

i = l + r, (3.1.2)

where i = log(I), l = log(L), and r = log(R). Here, computation also is less intense.

A variational framework for Retinex was first proposed by Kimmel et al. in Kimmel

et al. (2003). It is based on the assumption that the illumination is spatially smooth.

The model amounts to:

minE[l] =
∫

Ω

(
‖∇l‖2

2 +α(l− i)2 +β‖∇(l− i)‖2
2
)

dxdy. (3.1.3)

However, as observed in many previous works the reflectance is non-smooth and based

on this a new total variation based retinex framework has been introduced in Ng and

Wang (2011). The authors of this work assume that the reflectance belongs to a space of

bounded variation (BV), in which the total variations (TV) are bounded. Their proposed

optimization functional includes both illumination and reflectance terms. They have

also suggested the use of advanced numerical algorithms for fast computation. The

functional of this model takes the form:

minE[l,r] =
∫

Ω

‖∇r‖dxdy+α

∫
Ω

‖∇l‖2
2dxdy

+β (l− r
′
− i)2dxdy+µ

∫
Ω

l2dxdy, (3.1.4)

where the last term is for the theoretical setting and r
′
=−log(R). The solution is sought

under a spit-Bregman scheme. The main assumptions followed in these works are; the

intensity varies smoothly across the image, so is the luminance. However, reflectance

being the property of the object on which the light falls, it does not follow a smooth pat-

tern. Therefore, in the minimization functional, the TV norm of the gradient reflectance

forms one term, similarly, the L2 norm of the gradient of the other quantities forms the

other terms, including the data fidelity term. Therefore, the non-smooth nature of the

reflectance preserves the details present in images. Further, a bayesian framework for

variational retinex is also introduced in Wang et al. (2014).
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Perceptually inspired variational models have taken a deserving position in the re-

cent literature due to their inherent ability to tune itself to the intensity and reflectance

characteristics of the data. In a general setting, the energy functional of a variational

model can be expressed in terms of the contrast and dispersion of the data i.e. E(I) =

C(I)+D(I), where C(.) and D(.) are contrast and dispersion functionals, respectively.

The perceptually inspired retinex models were applied to various imaging domains by

the researchers. For instance in Huifang Li and Shen (2012) the authors applied a mod-

ified TV based retinex method for intensity correction of remote sensing images. As

well-known from the literature, the TV norm performs a piece-wise approximation of

the input, resulting in visual discrepancies in the enhanced output. Therefore, in this

model, the authors propose to modify the TV norm of the gradient of the reflectance us-

ing an adaptive norm constraint which switches between L2 and TV norms depending

on the image characteristics. This provides a better visual interpretation of the output.

The model in Huifang Li and Shen (2012) follows

minE[r] =
∫

Ω

‖∇(r− i)‖2
2dxdy+λ1

∫
Ω

(‖∇rt‖tt)dxdy

+λ2

∫
Ω

(exp(r)−1/2)2dxdy, (3.1.5)

where t = 1 when the pixel belongs to an edge, 2 otherwise. The first two terms de-

note the contrast and the third one is the dispersion of data. The average dispersion is

assumed to be 0.5. The model tends to switch between TV and L2 norms in high and

low gradient regions and the corresponding reflectance-term takes the form ||∇r1|| and

||∇r2||22 respectively, where r1 includes the pixels with high gradient values and r2 in-

cludes the pixels with low gradient values (refer Huifang Li and Shen (2012) for more

details).

Further, the non-local version of TV retinex introduced in the literature reduces

the artefacts caused by normal TV minimization framework due to its piecewise ap-

proximation of the input functions. Thus, the non-local framework improves the visual

quality of the output, and such a strategy is followed to develop the non-local retinex

(NLR) in Zosso et al. (2015). Numerical implementations of the models are done using

explicit and semi-implicit schemes. There are some studies relating to the adoption of

faster numerical schemes such as Split-Bregman, for improved convergence rate as in
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Ma and Osher (2012).

Deriving the motivations from the retinex theory a perceptual inspired framework

for restoring and enhancing the images from satellite imaging domain has been studied

in this Chapter. The model is designed, implemented and analysed below.

3.2 The proposed retinex model

As a matter of fact, many remote sensing images are low-contrast and noisy in nature,

therefore we intent to address these issues using a perceptually driven variational retinex

framework under a non-local strategy. We assume that the reflectance is non-smooth,

unlike luminance and intensity. Further, we recall that the relation I = LR, holds good,

where L, I and R follows the definition from (3.1.1). Taking log of the above expression,

one has log(I)= log(L)+ log(R), denoted as i= l+r. Now the constrained optimization

problem takes the form

min
l,r
{E(l,r)}= λ0

∫
Ω

‖∇l‖2
2dxdy+λ1

∫
Ω

‖∇̃r̂‖p(r)dxdy

+λ2

∫
Ω

(exp(r)−1/2)2dxdy+λ3

∫
Ω

‖∇̃î‖p(i)dxdy (3.2.1)

+λ4

∫
Ω

(r− i+ l)2dxdy+λ5

∫
Ω

(i− i0)2,

The term
∫

Ω
‖∇̃r̂‖ and

∫
Ω
‖∇̃î‖ in the above expression denotes the weberized non-

local TV norm for r and i respectively. They improve the visual quality of the model.

Weber’s law or Weber-Fechner law explains the influence of background stimulus on

human perception of change in physical stimuli. According to this law, in case of vision,

the background intensity has an effect on human sensitivity to the intensity change. In

Shen (2003), the authors replaces the TV term with weberized local variation |∇î|= |∇i|
i

to get a visually pleasing result. In the proposed model instead of using a constant TV

norm we are applying a p norm for both reflectance and intensity images. The function

p(x) = 1+ 1
1+‖∇x‖ for all x and it switches from TV to L2 norms gradually based on

the corresponding gradient. In the data fidelity term (the last term), i0 represents the

distorted image intensity and this term is derived based on the assumption that the noise

follows a Gaussian law (in the log domain) 1. The derivation of which is given in

1Other than Gaussian distribution the noise in satellite images can also follow a multiplicative distri-
bution such as Gamma or Rayleigh resulting in a speckled appearance. However, in the log domain the
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Jidesh and Febin (2019). The first two terms in the functional are related to contrast

and the third one represents the dispersion of the data. A noise adaptive regularization

term ‖∇î‖p(i) is also included for the denoising purpose. Two data fidelity terms are

being used in this model, one to minimize the error in i = l + r and the other one to

avoid over-smoothing of the intensity variations and preserve textures and details. The

regularization prior follows a nonlocal formulation so as to improve the spatiometric

processing of the data. The Non-Local gradient of a function I, for a pair of points or

pixels (x,y) is defined as,

∇̃I(x,y) = (I(y)− I(x))
√

w(x,y), (3.2.2)

where w(x,y) is the weight between x and y. As mentioned in Chapter 1, the weight

w(x,y) is evaluated as

w(x,y) =
1

T (x)
e
−
(Gσ ∗ |v(Nx)− v(Ny)|2)

h2 , (3.2.3)

where parameter h controls the negative exponential function, Nx and Ny represents a

small neighbourhood around pixels x and y respectively, T (x) is a constant for nor-

malization, and Gσ denotes the Gaussian kernel with standard deviation σ , for further

details refer Gilboa and Osher (2008).

3.2.1 Numerical Implementation

An alternating minimization approach is being used for optimizing the model given in

equation ((3.2.1)). On each nth iteration of the model, we estimate rn+ 1
2 by minimizing

the following functionals:

min
r
{E(r)}= λ1

∫
Ω

‖∇̃r̂‖p(r)dxdy (3.2.4)

+λ2

∫
Ω

(exp(r)−1/2)2dxdy+λ4

∫
Ω

(r− i+ l)2dxdy

and update rn+1 as max(rn+ 1
2 ,0). Then compute ln+ 1

2 by solving

min
l
{E(l)}= λ0

∫
Ω

‖∇l‖2
2dxdy+λ4

∫
Ω

(r− i+ l)2dxdy (3.2.5)

and update ln+1 as max(ln+ 1
2 , i).

Later, minimize the following to update in+1

min
i
{E(i)}= λ3

∫
Ω

‖∇̃î‖p(i)dxdy+λ4

∫
Ω

(r− i+ l)2dxdy

multiplicative noise also gets transformed to an additive noise with Gaussian PDF.
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+λ5

∫
Ω

(i− i0)2dxdy, (3.2.6)

To solve (3.2.4), (3.2.5), and (3.2.6), Euler-Lagrange formulation is applied which takes

the following form

δE(r) =−λ1∇̃.
∇̃r̂

|∇̃r̂|2−p
+λ2exp(r)

(
exp(r)− 1

2

)
+λ4(r− i+ l) = 0, (3.2.7)

δE(i) =−λ3∇̃.
∇̃î

|∇̃î|2−p
+λ4(r− i+ l) +λ5(i− i0) = 0, (3.2.8)

and

δE(l) =−λ0∆(l)+λ4(r− i+ l) = 0. (3.2.9)

Then, at each step we use the Gradient descent algorithm to get the intermediate re-

sults. The restored version of the image I is estimated at the steady state solution of the

expression given below:

In+1 = In +∆t (−δE(I)). (3.2.10)

The parameters are set to ensure the best performance of each model implemented for

the comparative study.

3.3 Experimental Results and Analysis

Various test images from the hyper-spectral and aerial imaging fields are tested and

compared with the state-of-the-art enhancement methods. The methods under the com-

parative study include VFR method in Kimmel et al. (2003), TVR method in Ng and

Wang (2011), Intensity correction of remote sensing images (ICRS) in Huifang Li and

Shen (2012), NLR in Zosso et al. (2015), Adaptive Gamma Correction with Weight-

ing Distribution (AGCWD) in Huang et al. (2013), Regularized-Histogram Equaliza-

tion and DCT (RHE-DCT) in Fu et al. (2015), Robust Retinex Model (RRM) in Li

et al. (2018) along with the proposed method. The test images are procured from the

publicly available portal MultiSpec, Grupo de Inteligencia Computacional (GIC), and

Massachusetts Buildings Dataset (Mnih, 2013). All processing tasks are done in the

Hue Saturation Value (HSV) domain. The visual representations of output results for

the hyper-spectral and aerial images are demonstrated in Figures 3.1, 3.2, and 3.3 along
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.1 Hyper-spectral image results along with enlarged portions: (a) Low-contrast
and noisy input image (b) VFR (Kimmel et al., 2003) (c) TVR (Ng and Wang, 2011) (d)
AGCWD (Huang et al., 2013) (e) ICRS (Huifang Li and Shen, 2012) (f) NLR (Zosso
et al., 2015) (g) RHE-DCT (Fu et al., 2015) (h) RRM (Li et al., 2018) (i) The proposed
method
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.2 Aerial image results along with enlarged portions: (a) Low-contrast and
noisy input image, (b) VFR (Kimmel et al., 2003) (c) TVR (Ng and Wang, 2011) (d)
AGCWD (Huang et al., 2013) (e) ICRS (Huifang Li and Shen, 2012) (f) NLR (Zosso
et al., 2015) (g) RHE-DCT (Fu et al., 2015) (h) RRM (Li et al., 2018) (i) The proposed
method
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with an enlarged portion (for better visual comprehension). The sub-figure (a) of Fig-

ures 3.1, 3.2, 3.3 and sub-figure (j) of Figure 3.3 are the input test-images affected by

the Gaussian noise and contrast deficiency. In Figures 3.1, 3.2 the noise degradations

are synthetically generated to analyze the performance of various models and Figure

3.3 shows the results obtained on a real noisy remote sensing data. As perceived from

the results, the proposed model outperforms the other comparative models in terms of

the visual quality of the output by reducing noise distortion and enhancing the contrast,

whereas the other methods enhances the noise along with data as categorically evident

from Figure 3.3. Moreover, the details present in the images are duly preserved by the

proposed model.

