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Abstract

Linked data is a method of publishing machine-processable data over the web. The

resource description framework (RDF) is a standard model for publishing linked data.

Currently, distributed compendiums of linked data are available over multiple SPARQL

endpoints that can be queried using SPARQL queries. The size of the linked data

is steadily increasing as many companies and government organizations have begun

adopting linked data technologies. Many frameworks have been proposed for informa-

tion retrieval from linked data, and the volume of data is a common challenge. Due

to the huge volume, many existing linked data search engines have not indexed the

latest data. The major components of information retrieval from linked data include

storing, partitioning, indexing and ranking. This thesis presents a novel framework for

information retrieval from a distributed compendium of linked data called the ‘Linked

Data Search Framework’, abbreviated as LDSF. The significant contributions of LDSF

include the method of storage, partitioning, indexing and ranking of linked data.

The storage cost of RDF data is one of the primary concerns for searching linked

data. The main objective of linked data is to represent the data as URI’s in a format that

is both human understandable and machine processable. This intermediate URI form

of representation is difficult for humans to understand and consumes massive storage in

the case of machines. Humans read, think and speak text data as words and not as char-

acters, but computers use character-based encoding such as Unicode to handle text data

(including linked data). This thesis presents an approach named ‘WordCode’, a word-

based encoding of text data (including linked data), that enables computers to store and

process text data as words. A trie based code page named ‘WordTrie’ is proposed to

store words for rapid encoding and decoding. Experimental results from encoding text

files from the standard corpus using WordCode show an up to 19.9% reduction in file

size compared to that achieved with character-based encoding. The proposed Word-

Code method of encoding words in a machine-processable format used less storage

space, resulting in faster processing and communication of text data (including linked

data).

Query processing in massive linked data is performed by distributing the storage

across multiple partitions. Considerable research has been conducted to partition linked

data based on clusters. Additionally, substantial research on hash-based partitioning,

cloud-based partitioning, and graph-based partitioning has been reported. However,

these sophisticated partitioning algorithms are not based on the semantic relatedness



of the data and suffer from high preprocessing cost. In this thesis, a semantic-based

partitioning method using a novel nexus clustering algorithm is discussed. For every

concept, the core properties of the linked data are identified, and bilevel, nexus-based

hierarchical agglomerative clustering is used to partition the linked data. The proposed

method is evaluated using the gold standard test data sampled from DBpedia across

eight closely related categories. The proposed clustering technique partitions the linked

data with a precision of 98.7% on the gold standard dataset.

Multiple indexing strategies have been proposed to search and access linked data

easily at any given time. All these extensive indexing schemes involve substantial re-

dundant data, which greatly increases the required storage and computational resources

needed to update the index of the dynamically growing linked data. This thesis intro-

duces ‘trist’, a hybrid data structure combining a tree and doubly linked list to index

linked data. The linked data contain URIs and values. The URIs and values are sepa-

rately indexed using ‘URI trist’ and ‘Value trist’, respectively. Compared to the exist-

ing indexing strategies, this indexing approach reduces the storage consumption. The

experimental results using the sampled DBpedia dataset demonstrate that trist-based

indexing achieves a space-saving of 60% compared to regular graph-based storage of

linked data. Also, the proposed trist-based indexing is 6000% faster in accessing the

linked data from the graph than the regular graph without indexing.

The ultimate goal of an information retrieval system is to rank the linked data that

will be appealing to the end user. The existing approaches for ranking linked data are

all atomistic. Often, the problem with ranking linked data is that the data are of various

kinds from multiple sources. This thesis presents a holistic approach to rank linked data

from multiple SPARQL endpoints and presenting the integrated results. The holistic

rank is computed based on four subranks: endpoint rank, concept rank, predicate rank

and value rank. LDSF also provides an approach to represent the URI form of linked

data to the user in an easily understandable manner. The ordering of Wikipedia is agreed

to be readable by its users over the web, and the ranking in this thesis is evaluated

based on the ordering of Wikipedia: the proposed ranking correlates up to 99% with the

ordering of Wikipedia with the DBpedia sampled dataset.

Overall, the proposed LDSF is an efficient framework for storing, partitioning, in-

dexing and ranking linked data that produces a more satisfactory query result than that

of existing systems.
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Chapter 1

Introduction

This chapter consists of four parts: (1) a brief introduction to the basic concepts and

technologies used in this thesis, (2) state-of-the-art methods related to this thesis and

its challenges, (3) a brief explanation of the contributions of this thesis, and (4) a short

introduction to each of the chapters.

1.1 Basic concepts and notation

This section gives a brief introduction to semantic web technologies such as linked data,

RDF, SPARQL, triplestore and SPARQL endpoints. As part of the work is related to

text encoding, the basics of encoding are also introduced in this section.

1.1.1 Semantic web

Tim Berners-Lee, who developed a way to link documents together over a network and

thus created the World Wide Web, coined the term “Semantic Web”. The existing web

contains a huge amount of information, which in general, can only be understood by

humans. The semantic web is an extension of the current web that provides an easier

way to find, share, combine and reuse information: it empowers machines to not only

present but also to process information.

Tim Berners-Lee expressed his vision of the semantic web as follows:

“The semantic web is not a separate web but an extension of the current one, in

which information is given well-defined meaning, better enabling computers and

people to work in cooperation.” - Berners-Lee et al. (2001).

According to the World Wide Web Consortium (W3C):

“The semantic web provides a common framework that allows data to be shared

and reused across application, enterprise, and community boundaries.”1

1.1.2 Linked data

Linked data are at the heart of the semantic web and represent the best practice for

publishing structured data on the Web. Linked data, also known as the Web of Data, is

a set of design principles for sharing machine-processable data on the web.

1https://www.w3.org/2001/sw/



Linked open data (LOD) are a powerful blend of linked data and open data that are

both linked and released under an open license that does not impede its reuse for free.

One notable example of an LOD set is DBpedia2 – a crowd-sourced community effort

to extract structured information from Wikipedia3 and make it available on the web.

1.1.3 RDF

The resource description framework (RDF) is a common framework used to create and

share linked data on the web. The RDF extends the linking structure of the web to link

data using a uniform resource identifier (URI) (Berners-Lee et al., 2005). Items in the

RDF are identified and referred to using their URI.

For example, the institute ‘NIT-K’ is represented in URI as “http://example.-

org/resource/NIT-K”. Unit data in RDF are called triples. A triple is a combina-

tion of a resource, a property, and a value (known as the subject, predicate and object

of a triple). Figure 1.1 presents the structure of a triple.

Figure 1.1: Triple structure

Let us consider an example statement to obtain a better understanding. Figure

1.2 shows the triple representation for the statement: “NIT-K is located in

India”. The subject of the statement is ‘NIT-K’, the predicate is ‘located in’,

and the object is ‘India’.

Figure 1.2: Triple example

Consider the two statements “NIT-K is located in India” and “NIT-K

is established in 1960”. Table 1.1 shows the subjects, predicates and objects

of these statements.

2https://dbpedia.org
3https://www.wikipedia.org
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Table 1.1: Sample statements

Subject Predicate Object
NIT-K located in India
NIT-K established 1960

Figure 1.3 shows a graphical representation of the statements in Table 1.1 with

URIs. The subjects and predicates are always represented using URI. The object may

be represented using URI or value. The objects containing value are tagged with the

datatype and language. The subject or object nodes represented with URI are called

concept. In Figure 1.3, the nodes ‘NIT-K’ and ‘India’ are the concepts. This la-

belled directed graph representation is used for visual explanation; in reality, the RDF

model is represented using many formats, such as RDF/XML, N-Triples, Turtle and

JSON-LD.

Figure 1.3: Triple example with URI

N-Triple is the simplest form for storing and transmitting RDF triples as

〈subject〉〈predicate〉〈object〉, terminated with a full stop. The statements from Figure

1.3 are represented in N-Triple format as

<http://example.org/resource/NIT-K>

<http://dbpedia.org/property/locatedIn>

<http://yago-knowledge.org/resource/India> .

<http://example.org/resource/NIT-K>

<http://dbpedia.org/property/established>

"1960"ˆˆ<http://www.w3.org/2001/XMLSchema#integer> .

3



Turtle is a much easier RDF format for humans, as the prefix definition shortens

the URI and makes it easier to read. The same two statements from Figure 1.3 can be

written in turtle format as

@prefix eg: <http://example.org/resource/> .

@prefix dbp: <http://dbpedia.org/property/> .

@prefix ygr: <http://yago-knowledge.org/resource/> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

eg:NIT-K dbp:locatedIn ygr:India .

eg:NIT-K dbp:established "1960"ˆˆxsd:integer .

In the above turtle representation, the first four lines define the prefix of the URI,

which is later used to write the URIs in their short format. Table 1.2 contains the list of

prefix used this thesis to shorten the URI, i.e., the URI ‘http://www.w3.org/199-

9/02/22-rdf-syntax-ns#Property’ is shortened as ‘rdf:Property’. The

prefix ‘example’ is used for illustration of examples.

Table 1.2: Common URI prefix

Prefix URL
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.org/2000/01/rdf-schema#
owl http://www.w3.org/2002/07/owl#
dc http://purl.org/dc/elements/1.1/
foaf http://xmlns.com/foaf/0.1/
skos http://www.w3.org/2004/02/skos/core#
dbr http://dbpedia.org/resource/
dbo http://dbpedia.org/ontology/
dbp http://dbpedia.org/property/
example http://example.org/

1.1.4 SPARQL query language

The SPARQL Protocol and RDF Query Language (SPARQL) is a W3C standard to

query RDF data (Clark et al., 2008). SPARQL queries are based on triple patterns. RDF

data can be seen as a set of relationships among resources; SPARQL queries provide

one or more patterns against such relationships. These triple patterns are similar to

4



RDF triples, except one or more of the constituent resource references are variables.

A SPARQL engine would return the resources for all triples that match these patterns.

A sample SPARQL query to find the country and establishment year of ‘NIT-K’ from

Figure 1.3 is

@prefix eg: <http://example.org/resource/> .

@prefix dbp: <http://dbpedia.org/property/> .

SELECT ?country ?establishedYear

WHERE

{

eg:NIT-K dbp:locatedIn ?country .

eg:NIT-K dbp:established ?establishedYear .

}

In the above SPARQL query, the ‘?country’ and ‘?establishedYear’ are the

variables rendered to the output of the SPARQL query.

1.1.5 Triplestore

Triplestore is a database management system (DBMS) used to store and retrieve RDF

data. A triplestore is a software program for efficiently storing and indexing RDF

triples. Triplestores are queried using SPARQL queries. Most triplestores allow re-

ceiving and processing SPARQL query requests via SPARQL endpoints. SPARQL

endpoints allow access to triplestores via HTTP. OpenLink Virtuoso4, GraphDB5, Al-

legroGraph6, RDF4J7 and Apache Jena Fuseki8 are popular triplestores. OpenLink Vir-

tuoso is a popular triplestore used for large data sets such as DBpedia9 and Europe’s

Government data10. Apache Jena11 is a Java API used to manage RDF data and access

triplestores.

4https://virtuoso.openlinksw.com
5https://www.ontotext.com/products/graphdb/
6https://allegrograph.com/products/allegrograph/
7https://rdf4j.org
8https://jena.apache.org/documentation/fuseki2/
9https://dbpedia.org/sparql

10http://digital-agenda-data.eu/sparql
11https://jena.apache.org
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1.1.6 Encoding

Linked data is a kind of text data that uses Unicode-like encoding to store and process

data. Encoding is a system of rules for converting data into codes. Codes are sequences

of bits used in text encoding to uniquely identify character symbols. The code page is a

mapping between elemental characters and their respective codes. Text data (including

linked data) are encoded as codes for storage, processing and communication.

Approximately 257 types of character-based text-encoding methods exist12. These

text-encoding methods have defined code pages. Unicode is a popular encoding method

that contains a unique code for almost all the characters of all languages (The Unicode

Consortium, 2015). Unicode has three different forms — UTF-8, UTF-16 and UTF-32

— defined by the Universal Coded Character Set (ISO/IEC 10646, 2017). UTF-8 is the

encoding technique used by approximately 95.0% of websites on the Internet13.

1.2 State of the art

The amount of linked data has grown enormously in recent years, with 252 billion

triples from 1255 different datasets, and this number is constantly increasing14. The

need for information retrieval from linked data increases as the number and scale of

the semantic web in real-world applications increase. Many search engines use the

semantic web and linked data technologies, but the popularity of search engines over

linked data is minimal. Prominent examples of search engines over linked data include

Swoogle (Ding et al., 2004), Sindice (Tummarello et al., 2007), Falcons (Cheng et al.,

2008), Sigma (Tummarello et al., 2010), Watson (d’Aquin & Motta, 2011) and SWSE

(Hogan et al., 2011). These linked data search engines are inspired by web search en-

gines and process linked data in the same manner as processing web documents. The

results of these linked data search engines are similar to those of a web search: they

provide links to data sources with matching keywords. However, the results are un-

processed and difficult to interpret. Although the amount of linked data is enormous,

the challenge of indexing such large and dynamic data has limited advancements in

research. The major modules of these linked data search engines are crawling, stor-

ing, indexing, partitioning and ranking. Unlike web search engines, linked data search

engines do not require crawlers, as the links (URIs) may be empty. The actual linked

12http://www.iana.org/assignments/character-sets/character-sets.xhtml, Accessed on 12/12/2018.
13https://w3techs.com/technologies/overview/character encoding, Accessed on 21/05/2020.
14https://lod-cloud.net, Accessed on June 2, 2020.
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data are stored in a DBMS-like engine called a triplestore, which is accessed with sim-

ple queries. The extensive surveys conducted by Kaoudi & Manolescu (2015), Özsu

(2016), Ma et al. (2016), Pan et al. (2018), Wylot et al. (2018) and Ali et al. (2020)

highlight the methods and challenges of storing, partitioning and indexing linked data

briefly described in sections 1.2.1, 1.2.2 and 1.2.3 respectively.

1.2.1 Storing

Linked data are stored as a triple table, property table, binary table, mixed table and

graph storage. The triple table model storage has considerable redundancy. The prop-

erty table has multiple null values leading to a sparse table. The binary table model is

efficient but has high read and insert costs. Although the mixed table and graph-based

model are the best existing routines, the volume of linked data motivates research to

find a better storage solution.

1.2.2 Partitioning

Partitioning techniques, such as random partitioning, hash-based partitioning, cloud-

based partitioning and graph-based partitioning, have been discussed in previous sur-

veys. The major challenges identified are the following.

