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Abstract

Human vocal tract can produce various sounds. The speech sounds are relatively a very

small set of such sounds that appears uniquely quali�ed to be used in the production

of speech. It includes positions of the parts of the body necessary for producing spoken

words and the e�ect of air rushing from lungs as it passes through the larynx, pharynx,

vocal cords, nasal passages and mouth. Phonetic sounds (phones) are the actual speech

sounds classi�ed by the manner and place of articulation (i.e. the way in which air is forced

through the mouth and shaped by the tongue, teeth, palate, lips and in some languages by

the uvula). Children begin language acquisition with their �rst meaningful word. Further,

they acquire language by mimicking the adult pronunciation. This development mainly

depends on the development of vocal tract, neuro-motor control and in�uence from the

language of people surrounding them. Signi�cant di�erence can be observed in the vocal

tract of the child and adult where the vocal tract in children is underdeveloped and short in

comparison with the adult vocal tract. Along with these, other oral cavity parameters such

as tongue, larynx, epiglottis, vocal cords are also underdeveloped. Due to this, children

face di�culty in producing speech sounds, where the pronunciations are simpli�ed by

substituting the di�cult speech sounds with other simple one. This results in signi�cant

deviations and replacements in the pronunciation of phonemes in children leading to

mispronunciation or pronunciation errors. These processes are referred to as phonological

processes. The phonological processes appear in the children represents the agewise speech

learning ability. The analysis helps the Speech Language Pathologists (SLPs) in studying

language learning ability of the children. The manual process of phonology analysis

involves lot of human e�ort and time. Literature reports that the phonological processes

are properly studied in the children speaking English as native language. Indian languages

are syllabic in nature and di�er from English which is phonemic in nature. Hence, the

observations made in the case of English children may not be directly applicable to the

study of phonological developments observed in the case of Indian children. In general,

the appearance of phonological processes in the case of Indian children is not well studied

i



and documented. The appearance of these processes beyond certain age may indicate

the presence of the phonological disorder. It helps the SLPs to automatically identify

the processes and analyse the language learning pattern along with disorders present if

processes are observed beyond certain age.

In this work, we aim to develop the systems for automatic identi�cation of phonological

processes in Kannada language. Applications of this research work include evaluation

of language learning ability, identi�cation of speech and motor disorder, gender based

analysis of phonological processes, etc. Some of the important issues in this research area

are, large number of non-standardized phonological processes; lack of detailed studies in

Indian languages; availability of children's speech databases in the required age range from

31
2
to 61

2
years; di�culties in adapting existing systems of mispronunciation identi�cation

due to huge di�erence in the speech production parameters of the adults and children

for the proposed age range; need of identifying features characterizing each phonological

process in comparison based algorithms. We recorded Kannada language speech dataset

from children between age 31
2
to 61

2
years and named it as NITK Kids' Speech Corpus.

It is collected in three age groups with an interval of one year in each age group. For

each age range, the data is recorded from 40 children (20 male and 20 female). This work

provides, the detailed analysis of the phonological processes that appear in children from

age 31
2
years to 61

2
years speaking Kannada as native language. Based on the pattern

of disappearance of the phonological process, the age-wise analysis of the acquisition of

phonemes is provided. A detailed comparison of language learning ability of the children

speaking English language and Kannada language is also performed.

Based on the e�ectiveness of the comparison based algorithms in identi�cation of

phonological processes in smaller age range, it is considered for the analysis. Commonly

observed phonological processes that are considered for our study are: aspiration, nasal-

ization & nasal assimilation, palatal fricative fronting, �nal consonant deletion, voicing

assimilation and vowel deviations. Spectral, prosodic and excitation source features ef-

�cient in discriminating the correct pronunciation of a phoneme and its mispronounced

counterpart are identi�ed and exploited for the identi�cation of phonological processes.

Two case studies are considered for the evaluation. Based on the availability of the

dataset for phonological disorder, 'rhotacism' is considered for the analysis. The spec-

tral and prosodic features e�cient in characterization of the phonological disorder are

explored. During the processes of phonological process identi�cation, we came across

ii



interesting problem of children gender identi�cation. The task of gender identi�cation

from children's speech is di�cult compared to adult gender identi�cation. The gender

identi�cation from adult speech is also performed to analyze the di�culties in the task

of children gender identi�cation in comparison with the adult speech. The role of spec-

tral, prosodic, excitation source features have been proposed gender identi�cation in both

implementations using suitable machine learning algorithms. Detailed experimental eval-

uation is carried out to compare the performance of each of the proposed approaches

against baseline and state-of-the-art systems.

Keywords: Aspiration, Excitation source features, Gender identi�cation, Machine

learning, Nasalization, NITK Kids' Speech Corpus, Phonological processes, Prosodic fea-

tures, Spectral features, Speech language pathologists, Speech production system, Unaspi-

ration
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Chapter 1

Introduction

Human speech production system consists of the parts of the body necessary for producing

speech from lungs to the end of the vocal tract towards mouth (Rabiner and Juang, 1993).

Schematic diagram of human vocal tract system is shown in Figure 1.1. The vocal tract

begins at the lips and ends at the opening of the vocal folds or glottis. Vocal tract consists

of pharynx and oral cavity (mouth). Pharynx is the region of vocal tract from esophagus

to the oral cavity. The oral cavity consists of tongue, lips, jaws, teeth, and velum. Nasal

tract starts at the velum and ends at the nostrils. Here the velum acts as a trapdoor

mechanism; when lowered, it closes the oral cavity and connects the nasal cavity to vocal

tract to produce nasal sounds in speech. During the production of speech, air enters the

lungs through usual breathing mechanism. Lungs act as a source of air to excite the speech

production system. Air is exhaled from the lungs via windpipe (trachea), where the tensed

vocal folds in larynx are set to vibrate to produce pulsating air �ow. This vibration of the

vocal folds chops the air �ow into quasi-periodic pulses. These pulses pass through the

oral and nasal cavity, where, based on the positions of di�erent articulators (e.g. tongue,

NASAL CAVITY

VELUM

EPIGLOTTIS

TONGUE

VOCAL FOLDS

ESOPHAGUS

SPINAL COLUMN    THYROID

CARTILAGE

TRACHEA

CHEST

CAVITY

LUNGS

Figure 1.1: Schematic diagram of human vocal tract system (Rabiner and Juang, 1993)
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velum, lips, jaw, etc.) various speech sounds are produced.

Phomemes

Vowels Dipthongs Semivowels

Consonants

Front Mid Back Liquids Glides

Nasals Stops Fricatives Whispers A�ricates

i (IY)
I (IH)
e (EY)
E (EH)
æ (AE)

a (AA)
3 (ER)

Λ, o (AH, AX)
O (AO)

u (UW)
U (UH)
O (OW)

w (W)
l (L)

r (R)
y (Y)

ay (AY)
Oy (OY)
aw (AW)
ey (EY)
o (OA)
ju (OU)

ĵ (JH)
ĉ (CH)

h (H)m (M)
n (N)
η (ng)

Voiced Unvoiced
v (V)
δ (TH)
z (Z)

ẑ, zh (ZH)

f (F)
T (THE)
s (S)

ŝ, sh, S (SH)

Voiced Unvoiced
b (B)
d (D)
g (G)

p (P)
t (T)
k (K)

Figure 1.2: Classi�cation of phonemes based on the manner of articulation (Rabiner and Juang, 1993)

Speech consists of sequence of sounds. Hence, the positions, shape, and size of the

articulators and the state of the vocal folds change over the time depending on the speech

sound being produced (Rabiner and Juang, 1993). Once the vocal folds are tensed, the air

�ow from the lungs makes it vibrate and, hence, voiced speech sounds are produced. When

the vocal folds are kept relaxed without vibration to produce the speech sounds, the air

�ow directly passes through the constriction in the vocal tract. This constriction creates

the air�ow turbulence to produce an unvoiced sounds. Complete closure of the vocal

tract builds a pressure behind the closure known as 'stops', when the pressure is suddenly

released resulting in brief transient sounds. The basic speech sounds (or phonemes) are

classi�ed, based on the manner in which the sounds are produced. The classi�cation

of the phonemes of American English based on the manner of articulation is shown in

Figure 1.2. There are 48 phonemes consisting of 12 vowels, 6 diphthongs, 4 semivowels,

21 standard consonants (3 nasal consonants, 6 stop consonants, 9 fricatives, 1 whisper

and 2 a�ricates), 4 syllabic sounds, 1 glottal stop. Vowels are pronounced by �xed vocal

tract shape, excited by quasi-periodic pulses of air passed through vocal folds. A simple

way of the classi�cation of vowels is based on the position of tongue hump (i.e. front,
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mid, back) and the height of tongue hump (i.e. high, mid, low) (Rabiner and Juang,

1993). Tongue hump is the mass of tongue concentrated in oral cavity. Along with the

position and height of tongue hump, the movement of jaw and lips also in�uences the

production of vowels. As per the classi�cation, front vowels are: /i/, /I/, /e/, /æ/, E;

mid vowels are: /a/, /3/, /O/; and back vowels are: /u/, /U/, /o/. Diphthongs are

the class of sounds pronounced by varying a vocal tract smoothly between two vowel

articulations. Diphthong sounds are, /ay/ as in buy, /Oy/ as in boy, /aw/ as in down, ey

as in bait, /o/ as in boat, /ju/ as in you. The sounds that have vowel like nature, but not

exactly vowels, are known as semivowels. These are characterized by gliding transition

in vocal tract, between adjacent phonemes, and have similar properties as vowels and

diphthongs. The semivowels are /w/, /l/, /r/ and /y/. Nasal consonants are produced

by constricting the oral cavity, by lowering velum, to allow the air �ow through the nasal

tract. The nasal consonants are /m/, /n/ & /η/. /m/ is produced by constriction at lips;

for /n/, tongue tip touches the alveolar ridge; and for /η/ constriction is at soft palate

or velum, the tongue approaches or touches the soft palate, or velum. Unvoiced fricatives

are pronounced when air�ow becomes turbulent in the region of constriction in the vocal

tract. Unvoiced speech sounds are the class of sounds where the vocal folds do not vibrate.

/f/, /θ/, /s/ and /sh/ are examples of unvoiced fricatives. /f/ is produced by constriction

near lips; /θ/ is near teeth; /s/ is near the middle of the oral cavity; /sh/ is at the back of

the oral cavity. Voiced fricatives have two excitation sources, one is vocal folds' vibration

and the other is constriction in the oral cavity. The voiced fricatives are /v/, /th/, /z/

and /zh/. Basically these are the counterparts of the unvoiced fricatives /f/, /θ/, /s/ and

/sh/ respectively. Stop consonants are produced by suddenly releasing the pressure built

behind a constriction in oral cavity. Based on the involvement of the vocal folds' vibration,

stops are divided into voiced and unvoiced stops. /b/, /d/, and /g/ are examples of the

voiced stop consonants (vocal cords vibrate), where /b/ is produced due to constriction

at lips; /d/ at the back of teeth; and /g/ at the velum. Unvoiced stop consonants /p/,

/t/, & /k/ are counterparts of the voiced stops /b/, /d/, & /g/ respectively. They have

same manner of articulation, but di�er in the vocal tract excitation; here vocal fold do

not vibrate.

According to Panini, consonants are classi�ed based on the place of articulation (Bhate,

2002). The speech sounds in Indian languages are classi�ed based on the Panini's speech

sound classi�cation. Figure 1.3 shows the schematic diagram of various vocal tract organs
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Figure 1.3: Schematic diagram of various vocal tract organs involved in human speech production
(Palumbo et al., 2010)

involved in human speech production system, based on the place of articulation (Levelt,

1993; Palumbo et al., 2010). As discussed, consonants are formed by a complete closure of

the oral tract at some location with a sudden release from the closure. In Indian context,

consonants are categorized into 5 categories, namely 'k'-varga (or velar), 'c'-varga (or

palatal), 'T'-varga (or retro�ex), 't'-varga (or dental) and 'p'-varga (or labial). Each of

these 5 consonant vargas are composed of unvoiced, unvoiced aspirated, voiced, voiced

aspirated and nasal sound units. Figure 1.4 shows the classi�cation of phonemes based

on the place of articulation. Aspiration is a strong pu� of air that is released at the

closure of consonants such as kh, gh, etc. (He�ner, 1975; Ramteke et al., 2020). Unvoiced

aspirated consonants are the speech sounds where unvoiced consonants are aspirated.

Voiced aspirated consonants are the speech sounds where the aspiration phenomenon is

added to the voiced consonants. Velar sounds are produced by raising the back part of the

tongue to touch the soft palate, which closes the oral cavity. As a result the soft palate

is raised to block the nose passage, thereby blocking the air passage completely. Palatal

consonants are uttered by touching the back-part of the tip of the tongue to the front

palate. Retro�ex sounds are produced by releasing the pressure built behind complete

closure of the oral cavity by raising the soft palate and touching the tip of the tongue

to the teeth-ridge. Dental sounds are uttered by touching the tip of the tongue against

the front upper teeth. Labial sounds are produced with complete obstruction at lips and

raising the soft palate. When the lips are opened the air quickly move out of the mouth.

Semivowels and fricatives are classi�ed same as discussed above.
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Vowels a A i I u U ru e E ai o O au am ah

Unvoiced
Unvoiced
aspirated Voiced

Voiced
aspirated Nasal

Velar

Palatal

Retro�ex

Dental

Labial

Semivowels

Fricatives

k kh g gh ṅ

c ch j jh ñ

T Th D Dh n
·

t th d dh n

p th b bh m

y r l v

s sh h l
·

Figure 1.4: Classi�cation of phonemes based on the manner of articulation

1.1 Phonological processes

Process of phoneme pronunciation acquisition (or language acquisition) begins with an

attempt by the child to pronounce the �rst meaningful word. Humans, since childhood,

try to acquire pronunciation to learn a language. The development of ability to use

a language in children depends mainly on the development of vocal tract, neuro-motor

control and in�uence from the language of the people surrounding them. Saying 'children

are just little adults' is a myth. There is a huge di�erence in the vocal tract of a child

and adult. The vocal tract in children is underdeveloped and short in comparison with

the adult vocal tract. The average length of the adult vocal tract is 17cm. Figure 1.5

shows the development of vocal tract in children from birth to the age of 6 years 9

months. Here the vocal tract develops rapidly during the �rst 18 months, where the

average vocal tract length observed is 8.5cm (55% the average adult vocal tract length)

(Fitch and Giedd, 1999). By the age of 6 years, the average length is 11.5 cm, which is

about 75% of that of the adult vocal tract length. Figure 1.6 shows the comparison of the

various organs of the vocal tract systems of an adult and a child (Vorperian et al., 2005).

In a child, the tongue is proportionally larger, larynx is higher up, when compared to

adults. Epiglottis is U-shaped, shorter and sti�er in children, while it is �at and �exible

in adults. Vocal cords of children are upward slant, where in adults, it is horizontal. Due

to these parameters, children face di�culty in producing speech sounds, hence signi�cant
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Figure 1.5: Vocal tract development with age (in months) (Fitch and Giedd, 1999)

deviations and replacements in the pronunciation of phonemes are observed in children

leading to mispronunciation or pronunciation errors. All children have mispronunciations

in their early speech, as their ability to use language is in the developing stage. These

mispronunciation patterns (speech errors) are known as phonological processes (Stampe,

1979). Phonological process is an activity applied, while speaking, to substitute for a

class of sounds or sound sequences which are presenting a common di�culty to the speech

capacity of an individual. Some of the examples are, fronting is a phonological process,

where velar or palatal sounds, like /k/, /g/, and /sh/, are substituted with retro�ex,

dental or labial sounds such as /t/, /d/, t, and /p/ (Lowe et al., 1985), e. g., ′tootie′

for ′cookie′, ′tek′ for ′cake′. Backing occurs when retro�ex, dental or labial sounds, like

/t/ /d/, t,and /p/, are substituted with velar sounds such as /k/ and /g/, e.g., ′kap′

for ′top′, ′ken′ for ′pen′. Likewise large number of phonological processes are observed

in children. All phonological processes do not disappear in the child's speech at the

same time. Di�erent phonological processes have varying permanence duration which

represent the pronunciation acquisition patterns in children based on age. This gives a clue

about language learning ability of a child (age range in which pronunciation of particular

phoneme is acquired). For example, fronting is observed to disappear by the age of 3 years.

Often the pronunciation errors are observed in a person with a physical impairment at one

or many parts or organs of the oral cavity. The occurrence of such errors due to impairment

is called a phonological disorder. The errors observed in phonological disorders are speci�c

to the oral cavity organ facing the disability (Ingram, 1977). The neuro-motor disorders
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Figure 1.6: Comparison of the vocal tract system of adult and child (Vorperian et al., 2005)

a�ect the control on the vocal tract organs leading to mispronunciation. These errors

belong to the category that occurs due to the lack of coordination between articulatory

organs of oral cavity.

1.1.1 Identi�cation of phonological processes

Identi�cation of phonological process involves locating region of pronunciation error in

the corresponding signal and �nding the mispronounced phoneme. As each phonological

process has speci�c pattern, features e�cient in characterizing class of phonemes play a

crucial role in identi�cation of phonological processes. For feature extraction, the oral

cavity is considered for 20ms to 30ms during speech production, where it is assumed to

remain unchanged. Hence, a speech signal is divided into smaller frames of length ranging

from 20 ms to 30 ms (Rabiner and Juang, 1993). Windowing is a process of smoothening

frames to reduce the e�ect of discontinuity at both the ends of the frames. Frames are

normally processed in an overlapped manner, to avoid the loss of information around

the edges of the window. Di�erent speech features carry di�erent speech information.

Based on this, the features can be mainly extracted from three aspects: excitation source

features, vocal tract system features, and prosodic features (Koolagudi and Rao, 2012).

Excitation source features are derived from excitation source signal and are commonly

known as source features. Excitation source signal is obtained from speech, after sup-

pressing Vocal Tract (VT) characteristics. It is aimed at studying characteristics of vocal

folds, open and close phases of vocal folds, strength of the excitation and so on. In gen-

eral, vocal tract system features are extracted from a speech segment of length 20�30 ms

(Rabiner and Juang, 1993). It is known that, vocal tract characteristics are well re�ected
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in frequency domain analysis of speech signal. The information present in the sequence of

shapes of vocal tract, during pronunciation of a word, is responsible for producing di�er-

ent speech sound units (Benesty et al., 2007). These vocal tract features are also known as

segmental, spectral or system features. During speech production, human beings impose

di�erent modulations on the sequence of sound units. Some of the characteristics of these

modulations are duration, energy and intonation, which make human speech natural.

These are known as prosodic features (Rao and Yegnanarayana, 2006). They normally

represent the perceptual speech properties (Keller, 1995). They may be associated with

the speech units such as syllables, words, phrases and sentences. These features may help

in characterizing the phonological processes, as they posses the information related to the

production and pronunciation of the speech sound units. These features can be used with

the machine learning algorithms, designed to identify the mispronunciation, to improve the

performance of the system (Richardson et al., 2003)(Tepperman and Narayanan, 2005).

Also, they can be used with template comparison based algorithms, where the correct

pronunciations of words selected by the experts (Speech Language Pathologists (SLP))

are compared with the mispronounced words, to identify the mispronunciation (Lee and

Glass, 2012)(Lee et al., 2016).

1.2 Motivation

In general, the phonological process identi�cation is performed manually. Speech Lan-

guage Pathologists (SLPs) manually identify the phoneme level error in the pronunciation

of children. They classify the pronunciation errors into respective phonological process

based on the class of phoneme inserted, substituted or deleted (Barbara and Elaine, 1991)

(Hodson, 2004). Main di�culties in manual evaluation are:

• Careful recording of speech: Phonological processes are analysed from children

speech in the range of 31
2
to 61

2
years (Baker, 2004). Children in this age range

are not able to read properly and have a short attention span (Kazemzadeh et al.,

2005). This makes the process of speech recording di�cult. Hence, careful recording

of speech is needed during the entire process.

• Continuous human expert attention and excessive time being spent for the analysis:

SLPs analyse speech of each child to identify the phonological processes. There are

large number of phonological processes that appear in children (Roberts et al., 1990)
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(Weiner, 1979), hence continuous human expert attention and huge amount of time

needs to be spent for the analysis of appearance of phonological processes (Parker,

2005).

• Errors in subjective analysis: The analysis is performed by many SLPs (around 3 to

5). During analysis, some mispronunciations may belong to more than one phono-

logical processes, hence experts may miss one or the other phonological processes

and may not come to same the conclusion on appearance of the phonological process

(Vorperian et al., 2005)(Bauman-Waengler, 2012).

• Cross language analysis of phonological processes: Appearance of the phonological

processes di�ers in children based on nature of language, i.e., some phonological

processes observed in English in the age group of 3-4 years may not be observed in the

same age group of children speaking Indian languages (Shruthi, 2010)(Sreedevi et al.,

2005). The analysis of the appearance of phonological processes in one language

cannot be generalized to the other languages of di�erent nature.

Hence, there is a need to develop a system that automatically detects the phono-

logical processes.

1.3 Applications of Phonological Processes Identi�ca-

tion

Identi�cation of phonological processes from children's speech is useful in developing many

speech tasks. Some important ones are discussed below.

1.3.1 Analysis of language learning ability in children

With the increase in the age of children, their vocal tract and command over the neuro-

motor control develop (Safavi et al., 2018). This development results in acquisition of a

particular set of phonemes in the speci�ed age range, where the phonological processes

related to the phoneme are observed to disappear. Analysis of this acquisition pattern in

di�erent age groups helps in evaluating the language learning ability of children (Ingram,

1977). From the literature, it is generally observed that, the phonological development in

the case of Indian children is not well studied and documented. Automatic identi�cation

of the phonological processes may help in faster and e�cient analysis of the language

learning ability of children, viz in Kannada language. The same system can be employed
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for the analysis of phonological processes in other languages, in order to compare the

language learning patterns.

1.3.2 Identi�cation of phonological processes proned to phono-

logical disorder

Apart from the phonological processes, pronunciation errors are observed in a child/person

su�ering from the speech and motor disorder. Persistence of these mispronunciation

patterns, beyond 8 years, indicates higher chances of having phonological disorder (Kent

and Vorperian, 2013). Children with phonological disorders are not able to use some or

many of the speech sounds expected to be exhibited in their age group. Phonological

disorder may also appear due to the problems in the shapes of muscles and bones that

are involved in the production of speech sound, e.g., cleft palate, absence of teeth and

so on; damage to the parts of brain or the nerves that control the vocal tract muscles,

or the structure that produces speech sound a�ects, e.g., cerebral palsy. The analysis of

speech of a person with phonological disorders exhibits some characteristic features. With

the help of automatic identi�cation of phonological processes, special practice sessions or

treatment procedure can be decided, for the children of these phonological processes, to

overcome the disability.