A quantitative assessment was performed for various methods considered in this

study to analyze their performance in terms of denoising and contrast enhancement.

We have used the state-of-the-art measures such as blind image integrity notator using

discrete cosine transform (DCT) statistics (BLIINDS-II) (Saad et al., 2010), Natural

image quality evaluator (NIQE) (Mittal et al., 2013), and Global Contrast Factor (GCF)

(Matkovic et al., 2005) to quantify the results. The performance comparison on the

basis of different quality metrics are given in Table 3.1. We have fixed the parameter

values as λ0 = 0.4,λ1 = 5,λ2 = 3,λ3 = 0.3,λ4 = 0.08, and λ5 = 80 for getting the re-

sult as mentioned in the table. In case of real noisy data (Cuprite bands 223 and 220)

the analysis conducted on the influence of each parameter on different quality measures

is given in Figure 3.4 and based on this study the parameters are being initialized as

λ0 = 0.06,λ1 = 3,λ2 = 3,λ3 = 0.3,λ4 = 0.01, and λ5 = 0.0001. For the implementa-

tion, we have initialized i = log(I), l = max(i) and r as the difference between l and i.

The step size used here is 0.03. The parameter λ0 controls the smoothing of illumina-

tion and a high value of which leads to a highly illuminated image. Similarly, λ1 and

λ3 also control the smoothing in r and i respectively, λ3 shall be increased to get better

denoising. However, a high value of the parameter λ3 results in loss of the details which

can be controlled to a considerable extent by choosing a high value for λ5. The statis-

tical analysis conducted has proved the denoising capability of the proposed method

by providing comparatively very low BLIINDS-II and NIQE values. The BLIINDS-II
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 3.3 Noisy Cuprite Hyper-spectral image and its restored versions (for the bands
:223 and 220, respectively) : (a) (j) Low-contrast and noisy input image (b) (k) VFR (c)
(l) TVR (d) (m) AGCWD (e) (n) ICRS (f) (o) NLR (g) (p) RHE-DCT (h) (q) RRM (i)
(r) The proposed method
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.4 Parameter analysis on the basis of BLIINDS-II and GCF measures (a)
(g) Parameter λ4 on BLINDS-II, GCF (b) (h)Parameter λ5 on BLINDS-II, GCF (c)
(i)Parameter λ2 on BLINDS-II, GCF (d) (j)Parameter λ0 on BLINDS-II, GCF (e) (k)
Parameter λ1 on BLINDS-II, GCF (f) (l) Parameter λ3 on BLINDS-II, GCF

measure applies DCT and fetches the features related to structure and contrast of the

data to predict the quality of the restored image. Consequently, low value of BLIINDS-

II also implies that the method proposed here is superior in preserving the structures

and contrast of the images tested. The NIQE measure uses the quality aware statistical

features to build the model. This measure is also evaluated as the deviation of the ob-

servation from the natural image model, as a result low value of this measure indicates

a better restoration and enhancement. The GCF is calculated as a weighted average of

local contrast values measured in different scales. From the tabulated values, we can in-

fer that the GCF is comparatively high for the proposed method, which implies a better

contrast enhancement capability of the method under study.

49



Ta
bl

e
3.

1
C

om
pa

ri
so

n
of

Q
ua

lit
y

m
et

ri
cs

of
va

ri
ou

s
E

nh
an

ce
m

en
t

m
et

ho
ds

:
V

FR
(K

im
m

el
et

al
.(

20
03

))
,T

V
R

(N
g

an
d

W
an

g
(2

01
1)

),
IC

R
S

(H
ui

fa
ng

L
ia

nd
Sh

en
(2

01
2)

),
N

L
R

(Z
os

so
et

al
.(

20
15

))
,A

G
C

W
D

(H
ua

ng
et

al
.(

20
13

))
,R

H
E

-D
C

T
(F

u
et

al
.(

20
15

))
,R

R
M

(L
i

et
al

.(
20

18
))

Im
ag

es
Q

ua
lit

y
M

et
ri

cs
V

FR
T

V
R

IC
R

S
N

L
R

A
G

C
W

D
R

H
E

-D
C

T
R

R
M

Pr
op

os
ed

m
et

ho
d

C
up

ri
te

B
an

d
22

3
B

L
II

N
D

S-
II

75
79

.5
79

87
.5

72
74

.5
76

.0
36

.5
G

C
F

7.
29

58
7.

34
08

7.
33

28
6.

25
53

6.
44

31
5.

81
03

3.
69

92
7.

34
74

N
IQ

E
19

.2
91

9
18

.9
22

6
18

.6
38

0
21

.0
40

5
25

.0
99

7
21

.7
60

1
23

.8
29

7
12

.9
18

2

C
up

ri
te

B
an

d
22

0
B

L
II

N
D

S-
II

46
.5

57
56

.5
63

.5
45

.5
44

.5
60

.5
29

.5
G

C
F

7.
29

23
6.

76
93

7.
29

30
6.

41
41

5.
72

08
5.

42
92

2.
65

18
7.

40
40

N
IQ

E
10

.5
36

8
9.

79
68

10
.0

11
0

10
.6

56
8

10
.1

35
6

10
.3

81
8

13
.8

24
0

5.
76

54

W
as

hi
ng

to
n

D
C

B
L

II
N

D
S-

II
34

32
.5

34
37

35
38

26
.5

20
.5

G
C

F
8.

38
53

9.
17

41
8.

38
53

8.
00

87
8.

87
76

6.
74

72
6.

80
67

9.
44

29
N

IQ
E

10
.8

89
3

9.
52

19
10

.8
61

0
10

.9
77

6
13

.3
94

3
11

.4
81

6
11

.1
27

3
4.

57
34

A
er

ia
li

m
ag

e
B

L
II

N
D

S-
II

43
48

43
43

44
49

.5
54

.0
22

G
C

F
9.

41
97

9.
56

07
9.

40
05

9.
08

46
9.

95
65

9.
83

35
11

.5
57

9
9.

95
76

N
IQ

E
12

.5
04

5
10

.1
05

4
12

.3
10

6
11

.2
92

0
13

.2
54

0
12

.1
59

1
19

.5
50

3
4.

95
88

50



3.4 Summary of the Chapter

In this chapter, a perceptually inspired image restoration model has been proposed for

denoising and enhancing the remote sensing images corrupted by data uncorrelated

noise distortions and contrast degradations. The presence of additive data-independent

noise along with contrast inhomogeneity has been addressed in this work. The non-local

framework employed here duly preserves the image features. By the use of a retinex

model, the proposed method has succeeded in addressing the intensity inhomogeneity in

the images while restoring them from noise interventions. The results perceived from

the image representations and numerical quantifications are in favor of the proposed

strategy.
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CHAPTER 4

Perceptually inspired model for data
correlated Poisson noise distortion

4.1 Introduction

Monitoring natural phenomenons, mapping of land cover, meteorological studies, mil-

itary surveillance, etc. actively uses satellite images to give real-time updates. For

instance, in remote sensing, the sensors kept on aircraft or satellites measure the elec-

tromagnetic radiations getting reflected and scattered from different objects on Earth to

study about them. As pointed out in the previous chapter, satellite images generally get

degraded due to the interaction of probing signals with atmospheric particles and end up

forming low contrast and noisy images. These degradations limit different applications

of these data eventually by reducing the accuracy and precision. As the images cap-

tured (eg: aerial, hyper-spectral, multi-spectral, Radar etc.) are severely degraded due

to intensity inhomogeneity across the region of the capture, image enhancement is an

inevitable preprocessing step in most of the remote sensed imaging applications. The

major degradation scenario can be attributed to the environmental conditions which re-

duce the contrast and the details of the captured remote sensing images (Demirel et al.,

2010).

Contrast enhancement is generally processed in a linear or non-linear manner. The

spatial domain enhancement strategies are pioneered by the linear contrast stretching

methods which changes the range of intensity values. We recap from chapter 3 that

histogram equalization is a widely used technique which tries to equalize the density

of the pixel values (Kwak and Park, 2014). Nevertheless, these methods lead to over-
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enhancement to the high-peaks in the input data. This issue is addressed to a consid-

erable extent in brightness-preserving dynamic HE (Ibrahim and Kong, 2007) and his-

togram modification framework (Arici et al., 2009). Yet another spatial domain model

has been proposed for contrast enhancement. This model uses an adaptive gamma cor-

rection with weighting distribution (AGCWD) (Huang et al., 2013). Nevertheless, they

tend to neglect the local image features while considering the global aspect of the data.

The fact discussed above has opened up an era of transformed domain techniques

such as singular value decomposition (SVD) based model (Demirel et al., 2008), dis-

crete cosine transform (DCT) based model (Fu et al., 2015) etc. In Demirel et al. (2008),

a singular value equalization method is proposed to adjust the image brightness. A dis-

crete wavelet-based alternative is provided in Demirel et al. (2010) which is claimed

to achieve a better contrast enhancement. A method using discrete wavelet transform

(DWT) and adaptive intensity transformation is also introduced for remote sensed im-

age enhancement in Lee et al. (2013). However, the method is highly sensitive to the

set parameters which is practically difficult to choose adaptively. Further to mention,

a retinex based multi-scale method and a general illumination normalization method

is proposed in Jang et al. (2011) and Zhang et al. (2014), respectively for optical and

multiple remote sensed images. However, as noted earlier these methods also fail to

retain the local features in the image, though they yield good enhancement results as far

as global features are concerned.

The local feature enhancement has been considered in a transformed domain model

proposed in Fu et al. (2015), where the authors propose a global enhancement using a

modified histogram formation. A DCT is employed in this model to preserve the local

features properly. A further improvement can be noticed in the work Liu et al. (2017b),

where the authors propose a histogram compacting transform along with a linear stretch

to enhance the contrast of remote sensed data. A local remapping algorithm is included

in this model to preserve more details in the course of linear stretching.

Along with the contrast related artefacts, many aerial and satellite data are contami-

nated by the unavoidable noise intervention either during their capture or transmission.