1. Most frameworks use sophisticated partitioning techniques that suffer from high
preprocessing costs.

2. The partitions are not based on the semantic relatedness, and multiple partitions
are often required to answer a query, resulting in high communication and I/O
costs.

1.2.3 Indexing

Linked data storage is indexed to accelerate access. Triple-based indexing, aggregate

indexing and extensive indexing have been discussed. These existing indexing models

have the following challenges:

1. Extensive indexing schemes increase the storage requirement because of the large
index size.

2. Rebuilding the index for dynamic data entails substantial huge computation (in
the case of HDFS-based indexing).

3. The approach of using the whole index to answer a user query is complex.
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1.2.4 Ranking

Ranking linked data is a broad subject. Existing ranking approaches include RDF triple

ranking, resource ranking, property ranking and literal ranking. Considerable effort has

been made to develop property ranking, as it is widely applied in linked data entity

browsing. When the triples are from multiple endpoints, the existing research uses

page rank. Most of the proposed ranking approaches are supervised, and those that

follow unsupervised approaches produce poor results. No efficient approaches exist for

ranking linked data from multiple endpoints.

Considering the challenges and limitations of the existing systems, a different ap-

proach to store, partition, index and rank linked data has become our focus.

1.2.5 Research motivation

“To develop a framework to effectively retrieve the information from linked data by

incorporating efficient techniques for storing, partitioning, indexing and ranking”.

1.3 Methodology

In this thesis, a novel approach for information retrieval from linked data, named the

linked data search framework (LDSF) is discussed. The primary goal of LDSF is to

provide fast access to enormous quantities of linked data by storing, partitioning, in-

dexing and providing processed results via a ranking. Figure 1.4 shows the high-level

architecture of the LDSF.

The primary goal of LDSF is to access linked data present over multiple SPARQL

endpoints via simple queries. LDSF allows semantic web users to explore linked data

from all SPARQL endpoints with simple SPARQL queries and still obtain coherent

results. The main components of LDSF include the storing, partitioning, indexing and

ranking of linked data. The linked open data form all the SPARQL endpoints are first

stored in the LDSF storage. The major part of the linked data consists of URIs, and

the values contain mostly repeated words. Examples of repeated words in URIs include

‘http’, ‘com’, ‘dbpedia’, ‘resource’ and ‘property’. These URIs and values are stored

in linked data storage using a character encoding technique.

8
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In this thesis, LDSF introduces a word-based encoding technique to store the linked

data. This part of the work is generic: the system is applicable not only for linked data

but for the entire community of text data, which are often stored as words. This method

of storing linked data (and other text data) as words reduces storage consumption. The

linked data are then partitioned based on the semantic relatedness of the entity. Entities

that are semantically related are identified using a bilevel, nexus-based hierarchical ag-

glomerative clustering algorithm. Most of the queries execute with triples with related

fields. For example, a single query with biomedical data and real estate data are rare.

This type of partitioning of linked data by clustering semantically similar entities re-

duces the query processing and I/O cost. The linked data are indexed for rapid access to

RDF triples. In this thesis, LDSF introduces a trie-based inverted index that consumes

less storage space and provides fast access to data. In LDSF, the query results are also

given ranks at various levels based on endpoint, concept, predicate and value, so the

user querying the data will receive ordered results in a readable format.

1.3.1 Research objectives

The research objectives are defined as follows.

1. To efficiently store linked data.

2. To partition linked data based on semantically similar entity clusters.

3. To efficiently index linked data.

4. To rank linked data from multiple SPARQL endpoints.

1.4 Chapter overview

The technique used to store linked data is discussed in Chapter 2. The method for

partitioning linked data based on clusters is presented in Chapter 3. Chapter 4 discusses

the approach to indexing linked data. The techniques for ranking linked data are given

in Chapter 5. Finally, Chapter 6 concludes this work and proposes directions for future

research.
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Chapter 2

Storing

2.1 Introduction

Data storage is one of the primary concerns for linked data as the data gets generated

at a huge volume and continues to scale. Many tabular and graphical approaches have

been proposed to address this issue. All these approaches employ the same character-

based encoding for storing data. The character-based encoding uses a sequence of

bits to uniquely identify a character symbol. Character-based encodings such as Uni-

code are used to store RDF files such as RDF/XML, N-Triples, Turtle and JSON-LD.

Even triplestores such as OpenLink Virtuoso1, GraphDB2, AllegroGraph3, RDF4J4 and

Apache Jena Fuseki5 use character-based encodings to store linked data. Data storage

is a challenge, not only for linked data but also for text data as a whole.

Humans learn characters while learning a new language, but once the language has

become familiar, humans think and speak in words. However, until 2019, computers

handled text data at the character level. This chapter proposes a technique for comput-

ers to handle text data at the word level by encoding text data directly as words. Even

though this chapter aims to present a method for efficiently storing linked data, the pro-

posed word-based encoding is designed to be applied for all types of text data, including

linked data. No standard encoding format is accepted by IANA6 for encoding text data

as words. Until 2019, the encoding of text data (including linked data) was based on

character encoding, i.e., each character of the text data is represented by a code.

In text data, characters are often used to represent words; similarly, for linked data,

URIs and values are formed using words. Because characters are often used to represent

words, an encoding technique called WordCode was developed for directly encoding

words. A word is a continuous set of letters and numbers that occurs in text data. In

general, word-based encodings are not preferred for the following reasons:
1https://virtuoso.openlinksw.com
2https://www.ontotext.com/products/graphdb/
3https://allegrograph.com/products/allegrograph/
4https://rdf4j.org
5https://jena.apache.org/documentation/fuseki2/
6https://www.iana.org/assignments/character-sets/



• Many different languages exist, and each language has its own set of words.

• New words often emerge.

• Substantial memory is required to store all the words of a language.

• Encoding requires a large amount of code page.

• Encoding and decoding require considerable memory and computational time.

All these issues were considered during the development of a technique called

WordCode, which dynamically encodes text based on words. In addition, a customised

trie, called WordTrie, was introduced for storing the WordCode code page. Moreover,

facilities for adding new words to the WordCode code page have been provided. Word-

Code was designed as a language-independent model to allow words from any language

to be encoded. WordCode was designed such that the file size will always be smaller

than or equal to that of existing character-based encoding techniques.

The remainder of this chapter is organised as follows. Section 2.2 discusses the

background and related work. Section 2.3 provides a detailed description of the pro-

posed word-based text encoding technique. Section 2.4 describes the proposed trie-

based code page model. Section 2.5 presents the experimental results of the WordCode

encoding for approximately 3058 text files from the standard corpus. Finally, Section

2.6 summarises the work.

2.2 Background and related work

2.2.1 Background

The American Standard Code for Information Interchange (ASCII) serves as the basis

for most text-encoding methods, including Unicode. ASCII is a seven-bit code that en-

codes 128 characters, including numbers, lowercase and uppercase letters, basic punctu-

ation symbols and control codes. Control codes originated with teletype machines with

no associated glyphs. ASCII and Unicode have 33 and 64 control codes, respectively.

Control codes include codes for text manipulation and communication tasks. Having

a single code page defined for both text manipulation and communication tasks wastes

considerable code space. The Unicode control codes not used in text representations

are listed as communication task codes in Table 2.1.

12



Table 2.1: List of communication task codes

Sl. No. Unicode Decimal Description
1 U+0001 1 Start of heading
2 U+0004 4 End of transmission
3 U+0005 5 Enquiry
4 U+0006 6 Acknowledge
5 U+0007 7 Bell
6 U+000E 14 Shift out
7 U+000F 15 Shift in
8 U+0010 16 Data link escape
9 U+0011 17 Device control one

10 U+0012 18 Device control two
11 U+0013 19 Device control three
12 U+0014 20 Device control four
13 U+0015 21 Negative acknowledge
14 U+0016 22 Synchronous idle
15 U+0017 23 End of transmission block
16 U+0018 24 Cancel
17 U+0019 25 End of medium
18 U+001A 26 Substitute
19 U+001B 27 Escape

Text data compression is necessary since text data on the Internet and in industry has

exponential increased. The encoded files are generally compressed for efficient storage

and transmission. Entropy encoding and dictionary coders are popular techniques used

to compress character-based text data. Huffman coding by Knuth (1985) and arithmetic

coding by Witten et al. (1987) are two popular types of entropy encoding techniques.

This model compresses data by replacing the fixed-length code with variable-length

code, and the shortest code is used for the most common symbol.

LZ77 and LZ78 by Ziv & Lempel (1977, 1978) are two popular types of dictionary

coders. This model compresses data by replacing repeated occurrences of data with

a single copy in the header, which is referenced in all subsequent occurrences. The

main drawback of these data compression and data decompression models is that they

introduce overhead to the system. In the present work, the effort required by these types

of compression and decompression methods for directly encoding text based on words

is reduced.

This chapter presents a mechanism for encoding words that allows for efficient stor-

age and access. A customised trie, called WordTrie, is introduced. A trie is an ordered

13



tree data structure in which all the descendants of a node have a common prefix string

associated with every node (Fredkin, 1960; Aoe et al., 1992).

2.2.2 Related work

Methods for compressing text data by replacing words from the dictionary have been

developed. Azad et al. (2005) designed a model for reducing the file size by providing

a lookup table for English words with a 19-bit fixed code. The code space of this model

is limited to 524,288 codes and can accommodate only case-independent English-based

words. The code page necessary for storing all words will have considerable storage

costs. Because the search space is linear, this technique consumes a vast amount of

computation time, with the worst case being of θ(n), where ‘n’ is the total number of

words in the dictionary.

Grabowski & Swacha (2010) recommended language-independent word-based text

compression and decompression. This method involves a type of dictionary coder in

which the dictionary is generated and attached as a prefix to the compressed file.

Waidyasooriya et al. (2014) considered a word-pair encoding method in which the

most frequent character pair is replaced by a character not used in the data. This method

limits the encoding to only two characters. Because this method uses the header to store

the encodings, this method can be called a compression method.

Sinaga et al. (2015) also designed a trie-based encoding for encoding symbols, con-

junctions, prefixes, suffixes, affixes and the most commonly used Indonesian words.

Although they have 16-bit code words that can hold 65,536 codes, their initial code

page is limited to 903 codes. Case-insensitive words are stored in the trie. Of the 16-bit

code, 2 bits are used to differentiate between word cases, which reduces the size of the

code page to 16,384 codes; however, mid-word capitalizations, as in ‘iPhone’, cannot

be encoded with their model.

Kalajdzic et al. (2015) proposed a compression technique for short messages by

building a small dictionary with 1110 entries from a list of the most frequent words

appearing in a large set of messages. This method is not sufficient for mapping all

words, and the chances of a word not being found in the dictionary are very high in this

case.
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Considering the limitations of existing systems, the present study proposes Word-

Code, with a code page size of 67.9 billion, which is discussed in detail in Section

2.3.

2.3 Proposed word-based text encoding technique

WordCode is an extension of the character-based technique for encoding text based

on both characters and words. To implement WordCode, the code page must be con-

structed and configured on devices similar to Unicode. Because most modern devices

are configured with Unicode, WordCode uses a dynamic context-based coding using

Unicode codes, as described in Section 2.3.1. Section 2.3.2 illustrates the construction

of the WordCode code page. Section 2.3.3 describes the operation of WordCode.

2.3.1 Dynamic context-based coding

The method in which today’s webpages are communicated is different from that of tele-

type machines. Because teletype machines transmitted typed messages, a common code

page was defined for both text representation and communication tasks. Today’s web-

pages undergo encryption and compression before being transmitted. Using a common

code page such as ASCII and Unicode for handling both communication and text data

manipulation increases overhead. Defining separate code pages based on their purpose

and using them dynamically will reduce this overhead. In WordCode, the control codes

used for communication tasks by Unicode are assigned to a separate code page, and

then, these codes are used to represent words. The method for WordCode using the

communication task codes of Unicode is described in Section 2.3.2.

2.3.2 WordCode construction

To construct the WordCode code page, a word list should be generated, and a unique

code must be allocated for all words. Section 2.3.2.1 describes the method used for word

list generation, Section 2.3.2.2 outlines the process of code generation, and Section

2.3.2.3 illustrates the method for allocating the codes to the words.
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2.3.2.1 Word list generation

The word list is generated from the words frequently used on the web. Webpages are

crawled using web crawlers similar to search engines. The words from the webpages

are extracted along with their frequency of occurrence. A word is a combination of

characters and numbers, excluding symbols and special characters. Words are case

sensitive, i.e., the words ‘the’, ‘The’ and ‘THE’ are treated as different words. Words

with frequencies less than the threshold are filtered out when creating the word list.

2.3.2.2 Code generation

A single code page is used to encode both Unicode characters and WordCode words.

Unicode has 6400 code points, which range from 57344 to 63743 and are reserved

for characters defined by private third-parties; however, WordCode does not use these

codes because this require two bytes and is limited to 6400 codes.

The one-byte control codes defined for communication tasks by Unicode are used to

encode words in WordCode. Because only 19 control codes are defined for the commu-

nication tasks in Table 2.1, they can be used as the prefix with one or more bytecodes

as the suffix to represent words in WordCode.

Table 2.2 shows the total number of Unicodes with their size in bytes used by Word-

Code as the suffix. A total of 128 and 61,299 codes of one and two bytes, respectively,

exist. These 61,427 codes can be used in combination with the 19 prefix codes (com-

munication task codes) to encode the words in WordCode. The UTF-16 encoding has

2048 codes, from 55296 to 57343, that cannot be used because these codes are reserved

by Unicode.

Table 2.3 shows the structure of WordCode, with the size in bytes. The prefix in

Table 2.3 is the communication task code of Unicode, as shown in Table 2.1. The one-

byte Unicode in Table 2.3 is the Unicode UTF-8 code, which ranges from 0 to 127 and

occupies a single byte of memory, as referred to in Table 2.2. The two-byte Unicode

in Table 2.3 is the Unicode UTF-16 code, which ranges from 128 to 55295 and from

57344 to 63474 and occupies two bytes of memory, as given in Table 2.2. WordCode

is formed by the prefix code followed by the combination of one-byte Unicode and

two-byte Unicode.
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WC1 denotes WordCode type-1 with a prefix code and a one-byte Unicode. WC2

denotes WordCode type-2 with a prefix code and a pair of one-byte Unicodes. WC3

denotes WordCode type-3 with a prefix code, a one-byte Unicode and a two-byte Uni-

code. WC4 denotes WordCode type-4 with a prefix code, a two-byte Unicode and a

one-byte Unicode. WC5 denotes WordCode type-5 with a prefix code and a subsequent

pair of two-byte Unicodes.