1.3.3 Gender dependent analysis of the phonological processes in

children

Common observation in the pattern of appearance of phonological processes in male and

female children varies, based on the nature of the language. In children, speaking English

as native language, it is found that the phonological processes disappear earlier in female

children when compared to the male children. This shows that female children acquire the

pronunciation early than the male children. Whereas, some studies in Indian languages

claim that, the appearance of the phonological processes in female children is longer in

comparison to the male children. This shows that male children acquire pronunciation

earlier than that female children. As said earlier, the phonological development in the

case of Indian children is not well studied; identi�cation of the phonological processes may

help in gender dependent analysis of the phonological development in children.
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1.4 Challenges

Phonological process identi�cation is challenging due to several issues such as, unavailabil-

ity of children speech dataset, large number of non-standardized phonological processes,

and adaptation of existing speci�c mispronunciation identi�cation systems for applica-

tions. Some of the important challenges faced while developing a system for identi�cation

of phonological processes are listed below.

1.4.1 Lack of children's speech databases

In particular, the research in automatic identi�cation of phonological processes still lags

behind due to unavailability of sizable open dataset for children speech in the age range

31
2
to 61

2
(Garofolo et al., 1993). Majority of the children speech databases have been

collected in English language from the children of age between 6 to 15 years for Children

Speech Recognition (CSR) (Claus et al., 2013). These datasets cannot be used for the

phonological process identi�cation as they are mostly recorded in the higher age groups.

1.4.2 Di�culties in ASR based pronunciation error identi�cation

Phonological processes in children's speech follow speci�c patterns, where one class of

sounds is substituted with the other classes of sounds. Various approaches have been pro-

posed, for the identi�cation of pronunciation error patterns and to automate the recogni-

tion, based on patterns for foreign (L2) language learning (Russell and Li, 2001), (Gerosa

and Giuliani, 2004), (D'Arcy and Russell, 2005) (Batliner et al., 2005). Adapting these

systems, for the identi�cation of phonological processes, is less useful due to a huge di�er-

ence in the speech production parameters of adults and children (Li and Russell, 2002).

The properties of child and adult speech have signi�cant di�erences in excitation source,

vocal tract system, and prosodic aspects (Kazemzadeh et al., 2005). It is clearly observed

that, the phonological patterns vary from child to child. Also, under the same phono-

logical process, there may be di�erent types of mispronunciations, e.g., in fronting, any

velar or palatal sounds are substituted with retro�ex, dental or labial sounds. Available

systems are e�cient in identifying speci�c patterns of mispronunciation; if new type of

mispronunciation occurs, they fail to e�ciently identify the phonological processes.
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1.4.3 Di�culties in comparison based pronunciation error iden-

ti�cation

In comparison based algorithms, the correct pronunciation of words are compared with the

mispronounced words for the identi�cation of mispronunciation. In general the features

e�cient in speech recognition tasks are used to perform identi�cation. Also as discussed

in 1.4.2, an identical phonological process may have di�erent types of mispronunciations,

only these features are capable of identi�cation. Hence, features speci�c to each phono-

logical processes need to be identi�ed for the task. The problem with this approach is the

large number of phonological processes. On an average, there are more than 30 phonolog-

ical processes that are observed in children. Identifying features characterizing the each

of the phonological process is a tedious task.

1.5 Brief Overview of Contributions of the Thesis

The work presented in this thesis focuses on the automatic identi�cation of the phonolog-

ical processes from children's speech in the age range of 31
2
to 61

2
years, taking Kannada

language for the case study. Accordingly, a dataset is recorded. The phonological pro-

cesses are manually analyzed for quanti�cation of language learning ability of the children.

Further, for automatic identi�cation of phonological processes, speech features, e�cient

in discriminating the class of mispronounced phonemes and the properly pronounced class

of phonemes, are studied. The relevant features are then considered for the identi�ca-

tion of phonological processes. Some of the phonological processes are proned to become

phonological disorders if they persist beyond 8 years. Hence, a case study on phonological

disorder is also considered for analysis. Also, as a case study, the system e�cient in dis-

criminating gender of male and female children is provided (Potamianos and Narayanan,

2003). Scope of the work presented in this thesis is given below.

1.5.1 NITK Kids' Speech Corpus

The corpus consists of recordings in Kannada language from children between age 31
2
to

61
2
years and is named NITK Kids' Speech Corpus. It has been collected in three age

groups with an interval of one year in each age group. For each age range, the data is

recorded from 40 children (20 male and 20 female). Variations in the vocal tract system

and prosodic features over the age range are studied in detail.
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1.5.2 Phonological process analysis

Literature reports many studies on the phonological processes observed in the children

speaking English as a native language (Hodson and Paden, 1991)(Ingram, 1977)(Lowe,

1994). Indian languages are syllabic in nature and di�er from English which is phonemic in

nature (Raghavendra et al., 2008),(Aarti and Kopparapu, 2018). Hence, the observations

made in the case of English children may not be directly applicable to the study of phono-

logical developments observed in the case of Indian children (Bailoor et al., 2014). The

study of phonological processes in the case of Indian languages is less focused (Kaur et al.,

2017). This thesis provides detailed analysis of the phonological processes that appear

in children, from age 31
2
years to 61

2
years, speaking Kannada as native language. Based

on the pattern of disappearance of the phonological process, the age-wise analysis of the

acquisition of phonemes is provided. A detailed comparison of language learning ability,

of the children speaking English language and Kannada language, is also performed.

1.5.3 Phoneme boundary detection

For e�cient and automatic identi�cation of phonological processes, transcriptions con-

taining proper phoneme boundaries is crucial. Hence, a novel approach, based on speech

signal behavior, has been proposed for the automatic segmentation of speech signal into

phonemes. In a well spoken word, phonemes can be characterized by observing and ex-

ploring the changes in speech waveform. To get phoneme boundaries, the signal level

properties of the speech waveform, i.e., changes in the waveform during transformation

from one phoneme to the other, are explored. Frequency domain properties of correlation

of adjacent speech frames are used to get the phoneme boundaries. A �nite set of rules is

proposed, based on the variations observed in the frequency domain properties, noticed

during phoneme transitions.

1.5.4 Automatic identi�cation of phonological processes

Each phonological process has unique properties, where one classes of phonemes is substi-

tuted/replaced with the sounds from the remaining classes of phonemes. Hence, features

e�cient in discriminating di�erent class of speech sounds are to be identi�ed. In this

work, commonly observed Indian phonological processes in children are considered for the

study. Depending on the type of phonological processes, the excitation source, vocal tract

system, prosodic and signal level features, along with their variations, are explored for the
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task. Once the features are identi�ed, template comparison based algorithm is used to

identify regions of the mispronunciation (Lee and Glass, 2012). For comparison, reference

(correct) pronunciations for each word are selected from the children in the age range

of 5 to 61
2
years years by the Speech Language Pathologists (SLPs). While, test word

pronunciations are the mispronunciation recorded from the children across the age range

of 31
2
to 61

2
years. The comparison result provides the region where the mispronunciation

has occurred.

1.5.5 Case studies

Two main case studies are considered in this thesis. The �rst case study involves, analysis

of the phonological disorder, where alveolar approximant (/r/) is substituted with alveolar

voiced consonant (/∂/). It is known as 'rhotacism'. A set of vocal tract system features

and prosodic features, that clearly discriminate correct pronunciation of phoneme /∂/

from the corresponding mispronounced phoneme /r/, is suggested. Further, during the

course of implementation, very interesting problem of gender identi�cation from children

speech have been observed. Gender identi�cation in the case of children is di�cult than

that in the case of adults. Due to underdeveloped vocal tract and thin vocal folds in

both male and female children, there is no signi�cant di�erence in their acoustic-phonetic

properties. This makes the problem more challenging. For this, an attempt has been made

to identify the gender from adult speech and children speech. Di�erent combinations of

vocal tract system and prosodic features, along with their statistical variations, e�cient

in discriminating the gender from adults and children's speech, are explored and reported.

1.6 Organization of the Thesis

The thesis is organized into 7 chapters. The details of the contents of each chapter are

given below:

• Chapter 1 : Introduction explains the mechanism of speech production system

and classi�cation of speech sounds based on the involvement of speech production

organs. Further, an introduction to the phonological processes is provided along with

their di�erent categories decided based on the class of speech sounds. Motivation,

applications and challenges during the implementation of the phonological process

identi�cation system are brie�y discussed. Chapter ends with the clearly articulated

research contributions and thesis outline.
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• Chapter 2 : Literature review provide details of various approaches employed

in the literature for mispronunciation identi�cation. It covers the critical review of

the state-of-the-art approaches proposed for mispronunciation identi�cation, their

limitations, and future scope of some important research works. The approaches

based on the graphical display are critically reviewed from the feature point of view.

The importance of each feature is analysed in e�ective analysis of mispronunciation.

The speech recognition based approaches are analysed from the e�ectiveness of GOP

parameter in mispronunciation analysis. Error Recognition Networks (ERNs) are

discussed and considered for detailed survey. The research gaps are identi�ed from

the limitations of the state-of-the-art approaches. At the end of the chapter, a

problem statement for the present research with relevant objectives is formulated.

• Chapter 3 : Common phonological processes provides an overview of com-

monly observed phonological processes in the children speaking Kannada as a na-

tive language. The dataset is collected from children of age 31
2
to 61

2
years. The

details of the protocol and methodology employed in the process of development of

dataset are given. The phonological processes that appear in children are analyzed

in the age groups from 31
2
-41

2
, 41

2
-51

2
and 51

2
-61

2
years. The phonological processes

observed in children speaking Kannada language are compared with the state-of-

the-art phonological processes in children speaking English to provide the statistics

of the language learning ability of children in both languages.

• Chapter 4 : Phoneme boundary detection discuss a novel approach proposed

for the automatic segmentation of speech signal into phonemes. For the analysis

and automatic identi�cation of phonological processes, availability of the proper

phoneme boundaries is crucial. To get phoneme boundaries, changes in the speech

waveform during transformation from one phoneme to the other are explored. Prop-

erties of power spectrum of correlation of adjacent speech frames are used to get

the phoneme boundaries within voiced & unvoiced regions. A �nite set of rules is

proposed based on the variations observed in the power spectra during phoneme

transitions.

• Chapter 5 : Characterization and identi�cation of phonological process

cover the features that are e�cient in discriminating the correct pronunciation of a

phoneme and its mispronounced counterpart. The same features are further exhaus-
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tively exploited for the identi�cation of phonological processes. Commonly observed

phonological processes that are considered for this study are: aspiration, nasalization

and nasal assimilation, palatal fricative fronting, �nal consonant deletion, voicing

assimilation and vowel deviations.

• Chapter 6 : Case Study: Mispronunciation Processing and Children Gen-

der Identi�cation discuss the feature e�cient characterization of phonological dis-

order 'rhotacism'. During the processes of phonological process identi�cation, an

interesting problem of children gender identi�cation has been found. In order to

analyze the di�culty of children gender identi�cation, �rst a gender identi�cation is

performed on adult speech and then the children gender identi�cation is performed

(Potamianos and Narayanan, 2003). Features e�cient in discriminating the gender

in children speech and adult speech are identi�ed and classi�cation is performed

using suitable machine learning algorithms.

• Chapter 7 : Summary and conclusion chapter summarizes the objectives of the

thesis. Some important learning outcomes of this work are mentioned and throws

light on scope for future research directions, based on the experience of work in this

area of about 8 years.
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Chapter 2

Literature Survey

2.1 Introduction

This chapter reviews the state-of-the-art approaches in pronunciation pattern/error iden-

ti�cation methods. In majority of the cases, identi�cation of the pronunciation errors is

manually performed by the Speech Language Pathologists (SLPs), experts and linguists.

The process is very time consuming and required extensive human attention. To over-

come these demerits, attempts have been made to automate the process of analyzing

mispronounced speech, using di�erent combinations of spectral, prosodic and excitation

source features. The most common approach, a graphics display, where the properties of

waveforms, spectrograms and prosody are used for mispronunciation evaluation are criti-

cally reviewed from the feature point of view. These approaches, with some limitations,

led to an implementation of speech recognition based pronunciation error identi�cation

using the Goodness Of Pronunciation (GOP). The speech recognition based approaches

are analysed from point of view of e�ectiveness of GOP. For processing, the role of various

features and techniques used in obtaining the GOP parameters are covered. Based on the

gaps from the literature, various research issues related to the speech mispronunciation

processing are discussed.

2.2 Graphical display: a review

Di�erent acoustic features of speech have been used to compare the learner's pronunciation

with the model (reference) pronunciation by Computer Assisted Pronunciation Training

System (CAPT) systems. The waveforms and spectrograms have been the most common

approaches used for comparison. Use of pitch, intonation, formants and signal energy

have also been considered for practice, by the system (Lambacher, 1999; Akahane-Yamada
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et al., 1998). All these parameters have been extracted from the learners' and displayed

on the screen along with the same parameters extracted from model pronunciation. Both

the representations have been compared and deviation in the pronunciation have been

observed by the learner. WinPitch LTL, WinPitch LTL II (Germain and Martin, 2000;

WinPitch, 2002), KayPENTAX Auditory Feedback Tool (ADF) (Kay, 2002; Molholt,

1988; Nouza, 1998) are among the most widely used systems. The prosody and other

phonetic features extracted from the learners pronunciation are focused upon in Win-

Pitch LTL. Real time modi�cation of the prosodic parameters are provided by the latest

version of WinPitch LTL, which helps learners to improve their pronunciation according

to the model pronunciation. Intonation of vowels and semivowels, intensity/rhythm steps

(syllables) of signals with stretch and heights (vowel energy) have been considered for the

evaluation in the BetterAccentTutor system (Kommissarchik and Komissarchik, 2000).

The limitations of these visual representation approaches are: (1) two well pronounced

utterances of the same word, highly vary in their acoustic features. Even after huge ef-

forts, learners may not be able to achieve the features as that of the model pronunciation.

(2) It is very di�cult for a learner to interpret these representations due to lack of knowl-

edge of acoustic features. (3) The correction of articulation from the observation of the

spectrogram and waveform is di�cult, as there is no direct correspondence between artic-

ulation and the visual properties displayed. (4) Though the learner is trained to analyze

spectrograms and waveforms of speech signal, it may be di�cult to locate the appropriate

location and be the cause of error.

2.3 Automatic Mispronunciation Detection: a review

From the literature, it is observed that, though the graphic display system provides vi-

sual feedback on the pronunciation, there is a need of continuous intervention of human

experts, in the process of evaluating the performance. This approach needs more human

e�orts and attention to evaluate the mispronunciations. This is the motivation to de-

velop a pronunciation evaluation system that does not depend on experts intervention

and provides a pronunciation quality score. These systems bene�t the user, by providing

comfortable, user friendly environment and avoid inaccuracies of subjective evaluation.

The general approach followed to develop these kind of systems is to obtain phonetic seg-

mentation of the native speakers' and learner's speech, and compare the corresponding

segments with the help of appropriate features. These features play an important role in
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discriminating between correct and incorrect pronunciations.

2.3.1 Features

The main objective of feature extraction is to represent the speech signal in some compact

form, which e�ciently discriminates speech phonemes, emotions and so on. For proper

identi�cation of pronunciation errors, the features that clearly discriminate the phonemes

need to be chosen. Some of the common features mentioned in the literature are discussed

in the following subsections.

A Spectral Features

The features believed to represent vocal tract system are known as spectral or segmental

features. The pronunciation of a phoneme is a result of unique articulation and shape of

the vocal tract. Hence, in many works, it is conjectured that, spectral features are e�cient

in discriminating native and non-native speech pronunciation (Nazir et al., 2019). The

energy values and frequency locations from uniformly spaced bandpass �lters in particu-

lar frequency range result in a spectrum (Kewley-Port et al., 1987; Arslan and Hansen,

1997b). The di�erence in the spectra, obtained from these bandpass �lters, re�ects the

di�erence between correct and mispronounced phoneme. Mel-frequency Cepstral coe�-

cients (MFCCs) are claimed to be e�cient in discriminating the phonemes, as they model

the human perception mechanism (Tsubota et al., 2002; Goddijn and De Krom, 1997;

Cucchiarini et al., 2000; Franco et al., 2000b; Chen et al., 2007; Arora et al., 2017). In

some systems, MFCCs extracted from native and non-native pronunciation of correspond-

ing words are compared using Dynamic Time Warping (DTW). Various parameters from

distance matrix and resultant DTW comparison path have been used for mispronuncia-

tion detection (Zhang and Glass, 2009). Similarly, the parameters from the output image

of self similarity matrix (SSM) are extracted, using some image processing techniques

(Armando et al., 2011; Muscariello et al., 2011). As MFCCs do not represent the tempo-

ral information in the speech signal, the �rst order and second order derivatives over the

neighboring frames have been extracted. Based on the assumption that, the resemblance

between the local geometries of the feature domain and auditory domain, the MFCCs are

modi�ed; known as modi�ed MFCCs (MMFCCs) and used (Chatterjee et al., 2009; Leung

et al., 2019). These features are claimed to be robust and showed signi�cant improve-

ment in the performance (Koniaris et al., 2012). Further, modi�cations in the process of

19



MFCCs extraction are made to achieve better discrimination between correct and mispro-

nounced phonemes, using Adaptive Frequency Cepstral Coe�cients (AFCCs) (Ge et al.,

2013). Formant features have also been used to detect stress based pronunciation errors

(Arslan, 1996). The shape of formant contour has revealed that, very small deviation in

the articulation of tongue leads to huge change in the values of F2 and F3 (Fant, 1970).

Hence formants have also been considered for the evaluation of pronunciation errors in

accents (Arslan and Hansen, 1997b, 1996).

B Articulation Features

Position of oral cavity organs is observed to be di�erent, for the pronunciation of di�erent

speech sound. Signi�cant di�erences have been noticed in the articulation properties of

the phone, if the pronunciation deviates from the native. These articulatory parame-

ters have been used to characterize the pronunciation variations. Mapping of numerical

and physical representations of articulators such as lip, jaw, tongue, velic aperture and

voicing, with phone level transcription in a constrained and interpolated manner, is done

(Tepperman and Narayanan, 2008; Joseph and Narayanan, 2005; Richardson et al., 2003).

These features have claimed to achieve high correlation with the human evaluation and

de�ection in features, drastically changing the nature of the pronunciation. Velar aperture

(open or closed) and voicing (voiced and unvoiced) have claimed to play an important

role in pronunciation (Tepperman and Narayanan, 2008; Joseph and Narayanan, 2005).

Variations in these parameters a�ect the nature of the pronunciation, hence these have

also been considered in the pronunciation.

C Prosodic features

Prosodic features are extracted from the longer segments of the speech. The paralinguistic

information such as loudness, intonation, tone, melody, etc. are mainly represented them.

Prosody is claimed to represent the naturalness in speech. Energy of the signal, frame

wise pitch pattern, duration of di�erent speech units have been treated to be the good

correlates of prosodic features. Tone in a language has a great in�uence on the pronun-

ciation of the phoneme, specially in the case of tonal language where variation in a tone

and stress on a syllable changes the meaning of the word. Hence missed tone has been

considered as an important factor for mispronunciation evaluation in tonal languages.

Some approaches have focused on the pitch related features for tone and pronunciation

20



error identi�cation (Eskenazi, 1996a; Wei et al., 2007; Zhang et al., 2006; Chen et al.,

2007; Tokuda et al., 2002). Pitch (F0); contour signi�cantly varies with the style of pro-

nunciation, capturing tone related information. The variations in pitch considered for the

evaluation are logarithm of the F0, mean normalized value of pitch, mean of F0, mean

variance, second derivative, pitch duration, long span pitch, mean of RMS energy and

so on (Tokuda et al., 2002; Wei et al., 2007; Hiller et al., 1994; Meng et al., 2010). Out

of the features used, log F0 has reported to achieve the good tone error classi�cation.

Pitch normalization using Cumulative Di�erence Function (CDF) has been observed to

outperform the other pitch related features (Wei et al., 2007). However CDF needs large

amount of training data to normalize the F0 (Chen et al., 2004a). Syllable level variations

in F0 such as mean F0 slope over nucleus (syllable), normalized total number of F0 rises

and falls in a word frames, F0 based intra nucleus changes in a frame and pseudo slope

over nucleus have also been explored for tone error recognition. The anchor points have

been extracted from pitch contour, which represent signi�cant pitch event, present in an

utterance, these have helped in identi�cation of tone error in an e�cient manner (Hiller

et al., 1994) (Lefèvre et al., 1992).

D Temporal Features

Temporal features capture time dependent variations in speech signal. Duration, being one

of the important temporal informations, is used in characterizing naturalness in foreign

accent. The general observations, while acquiring an accent by the new language learner,

are hesitation, pauses, amount of time spent on learning the accent and so on. Final

stop closure duration, average voice duration, Voice Onset Time (VOT) have been used

as features to identify the errors in accent, by di�erent studies (Arslan and Hansen,

1997a). It has been observed that the consonant closures durations, such as mean and

standard deviations of consonant closure, shown signi�cant discrimination between correct

and incorrect pronunciations (Port and Mitleb, 1983). VOT has been observed as one

of the important characteristics of the stop consonants. It represents stretch between

leading stop consonant's burst release and the voicing onset of immediate vowel. VOTs

are observed to have signi�cantly longer duration in non-native speakers (Flege, 1984,

1980; Caramazza et al., 1973; Flege and Hillenbrand, 1984). VOTs are also found to

be e�cient in discriminating the phonemes which have similar articulation (Jiang et al.,

2006). Hence, VOTs have played a vital role in identi�cation of accent, errors in accent
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and dialect variations in speech (Lisker and Abramson, 1963, 1967; Kazemzadeh et al.,

2006).

Average voicing duration is quanti�ed as the average distance between the �rst peak

of the voiced speech signal to the end of the last cycle i.e. start of the consonant. Accent

of pronunciation have been found to depend on the context of phoneme in that word;

center vowel and �nal stops are a�ected in pronunciations (Arslan and Hansen, 1997a).