Generally, noises present in such images can be categorized as data-independent ther-

54



mal noise, stripping noise and data-dependent shot noise (Poisson noise) (Rasti et al.,

2018). Removal of data-correlated noise like shot noise is comparatively challenging

than the common data-independent counterparts. Though there are many models pro-

posed for denoising the data and enhancing the contrast, a handful of them perform both

simultaneously. In this Chapter, we intent to address the problem of enhancing and de-

noising the data simultaneously. A perceptual model based on the retinex theory has

been employed to perform these tasks. The variational framework being an effective

strategy to solve the inverse problems and analyze them from a theoretical perspective,

we resolve to explore a variational retinex framework based on the perceptual model

for enhancing and restoring images.

Retinex models have taken a considerable progress in the image enhancement do-

main over the last few years. Among them, the variational retinex models are proved to

be effective in restoring contrast degraded images effectively. An introduction to retinex

theory and a detailed discussion of various retinex models that were introduced lately

is done in Chapter 3. A non-local TV model for retinex is also introduced by Zosso et.

al. (Zosso et al., 2015). In Huifang Li and Shen (2012), authors proposed the use of a

variational framework for retinex in remote sensing images to address the low contrast

issues. Later a spatially adaptive retinex variational model also got introduced to apply

in remote sensing domain (Lan et al., 2014), where they proposed the usage of a weight

parameter W to regulate the TV prior, and a fast numerical implementation has been

performed to improve the computational efficiency. The modified functional appears:

minE[r] =
∫

Ω

‖(i− l− r)‖2dxdy+λ1

∫
Ω

(‖∇l‖2
2)dxdy

+λ2W
∫

Ω

(‖∇r‖)dxdy+λ3

∫
Ω

(exp(r)−1/2)2dxdy. (4.1.1)

Even though these methods could enhance the remote sensed images to a considerable

extent, they tend to ignore the inherent noise present in these images. Hence, after the

enhancement, noise appears more prominent in the results.

4.1.1 Poisson degradation

Apart from the contrast related degradation, the images are also observed to be cor-

rupted by noise interventions. Apparently in many satellite imaging modalities, the
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noise is data-correlated and does not seem to follow a Gaussian law as discussed in pre-

vious works. The noise formation can be modeled as a Poisson process as the images

are formed from reflections of signals from the object of interest. The Poisson noise,

unlike the other noise interventions, is regarded as an aftermath of deficiency of photons

that hit on the screen to form the final image. So, the regions where there is a deficiency

of photons contribute to the deficiency of data, consequently leading to a Poisson noise

intervention. We recall that, a Poisson distribution essentially follows the PDF:

Pλp(z) =
e−λpλ z

p

z!
,z≥ 0, (4.1.2)

where λp denotes the parameter of the distributions signifying the mean and variance

of the distribution. Many images formed under hyper and multi-spectral modality can

be designed as a result of a Poisson process. Therefore, the degradation in such data

essentially follows a Poisson process. In other words, the noise in such modalities can

be regarded as a Poisson.

4.1.2 Restoration of Poisson images

As seen from various sources in the literature, variational methods lay a prominent plat-

form to restore images corrupted by various noise distributions. A Bayesian framework

is employed for deriving the functional which inherently captures the noise character-

istics such as its distribution and parameter details from the image data. Variational

models for handling Poisson data has been explored in various works earlier (Le et al.,

2007; Kayyar and Jidesh, 2018). The derivation of the functional to handle Poisson data

is highlighted in Appendix A of this thesis. The functional takes the form:

E(u) = min
u

∫
φ(u)+λ (I− I0 log I), (4.1.3)

where φ(u) denotes a prior function such as TV or Tikhonov. A non-local version of this

model had been employed in Kayyar and Jidesh (2018) for restoring Poisson corrupted

data. The models discussed above performs a restoration under the assumption of a

Poisson noise. However, they fail to perform an enhancement to the image, especially

when the data is contrast deficient.

The noise distribution is analysed using the method described in Chapter 2 of this

thesis. The images classified as Poisson distorted by the machine learning framework
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(a) (b)

Figure 4.1 (a) Original noisy Hyper-spectral band (b) Noise fitting done on area marked

in Chapter 2 is being addressed here. Various hyper-spectral and multi-spectral images

from xView database are subjected to the distribution-analysis study. Most of these im-

ages are observed to follow a Poisson law. In other words, these images can be modeled

as an output of a Poisson process. The curve fitting observed from the homogeneous re-

gion of one of these images is plotted in Figure4.1. Moreover, the images are observed

to be contrast deficient, and certain images even possess varying contrast characteristics

or uneven contrast distribution. This makes the enhancement process more tedious.

These facts motivate us to propose a retinex based variational model to restore

Poisson-noisy images and enhance them to reduce intensity inhomogeneity and im-

prove the contrast deficiency even in case of uneven contrast distortions. This model

comes in handy in many satellite imaging applications.

4.2 The proposed retinex model

In the proposed method, it is assumed that the illumination l is spatially smooth and

to enforce this the L2 norm of the illumination is being used in the formulation of the

functional. Further, the reflectance and intensity variations are represented using the

non-local framework to ensure the coarse operations on textured areas and boundaries

to actively enforce the piecewise smooth assumption (Refer Gilboa and Osher (2008)).

A weight matrix W (x) is also used to scale the TV norm according to the magnitude of
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the gradient. This weight function helps to retain more details on the edges and at the

same time, it helps in smoothing-out the homogeneous intensity regions. The weight

function is defined as:

W (x) = 1+
1

ε +‖∇x‖
, (4.2.1)

where ε is a small positive value. The Weberized TV restoration proposed by Shen

(2003) stated the influence of background in perceiving the change in the intensity.

According to this vision psychology, a Weberized TV model has been successfully in-

troduced for restoration. Hence a Weberized TV regularization has been employed in

the present study to enhance the visual appearance of the restored data. The reflectance

R is constrained using (R− 1/2)2 which forces the reflectance R to be close to 1/2

or the trivial average of the reflectance assuming this range to be [0− 1] . Converting

this constrain in a logarithmic domain gives (exp(r)−1/2)2. Minimization of the term

(r− i+ l) enforces the condition i = l + r. The data fidelity (I− I0log(I)) assuming

a shot noise following the Poisson distribution has been derived in this proposed study

using the maximum a posteriori (MAP) estimation of the noise probability density func-

tion (PDF). The details may be found in the Appendix A. The proposed functional for

enhancement and restoration is shown below:

min
l,r,i
{E(l,r, i)}=

∫
Ω

‖∇l‖2
2dxdy (4.2.2)

+λ1

∫
Ω

W (r)‖∇r̂‖dxdy

+λ2

∫
Ω

(exp(r)−1/2)2dxdy

+λ3

∫
Ω

W (i)‖∇î‖dxdy

+λ4

∫
Ω

(r− i+ l)2dxdy

+λ5

∫
Ω

(I− I0 log I).

The above minimization problem can be converted into three subproblems, they are

r-subproblem:

min
r
{E(r)}= λ1

∫
Ω

W (r)‖∇r̂‖dxdy (4.2.3)

+λ2

∫
Ω

(exp(r)−1/2)2dxdy

+λ4

∫
Ω

(r− i+ l)2dxdy.
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i-subproblem:

min
i
{E(i)}= λ3

∫
Ω

W (i)‖∇î‖dxdy (4.2.4)

+λ4

∫
Ω

(r− i+ l)2dxdy

+λ5

∫
Ω

(I− I0 log I)dxdy.

l-subproblem:

min
l
{E(l)}=

∫
Ω

‖∇l‖2
2dxdy (4.2.5)

+λ4

∫
Ω

(r− i+ l)2dxdy.

4.2.1 Numerical Implementation

The above given subproblems can effectively solved using the split-Bregman algorithm.

According to which a constraint d =∇r̂ gets added in to the subproblem in (4.2.3) along

with a new auxiliary variable b1. The new subproblem under the above modification

amounts to:

min
r
{E(r)}= λ1W (r)‖d‖ (4.2.6)

+λ2(exp(r)−1/2)2

+λ4(r− i+ l)2

+λ‖d−∇r̂−b1‖2
2.

For equation (4.2.4), a constraint p = ∇î and an auxiliary variable b2 is added to form

the minimization problem as below:

min
i
{E(i)}= λ3W (i)‖p‖ (4.2.7)

+λ4(r− i+ l)2

+λ5(I− I0 log I)

+α‖p−∇î−b2‖2
2.

Equation (4.2.6) can be split into r, d, and b1 subproblems as below

rk+1 = min
r

{
λ2(exp(r)−1/2)2 +λ4(r− i+ l)2 (4.2.8)

+λ‖d−∇r̂−bk
1‖2

2

}
,

dk+1 = min
r

{
λ1W (r)‖d‖+λ‖d−∇r̂−bk

1‖2
2

}
, (4.2.9)
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and

bk+1
1 = bk

1 +(∇r̂−dk+1). (4.2.10)

Similarly equation (4.2.7) can be split into i, p, and b2 subproblems as below

ik+1 = min
r

{
λ5(I− I0 log I)+λ4(r− i+ l)2 (4.2.11)

+α‖p−∇î−bk
2‖2

2

}
,

pk+1 = min
p

{
λ3W (i) ‖p‖+α‖p−∇î−bk

2‖2
2

}
, (4.2.12)

and

bk+1
2 = bk

2 +(∇î− pk+1). (4.2.13)

Euler-Lagrange derivative of equation (4.2.8) is evaluated as

λ2(exp(r) (exp(r)−1/2))+λ4(r− i+ l) (4.2.14)

+λ∇.(d−∇r̂−bk
1) = 0.

This can be solved effectively in the Fourier domain 1.

rk+1=F−1
{

λ4F(i−l)−λ2F((exp(r) (exp(r)−1/2)))−λF(∇.(d−∇r̂−bk
1))

λ4

}
.

(4.2.15)

Euler-Lagrange derivative of (4.2.11) is as given below

λ5(I− I0)+λ4(r− i+ l)+α∇.(p−∇î−bk
2) = 0. (4.2.16)

The problem stated above is solved effectively in the Fourier domain as:

ik+1=F−1
{

λ5F(I0)−λ4F(r+l)−αF(∇.(p−∇î−bk
2))

F((λ5
I
i )−λ4)

}
. (4.2.17)

The d and p subproblems in (4.2.9) and (4.2.12) can be solved by using shrink function

which is defined as

shrink(x,θ) =
x
|x|

max(|x|−θ ,0). (4.2.18)

Hence these subproblems can be rewritten as follows (assumes λ1 = 1 and λ3 = 1)

dk+1 = shrink(∇r̂+bk
1,

W (r)
λ

), (4.2.19)

pk+1 = shrink(∇î+bk
2,

W (i)
α

). (4.2.20)

Auxiliary variables b1 and b2 are updated using

bk+1
1 = bk

1 +(∇r̂−dk+1), (4.2.21)

bk+1
2 = bk

2 +(∇î− pk+1). (4.2.22)

1where F and F−1 represents Discrete Fourier transform (DFT) and its inverse, ie, y(m) = F(x(n)) =
∑

N−1
n=0 x(n)e− j 2π

N mn and x(n) = F−1(y(m)) = 1
N ∑

N−1
m=0 y(m)e j 2π

N mn
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Finally, the optimization problem in equation (4.2.5) is solved by taking the Euler-

Lagrange derivative which derives:

∆l +λ4(r− i+ l) = 0. (4.2.23)

The above expression is solved in the Fourier domain as:

lk+1 = F−1
{

λ4F(i− r)
F(λ4 +∆)

}
. (4.2.24)

The overall algorithm of the process is highlighted below.