The first prefix code is used only for type WC1, and the remaining 18 codes are

used for types WC2, WC3, WC4 and WC5. The codes from ‘1-0’ to ‘1-127’ are

of type WC1. The hyphen in the code indicates the separation between the prefix and

suffix of the code and does not occur in the real code page. The codes from ‘4-0.0’

to ‘27-127.127’ are of type WC2. The period in the code is used to illustrate the

separation between the two suffix codes and does not occur in the real code page.

The codes from ‘4-0.128’ to ‘27-127.63474’ are of type WC3. The codes from

‘4-128.0’ to ‘27-63474.127’ are of type WC4. The codes from ‘4-128.128’

to ‘27-63474.63474’ are of type WC5.

WordCode types WC1 to WC5 can encode a total of 67.9 billion (67,918,974,050)

words. Section 2.3.2.3 provides a detailed description of the allocation of these codes

to the words generated in Section 2.3.2.1.

2.3.2.3 Code allocation

Figure 2.1 shows a model of the WordCode code page containing the codes for both

characters and words. The codes for the characters are the same as those of Unicode,

and the codes for the words are those generated in Section 2.3.2.1.

Figure 2.2 presents a sample of the WordCode code page. In Figure 2.2, the column

type, bytes and number of codes are given for illustration and are not included in the

actual code page of WordCode. Here, the codes ‘0’ to ‘63474’ (excluding the control

codes from Table 2.1) represent the Unicode characters. The codes from ‘1-0’ to

‘27-63474.63474’ represent the WordCode words. The words generated in Section

2.3.2.1 are sorted based on length and then frequency. Words with lengths less than or

equal to two bytes are not considered because at least two bytes are used to represent a

word in WordCode. The codes generated in Section 2.3.2.2 are allocated for the words

based on Huffman coding with the following conditions.
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Figure 2.1: WordCode code page model

1. The length of the WordCode is shorter than the total length of the character code.

2. High-frequency words receive a shorter WordCode.

The codes for words with different cases are different, i.e., the words ‘the’ and

‘The’ have WordCode codes ‘1-0’ and ‘1-3’, respectively, as shown in Figure 2.2.

Although the WordCode code page can accommodate 67.9 billion words up to WC5,

only 3.1 million (31,90,612) words were identified during the crawl, and the code page

was created for only 3.1 million words. The remaining codes are reserved for new

words that may be found in future crawls.

2.3.3 WordCode operation

Once the code page is ready, it is shared among the systems such that the system can use

this code page for encoding text data. Figure 2.3 shows the housekeeping of WordCode.

Once the WordCode server generates the code page, it is configured for devices as

in Unicode. The text data are then encoded, stored, processed and communicated as

a WordCode-encoded file. Meanwhile, the WordCode server checks the Internet for

newly generated words. These newly generated words periodically contribute to the

next version of the WordCode code page. The newly found words are allocated to the
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Figure 2.2: Sample code page of WordCode

unreserved codes in the code page, and WordCode-configured devices send an update

request to the WordCode server to update to the latest version of the WordCode code

page.

In the web environment, if a client makes an HTTP request for a webpage, then

the browser transmits the encoding format as WordCode to handle the text data. The

server responds to the user machine with the webpage encoded in WordCode with a

version that is less than or equal to the client’s WordCode version. On the client side,

the WordCode-encoded webpage is displayed in the browser. The method of encoding a

20



Figure 2.3: WordCode housekeeping

Unicode-coded file to WordCode is described in Section 2.3.3.2, and the procedure for

decoding a WordCode-encoded file to Unicode coding is described in Section 2.3.3.3.

2.3.3.1 Comparison of Unicode and WordCode

Table 2.4 shows the sample text “The apple is good.” encoded in Unicode and

WordCode. In Unicode, each character is defined by a code; in contrast, in WordCode,

each word is interpreted by a code, and the symbols, special characters and words that

are not in the code page are encoded in Unicode.

Table 2.4: Sample text encoded in Unicode and WordCode

Text T h e a p p l e i s g o o d .
Unicode 84 104 101 32 97 112 112 108 101 32 105 115 32 103 111 111 100 46
WordCode 1-3 32 1-127 32 105 115 32 4-0.1 46

In the sample sentence, the first word ‘The’ is indicated by ‘84’, ‘104’ and ‘101’

in Unicode, whereas in WordCode, it is directly encoded as ‘1-3’. The word ‘The’

requires three bytes in Unicode, whereas in WordCode, it consumes only two bytes, as

‘1-3’ belongs to WC1. The special characters blank space and full stop are denoted

using the same Unicode codes used for WordCode, i.e., ‘32’ and ‘46’, respectively.
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In the sample sentence, the word ‘apple’ is represented by ‘97’, ‘112’, ‘112’,

‘108’ and ‘101’ in Unicode, whereas in WordCode, it is encoded as ‘1-127’. The

word ‘apple’ requires five bytes in Unicode, whereas in WordCode, it requires only

two bytes, as ‘1-127’ belongs to WC1. Because the word ‘is’ does not have an

associated WordCode, it is character encoded with Unicode. In the sample sentence, the

word ‘good’ is represented by ‘103’, ‘111’, ‘111’ and ‘100’ in Unicode, whereas

in WordCode, it is directly encoded as ‘4-0.1’. The word ‘good’ requires four bytes

in Unicode, whereas in WordCode, it requires only three bytes, as ‘4-0.1’ belongs to

WC2.

2.3.3.2 WordCode encoding

Algorithm 1 is the WordCode encoding algorithm (WEA). WEA receives a file with

Unicode encoding and converts it into a file with WordCode encoding. The ‘ReadFir-

stCharacter’ method in WEA is used to read the first character from the Unicode

file. The encoding proceeds until it reaches the end of the file (EOF). If the character

being read is a prefix code used by WordCode, then WEA returns the Unicode file

without encoding the file with WordCode. WEA checks whether the read character

is a word character. Word characters are lowercase letters (English), uppercase letters

(English) and numbers.

As long as WEA reads a word character, it appends the word character to ‘NewWord’.

Once WEA encounters a new character ‘NewChar’ other than a word character, WEA

checks whether any word has been read to ‘NewWord’. If so, then WEA checks

whether the ‘NewWord’ has a WordCode associated with it on the WordCode code

page. If it does have an associated WordCode, then it is a word hit, and WEA writes the

WordCode of the ‘NewWord’; otherwise, WEA writes the Unicode associated with the

‘NewWord’. WEA then continues to read the next character from the Unicode file and

repeats the process until it reaches the EOF.

Consider an input Unicode file containing only the single sentence “The apple

is good.”, as shown in Table 2.4. The algorithm starts to read the first charac-

ter ‘T’. Because it is a word character, the algorithm appends the character ‘T’ to the

‘NewWord =T’. The algorithm continues to read the next character ‘h’. Because it is

a word character, the algorithm includes the character ‘h’ in the ‘NewWord =Th’.
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Algorithm 1: WordCode encoding algorithm (WEA)
Input: UF: File with Unicode encoding.
Output: WF: File with WordCode encoding.

1 begin
2 NewWord = “′′

3 NewChar = ReadFirstCharacter(UF )
4 while NewChar 6= EOF do
5 if NewChar == PrefixCode then
6 return(UF )
7 end
8 else
9 if NewChar == WordCharacter then

10 NewWord = Append(NewWord,NewChar)
11 end
12 else
13 if NewWord 6= “′′ then
14 if WordCode(NewWord) 6= 0 then
15 write(WordCode(NewWord),WF )
16 end
17 else
18 write(Unicode(NewWord),WF )
19 end
20 end
21 write(Unicode(NewChar),WF )

22 end
23 end
24 NewChar ←− ReadNextCharacter(UF )

25 end
26 return(WF )

27 end

The algorithm continues and reads the next character ‘e’. Because it is a word char-

acter, the algorithm adds the character ‘e’ to the ‘NewWord =The’. The algorithm

proceeds to read the next character ‘space’. Because it is not a word character, the

algorithm checks whether the ‘NewWord =The’ has a WordCode associated with it

on the code page. Because ‘NewWord =The’ has an associated WordCode, the al-

gorithm writes the WordCode ‘1-3’ to the WordCode file. The algorithm writes the

Unicode code for ‘space’, which has been read. Similarly, the algorithm reads the

word ‘apple’ and writes the WordCode ‘1-127’. However, when the algorithm reads

the word ‘is’ and searches the WordCode code page, it will not find the code and will
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write the Unicode code in the WordCode file. The algorithm continues down until it

finishes reading all the characters from the input Unicode file.

2.3.3.3 WordCode decoding

Algorithm 2 is the WordCode decoding algorithm (WDA). The WDA receives a file

with WordCode encoding and converts it to a file with Unicode encoding. The ‘ReadF-

irstCode’ method in WDA is used to read the first code from the WordCode file. The

decoding proceeds until it reaches the EOF. If the ‘NewCode’ is not a prefix code used

by WordCode, then it is Unicode, and the same code is written to the output file. If the

‘NewCode’ is a prefix code, then the code length of the prefix code is obtained through

the ‘getCodeLength’ method. Until the code length is reached, the next code is read

from the WordCode file and appended to the ‘WordCode’. The ‘getWord’ method

fetches the word associated with the WordCode from the WordCode code page. The

word is written to the file in Unicode code. WDA continues until it reaches the EOF.

Algorithm 2: WordCode decoding algorithm (WDA)
Input: WF: File with WordCode encoding.
Output: UF: File with Unicode encoding.

1 begin
2 NewCode = ReadFirstCode(WF )
3 while NewCode 6= EOF do
4 if NewCode 6= PrefixCode then
5 write(Unicode(NewCode), UF )
6 end
7 else
8 NewPrefixCode = NewCode
9 CodeLength = getCodeLength(NewPrefixCode)

10 WordCode = NewPrefixCode

11 end
12 for i=1 to CodeLength do
13 WordCode = Append(WordCode,ReadNextCode(WF ))
14 end
15 word = getWord(WordCode)
16 for j=1 to word.length() do
17 write(Unicode(word.charAt(j)), UF )
18 end
19 NewCode = ReadNextCode(WF )

20 end
21 return(UF )

22 end
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Consider an input WordCode file containing only the single sentence “The apple

is good.”, as in Table 2.4, encoded in WordCode. The algorithm starts to read the

first code ‘1’. Because it is a prefix code, the algorithm obtains the code length for the

prefix code ‘1’. For the prefix ‘1’, the suffix code length is one. The algorithm reads the

following one code ‘3’ and appends it to the WordCode along with the prefix code as

‘WordCode = 1−3’. The word associated with the ‘WordCode = 1−3’ is looked

up in the WordCode code page as ‘The’ and written to the Unicode file. The algorithm

reads the next code ‘32’. Because it is a character code, the algorithm writes the same

character code as the Unicode. Similarly, the algorithm reads the next code as ‘1’, and

because it is a prefix code, the algorithm reads the following suffix code ‘127’. The

algorithm appends the prefix code along with the suffix code to create ‘WordCode =

1−127’. The word associated with ‘WordCode = 1−127’ is looked up in the Word-

Code code page as ‘apple’ and written to the Unicode file. The algorithm continues

until it has finished reading all the codes from the input WordCode file.

2.4 Proposed trie-based code page

If the code page for all the words is stored in a linear manner, as shown in Figure 2.2,

then this will require considerable memory and computation time for encoding and de-

coding WordCode. For this reason, a hybrid storage method with a trie and an array

named WordTrie is proposed here to store all the words. Here, the words are split into

characters and stored as nodes in a trie, where words with the same starting substring

(prefix) will share nodes of the trie branch starting from the root, thereby reducing the

required memory. A tradeoff exists between computational time and computational

space; whether to have a lesser computational time by increasing the storage require-

ment, or to have a lesser storage space by increasing the computational time. To address

this issue, two forms of WordTrie are proposed: one with an optimised computation

time, which is reviewed in Section 2.4.1, and another with an optimised storage space,

which is discussed in Section 2.4.2. WordCode codes can be explicitly stored in the

WordTrie or computed. In the time-optimised method, WordCode codes are stored in

the WordTrie, thereby increasing the storage space by reducing the computation time.

In the space-optimised method, the WordCode is computed, which increases the com-

putation time required and thereby reduces the storage space required.
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2.4.1 Time-optimised WordTrie

Figure 2.4 shows the WordTrie with the optimised computation time. Here, the words

are split into characters and stored as nodes in the trie, with the first character connected

to the root node. Words with the same starting substring (prefix) will share the nodes

of the trie branch starting from the root. The array in the time-optimised WordTrie is

an array of structures, with each entry containing two fields: the WordCode codes and

the pointer connecting the WordCode codes to their respective words. The pointer in

the array contains the address of the trie node containing the last character of the word

corresponding to the WordCode code.

Thus, if the WordCode code page has ‘m’ words, then an array of structures of

size ‘m’ is used to store the WordCode code and the respective words’ address values.

The WordCode codes are stored in the order of the allocation of the code. The nodes

containing the last character of the words in the trie are linked to the corresponding

WordCode code in the array. The links connecting the nodes of the trie are bidirectional,

and the links pointing to the array from the trie are unidirectional.

The method for traversing the time-optimised WordTrie to find the WordCode code

associated with a word is described in Section 2.4.1.1. The method for traversing the

time-optimised WordTrie to find the word associated with a WordCode code is de-

scribed in Section 2.4.1.2.

2.4.1.1 Traversing the time-optimised WordTrie to find the WordCode code associated with a word

To find the WordCode for a given word in the time-optimised WordTrie, the WordTrie

must be traversed from the root. Whether the root node has a child node that matches

the first character of the word is determined, and this process continues until the last

character of the word is encountered. Finally, whether a link exists from the last char-

acter node to the array is determined. If so, then it is a word hit, and the algorithm will

retrieve the WordCode from the array. In cases for which the word cannot be success-

fully traversed in the trie or for which no link from the last character of the word in the

trie to the array exists, it is a word miss.
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Consider the word ‘The’ for which the code must be found in the time-optimised

WordTrie. The first character of the word is ‘T’; whether the root node has a child ‘T’ is

determined, and the path from the root node to node ‘T’ is traversed. The next character

is ‘h’; whether node ‘T’ has a child node ‘h’ is determined, and the path from node ‘T’

to node ‘h’ is traversed. The last character is ‘e’; whether node ‘h’ has a child node ‘e’

is determined, and the path from node ‘h’ to node ‘e’ is traversed. Finally, whether a

link from the last character node ‘e’ to the array exists is determined, and the algorithm

will return the code ‘1-3’, which points to the last character node ‘e’ in the array.