The average word duration (Arslan and Hansen, 1997a) and phone level duration (Kawai

and Hirose, 1997) of a speci�c speaker have also been found important for pronunciation

quality assessment. Studies have reported signi�cant di�erence in average word durations

and their standard deviation values across di�erent accents. For instance, the average

word duration for a non-native mandarin speaker is around 10% higher than that of na-

tive speakers. Variation in intonation patterns have signi�cantly been observed, based on

the language in semantic and phonetic structures (Bolinger, 1958) (Waugh and Bolinger,

1980). Generally in the learning phase, learners have been observed to face di�culty in

capturing naturalness and rate of speech of the native speakers, which resulted in slow

speech rate. The analysis shows timing as one of the important parameters that in�uences

the rhythm of non-native speakers, which is observed through duration of phoneme, word,

phrase and pause patterns (Neumeyer et al., 1996; Ito et al., 2006). The distribution of

duration of the syllables from the central vowel has also been used to compute pronun-

ciation scoring (Neumeyer et al., 1996). The relative duration of the phones have also

been observed to be e�cient in good pronunciation scoring, as it e�ectively captures the

physiological and linguistic characteristics of the phones pronounced. The language dif-

ference in the native and non-native speech have shown signi�cant di�erence in segmental

features. Hence, the rate of speech (ROS) is considered in the literature as a feature

to compute the duration based scores (Cucchiarini et al., 2000). This parameter, if not

properly measured, may become a poor estimator of the overall pronunciation quality.

E Probability Based features

Hidden Markov models (HMMs) are extensively used classi�ers for di�erent speech tasks

due to their ability to capture variability and sequence information present in speech

samples. HMM based speech recognizer uses GMMs to evaluate e�ciency of the feature

vector in representing the acoustic �t. Given the sequence of observations (feature vec-

tor), HMM evaluates the probability of (or likelihood) this sequence, determining the best
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possible sequence of states (or phoneme). Also, the adjustment of HMM model param-

eters is done, to account for the best observed signal. These probabilities and resultant

HMM model parameters are sensitive to the deviations in the pronunciation. So, these

have been used as features to evaluate the pronunciation error in foreign language learning.

The concept of posterior probability have been proposed in many research articles (Franco

et al., 1997; Neumeyer et al., 1996, 1998; Luo et al., 2009). The Log Posterior Probabil-

ity (LPP) and its derivatives, such as Posterior Probability Vectors (PPVs), Enhanced

Posterior Probability Vectors (EPPVs), Maximum Probability Per Frame (MPPF), have

been reported as good parameters for computing pronunciation scores (Proença et al.,

2018). These features have less in�uence on the spectral match variation caused due to

particular characteristics or acoustic channel de�ection (Franco et al., 1997; Jiang and

Xu, 2009; Goddijn and De Krom, 1997). LPPs have claimed to approximate the posterior

probability of the phoneme, based on the segmented observations in (Li et al., 2017a).

The major disadvantage of this approach reported is, the dependency on the quality of

the acoustic model (Zhang et al., 2008). Log posterior ratio of phonemes (the ratio of

posterior probability of the phoneme under observation, that of the phoneme with the

highest posterior probability) has been used by some approaches (Hu et al., 2014). To

extend the use posterior probabilities for both syllable and phone level, the sum of pos-

terior probability of all strings in one segment is considered (Soong et al., 2004; Zheng

et al., 2007). This is reported to achieve better performance, compared to other scoring

mechanisms. Likelihood obtained from the Viterbi path using HMMs, trained on native

data, is considered as a good measure of pronunciation scoring (Neumeyer et al., 1996).

As the likelihood depends on the quality of the HMM model; the length of the sentence

(duration of the frame), log likelihood parameter (LL) have been normalized by the length

of the sentence before the global average likelihood computed. Global likelihood score of

longer phones are found to dominate the global score and suppress the scores of shorter

phonemes. Hence, to compensate the e�ect of global likelihood, local log likelihood scores

over a complete sentence, have been considered, after normalizing them, regardless of

their length (Cucchiarini et al., 2000; Franco et al., 1999; Lee, 1997). F1-score are used as

performance evaluation metric in various natural language processing (NLP) applications

or IR (Information Retrieval) systems (Fujino et al., 2008; Dembczynski et al., 2011). It

has been adopted as a performance evaluator in mispronunciation detection systems (Lee

et al., 2013; Luo et al., 2009; Lo et al., 2010; Huang et al., 2015).
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F Pronunciation Space Models (PSMs)

Occurrence of partially changed pronunciations is a common phenomenon noticed due to

the dialectal in�uence in speech of a person (Wei et al., 2009). This is considered as a

crucial factor for �uency improvement. Generally, two approaches have been considered to

handle partially changed pronunciations during automatic speech recognition applications.

The �rst one is training the model with both mispronounced and correctly pronounced

patterns, leading to the reduction of false alarm rate. These models are incapable of

distinguishing the mispronunciation from the correct pronunciation. Native speech data

is used by the other approach, for training to discriminates the errors from the correct

ones. This approach ended up in increasing the false alarm rate for partially changed

phones. The solution proposed to overcome this problem is Pronunciation Space Models

(PSMs). PSMs have been designed by combining several parallel acoustic models, modeled

to handle each phone, in order to capture pronunciation variations at di�erent pro�ciency

levels.

2.3.2 Classi�ers

Machine learning algorithms or classi�ers have been designed to capture the patterns avail-

able in data, without being specially programmed. They learn from the nature/properties

of reference data and evaluate the target class of the test (template) data, based on the

knowledge acquired, where the knowledge is to be discovered from the large data. Speech

processing is one of the important applications where machine learning algorithms may

be adopted in speech recognition, speech synthesis and mispronunciation detection. The

role of various classi�ers in mispronunciation processing is brie�y discussed below.

A Hidden Markov Models (HMMs)

Speech has a temporal structure, which e�ciently get represented using a sequence of fea-

ture vectors. The Hidden Markov Models (HMMs) have been found suitable for modeling

the temporal information present across speech samples. It has been observed by the re-

searchers, that mispronunciation a�ects general performance of speech recognition leading

to the signi�cant deviations in model parameters of HMMs. Speech recognition systems

such as Indiana Speech Training Aid project (ISTRA) and STAR (Speech Training Aid

Research) have been designed to provide feedback to the deaf or hearing impaired children

(Russell et al., 1996; Kewley-Port et al., 1987; Arslan and Hansen, 1997b). The feedback
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provided is, based on goodness of �t (goodness metric) obtained from template and test

utterances (Series, 1993; Russell et al., 1996, 1997). Similarly, AURIX speech recognition

system has been developed to produce an output using the partial traceback algorithm

(Bunnell et al., 2000). The words are chosen from the initial talking and listening book for

pronunciation practice, once the acceptable pronunciation is achieved by the child, then

he/she moves to the next word. Di�erent pronunciations are found to have di�erent ar-

ticulatory patterns; hence, the articulatory features are used to model mispronunciations.

Physical measurements, of variations in oral cavity organs such as vocalic aperture closed,

stop burst, jaw and lip movement variations, etc., have been used as features to charac-

terize the mispronunciation (Tepperman and Narayanan, 2008; Joseph and Narayanan,

2005; Richardson et al., 2003). The sequence of observations is probabilistically linked to

hidden states (phonemes) of HMMs, along with articulatory parameters. Both are used

to generate the acoustic model. This approach has been claimed to be feasible; however

it is speci�c to the salient error patterns of the language. The parameters considered in

this approach are in�uenced by the variations in the speech, from person to person, which

a�ect the performance of classi�cation (Tepperman and Narayanan, 2008; Richardson

et al., 2003).

The general framework of quantitative scoring of pronunciation has been to obtain

the phone level scores based on the spectral and prosodic features (Mao et al., 2018).

The forced time aligned phonetic segmentations obtained from HMM's Viterbi decod-

ing have been used to derive these scores. These scores have been then compared with

human scores to compute the correlation between them (Rypa, 1996). The processing

of speech signal is claimed to be similar to using the discrete density HMMs (Cohen

et al., 1990; Rypa, 1996). HMMs have been trained, using longer utterances, spoken in

diverse dialects and used as stochastic model, for pronunciation scoring (Cohen et al.,

1990). The posterior probabilities and likelihoods have been computed during phoneme

recognition phase by HMMs. The variants of likelihoods such as log likelihoods (LL),

log likelihood ratio (LLR) have been used for characterization of mispronunciation pat-

terns (Kim et al., 1997; Franco et al., 1997, 1999; Feng et al., 2020). The LLR based

approaches have been found to outperform the systems developed based on posterior

probability (Goddijn and De Krom, 1997; Franco et al., 1999; Neumeyer et al., 1996).

Some works have also been reported on exploring: context free phoneme sequences and

context sensitive complete sentence, using HMM models (Bernstein et al., 1990; Franco
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et al., 1997). In this case, for performance analysis, normally three procedures have been

adopted, namely: phone model, sentence model and combination of both. Signi�cant

improvement has been achieved using sentence level modeling. Context free phoneme

model, with phoneme alignment has shown a very low correlation, indicating importance

of context information in comparison of native and non-native speeches (Franco et al.,

1997). Pronunciation scores have also been investigated in di�erent categories: 1. Hidden

Markov Model (HMM) based log-likelihood scores 2. segment based classi�cation scores

3. segmental duration scores 4. Timing scores (Li et al., 2017a). These scores are reported

to obtain good correlation with human scoring parameters, such as �uency, rhythm and

pronunciation (Neumeyer et al., 1996). Instead of designing pronunciation models based

on the acoustic properties of speech of a single native speaker, it has done by using the

speech samples of variety of speakers (Goddijn and De Krom, 1997). Separate HMM

models have been considered to build single and multiple genderwise speakers models

(i.e. male and female speakers separately). Every speech frame has been represented by

the probability (Maximum Probability Per Frame (MPPF)), of it belonging to a state in

HMM. It has been observed that, the native pronunciations has achieved high value of

MPPF than that of non-native pronunciation. This approach su�ers from the pronun-

ciation di�erences in regional dialects among the speakers. Some other approaches have

also used the phone based word level scores for the con�dence measure (Mak et al., 2003).

This system has used 3 di�erent HMM models, namely: Context Independent (CIHMM),

Position Dependent (PDHMM) and discriminant Functions (DF) and Minimum Classi�-

cation Error (MCE) (Juang and Katagiri, 1992; Chou, 2000). It has marked the phone

in a word based on the pronunciation quality.

Duration being one of the prosodic features, plays an important role in characterizing

pronunciation patterns. Observing clear di�erence in durational properties of mispro-

nounced and properly pronounced phonemes, the research outcomes, based on durational

features have been reported in Dutch language (Strik et al., 1997; Den Os et al., 1995).

Speech duration with and without pauses; mean segment duration, where segment is a

speech without pause; speaking rate, are used as the features to represent duration in this

work. It is observed from the �ndings that, the segmental features have high in�uence on

the overall performance. Similar approaches, using di�erent acoustic features, have also

been reported in literature (Cucchiarini et al., 1997; Neumeyer et al., 2000; Franco et al.,

2000a).
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Foreign accent may be characterized by observing the change in intonation and lexi-

cal stress patterns, along with the acoustic structure, in temporal and spectral domains

(Arslan, 1996). This approach has explored the formant characteristics of speech and

questioned the e�ectiveness of MFCC in accent classi�cation (Hansen and Arslan, 1995;

Arslan and Hansen, 1997a, 1996). Based on the formant curve it has been observed

that, minor deviation in the pattern of tongue placement leads to a huge change in F2

and F3 formants (Fant, 1970). HMMs have been trained, based on each formant and its

derivatives showed that F2 is more signi�cant than F1 for accent characterization (Arslan

and Hansen, 1997b). Mispronunciation is normally observed in tonal languages such as

Mandarin (refer Section C). Person with non-tonal native background trying to learn the

Mandarin as L2 language has lack of tonal accent leading to mispronunciation (Wei et al.,

2007; Zhang et al., 2006). The stress also plays an important role in learning foreign lan-

guages (specially tonal languages) to achieve good pronunciation (Delmonte et al., 1997;

Imoto et al., 2002; Tepperman and Narayanan, 2005). Tone identi�cation in language has

focused on the pitch (F0) features to model tone and stress using HMMs. However F0

exhibits great variations due to intra and inter speaker speaking style. Hence, generally

normalized pitch values along with spectral features are used in experiments (Delmonte

et al., 1997; Tepperman and Narayanan, 2005; Chen et al., 2004a). Multi space distribu-

tion (MSD) has been used to model the HMMs against the variations, as it has proved

to be robust in tonal language recognition (Tokuda et al., 2002; Zhang et al., 2006). The

Log Likelihood (LL) and Log Posterior Probability (LPP) scores are used as evaluation

metrics (Chen et al., 2004a). The posterior probability based scores have shown better

correlation with the human rating. HMM model, using Cumulative Di�erence Function

(CDF) has claimed to outperform the other approaches like, without normalization, mean

without normalization, mean normalization and variance normalization (refer Section C)

(Wei et al., 2007). Syllable and sentence level intonation scores and their combinations ob-

tained from HMMs have been used for pronunciation evaluation (Kim and Sung, 2002).

Sentence level scores have been obtained, using normalized pitch values over the total

number of syllables present in a sentence. The median of pitch variation over each syl-

lable is used to compute syllable level scores. HMMs trained, using phoneme speci�c

features, along with tone, rhythm and intensity, have been considered for pronunciation

assessment in Mandarin (Chen et al., 2007). The combination of these scores is reported

to consistently achieve better scores close to human rating.
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B Linear Discriminant Analysis (LDA)

Unlike the traditional GMMs, the use of probability based linear prediction algorithms

in GMMs captures the correlation of feature vectors, with observations in subspaces e�-

ciently, without expanding the acoustic model. This approach has shown its signi�cance

in speech recognition (Lu and Renals, 2014; Erdogan, 2005). Linear Discriminant Anal-

ysis (LDA) have been trained using duration, variations of ROR and energy as features,

due to signi�cant di�erence in the duration values of fricatives and plosives in some ap-

proaches. Though the accuracy claimed is good, considered independently at gender level,

the approach is limited to voiceless fricatives and plosives. Only few categories of mispro-

nunciation (i.e �xed patterns) have been considered for studies from Dutch language and

does not focus on deviations in pronunciation. LDAs with the combination of cepstral co-

e�cients have been proposed for mispronunciation evaluation (Strik et al., 2009; Tsubota

et al., 2002). An optimization standard in GOP approach has maximized the accuracy of

scoring, by keeping the percentage of False Rejections low.

C Support vector machines (SVMs)

SVMs are found suitable for the mispronunciation characterization due to their better

generalization capability (Vapnik, 1995; Padrell-Sendra et al., 2006). Maximization of

distance (margin) has been able to capture the unseen patterns and has outperformed the

nonlinear classi�ers. The pronunciation variations have been modeled and several parallel

acoustic models for each phoneme are developed to cover the entire Pronunciation Space

(Franco et al., 1999), (Ito et al., 2005). These Pronunciation Space Models (PSMs) are

e�cient in capturing the features of partially changed pronunciation and have been used

as features to train the SVMs. Though the accuracy is claimed to be good, SVMs have

been trained with simple linear kernel function. The PSMs have claimed to achieve better

classi�cation, however the validity of rating has been di�cult to be accepted as there is

no good method available to correlate human and machine evaluation. A comparison

based approach, using di�erent sets of features, has been proposed for word level mispro-

nunciation detection using SVMs (Lee and Glass, 2012). The main aim of this approach

is to diminish the volume of training data, needed for the conventional recognizer based

approaches. The parameters extracted from `DTW comparison path' (refer subsection A)

have been used as features. The method has captured the phone and word level errors, but

failed to detect the wrong lexical stress patterns, as these patterns are pitch dependent.
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The phoneme level Landmark-based SVM has been combined, with con�dence mea-

sure, for mispronunciation detection (Hirabayashi and Nakagawa, 2010), (Yoon et al.,

2009). The consonant closure and release, syllable peaks and dips, etc. have been re-

ported as `acoustic landmarks' using which ASR and mispronunciation detection systems

are designed (Stevens et al., 1992). These landmarks have claimed to be di�erent, for

di�erent phonemes. Di�erent posterior probability based parameters, such as Posterior

Probability Vector (PPV), Log Posterior Probability (LPP), Enhanced Posterior Probabil-

ity Vector (EPPV), Revised Log Posterior Probability (RLPP) etc. have been extracted

and found to characterize the mispronunciations in vowels and consonants, e�ciently

(Van Doremalen et al., 2009; Jiang and Xu, 2009; Cucchiarini et al., 2011). All possible

speech errors, including substitution, confusion of consonants have been considered for the

analysis. RLPPs are found to outperform the LPPs with linguistic knowledge (Xu et al.,

2009). The approach is not suitable for the sparse data and speaker adaptive training

may have been used to improve the models.

D Feed-forward neural networks (FFNNs)

HMM based recognizers have used Gaussian mixture models (GMMs), for evaluating

goodness of the speech features for e�cient representation of acoustic �t. It has been

observed that, GMMs have captured speaker di�erences more e�ectively than the di�er-

ences in the phonetic units. This has resulted in misalignment of speech segments and

has a�ected the pronunciation scoring (Lee et al., 2013). Feed-Forward Neural Networks

(FFNNs) have been used to generate the posterior probabilities using several feature

frames over HMM states as output (Li et al., 2017a).

1. Deep Belief Networks (DBNs): Deep Belief Networks (DBNs) have been pro-

posed as a special kind of feed-forward neural networks composed of pile of Re-

stricted Boltzmann Machines (RBMs) as their building blocks. It is a multi layer,

stochastic, latent variable, probabilistic generative model. The restricted Boltz-

mann machine performed unsupervised training, in a bottom up manner, to gener-

ate a deep belief network (Hinton et al., 2006). Fine-tuned, pre-trained deep belief

network with back propagation has achieved better recognition, vis-a-vis the one

without pre-training. DBN-HMM have been proposed to detect the segmental mis-

pronunciation errors, which has achieved a good Viterbi decoding (Qian et al., 2012)

(Lee et al., 2013). This has been found to be useful in accessing pronunciation scor-
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ing and leveraging unlabeled L2 speech. The main concern here is the large time

taken by the DBNs for training.

2. Deep Neural Networks (DNNs): Deep Neural Networks (DNNs) have been

reported as FFNNs with large number of hidden layers. Huge number of output

layer neurons have been used to acquire large number of HMM states in recogni-

tion. DNNs with multiple hidden layers have been claimed to outperform GMMs,

in various speech recognition systems, by a huge margin. This approach has been

employed for mispronunciation detection (Hu et al., 2013; Li et al., 2016; ProenÃ�a

et al., 2017) and tone error detection (Wenping et al., 2014). The DNN has e�ciently

decomposed the input features into an e�ective basis function (i.e. hyperbolic tan-

gent). It has e�ciently convolved the input from previous layer to the next layer, to

compute the best posterior class probabilities (Li et al., 2017a; Proença et al., 2018).

Tone is classi�ed into suprasegmental feature, where a longer frame is necessary for

e�cient modeling of the characteristics of tone (Wenping et al., 2014). The structure

of DNN is e�cient in augmenting these large durations than the GMMs. The role of

DNN based HMM recognizers has been explored in mispronunciation detection (Hu

et al., 2013, 2014; Arora et al., 2017). DNNs have simpli�ed the complex process of

training individual classi�er for speci�c phoneme and have built a common repre-

sentation of the features via shared hidden layers for speech recognition (ProenÃ�a

et al., 2017; Proença et al., 2018). This representation has been helpful in capturing

the deviations in pronunciations (Li et al., 2016), hence generating e�cient goodness

of pronunciation (GOP) score in comparison with the most popular GMM-HMM

based mispronunciation detection techniques. LSTMs have also been explored for

the task (Li et al., 2017b; Wana et al., 2020); the approach is observed to perform

better at segment level mispronunciation.

E Error Patterns (EPs) and Mispronunciation Networks (MP)

Generally, mispronunciation detection is aimed at automatic identi�cation of the loca-

tion of the incorrectly pronounced phoneme or syllable by the language learner. These

pronunciation errors lead to speci�c patterns known as Error Patterns (EPs). These er-

ror patterns appear frequently due to some articulation mechanisms which are unique to

non-native language learners. The language professionals or teachers have built EP, using

pedagogical and linguistic knowledge, to cover the most frequently appearing EPs in L2
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speaking person (Wang and Lee, 2012). All EPs and their corresponding correct pro-

nunciation have been modeled using phoneme models. The approaches for pronunciation

pattern evaluation using EPs, GOPs and their combination has reduced the overall clas-

si�cation error. EPs have been represented using other forms known as Mispronunciation

Networks (MPs). MPs are traversed, using Viterbi algorithm, which results in a sequence

of native and nonnative phones (Ronen et al., 1997). Here, the pronunciation quality has

been estimated using total number of native and non-native phones. The weighted MP

scores has given a proper score, to the occurrence of phone, according to its relevance and

has improved the recognition.

F Extended Recognition Network (ERN)

Though e�orts have been made to identify the pronunciation quality, based on phone,

word and sentence, these systems do not consider the contextual information for the

recognition. Some researches (Kaplan and Kay, 1994; Meng et al., 2007; Harrison et al.,

2009; Lo et al., 2010; Gildea and Jurafsky, 1995) have focused on the mispronunciation

detection, based on the phonological rules. Johnson et. al. has suggested that the regular

phonological rules in a language can be represented as regular relations, if a phoneme

does not belong to more than one phonological rule (Johnson, 1972). The issues related

to regular language, regular relations and computational phonology are explained, along

with the various conventional rules applicable, for modeling these phonological processes

(Kaplan and Kay, 1994). OSTIA algorithm has considered the input-output pairs as

a training set and based on the tree, transducer has generated the phonological rules

(Oncina et al., 1993; Gildea and Jurafsky, 1995). The resultant network is named as

Extended Recognition Networks (ERNs). ERNs have been used in connection with the

phone level transcription of the learners' speech (Meng et al., 2007; Lo et al., 2008; Qian

et al., 2010; Meng et al., 2010; Luo et al., 2011). The transcription achieved from the

system has aligned with the standard transcription and feedback is provided to the learner

accordingly. The context sensitive phonological rules are given by a relation q → w/l_p,

where q is replaced with phone w when pre�xed by the phone l and post�xed by p.

Insertions are given by e → w, where phoneme e is replaced by phoneme w. Deletions

are by q → φ, in which phone q is eliminated. ERNs are found to abstract the exact

phonological rules; the performance of the system highly correlated with the human rated

mispronunciations (Lo et al., 2010). The combination of ERNs and posterior probability
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based scoring is found to achieve better performance than with ERN alone (Meng et al.,

2010). This pronunciation error detection approach has not been generalized as it is

highly language dependent. Only prominent mispronunciations have been focused on

and identi�ed. The other possible type of networks are called Fully Informed Network.

They have been built using all possible phonological rules observed from learners native

language onto non-native language. ERNs have claimed to improve an average accuracy

of mispronunciation detection by 10.08% over Fully Informed Networks (Harrison et al.,

2009).