Algorithm 2 Algorithm to implement the method
Input I0← Low contrast and noisy Digital image of size M×N
Output Enhanced and Restored Digital image I of size M×N

1: Initialize2k = 1,ε = 0.0001,λ = 3.8,λ2 = 6,λ4 = 800,λ5 = 0.001,α = 0.8,d1 =
[0],b1

1 = [0], p1 = [0],b1
2 = [0], i1 = [log(I0)], l1 = [max(i1)],and r1 = [(l1− i1)]

2: while do‖ik+1− ik‖/‖ik+1‖< ε

3: Given ik, lkand rk find rk+1 using equation (4.2.15)
4: Update dk+1 using shrink operator as in equation (4.2.19)
5: Update bk+1

1 using equation (4.2.21)
6: Given ik, lk,rkand I0 solve equation (4.2.17) to get ik+1

7: update pk+1 using shrink operator as in equation (4.2.20)
8: update bk+1

2 using equation (4.2.22)
9: Given ikand rk find lk+1 using equation (4.2.24)

10: end while
11: update I as exponential of (l + r)

4.3 Experimental Results and Analysis

The testing of various models is done using a large set of images falling under the

category of hyper-spectral and aerial imagery. However, to maintain the brevity in

explanation, only a subset of them, i.e., three synthetically noisy images (two xView

satellite images and Washington DC, see Figure4.2), and two original noisy data (Pines

and Jasper Ridge), have been used for demonstrating the results. Nevertheless, the

performances of the methods to the other test images are observed to follow the pat-

tern exhibited by the demonstrated ones. Non-uniformly illuminated and Poisson-noisy

versions of these test images are used as the input to the system, see Figure 4.2 for

the original images. The sub-figure (a) of Figure4.2 shows the original Washington

2All initializations in [] represent matrices of size M×N, eg: [0] denotes an M×N matrix initialized
with zeros
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DC false-color image, which is converted to a vertically contrast degraded image by

using a mask, and the resultant image is given in sub-figure (b). The sub-figures (c)

and (d) are the originally contrast degraded satellite images. Poisson noise of peak

100 is used to degrade all these test images synthetically; corresponding noisy im-

ages are given in sub-figure (a) of Figure 4.3, Figure 4.4, and Figure 4.5. The perfor-

mance of various comparative models for real noisy input images are shown in Fig-

ure 4.6, and Figure 4.7. The different parameter values used for the experiments are

λ = 3.8,λ2 = 6,α = 0.8,λ4 = 800,λ5 = 0.001 and for the hyper-spectral images which

are prone to more contrast degradation, the value of the parameter λ2 is raised to 7.5.

Among the parameters mentioned above, λ and λ2 are specifically for processing the

reflectance part of the image. Similarly, α and λ5 controls the regularity and fidelity

of the intensity data. The λ4 signifies a global fidelity term. The parameter λ is ob-

served to control the diffusion of reflectance part of the data. The reflectance includes

the textures and other fine details. Therefore, this value is chosen to ensure the trade off

between smoothing and preserving details. Throughout the experiment, we have used a

fixed value for this term to retain the natural textured effect on the image. Upon an in-

crease in the peak value of the noise, the parameter α has to be increased subsequently

to maintain the restoration efficiency of the model. However, a too high value for this

parameter may deteriorate the edge preservation capability of the model under consid-

eration. To address this issue, the value of λ5 is chosen appropriately to check the loss

of information in the course of evolution. The term associated with the parameter λ5 is

the data-fidelity term derived based on the distribution characteristics of the noise (the

noise is assumed as an output of a Poisson process). For a very low peak noise, the λ5

value should be slightly higher.

The denoising ability of the system is categorically demonstrated using the state-

of-the-art Poisson denoising models such as Fast TV (Wang and He, 2017) and NLTV

(non-local TV)(Gilboa and Osher, 2008). Though the restoration methods considered

for the comparison does not possess an enhancement capacity by themselves unlike

the proposed model, we have associated an additional enhancement characteristic to

them (FAST TV+CLAHE, NLTV+CLHE, etc.) in order to make them in line with
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the proposed model for the sake of comparative study. The enhancement achieved

by the system is also compared with the recent retinex based enhancement methods

like Non-Local TV Retinex (NLTVR) (Zosso et al., 2015) and perceptually inspired

variational model (PVM) for remote sensing (Huifang Li and Shen, 2012). Since we

are proposing a non-local retinex framework, in order to justify the comparative results

of the other methods, we have combined the retinex based enhancement methods with

NLTV denoising method to form the NLTVR+NLTV and PVM+NLTV.

In addition to the visual comparisons, a quantitative study has been carried out using

various quality metrics such as AG (Average Gradient) (Li et al., 2017), NIQE (Natu-

ralness Image Quality Evaluator) (Mittal et al., 2013), GCF (Matkovic et al., 2005),

Entropy (Karathanassi et al., 2007), and visual descriptors (Hautiere et al., 2008) e (rate

of new visible edges), r̄ (quality of contrast restoration), σ (number of saturated pix-

els). The resultant images of various comparative methods are portrayed in Figures

4.3, 4.4, and 4.5. Though most of the methods considered herein for the comparative

study performs fairly well as far as denoising is concerned, the NLTVR+NLTV method

performs slightly better when both denoising and enhancement are considered at once.

Nonetheless, the proposed strategy exhibits a profound quality in the visual represen-

tations. The zoomed-in portions of the image duly justify the details preserving capa-

bilities of the proposed model. In Figure 4.4 the contrast enhancement obtained by the

proposed method is promising, and the corresponding enlarged image also shows the

denoising capability of the system. As noticeable from Figure 4.5, the NLTVR+NLTV,

PVM+NLTV, and the proposed method apparently preserve uniform illumination in the

data, and the output appears more natural. Further, analyzing the enlarged portions of

the restored outputs, the proposed model is observed to preserve textures and details

better than the other ones.

Table 4.1 give the comparison of different denoising methods on the basis of AG and

NIQE values. NIQE depicts the naturalness of the restored image, and AG measures

the quality of the image. A high value of NIQE indicates a low performance in terms
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(a) (b)

(c) (d)

Figure 4.2 Test images used: (a) Original Hyper-spectral image of Washington DC
(HYDICE, 191 spectral bands, spatial resolution: 2.8m, pixels used: 307×307, bands
used: 60, 27 and 17), courtesy MultiSpec by Purdue University (b) Vertically contrast
degraded image after applying mask (c) (d) Original WorldView-3 satellite images at
0.3m ground sample distance, courtesy xView dataset (Lam et al., 2018).
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(a) (b) (c)

(d) (e) (f)

Figure 4.3 xView image 1 with Poisson noise: restoration results and corresponding en-
larged portions below it (a) Input image (b) Restored using Fast TV+CLAHE (Wang and
He, 2017) (c) Restored using NLTV+CLAHE (Gilboa and Osher, 2008) (d) Restored
using NLTVR+NLTV (Zosso et al., 2015) (e) Restored using PVM+NLTV (Huifang Li
and Shen, 2012) (f) Restored using Proposed method.

65



(a) (b) (c)

(d) (e) (f)

Figure 4.4 xView image 2 with Poisson: restoration results and corresponding enlarged
portions below it (a) Input image (b) Restored using Fast TV+CLAHE (Wang and He,
2017) (c) Restored using NLTV+CLAHE (Gilboa and Osher, 2008) (d) Restored using
NLTVR+NLTV (Zosso et al., 2015) (e) Restored using PVM+NLTV (Huifang Li and
Shen, 2012) (f) Restored using Proposed method.
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(a) (b) (c)

(d) (e) (f)

Figure 4.5 Washington DC image with Poisson : restoration results and correspond-
ing enlarged portions below it (a) Input image (b) Restored using Fast TV+CLAHE
(Wang and He, 2017) (c) Restored using NLTV+CLAHE (Gilboa and Osher, 2008) (d)
Restored using NLTVR+NLTV (Zosso et al., 2015) (e) Restored using PVM+NLTV
(Huifang Li and Shen, 2012) (f) Restored using Proposed method.

67



(a) (b) (c)

(d) (e) (f)

Figure 4.6 Optical image with Poisson noise peak=30: (a) Input image (b) Restored us-
ing Fast TV+CLAHE (Wang and He, 2017) (c) Restored using NLTV+CLAHE (Gilboa
and Osher, 2008) (d) Restored using NLTVR+NLTV (Zosso et al., 2015) (e) Restored
using PVM+NLTV (Huifang Li and Shen, 2012) (f) Restored using Proposed method.

of denoising. As the value decreases, the restoration gets improved. Whereas a high

value of AG implies better spatial resolution (Li et al., 2017). According to Table 4.1,

the FastTV+CLAHE is giving comparable performances in some synthetically noisy

inputs, and the performance of PVM+NLTV is also on par with the proposed method

in original noisy data (Pines, Jasper Ridge); however, the proposed method displays

consistently better performance for all images. The measures in Table 4.1 check the

naturalness of the image and its clarity; hence, the higher performance here implies the

better restoration. To measure the quality of details preservation, we have evaluated

the discrete entropy of the image. Generally, entropy measures information content;

hence, higher entropy values imply the presence of more details in the filtered image.

Table 4.3 gives a comparison of discrete entropy values. As inferred from this table,

the details preservation capability of the proposed strategy is dominant than all other

methods under study. Table 4.3 also shows the comparison of GCF among different

methods. It is a global measure of contrast, and it is stated to be more close to the

human perception of contrast (Matkovic et al., 2005). It operates in different scales of

resolution to get local contrast information and a weighted average of which will be

calculated as GCF. A high value of this measure implies an improvement in the contrast
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and high visibility of the details. According to Table 4.3, the proposed methodology

has a higher GCF for all images. Table 4.2 describes the visual descriptors obtained for

different methods. The e and r̄ values are high if the restored results have high visibility

and σ is less when the number of saturated pixels is less. In light of these results, we

observe that the proposed model outperforms the other ones. Finally, Table 4.4 includes

the time taken by different algorithms for restoration. As evident from this table, the

proposed method converges faster.

In addition to the remote sensing images, the performance on natural image (optical

image) is demonstrated in Figure 4.6, and it is observed that the denoising and enhance-

ment obtained by the proposed algorithm are on par with the other methods. The results

obtained on real noisy input images are represented in Figure 4.7 and Figure 4.8. The

noisy bands (3, 110, 204), Indian Pines dataset (http://lesun.weebly.com/hyperspectral-

data-set.html), and (4, 107, 153), Jasper Ridge dataset has been used here for the eval-

uation. The performance of comparing algorithms on each band is shown in the sub-

figures. The first row of the figure is showing all noisy bands, and the last column in

this figure represents the false colour image formed using all these bands. In case of

a regular RGB image, the proposed algorithm can be applied in each band as depicted

herein but this leads to color distortions in the input data, in order to reduce this colour

discrepancy, operation in the HSV domain is recommended. As inferred from the ex-

perimental study, the proposed method is prominent in preserving textures and other

details present in the input while denoising and enhancing the data.