Let ‘n’ be the number of characters in the word to be encoded and ‘p’ be the number

of distinct characters in the WordTrie. Traversing the time-optimised WordTrie to find

the WordCode code associated with a word is of θ(p × n) because, for every character

in the word, at most ‘p’ comparisons are made in the WordTrie at each level.

2.4.1.2 Traversing the time-optimised WordTrie to find the word associated with a WordCode code

To find the word for a given WordCode in the time-optimised WordTrie, the WordTrie

must be traversed from the array. Consider the WordCode ‘1-3’ for which the word

needs to be found in the time-optimised WordTrie. The node of the array with the

WordCode ‘1-3’ is fetched. The pointer in the node that matches the WordCode code

contains the address of the trie node containing the last character of the word associated

with the WordCode. In this case, the pointer ‘p4’, which is in the node of the array with

WordCode ‘1-3’, contains the address of the trie node containing the last character of

the word associated with the WordCode.

The last character node of the trie is traversed to the root of the trie to fetch the

word associated with the code. Node ‘e’, which is in the address ‘p4’, is visited. The

algorithm will look for the parent node of ‘e’, and it will traverse to node ‘h’. Because

the root node is not reached, the algorithm will again look for the parent node of ‘h’ and

traverse to node ‘T’. Because the root node is not reached, the algorithm will again look

for the parent node of ‘T’ and traverse to the root node. Once the root node is reached,

the reverse of the path traversed will provide the word associated with the code, and the

word ‘The’ is returned.

Traversing the time-optimised WordTrie to find the word associated with a Word-

Code code is of θ(1) because once the WordCode is obtained, the index of the array
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with the WordCode is obtained, and the path back to the root node is traversed to obtain

the word associated with the WordCode.

2.4.2 Space-optimised WordTrie

Figure 2.5 shows the optimised storage space version of WordTrie, where the words are

split into characters and stored as nodes in the trie, with the first character connected to

the root node. Words with the same starting substring (prefix) will share common nodes

of the trie branch starting from the root. The array in the space-optimised WordTrie is

an array of pointers (for ‘m’ words in the WordCode code page), and an array with ‘m’

nodes is initialised. The address of the node containing the last character of the word

in the trie is stored in the array in the order in which code is allocated for the words.

Additionally, the nodes containing the last character of the words in the trie are linked

to the corresponding addresses in the array.

The WordCode code is dynamically computed based on the pointer from the node

holding the last character of the word in the array using the P2WC and WC2P algo-

rithms, as described in Sections 2.4.2.1 and 2.4.2.2, respectively. Figure 2.6 shows the

template for mapping the WordCode code to the position of the array. The links con-

necting the nodes of the trie are bidirectional, and the links pointing to the array from

the trie are unidirectional.

The method for traversing the space-optimised WordTrie to find the WordCode code

associated with a word is described in Section 2.4.2.3. The method for traversing the

space-optimised WordTrie to find the word associated with a WordCode code is outlined

in Section 2.4.2.4.

2.4.2.1 Position to WordCode (P2WC)

Algorithm 3 is the position-to-WordCode (P2WC) algorithm that is used to convert

the position of the array in the space-optimised WordTrie to the WordCode code. The

‘getPrefixCode(i)’ method is used to obtain the ‘ith’ prefix code from Table 2.1.

The method ‘get1ByteCode(j)’ is used to obtain the ‘jth’ one-byte code, and the

‘get2ByteCode(k)’ method is used to obtain the ‘kth’ two-byte code from Table

2.2.
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Figure 2.6: Position-to-WordCode mapping

If the position is less than or equal to ‘128’, then it is of type WC1. For WC1,

the prefix value is the first prefix code, and the suffix value is the one-byte code of the

position. The ‘Append’ method appends the prefix and suffix values to convert it into

WordCode. If the position is greater than 128 and less than or equal to 295, 040, then it is

of type WC2. First, the position value is subtracted from 129 (one plus the total number

of codes of WC1). Then, the prefix index is computed as one plus the ratio of the posi-

tion to the total number of suffix codes (128 ∗ 128). The ‘getPrefixCode(Prefix

Index)’ method is used to obtain the ‘Prefix’ code from Table 2.1. A temporary

variable named ‘temp’ is used to store the percentage of the position value for the

suffixes.
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Algorithm 3: Position-to-WordCode (P2WC) algorithm
Input: Position P.
Output: WordCode WC.

1 begin
2 if P > 0 and P <= 128 then
3 Prefix = getPrefixCode[1]
4 Suffix = get1ByteCode[P ]
5 WC = Append(Prefix, Suffix)

6 end
7 if P > 128 and P <= 295040 then
8 P = P − 129
9 Prefix = getPrefixCode[1 + ((P )/(128 ∗ 128))]

10 temp = P%(128 ∗ 128)
11 Suffix 1 = get1ByteCode[temp/128]
12 Suffix 2 = get1ByteCode[temp%128]

13 end
14 if P > 295040 and P <= 141527936 then
15 P = P − 295041
16 Prefix = getPrefixCode[1 + ((P )/(128 ∗ 16299))]
17 temp = P%(128 ∗ 16299)
18 Suffix 1 = get1ByteCode[temp/16299]
19 Suffix 2 = get2ByteCode[temp%128]

20 end
21 if P > 141527936 and P <= 282760832 then
22 P = P − 141527937
23 Prefix = getPrefixCode[1 + ((P )/(16299 ∗ 128))]
24 temp = P%(16299 ∗ 128)
25 Suffix 1 = get2ByteCode[temp/128]
26 Suffix 2 = get1ByteCode[temp%16299]

27 end
28 if P > 282760832 and P <= 67918974050 then
29 P = P − 282760833
30 Prefix = getPrefixCode[1 + ((P )/(16299 ∗ 16299))]
31 temp = P%(16299 ∗ 16299)
32 Suffix 1 = get2ByteCode[temp/16299]
33 Suffix 2 = get2ByteCode[temp%16299]

34 end
35 WC = Append(Prefix, Suffix 1, Suffix 2)
36 return(WC)

37 end

The ‘Suffix 1’ is computed as the ratio of ‘temp’ to the total number of codes in

‘Suffix 2’ (128). The ‘Suffix 2’ is calculated as the percentage of ‘temp’ to the
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total number of codes in ‘Suffix 1’ (128). Finally, the ‘Append’ method appends

the ‘Prefix’, ‘Suffix 1’ and ‘Suffix 2’ values to convert the position to Word-

Code. If the position is greater than 295, 040 and less than or equal to 141, 527, 936,

then it is of type WC3. If the position is greater than 141, 527, 936 and less than or

equal to 282, 760, 832, then it is of type WC4. For types WC3 and WC4, the Word-

Code is computed in the same manner as for type WC2; however, the total number of

‘Suffix 2’ in WC3 and ‘Suffix 1’ in WC4 is 16, 299 (total number of two-byte

codes, as specified in Table 2.3). If the position is greater than 282, 760, 832 and less

than or equal to 67, 918, 974, 050, then it is of type WC5. Finally, the method returns

the WordCode code for the position.

2.4.2.2 WordCode-to-position (WC2P) algorithm

Algorithm 4 is the WordCode-to-position (WC2P) algorithm that is used to convert

the WordCode code to the position of the array in the space-optimised WordTrie. The

‘getSize(WC)’ method is used to obtain the size of the WordCode ‘WC’ in bytes, and

the ‘getPrefix(WC)’ method is used to obtain the prefix part from the WordCode. If

the WordCode is of type WC1, then the ‘getSuffix(WC)’ method is used to obtain

the suffix part from the WordCode. If the WordCode is of type WC2, WC3, WC4 or

WC5, then the ‘getSuffix 1(WC)’ method is used to obtain the first suffix part from

the WordCode, and the ‘getSuffix 2(WC)’ method is used to obtain the second suf-

fix part from the WordCode. The ‘getPIndex(Code)’ method is used to obtain the

prefix index of ‘Code’ from Table 2.1. The ‘get1BIndex(Code)’ method obtains

the one-byte suffix index of ‘Code’ from Table 2.2. The ‘get2BIndex(Code)’

method is used to obtain the two-byte suffix index of ‘Code’ from Table 2.2. If the

WordCode size is two bytes, then it is of type WC1. The index of the suffix part pro-

vides the position of the array for type WC1. If the WordCode size is three bytes, then it

is of type WC2. If the WordCode size is four bytes and the ‘Suffix 1’ size is one byte,

then it is of type WC3. If the WordCode size is four bytes and the ‘Suffix 1’ size is

two bytes, then it is of type WC4. If the WordCode size is five bytes, then it is of type

WC5. The position for the WC2, WC3, WC4 and WC5 types is computed as the sum of

the number of codes at the previous level and the product of ‘Prefix’, ‘Suffix 1’

and ‘Suffix 2’. Finally, the method returns the position for the WordCode code.
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Algorithm 4: WordCode-to-Position (WC2P) algorithm
Input: WordCode WC.
Output: Position P.

1 begin
2 size = getSize(WC)
3 if size == 2 then
4 P = get1BIndex(getSuffix(WC))
5 end
6 if size == 3 then
7 Prefix = getPIndex(getPrefix(WC))− 1
8 Suffix 1 = get1BIndex(getSuffix 1(WC))
9 Suffix 2 = get1BIndex(getSuffix 2(WC))

10 P = 128 + (Prefix ∗ Suffix 1 ∗ Suffix 2)

11 end
12 if size == 4 then
13 Prefix = getPIndex(getPrefix(WC))− 1
14 if getSize(getSuffix 1(WC)) == 1 then
15 Suffix 1 = get1BIndex(getSuffix 1(WC))
16 Suffix 2 = get2BIndex(getSuffix 2(WC))
17 P = 295040 + (Prefix ∗ Suffix 1 ∗ Suffix 2)

18 end
19 else
20 Suffix 1 = get2BIndex(getSuffix 1(WC))
21 Suffix 2 = get1BIndex(getSuffix 2(WC))
22 P = 141527936 + (Prefix ∗ Suffix 1 ∗ Suffix 2)

23 end
24 end
25 if size == 5 then
26 Prefix = getPIndex(getPrefix(WC))− 1
27 Suffix 1 = get2BIndex(getSuffix 1(WC))
28 Suffix 2 = get2BIndex(getSuffix 2(WC))
29 P = 282760832 + (Prefix ∗ Suffix 1 ∗ Suffix 2)

30 end
31 return(P )

32 end

2.4.2.3 Traversing the space-optimised WordTrie to find the WordCode associated with a word

To find the WordCode for a given word in the space-optimised WordTrie, the WordTrie

must be traversed from the root. Consider the word ‘The’, for which the code must

be found in the space-optimised WordTrie. The first character of the word is ‘T’; the

algorithm checks whether the root node has a child ‘T’ and traverses from the root node
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to node ‘T’. The next character is ‘h’; the algorithm checks whether node ‘T’ has a

child node ‘h’ and traverses from node ‘T’ to node ‘h’. The last character is ‘e’; the

algorithm checks whether node ‘h’ has a child node ‘e’ and traverses from node ‘h’ to

node ‘e’. If a link from the last character node to the array exists, then the position in

the array is retrieved. In this case, a link from the last character node ‘e’ to the array

exists, and the position ‘4’ is returned. The position ‘4’ is converted to the WordCode

‘1-3’ using the P2WC algorithm.

2.4.2.4 Traversing the space-optimised WordTrie to find the word associated with a WordCode

To find the word for a given WordCode in the space-optimised WordTrie, the WordTrie

must be traversed from the array. Consider the WordCode ‘1-3’, for which the word

must be found in the space-optimised WordTrie. The WC2P algorithm is used to convert

the WordCode to the position in the array. The WordCode ‘1-3’ is passed to the WC2P

method, and position ‘4’ is returned by the method. The ‘4th’ position in the array

contains ‘p4’, which is the address of the trie node containing the last character of the

word. The last character node is traversed to the root of the trie to fetch the word

associated with the code. In this case, node ‘e’, which is in the address ‘p4’, is visited

first. Then, the algorithm looks for the parent node of ‘e’ and traverses to node ‘h’.

Because the root node is not reached, the algorithm again looks for the parent node of

‘h’ and moves to node ‘T’. Because the root node is not reached, the algorithm again

looks for the parent node of ‘T’ and moves to the root node. Once the root node is

reached, the reverse of the path traversed provides the word associated with the code,

and the word ‘The’ is returned.

2.5 Experimental results

2.5.1 WordCode code page implementation

Because the English language is used by 59% of all websites7, the experimental setup

and evaluation were performed for encoding text files with English text. A word is

formed by a sequence of Unicode, irrespective of the language. This work can also be

extended to other languages by adding the words of the other languages to the WordTrie

and allocating the subsequent unassigned WordCode codes. During the encoding with

7Usage Statistics of Content Languages for Websites, https://w3techs.com/technologies/overview/content language,
Accessed on 25/05/2020.
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WordCode described in Section 2.3.3.2, for the English language, the word characters

are considered as the set of uppercase characters (UTF 97 to 122), lowercase characters

(UTF 65 to 90) and numbers (UTF 48 to 57). For other languages, the corresponding

UTF code can also be included. WordCode performs better for text-containing words

only.

The complete word list to be used by the WordCode code page can be obtained by

crawling the entire web; however, due to resource limitations, the crawl is limited to

the websites Wikipedia8 and DMOZ9. Most of the words used across the web are also

found on Wikipedia and DMOZ. The Wikipedia and DMOZ webpages were parsed for

continuous occurrences of word characters, i.e., uppercase characters (A−−Z), lower-

case characters (a−−z) and numbers (0−−9). Words with lengths ranging from 1 to

29, were obtained, representing English words, words from various domains and words

used to represent HTML syntax. Because WordCode uses a minimum of two bytes to

represent a word, the words with lengths of one and two were eliminated. Additionally,

words that occurred less than 100 times in the overall crawl were eliminated.

Table 2.5 shows the number of words and their lengths generated by parsing the

Wikipedia and DMOZ websites. A total of 3.1 million (3,190,612) words were gener-

ated and used to construct the WordTrie. Although these 3.1 million words contribute

28 million (28,440,857) characters in total, only 9.6 million (9,608,014) characters are

required in the WordTrie because words with the same starting substring will share com-

mon nodes of the trie. This WordTrie is used by the WordCode code page for encoding

text files. Both the time-optimised WordTrie and the space-optimised WordTrie con-

tain the same set of words and will obtain the same WordCode for any given word and

the same word for any given WordCode. The difference between the time-optimised

WordTrie and space-optimised WordTrie is the method by which the WordTrie is stored

and traversed. Space-optimised WordTrie takes less memory but requires more com-

putations to obtain the word and WordCode for the given WordCode and word, re-

spectively. Conversely, the time-optimised WordTrie requires more memory but fewer

computations to obtain the word and WordCode for the given WordCode and word,

respectively.