2.4 Research Gaps

Based on the analysis of features, classi�ers and methodologies applied from the literature;

some important research issues in mispronunciation processing have been listed below:

2.4.1 Phonological process identi�cation

Phonological processes in children are observed to follow speci�c patterns (Hodson, 1986)

(Roberts et al., 1990). The general approach followed to train the system is to use the

read speech from adult and evaluate performance using children's speech. The proper-

ties of the child and adult speeches have signi�cant di�erence (specially the spectral and

prosodic features), due to variation in the length and volume of vocal tract and a grip

on neuro-motor control, which a�ects the performance of the system. Many approaches

have focused on these di�erences in pronunciation patterns and have tried to automate

the recognition based on the patterns (Russell and Li, 2001; D'Arcy and Russell, 2005;

Batliner et al., 2005). Mostly, the segmental and supra-segmental features have been

the primary features analyzed for the recognition (Gerosa et al., 2006), (Hacker et al.,

2007), (Hagen et al., 2007). However, there is no report of signi�cant work in automatic

identi�cation of the phonological processes in children's speech. Extended Recognition

Network (ERNs) based approaches can be employed for identi�cation of insertion, deletion

and substitution (Meng et al., 2007), (Lo et al., 2008), (Qian et al., 2010), (Meng et al.,

2010), (Luo et al., 2011). From the study of children's speech, it is observed that the

phonological patterns vary from child to child. Insertion, substitution and deletion pro-

cesses do not have commonly observable patterns. The quanti�cation of these processes is

very important for the analysis of language acquisition criterion in children. The current

state of mispronunciation evaluation does not provide proper metrics for quanti�cation
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of phonological processes. Hence, there is a need for an automated system, that de-

tects the phonological processes, which identify the mispronounced phonemes, along with

the corresponding substitutions/deviations and their severity. This helps Speech Lan-

guage Pathologists (SLPs) to evaluate the mispronunciation patterns, study the language

learning ability in children and suggests remedial steps for pronunciation improvement, if

required.

2.4.2 Probability based scoring

Log Likelihood (LL), derivatives of the LLs, Log Posterior Probability (LPP), derivatives

of the PPs are some of the scoring parameters used to correlate the pronunciation devi-

ation with that of human rating (Franco et al., 1997; Jiang and Xu, 2009; Zhang et al.,

2008; Hu et al., 2014). These parameters have been obtained from HMM based speech

recognizers, trained on the native speech or the combination of native and non-native

speeches. Obviously, performance of the recognizer is directly proportional to the qual-

ity of the database, acoustic model and language model used (Franco et al., 1997; Jiang

and Xu, 2009). Quality of the datasets is a prime factor, while developing the identi�ca-

tion systems based on machine learning. Improper and degraded data leads to ine�cient

system, a�ecting the performance. The e�cient acoustic model is the result of proper

training, where improper training leads to ine�cient system. This lacuna negatively af-

fects the probability based scoring parameters. Hence from the research point of view, it

is appreciable to utilize the pronunciation evaluation parameters, that are independent of

acoustic models, for better model building.

2.4.3 Correlation between Human and Machine Scores

For mispronunciation evaluation, the recorded dataset has been �rst labeled by human

experts. To validate the pronunciation scoring or pronunciation error detection algorithm,

the correlation of scores obtained from machine and human is computed. The human

rating and its correlation with machine score has been found to be e�ective as the ultimate

aim of any speech system is to imitate humans (Franco et al., 2000b,a). Though experts

can rate pronunciation, it is an highly subjective approach. The experts in di�erent

experiments are di�erent, leading to signi�cant variation in human rating. So, the system

which has shown the best correlation with one testing dataset may not perform equally

well in the cases of other datasets. The quality of pronunciation depends on various
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other parameters, such as category of phoneme, stress, pitch, rhythm, intonation, etc.

The scores generated by the system are presented to the learner in numeric form. It is

very di�cult for the learners to interpret and understand how the score or the quality of

pronunciation can be improved. Hence, there is a need for some other parameters, that

represent the pronunciation quality in more comfortable visual form, on real time basis.

2.4.4 Features considered

The role of spectral and temporal features have been extensively explored for mispronun-

ciation characterization due to their high contribution in speech recognition (Eskenazi,

2009). Excitation source features are said to play an important role in speech enhance-

ment, emotion recognition, language identi�cation and so on (Yegnanarayana et al., 2005),

(Yegnanarayana et al., 2002), (Koolagudi and Rao, 2009), (Koolagudi et al., 2012). Vari-

ous excitation source features have been identi�ed and introduced as features for various

speech tasks (Murty and Yegnanarayana, 2008), (Murty and Yegnanarayana, 2006). Ex-

citation of oral cavity acts as stimulus to the speech production mechanism. From the

literature, it has been observed that excitation information is seldom used for character-

izing mispronunciation patterns. It would be curious to know the in�uence of vocal folds'

vibration pattern on characterizing mispronunciation. The role of formants is observed

in measuring the errors in learning language accent (Arslan and Hansen, 1996), (Arslan

and Hansen, 1997b). As formants greatly vary across di�erent pronunciation of the same

phoneme, the variants and properties of formants may play a crucial role in automatic

mispronunciation detection. The role of prosodic features such as pitch, intonation etc.

have been explored in the �eld of accent classi�cation. These features may vary in mis-

pronunciation and the corresponding actual pronunciation. Hence pitch and its variants

can be explored for mispronunciation characterization.

2.4.5 Classi�ers used

Various classi�ers have been explored in the literature to recognize mispronunciation by

comparing mispronounced and correctly pronounced speech samples (Kewley-Port et al.,

1988; Arslan and Hansen, 1997b; Series, 1993; Cucchiarini et al., 2000). The scores ob-

tained from HMM based recognizers have generally been used for pronunciation evalu-

ation. Recent approaches have used SVMs, Deep Belief Network (DBN) and DNN for

computing pronunciation scores (Wei et al., 2009; Lee, 1997; Lee and Glass, 2012; Yoon

34



et al., 2009). Though results are claimed to be improved, all aspects of these classi�ers

have not been explored (Wenping et al., 2014). The Random Forest (RF) algorithms have

also been used for computing acoustic scoring, using Phonetic Decision Trees (PDTs) (Su

et al., 2007; Xue and Zhao, 2008), (Breiman, 2001). Hence, RFs may be considered for

pronunciation evaluation. Similarly, the posterior probability can be e�ciently computed

by decomposing the features using decision tree based classi�ers (Schuermann and Doster,

1984). The Genetic Algorithms (GA) are observed to improve the performance of ANN

based speech recognition systems (Lan et al., 2006). For speci�c pronunciation errors, the

rule based machine learning algorithms can be developed, as they learn the properties of

rules in a more expressive way than the other representations (Lederberg et al., 1969). An

adaptive neuro-fuzzy inference system (ANFIS) is a fuzzy logic based ANN (Jang, 1993)

and is observed to have better discriminating capability, compared to simple ANN. These

aspects may be properly explored further.

2.5 Problem Statement and Objectives

Based on the research gaps identi�ed from the literature review, the research problem for

this work has been de�ned as follows.

An automatic identi�cation and quanti�cation of phonological processes in children

speech between the age of 3.5 to 6.5 years.

The above statement is elaborated into the following four objectives.

I Analysis of nature and types of phonological processes appear in speci�ed age group

from linguistic and SLPs point of view. As children acquire phoneme pronunciation

capability, the phonological processes normally disappear. The analysis and quan-

ti�cation of processes help in validating the result achieved through the automatic

detection..

II Study the signal level properties of the phonological processes, to explore the features

which help to discriminate the pronunciation errors.

III Automatic identi�cation of the phoneme/syllable substituted, deviated and deleted

by the children in the given speech, to classify them in respective phonological

processes and their quanti�cation for evaluation of the severity of mispronunciation

pattern.
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IV Identifying the pronunciation disability as a process, expected to be permanent.

2.6 Common Resources used in this Thesis

2.6.1 Datasets Used

Seven di�erent datasets are considered for di�erent experimentations, to ful�ll the scope

of the objective. Phoneme boundary detection is a preprocessing task for the implemen-

tation. TIMIT Corpus and IIIT-H Indic speech databases-Marathi and Hindi are used

to validate the proposed phoneme boundary detection. For mispronunciation analysis

and identi�cation from children's speech NITK Kids' Corpus is considered. TIMIT Cor-

pus and IIIT-H Indic speech databases-Marathi and Hindi are also utilized for the task.

Analysis of phonological disorder is performed on rhoticism dataset. Detailed analysis

of gender identi�cation in children and adult is performed using CMU Kids Corpus and

Western Michigan University Corpus. Details of the datasets are given in the following

paragraphs.

1. TIMIT Corpus: TIMIT acoustic-phonetic speech corpus is designed to ful�ll the

needs of researchers, for acquisition of acoustic-phonetic knowledge and for devel-

opment and evaluation of automatic speech recognition systems (Garofolo et al.,

1993). It consists of recordings of 630 speakers, from both genders in eight major

dialects of American English. 10 phonetically rich sentences have been recorded from

each speaker. Speech waveform of each utterance is sampled at 16 KHz sampling

rate, with 16 bit quantization per sample. Time-aligned phonetic, orthographic and

word transcriptions for each utterance are provided, where the transcription has

been hand veri�ed. Created test and training subsets have been balanced for pho-

netic and dialectal coverage for experimentations. Corpus is a collaborative e�ort

of three organizations; namely: Massachusetts Institute of Technology (MIT), SRI

International (SRI) and Texas Instruments, Inc. (TI), and has been recorded at TI.

2. IIIT-H Indic speech databases-Marathi database: The speech clips considered for the

evaluation of system has been taken from IIIT-H Indic speech databases - Marathi

database (Prahallad et al., 2012). The dataset is mainly designed for speech synthe-

sis. 1000 phonetically balanced sentences available on Wikipedia articles in Marathi

Language (one of the Indian languages) have been recorded from native Marathi

speakers (Raj et al., 2007). Speech waveform of each utterance is sampled at 16
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Table 2.1: List of correctly pronounced and mispronounced word along with phoneme substitution

Sl. No. Correct word Mispronounced word Substitution Phoneme Substitution

1 yaru yadu ru-du /r/-/∂/

2 sara sada ra-da /r/-/∂/

3 tare tade re-de /r/-/∂/

4 ardha adha ra-da /r/-/∂/

5 guri gudi ri-di /r/-/∂/

6 aatura aatuda ra-da /r/-/∂/

KHz sampling rate and stored with 16 bit quantization per sample. These sen-

tences have been chosen to ensemble 5000 frequently occurring words in Marathi.

The recordings have been made in a professional recording studio by connecting a

standard headset microphone connected to Zoom handy recorder.

3. IIIT-H Indic speech databases-Hindi database: IIIT-H Indic speech databases - Hindi

database is a Hindi (one of the Indian languages) speech corpus consisting of record-

ings of 1000 sentences recorded from native Hindi speakers (Prahallad et al., 2012).

The use of dataset is described for speech synthesis. The sentences have been

chosen from the Wikipedia articles in Hindi Language. Speech waveform of each

utterance is sampled at 16 KHz sampling rate and stored as 16 bit number. These

sentences have been chosen to ensemble 5000 frequently occurring words in Hindi.

The recordings have been done in a professional recording studio by connecting a

standard headset microphone connected to Zoom handy recorder.

4. CMU Kids Corpus: The database used in this work is CMU Kids Corpus, which

consists of sentences read aloud by children, both male and female, in the English

language (Eskenazi et al., 1997). The database has been originally designed to create

a training set of children's speech for the SPHINX II automatic speech recognizer

under the LISTEN project at Carnegie Mellon University (CMU). LISTEN has

been designed as reading coach system. Based on the requirement of the project,

major portion of speech dataset is recorded from the good readers. The data is

also recorded from children who are observed to be at risk of growing up as poor

readers. The children are in the age range of 6 years to 11 years and are in the �rst

to third grades, at the time of recording. A total of 24 male and 52 female speakers

have been considered. The female recordings have 544 samples whereas the male

recordings have 274 samples. There are a total of 818 audio recordings.

5. Rhotacism Corpus: Rhotacism is refered to as the inability to pronounce /r/. The
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dataset consists of mispronounced speech samples, where alveolar approximant (/r/)

is substituted with voiced dental consonant (/∂/), collected from a kid of age 15,

who have articulation (phonological) disorder in Kannada language (Ramteke et al.,

2015). The dataset is recorded by the Speech Language Pathologists (SLPs) of De-

partment of Speech and Hearing, Manipal College of Health Professions, Manipal,

Karnataka. The corresponding correctly pronounced speech samples are recorded

from the persons who do not have any pronunciation di�culty. The dataset con-

sists of a total of sixty samples for correctly pronounced and corresponding mis-

pronounced words. Table 2.1 shows the list of mispronounced words and the corre-

sponding correctly pronounced words along with the phoneme substitution.

6. Western Michigan University Corpus: The speech corpus of male and female voice is

made available freely for the educational purposes by Western Michigan University

(Hillenbrand et al., 1995). The speech dataset is recorded from 45 male speakers and

48 female speakers. 12 vowel sounds pronounced in American English are recorded

from each speaker. The vowel sounds recorded are: /ae/ in `had', /ah/ in `hod',

/aw/ in `hawed', /eh/ in `head', /er/ in `heard', /ei/ in `hayed', /ih/ in `hid', /iy/ in

`heed', /oa/ in `hoed', /oo/ in `hood', /uh/ in `hud' and /uw/ in `who'd'. Recording

is done at a sampling rate of 16 kHz in linear PCM format. The dataset consists

of 540 speech samples recorded from male and 576 speech samples recorded from

female speakers.

7. NITK Kids' Speech Corpus: NITK Kids' Speech Corpus is recorded in Kannada

language (one of the South Indian languages) from children between the age of 21
2

to 61
2
years (Ramteke et al., 2019). It is divided into four age groups with an interval

of 1 year between each age group. The speech corpus includes nearly 10 hours of

speech recordings from 160 children. For each age range, the data is recorded from

40 children (20 male and 20 female). The e�ect of developmental changes on the

speech, from 21
2
to 61

2
years, are analyzed, using pitch and formant analysis. Some

of the potential applications, of the NITK Kids' Speech Corpus, such as, systematic

study on the language learning ability of children, phonological process analysis and

children speech recognition are discussed.

Table 2.2, shows the tasks and the datasets used for the respective tasks in this thesis.
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Table 2.2: List of the Tasks and the Datasets used for the Respective Task

Sl.
No.

Task Datasets Used

1 Phoneme boundary detection TIMIT Corpus, IIITH-Marathi
Dataset, IIITH-Hindi Dataset

2 Final consonant deletion NITK Kids Corpus

3 Identi�cation of nasalization and nasal assim-
ilation

NITK Kids Corpus

4 Identi�cation of voicing assimilation NITK Kids Corpus

5 Identi�cation of /s/ and /sh/ mispronuncia-
tion

NITK Kids Corpus

6 Identi�cation of vowel deviations NITK Kids Corpus

7 Characterization of aspiration and unaspira-
tion

TIMIT Corpus, IIITH-Marathi
Dataset, IIITH-Hindi Dataset, NITK
Kids Corpus

8 Feature analysis for Rhoticism Rhotacism Corpus

9 Gender identi�cation from adult's speech Western Michigan University Corpus

10 Gender identi�cation from children's speech CMU Kids Corpus, NITK Kids Corpus

2.6.2 Features Considered

The extraction mechanism of di�erent features, used to ful�ll objectives of this thesis, are

mentioned and discussed in this subsection.

A Preprocessing of Speech using Spectral Filtering

Children speech is typically characterized by high fundamental frequencies between the

range of 250Hz-600Hz, this generates the widely spaced harmonic components producing

apparent undersampling of the vocal tract transfer function (Lindblom, 1962), (Kent,

1976). This makes the task of spectral analysis more di�cult from children speech, such

as identi�cation of formant frequencies from the spectral envelope because the envelope

peaks are strongly in�uenced by individual harmonic amplitudes (Story and Bunton,

2016). Children may produce a breathy voice, characterized by low amplitude in upper

harmonics and adds signi�cant noise to the spectrum due to glottal turbulence (Glaze

et al., 1988),(Ferrand, 2000). These e�ects can be removed from the children speech using

spectral �ltering. It aims at applying a low-pass Butterworth �lter on the cepsturm of

speech signal and then transform the cepstrum signal into frequency domain. A low-pass

spectral �lter preserves the vocal tract contribution and removes the source excitation.
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The process of spectral �ltering is as below,

The speech sequence s(n) can be expressed as convolution of e(n) is the excitation

sequence and h(n) is the vocal tract �lter sequence. Thus, s(n) can be expressed as

equation 2.1:

s(n) = e(n) ∗ h(h) (2.1)

s(n) is transformed into frequency domain using Fourier transform, to deconvolve the

speech signal. This converts the convolution into multiplication of excitation and system

components, as shown in equation 2.2,

S(w) = E(w) ∗H(w) (2.2)

To achieve the separability of excitation source and vocal tract response, S(W ) is con-

verted into linear combination (addition) using logarithmic representation of magnitude

of S(W ) using equation 2.3 followed by equation 2.4,

|S(w)| = |E(w)| ∗ |H(w)| (2.3)

log|S(w)| = log|E(w)|+ log|H(w)| (2.4)

The separation can be obtained by inverse discrete fourier transform (IDFT) of the

log spectra (linear spectra) of excitation component and vocal tract system. IDFT of

linear spectra transforms it to quefrency domain or the cepstral domain, similar to the

time domain as given in equation 2.5.

c(n) = IDFT (log|S(n)|) = IDFT (log|E(w)|+ log|H(w)|) (2.5)

The spectral �ltering algorithm is based on applying a low-pass �lter to the c(n) to

separate vocal tract response and excitation characteristics. Where, variations in the lower

quefrency region of c(n) represents vocal tract response and the upper quefrency region

represents the excitation characteristics of the short term speech segment (Rabiner and

Juang, 1993). A low-pass spectral �lter preserves the vocal tract contribution and removes

the source excitation. The �lter can be realized with a Butterworth �lter design where the

cuto� point is located at just over half the fundamental period. Experimentation during

development of the algorithm observed that, a sixth-order Butterworth �lter with a cuto�

quefrency set to 0.56
F0

provides the desired �ltering e�ect. For e.g., the cut of frequency
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for the F0 = 400Hz is 0.56
F0

= 0.0014 seconds. After applying the designed Butterworth

�lter to the cepstrum, it is transformed back to the Fourier domain using reverse process.

This, resulting Fourier transform is free from the e�ects of high F0 value in children

speech. The implementation of this algorithm is available in MATLAB 2015 (Story and

Bunton, 2016). The spectral �ltering is performed before extracting the spectral/vocal

tract features from the children speech.

B Mel-frequency Cepstral Coe�cients (MFCCs)

MFCCs are one of the most widely used features in the speech recognition (Tiwari, 2010;

Davis and Mermelstein, 1980; Huang et al., 2001). They are said to mimic the human

perceptual and auditory systems; hence play a signi�cant role in various speech related

applications. Figure 2.1 details the procedure to extract MFCC features. To get MFCCs,

extract Fourier transform of an audio signal and map power of the spectrum on Mel-scale

using triangular �lter banks (Murty and Yegnanarayana, 2006). Take the log of the result

of triangular �lter bank and calculate inverses discrete cosine transform (IDCT). MFCCs

are obtained from the amplitudes of the resultant spectrum, where a total of 13 features

are extracted. These features are claimed to be su�cient for identifying phones.

Speech Signal

Framing
and Windowing DFT

Mel
Filterbank

LOGIDFT
MFCC

Cepstrum
MFCC
Features

Figure 2.1: Proposed framework for feature analysis of the mispronounced phonemes

In speech, the context and dynamic information plays an important role, where most

of the articulations of consonants are characterized by transitions in frequency (Davis and

Mermelstein, 1980). Characterizing change in frequency over time provides a contextual

information of phone. Another set of 13 values are calculated from 13 MFCC features as

the �rst oder derivative of them, using equation 2.6 (Huang et al., 2001),

dt =

∑N
n=1 n(ct+n − ct−n)

2
∑N

n=1 n
2

(2.6)

where, dt is a ∆ (di�erential) coe�cient, calculated from tth frame over the range

of coe�cients Ct+N to Ct−N . In general, value of N is set to 2. 13 ∆∆ (acceleration)
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coe�cients are calculated using the same equation using di�erential coe�cients as input.

In total, 13 MFCCs, 13 ∆MFCCs and 13 ∆∆MFCCs makes a feature vector of size 39.

C Pitch

Pitch is the rate of vocal folds' vibration of a speaker, identi�ed by the fundamental fre-

quency of the speech signal. The pitch contour is extracted from the speech signal using

probabilistic YIN (PYIN) algorithm (Mauch and Dixon, 2014). This is a modi�ed auto-

correlation method, which overcomes the drawbacks of normal autocorrelation approach,

such as errors in peak selection. The PYIN approach is divided into two stages: 1) Pitch

candidate extraction (along with associated probabilities) 2) HMM-based pitch tracking.

• Stage 1: Identi�cation of pitch (F0) candidate PYIN follows the YIN al-

gorithm, where it di�ers from YIN in thresholding stage. It considers threshold

distribution mechanism instead of single threshold. YIN algorithm proposes that,

in a given signal si, i = 1, 2, ...,W , the di�erence dt(τ):

dt(τ) =
W∑
j=1

(sj − sj+τ )2 (2.7)

is small, if s exhibits periodic nature with fundamental period of τ = 1
F0
. The

di�erence can be e�ciently approximated using an autocorrelation function (rt(τ)),

as given in equation 2.8

rt(τ) =
t+W∑
j=t+1

(sj × sj+τ ) (2.8)

where, the dt(τ) can be rewritten as,

dt(τ) = rt(0) + rt+τ (0)− 2rt(τ) (2.9)

Further, cumulative mean normalised di�erence function is used to normalize the

dt(τ). The next step is to mark the valley, in the di�erence function, that represents

a fundamental period. This is done using a threshold based approach, where a

threshold is calculated using prior parameter distribution PD given by P (xi), where

xi, (i = 1, 2, ..., N = 100) are possible thresholds. The thresholds range from 0.01

to unity (in steps of 0.01). Beta distribution is considered with µ = [0.1, 0.15, 0.0]

and β = [18, 111
3
, 8]. Given the distribution along with the prior probability p(a),
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the probability of a period τ is F0

P (τ = τ0|S, st) =
N∑
i=1

a(xi, τ)P (xi)[Y (st, xi) = τ ] (2.10)

where,

a(xi, τ) =

1, if d′(τ) < xi

pa, otherwise
(2.11)

If P (τ = τ0|S, st) > 0 for a given τ represents a F0 candidate.

• Stage 2: Pitch Tracking Here, at the most, one pitch candidate is chosen per

frame. To model the pitch into the states of hidden Markov model (HMM), pitch

is divided into M (480) bins over 4 octaves (55Hz (A1) to 880Hz (A5)). The model

returns a probability of each pitch candidate, assigned to the bin closest, to the

estimated frequency. The non-zero elements are those closest to pitch candidates.