4.4 Summary of the Chapter

In this Chapter, a novel framework is designed for enhancing and restoring Poisson

corrupted images. The data-correlated Poisson noise and contrast unevenness are han-

dled using a perceptually driven retinex model under the variational framework. Fast

numerical implementation under the spilt-Bregman method improves the convergence.

The results both visual/quantitative-statistical shown in favour of the proposed model
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Figure 4.7 Results on low contrast noisy bands of Indian Pines (AVIRIS, 145×145 pix-
els, 224 spectral reflectance bands, wavelength range: 0.4 - 2.5 10−6 meters), courtesy
MultiSpec : (a) Input low-contrast noisy Band 3 (b) Input low-contrast noisy Band 110
(c) Input low-contrast noisy Band 204 (d) Noisy False color image, PVM+NLTV: (e)
Band 3 restored (f) Band 110 restored (g) Band 204 restored (h) restored false color
image, NLTVR+NLTV: (i) Band 3 restored (j) Band 110 restored (k) Band 204 restored
(l) restored false color image, Proposed: (m) Band 3 restored (n) Band 110 restored (o)
Band 204 restored (p) restored false color image.
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endorses efficiency of the model and votes for its applicability in real-time applications.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4.8 Results on low contrast noisy bands of Japser Ridge (Zhu et al., 2014)
(subimage of 100× 100 pixels, 224 bands, wavelength range: 380 nm to 2500 nm):
(a) Input low-contrast noisy Band 4 (b) Input low-contrast noisy Band 107 (c) Input
low-contrast noisy Band 153 (d) Noisy False color image, PVM+NLTV: (e) Band 4
restored (f) Band 107 restored (g) Band 153 restored (h) restored false color image,
NLTVR+NLTV: (i) Band 4 restored (j) Band 107 restored (k) Band 153 restored (l)
restored false color image, Proposed: (m) Band 4 restored (n) Band 107 restored (o)
Band 153 restored (p) restored false color image.
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CHAPTER 5

Perceptually inspired framework for
despeckling

5.1 Introduction

Ultrasound (US) imaging is a diagnostic imaging technique to visualize various subcu-

taneous body structures such as muscles, vessels, joints etc., for detecting or diagnos-

ing the pathological symptoms. There are essentially four different modes of scanning

as far as ultrasound sonography is concerned. Among them, B-mode sonography is

more popular due to its extent of applicability and wide range of acceptance among

the medical imaging community for diagnostic purpose. The extensive used of US

imaging is justified by its non-invasive and non-ionizing nature of characterizing of the

tissues. The US scanning system sends acoustic signals to probe the nature of tissues

in the human body and based on the reflected pattern the images are formed. Since the

acoustic signals used for probing the tissues result in constructive and destructive inter-

ferences causing high and low amplitude deflections in the magnitude of the captured

data, usually coined as speckles Michailovich and Tannenbaum (2006). A speckle by its

sheer nature is data correlated and cannot be neglected like the other noise interventions

Michailovich and Tannenbaum (2006). Speckles are not completely noise components

though apparently they seem to be. They carry information about the tissue. However,

their presence results in spurious analysis by the medical experts. The low-amplitude

signals are sometimes treated as blood vessels though they are formed due to the de-

structive interference of the waves.

The statistical filters were introduced to effectively address the multiplicative speck-
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led interference in many previous works. The pioneer works in this field are Lee filter

Lee (1980), Frost filter Frost et al. (1982) and Kuan filter Kuan et al. (1985). The extent

of averaging in these filters depends on the coefficient of variation of the image. The

areas with high variance are smoothened at a lesser magnitude compared to the low vari-

ance regions which are categorically smooth in nature. This property in turn preserves

the structures. The minimum mean square filter based on the local variance introduced

by Weiner Ekstrom (1982) is another similar approach in this direction. Nevertheless,

these filter duly neglect the noise distribution in the input and the correlated nature of the

noise to a large extend. These issues are addressed in their subsequent modifications.

Anisotropic diffusion models inspired by the Perona-Malik model Perona and Ma-

lik (1990) has apparently changed the outlook of the image restoration framework. The

Perona-Malik model is a non-linear diffusion model whose diffusion coefficient is con-

trolled by a non-linear function of the gradient term (i.e. It = div(C(|∇I|)∇I), where

It = ∂ I
∂ t and the diffusion coefficient C(x) = 1

1+(x/K)2 ). The models such as speckle

reducing anisotropic diffusion (SRAD) Yu and Acton (2002), oriented SRAD (OS-

RAD) Krissian et al. (2007) and direction preserving AD (DPAD) Aja-Fernandez and

Alberola-Lopez (2002) are the notable anisotropic diffusion models introduced for de-

speckling images. These filters incorporate the statistical feature, such as, coefficient

of variation as the driving force of the diffusion process (or the diffusion coefficient

function C(.) is a function of coefficient of variation). The diffusion magnitude is con-

trolled by the coefficient of variation which depends on the local mean and variance

of the data. For instance, the instantaneous coefficient of diffusion serves as the edge

detection function in Yu and Acton (2002) and the eigenvectors of the structure tensor

are used to control the magnitude of diffusion in Krissian et al. (2007). The eigenvec-

tor in the principal major direction is smoothed less compared to the principal minor

direction in case of a 2D matrix. This eventually results in despeckling with less pe-

nalization of the structures. There are certain advancements suggested for these filters

as well Bini and Bhat (2014); Jidesh and Bini (2017) to improve their performance in

terms of image restoration. In Bini and Bhat (2014), the authors propose a speckle re-

ducing model where a speckle reducing edge detector is embedded in the well known
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"Geodesic snakes" model. Similarly, in Jidesh and Bini (2017) the authors introduce

a complex diffusion driven diffusion coefficient to drive the process. However, these

filters too ignore the distribution of the noise at large.

Thresholding schemes are employed in large scale in image restoration applications.

Especially, multi-resolution models have captured the attention lately and they are ex-

tensively employed in image restoration. For instance, wavelet models are prominent

in this regard. The wavelet decomposition approximates a scale space representation of

the data Xizhi (2008). The noise also gets represented in the scale space domain and

an appropriate thresholding scheme should effectively remove noise features. Hard and

soft (adaptive) thresholding schemes are proposed in the literature to effectively handle

the noise interventions. Apart from wavelet models, other advanced version such as

curvelet has also been proposed for restoration activities in the literature, see Li et al.

(2011) for details.

These methods converts the original image into a logarithmic domain and make use

of the Gaussian distribution assumption of sub-band coefficients. One of the main draw-

backs here is related to the inaccuracy in choosing appropriate threshold. Later, several

researchers proposed methods for advancement in threshold selection which includes

the nonlinear estimator proposed in Simoncelli and Adelson (1996). Recently a multi

directional 2-D Eigen filter approach for ultrasound denoising is proposed in Nagare

et al. (2017). This method uses Translation Invariant Pyramidal Directional filter Bank

(TIPDFB) to decompose the image and thresholding applies on all these sub-bands to

remove noise. All of the multiscale methods use the Gaussian distribution assumption

in log domain instead of incorporating speckle characteristics in the denoising process.

We recall from chapter 1 that the total variation regularization is a well known vari-

ational model for image restoration, see Rudin et al. (1992) for the details. The total

variation norm of the function I is defined in the space of Bounded variation (BV) in

which the total variations are bounded (i.e. BV (Ω) :=
∫

Ω
|∇I|dΩ < ∞). The TV mini-

mization model takes the form:

E(I) = min
I∈BV (Ω)

‖∇I‖TV +λ‖I− I0‖. (5.1.1)

As already pointed out, the linear approximation of the model results in undesired ef-
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fected in the restored output. Moreover, the model assumes a Gaussian distributed

white noise intervention in the data. Nevertheless, such an assumption limits the appli-

cability of the model to various real-time imaging applications especially from medical

imaging domain. A notable modification to this model to incorporate the multiplicative

Gamma noise is introduced in Aubert and Aujol (2008). Here a Bayesian formulation

is explored for reinterpreting the minimization problem as a posterior probability min-

imization model and the prior in the model is assumed to follow the distribution of the

noise. The model is found to perform well in case of multiplicative speckled following

a Gamma law. Many variant thoughts in this direction is seen in works Huang et al.

(2010) and Xiao et al. (2010). However, these methods too are not efficient enough

to maintain small textures and details present in the data, even though they ensure the

preservation of edge details. To address this issue to a considerable extent, a new cate-

gory of variational methods were introduced, which is based on the non-local total vari-

ation framework proposed in Gilboa and Osher (2008). Some variations of this model

is found in Liu and Huang (2014) and Jidesh and Balaji (2018), where the latter work

proposes a nonlocal total bounded variation regularization model for speckle removal.

Compared to other methods the non-local total variation algorithms have succeeded in

ensuring the efficiency in retaining small details and textures. In Mei et al. (2020),

authors proposed a combination of diffusion and TV filters where a phase asymmetry

measure for edge detection is being used to distinguish edges and constant intensity

regions.

5.1.1 Speckles in ultrasound data

The ultrasound image formation is based on the reflection of acoustic signals from var-

ious tissues in the human body. The constructive and destructive interferences of the

wave send to probe the details can lead to unexpected amplification of the amplitude.

The noise introduced due to the interference of the waves are analysed in many ul-

trasound images using the machine learning algorithm given in Chapter 2. The noise

analysis shows the distribution to be closely in line with the Gamma distribution fol-

lowing the PDF (1.1.5). The analytical study on various images obtained from the US

imaging repository (http://splab.cz/en) have shown that the noise distribution fol-
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(a) (b)

Figure 5.1 (a) Original noisy US image (b) Noise fitting done on area marked

lows Gamma law. A curve fitted from the obtained PDF with a Gamma curve (whose

parameters are estimated) is shown in Figure 5.1.

Many of the models discussed so far seek to find a despeckling solution that even-

tually retains the edges and other details present in the data to a considerable extend.

Nevertheless, the images captured under the US modality are observed to be deficient in

contrast aspects. An uneven contrast distribution duly hinders the subsequent analysis

phase spoiling the diagnosis and detection phase of the automated systems. This has

been a matter for concern among the research community. The untiring efforts in ad-

dressing the uneven distribution of the data resulted in retinex based models, which are

extensively used in low contrast photography reconstruction algorithms. This study is

intended to address the uneven-contrast aspect of speckled images which are otherwise

unexplored to a deserving extent. An effective despeckling and contrast enhancement

is the need of the hour.