8Wikipedia, The Free Encyclopedia, https://en.wikipedia.org, Accessed on 08/24/2017.
9DMOZ- Open directory project, https://www.dmoz.org/, Accessed on 12/24/2016.
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Table 2.5: Number of words generated

Word Length Number of Words
3 614
4 3669
5 291886
6 428831
7 479778
8 471482
9 404327

10 327541
11 238361
12 169845
13 116623
14 81133
15 55708
16 37529
17 25692
18 17652
19 12399
20 8391
21 5880
22 4139
23 2849
24 1945
25 1498
26 1068
27 779
28 582
29 411

2.5.2 WordCode encoding evaluation

The WordCode encoding algorithm has been evaluated over files containing text data

from the Gutenberg corpus, Canterbury corpus, large corpus, Calgary corpus and Sile-

sia corpus. These corpora contains text files, database files, program files and web

documents. These corpora contain benchmarks for testing lossless data compression

algorithms.

Table 2.6 shows a comparison of the size of the test data files with Unicode encoding

and WordCode encoding. Table 2.6 also includes the number of files taken from each

corpus, along with the total file size of the existing files and the total file size after Word-

Code encoding. Because the total file size of the Gutenberg corpus is in the millions and
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because the total size of all other corpora is in the thousands, Table 2.6 is reproduced in

Table 2.7, with the total file size being normalised to 100 KB to facilitate a comparison

of the results. Table 2.7 also contains the average file size being computed, where, for a

100 KB Unicode file, WordCode encoding takes only 80.1 KB, thereby saving 19.9 KB

of memory. Figure 2.7 presents the normalised graph of the comparison of the total file

size of the actual file with the total file size of the WordCode file.

Table 2.8 shows the compression ratio and space savings of WordCode encoding

with respect to Unicode encoding on the test data. The compression ratio is computed as

the ratio between the Unicode file size and that of the WordCode file size. On average,

compressing a 100-MB file to 80.1 MB achieves a compression ratio of 100/80.1 =

1.24, where the ratio of the Unicode file size to the WordCode file size is 1.24 : 1. The

space savings are obtained using one minus the ratio of the WordCode file size to the

Unicode file size. On average, compressing a 100-MB file to 80.1 MB achieves a space

savings of 1 − (80.1/100) = 0.199, where the space savings of WordCode amounts to

19.9% compared to the actual Unicode.

If the request to find the WordCode for the word during encoding is successful and

the WordCode is returned, then it is a word hit; otherwise, it is a word miss. Table 2.9

shows the comparison of the percentage of word hits and word misses on the WordTrie

for the test data. Version one of the WordTrie achieves 95.95% word hits on average

with the word list generated from the Wikipedia and DMOZ websites. Crawling the

entire web, adding newly occurring words periodically to the WordTrie and updating

the WordTrie on all WordCode-configured devices will further increase the word hit

percentage.

Table 2.10 compares the proposed WordCode with the related work described in

Section 2.2. Although the compression ratio is average compared to other work, Word-

Code is the only approach that is capable of encoding 67.9 billion words.
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2.6 Summary

This chapter presents an advancement of existing character-based encoding methods for

text data (including linked data). The proposed system, i.e., “WordCode”, can encode

up to 67.9 billion words irrespective of language, each with a maximum size of five

bytes. Additionally, the structure of the code page is upgraded from the regular table-

based storage used in character encoding to a customised trie model called “WordTrie”.

WordCode is an optimised variable-length coding in which the most-frequent words

receive small codes, and the size of the WordCode is always smaller than the size of

the Unicode encoding. Traversing the WordTrie to find the word associated with a

WordCode code is of θ(1), and traversing the WordTrie to find the WordCode code

associated with a word of length ‘n’ is of θ(p× n), where ‘p’ is the number of distinct

characters in the WordTrie. Because the WordCode-encoded files are smaller than the

Unicode-encoded files, machines handling text data with WordCode encoding achieve a

reduced workload compared to machines processing text data with Unicode encoding.
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Chapter 3

Partitioning

3.1 Introduction

The LDSF must handle linked data from all the SPARQL endpoints, and thus, it will

be difficult for a single machine to store and process the entire linked data. Partitioning

the linked data into multiple machines has two main advantages:

• Distributing the storage to multiple machines will improve the read and write
time.

• Distributing the query processing load to multiple systems reduces the workload.

The query processing load can be reduced only by good partitioning techniques. No

single design or architecture is a clear winner for the complex SPARQL workload (Aluç

et al., 2014). In some applications, partitioning the linked data based on its contributors

might be preferred. However, in an information retrieval framework, partitioning must

be based on topics (i.e., different domains) because queries are often on a smaller set of

topics. A good partitioning technique will use a minimum amount of data transmitted

between nodes to execute the query. Substantial research on hash-based partitioning,

cloud-based partitioning, and graph-based partitioning has been reported. However,

these sophisticated partitioning algorithms have high preprocessing costs and do not

partition on topics.

In an information retrieval framework, the queries are often bounded to “the set of

subjects belonging to the same type”, termed as a ‘nexus’ in this thesis. For example, the

car nexus contains the collection of subjects representing cars; similarly, the medicine

nexus consists of the collection of subjects representing medicine. Since the chance of

inter-nexus queries with cars and medicine is minimal, query processing can be im-

proved by partitioning the linked data based on nexus. However, identifying the nexus

is difficult, and many assisted clustering algorithms have been reported to group the

linked data based on subjects. In practice, manually assisting the machine in clustering

the subjects might be impossible considering the volume and diversity of data (Stevens

et al., 2019).



In this chapter, an automated approach to cluster the linked data is proposed. The

proposed methods cluster the linked data by identifying the nexus semantically using

a novel clustering algorithm. The proposed algorithm identifies the core properties of

the subjects and performs bilevel, nexus-based hierarchical agglomerative clustering to

partition the linked data. The proposed algorithm does not depend on training data or

expert assistance and can partition the schema-less linked data efficiently. The proposed

clustering technique partitions the linked data with a precision of 98.7% on the gold

standard dataset.

The remainder of this chapter is organised as follows. Section 3.2 discusses related

work. Section 3.3 provides a detailed description of the proposed cluster-based parti-

tioning technique. Section 3.4 presents the experimental results. Finally, Section 3.5

summarises the work.

3.2 Related works

Extensive studies of partitioning linked data have been conducted by Özsu (2016), Ma

et al. (2016), Pan et al. (2018) and Wylot et al. (2018), and these works have highlighted

three main categories of partitioning of linked data:

1. Graph partitioning

2. Hash partitioning

3. Cloud partitioning

3.2.1 Graph partitioning

Graph partitioning (Huang et al., 2011; Galárraga et al., 2014) considers the linked

data as a graph and partitions it into subgraphs. In linked data, the edges for sub-

jects belonging to the same topic will be minimised, and the edges connecting differ-

ent topics are maximised. For example, consider the subjects ‘IBM Laptop 1’ and

‘IBM Laptop 2’; there will be fewer edges connecting these two compared with

connections between these subjects and other domains, such as ‘Processor’ and

‘Storage’. The query for the ‘IBM Laptop’ will require processing across multi-

ple nodes. These types of partitioning incur high communication costs during query

execution, as the data need to be executed and transferred from multiple nodes.
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3.2.2 Hash partitioning

Hash partitioning (Lee & Liu, 2013; Harbi et al., 2016) methods distribute triples among

the partitions by hashing the subject URI. The drawback of hash partitioning is that it

does not consider the topic or semantic relatedness while partitioning. The subjects that

belong to the same topic might not be placed in the same partition, resulting in a consid-

erable amount of data being shipped between nodes for query processing. The popular

triplestore Virtuoso Cluster1 partitions the linked data using a hashing technique.

3.2.3 Cloud partitioning

Cloud-based approaches (Papailiou et al., 2014) employ triple pattern-based join pro-

cessing such as MapReduce on existing cloud computing platforms, such as Hadoop2

or Cassandra3, to store the RDF graph. These approaches enjoy the benefits offered

by cloud platforms, such as high scalability and fault-tolerance, but suffer from lower

performance because it is difficult to adapt MapReduce to graph computation.

These proposed partitioning approaches are more suitable for single-endpoint linked

data. For an information retrieval framework handling linked data from multiple end-

points, clustering the linked data and partitioning based on the clusters might be a more

appropriate method. Section 3.2.4 discusses existing approaches to cluster linked data.

3.2.4 Clustering linked data

Mirizzi et al. (2010) proposed clustering based on the similarity between two sub-

jects. The similarity is computed based on the number of webpages containing the

value of both subjects ‘rdfs:label’. Consider two professors, ‘Prof.ABC’ and

‘Prof.XYZ’, from ‘Stanford University’ and ‘Princeton University’,

respectively. Although ‘Prof.ABC’ and ‘Prof.XYZ’ belong to the same category

(Professor), if no webpages contain the names of both professors, then they would be

mismarked as ‘not similar’. ‘Prof.ABC’ and ‘Stanford University’ belong to

different categories, i.e., ‘Professor’ and ‘University’. If a webpage contains

both of these labels, they would be incorrectly marked as relevant.

1http://docs.openlinksw.com/virtuoso/virtuosofaq10/
2http://hadoop.apache.org
3http://cassandra.apache.org
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Nentwig et al. (2016, 2017) proposed a user knowledge-based clustering technique

that takes the domain knowledge about the subjects and a function to determine the

similarity between the subjects as an input from the user to the cluster. Ferrara et al.

(2015) proposed a dimensional clustering technique to cluster the subjects; however, the

technique’s drawback is that the dimensions of the data need to be manually defined.

Gong et al. (2018) studied different approaches for lexical-based clustering of prop-

erties without weighing the semantic value of the linked data. However, in the proposed

technique, the linked data are clustered based on their semantic relatedness rather than

their lexical relatedness.

3.3 Proposed cluster-based partitioning

Cluster-based partitioning of linked data subjects is proposed. The term nexus is defined

as “the set of subjects belonging to the same type” in the linked data. The method of

identifying nexus of the subjects using the core predicates is discussed in Section 3.3.1.

The bilevel, nexus-based hierarchical agglomerative clustering of linked data is narrated

in Section 3.3.2. Section 3.3.3 outlines the nexus clustering algorithm.

3.3.1 Core and common predicates

The predicates are first grouped into common predicates and core predicates.

1. Common predicates are those that frequently occur in common across subjects
and do not contribute to differentiating the subjects belonging to different clusters.

2. Core predicates are those other than the common predicates that uniquely identify
the nexus of the subject.

Figure 3.1 represents the sample classification of predicates as core predicates and

common predicates for the two film subjects ‘Titanic’ and ‘Avatar’ and the two actor

subjects ‘Leonard DiCaprio’ and ‘Zoe Saldana’. In Figure 3.1, title, abstract, type, label

and images are some of the common predicates that occur in both films and actors.

In Figure 3.1, the core predicates of the film are imdbID, producer, starring, budget,

runtime, language, etc., and the core predicates of the actors are awards, name, imdbID,

starring, etc. The method of finding the core and common predicates is discussed in

Section 3.3.1.
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Figure 3.1: Sample subjects with core and common predicates

3.3.1.1 Finding core and common predicates

The core and common properties can be found by plotting the overall predicates and

their count using the following SPARQL query

SELECT

DISTINCT(?Predicate), ( COUNT(?Predicate) AS ?PCount )

WHERE

{

?Subject ?Predicate ?Object.

}

ORDER BY DESC(COUNT(?Predicate))

This SPARQL query generates the count of all predicates sorted in descending or-

der. Figure 3.2 shows the structure of the graph plotted for the above SPARQL query

executed in DBpedia SPARQL endpoint4. Since the core predicates are those that occur

4http://dbpedia.org/sparql, Accessed on 20/12/2019
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only in the subjects belonging to the nexus, the count of core predicates will be low, and

the common predicates occurring across the nexus will have a high count. As a result,

the core and common predicates can be differentiated using the slope in the graph from

α to β. From 1 to α are the common predicates, and from β are the core predicates.

There will be semi-common predicates from α to β, such as ‘foaf:name’, which will

occur for a small group of nexuses.

Figure 3.2: Slope from common to core predicates

3.3.2 Bilevel nexus-based hierarchical agglomerative clustering

Consider two subjects, ‘Harvard University’ and ‘Stanford University’,

as shown in Figure 3.3. Here, predicates ‘Director’, ‘Dean Administration’

and ‘has Department’ are the primary core predicates, and the predicates ‘Resea-

rch Interest’, ‘Publication’, ‘Office’, ‘Professor’, ‘Student’ and

‘Organises’ are the secondary core predicates. ‘Director’ is an incoming predi-

cate, and ‘has Department’ is an outgoing predicate. The subjects are considered

similar only if the primary- and secondary-level core predicates are similar. First the

similarity of the primary core predicates is checked, and the similarity of the secondary

core predicates is checked only if the primary core predicates are similar.

The incoming predicates are labelled as ‘I’ predicates, and the outgoing predicates

are labelled as ‘O’ predicates. In Figure 3.3, ‘Director’ and ‘Dean Administra-

tion’ are ‘I’ predicates, while ‘has Department’ is the ‘O’ predicate. The second-

level predicates are labelled ‘II’, ‘IO’, ‘OI’ and ‘OO’, as in Table 3.1, where ‘I’ and

‘O’ represent the incoming and outgoing predicates, respectively.
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Figure 3.3: Example clustering

In Figure 3.3, ‘Research Interest’ and ‘Publication’ are the ‘IO’ pred-

icates; ‘Office’ is the ‘II’ predicate; ‘Professor’ and ‘Student’ are the ‘OI’

predicates; and ‘Organises’ is the ‘OO’ predicate.

Table 3.1: Notation of secondary-level predicates

Notation First level Second level
II Incoming Incoming
IO Incoming Outgoing
OI Outgoing Incoming
OO Outgoing Outgoing
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3.3.3 Nexus clustering algorithm

The Algorithm 5 is the nexus clustering algorithm. The inputs to the nexus clustering

algorithm are the linked data graph (G) and the expected number of clusters (n). The set

of subjects (Sa) and predicates (Pa) are extracted from the linked data graph (G). The

common predicates (CPp) and semi-common predicates (SPp) are determined using

the procedure discussed in Section 3.3.1. Predicates that occur only once (Op) are

eliminated, as they have no use in finding similarity.