HMM has voiced (v = 1) and unvoiced (v = 0) states per pitch, where initial prior

probability is set to P(v = 1) = P(v = 0) = 0.5. Transition probabilities are given

as,

pv = P (vt|vt−1) =

0.99, if no change d′(τ) < xi

0.01, otherwise and
pij = P (pitcht = j|pitcht−1 = i)

(2.12)

where, it serves two purpose 1) pitch tracking (voicing transition pv) 2) highlighting

the changes between unvoiced and voiced states (pitch transition pij).

D MFCCs Extracted From HNGD Spectrum

Here, a speech signal is multiplied with a Zero Time Window, where high weight is

assigned to the few initial samples and low weights are given to the remaining samples of

the signal. ZTW function is given by equation (Dubey et al., 2016),

w1(n) =

0 n = 0

1
4sin2(πn/2N)

n = 1, 2, ..., N − 1

(2.13)

where N is the window length. Spectrum for children speech s is extracted using ZTW

as follows:
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Figure 2.2: Illustration of HNGD spectrum (Dubey et al., 2016) (a) Speech segment (5 ms) of /n/ and
ZTW function. (b) Combined window function w(n) = w2(n)× w2(n). (c) Windowed speech waveform
x(n) = s(n)w(n). (d) NGD spectrum of x(n) = s(n)w(n). (e) Double derivative of NGD spectrum
(DNGD). (f) HNGD spectrum

1. Consider s(n) of length M samples, where M varies from n = 0 to M − 1.

2. Select DFT length N such that N >> M and equal the length of s[n] to N by

padding N −M zeros to it.

3. Multiply N length s(n) with the window function w1(n).

4. Truncation e�ect at the end of the window causes ripples in the spectrum. It is

reduced by using a window function given in equation 2.14.

w2(n) = 4cos2(πn/2N) n = 0, 1, ...,M − 1 (2.14)

5. Calculate N-point DFT of the double windowed signal: x(n) = w1(n)s(n)w2(n).

6. Calculate numerator of the group delay function (g(k)) from the N-point DFT X(k)

as given in equation 2.15 (Anand et al., 2006).

g(k) = XR(k)YR(k) +XI(k)YI(k) k = 0, 1, ..., N − 1 (2.15)

where, XR(k) and XI(k) are real and imaginary parts of the N -point DFT X(k) of

x(n) and YR(k) and YI(k) are real and imaginary parts of the N -point DFT Y (k)
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of y(n) = nx(n) respectively.

7. Highlight formants by di�erentiating the NGD 3 times in frequency domain.

8. Compute Hilbert transform of the di�erenced NGD spectrum. It removes the e�ect

of the spectral valleys in the spectrum and results in HNGD spectrum.

Various phases of the HNGD spectrum extraction are shown in Fig. 2.2. Speech signal of

frame size 5ms overlapped with the ZTW function is given in Fig. 2.2 (a). Fig. 2.2 (b)

shows the N-point DFT of the double windowed signal: x(n) = w1(n)s(n)w2(n). NGD

spectrum of x(n) is shown in (c). Di�erenced NGD spectrum is shown in (d) and Hilbert

envelope of the DNGD spectrum is shown in part (e), which is the HNGD spectrum. 39

MFCCs are extracted from this HNGD spectrum.

E Goodness of Pronunciation (GOP) score

For pronunciation quality assessment, likelihood scores proposed in (Neumeyer et al.,

2000) are calculated for a recognized phone, from recognition likelihood. It focuses on

the acoustic properties of the pronunciation and does not consider temporal, or segmen-

tation related, characteristics. (Neumeyer et al., 2000) suggested that the speaker and

acoustic channel characteristics are unrelated to the oral pro�ciency of speaker. Hence,

the likelihood scores get unfavorably a�ected by the spectral misalliance, in recognition

models and test utterance. Posterior log-likelihood based scores are less in�uenced by

such spectral mismatch and provide robust pronunciation scores. Hence, log-posterior

probability-based scores have been computed for each phone of a desired transcription

(Witt and Young, 2000). It is represented as a ratio of likelihood of phone, by forced

alignment and likelihood of phone, by free phone loop recognition. It is assumed that

orthographic transcription and set of HMMs are available to determine the likelihood

P (O(q)|q) of acoustic segment O(q) with respect to each phone q. With these assumptions,

phone level Goodness of pronunciation (GOP) for any phone p is de�ned as follows:

GOP (p) = |log(P (p|O(p)))|/NF (p) (2.16)

GOP (p) =

∣∣∣∣log( P (O(p)|p)P (p)∑
q∈Q P (Op|q)P (q)

)∣∣∣∣/NF (p) (2.17)

where, Q represents the set of all phone models and NF (p) is the number of frames

in the acoustic segment O(p). P (O(p)|p) is the probability of the observation O, given
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the phone model p. The sum in the denominator represents the sum of probabilities of

independent models for all phone classes, with an assumption that all phones are equally

likely (P (p) = P (q)) and the denominator can be represented by its maximum. The GOP

equation is given as:

GOP (p) =

∣∣∣∣log( P (O(p)|p)
maxq∈QP (Op|q)

)∣∣∣∣/NF (p) (2.18)

GOP (p) =

∣∣∣∣ log(P (O(p)|p))
NF (p)

− log(maxq∈QP (Op|q))
NF (p)

∣∣∣∣ (2.19)

GOP (p) = |Pp(forced)− Pp(free)| (2.20)

where, log(P (O(p)|p))
NF (p)

is the average log probability per frame for the phone p, resulting

from forced alignment, Pp(forced). log(maxq∈QP (Op|q))
NF (p)

is the average log probability for the

same frame obtained from free phone loop recognition, Pp(free). In forced alignment,

acoustic segments are matched to the phones provided by the reference transcription

or FSG (�nite state grammar). On the other hand, the procedure of free phone loop

recognition follows matching of a phone to the acoustic segments, without the restriction

of grammar. Recognition is performed twice to calculate the pronunciation scoring (GOP

score) on the speech units. In the �rst recognition, forced alignment is performed and the

second involves recognition using free phone loop. Goodness Of Pronunciation (GOP)

score is calculated for each phone in the forced alignment. For each phone in forced

alignment, the phone recognized by free phone recognizer, having the same frame span, is

identi�ed. Duration of recognized phone, using free phone loop recognition, di�ers from

that of the forced alignment, hence the average of log probabilities of recognized free

phones in the overlapping region are weighted by their respective duration. Example of

the process of identi�cation of GOP score is shown in Fig. 2.3. Equation 2.20 can be

given as equation 2.21:

GOP (p) =
∣∣∣Pp(forced)−

(t2 − t1
t4 − t1

Pp(free)A+

t3 − t2
t4 − t1

Pp(free)B +
t4 − t3
t4 − t1

Pp(free)C

)∣∣∣ (2.21)
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t1 t2 t3 t4

Pp−1(forced) Pp(forced) Pp+1(forced)

Pp(free)A Pp(free)B Pp(free)C

Figure 2.3: Calculation of GOP score for pth phone recognized by forced alignment having overlap
with the three phones p(free)A, p(free)B and p(free)C recognized by free phone recognizer having the
overlapping frame span as p(forced) phone.

F Glottal Volume Velocity (GVV)

Speech is a convolution of excitation source and Vocal Tract (VT) response. The excita-

tion source signal is obtained by suppressing the Vocal Tract (VT) response from speech

signal (Rao and Koolagudi, 2012). The information of excitation is obtained through two

stages. First, VT information is predicted, using �lter coe�cients, and then the excitation

source information is separated using inverse �ltering. The inverse �ltered signal is known

as linear prediction residual (Makhoul, 1975).

As per the concept of linear prediction, current sample can be predicted from the past

n samples available in a frame, where n is the order of prediction (Ananthapadmanabha

and Yegnanarayana, 1979). The predicted sample ĝ(l) is given as

ĝ(l) = −
n∑
k=1

ak.g(l − k) (2.22)

where ak represents the kth linear prediction coe�cient, g(l) is a windowed speech

signal with hamming window, w(l).

g(l) = x(l).w(l) (2.23)

The error in prediction e(n) is given by the di�erence between actual sample g(l) and

predicted sample ĝ(l). e(n) is given by

e(n) = g(l)− ĝ(l) = g(l) +
n∑
k=1

ak.g(l − k) (2.24)

LP Residual: LP residual is a prediction error signal e(n). Equation 2.24 can be ex-

pressed in frequency domain as below,

E(z) = G(z) +
n∑
k=1

ak.G(z)z−k (2.25)
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A(z) =
E(z)

G(z)
= 1 +

n∑
k=1

ak.z
−k (2.26)

LP residual is obtained by inverse �ltering of speech given by,

H(z) =
1

A(z)
=

1

1 +
∑n

k=1 ak.z
−k (2.27)

where, A(z) is reciprocal of H(z). H(z) approximates the excitation source signal,

where the pattern of vocal folds' vibration can be easily observed. Glottal volume ve-

locity (GVV) signal is obtained by passing the LP residual signal through low pass �lter

(Krothapalli and Koolagudi, 2013). In the discrete domain, low pass �ltering can be

implemented by integration operation.

LP analysis of high-pitched speech using homomorphic prediction: In the con-

ventional autocorrelation method of linear prediction (CALP), autocorrelation sequence

obtained from speech frame with multiple pitch periods represents an 'aliased' version of

the true autocorrelation of vocal tract system impulse response (Rahman and Shimamura,

2005). In high-pitched speech, periodic replicas cause 'aliasing' of the autocorrelation se-

quence due to short pitch periods. This a�ects the low order autocorrelation coe�cients

to be signi�cantly di�erent from the system impulse response (Rahman and Shimamura,

2005),(Story and Bunton, 2016). Hence, with increase in fundamental frequency (F0) of

speech, the accuracy of CALP decreases (Story and Bunton, 2016). It is important to

remove the 'aliasing' e�ect from the autocorrelation function.

Here, homomorphic �ltering based approach proposed in (Rahman and Shimamura,

2005), is used to reduce the 'aliasing' e�ect from the autocorrelation function in high-

pitched speech. Homomorphic �ltering deconvolve the vocal tract impulse response from

speech signal using cepstrum analysis by applying lightering, and then transform back

to the time domain speech signal respectively. This obtained speech signal is then used

for linear prediction; the use of cepstrum analysis in combination with linear prediction,

called homomorphic prediction. The speech sequence s(n) can be expressed as convolution

of e(n) is the excitation sequence and h(n) is the vocal tract �lter sequence. Thus, s(n)

can be expressed as follows:

s(n) = e(n) ∗ h(h) (2.28)

To deconvolve the speech signal, it is transformed into frequency domain using Fourier

transform. The convolution in the time domain, is transformed into multiplication of
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excitation and system components in the frequency domain. This can be represented in

frequency domain as,

S(w) = E(w) ∗H(w) (2.29)

From equation 2.29, the magnitude spectrum of given speech sequence can be repre-

sented as,

|S(w)| = |E(w)| ∗ |H(w)| (2.30)

To convert the multiplication of E(w) and H(w) in the frequency domain into linear

combination, logarithmic representation is used. So, the logarithmic representation of

equation 2.30 is given as,

log|S(w)| = log|E(w)|+ log|H(w)| (2.31)

The separation can be obtained by inverse discrete fourier transform (IDFT) of the

log spectra (linear spectra) of excitation component and vocal tract system. IDFT of

linear spectra transforms it to quefrency domain or the cepstral domain, similar to the

time domain as given in equation 2.32.

c(n) = IDFT (log|S(n)|) = IDFT (log|E(w)|+ log|H(w)|) (2.32)

Variations in the lower quefrency region represents vocal tract characteristics and the

upper quefrency region represents the excitation characteristics of the short term speech

segment (Rabiner and Juang, 1993). In general, desired quefrency region is selected

for analysis by multiplying the whole cepstrum by a rectangular window at the desired

position, known as liftering operation (Rabiner and Juang, 1993). To extract the vocal

tract characteristics in the quefrency domain low-time liftering is performed and high-time

liftering is performed to extract excitation characteristics. Traditionally, liftering window

size is set close to one pitch period (Verhelst and Steenhaut, 1986). This generate error

in estimation of vocal tract characteristics, as cepstrum coe�cients closer to the pitch

period location get distorted (Verhelst and Steenhaut, 1986). Authors in the (Rahman

and Shimamura, 2005) suggested that, lifter window of length 0.6P is best suited for

analyzing speech signal with F0 value up to 250 Hz and 0.7P for larger F0 values. Where,

P is a pitch period of speech signal. The liftering window is given as in (Schafer and
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Rabiner, 1970):

l(n) =


1 n ≤ L1

0.5(1 + cos[π(n− L1)/∆L]) L1 < n < L1 + ∆L

0 n ≥ L1 + ∆L

(2.33)

where, total length of liftering window L = L1 + ∆L (L = 0.7P). In equation 2.33,

only higher part (∆L) of the liftering window is tapered; length of ∆L can be set to 25%

of L. From the obtained cepstrum, vocal tract impulse response is obtained by applying

lightering, which is transferred back to the time domain, respectively. This estimation is

free from the e�ect of periodic replicas cause 'aliasing' of the autocorrelation sequence.

Thus, the estimation of AR coe�cients in LP analysis from the resulting autocorrelation

function is observed to be robust to high-pitched variations and very close to the true

solutions. Hence, it is used for the LP analysis of the children speech signal.

G Linear Predictive Cepstral Coe�cients (LPCCs)

LPCs are the coe�cients of an auto-regressive model of a speech frame (Makhoul, 1975).

The all-pole representation of the vocal tract transfer function is given by:

H(z) =
G

A(z)
=

G

1 +
∑
k = 1nakz−k

(2.34)

where ap are the prediction coe�cients and G is the gain. LPCCs are obtained directly

based on (Makhoul, 1975),

LPCCi =
i−1∑
k=1

(k − i)
i

LPCCi−kak (2.35)

A total of 39 features are extracted, which consists of 13 LPCCs, 13 ∆LPCCs and 13

∆∆LPCCs respectively. LPCCs are well known for their performance in many speech

related tasks such as speech recognition, speaker recognition, etc. Hence, they are con-

sidered for the analysis.

H Gammatonegram

Gammatone �lters approximate the �ltering process done in human ear. It gives a simple

wrapper function, to generate the time-frequency surfaces, based on a gammatone analy-

sis. Gammatone function is a gamma distribution function modulated by the tone given
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as (Pour et al., 2014):

g(t) = t(N−1)e−atu(t)cosω0t (2.36)

where ω0 represents the center frequency, a is bandwidth parameter and N represents the

order of gammatone function. It is characterized by the closeness to the auditory response

(Venkitaraman et al., 2014). Gammatonegram is the visual form of representing energy of

di�erent frequency components in a speech signal based on short time Fourier transform

(STFT) with gammatone �lterbank. Gammatonegram follows the frequency sub-bands

of the ear, which get broader for higher frequencies; the traditional spectrogram have

used same bandwidth for all frequency channels. Hence, it can be used as an enhanced

substitute for the conventional spectrogram. Various spectral properties are extracted

from the Gammatonegram. For each frame of a Gammatonegram, fk is the frequency of

bin k. µf is the average value of the frequency. sk represents the amplitude/energy value

at bin k and µs is the average value of the amplitude of spectrum in Gammatonegram.

• Spectral Centroid: It is a measure of `center of gravity' of speech from the mag-

nitude and frequency of the Fourier transform. It is de�ned as the ratio of the

weighted average of the frequency by amplitudes to the sum of the amplitudes as

given in equation 2.37.

SC =

∑N
k=1 fksk∑N
k=1 sk

(2.37)

For evenly distributed spectrum around centroid frequency, the skewness is equal

to zero. Positive value represents the spectrum energy, is concentrated below the

centroid frequency. Negative value shows the spectrum energy is concentrated above

the centroid frequency.

• Spectral Crest Factor: It is the ratio of dominant peak in the spectrum, to the

arithmetic mean of the spectrum.

SCF =
max(|sk|2)∑N

k=1 |sk|2
(2.38)

• Spectral Decrease: It represents the amount of decrease in the spectrum, over

time, while emphasizing the slopes of the lower frequencies.

SD =

∑N
k=1

sk−s1
k−1∑N

k=1 sk
(2.39)

• Spectral Flatness (SFlat): It is a measure of spectral shape given by the ratio of
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geometric mean of the spectrum magnitude, to the mean of the spectrum magnitude.

SFlat =
(
∏N

k=1 sk)
1/N

1
N

∑N
k=1 sk

(2.40)

• Spectral Flux (SF): It is a measure of degree of variation in the spectrum over

the time. It is given by equation 2.41,

SF (t) = ||s(t, ω)− s(t− 1, ω)|| (2.41)

where ||.|| is the L1 − norm. s(t, ω) is the framewise energy of the spectrum. It is

generally used to discriminate the rapidly varying sounds from the speech.

• Spectral Kurtosis: It is a measure of non-stationary or non-Gaussian behavior in

the frequency domain. It can be computed as:

SK(f) =
N

N − 1

[
(N + 1)

∑N
k=1 |sk|4

(
∑N

k=1 |sk|2)2
− 2

]
(2.42)

It has low value, where the data has a stationary nature, whereas it attains high

value for transients occurrence.

• Spectral Spread: It gives a measure of spread of the spectrum with respect to the

spectral centroid, as shown in equation 2.43.

SS =

∑N/2
k=0(fk − SC)2|sk|2∑N/2

k=0 |sk|2
(2.43)

Noisy and fricative sounds have high spectral spread in comparison to the voiced

sounds.

• Spectral Skewness: It measures the degree of asymmetry of the frequency distri-

bution of spectral energy. It is calculated as:

SSK =

∑N
n=1(fk − SC)3sk

SS3
∑N

n=1 sk
(2.44)

• Spectral Slope: The spectral slope is calculated as described in (Sturm, 2013):

SSP =

∑N
k=1(fk − µf )(sk − µs)∑N

k=1(fk − µf )2
(2.45)
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I Zero-Frequency Filtered Signal (ZFF)

Speech is produced by exciting the vocal tract, in a sequence of closure and opening

instants of glottis, which a�ects every frequency composition of the signal including zero-

frequency (0 Hz) (Murty and Yegnanarayana, 2008). Zero-frequency �lter is the cascade

of an in�nite response �lter and approximation of all-pole �lter. This eliminates the

e�ect of vocal tract resonance from the speech signal leaving glottal pulse waveform as a

remainder. The process of zero-frequency �ltered signal extraction is given below (Murty

and Yegnanarayana, 2008; Yegnanarayana and Gangashetty, 2011):

i Compute di�erentiation of speech signal in order to remove the slowly varying com-

ponents of speech.

s[n] = x[n]− x[n− 1] (2.46)

where x is original speech signal, s is di�erentiated speech signal.

ii Apply cascade of two ideal zero-frequency resonators to the di�erenced signal.

y0[n] = −
4∑

k=1

bky0[n− k]− s[n] (2.47)

where a1=-4, a2=6, a3=-4 and a4=1 are constant (Yegnanarayana and Gangashetty,

2011).

iii Estimate average pitch period with 30 ms segments of speech signal s.

iv Subtract the local mean of average pitch period from each sample of y0[n] which

removes trend in a signal. The output signal is:

y[n] = y0[n]− 1

2N + 1

N∑
m=−N

y0[N +m] (2.48)

where y[n] is zero-frequency �ltered signal, 2N + 1 is a window size used to remove

the trend in signal. Window size is set to one to two pitch periods.

2.6.3 Classi�ers Considered

Classi�cation techniques used for characterization and identi�cation of mispronunciation

and phonological disorder, gender identi�cation from children and adult speech have been

chosen, based on the linear or non-linear nature of the dataset. In this section, work-
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ing principle and properties of various classi�ers considered for the implementation are

discussed in detail.

A Support Vector Machine (SVM)

Support Vector Machine is a well understood and widely used classi�cation algorithm

which attempts to �t a large-margin hyperplane, between two classes, that acts as a

decision boundary (Hsu et al., 2003; Wang et al., 2015b). The problem of aspiration and

unaspiration classi�cation is binary in nature and SVM suits well for the task. Given a

training feature vector x1, x2, ..., xn in d dimensional space, such that X ⊂ Rd and their

labels y1, y2, ..., yn, where yi ∈ {−1, 1}, it separates the training data by a hyperplane with

maximal margin, as shown in Figure 2.4 (Cortes and Vapnik, 1995; Wang et al., 2016).

The data on one side of the hyperplane is labeled as 1 whereas the data on the other side

is labeled as -1. Support vectors are the data instances that lie closest to the hyperplane.

The classi�er function can be written as shown in Equation 2.49 (Tong and Koller, 2001):

f(x) = w.φ(x), where w =
n∑
i=1

αiφ(xi) (2.49)

SVM evaluates the αis corresponding to the hyperplane with maximal margin (Pal, 2005).

Choice of the appropriate kernel function allows to model the complex decision boundaries.

Polynomial and radial basis kernels are the most commonly used kernel functions (Tong

and Koller, 2001). Polynomial kernel is given by K(u, v) = (u.v + 1)p, where p is the

degree of polynomial boundaries. Radial basis kernel (K(u, v) = expγ(u−v).(u−v)) uses

weighted Gaussian to induce the boundary. In the proposed approach, SVMs with radial

basis kernel (RBF) and polynomial kernel are considered, as they e�ciently model the

data of non-linear nature (Amari and Wu, 1999).

B Random Forest (RF)

Random forest is an ensemble learning method, commonly used for classi�cation, regres-

sion, etc (Breiman, 2001). RFs classi�er is formed by combining multiple tree classi�ers,

where each tree is built from a random feature vector independently sampled from the

total input vector set (Breiman, 2001). The classi�er uses bagging; a method to generate

a training set by arbitrarily drawing the replacement from the training dataset. This is

done for each feature combination considered. Class label is assigned to a test sample,

by taking the most popular class, voted by all tree predictors of the forests. The design

54



Figure 2.4: Simple linear support vector machine

of decision tree needed for the selection of attributes is done with the help of attribute

selection measure (Quinlan, 2014). Most widely used attribute selection measure is Gini

Index (Breiman et al., 1984), where, for a given test set T with n outcomes, one case is

selected (single frame feature vector) at random, with an assumption that it belongs to

class ci, then the Gini index is given by:

gini(T ) = 1−
k∑
i=1

(p(Ci))
2 −

n∑
i=1

p(ti)
k∑
i=1

p(cj|ti)(1− cj|ti) (2.50)

The Gini Index criterion selects a test that maximizes this function. In the case of random

forest, with the progression in forest building, it tries to overcome the internal unbiased

generalization error, hence is e�cient in estimation of missing data (Boinee et al., 2005).