5.2 The proposed retinex model

As studied in many previous works the distorted image is represented as I0 = I× n,

where n is multiplicative data-correlated noise. The noise distribution is observed to

follow a Gamma law. This claim has been substantiated in the experimental section of

this chapter using the distributional characteristics of the noise components present in
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the homogeneous intensity regions of the image. Now using the Bayesian framework

under the assumption of a Gamma distribution of th likelihood and nonlocal TV norm

as the prior we have:

min
I
{− log(P(I|I0))}= min

I

{
log(I)+

I0

I
+λφ(I)

}
. (5.2.1)

Here λ ∈ (0,∞) denotes the positive scalar regularization parameter and further, we

take the log of prior probability function as logP(I|I0) = −(log(I)+ I0/I), the readers

are directed to refer Aubert and Aujol (2008) for the derivation of the same.

With the assumptions made above, the model proposed is represented as:

min
l,r,i
{E(l,r, i)}= λ0

∫
Ω

‖∇l‖2
2dxdy (5.2.2)

+λ1

∫
Ω

W (r)‖∇r̂‖dxdy

+λ2

∫
Ω

(exp(r)−1/2)2dxdy

+λ3

∫
Ω

(W (i)‖∇î‖+β‖i‖2
2)dxdy

+λ4

∫
Ω

(r− i+ l)2dxdy

+λ5

∫
Ω

log(I)+(I0/I).

Inspired form previous variational methods this model also evaluates the L2 norm of

illumination to ensure its smoothness. Since the reflectance part of the image contains

more textural informations, the weighted non-local TV is employed in this study. Unlike

the regularization described in Chapter 4, a weighted non-local Total bounded variation

(TBV) of intensity matrix is employed here to eliminate the noise present in images.

The intensity regularization term used here is a combination of NLTV and L2 norm. As

the value value of β increases the smoothing of i increases. Hence, TBV is efficient in

giving better results in heavily noisy data. The drawback of using L2 norm is it does not

care about the edges and details in image which is addressed by NLTV term in TBV.

As observed by Kimmel et al. (2003), the reflectance is in the range [0,1] and the term

(exp(r)−1/2)2 forces it to be close to the average value in the minimization model. The

term (r− i+ l) ensures the intensity matrix evaluated in each step is a combination of

corresponding r and l estimates and vice versa. The intensity smoothing is constrained

by the term
∫

Ω
log(I)+(I0/I) which denotes the data fidelity. The term is conditionally

convex (ie convex if 2I0 > I.) and is derived using the Bayesian MAP estimator under
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the assumption of a Gamma distributed noise in the input image (see Appendix A for

the details). This term tends to retain more textures and small details while reducing

the speckle and enhancing the input. The reflectance and intensity are assumed to be

the properties of the object being imaged and hence they are expected to carry non-

smooth information. Therefore, the Weberized-TV norm is employed to ensure proper

retaining of the structures and enhancement of the contrast. The luminance being the

property of the source, L2 norm is employed to ensure its smooth transition. Since

the optimization framework contain six different terms, solving all terms in one stretch

is practically tedious. As one term influences the other one, one needs to seek for a

solution by variable separation method. A split scheme comes handy in such situations.

The optimization problem in equation (5.2.2) shall be split into three separate mini-

mization problems (in terms of the three quantities r, l and i) as given below:

min
r
{E(r)}= λ1

∫
Ω

W (r)‖∇r̂‖dxdy (5.2.3)

+λ2

∫
Ω

(exp(r)−1/2)2dxdy

+λ4

∫
Ω

(r− i+ l)2dxdy,

min
i
{E(i)}= λ3

∫
Ω

(W (i)‖∇î‖+β‖i‖2
2)dxdy (5.2.4)

+λ4

∫
Ω

(r− i+ l)2dxdy

+λ5

∫
Ω

log(I)+(I0/I)dxdy,

n and

min
l
{E(l)}= λ0

∫
Ω

‖∇l‖2
2dxdy (5.2.5)

+λ4

∫
Ω

(r− i+ l)2dxdy.

These equations are to be solved iteratively to get the final result.

5.2.1 Numerical Implementation

There are various alternating minimization approaches for solving the above mentioned

problem. The numerical solutions seeks for a solution which converges at a higher

rate. Given many such implementations such as alternating method Chan et al. (2011),

projection method Chambolle and Pock (2010), primal-dual method Perona and Malik
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(1990), Bregman method Goldstein et al. (2010) etc., we chose the split-Bregman solu-

tion for the reason that it provides a stable solution with good convergence rate and less

parameter sensitivity. Therefore, the above equations (5.2.3), (5.2.4), and (5.2.5) are

solved using the Split-Bregman numerical optimization technique, see Goldstein et al.

(2010) and Liu and Huang (2010) for more details. It is based on the idea of minimizing

the Bregman distance. For any convex function J the Bregman distance between two

points m and n is defined as

Dg
J(m,n) = J(m)− J(n)−< g,m−n >,

where g is the sub-gradient of J at point n. According to split Bregman iteration we

introduce new constrains as a = ∇r̂ and b = ∇î along with auxiliary variables d1 and

d2, then the equation (5.2.3) and (5.2.4) get transformed as

min
r
{E(r)}= λ1W (r)‖a‖ (5.2.6)

+λ2(exp(r)−1/2)2

+λ4(r− i+ l)2

+λ‖a−∇r̂−d1‖2
2

and

min
i
{E(i)}= λ3(W (i)‖b‖+β‖i‖2

2) (5.2.7)

+λ4(r− i+ l)2

+λ5log(I)+(I0/I)

+α‖b−∇î−d2‖2
2,

The above equations can be further split as given below (We are assuming λ1 = 1 and

λ3 = 1).

rk+1 = min
r

{
λ2(exp(r)−1/2)2 +λ4(r− i+ l)2 (5.2.8)

+λ‖a−∇r̂−dk
1‖2

2

}
,

ak+1 = min
r

{
W (r)‖a‖+λ‖a−∇r̂−dk

1‖2
2

}
, (5.2.9)

ik+1 = min
i

{
λ5(log I +(I0/I))+β‖i‖2

2 +λ4(r− i+ l)2 (5.2.10)

+α‖b−∇î−dk
2‖2

2

}
,
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and

bk+1 = min
i

{
W (i) ‖b‖+α‖b−∇î−dk

2‖2
2

}
, (5.2.11)

The auxiliary variables d1 and d2 gets updated after each corresponding Bregman iter-

ation as follows:

dk+1
1 = dk

1 +(∇r̂−ak+1). (5.2.12)

and

dk+1
2 = dk

2 +(∇î−bk+1). (5.2.13)

The Euler-Lagrange is applied on equation (5.2.8) and (5.2.10) to evaluate the derivative

of the functional which is later solved using Fourier transform. The iterative procedure

for restoration is given in Algorithm 3.

Algorithm 3 Algorithm to implement the method
Input I0← Noisy ultrasound image
Output Restored ultrasound image I

1: Initialize k = 1,ε = 0.0001,a1 = 0,d1
1 = 0,b1 = 0,d1

2 = 0, i1 = log(I0), l1 =
max(i1),and r1 = (l1− i1)

2: while do‖ik− ik−1‖/‖ik‖< ε

3: ak+1 = shrinkage(∇r̂+dk
1,

W (r)
λ

),
where shrinkage(x,θ) = x

|x|max(|x|−θ ,0).

4: rk1
=F
{

λ4F(i−l)−λ2F((E(r) (E(r)−1/2)))−λF(∇.(a−∇r̂−dk
1))

λ4

}
(where E denoted exp function, k1 := k+1, and F is the inverse Fourier trans-

form)
5: update dk+1

1 using equation (5.2.12)
6: bk+1 = shrinkage(∇î+dk

2,
W (i)

α
).

7: ik+1=F
{

λ5F(I0/I)−λ4F(r+l)−αF(∇.(b−∇î−dk
2))

F((λ5/i)+β−λ4)

}
.

8: update dk+1
2 using equation (5.2.13)

9: lk+1 = F
{

λ4F(i−r)
F(λ4+λ0∆)

}
.

10: end while
11: update I as exponential of e(l+r)

5.3 Experimental Results and Analysis

For the experimental evaluation we use the Ultrasound image dataset provided by Signal

Processing Laboratory (http://splab.cz/en/download/). This dataset includes B-mode

ultrasound images of common carotid artery (CCA). For comparative study we use the
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popular despeckling algorithms like SRAD Yu and Acton (2002), DPAD Aja-Fernandez

and Alberola-Lopez (2002), OBNLM Coupe et al. (2009), NLTBV Gilboa and Osher

(2008), ADMSS Ramos-Llorden et al. (2015), PFDTV Mei et al. (2020), and Eigen-

filter Nagare et al. (2017).

The restoration results obtained by various comparing methods are given in Fig-

ure 5.2, 5.3, and 5.4, for a visual comparison. In Figure 5.2, the details present in the

image is missing in most of the restoration results except the proposed method. The

performance given by Eigen-filter is comparatively better but the enhancement capabil-

ity of the proposed algorithm has succeeded in retaining even the small details. Similar

kind of performance is visible in Figure 5.3 also, where the details in the upper end of

the image is least preserved by OBNLM. The restoration results obtained using Eigen-

filter (Nagare et al. (2017)) appears low in contrast and blurry whereas, the proposed

algorithm gives a better contrast enhancement and denoising at the same time which

makes this result superior to the other comparative models. The better contrast of these

results eventually helps to perform an accurate decision making process . The same

performance pattern is visible in Figure 5.4 also.

Performance comparison on a artificially noisy synthetic image is depicted in Fig-

ure 5.5. The noisy input is given in sub-figure (a) of the same figure, where speckle

noise of variance 0.25 is used to degrade the image. As observable from the results, the

presence of speckle noise has degraded the contrast of the image as well. Most of the

diffusion based comparing algorithms such as SRAD, DPAD, and ADMSS gives poor

contrast enhancement, see sub-figures (b), (c), and (f). The OBNLM has considerably

done well in maintaining proper contrast, but as seen in Figure 5.5(d), along with the

smoothing (due to the speckles) some artefacts are introduced in restored image. Sim-

ilarly, NLTBV method also restores the original contrast of the image to some extent.

The denoising achieved in low intensity areas is remarkable, however, in high-intensity

areas the performance is moderately degraded. The restoration provided by Eigen-filter

method is good in suppressing the noise and restoring the contrast aspects of the data,

but the resultant image appears blurred with minimal sharp details or textures. On

the contrary, the PFDTV result gives sharp edges and details but contrast between the
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dark pixel regions like the back square and the background is very low. Comparatively

the method proposed herein gives a better performance even in case of highly corrupted

data by giving comparable performance in low and high intensity regions, see sub-figure

(h). This method preserves edges and other sharp details efficiently and the contrast im-

provement achieved assists the analysis of real scan-images, as it reveals the hidden

details which are otherwise unobserved. The same performance pattern is visible in

restoring a one dimensional signal too, refer Figure 5.6. Here subfigures (b), (c), and (f)

represent the SRAD, DPAD, and ADMSS results, respectively, where the restored sig-

nal (Green) appears noise-free, but the amplitude or pixel values are getting diminished

in the restored data. The range of output amplitude is also reduced to [0-50], which

indicates a degradation in contrast. Moreover, unlike the noisy input signal (Red), the

shifts from different pixel levels are not sharp in the output, and the lines are mostly

straight, which indicates the poorly preserved edges and textures. The OBNLM result

given in subfigure (d) is not shown to degrade the pixel values, but the denoising per-

formance is considerably low. The subfigure (e) provides the result of NLTBV, where

the denoising of high pixel values (corresponds to bright areas in a 2D image) is com-

promised. Nevertheless, denoising of the rest of the parts appears comparatively better.