Algorithm 5: Nexus clustering algorithm
Input: RDF graph G;

1 n // Number of clusters
Output: Cx = {C1, C2, ..., Cm} // Set of clusters

2 Sa = {S1, S2, ..., Sp} // Set of all subjects
3 Pa = {P1, P2, ..., Pq} // Set of all predicates
4 Op = {O1, O2, ..., Or} // Set of predicates with COUNT=1
5 CPp = {CP1, CP2, ..., CPs} // Set of common predicates
6 SPp = {SP1, SP2, ..., SPt} // Set of semi-common predicates
7 Py = {{Pa} − {CPp + SPp +Op}} // ORDER BY ASC on COUNT(Ps)
8 Cx = Sa // Initially, each subject is a cluster
9 γ = 100; // Similarity score

10 while ((γ > 0) && (COUNT (Cx) > n)) do
11 for (pi : Py) do
12 Cj = getClusters(pi, Cx);
13 for all pairs of clusters (cx, cy) from Cj do
14 Ppcx = getPrimaryPredicates(cx);
15 Ppcy = getPrimaryPredicates(cy);
16 PrimarySimilarityScore = getPrimarySimilarity(Ppcx, Ppcy);
17 if PrimarySimilarityScore >= γ then
18 Pscx = getSecondaryPredicatesSet(cx);
19 Pscy = getSecondaryPredicatesSet(cy);
20 SecondarySimilarityScore =

getSecondarySimilarity(Pscx, Pscy);
21 if SecondarySimilarityScore >= γ then
22 Cx =MergeCluster(cx, cy);
23 end
24 end
25 end
26 γ −−;
27 end
28 return(Cx);
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The core predicate is the difference between all predicates (Pa) and common pred-

icates (CPp), semicommon predicates (SPp) and predicates occurring once (Op). Be-

cause the number of core predicates is much smaller than the number of subjects, the

cluster similarity search is constrained with the subjects corresponding to every pred-

icate5. The method of clustering using the core predicates minimises the comparison

space and reduces false positives while clustering. Each subject is initially assigned as

a cluster, and the loop continues while the similarity score is greater than zero and the

cluster count is greater than (n).

For every core predicate pi, all clusters Cj containing the predicate pi are obtained

using the ‘getClusters’ method. For every pair of clusters cx and cy in Cj , the similarity

in the first-level predicates is found using the ‘getPrimarySimilarity’ method. The ‘get-

PrimarySimilarity’ method returns the number of I and O predicates that are similar

between any two clusters at the first level. If the primary-level predicates are found to

be greater than or equal to γ percentage, then the secondary-level predicate similarity

is found between the clusters using the ‘getSecondarySimilarity’ method. The ‘getSec-

ondaryPredicatesSet’ method is used to obtain the ‘II’, ‘IO’, ‘OI’ and ‘OO’ predicates

for the given clusters. The ‘getSecondarySimilarity’ method returns the number of sim-

ilar predicates ‘II’, ‘IO’, ‘OI’ and ‘OO’ between the given clusters. If the secondary-

level similarity score is greater than or equal to γ percentage, then the clusters cx and cy

are merged using the ‘MergeCluster’ method. Finally, the algorithm returns the clusters

of subjects.

3.4 Experimental setup and evaluation

3.4.1 Experimental setup

LDSF was developed using Java with the support of the Apache Jena6 package. The

SPARQL endpoint availability, performance, discoverability and interoperability were

collected from SPARQLES (Vandenbussche et al., 2017). Initially, 776 SPARQL end-

points were found across the Internet7,8. Some of the SPARQL endpoints, such as

5In DBpedia, the no. of predicates is 60,649 & the no. of subjects is 10,721,963; Accessed on 11
November 2018.

6https://jena.apache.org
7https://www.w3.org/wiki/SparqlEndpoints, Accessed on 10 March 2018.
8http://sparqles.ai.wu.ac.at/api/endpoint/list
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“http://upenn.eagle-i.net/sparqler/sparql” and “https://eagle-i.itmat.upenn.edu/sparqle-

r/sparql”, contain the same data. These SPARQL endpoints were queried for their avail-

ability, and only 275 SPARQL endpoints containing distinct data were found9. Table

3.2 shows the total amount of data available from the 275 SPARQL endpoints.

Table 3.2: Data available from the SPARQL endpoints

Type Total count
Triples 26.5 billion
Subjects 0.4 billion
Predicates 1.7 billion
Object as values 12.6 billion

Although the final goal of LDSF is to allow users to access data from 275 SPARQL

endpoints, due to resource limitations, a test dataset was created to evaluate the clus-

ter based partitioning. 77,000 subjects were sampled from DBpedia belonging to eight

categories: Film, Artist, Director, Producer, Writer, Song, Musician and Singer. The

bilevel nodes and edges of the 77,000 subjects were retrieved from the 275 SPARQL

endpoints. The ‘skos:exactMatch’ property is used to obtain the different URIs

used by the other SPARQL endpoints used to represent the same data (Halpin et al.,

2010). The dataset is a gold standard for cluster evaluation because the sampled cate-

gories are closely related and share some properties.

3.4.2 Evaluation metrics

Figure 3.4 is the sample clustering of the eight classes using properties. Here, all

clusters share common properties such as rdf:type and owl:sameAs. The semi-

common properties are shared among certain clusters. In Figure 3.4, the properties of

‘Person’ such as foaf:name are semi-common as they are shared among the Artist,

Director, Producer, Writer, Musician and Singer clusters.

Although the proposed clustering algorithm computes the similarity based on the

occurrence of the core properties, called the core occurrence ratio (COR), the results

are also tested for the normal occurrence ratio (OR) and matching ratio (MR).

9Queried on 10 March 2018.
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1. Matching ratio (MR): The matching ratio is the ratio of the number of distinct
predicates matching between the clusters to the total number of distinct predicates
in the clusters. Let ‘MRt’ be the total number of distinct predicates in the clusters
cx and cy, and let ‘MRm’ be the number of distinct predicates matching between
the clusters cx and cy. Then, the matching ratio ‘MR’ similarity between the
clusters cx and cy is calculated as the ratio of ‘MRm’ to ‘MRt’ as in Formula
3.1.

Matching ratio (MR) =
MRm

MRt

(3.1)

2. Occurrence ratio (OR): The occurrence ratio is the ratio of the total number of
occurrences of the predicates between the clusters to the total occurrences of the
predicates in the clusters. Let ‘ORt’ be the total occurrences of the predicates
in the clusters cx and cy, and let ‘ORm’ be the total number of occurrences of
the predicates between the clusters cx and cy. Then, the occurrence ratio ‘OR’
similarity between the clusters cx and cy is calculated as the ratio of ‘ORm’ to
‘ORt’ as in Formula 3.2.

Occurrence ratio (OR) =
ORm

ORt

(3.2)

3. Core occurrence ratio(COR): The core occurrence ratio is the occurrence ratio
calculated using the core predicates. This COR is used to calculate the similarity
score in the proposed nexus clustering algorithm. Let ‘CORt’ be the total number
of occurrences of the core predicates in the clusters cx and cy, and let ‘CORm’
be the total number of occurrences of the core predicates between the clusters cx
and cy. Then, the core occurrence ratio ‘COR’ similarity between the clusters cx
and cy is calculated as the ratio of ‘CORm’ to ‘CORt’ as in Formula 3.3.

Core occurrence ratio (COR) =
CORm

CORt

(3.3)

3.4.3 Experimental results

Table 3.3 shows the clustering precision calculated using MR, OR and COR for the

primary incoming and outgoing predicates (I, O) and for the secondary incoming and

outgoing predicates (IO, OI, II). No secondary outgoing outgoing (OO) predicates were

found in any of the test data. The precision was calculated using Formula 3.4.

Precision =
True Positive

True Positive+ False Positive
(3.4)
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Figure 3.5 shows the line graph plotted for the mean clustering precision at various

levels. The core occurrence ratio (COR) achieves higher precision than the matching

ratio (MR) or occurrence ratio (OR).

Figure 3.5: Mean precision at different levels

In LDSF, the COR similarity was used to determine the cluster of each subject.

Table 3.4 shows the overall clustering precision, recall and F-measure computed using

the COR similarity. The recall and F-measure were calculated using formulas 3.5 and

3.6, respectively.

Recall =
True Positive

True Positive+ False Negative
(3.5)

F −measure = 2× Precision×Recall
Precision+Recall

(3.6)

Although methods such as dimensional clustering (Nentwig et al., 2016) and holis-

tic clustering (Lee et al., 2014) achieve high precisions of 0.993 and 0.71, respectively,

they require the manual definition of the training data from the user to achieve this high

clustering accuracy. In practice, manually defining training data for linked open data

is impractical due to the huge data volumes. In the study conducted by Gong et al.

(2018) on seven different automatic clustering techniques using 13 different measures,

the highest F-measure (Case 1) of 0.432 was achieved by single-linkage clustering in
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Table 3.4: Nexus clustering evaluation using the core occurrence ratio

Data Precision Recall F-measure
Film 0.974 0.896 0.907
Artist 0.959 0.844 0.898
Director 1.000 0.849 0.945
Producer 0.824 0.846 0.835
Writer 0.763 0.846 0.802
Song 0.902 0.991 0.879
Musician 1.000 0.858 0.995
Singer 0.988 0.863 0.921
Average 0.924 0.875 0.899

the N-gram approach. Although the highest precision (Case 2) was achieved by com-

plete linkage clustering on the overlap of the property values and N-gram, this method

achieved a very low recall of 0.039, with an F-measure of 0.075. Table 3.5 shows the

performance comparison of the proposed nexus clustering evaluated with the dataset

used by Gong et al. (2018). The proposed nexus-based clustering achieves an F-measure

of 0.929, with a precision and recall of 0.987 and 0.877 respectively, making it better

than current automated clustering approaches.

Table 3.5: Cluster comparison

Clustering Precision Recall F-Measure
Case 1: Single-linkage clustering in the N-gram
approach

0.534 0.363 0.432

Case 2: Complete linkage clustering on overlap
of property values and N-gram

0.971 0.039 0.075

Proposed Nexus clustering 0.987 0.877 0.929

3.5 Summary

This chapter presents a cluster-based partitioning of linked data subjects that is suit-

able for an information retrieval framework. The term ‘nexus’ is redefined according to

linked data as the “set of subjects belonging to the same type”. The proposed method

clusters the linked data using a novel nexus clustering algorithm. The key idea is to

identify the two-level core predicates of the subjects and use them for clustering. The

main benefit of our method is that it is automated and can cluster linked data from mul-

tiple SPARQL endpoints without the support of training data. The proposed algorithm

partitions the gold standard test data with a precision of 98.7% and recall of 87.7%.
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Chapter 4

Indexing

4.1 Introduction

The performance of information retrieval is highly dependent on the physical organi-

sation and indexing of the linked data. Indexing is a way to optimise the speed and

performance of querying the linked data by minimising the number of disk access cy-

cles. Without an index, the system must scan the entire RDF graph, which requires

very large amounts of computation resources and time. An inverted index is a popular

indexing technique used by web search engines. The inverted index maps the contents

of the web document, such as words or numbers, to the corresponding webpage in a

table.

Substantial research on permutation-based indexing of linked data has been reported

by surveys conducted by Faye et al. (2012), Wylot et al. (2018), Kaoudi & Manolescu

(2015) and Ali et al. (2020). These exhaustive indexes use the permutations of the

subject-predicate-object of the triples and are built on the hypothesis that the queries

are basic graph pattern (BGPs). However, the schema-free structure of the linked data

allows expressive SPARQL queries to be executed. These expressive SPARQL queries

are complex in terms of representing graph patterns. A permutation-based index per-

forms better only on BGP queries in a single SPARQL endpoint. However, in an infor-

mation retrieval framework, because of the necessity of indexing the linked data from

all the SPARQL endpoints, permutation-based indexing will outrun storage.

In this chapter, indexing based on an inverted index and a hybrid data structure

named ‘trist’ is proposed. The structure of trist is inspired by the structure of WordTrie,

which is discussed in Chapter 2, Section 2.4. Trist is formed by linking a tree and a dou-

bly linked list. The proposed indexing method benefits from the fact that an inverted

index facilitates a relatively fast search. In contrast to the reported permutation-based

indexing methods, the trist-based indexing method has a smaller storage size. The pro-

posed trist-based indexing supports incremental indexing, i.e., the insertion and deletion

of data do not require the complete rebuilding of the index. The time complexity for

searching for a URI in the proposed trist-based indexing is θ(m), where ‘m’ is the length



of the URI.

The remainder of this chapter is organised as follows. Section 4.2 discusses the

related work. Section 4.3 provides a detailed description of the proposed indexing tech-

nique. Section 4.4 presents the experimental results. Finally, Section 4.5 summarises

the work.

4.2 Related work

Permutation-based indexing was initially proposed by Weiss et al. (2008), called Hex-

astore. Hexastore creates an index using all six possible combinations of the subject

(S), predicate (P) and object (O) of the triples. The six combinations of Hexastore are

SPO, OPS, SOP, OSP, PSO and POS, where S, P and O are the subject, predicate and

object of the triples. Later, variations of this permutation-based indexing began to at-

tract attention. The recent work on permutation-based indexing is summarised in Table

4.1. The S, P and O in Table 4.1 are the subject, predicate and object of the triples. The

underscores used by Hu et al. and Oh et al. denote an unknown attribute passed by the

query. In the five indexing models proposed by Chen et al., class (C) denotes the URI

of the subject and object, and relation (R) denotes the URI of the predicate.

Table 4.1: Permutation based indexing of linked data

Index Author Permutation

Eight Indexes Papailiou et al. (2014)
Six core index same as Hexastore,
Two aggregate index on each of the core index.

Six Indexes Hu et al. (2016) SP O, SO P, PO S, P SO, O SP, S PO
Five Indexes Chen et al. (2015) C (Class), R (Relation), CR, RC, CRC
Four Indexes Zeng et al. (2013) SPO, OPS, PS, PO

Three Indexes
Xu et al. (2015),
Punnoose et al. (2015) SPO, POS, OSP

Harbi et al. (2015) P, PS, PO
One Index Oh et al. (2015) Singe index containing O PS and S PO

An extensive survey of the existing methods of indexing the linked data conducted

by Faye et al. (2012), Kaoudi & Manolescu (2015), Wylot et al. (2018) and Ali et al.

(2020) highlights the following challenges.