This enables the model to inherit an ability to achieve good accuracy, even when the

large proportion of the dataset is of unrecoverable and unbalanced population. It builds

an accurate classi�er which runs perfectly on the large sized datasets of non-linear nature.

It also handles large number of variables (features) by estimating the importance of each

variable in the classi�cation.

C Deep Feed Forward Neural Networks (DFFNNs)

Shallow neural networks consist of one input; one output and at most, one hidden layer

in between. Deep neural networks are distinguished from the common single-hidden-layer

neural networks, by their depth (the number of hidden layers through which data must

be passed during the process of pattern recognition) (Bishop, 2006; Glorot and Bengio,

2010; Schmidhuber, 2015). The generic architecture of DFFNNs is shown in Fig. 2.5.

The total number of layers in the networks is represented as nl, in which each layer is

labeled as Ll where l = {1, 2, 3, ..., nl}. L1 is the input layer, and Lnl
denotes the output

layer. W (l)
ij represents the weights or parameters associated with the connection between
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Figure 2.5: Architecture of Deep Feed Forward Neural Networks (DFFNNs)

node j in layer l, and node i in layer l+1. The bias associated with the node i in layer l+1

is represented as bli. Bias does not have any connections to it, since its output is always

+1. Based on the input, the activation function estimates the output of a node. ali is the

output value generated by the activation function of node i in layer l. The activation at

layer l+1 is calculated as (Bishop, 2006; Glorot et al., 2011; Schmidhuber, 2015):

z(l+1) = W (l)a(l) + b(l) (2.51)

a(l+1) = f(z(l+1)) (2.52)

In order to compute the output of the network, the activations of all the nodes in each

layer is successively calculated from layer L2 to layer Lnl
using equation 2.52, which gives

the process of feed forward propagation. During training, the weights are updated, using

backpropagation algorithm, to reduce the error between predicted output and the target

(Bishop, 2006; Hecht-Nielsen, 1992; Rumelhart et al., 1986). The cost function to measure

the error in prediction is given as:

J(W, b;x, y) =
1

2
||hW,b(x)− y||2 (2.53)

The total cost function for a training set of size m is given as:

J(W, b) =

[
1

m

m∑
i=1

J(W, b;x(i), y(i))

]
+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W
(l)
ji )2 (2.54)

J(W, b) =

[
1

m

m∑
i=1

(
1

2
||hW,b(x(i))− y(i)||2

)]
+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W
(l)
ji )2 (2.55)
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where, J(W, b) is the average of the sum of square error term, sl represents the number

of nodes in the layer l, excluding bias. The second term in equation 2.55 is known as

regularization (weight decay), which tends to decrease the magnitude of the weights, to

prevent over�tting of the network. Main aim of training the network is to minimize

J(W, b). Stochastic Gradient descent (SGD) algorithm is used for the task, where one

iteration of the SGD algorithm updates the W and b of the network, as given in equation

2.56 and 2.57 respectively (Ruder, 2016; Bishop, 2006):

W
(l)
ij = W

(l)
ij − α

∂

∂W
(l)
ij

J(W, b) (2.56)

b
(l)
i = b

(l)
i − α

∂

∂b
(l)
i

J(W, b) (2.57)

where α represents learning rate. The partial derivatives of the overall cost function is

calculated as (Rumelhart et al., 1986; Hecht-Nielsen, 1992):

∂

∂W
(l)
ij

J(W, b) =

[
1

m

m∑
i=1

∂

∂W
(l)
ij

J(W, b;x(i), y(i))

]
+ λW

(l)
ij (2.58)

∂

∂b
(l)
i

J(W, b) =
1

m

m∑
i=1

∂

∂b
(l)
i

J(W, b;x(i), y(i)) (2.59)

∂

∂W
(l)
ij

J(W, b;x, y) = a
(l)
j δ

l+1
i (2.60)

∂

∂b
(l)
i

J(W, b;x, y) = δl+1
i (2.61)

For each node i, in a given layer l, the error term δ
(l)
i measures the role of ith node in the

output error. δ(l)i is the weighted average of the error term of the nodes which use a(l)i as

input.

δ
(l)
i =

( sl+1∑
j=1

W l
ijδ

(l+1)
j

)
f ′(z

(l)
i ) (2.62)

Recti�ed linear unit (ReLu) is used as an activation function for nodes in the hidden layers,

to learn the complex nature of the features (Glorot et al., 2011). It is also computationally

e�cient compared to tanh or sigmoid functions. sigmoid is set as an activation function

for output layer, as it has shown better performance for binary classi�cation problem,

whereas softmax is considered for multiclass problem. Sometimes, a wide and deep
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Figure 2.6: Representation DTW of two Sequence Q and sequence C

network may lead to over�tting of the data. Also, the fully connected network neurons

develop co-dependency amongst each other during training, which curbs the individual

power of each neuron, leading to over �tting. Regularization is one of the ways to prevent

over-�tting, where it reduces over�tting by adding a penalty to loss function. Dropout is

a regularization approach, where the key idea is to randomly drop the hidden layer units,

along with their connections, from the neural network during training.

D Dynamic Time Warping (DTW):

In general, DTW is an approach used for measuring similarity between two temporal

sequences of di�erent lengths; if one sequence may be warped non-linearly by stretching

or shrinking on to the other (e.g. time series)(Eamonn and Chotirat, 2006). The procedure

to compute DTW is given below.

Consider two time series Q and C, of length n and m respectively, where Q =

q1, q2, ..., qi, ..., qn and C = c1, c2, ..., cj, ..., cm. These two sequences are aligned as n-by-m

matrix. The (i, j)th element of the matrix contains the distance d(qi, cj) between the

two points qi and cj. Then, the absolute distance between the values of two sequences is

computed using the Euclidean distance:

d(qi, cj) =
√

(qi − cj)2 (2.63)

Each matrix element (i, j) corresponds to the alignment between the points qi and cj.

Then, accumulated distance for two sequences is measured by:

D(i, j) = min[D(i− 1, j − 1), D(i− 1, j), D(i, j − 1)] + d(i, j) (2.64)
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The resultant value of D(i, j) gives the optimal match between the two sequences. The

value of D(i, j) is small when signals or sequences are more similar, otherwise it is the

larger distance value. This approach is employed to compare the feature vectors extracted

from isolated units. Fig. 2.6 illustrates the DTW approach. In the �gure, vertical axis

represents the time sequence Q and the horizontal axis represents the time sequence C.

The path shown with the connected arrows gives the minimum distance path between the

time sequences of Q and C. The size of feature vector depends on the number of features

considered.

E Hidden Markov Model (HMM):

Hidden Markov Model is a doubly stochastic model, consisting of �nite states linked by

transition probabilities. Each state is associated with the two probabilities : a transition

probability (probability of transition from one state to other state) and discrete output

probability or emission state probability (probability of emission of each output symbol)

(Juang and Rabiner, 1991). The architecture of HMM-based speech recognizer is shown

in Fig. 2.7 (Benesty et al., 2007). The speech signal is converted in to �xed-size acoustic

feature vector Y = {y1, y2, ..., yT}. Most likely, word sequence W = {w1, w2, ..., wk} is

predicted by the decoder based on input feature vector Y . The decoder �nds,

Ŵ = arg max
W

[p(W |Y )] (2.65)

Speech

Feature
Extraction

Decoder
Y

Feature
Vectors

Acoustic
Models

Pronunciation
Dictionary

Language
Model

Words

"Stop that"

W

Figure 2.7: Architecture of HMM-based speech recognizer (Benesty et al., 2007)

p(W |Y ) in equation 2.65 is modeled using Bayes' rule as:

Ŵ = arg max
W

[p(Y |W )p(W )] (2.66)

Likelihood p(Y |W )) is calculated using acoustic model, and language model gives the
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Figure 2.8: HMM-based phone model (Benesty et al., 2007)

prior probability P (W ). Acoustic model use phone as a basic unit of sound. Hence, for

a given W , the acoustic model is generated by concatenating the phone models, to form

words as de�ned in pronunciation dictionary. The language model is a N -gram model,

where the probability of the present word depends on N −1 preceding words. Parameters

of phone model are estimated from training speech data and corresponding orthographic

transcriptions. The parameters of N -gram are evaluated from the count of N -tuples in

the training corpora.

• HMM Acoustic Models: Words can be formed using basic sound units known

as phones. To cover all possible variations in pronunciation, the likelihood p(Y |W )

is evaluated over multiple pronunciations using equation 2.67:

p(Y |W ) =
∑
Q=1

p(Y |Q)p(Q|W ) (2.67)

Q is sequence of word {Q1, Q2, ..., Qk} pronounced, where Qk represents a sequence

of base phones {qk1qk2 , ...} for each word. Then, we can estimate p(Q|W ),

P (Q|W ) =
K∏
k=1

p(Qk|wk) (2.68)

where, p(Qk|wk represents the probability of wk pronounced by Qk. The base phone

q is modeled using continuous density HMM (CDHMM) with transition parameters

(aij) and output observations (bj()), as shown in Figure 2.8. Based on the composite

HMM Q, the acoustic likelihood can be estimated by,

P (Y |Q) =
∑
S

p(S, Y |Q) (2.69)
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where S = s(0), s(1), ..., s(T ) represents a state sequence in a composite model and

p(S, Y |Q) = as(0),s(1)

T∏
t=1

bs(t)(yt)a(s(t), s(t+ 1)) (2.70)

The model parameters aij and bj() can be estimated using expectation maximization

(EM).

2.6.4 Statistical T-test: Compare the Performance of the Classi-

�ers

In general, the t-test tells us how signi�cant the di�erences between the populations are;

in other words, it lets you know if the di�erences measured between the two populations

could have happened by chance (Gravetter and Forzano, 2018). The assumption or null

hypothesis H0 of the t-test is that, the two populations have same distribution (Gravetter

and Forzano, 2018). A rejection of this hypothesis indicates that there is su�cient evidence

that the two populations are di�erent, and in turn that the distributions are not equal.

Fail to rejectH0 represents the samples distributions are equal. Rejection ofH0 represents

sample distributions are not equal. The t-score is a ratio of the di�erence between two

populations and the di�erence within the two populations. A large t-score represents that

the two populations are di�erent, whereas small t-score tells us that the populations are

similar. How big the di�erence is "big enough"?. Every t-value has a p-value to go with

it. A p-value is the probability that, the population or results from your experiments

occurred by chance or statistically di�erent (Kanji, 2006). P-value ranges from 0% to

100%, usually written as a decimal. Low p-values are good; they indicate that your

population under consideration did not occur by chance. For example, a p-value of .01

means there is only a 1% probability that the results from an experiment happened by

chance. In most cases, a p-value of 0.05 (5%) is accepted to mean the data is valid.

There are three main types of t-test:

• Independent Samples t-test: It compares the means for two independent groups.

• Paired sample t-test: It compares means from the same group at di�erent times.

• One sample t-test: It tests the mean of a single group against a known mean.

A paired t-test (also called a correlated pairs t-test, a paired samples t test or de-

pendent samples t test) is performed on the dependent samples. Dependent samples are

61



essentially connected � they are tests on the same person or thing or features extracted

from the same datasets. To measure statistical signi�cance of the improvement in the

performance between two classi�ers trained on the same dataset, k-Fold Cross validated

Paired t-test is used. It is a variant of paired t-test, used in this thesis to measure the

statistical signi�cance in the performance of two classi�cation techniques.

A k-Fold Cross Validated Paired t-test

In this thesis, k-Fold cross validated paired t-test is used to compare the performance of

two classi�ers (Dietterich, 1998). To apply the t-test, available dataset D is divided into

k-folds, where each time one set of k-fold is considered as a test set and the remaining are

considered as a training set. For each fold, learning algorithms A and B are trained using

a training set and resulting classi�ers are tested on a test set. Experiments are repeated

n-times, where each time the dataset D is divided into k-folds and the same process is

followed. Hence, with n-repetitions and 5-fold cross validation, for each classi�er we have

n×5 results trained and tested on the same dataset respectively. Let, p (ik)
A

and p (ik)
B

are the

observed proportion of test examples misclassi�ed (error rates) by the learning algorithms

A and B during fold k and repetition i, respectively. Then, calculate the di�erence of the

corresponding classi�cation error using equation 2.71,

pik = pA(ik) − pB(ik) (2.71)

and then apply Student's t-test, to compute the t-score using equation 2.72 (Dietterich,

1998),

t =
p̄ik ×

√
(n× k)√∑n

i=1

∑5
k=1(pik − p̄ik)2/(n× k)− 1

(2.72)

Here, pik computes the di�erence between the model performances of A and B in

the ith iteration and kth fold. p̄ik represents the average di�erence between the classi�er

performances, where, p̄ik = 1
n×k

∑n
i=1

∑5
k=1 pik.

From t statistic value, we compute p-value, where p-value can be interpreted in the

context of a chosen signi�cance level called α. A common value for α is 5%, or 0.05. If

the p-value is below the signi�cance level, then the test says there is enough evidence to

reject the null hypothesis and that the samples were likely drawn from populations with

di�ering distributions (Kanji, 2006).

• p <= α: reject null hypothesis, di�erent distribution
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• p > α: fail to reject null hypothesis, same distribution

In this thesis, each experiment on the classi�ers is repeated 5-times, where each time

the dataset D is divided into 5-folds. With 5-repetitions and 5-fold cross validation,

we have 5×5=25 results from each classi�er trained and tested on the same dataset

respectively. k-Fold cross validated paired t-test is used to compare the performance of

two classi�ers.

2.7 Summary

This chapter gives a detailed review of the existing works on mispronunciation identi�-

cation. The approaches based on the graphical display are critically reviewed from the

features point of view. The importance of each feature is analysed in e�ective analysis of

mispronunciation. The role of e�ectiveness of Goodness of Pronunciation (GOP) param-

eter, in speech recognition based mispronunciation identi�cation system, is analysed in

detail. The e�ectiveness of the error recognition networks (ERNs) in commonly observed

pronunciation error evaluation is also discussed. Further, few research gaps that have

led to the problem formulation of this thesis, are given along with elaborated objectives.

The details of the datasets that have been considered for di�erent experiments are also

presented. Detailed explanation of features used and classi�cation methods employed

are provided. Chapter 3 discusses the commonly observed phonological processes in the

children of age range from 31
2
years to 61

2
years.
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Chapter 3

Common Phonological processes in

Kannada language

3.1 Introduction

Humans, since their childhood try to acquire the pronunciation to learn a language. The

development of ability to use a language in children depends mainly on the development

of vocal tract, neuro-motor control and in�uence from the language of the people sur-

rounding them. During this development, children face di�culty in pronouncing di�erent

speech sounds, which results in signi�cant substitutions and distortions of various class

of speech sounds, leading to mispronunciation or pronunciation errors. These mispro-

nunciation patterns (speech errors) are known as phonological processes (Stampe, 1979).

Phonological process is an activity that is applied while speaking, to substitute a class

of sounds or sound sequences, which are presenting a common di�culty to the speech

capacity of the individual. For example, children of age 1-3 years, may say only ‘wa−wa′

for water, ‘tat′ for cat, ‘ha′ for hat and so on. These are the common patterns that young

children use to simplify adult speech. Although every child undergoes these processes

during the developmental stage of speech and language, some children are not able to

outgrow these processes, leading to an articulation disorders. Often the pronunciation

errors are observed in a person with a physical impairment at one or many parts or or-

gans of the oral cavity. The occurrence of such errors, due to impairment, is called a

phonological disorder. The errors observed in phonological disorders are speci�c to the

oral cavity organ facing the disability (Ingram, 1977). The neuro-motor disorders a�ect

the control on the vocal tract organs, which leads to mispronunciation due to loss of this

control. These errors belong to the region where the coordination between articulatory

organs is not proper. This chapter provides an exhaustive analysis of the phonological
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processes that appear in children speaking Kannada as a native language. For this task,

the dataset recorded from the children of age range from 31
2
to 61

2
is considered. The

analysis is performed by the experienced speech language pathologist (SLPs). A detailed

analysis of studies made on the phonological processes observed in the children speaking

English as a native language is also provided and compared. Further, the comparison of

phonological processes is made, to study the language learning ability of the children in

both the languages. For automatic identi�cation of phonological processes, a template

comparison based approach is employed, where mispronounced/test words are compared

with the correct/reference pronunciations. This helps in locating the region of mispronun-

ciation. For this, availability of the precise phoneme boundaries is necessary as it helps

in locating phoneme where mispronunciation is occurred.

3.2 Analysis of the Phonological Processes

As observed in the case of English speaking children the phonological processes can be

categorized into four classes: syllable structure, assimilation or harmony, feature con-

trast or substitution and miscellaneous processes. Syllable structure represents the sound

changes that modify or simplify the syllabic structure of words, as the child attempts to

produce the adult target. These patterns become evident between the age of 1.6 years to

4 years (Ingram in (Bauman-Waengler, 2012)). Table 3.1 contains the types of phonolog-

ical processes in syllable structure along with the corresponding age group in which they

commonly appear. It is reported that weak syllable deletion, cluster reduction, deletion

of �nal consonants and glottal replacement are the most common syllable structure pro-

cesses that appear in English speaking children (Weiner, 1979), (Weiner and Ostrowski,

1979).

Assimilation or Harmony is the class of phonological processes in which the sound

becomes similar to the sounds in the words (Ingram in (Bauman-Waengler, 2012)). It

may occur within a word or between words. These patterns are generally observed in

rapid speech, e.g. `handbag' is pronounced as `hmbg'. Assimilation is classi�ed into

two types: partial assimilation and total assimilation. In partial assimilation, the sound

change results in two sounds being more similar but not the same. Total assimilation

occurs, when the sound that changes and the sound that initiates the change are the

same. In general, assimilation a�ects the place of articulation and occurs between the

consonants or between a consonant and a vowel. It can also be observed as contiguous
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Table 3.1: Phonological processes observed in syllable structure

Sr.
No.

Phonological
Process

Reference Description Age
Range
(years)

Example

1 Final conso-
nant deletion

Ingram in
(Bauman-
Waengler,
2012)

Omission of �nal single
consonant in a word

1.6-3.0 `toe' for `toad'

2 Weak syllable
deletion

Ingram in
(Bauman-
Waengler,
2012)

Unstressed syllable of
multisyllabic word is
omitted or weak sylla-
ble in a word is deleted

upto 4.0 `nana' for `ba-
nana', `teto' for
`potato'

3 Cluster re-
duction or
Cluster sim-
pli�cation

(Weiner,
1979)

Consonant cluster is re-
duced to a single conso-
nant

upto 4.0
without
/s/, 5.0
years
with /s/

`pane' for `plane'

4 Diminutization (Weiner,
1979)

Adding /i/ or conso-
nant plus /i/ to a word

-NA- `dogi' for `dog'

5 Epenthesis (Khan
and Lewis,
1986)

Insertion of a schwa
vowel between the two
consonants

2.6-8.0 `balak' for
`black', `bulue'
for `blue'

6 Doubling (Stoel Gam-
mon and
Dunn,
1985)

Repeating a word, usu-
ally a monosyllabic, re-
sulting into a multisyl-
labic one.

upto 2.6 `baba' for `ball',
`bebe' for `bed'

7 Coalescence
(Khan,
1982)

Producing multisyl-
labic words with fewer
syllables than the stan-
dard form using two or
more syllables

-NA- `men' for `melon'
contains /m/
from �rst and
/n/ from second
syllable

(Hodson,
1986)

One consonant which
shares features of the
two consonants of a
cluster

-NA- `fok' for `smoke',
/f/ has stridency
of /s/ and labial-
ization of /m/

8 Glottal re-
placement

(Weiner,
1979)

Substitute glottal stop
for consonant

-NA- `bae' for `bath'
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Table 3.2: Phonological processes observed in Assimilation

Sr.
No.

Phonological Process Reference Description Age
Range
(years)

Example

1
Consonant
assimilation

Velar as-
similation
(back as-
similation)

(Bernthal
et al.,
2009)

Alveolar sounds become
like velar consonants.
Sound change must oc-
cur only in the presence
of velar consonant

upto
3.0

`kek' for
`take',
`gog' for
`dog'

2 Labial as-
similation

(Prater
and Swift,
1982)

Non-labial consonant is
replaced by labial conso-
nant in the context con-
taining a labial conso-
nant. Alveolars change
to labials is very com-
mon.

upto
4.0

`beb' for
`bed',
`fwim'
for
`swim'

3 Nasal as-
similation

(Stoel Gam-
mon and
Dunn,
1985)

Assimilation of a non-
nasal to a nasal conso-
nant.

upto
3.0

`nun' for
`gun'

4 Voicing
assimilation

Pre-vocalic
voicing

(Ingram,
1981)

Change of voiceless
obstruent (fricative,
a�ricates or stop) into
voiced one when preced-
ing a vowel within the
same syllable

upto
3.0

`dek' for
`take',
`ben' for
`pen'

5 Final con-
sonant de-
voicing

Ingram in
(Bauman-
Waengler,
2012)

Devoicing of a voiced ob-
struent at the end of syl-
lable. It occurs due to
complex of aerodynamic
conditions in production
of word �nal obstruents.

upto
3.0

`met'
for
`made',
`pik' for
`pig'

6 Syllable
harmony

Reduplica-
tion

(Barbara
and
Elaine,
1991)

It can occur in complete
or partial forms (syllable
is repeated).

upto
2.6

`wawa'
for
`water'
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and non-contiguous. In contiguous, the sound that changes and the one that in�uences

the change are adjacent to each other. Non-contiguous occurs when there is at least one

segment separating these two sounds (Bernthal et al., 2009). Table 3.2 gives the types

of phonological processes in assimilation based on contiguous and non-contiguous obser-

vations, along with the corresponding age group, in which they commonly appear. One

of the most prominent phonological processes among all other processes is substitution

(Weiner and Ostrowski, 1979), (Stoel Gammon and Dunn, 1985). This process involves

the replacement of one class of sounds by the other. Di�erent types of substitutions along

with the corresponding details are given in Table 3.3. There are some processes catego-

rized into Miscellaneous ones. They are: Idiosyncratic patterns that are unique to some

children (Stoel Gammon and Dunn, 1985; Lowe, 1994). Seven most frequently observed

Idiosyncratic processes are given in Table 3.4. Metathesis is the process in which a child

reorders the position of consonants in the words, for e.g. /noz/ for `snow' and /źfalant/

for `elephant'.

Some studies have also been conducted on pronunciation acquisition patterns based

on age (Dodd et al., 2003). Iowa-Nebraska has identi�ed acquisition of phoneme pronun-

ciation by children, in English, based on the age (Smit et al., 1990),(Smit, 1993). The

study shows that almost 90% of the children start correctly producing particular sound

after attaining particular age. Studies have been conducted on the pattern of acquisi-

tion of phoneme by male and female children separately (Izar et al., 2020),(Mushaitir,

2016). It is observed that there is a di�erence in age wise acquisition of phoneme by male

and female children, e.g. a male child can pronounce /t/ correctly at an age of around

3 years while a female child is able to pronounce the same sound at around 3.6 years.