The subfigure (g) shows the PFDTV result, where it succeeds in preserving sharp edges,

but the black region is not distinguishable from the background. The Eigenfilter result

given in subfigure (h) succeeds in removing noise; however, texture preservation capa-

bility seems low. The output pixel values are slightly reduced in this result, especially

in high-intensity regions. The proposed result is given in subfigure (h), which improves

the contrast of the output by enhancing the intermediate intensity levels, which intern

makes the darker regions bright for better visibility. As speckle noise contains useful

information, the textures in noisy input (red) are well preserved in this result and edges

are also properly retained.

The parameter values used for the experiments are λ = 1.4,α = 0.2,λ0 = 0.1,λ2 =

8,λ4 = 800,λ5 = 0.001,β = 0.2. These parameters are set based on various experimen-

tal studies performed with various image dataset. An adaptive selection of them are still

an open problem which is being investigated as a future work. The detailed parameter
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analysis is conducted on the basis of quality matrices to fix the value which is given in

Figure 5.7.

Various quality metrics are used in this study to analyse the performance of vari-

ous methods used for comparative study along with the proposed method. The details

of these measures and the expression for evaluating them are provided in Appendix

A). The metrics are chosen to establish the performance of various models in terms of

various parameters such as noise reduction, contrast enhancement etc. The Equivalent

Number of Looks (ENL) is a well known blind quality metric to evaluate despeckling

filters Gomez et al. (2017). The higher value of ENL indicate better speckle removing

capability. We have evaluated the same for different region of interests (ROI) and the

proposed method has consistently proved to give higher value in all cases. The ENL

value obtained for one particular ROI is given in Table 5.1. The methods such as Eigen-

filter, PFDTV, and DPAD give comparatively good ENL values than the other diffusion

and variational methods used for the comparison. However, the ENL metric evaluated

for the proposed method is considerably higher for all input images. The NIQE Mit-

tal et al. (2013) is a widely used blind quality evaluator. It based on a natural scene

statistical model and a low value of NIQE indicates less distortion due to noise or any

other source. As we can infer from the table 5.1, the proposed method is giving a com-

paratively low value in all the test cases which also indicates the restored data is less

noisy.

Other than denoising capability, the details-preserving ability is also evaluated using

the metric: Entropy Karathanassi et al. (2007). A high Entropy indicates an increased

amount of details present in an image. In case of the proposed method, the tabulated

Entropy values are comparatively high which implies that the illumination correction

along with restoration is useful to preserve small hidden details. We have used the

Global contrast Factor (GCF) Matkovic et al. (2005) for studying the contrast improve-

ment. As we can infer from the Table 5.1, the contrast measure obtained by OBNLM

is close to the proposed method for some test cases, but the details present in the image

is significantly compromised. However, the proposed method is showing a constant

global contrast advancement in all the test cases.
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The Contrast Noise Ratio (CNR) Timischl (2015) is similar to Signal to Noise Ratio

(SNR), it is used to evaluate quality of restoration. A high CNR value indicates better

denoising capability and ensures a contrast preservation. We have evaluated the same

on different ROIs and one such result is included in Table 5.1. This tabulated values

also support the superior restoration capability of the proposed method.

5.4 Summary of the Chapter

A Non-local TV retinex based restoration algorithm for ultrasound despeckling has been

proposed in this Chapter which does the denoising along with contrast enhancement

and illumination correction. A fast numerical model based on split-Bregman scheme is

followed for providing the solution. The implementation details and other concluding

remarks are stated in next chapter.
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(a) (b) (c)

(d) (e) (f)

(g) (g) (h)

Figure 5.2 Restoration results of Ultrasound B-mode input (a) noisy input (b)SRAD
(c)DPAD (d)OBNLM (e)NLTBV (f)ADMSS (g)PFDTV (h)Eigenfilter (i) Proposed
method
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(a) (b) (c)

(d) (e) (f)

(g) (g) (h)

Figure 5.3 Restoration results of Ultrasound B-mode input (a) noisy input (b)SRAD
(c)DPAD (d)OBNLM (e)NLTBV (f)ADMSS (g)PFDTV (h)Eigenfilter (i) Proposed
method
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(a) (b) (c)

(d) (e) (f)

(g) (g) (h)

Figure 5.4 Restoration results of Ultrasound B-mode input (a) noisy input (b)SRAD
(c)DPAD (d)OBNLM (e)NLTBV (f)ADMSS (g)PFDTV (h)Eigenfilter (i) Proposed
method
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(a) (b) (c)

(d) (e) (f)

(g) (g) (h)

Figure 5.5 Restoration of synthetic noisy data (a) Input image after adding Gamma noise
of variance=0.25 (b)SRAD (c)DPAD (d)OBNLM (e)NLTBV (f)ADMSS (g)PFDTV
(h)Eigenfilter (i) Proposed method
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Figure 5.6 Restoration of a 1D signal, sub-figures (b)-(h) contains original signal (Blue),
input signal after adding gamma noise of variance=0.25 (Red) and different restored sig-
nals (Green): (a) original signal (b)SRAD (c)DPAD (d)OBNLM (e)NLTBV (f)ADMSS
(g)PFDTV (h)Eigenfilter (i) Proposed method

95



Figure 5.7 Parameter analysis using different quality measures (QM) Row1: Change in
QM with respect to λ , Row2: Change in QM with respect to α , Row3: Change in QM
with respect to λ2, Row4: Change in QM with respect to λ5, Row5: Change in QM
with respect to λ4, Row6: Change in QM with respect to β , Row7: Change in QM with
respect to λ0
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CHAPTER 6

Conclusion and Future Works

In this thesis three perceptually inspired variational models are proposed (viz. Chap-

ters 3-5) for restoring and enhancing images corrupted by various noise distributions

such as Gaussian, Poisson and Gamma. In order to make it as a unified restoration

framework, a technique for degradation analysis is also proposed (in Chapter 2). The

intensity inhomogeneity being an inevitable hurdle in many satellite and medical image

analysis, homogenizing the same is of utmost priority in many applications from these

domains. The proposed models are designed based on the retinex theory to handle in-

tensity distortions very effectively. Furthermore, handling noise distortions along with

intensity inhomogeneity is a challenging task, as these two complement each other in

term of their requirement. This has been effectively addressed by adopting a trade-off

between these two processes. Both medical and satellite images are used for testing and

verification process. The three contributed models work based on the noise estimation

and analysis phase proposed in the second Chapter of this thesis. A detailed analysis is

performed to detect the noise characteristics and parameters from the input data. This

noise analysis phase serves as a backbone of all the variational models proposed in

Chapters 3, 4, and 5. This model automatically analyses the noise distribution from the

input data, thereby assists in automatic selection of the appropriate model to handle the

relevant distortion.

The variational models in general are useful in defining a framework where the dis-

tortions are duly incorporated as constraints in the model and the solution eventually

yields the restored version of the image. However, the models converge slowly under

a usual explicit numerical solution. Fast numerical approach under the split-Bregman
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Figure 6.1 Performance comparison of Tesla K40 with Sequential

Figure 6.2 Performance comparison of Tesla K40, V100 and V100 with SB

framework helps the model in attaining better convergence rate and it is experimentally

verified in Chapters 3-5. Furthermore, the models are implemented by exploiting the

parallel computing regime using C++ CUDA, pyCUDA and Open CV library. The par-

allel computing paradigm improves the overall computational efficiency of the model.

For the comparison we have used Nvidia Tesla K40 in Kepler Architecture and V100

in Volta Architecture. The Tesla K40 has 15 Streaming Multiprocessors(SM) with 192

cores per SM, to give a total 2880 CUDA cores. The maximum number of threads per

multiprocessor is 2048, and the maximum threads per block are 1024. It has compute

ability 3.5 and 12 GB Global memory. Whereas, compute ability of Tesla V100 is 7.0

and it has 5120 CUDA cores with 16 GB memory. The comparison of execution time

of NLTV based on the size of the image is given in Fig. 6.1 and Table 6.1. In addition

to the conventional Gradient descent optimization, for fast convergence, we have also

98



Table 6.1 Execution time taken by Sequential and Parallel implementation

Image Size Sequential TeslaK40 TeslaV100 Tesla V100 with SB
256×256 120.06 2.21 0.53 0.08
320×320 124.75 3.37 0.78 0.13
512×512 487.48 8.26 1.38 0.36

compared the GPU based NLTV with Split-Bregman (SB), see Figure. 6.2 for details.

From the comparison shown in Table 6.1, one can infer that the Tesla K40 is giving

60 times speedup over the corresponding serial code. From Figure 6.2, we infer that

the computational advancement obtained by Tesla V100 is comparatively higher with

an average speedup of 356 times. However, the GPU algorithm with split-Bregman

optimization has shown a significant advancement that supports the use of this algorithm

in real-time restoration tasks. For images of size 512× 512 this method is giving an

average speedup of 1354 times.

The non-availability of a parallel computing environment sets the model to work un-

der serial computing regime without any user interference. Various medical and satellite

images from real-time databases have been adopted for testing and verification process.

The models are found to be effective in restoring various images from different imag-

ing modalities. A hardware implementation of the same is still under consideration as

a future enhancement. Since the model is efficient in terms of computational aspects,

its hardware portability is well substantiated. Moreover, the noise distribution analysis

using maximum mean discrepancy (MMD) is also being explored as a future enhance-

ment. MMD being a measure which incorporate higher-order statistical moments, it

would be an ideal candidate for performing the feature analysis for the machine learn-

ing algorithm designed for the noise analysis phase.

Moreover, there are some deep learning algorithms introduced lately to handle the

degradations in images. However, a strong theoretical study regarding the influence of

noise characteristics has not been done (Zhang et al., 2017, 2018). Though such deep

learning models for some specific kind of noise distortion, they fail to handle different

kinds of distortions unlike the proposed models. In addition to that, the accuracy of the

deep learning architecture depends on the training data and works for the data on which

it is trained and may overlook the others (Linwei Fan and Zhang, 2019). Designing the
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deep learning architecture to duly care some of the specific details in images (as this is

an inevitable requirement in many imaging modalities) is tedious. Reconstruction and

enhancement being an ill-posed inverse problem, the solution under a deep learning

framework may not converge to the desired one unlike the regularization frameworks,

therefore a unique solution cannot be guaranteed always. However, a detailed theo-

retical analysis to modify the deep learning architecture (one of the state of the art

architectures for various image processing applications) is also being proposed to study

as a future work.