(a) The main drawback of permutation-based indexing is the large index size. The
same data are stored in multiple patterns, causing substantial storage overhead.
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(b) Some permutation-based indexing employs compression of the index files to re-
duce the index size. However, the objective of indexing of improving the access
time is negated by the time required to decompress the compressed index files.

(c) With increasing amounts of linked data, it is essential not only to create but also
to maintain and update the index to obtain the latest data. Updating and deleting
the data elements from the permutation-based index is complex.

(d) Limiting the index to the BGP query using the permutation will not fulfil the
expressive power of SPARQL querying over a dynamic structure of linked data.

Considering the limitations in the existing systems, a novel method to index linked

data is proposed in Section 4.3.

4.3 Proposed indexing technique

A novel indexing scheme to index the linked data from multiple SPARQL endpoints

is proposed. URIs are the main components of the subjects, predicates and objects of

the linked data. The method of using dictionaries to reduce the recurrence of URIs

is discussed by Singh et al. (2018). This chapter proposes indexing using a new data

structure called trist by linking the tree and doubly linked list. The URI and values of

the linked data are parsed and stored in the URI trist and value trist, respectively. The

trist shares the common higher-level nodes, and each URI and value are given an ID,

which is used by the inverted index to map the ID to the nodes containing the respective

URIs and values in the RDF graph.

The structure of the trist data is illustrated in Section 4.3.1. The techniques for

storing the URIs and values in the trist data structure as URI trist and value trist are

discussed in Sections 4.3.2 and 4.3.3, respectively. The method of mapping the URI

and value ID to the RDF graph using the inverted index is briefly described in Section

4.3.4. Section 4.3.5 outlines the procedure for storing and accessing the RDF graph.

4.3.1 Trist data structure

A new data structure named trist is proposed by linking the tree and the doubly linked

list. Figure 4.1 shows the structure of the trist for the words ‘http’, ‘https’, ‘html’,

and ‘head’. Here, the words are split into characters and stored as nodes of the tree,

where words with the same starting substring (prefix) share nodes of the tree branch

starting from the root. In Figure 4.1, all the words share the common first node ‘h’ as
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all these words begin with the character ‘h’. The nodes of the tree containing the last

character of the words are called ‘fruit nodes’. In Figure 4.1, the nodes ‘p’, ‘s’, ‘l’,

and ‘d’ are the ‘fruit nodes’. A unique ID is allotted in the doubly linked list for each

word inserted in the tree. The word ‘http’ is alloted the ID ‘1’ in the list. The pointer

from the ‘fruit node’ to the list is called the ‘list pointer’. The pointer from the doubly

linked list to the ‘fruit node’ is called the ‘tree pointer’.

Figure 4.1: Trist structure

(a) Insert new data in trist: New data is inserted by adding the new word to the tree
and allocating a new ID to the newly inserted word.

(b) Delete existing data from trist: A word is deleted by revoking the allocated ID
for the word and removing the fragment of the word that is not shared with any
other words.

4.3.2 URI trist

The URI trist is used to index the URIs used in the RDF graph. The URI of the RDF

data follows the grammar

URI ::= protocol : //hostname/[path]∗/fragment

The URI is parsed to obtain the hostname, intermediate paths and fragments. The host-

name and path are stored wholly as words; the fragment part of the URI is split into

characters. The protocol is not stored in the trist as the protocol http or https do

not alter the implication of the subject. The hostname is directly connected to the root
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node. The intermediate paths are then connected to their corresponding hostnames.

The fragment is character parsed, and the first character of the fragment is connected

to the final path node. The last character node of the fragment from the fruit node

is connected to the list using the list pointer. Consider Figure 4.2, where the two URIs

“http://dbpedia.org/ontology/city” and “http://dbpedia.org/o-

ntology/campus” share the hostname ‘dbpedia.org’ and the intermediate path

‘ontology’ in the trist. Additionally, the fragments ‘city’ and ‘campus’ start

with the same character, ‘c’, and share the character node, as in Figure 4.2. The

fruit node of the fragment is linked to the list. The list has a unique ID allocated

for every URI. In Figure 4.2, the pointer value ‘0×5A’ is the unique ID for the URI

“http://dbpedia.org/ontology/city”.

Figure 4.2: URI trist
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4.3.3 Value trist

The value trist is used to index the objects of triples containing values. The values are

grouped based on their data type in the value trist (V. Biron et al., 2004). Table 4.2

shows the grammar followed by some of the data types (Prud’hommeaux & Seaborne,

2007). Since the string values can contain a long string with tens and hundreds of words,

they are split into unigram (1-gram) words using the stemming algorithm (Mayfield &

McNamee, 2003). The stop words are removed from the string values because they

do not contribute to information retrieval. The values are then parsed based on the

grammar and stored in the value trist with the common higher-level nodes in the tree

being shared.

Table 4.2: Object grammar

Data type Grammar
integer [0-9]+
float [0-9]* [.][0-9]+
string en [a-z A-Z 0-9]+
date [0-9][0-9][0-9][0-9][Jan-Dec][01-31]
time [00-24][00-60][00-60]
date-time [0-9][0-9][0-9][0-9][Jan-Dec][01-31][00-24][00-60][00-60]

Figure 4.3 is the sample structure of the value trist. In the value trist, the values

are stored based on type. For example, the decimal value ‘3.14’ is parsed based on

character and stored under the float type. The value ‘3.14’ is allocated the value ID

0×D48. In Figure 4.3, the terms string-en, string-es and string-fr are the same nota-

tions used by RDF for representing English, Spanish and French strings, respectively.

Consider the string “California is a suburban city” to be indexed using value trist. First,

the stop words are removed from the sentence. The stopwords in the sentence are ‘is’

and ‘a’. Then, the stemming algorithm is applied to obtain the unigram words from the

sentence. The unigram words obtained from the string are ‘California’, ‘suburban’ and

‘city’. A unique ID is allocated for each of the unigram words stored in the value trist.

Consider the date-time value “2017 April 8, 15:24:30”, as given in Figure 4.3. The

first four levels in the trist represent the year, followed by the month, date, hour, minute

and second. Finally, the fruit node containing the second value is linked to the list node

with the unique value ID ‘0×B55’.
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Figure 4.3: Value trist

4.3.4 Inverted index

The inverted index (Baeza-Yates & Ribeiro-Neto, 1999) is the most popular structure

used by search engines. This index maps the content of the website to its location. In

LDSF, the unique ID assigned to the URI and value by the URI trist and value trist

is mapped to its location in the RDF graph using inverted index. Figure 4.4 shows

the method of mapping the ID to the location. The inverted index contains only the

mapping from the ID to its location in the RDF graph. The mapping of the URI or value

to the ID in Figure 4.4 is shown for illustration and is actually stored by the URI and

value trist. The URI “http://dbpedia.org/ontology/city” shortly written
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as ‘dbo:city’ has the ID ‘0×5A’ assigned while constructing the URI trist. Since

the RDF graph contains the URI ‘dbo:city’ in memory location ‘5’ and ‘11’, the ID

‘0×5A’ is mapped using an inverted index to its location ‘5’ and ‘11’. Similarly, Figure

4.4 contains the mapping of other IDs to their location in the RDF graph.

Figure 4.4: Inverted index

4.3.5 RDF graph

Even though the main objective of indexing is to improve the performance by reducing

the number of disk access cycles, the proposed trist model also reduces the storage

space at the expense of additional lookup time. The time-efficient method of indexing

the RDF graph is discussed in Section 4.3.5.1. The method of optimising the storage

space of the RDF graph is discussed in Section 4.3.5.2.

4.3.5.1 Time-optimised RDF graph

Figure 4.5 shows the sample data stored in the time-optimised RDF graph. Figure 4.5

contains two parts: the first with the address of the data and the second containing the

actual data. The time-optimised RDF graph is the classic approach of storing the RDF

graph with the URIs and values. The inverted index using the URI trist and value trist is

used to accelerate the access of the RDF graph. This is the approach used by the LDSF

for indexing the RDF graph.
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Figure 4.5: Time optimised RDF graph

4.3.5.2 Space-optimised RDF graph

Figure 4.6 shows the sample data stored in the space-optimised RDF graph. The space-

optimised RDF graph occupies less storage space by storing the URI-ID instead of

the actual URI. The values are not replaced with the ID as it is used in intermediate

query processing, and replacing it increases the lookback time during query processing.

The query processing is performed completely with the URI-ID, and the URIs of the

respective ID are retrieved only while communicating the end results to the user. The

URIs are retrieved from the URI-ID by traversing back the URI trist. This method

consumes additional time to retrieve the URIs from the URI trist.

Figure 4.6: Space optimised RDF graph
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4.3.5.3 Time complexity

The time complexity to search for a URI or value of ‘m’ characters in an RDF graph

of ‘n’ nodes is O(n ×m). The time complexity to locate the URI or value in the RDF

graph with trist indexing is O(m). The value of ‘n’ is in the billions, and the value of

‘m’ is in the tens. The time needed to locate the URI or value in the RDF graph with

the trist is negligible compared to that of searching the entire RDF graph.

4.4 Experimental results

The indexing is evaluated in terms of search time savings and storage size reduction

by the time-optimised and space-optimised RDF graphs, respectively. The results are

evaluated using the test data generated in Chapter 3, Section 3.4.1. The performance

of the access time using trist indexing in the time-optimised RDF graph is discussed

in Section 4.4.1. The effectiveness of the space-optimised RDF graph is disclosed in

Section 4.4.2.

4.4.1 Time-optimised RDF graph

Our experiments were performed on an Intel Core i5 CPU 2.9 GHz and 8 GB of memory

running a 64-bit Linux kernel. The URI trist is constructed from 77,000 entities. A total

of 52-word nodes and 1.4 million character nodes are generated in the URI trist for the

77,000 URIs in 1.68 seconds(s). The query to fetch each of the 77,000 URIs is executed

ten times. The average query execution time in the RDF graph without indexing is 16.78

millisecond(ms). The average query execution time for the trist indexed RDF graph is

0.002 ms. Although the construction of the trist index for the 77,000 URIs requires

1.68 s, the use of the trist index reduces the search time from 16.78 ms to 0.002 ms.

4.4.2 Space-optimised RDF graph

Table 4.3 shows the results for the storage size comparison of the time and space-

optimised RDF graphs. The 7.09 MB of storage occupied by the 77,000 URIs in the

time-optimised RDF graph is reduced to 2.96 MB by the space-optimised RDF graph.

Table 4.4 shows the compression ratio and space savings of the time and space-
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Table 4.3: Storage size comparison of RDF graphs

Data Size of time-optimised
RDF graph (KB)

Size of space-optimised
RDF graph (KB)

Film 487.1 260.1
Artist 443.8 185.3
Director 450.5 193.2
Producer 328.5 146.0
Writer 454.2 198.8
Song 509.8 305.1
Musician 443.5 186.3
Singer 435.5 177.1
All 7093.7 2962.1

optimised RDF graphs on the test data. The compression ratio is computed as the

ratio between the storage size of the time-optimised RDF graph and that of the space-

optimised RDF graph. A 7.09 MB RDF graph compressed to 2.96 MB has a com-

pression ratio of 7.09/2.96 = 2.4, where the ratio of the storage size between the time

and space-optimised RDF graphs is 2.4 : 1. The space savings are obtained using one

minus the ratio of the space-optimised RDF graph to the time-optimised RDF graph.

Compressing 7.09 MB to 2.96 MB implies a space savings of 1 − (2.96/7.09) = 0.6,

where the space savings of the space-optimised RDF graph is 60% compared to the

space occupied by the time-optimised RDF graph.

Table 4.4: Compression ratio and space savings

Data Compression ratio Space saving
Film 1.9 0.5
Artist 2.4 0.6
Director 2.3 0.6
Producer 2.2 0.6
Writer 2.3 0.6
Song 1.7 0.4
Musician 2.4 0.6
Singer 2.5 0.6
All 2.4 0.6
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4.5 Summary

This chapter presents a novel data structure called trist for use in quickly locating data

in an RDF graph without having to search the entire graph. The proposed URI trist

and value trist are used to index the URIs and values of the linked data, respectively.

Inverted indexing is used to map the URIs and values stored in the trist-to-RDF graph.

Data insertion, updating and deletion are easy in the proposed trist-based indexing. The

access speed of a trist-indexed RDF graph is up to 6000 times faster than that of a reg-

ular RDF graph on the test data. Moreover, the proposed space-optimised RDF graph

achieves space savings of 60%.
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Chapter 5

Ranking

5.1 Introduction

The process of ranking information is the core component behind any information re-

trieval framework. Unlike the keyword-based search in web search engines, the search

in linked data is usually via SPARQL queries. Even searches based on keywords are

executed with SPARQL queries. The method of viewing information related to a par-

ticular entity in linked data is called entity browsing. In a typical use case of entity

browsing in DBpedia1, the user would find an average of 180 facts (values) attached

to each entity (subject). A user looking for the country “United States” from all

SPARQL endpoints2, will obtain 87 thousand values. These enormous amounts of data

are too complex for humans to interpret without processing and ranking.

Searching and browsing large volumes of linked data requires complex ranking

strategies to guide the user get the relevant information. Notable work on ranking in-

cludes triple ranking, resource ranking and property ranking. Substantial effort has been

made to develop property ranking, as it is widely applied in entity browsing. Entity

browsing in DBpedia uses alphabetical ordering on predicates. Most of the proposed

ranking approaches are supervised, and those that follow unsupervised approaches pro-

duce poor results.

This chapter presents ranking factors for linked data and the method for applying

the approach to the query results. The core elemental components of linked data are

the endpoint, concept, predicate and value for which the ranking methods are proposed.

The nexus proposed in Chapter 3 and the inverted index proposed in Chapter 4 are also

used to support various ranking factors. The proposed ranking factors are unsupervised

and can rank linked data from multiple endpoints, and the proposed ranking approach

can rank any form of query results. An improved user interface (UI) for entity browsing

obtained by replacing the URI with human-readable text and embedding multimedia

content is also discussed.

1http://dbpedia.org/sparql, Accessed on 9th March 2018.
2275 endpoints, discussed in Chapter 3, Section 3.4.1



The remainder of this chapter is organised as follows. Section 5.2 discusses the

related work. Section 5.3 provides a detailed description of the proposed ranking tech-

nique. Section 5.5 presents the experimental results. Finally, Section 5.6 summarises

the work.