These observations have been reported in English learning children. Indian languages are

syllabic in nature and di�er from English which is a phonemic language (Raghavendra

et al., 2008),(Aarti and Kopparapu, 2018). Hence, the same observations may not be

applicable to phonological developments in the case of Indian children. Also, the phono-

logical development in the case of Indian children is not well studied and documented

(Bailoor et al., 2014). However, some basic attempts have been made to understand

the phonological process in several Indian languages. Most common processes observed

in Indian children are substitutions such as lateralization, de-palatalization, palataliza-

tion, de-aspiration, aspiration and denasalization (Sreedevi et al., 2005). Some studies

that have been conducted in Kannada language have observed retro�ex fronting, trill
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Table 3.3: Phonological processes observed in Substitution

Sl.
No.

Phonological
processes

Reference Description Age Range
(in years)

Example

1 Stopping Ingram in
(Bauman-
Waengler,
2012)

Replacement of
fricatives or af-
fricates with stop
consonants

/f/, /s/ upto
3.0; /v/, /z/
upto 3.6;
/sh/, /ch/,
/j/ upto 4.6;
/th/ upto 5.0

`pan' for
`fan',
`dump' for
`jump'

2 Fronting (Lowe et al.,
1985)

Velar or palatal
sounds are substi-
tuted by alveolar
sounds

Upto 3.6 `tek' for
`cake'

3 Backing (Hodson,
2004)

Alvoelar sounds are
substituted by velar
sounds

Seen in more
severe phono-
logical disor-
ders

`kap' for
`top', `ken'
for `pen'

4 A�rication (Hodson,
2004)

A�ricate sounds re-
place fricative ones

Upto 3.0 `joor' for
`door'

5 Dea�rication (Roberts
et al., 1990)

A�rication of a frica-
tive sounds

Upto 4.0 `zip' for
`jeep'

6 Gliding (Dyson and
Paden, 1983)

Replacement of liq-
uids by glides. /w/
for /r/; /w/ or /y/
for /l/

From 3.0 to
3.6, Upto 6.0

`wabbit'
for `rabbit'

7 Palatalization (Hodson,
2004)

Sound is produced
as palatal for non-
palatal ones

not available `t
∫
im' for

`cream'

8 Depalataliza-
tion

(Hodson and
Paden, 1991)

Palatal sounds are
substituted by non-
palatal sounds

Upto 5.0 `�t' for
`�sh'

9 Vocalization (Stoel Gam-
mon and
Dunn, 1985)

A full vowel is substi-
tuted for syllabic liq-
uids or nasals

Upto 6.0 `paper' for
`pepe'

10 Denazaliztion (Weiner,
1979)

A nasal is replaced
by a stop that has
the same articulatory
placement

upto 2.6 `bok' for
`smoke'

11 Neutralization (Weiner,
1979)

Several di�erent
phonemes are re-
placed by one sound

-NA- `ju' for
`juice'
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Table 3.4: Phonological processes observed in Idiosyncratic patterns (Lowe, 1994)

Sl.
No.

Phonological
processes

Description Example

1 Atypical cluster re-
duction

Deletion of the member that
is usually retained

`ren' for `train', `sap' for
`stop'

2 Initial consonant
deletion

Deletion of singleton conso-
nant in the initial position
of a words

`ep' for `tape'

3 Glottal replace-
ment

Substitution of a glottal
stop for a consonant (usu-
ally medial or �nal position)

`lae' for `ladder'

4 Backing Substitution of a velar con-
sonant for more anterior
consonant

`paek' for `pat'

5 Fricative substi-
tuted for stops

Substitution of a fricative
consonant for stop conso-
nant

`sendl' for `candle'

6 Stops substituted
for glides

Substitution of a stop con-
sonant for a glide consonant

`bil' for `will'

7 Sound preference Substitution of a one conso-
nant for several other conso-
nants,

Substitution of /f/ for
most of initial fricatives,
a�ricates and for initial
stops in /stop + r/ clusters

8 Lateralization Consonants produced with
lateral air emission,

`lip' for `sheep', `læd' for
`sad'
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deletion, de-palatalization, dea�rication, stopping and cluster reduction commonly in the

children of age 2 to 3 years (Sreedevi et al., 2005). In the children of age group of 3

to 4 years the processes that have been observed are, fronting, cluster reduction, initial

consonant deletion and a�rication (Sunil, 1998). Fronting, cluster reduction and stop-

ping are observed in the children of age 4 to 5 years (Jayashree, 1999). The prominent

phonological processes observed in 5 to 6 years are stridency deletion, deaspiration and

retro�ex. Retro�ex fronting, trill deletion, cluster reduction, lateralization, a�rication,

depalatalization, palatalization, backing, stopping, MCD and dea�rication are observed

in Tulu speaking children of age 3 to 4 years (Shruthi, 2010). Whereas in Malayalam

speaking children, only cluster reduction, �nal consonant deletion, epenthesis, a�rication

and dea�rication are observed in the same age group (Sameer, 1998). In general, cluster

reduction, de-aspiration, de-voicing and epenthesis are observed in any children of age 4

to 5 years (Anilsam, 1999). From this, it is observed that the appearance of phonological

process di�ers from language to language for the same age group. Similar, works are also

available in other Indian languages. Language wise analysis of the phonological processes

is given in Table 3.5.

Apart from the phonological processes, pronunciation errors are observed in a child/per-

son su�ering from the speech and neuro-motor disorder (Ingram, 1977),(Shriberg and

Kwiatkowski, 1982). Children with phonological disorders are not able to produce some

or many of the speech sounds expected to be exhibited in their age group. Phonological

disorders may also appear due to the problems in the shapes of muscles and bones that

are involved in the production of speech sound, e.g. cleft palate, absence of teeth and so

on (Chapman, 2011). For instance, cleft palate causes nasalization of phonemes whereas

absence of teeth leads to frication of dental phoneme. Damage to the parts of the brain

or the nerves that control the vocal tract muscles or the structure that produces speech

sound, a�ect the speech production mechanism e.g. cerebral palsy (Mwangi, 2020). The

analysis of speech of a person with phonological disorders exhibits some characteristic

features. Few of them are given below:

1. Restricted set of speech sounds: A child aged 3-4 years with phonological disor-

der may produce only stops, nasals, glide consonants and limited set of vowels

(Stoel Gammon and Dunn, 1985). Normally such reportire occurs in a child of age

2 years.
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Table 3.5: Age wise analysis of Phonological processes in various Indian languages

Sl.
No.

Language
Considered

Age (in
years)

Phonological processes observed Reference

1 Hindi
2.0 - 3.0 Reduplication, initial and �nal consonant deletion, epenthesis, total

and partial cluster reduction, fronting, denalization, lateralization,
backing, unstressed syllable detection, deaspiration, lateralization

(Alisha and Shilpi, 2008)

4.0 - 5.0 A�rication, articulatory shift, aspiration, backing, cluster reduction,
deaspiration, denasalization, dipthong reduction, devoicing, epenthe-
sis, fronting, partial reduplication and weak syllable deletion

(Ranjan, 1999; Santosh,
2001)

2 Malayalam
3.0 - 4.0 A�rication, apicalization, cluster reduction, epenthesis and �nal con-

sonant deletion
(Sameer, 1998; Pootheri,
1998)

4.0 - 5.0 Cluster reduction, deaspiration, devoicing and epenthesis (Anilsam, 1999)

3 Tamil 3.0 - 4.0 Assimilation, cluster reduction, epenthesis and voicing (Rashakrishnan, 2001;
Bharathy, 2001)

4 Kannada

1.6 - 2.0 Cluster reduction, initial consonant deletion, retro�ex fronting and
trill deletion

(Sreedevi, 2008)

2.6 - 3.0 Final vowel deletion, /h/ deletion and retro�ex deletion (Sreedevi and
Shilpashree, 2008)

3.0 - 4.0 Clustering reduction and fronting (Sunil, 1998)

4.0 - 5.0 Clustering reduction, fronting and stopping (Jayashree, 1999)

5.0 - 6.0 Deaspiration, retro�ex deletion and stridency deletion (Ramadevi and Prema,
2002)
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2. Persistence of error patterns: Many phonological processes vanish rapidly by the

time a child is 4 years old. However, among phonological disorder children, these

error types (phonological processes) often persist well beyond this age.

3. Chronological mismatch: For normal children, there is a regular sequence for the

disappearance of error types (Grunwell, 1982). Children with phonological disorder,

fail to conform to this regular sequence.

4. Unusual error types: The error patterns observed in phonological disorder children

include atypical substitutions or deletions (e.g. initial consonant deletion, glottal

substitution), persistent vowel errors and the creation of word patterns which are

di�erent from the processes observed in normal children.

5. Extensive variability but lack of progress: The degree of variability at phoneme and

word level during the period of phonology acquisition is common in normal children.

Among phonological disorder children, random variability often occurs without any

advancement in the phonetic or phonological levels.

Table 3.6: List of some available highly used children speech datasets

Speech Corpus Language Recording
Type

No. of
Kids

Age
(year)

CID children's speech corpus (Lee
et al., 1999)

American English read 436 5-17

CMU Kid's speech corpus (Eskenazi,
1996b)

American English read 76 6-11

CU Kid's Prompted and Read Speech
corpus (Cole et al., 2006)

American English read 663 4-11

CU Kid's Read and Summarized Story
corpus (Cole and Pellom, 2006)

American English spontaneous 326 6-11

OGI Kid's speech corpus (Shobaki
et al., 2000)

English read 1100 5-15

ChIMP corpus (Potamianos and
Narayanan, 1998)

American English spontaneous 160 8-14

Tball corpus (Kazemzadeh et al., 2005) English (native
Spanish)

� 256 5-8

TIDIGITS corpus (Leonard, 1984) English � 101 6-15

PF-STAR corpus (Batliner et al., 2005) English, German,
Swedish, Italian

read, sponta-
neous, emo-
tion

491 4-15

ChildIt corpus (Gerosa, 2006) Italian � 171 7-13
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Tgr-child corpus (Gerosa, 2006) Italian � 30 8-12

SponIt corpus (Gerosa, 2006) Italian � 21 8-12

NICE corpus (Bell et al., 2005) Swedish � 75 8-15

PIXIE corpus (Bell and Gustafson,
2003)

Swedish � 2885 -NA-

Rafael.0 telephone corpus (Wilpon and
Jacobsen, 1996)

Danish � 306 8-18

CHOREC corpus (Cleuren et al., 2008) Dutch read 400 6-12

SPECO corpus (Csatári et al., 1999) Hungarian read 72 5-10

Takemaru-kun corpus (Tobias et al.,
2007)

Japanese � 17392 -NA-

VoiceClass Database (Burkhardt et al.,
2010)

German free speech 170 7-14

Deutsche Telekom telephone speech
corpus (Burkhardt et al., 2010)

German free speech,
prompt

106 7-14

Lesetest corpus (Grissemann and Lin-
der, 2000)

German read 62 10-12

SpeeCon corpus (Iskra et al., 2002) 20 languages � 50/language 8-15

3.2.1 Phonological Processes in Kannada Language

From the literature studies, it is observed that most of the focus has been on the analy-

sis of phonological processes of children speaking English language. Whereas, studies in

Indian languages are rarely reported. Here, an attempt has been made to analyse the

phonological processes in children speaking Kannada as native language. This work is a

part of Cognitive Science Research Initiative (CSRI), Department of Science & Technol-

ogy, Government of India, funded project entitled "An automatic system for identi�cation

of phonological processes in children of age from 3.5 years to 6.5 years" between National

Institute of Technology Karnataka and Manipal College of Health Professions (MCHS).

Hence, the speech dataset recording and analysis is done in collaboration with the Speech

Language Pathologists (SLPs) from Department of Speech and Hearing, Manipal College

of Health Professions, Manipal, Karnataka. The database is recorded from children of age

range 31
2
to 61

2
years and comparative analysis of the language learning ability, vis-a-vis

that of English speaking children, is reported.

A Database recorded

Many databases are available for processing adult speech, whereas, e�orts that target

children's speech are less common (Garofolo et al., 1993). In recent years, the databases
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of childrens' speech are gaining more importance due to their diverse applications. Ap-

plications such as foreign language learning, computer games and reading tutors have

become very common for children, when compared with adults (Wilpon and Jacobsen,

1996). Despite huge research opportunities in the �eld of children's speech processing,

it is surprising that relatively little research has been reported on the development of

speech technologies for children. At present, the available databases of children's speech

are signi�cantly less in number, compared to that of adults' speech. Highly used and

relevant databases of children's speech are listed in Table 3.6 (Claus et al., 2013). Many

of these databases are recorded in English, from children, aged between 6 to 15 years.

Researches have focused more on American English whereas very little work has been

done in European and Asian languages. Also, the databases recorded contain the age

range between 6 to 15 years. These databases can only be used for tasks, like automatic

recognition of children's speech, e�ects of non-native language, identi�cation of errors in

reading, etc.

Children's speech data in the range of 31
2
to 61

2
years is rarely available, due to dif-

�culties associated with the recordings of young children, compared to the recording of

adults and school children (Kazemzadeh et al., 2005). Children in this age group are not

able to read and have a short attention span which makes the recording di�cult. For

this research, the children's dataset known as NITK Kids' Speech corpus in Kannada lan-

guage is collected by ensuring basic properties of the data. Di�erent pictures are shown

to children to extract speci�c phonemes and words. Children are asked to describe the

picture and required words are chosen from the description.

(a) (b) (c) (d) (e)

Figure 3.1: Some of the images used to extract/record representative speech samples for Kannada
phonemes: (a) `iruve, (ant) and `ele' (leaf) (b) `Ane' (elephant) and `snAna' (bath) (c) `amma' (mother)
(d) `dALimbe' (pomegranate) (e) `bekku' (cat)

B Design of Corpora

The proposed database is recorded from 120 native Kannada speaking (one of the impor-

tant South Indian languages) children in the age group of 31
2
to 61

2
years. Children are
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divided into 3 age groups, 31
2
-41

2
, 41

2
-51

2
and 51

2
-61

2
years respectively. In each age group,

data is recorded from 20 girls and 20 boys. There are 48 phonemes (basic speech units)

in Kannada language; consists of 12 vowels (swaras), 2 yogawahakas, 25 consonants

(vyanjanas), 9 semivowels and fricatives. For each of these speech units; three words

which have that sound unit in the initial, medial and �nal positions, and children use

them in their everyday activities are selected. These words are mainly consists of ani-

mals, birds, human relations and their daily activities, food items (e.g. rice, pickle, etc.),

natural scenes (e.g., sunrise, sunset, etc.) and so on. This set of words re�ect child's typ-

ical use of speech sounds during everyday activities and known as "representative words"

for the phonological process analysis in Kannada language (Shriberg and Kwiatkowski,

1982). It gives us a recommended sample size of 112 words, where Table 3.7 shows the

list of words considered for the recording from each child. These representative words

pronounced in a context describes the articulatory behavior in children and highlights

the pronunciation errors appear in the phonological processes, compared to the analysis

of isolated word pronunciations. To record the words in a context, pictures representing

the representative Kannada words are selected. These words are commonly used in all

regions of Karnataka in their day to day life, with very less dialectal in�uence on them;

hence there are many variation in word pronunciations. Children with their roots from

Coastal region of Karnataka are not considered for the speech recording, as they speak

Tulu as a native language. For 112 words, 106 unique pictures are considered, as some

pictures represent two words. Figure 3.1 shows some of the pictures and corresponding

representative words used for speech recording. The set of picture is shown to each child

and they are asked to describe the picture.

Recordings are taken from di�erent regions of Karnataka (except Coastal region of

Karnataka), in a quiet room, using a single microphone; without any obstacles in the

recording path. Blue Yeti USB Microphone has been used for recording. It has polar

patterns of cardioid, bidirectional, omnidirectional and stereo, with a frequency response

of 20 Hz-20 kHz. Polarity is set to cardioid for the recording. Cardioid represents the

`heart-shaped' pick-up pattern, which emphasizes sounds from the direction to where

the mic is pointed. It is good at rejecting sounds from other directions. Audio data is

recorded at the sampling rate of 48 kHz, with a bit rate of 16-bits per sample. Microphone

is connected to a laptop to record, speech using WaveSurfer (an open source tool for

sound recording, visualization, annotation/transcription and manipulation). For dataset
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Table 3.7: List of representative words considered for children speech recording (Ramteke et al., 2019)

aDige (kitchen) aDuge (kitchen) aidu (�ve) AiskrIm (aiscrim)

akka (sister) amma (mother) Ane (elephant) angaDi (shop)

angi (shirt) AToriksha (auto) auSHadhi (medicine) AuT (out)

Ayudha (weapon) bAchaNige (comb) baLe (bangles) bALehaNNu (banana)

bAuTa (�ag) bekku (cat) beLagge (morning) beLigge (morning)

bhuja (shoulder) bhUmi (earth) billubANa (archery) bIsaNige (handheld
fan)

biskiT (biskit) blEDu (bled) brash (brush) chakra (wheel)

chamcha (spoon) chandra (moon) chauka (square) chhatri (umbrella)

chiTTe (butter�y) Dabba (box) Dabbi (canister) dALimbe
(pomegranate)

dana (cow) dhAnya (grains) ele (leaf) ELu (seven)

Eni (ladder) gade (blunt mace) gaDiyAra (clock) gaNapati (lord
Ganesha)

gaNesha (lord
Ganesha)

ghamaghamaUTA
(hot food)

giLi (parrot) hadimUru (thirteen)

hallu (teeth) haNNu (fruits) hattu (ten) hatturupAyi (ten
rupees)

huDuga (boy) huDugi (girl) Iju (swim) ili (mouse)

IruLLi (onion) iruve (ant) jaDe (braid) jag (jug)

kADu (forest) kai (hand) kathe (story) kempu (red)

khaDga (sword) kudure (horse) kurchi (chair) lori (truck)

mane (home) mara (tree) marageNasu (casava) mAvinakAyi (mango)

mODa (cloud) mUgu (nose) nAlku (four) navilu (peacock)

nAyi (dog) nIruLLi (onion) Odu (read) Odxu (run)

onTe (camel) pAda (legs) paTAki (�reworks) phalaka (board)

posTbAoks (postboks) ratha (chariot) rAtri (night) rEDiyo (radio)

samaya (time) samudra (sea) sangha (group) sAyankala (evening)

shAlage (school) shankha (conch shell) sharT (shirt) simha (lion)

snAna (bath) sUrya (sun) tale (head) taTTe (plate)

TomaTo (tomato) Toppi (cap) Udu (blow) uguru (nails)

uppinakAyi (pickle) UTa (food) vana (forest) vidhAnasaudha
(assembly)

vimAna (aeroplane) vINA (Indian stringed
instrument)

yama (god of death) yantra (machine)
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recording, children studying in the Kannada Medium Government Schools situated in

rural areas of Karnataka are selected, to avoid the in�uence of English language on the

pronunciation. Prior permission was taken from the school administration and parents for

dataset recording. To make children feel comfortable, either one of the parent if available

or one school sta� used to accompany us, during the course of speech recording. Even,

we used to spend some time with each child, interact with them and o�er them goodies

to increase their comfort. One student studying Speech Language Pathology (SLP) from

Department of Speech and Hearing, Manipal College of Health Professions, Manipal; used

to monitor the recording sessions. Children are made to sit in a comfortable position in

front of a computer and microphone. They are asked to describe the picture displayed on

a PowerPoint slide on the computer screen. If a child is not able to recognize the picture,

�rst questions are asked related to the objects in the picture. For e.g., in Figure 3.2b

"snAna" (bath) is a target word, then question asked to child is "Ane yenu madatidde?"

(what is elephant doing ?); to get their response. If a child is not cooperative, then parents

or school sta� used to ask the questions suggested by us. In case, child is not responding

or not able to answer the questions, parents/school sta� �rst speak the word before the

child repeat it. Atmost care was taken to avoid the overlap of child's speech and speech

of a person interacting with the child during the recording process. Children get bored

easily due to short attention span, hence su�cient break is given in between the recording

sessions, to maintain proper response. Sometimes we used to play games with them for

5 to 10 minutes. Once the recording of all words is complete from a child, SLPs listen to

the recordings. They note the words to be rerecorded from a child's speech, if it overlaps

with our voice or background noise during the session. SLPs discarded some recordings,

because recorded speech is not intelligible or child is not attentive. Then speech of these

children will be rerecorded if SLP suggests. Even after recording the speech again from

the child, if the problem of intelligibility occurs, then the speech recording of that child is

not considered for the analysis. First name, Middle name, Last name, date of birth, date

of recording, native location, present location, and gender are maintained as record for

each child. To name the speech �le, naming convention consists of details in the order:

gender, age of child on the day of recording, date of birth, date of recording, name of

child, present location. For e.g., F_3.16_23122014_19022018_Anushka_Surathkal.wav,

where speech is recorded from Anushka, gender: F (female), age: 3.16 (38 months), date

of birth: 23/12/2014, date of recording: 19/02/2018, name: Anushka, present location:
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Figure 3.2: Analysis of variation in pitch over age range 2.50 to 6.50 years: (a) Pitch variation in female
children (b) Pitch variation in male children

C Spectral and Prosodic Analysis of Children's Speech

Characteristics of the children's speech can be seen at the source level (characteristics of

excitation signal and shape of the glottal pulse), system level (shape of the vocal tract

and nature of movements of di�erent articulators) and prosodic level (Yang, 2000).

• Prosodic Analysis: Among the di�erent features, prosodic features are prominent

considering the children speech (Safavi et al., 2018). The priliminary data analysis

shows the importance of prosodic parameters (pitch) extracted from the speech

database. Pitch is the rate of vocal folds' vibration, where thinner the vocal folds,

higher the pitch and vice versa (Cernak et al., 2017). The pitch values of each

utterance are obtained from the autocorrelation of the Hilbert envelope of the linear

prediction residual (Prasanna and Yegnanarayana, 2004). Speech of �ve male and

�ve female children, in each age group, is considered for studying the statistics of

prosodic parameters. Male and female children from the age groups of 3.00-3.50,

4.00-4.50, 5.00-5.50, 6.00-6.50 years are considered to show the change in the pitch

with an increase in the age. Pitch values are determined frame-wise at word level.
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Children have thinner vocal folds, hence have a high pitch when compared to adults.