The models proposed in chapters 3,4 and 5 are designed for a specific noise distor-

tion. However, they may even work for the other distortions conditionally, but such an

analysis has not been performed for the sheer reason that we cannot conclusively prove

theoretically that the model designed for a particular distortion works well for the other

ones at all conditions. Therefore we refrain from a cross comparative study.
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Appendix A

A.1 Statistical metrics

This section details various statistical measures used for quantifying different methods

given in the thesis. The evaluation expression and significance are highlighted herein.

A.1.1 Contrast to Noise Ratio (CNR)

Even though Signal to Noise Ratio (SNR) is a very popular measure in image restora-

tion, it ignores the contrast related effects. Therefore, an image degraded due to fog

or haze may give a better SNR value despite of being poor in contrast. Consequently,

CNR is a widely adopted measure in restoration literature to measure the contrast en-

hancement ability of a models under consideration. It is evaluated as:

CNR =
|µ1−µ2|√

σ2
1 +σ2

2

,

where µ1, µ2, σ2
1 and σ2

2 represents the mean intensity and variances of two different

regions. Regions are selected so that they have considerable changes in intensity. In this

study we have evaluated CNR from multiple regions for getting more reliable results.

A.1.2 Equivalent Number of Looks (ENL)

The ENL is a well known quality metric to evaluate a despeckling algorithms. It is

measured for any region of interest (ROI) as:

ENL =
µ2

ROI

σ2
ROI

A better despeckling preserves the mean in the region while reducing the variance,

hence a higher value of ENL indicates better denoising, refer Gomez et al. (2017). We

have calculated ENL from different homogeneous regions of images, to arrive at the

final conclusion regarding quality of restored images.
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A.1.3 Naturalness image quality evaluator (NIQE)

The NIQE is a completely “blind quality metric” (the metric that does not require the

original image for its calculation). It generates a set of quality aware statistical features

from spatial domain (Natural Scene Statistic) NSS model. Then fitting is done on them

using a multivariate Gaussian (MVG) model. The same MVG model created from

natural images will be compared with the test image fitting, to get the estimate of the

quality. As this measure is calculated as a deviation from naturalness of the image, a

low value of NIQE indicates better quality, refer Mittal et al. (2013).

A.1.4 Entropy Measure

Entropy is a measure of randomness in data and it can be used to evaluate the informa-

tion gain. Hence entropy of a contrast degraded image will be very low and the value

increases with the enhancement of data. Entropy of an image is calculate as:

Entropy(EM) =−
MAX

∑
j=0

P( j)log(P( j)),

where MAX represents the maximum possible grey value, in case of an 8-bit image it

takes the value 255 and P( j) represents the probability of different intensity values.

A.1.5 Global Contrast Factor (GCF)

It is a measure of image contrast and calculated as a weighted average of mean local

contrast in different resolutions. Generally,GCF is a more reliable measure as it is not

dependent on any region of interest and this measure is closely related to how humans

perceive contrast in a scene, refer Matkovic et al. (2005) for more details.

A.1.6 Average Gradient (AG)

It measures the quality of the image and uses it for calculating the spatial resolution in

image fusion (Yang et al., 2007). The AG of an image I(x,y) of size M×N is calculated

as below:

AG =
1

NM

N

∑
x=1

M

∑
y=1

√√√√((∂ I(x,y)
∂x

)2

+

(
∂ I(x,y)

∂y

)2
)
/2
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A.1.7 BLind Image Integrity Notator using DCT Statistics (BLIINDS-
II)

The BLIINDS-II metric is a no-reference image (blind) quality assessment technique

which creates a probabilistic model to give the quality score. In this method four differ-

ent features related to structure, contrast, etc., are extracted from DCT of image patches

in two different scales. A low value of BLIINDS-II indicates better quality of the image

(Saad et al., 2010).

A.1.8 Visual Descriptors

The visual descriptors proposed in Hautiere et al. (2008) provides an effective way to

evaluate the contrast enhancement achieved in total. This technique is based on the

assumption that a good enhancement results in more visible edges and more contrast

without saturating the pixels. The descriptors proposed are “rate of new visible edges”

(e), contrast measure (r̄), and saturation indicator (σS). The equations for evaluating e

is

e =
nr−no

no
,

where nr and no are the number of visible edges in restored image I and observed

image I0, respectively. If ns is the number of saturated pixels and M×N is the size of

the image, then the saturation measure is evaluated as:

σs =
nS

NM
.

The value of r̄ is evaluated as geometric mean ratio of visibility levels, see Hautiere

et al. (2008) for more details. For a better contrast enhanced image, the value of e and

r̄ should be high and σs should be low.

A.2 Bayesian formulation for various noise distributions

In this section the Bayesian formulation of various functional forms, where the likeli-

hood follows different distributions are provided. The formulations are extracted from

various sources and presented for the sake of completeness of the thesis.
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A.2.1 Maximum Likelihood Estimate (MLE)

It is a parameter estimation method for data with any probability distribution provided

it follows i.i.d. assumption. A normal/Gaussian distribution has PDF

P(z|µ,σ) =
1√

2πσ2
0

exp
(
−1

2
(z−µ)2

σ2

)
. (A.2.1)

The MLE of the parameters (mean and variance) for any Gaussian distributed data

z(z1,z2, ...,N ) of size N is as given below:

µ̂ =
1
N

N

∑
j=1

z j,

σ
2 =

1
N

N

∑
j=1

(z j− µ̂)2.

Similarly, for the Gamma distribution with PDF

P(z|s,θ) = zs−1

θ sΓ(s)
exp
(
− z

θ

)
, (A.2.2)

the parameters shape s and scale θ are

ŝ =
N ∑

N
j=1 z j

N ∑
N
j=1 z j lnz j−∑

N
j=1 lnz j ∑

N
j=1 z j

,

and

θ̂ =
1

N2

(
N

N

∑
j=1

z j lnz j−
N

∑
j=1

lnz j

N

∑
j=1

X j

)
.

For Poisson distribution with the PDF

P(z|λp) =
exp(−λp)λ

z
p

z!
, (A.2.3)

the estimate of the parameter λp is λ̂p =
1
N ∑

N
j=1 z j.

A.2.2 MAP estimator for Gaussian distribution

The Bayesian MAP method is well known in solving ill-posed problems like image

restoration. It tries to maximize the posterior probability of the data. According to the

Bayes rule,

P(X |Y ) = P(Y |X)P(X)

P(Y )
(A.2.4)

where X and Y represent the random variables and P(X |Y ) represents the conditional

probability i.e probability of X given Y . In the imaging domain, the observed data can

be represented as P(I0|I), where I and I0 are the original and distorted image respec-

tively. Posterior probability of the desired data P(I|I0) is then determined by Bayes rule.

MAP (Maximum A Posteriori) estimator can be used to get the better approximation of
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desired data. This method maximizes P(I|I0) which takes the form:

max
I

{
P(I|I0)

}
= max

I

{
(P(I0|I)) P(I)

}
. (A.2.5)

In the above equation P(I) is known as Prior probability and as P(I0) is a constant as

it does not affect the minimization process, therefore it is omitted in calculations. The

maximization problem in equation (A.2.5) is equivalent to the minimization of −log

likelihood, which takes the form:

min
I

{
− log(P(I|I0))

}
= min

I

{
− log(P(I0|I))− log(P(I))

}
. (A.2.6)

Assuming a Gibb’s prior P(I) = e(−
λ

2 φ(I)) the minimization problem will be as shown

below:

min
I

{
− log(P(I|I0))+

λ

2
φ(I)

}
. (A.2.7)

In the above functional φ(.) denotes regularization prior and P(I0|I) can be estimated

based on noise distribution.

Consider the Gaussian noise with PDF as in equation A.2.1, where maximizing

P(I|I0) amounts to minimizing the negative log-likelihood as in equation A.2.6. For a

Gaussian distributed data p(I0|I) is as follows

p(I0|I) =
1

2πσ2 exp
(
−(I− I0)

2

2πσ2

)
. (A.2.8)

Assume that the samples of the noise on each pixel z j ∈ Ω (Ω is a discrete image

domain) are mutually independent and identically distributed and N is the total number

of pixels in image I or I0 then the likelihood takes the form

P(I0|I) =
N

∏
j=1

P(I0(z j)|I(z j)),

which means minimizing − log(P(I0|I)) amounts to minimizing:

min
I

{ N

∑
j=1
−
((

(I(z j)− I0(z j))
2

2πσ2

)
+λφ(I(z j))

)}
. (A.2.9)

For simplicity drop the index z j and constant terms in the minimization functional, then

we have

min
I

{
−∑

(
(I− I0)

2 +λφ(I)
)}

, (A.2.10)

Now the optimization problem in case of a Gaussian distributed noise gives the

above expression and the corresponding fidelity is (I− I0)
2, refer Rudin et al. (1992)

for more details. The term φ(.) denotes the regularization prior and we can assume a

non-local total variation regularization prior in place of φ(I).
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A.2.3 MAP estimator for Poisson distribution

The Probability Density Function(PDF) of Poisson distribution is given in equation

A.2.3, where λp is both mean and standard deviation. As stated before, our goal is to

maximize the probability of the random variable I (the original image) given the ob-

served noisy image I0 which eventually leads to the minimization as in equation A.2.6.

As the noise follow Poisson distribution, the corresponding likelihood probability is

given below:

P(I0|I) = PI(I0) =
e−III0

I0!
, (A.2.11)

Considering the image (I and I0) as a set of independent pixels x j and following

similar steps as in the previous section the -log likelihood of the Poisson noisy data is

min
I

{ N

∑
j=1

I(z j)− I0(z j) log I(z j)−
N

∑
j=1

log(P(I(zi)))

}
. (A.2.12)

Assuming Gibbs prior as before the above equation becomes

min
I

{
I− I0 log I +

λ

2
φ(I)

}
, (A.2.13)

where (I− I0 log I) represents the fidelity term. Explanation regarding the same is given

in Kayyar and Jidesh (2018).

A.2.4 MAP estimator for Gamma distribution

The MAP estimator for Gamma distributed noise is derived in Aubert and Aujol (2008)

and some highlights of the same is provided here. The PDF of Gamma distribution is

given in equation A.2.2. Assuming the speckle noise to follow Gamma law P(I0|I) is

as below

P(I0|I) =
LL

ILΓ(L)
IL−1
0 e(−LI0)/I, (A.2.14)

where L stands for the number of looks and in normal single image operation it takes

the value one. As stated before, MAP estimator works by maximizing P(I|I0) which

implies to minimizing the negative log-likelihood. Minimizing −log(P(I0|I)) takes the

following form:

min
I

{
N

∑
j=1

((
L(ln I(z j)+

I0(z j)

I(z j)

)
+λφ(I(z j))

)}
. (A.2.15)
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For simplicity if we eliminate z j and assume L = 1 then the minimization problem will

be as given below:

min
I

{(
ln I +

I0

I

)
+

λ

2
φ(I)

}
, (A.2.16)

where the noise fidelity term derived is
(

ln I + I0
I

)
.
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