5.2 Related work

Dessi & Atzori (2016) proposed a machine-learned ranking (MLR) approach to rank

RDF predicates among entities. MLR uses a machine learning approach with nine

different features. Specifically, the main feature of interest is ranking based on the fre-

quency of the predicate. This model considers the frequency of the predicate across

the data; for example, the count of ‘dbo:birthDate’, which is used across almost all

domains, will have a higher frequency. However, in some domains, such as ‘Actor’,

predicates with a low overall score, such as ‘dbp:famousMovie’ and ‘dbo:award’, are

more important than ‘dbo:birthDate’. The other setback of this model is the feature

‘IsEnglish’, where the results are biased toward English predicates. The training meth-

ods adopted by the MLR are supervised by semantic web experts and students. It would

be more complex to train the data from all the endpoints, as the data are enormous and

the domain is diverse, with DBpedia alone containing 4.8 lakh distinct domains identi-

fied using ‘rdf:type’ property.

Lee et al. (2014) proposed a semantic search ranker (SSR) with three measures to

rank semantic search results: “Number of meaningful semantic paths”, “Coverage of

keywords” and “Discriminating power of keywords”. The semantic path weight is com-

puted using the number of ways in which the entity can be reached in the RDF graph.

For example, for a book entity, the predicate ‘eg:hasTitle’ has only one title value; how-

ever, the predicate ‘eg:writtenBy’ can have many author names assigned to it. This

method computes a higher rank for ‘eg:writtenBy’ and a lower rank for ‘eg:hasTitle’.

However, SSR does not address alternative cases, such as a book having many single-

valued predicates such as ‘eg:title’, ‘eg:publisher’, ‘eg:publishingDate’, ‘eg:volume’,

and ‘eg:issue’. Additionally, SSR does not provide a method for ranking among cases

with the same semantic path weight.
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Ruback et al. (2017) proposed SELEcTor to find the similarity between two entities

in linked data by ranking and comparing their features. SELEcTor generates ranked

features with the help of SPARQL query, which matches the path pattern to obtain all

the features and ranks based on the count. This approach has a high possibility of in-

correctly marking the entities similar to some features, such as ‘rdf:type’, ‘dc:subject’,

‘owl:sameAs’, ‘rdf:label’, ‘rdf:comment’, that are standard across entities belonging to

different domains. Feature identification in SELEcTor is aided by a domain expert.

Axel-Cyrille et al. (2017) proposed a holistic ranking for RDF entities (HARE) to

rank resources, predicates, literals and triples. HARE ranks predicates by consider-

ing them a resource that is general and common across the domain. However, in the

proposed approach, the rank of the predicates is specific to the domain (nexus).

Arnaout & Elbassuoni (2018) proposed a framework to rank the triple pattern in

relevance to keywords of the RDF graph. If the exact keyword did not match a triple

pattern, they used a query relaxation technique.

Marx et al. (2016) proposed RDF ranking using real user query logs. However,

an actual user query is related mostly to the concept and has minimal consideration of

predicates. This ranking method is ideal for ranking concepts, but the user query logs

alone are not sufficient for predicates.

Noia et al. (2016) proposed a semantic path-based ranking named SPrank for rank-

ing concepts. SPrank uses a machine learning approach for user interactions, such as

clicks, purchases, and video watching, to understand the likes and dislikes of the user

and, based on this information, to recommend concepts in which users may be inter-

ested.

Motivated by these techniques, different approaches to ranking linked data become

the focus.
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5.3 Proposed ranking technique

This chapter presents a holistic approach to rank the linked data from multiple SPARQL

endpoints. For ranking, the edge of the RDF graph in the LDSF-Index is annotated with

the endpoint from which the triple is retrieved. The ranking of linked data is based on

the following four components.

1. Endpoint: The endpoint from which the data are retrieved by LDSF.

2. Concept: The node in the RDF graph containing URI.

3. Predicate: The edge connecting two nodes in the RDF graph.

4. Value: The node in the RDF graph containing the value.

Section 5.3.1 presents the approach of ranking the triples from multiple endpoints.

The factors for ranking the linked data concepts are explained in Section 5.3.2. Section

5.3.3 discusses the technique for ranking predicates. Section 5.3.4 explains the tech-

nique used to rank values. The method of combining individual ranking factors to rank

any form of query result is discussed in Section 5.3.5. Finally, Section 5.4 explains the

user interface used for entity browsing.

5.3.1 Endpoint ranking

The ranks of endpoints are calculated based on nexus defined in Chapter3, Section 3.1.

The rank of an endpoint in a nexus is proportional to the number of triples contributed

by the endpoint to the nexus. For example, the endpoint ‘BBC-Music’ contributes more

triples to the “Music-Nexus” than ‘DBpedia’. If the user searches for music data, then

the triples from ‘BBC-Music’ are given higher rank than the triples from ‘DBpedia’.

5.3.2 Concept ranking

The concepts of the linked data are ranked based on the following factors:

1. Keywords: Table 5.1 shows the list of properties used for describing the concepts
along with its priority. The lower the priority value, the higher the importance of
the property. The rank of a concept is proportional to the number of search terms
that appear in the values of the properties describing the concept.

2. Country: Concepts with a state or country tag matching the user location are
ranked higher.
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Table 5.1: Properties describing concepts

Priority Property Use
1 dc:title or dbp:title A name given to the concept.
2 foaf:name The name given to the URI, if the URI is a thing or agent.
3 rdfs:label Provides a human-readable version of the URI.
4 skos:prefLabel Preferred label.
5 skos:altLabel Alternative label.
6 rdfs:comment Provides human-readable description of the URI.

3. Core nexus properties: Concepts with a higher number of core properties match-
ing the nexus of the query are ranked higher.

4. Endpoints: The rank of the concepts is proportional to the number of endpoints
containing the concept. The concepts from different endpoints are aligned using
the ‘skos:exactMatch’ property.

5. Inbound Links: The rank of a concept is proportional to the number of concepts
from other endpoints linked to that concept (similar to page rank).

5.3.3 Predicate ranking

An entity contains an average of 41 predicates3 and a maximum of 294 predicates4.

Extensive analysis of the linked open data from multiple SPARQL endpoints revealed

that “the importance of a predicate is directly proportional to its familiarity among

its nexus”. The nexus generated while clustering triples in Chapter 3, Section 3.3.3

is used to rank the predicates. Let ‘p’ be the predicate belonging to nexus ‘n’. Let

‘Countp,n’ be the count of the predicate ‘p’ in nexus ‘n’. Let ‘Counta,n’ be the count

of all the predicates in nexus ‘n’. The rank of predicate ‘p’ in nexus ‘n’ is computed

using Formula 5.1.

Rankp,n =
Countp,n
Counta,n

(5.1)

Note: The same predicate will have a different rank in a different nexus, i.e., the

rank of the same predicate in a different nexus varies as its importance in the nexus

differs.

3Results of DBpedia on 12 Dec 2018.
4Results of entity dbr:First Geneva Convention on 12 Dec 2018.
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5.3.4 Value ranking

The ranking of values is computed using the mapping of the inverted index proposed in

Chapter 4, Section 4.3.4. The value rank is proportional to the number of its mapping

elements in the inverted index. A value with a higher number of mapping elements in

the inverted index is given a higher rank.

5.3.5 Aggregate ranking approach

The most common applications of linked data are

1. Concept listing (C): Concept listing is the listing of concepts matching the query.
Here, concepts are ranked using the concept ranking factors discussed in Section
5.3.2.

2. Entity browsing (PO): Entity browsing is the most common use case of linked
data. Entity browsing lists the predicate and object related to a concept. First, the
predicates are ordered based on the predicate ranking score proposed in Section
5.3.3; then, under each predicate, the values are ranked using the mapping of the
inverted index, as proposed in Section 5.3.4.

3. Higher order listing: For queries with three or more result components, the
ranking is done from the first component to the last component. For example,
consider the following sample query.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT
?Concept-1 ?Concept-2 ?Property ?Value
WHERE{
?Concept-1 rdfs:subClassOf ?Concept-2 .
?Concept-2 ?Property ?Value .
}

Here, ‘Concept-1’ is ranked first, followed by ‘Concept-2’, then ‘Property’
and finally ‘Value’.

5.4 User interface: Case of entity browsing

Although LDSF allows the user to execute arbitrary SPARQL queries, a unique char-

acteristic of UI is proposed for entity browsing. The employed UI model is inspired

by Wikipedia5 to define the title, abstract and image, similarly to Wikipedia, using
5Website: www.wikipedia.org, Accessed on 22 March 2019.
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the properties ‘rdfs:label’, ‘dbo:abstract’ and ‘dbo:thumbnail’, respectively. The URIs

enable the machine to understand the linked data. In entity browsing, the URIs are

replaced with human-readable text from the following properties.

• dc:title

• dbp:title

• foaf:name

• rdfs:label

• skos:prefLabel

• skos:altLabel

The values are selected using the language tag attached to the value based on user

selection. Multimedia files, such as images, audio and video, represented using URLs

in linked data are embedded in the page for insight and to reduce the time needed by

the user to access this information separately. First, the predicates are ordered based on

the predicate ranking score proposed in Section 5.3.3; then, under each predicate, the

values are ranked using the mapping of the inverted index, as proposed in Section 5.3.4.

5.5 Experimental results

The rankings are evaluated in terms of Spearman’s rank correlation coefficient (ρ)

(Spearman, 1904) for entity browsing. Ten entities are selected randomly in each cat-

egory from the test data generated in Chapter 3, Section 3.4.1. The entities are ranked

based on properties and values, as discussed in Section 5.4. The ranked properties and

values are compared with the ordering of Wikipedia. The pages on Wikipedia are con-

tributed by many users around the world, and the ordering of the text on Wikipedia is

considered readable by most users. The ordering of the properties was extracted from

Wikipedia6 articles.

Spearman’s rank correlation coefficient (ρ) Spearman (1904) was used to assess the

similarity between the two ranking systems. ρ ranges from −1 to +1, and the value is

6https://www.wikipedia.org Accessed on 16 Feb 2019.
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large high when the rankings are similar and small when the rankings are dissimilar. ρ

is computed using Formula 5.2:

ρ = 1− 6
∑
d2i

n(n2 − 1)
(5.2)

where ‘d’ is the difference between the ranks and ‘n’ is the number of observations.

ρ was used to evaluate the ranking of the entries in DBpedia and LDSF based on the

ordering of Wikipedia, as shown in Table 5.2. DBpedia, by default, uses alphabetical

ordering of the predicates. The proposed LDSF ranking is 50.5% more similar to the

ordering of Wikipedia than the results of DBpedia.

Table 5.2: Spearman’s rank correlation coefficients of DBpedia and LDSF

Data DBpedia (ρ) LDSF (ρ)
Film 0.199 0.838
Artist 0.525 0.849
Director 0.489 0.955
Producer 0.452 0.922
Writer 0.340 0.990
Song 0.134 0.920
Musician 0.433 0.807
Singer 0.525 0.851
Average 0.387 0.892

Table 5.3 compares the ranking of LDSF with that of related works. Although

previous approaches have evaluated their rankings based on a small number of users, the

proposed approach extends the number of users to a large, unbiased crowd (Wikipedia).

The ranking correlation of LDSF is better than that of the other methods.

Table 5.3: Comparison of LDSF ranking with related work

Method Year Spearman’s (ρ)
Ranking DBpedia Properties (Atzori & Dessi, 2014) 2014 33.3 %
DBtrends (Marx et al., 2016) 2016 37 %
Machine learning approach (Dessi & Atzori, 2016) 2016 74 %
Holistic and Scalable Ranking (Axel-Cyrille et al., 2017) 2017 30 %
Proposed LDSF ranking 2020 89.2 %
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5.6 Summary

This chapter discusses unsupervised methods for ranking linked data from multiple end-

points. Ranking factors based on endpoint, concept, predicate and value are explained,

and the application to query results is discussed. The ranking of predicates based on

the nexus and the ordering of the values based on the inverted-index is widely used in

entity browsing. An improved UI for entity browsing obtained by replacing the URI

with human-readable text and embedding multimedia content is also discussed. The

recommended ranking for entity browsing achieves a Spearman rank correlation coeffi-

cient of up to 99% with the ordering of Wikipedia. The ranking approach is one factor

to consider, but users are the end consumers of the information. Typically, users have

to select and filter data to find relevant information.
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Chapter 6

Conclusions

This work discusses LDSF, a framework for storing, partitioning, indexing and rank-

ing linked data. An advancement over the existing character-based encoding method

is proposed to store linked data. The proposed system, named ‘WordCode’, is used to

efficiently store the entire community of text data (including linked data). WordCode

is an extension of Unicode with the additional capability to encode words. WordCode

can encode up to 67.9 billion words, irrespective of language, each with a maximum

size of five bytes. Additionally, the structure of the code page is upgraded from the reg-

ular table-based storage used by character encoding to a customised trie model named

‘WordTrie’. Because WordCode-encoded files are smaller than Unicode-encoded files,

machines handling text data (including linked data) with WordCode encoding have a

reduced workload compared to machines processing text data with Unicode encoding.

The term nexus is redefined according to linked data as the “set of subjects belong-

ing to the same type”. Linked data are partitioned based on a bi-level nexus clustering

algorithm using the core predicates. The key idea is to identify the two-level core pred-

icates of the subjects and use them for partitioning. The proposed algorithm partitions

the gold standard test data with a precision of 98.7% and recall of 87.7%.

The linked data are indexed using a novel data structure called trist to accelerate

RDF graph access. The URIs and values are indexed using URI trist and value trist,

respectively. Inverted indexing is used to map the URIs and values stored in the trist-to-

RDF graph. The access speed of a trist-indexed RDF graph is up to 6000-times faster

than that of the regular RDF graph on the test data. Moreover, the proposed space-

optimized RDF graph achieves a space savings of 60%.

An unsupervised methods for ranking linked data from multiple endpoints is pro-

posed. Ranking factors based on endpoint, concept, predicate and value are explained,

and the application to query results is discussed. An improved UI for entity browsing

obtained by replacing the URI with human-readable text and embedding multimedia

content is also discussed. The recommended ranking for entity browsing achieves a

Spearman rank correlation coefficient of up to 99% with the ordering of Wikipedia.



Overall, the proposed framework for information retrieval from linked data incor-

porating storing, partitioning, indexing and ranking is more efficient than the existing

systems.

In future, this work can be extended in the following ways:

1. Temporal linked data: Any data changes over time. For example, the population
of a country changes over time. The method of indexing and presenting the view
of data over a period of time to the user might be a promising future direction of
research. This kind of information will allow ranking based on time.

2. Publisher Information: Tagging the publisher information to the linked data
will help to rank the trustworthiness of the data. Additionally, allowing the user
to provide feedback on incorrect results will improve the quality of linked data
and make linked data successful in the long run.
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