Pitch value drops down as the increase in age is observed. This is due to an increase

in the thickness of the vocal folds in both male and female children. The variation

in the pitch of female and male children in the proposed age range of 21
2
to 61

2
years

is shown in Fig. 3.2 (a) and Fig. 3.2 (b) respectively. The expected decrease in the

pitch over the speci�ed age range indicates the development in the size of the vocal

folds. Here, it is interesting to note that, there is a signi�cant di�erence in the pitch

of male and female children in each age group; median value of pitch in male children

is lower compared to the median value of pitch in female children. Median of pitch

in age 21
2
to 31

2
years in female children is around 380Hz whereas for male children it

is 340Hz. For age range 31
2
to 41

2
years the median value of pitch in female children

is around 340Hz, whereas for male children, it is 300Hz. Female children in age

range 41
2
to 51

2
years are observed to have median pitch of 300Hz whereas for male

children it is observed to be around 280Hz. The last age group shows the di�erence

of 20Hz between male and female median pitch. It shows that, within the same age

range, the male children vocal folds are thicker when compared to the female vocal

folds. It is also observed that, the standard deviation is decreasing with increasing

age in both male and female children. Larger the standard deviation higher the

pitch variability. This shows the laryngeal growth especially increase in the length

and mass of the vocal folds in children (Ibrahim and Hassan, 2021), resulting in

decrease of pitch variability with increase in age (Lee et al., 1997).

• Spectral Analysis: Spectral and temporal properties of children's speech are

greatly a�ected by the physical growth and other developmental changes (Potami-

anos and Narayanan, 2003). These variations are characterized by anatomical and

morphological development in the vocal-tract geometry and control over the ar-

ticulators. It is also reported that, the children speech has higher variability in

speaking rate, vocal e�ort and degree of spontaneity (Potamianos and Narayanan,

2003). The detailed analysis of variation in age-dependent behavior of the measure-

ments of spectral and temporal parameters has been based on American English

vowels (Lee et al., 1999). The analysis has shown an orderly decrease in the values

of the acoustic correlates, such as, formants, pitch and duration, with increase in

age. First formant (F1) represents the correlates of area at the back of the pha-

ryngeal cavity, and tongue height (Dogil and Reiterer, 2009),(Yavas, 2020). With
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Figure 3.3: Analysis of variation in formants over age range 2.50 to 6.50 years for vowels /a/, /A/, /i/,
/u/, /e/, /o/ using scatter plot of F1 vs F2: (a) Age between 3.00 to 3.50 years (b) Age between 4.00 to
4.50 years (c) Age between 5.00 to 5.50 years (d) Age between 6.00 to 6.50 years.

the increase in tongue height, F1 decreases; where low value of F1 represents high

vowels {high F1 = low vowel (i.e., high frequency F1 = low tongue body); low F1

= high vowel (i.e., low frequency F1 = high tongue body)}. Second formant (F2)

gives a measure of length of the oral cavity available for production of speech unit

i.e., front/back movement of the tongue. F2 changes according to the anterior/-

posterior movement of the tongue, where back the tongue position, lower the value

of F2 {high F2 = front vowel; low F2 = back vowel} (Yavas, 2020). The amount

of constriction is given by F3, where if the constriction happens at the back gives
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high values of F3 and constriction at the front results in lower F3 value (Stevens,

2000). It is observed that, the formant values of the vowels decrease with increase in

age, representing the lengthening of the vocal tract with the growth of the children.

Also, it is noticed that with increase in age, there is a decrease in the dynamic

range of the formant values (Lee et al., 1999). Here, formant frequencies are es-

timated, using �lter coe�cients obtained, through LPC analysis of speech (Snell

and Milinazzo, 1993). It is known that, estimates of spectral envelope using LPC

is poor in case of high pitch like in kids. In high-pitched speech, periodic replicas

cause 'aliasing' of the autocorrelation sequence due to short pitch periods (Story

and Bunton, 2016). Hence, high-pitched variations are removed from speech using

homomorphic prediction, where cepstrum analysis with a liftering window of equal

to the 0.7 of pitch period followed by linear prediction (Rahman and Shimamura,

2005). The number of kids considered in each age group is 20 males and 20 females.

For the analysis, four formants (F1, F2, F3 and F4) are extracted from the vowels,

namely [a], [a:], [i], [u], [e], [o]. Figure 3.3 (a)-(d) show the scatter plot of the �rst

formant (F1) vs second formant (F2) in each age group. It is observed that there

is no signi�cant change in the formant frequencies of di�erent vowels in consecutive

age groups. When the formant frequencies of the vowels in the age range 3 years to

31
2
years and 6 years to 61

2
years are observed, there is a monotonic decrease in the

formant values of vowel sounds. For example, in the age range 21
2
years to 31

2
years,

for vowel /a/ the mean value of F1 is 975.00Hz, F2 is 2356.10Hz, F3 is 4144.00Hz

and F4 is 5608.60Hz. Whereas, in the age range 51
2
years to 61

2
years, the mean

values of F1 is 826.80Hz, F2 is 2160.50Hz, F3 is 4068.20Hz and F4 is 5384.20Hz.

Similarly, from the analysis of the scatter plots of 21
2
years to 31

2
years and 51

2
years

to 61
2
years it is observed that, for all vowels there is a monotonic decrease in the

formant frequencies of the vowels with the growth and development of vocal-tract

geometry and control over the articulators.

D Illustration of Some Words Spoken by Kids of Di�erent Age Group from
NITK Kids' Corpus

Eight words 'angaDi', 'chakra', 'dALimbe', 'hatturupAyi', 'kurchi', 'phalaka', 'shAlage'

and 'yama', spoken by the kids have been considered for the illustration. Table 3.8 pro-

vides the list the target words and their respective pronunciation by children in each age

group. The word 'angaDi' spoken by children of age range 3.5-4.5 years is pronounced
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as 'angADi', 'angDi', 'angaDDi', 'anagadi', 'anaDi', 'AngaDi', 'angali', 'angaD', 'angari',

where the phonological processes observed are vowel substitution, vowel deviation, den-

talization, weak syllable deletion, lateralization. The same word 'angaDi' is pronounced

by the children of age range 4.5-5.5 years as 'angaDHi', 'angDi', 'angADi', 'angari', where

phonological processes observed are aspiration, vowel deviation, vowel substitution, lat-

eralization. The pronunciation errors observed in children of age range 5.5-6.5 years, are

'angDi', 'anghaDi', 'angaDe', 'hangaDi', 'angADi', where can be categorized into phono-

logical processes observed are vowel deviation, vowel substitution and aspiration. The

analysis of pronunciation over these three age range shows that, the phonological pro-

cesses, dentalization and weak syllable deletion are not observed after age range 4.5 years.

Phonological process vowel deviation, vowel substitution are observed to persists till the

age of 6.5 years and aspiration is introduced after 4.5 years. Similarly, Table 3.8 provides

the details of mispronunciation and the respective phonological processes observed in the

children speech in the di�erent age group is provided.

Table 3.8: Illustration of some words spoken by kids of di�erent age group from NITK Kids' Corpus and
respective phonological processes

Sl.
No.

Correct
pronuncia-
tion

Age range 3.5-4.5 years Age range 4.5-5.5 years Age range 5.5-6.5 years

1 angaDi
(shop)

1. vowel substitu-
tion: angADi, AngaDi,
angaD, angari;
2. vowel devia-
tion: angDi, dentaliza-
tion: anagadi;
3. weak syllable
deletion: anaDi;
4. lateralization: an-
gali;

1. aspiration: an-
gaDHi;
2. vowel deviation:
angDi;
3. vowel substitu-
tion: angADi;
4. lateralization: an-
gari;

1. aspiration: ang-
haDi, hangaDi;
2. vowel distortion:
angDi;
3. vowel substitu-
tion: angaDe, angADi;
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2 chakra
(wheel)

1. aspiration:
chhaka, chhakka,
chhekrA, chhakra,
chhakarA, chhakrA,
chakhra, chhekrA;
2. simpli�cation of
/r/ cluster: chakka,
chhakarA, chakaLA,
chakara;
3. dentalization:
chatrA, chakarA,
takala;
4. vowel substi-
tution: chhakarA,
chakarA, takala;
5. vowel distortion:
chhekrA;
6. lateralizatioin:
takala, chakaLA;

1. aspiration:
chhakra, chhakrA,
Thakla, chathra;
2. retro�extion:
chakhrA;
3. cluster reduction:
chakarA;
4. simpli�cation /r/
cluster: chakarA;
5. vowel substitu-
tion: chakarA;
6. dentalization:
chathra;
7. nasalization:
chankra;

1. simpli�cation of
/r/ cluster: chakLA,
chhakara, chakarA;
2. cluster reduction:
chakarA;
3. aspiration:
chakarA, chhakrA,
chhakra, chhakkara,
chhakara, chakhra,
chhakra;
4. vowel substi-
tution: chakarA,
chhakara

3 dALimbe
(pomegr-
anate)

1. lateralization:
Dalimbe, dALimbe,
DaLambi, DALimbe,
dalimbe, dAlibe,
dAlimme, dAlimbe,
dArimbe, TAlimbe;
2. retro�exion:
Dalimbe, dALimbe,
TAlimbe;
3. vowel substi-
tution: DaLambi,
dALimbhi, taLambe,
tALame;
4. denasalization:
dALibbe, dAlibe, dAl-
imme;
5. aspiration: dAL-
imbhi;
6. devoicing: ta-
Lambe, tALame,
tAlimbe;
7. weak syllable
deletion: tALame;

1. lateralization:
DALimbe, dAlimbe,
DAlimbe, Dalimbe,
hAlimbe;
2. retro�exion:
DAlimbe, DALimbe,
DAlimbe, Dalimbe,
DaLimbe;
3. vowel substi-
tution: dALambe,
DALambe;
4. aspiration: hAl-
imbe;
5. devoicing: tAL-
imbe;

1. lateralization:
dAlimbe, dhAlimbe,
dAlimme, kAlimbe,
DAlimbe;
2. retro�exion: DAl-
imbe;
3. vowel substi-
tution: dALimbi,
dALambi;
4. aspiration: dhAl-
imbe, dhAlimbe,
dhALimbe, dhA-
Lambe;
5. devoicing: tAl-
imbe;
6. nasalization:
dAlimme;
7. backing: kAlimbe;

85



4 hatturupAyi
(Ten Ru-
pees)

1. aspiration:
hathrupAyi, aTHru-
pAyi, haTHrupAyi;
2. deaspiration:
attarupAyi, atturu-
pAyi, attabrupAyE,
attabruy;
3. �nal consonant
deletion: hattrupe,
hatturupe, haTTurupe;
4. initial consonant
deletion: attarupAyi,
aTHrupAyi, atturu-
pAyi;
5. labialization: at-
tabrupAyE, attabruy;
6. retro�exion: haT-
Turupe, aTHrupAyi,
haTHrupAyi;
7. voicing: hadaru-
pAy;
8. vowel deviation:
hatturupe, hatturupeh,
hattarupAyE, hadaru-
pAy, hattrupAyE;
9. vowel substi-
tution: hattrupe,
hattarupAyE, hattaru-
pAyi, hattarupAyE,
hattrupAy, attabru-
pAyE;
10. weak syllable
deletion: attabruy;

1. deaspiration:
attrupAyE, attrrupAyi,
atturupayi, attrupiye;
2. distortion of /r/:
atturupayi, attrrupAyi;
3. gliding: hattruvay;
4. initial consonant
deletion: attrupAyE,
attarupAyi, atturupayi,
attrupiye;
5. labialization:
hatturubAyi;
6. liquid deletion:
hAtupAyi;
7. retro�exion: haT-
TurupAyi, haTTru-
pAyi, haTTurupAyi;
8. vowel deviation:
hattruvay, hattulupAy,
hattrupayE, attru-
pAyE;
9. vowel substi-
tution: attarupAyi,
attrupiye;
10. weak syllable
deletion: hAttupAyi;

1. deaspiration:
attarupayi, attarupayi,
attupayi, attrupay, at-
tarupAyi;
2. �nal consonant
deletion: hatturupe;
3. initial consonant
deletion: attarupaye,
attrupaye, attupayi, at-
tarupAyi;
4. retro�exion: haT-
Turupayi;
5. vowel devia-
tion: attarupaye, at-
tarupayi, attrupaye, at-
tupayi, haTTurupayi;
6. vowel substitu-
tion: hatturupe;
7. weak syllable
deletion: attupayi;
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5 kurchi
(chair)

1. aspiration:
kurchhi, khurchi;
2. alveolarization:
kudchi;
3. palatalization:
kuDshi;
4. retro�exion:
kursi, kuDshi;
5. simpli�cation of
/r/ cluster: kuchi,
kurachi, kudchi, khuc-
chi;
6. vowel substitu-
tion: kurachi, kurche;

1. aspiration: orchhi,
kurchhi;
2. alveolarization:
kursti, kuti;
3. dentalization:
kudchi;
4. initial consonant
deletion: orchhi;
5. palatalization:
kuschi, koDchi;
6. retro�exion: kuD-
chi, kuschi, koDchi;
7. simpli�cation of
/r/ cluster: kuti;
8. voicing: orchhi;
9. vowel substitu-
tion: koDchi, kurche;
10. vowel deviation:
orchhi;

1. palatalization:
kurshi;
2. vowel substitu-
tion: korchi, kurche;

6 phalaka
(board)

1. aspiration: pha-
lakha;
2. deaspiration:
palakA, paLaka;
3. vowel substitu-
tion: phAlaka;
4. vowel deviation:
phAlkA;

1. aspiration:
palakhA;
2. deaspiration:
palakA, palak, palaka;
3. �nal consonant
deletion: palak;
4. vowel deviation:
phAlkA;
5. voicing: OLaka;

1. aspiration: pha-
lakha;
2. deaspiration:
palaka, palakA, valaka;
3. initial conso-
nant deletion: ho-
laka, olaka;

7 shAlage
(school)

1. palatalization:
sAlage;
2. �nal conso-
nant deletion: shAle,
chAle, sAle;
3. vowel substi-
tution: shAle, chAle,
sAle, shAlege;
4. backing: chAle;
5. gliding: shalagye,
tyalage;
6. alveolarization:
tyalage;

1. palatalization:
sAlage, chhAlage, chA-
Lage;
2. �nal consonant
deletion: sAle, shAle;
3.vowel substitu-
tion: shAlege, shAlige,
shAle, sAle;
4. gliding: shALage;
5. retro�exion: shA-
Lage;
6. alveolarization:
tAlage, thAlage;
7. aspiration: chhA-
lage, thAlage;

1. palatalization:
sAlage, chAlage;
2. �nal consonant
deletion: shale, shAle;
3. vowel substitu-
tion: shAle, shAlege,
shale, shAlege;
4. aspiration: shA-
laghe;
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8 yama (God
of death)

1. initial consonant
deletion: ema, aema;
2. vowel substitu-
tion: yame, yammA;
3. vowel deviation:
yemA;
4. glide deletion:
aema, yava;
5. nasal gemination:
yammA;
6. glide deletion:
yava;

1. initial consonant
deletion: ema;
2. aspiration: hama;
3. vowel substitu-
tion: yAmA, yema;
4. nasal gemination:
yammA, yamma;
5. glide deletion:
ema,
6.vowel deviation:
ema;

1. vowel substitu-
tion: yAmA, yema;
2. nasal gemination:
yammA;
3. glide deletion:
ema;

3.2.2 Analysis of Phonological Processes in Kannada Language

For the analysis of phonological processes, the database is recorded from 120 native Kan-

nada language speaking children in the age range of 31
2
to 61

2
years. The processes are

analysed in the interval of one year, namely, 31
2
-41

2
, 41

2
-51

2
and 51

2
-61

2
years. Each age

range consists of 20 boys and 20 girls. Words used in everyday life are chosen for record-

ing. To record the words from the children, suitable picture is chosen for each word and

children are asked to describe the picture (Faircloth and Faircloth, 1970; Andrews and

Fey, 1986). Children speech is analysed by three Speech Language Pathologists (SLPs)

from Department of Speech and Hearing, Manipal College of Health Professions, Manipal,

Karnataka, India to identify the phonological processes. The goal of phonological assess-

ment is to analyze child's speech in varying phonological and environmental contexts in

order to optimize assessment and treatment, if required.

In phonological process analysis, majority of the assessment tests attempt to identify

what phonological processes occur and how often they occur (Stoel Gammon and Dunn,

1985). The assessment is based on non-quantitative and quantitative metrics (Hodson,

2004). In non-quantitative approach the con�rmation of presence of phonological pro-

cess is the manual observation of the properties of pronunciation. Only single occurrence

of the error is su�cient to con�rm the process (McReynolds and Elbert, 1981),(Ingram,

1981). For instance, if a child omits /k/ in the �nal position, it is listed in the category

of �nal consonant deletion. Then other instances of �nal consonant deletion of /k/ are

not required. However, the quantitative criterion needs that, only one occurrence of a

sound error does not signify the presence of the process (McReynolds and Elbert, 1981).

The speci�c error has to occur in at least four instances, and if the criterion is met, the
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Table 3.9: Phonological processes of type syllable structure observed in Kannada language

Sr.
No.

Phonological
Process

Description Age Range
(years)

Examples

1 Final conso-
nant deletion

Omission of �nal consonant, syl-
lable, part word

3.14 to 6.44 `biske' for
`biskiT'

2 Diphthong
substitution

Substitute glottal stops for con-
sonant

3.16 to 6.46 `kyampu'
for `kempu'

3 Weak syllable
deletion

Unstressed syllable of multisyl-
labic word is omitted

3.14 to 6.46 `gaDira' for
`gaDiyara'

4 Cluster re-
duction

Cluster is reduced to single con-
sonant

3.14 to 6.46 `beDu' for
`bleDu'

5 Cluster Sub-
stitution

Cluster is substituted in place of
two consecutive syllables

3.16 to 6.46 `Dratha' for
`ratha'

6 Cluster Re-
placement

Cluster is substituted in place of
another cluster

3.29 to 6.44 `rAtri' for
`rATri'

7 Simpli�cation
of /r/ cluster

Cluster with /r/ is reduced to
single consonant

3.14 to 6.46 `sUya' for
`sUrya'

8 Reduplication Complete or partial syllable is
repeated

3.16 to 5.94 `ODuDu'
for `ODu'

9 Deletion of
glottal sound

Non-glottal consonants are sub-
stituted in place of glottal
sounds

3.14 to 6.46 `uDuga' for
`huDuga'

error should be present in 20% of the phonemic environments in which the phonological

process could possibly occur (Hayes, 2011). Phonemic environment refers to the surround-

ing sounds of a target speech sound, or target phone, in a word (Fujimura and Ochiai,

1963). In English word 'meet', a target vowel /i/ has the consonants /m/ preceding it

and /t/ following it. The expression therefore reads "in the environment after /m/ and

before /t/". If 20 words with �nal consonant are considered, then according to quanti-

tative criterion, at least 4 of them are to be pronounced without �nal consonant, to get

listed in �nal consonant deletion category. This criterion is set by the Speech Language

Pathologist (SLPs) in Speech Pathology (Hayes, 2011). More precise quantitative criteria

suggested by Hodson et.al. shows that, for a process to be considered, it should have 50%

occurrences in the target speech (Hodson and Paden, 1991). This approach is generally

followed in analysis of phonological disorder in children, whereas it is not recommended

for phonological processes analysis in normal children (Rudolph and Wendt, 2014),(Hod-

son and Paden, 1991). In the case of normal children, presence of phonological process
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Table 3.10: Phonological processes of type assimilation observed in Kannada

Sr.
No.

Phonological
Process

Description Age Range
(in years)

Examples

1 Velar assimi-
lation

Alveolar sound becomes like ve-
lar consonant in the context of
velar consonant

3.16 to 6.46 `gage' for
`gade'

2 Labial assimi-
lation

Non-labial consonant is replaced
by labial consonants in the con-
text of labial consonant

3.31 to 6.30 `simba' for
`simha'

3 Nasal assimi-
lation

Non-nasal consonant is replaced
by nasal consonants in the con-
text of nasal consonant

3.14 to 6.44 `aane' for
`nane'

4 Retro�ex as-
similation

Non-retro�ex consonant is re-
placed by retro�ex consonants in
the context of retro�ex conso-
nant

3.29 to 6.46 `TaTTe' for
`taTTe'

5 Alveolar
assimilation

Non-alveolar consonant is re-
placed by alveolar consonants in
the context of alveolar conso-
nant

3.84 to 6.00 `titte' for
`chiTTe'

6 Reduplication Complete or part syllable is re-
peated

3.16 to 5.94 `DeDiyo'
for `reDiyo'

may not have 20% to 50% occurrences in the target speech (Hodson, 1986). Due to this,

it is considered for remediation in phonological disorder rather than for identi�cation

and classi�cation of phonological processes (Hodson and Paden, 1991). Hence, for our

analysis non-quantitative criteria is considered for the identi�cation of phonological pro-

cesses. Three SLPs �rst identify each mispronounced word in child's speech, and mark all

the phonological processes in the pronunciation based on the mispronunciation pattern

(phoneme inserted, substituted or deleted). Once the analysis for a child is complete, all

SLPs compare their observations for each mispronounced word and provide a �nal con-

clusion on the phonological processes appearing in each child. They also make a note of

all unique phonological processes. Once the phonological process analysis for all children

is complete, SLPs consider each phonological process and �nd a lowest and highest age in

which the respective phonological process appears (Ingram, 1981). This de�nes the age

range of appearance of the phonological process. SLPs give age in real number upto two

decimal places. First, age of child is calculated in months as on the day of recording, and

then it is divided by 12. For e.g., if a child's is of age 45 months on the day of recording,
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then the age is calculated using 45 divided by 12 = 3.75 years (Ingram, 1981).

Commonly observed phonological processes, in four categories, are observed and anal-

ysed in this study. The phonological processes observed in syllable structure are listed

in Table 3.9 with their age range of appearance. Most common phonological processes,

in this category are �nal consonant deletion, weak syllable deletion, cluster reduction,

and simpli�cation of /r/ cluster. Where �nal consonant deletion is observed in the age

range 3.14 to 6.44 years; weak syllable deletion appears in the age range of 3.14 to 6.46

years. Cluster reduction and simpli�cation of /r/ cluster are very common amongst all

the phonological processes in syllable structure, as it is observed in the age range of 3.14

to 6.46. The phonological processes observed in assimilation are listed along with their

normal age of appearance in Table 3.10. Here, commonly observed phonological processes

are velar assimilation, nasal assimilation, and alveolar assimilation. Nasal assimilation is

observed to be frequently occurring among the identi�ed phonological processes in assim-

ilation. Substitutions are the most commonly observed class of phonological processes in

children. The details of phonological processes observed in substitution are given in Ta-

ble 3.11. Commonly observed phonological processes are fronting, backing, nasalization,

vowel deviation, dea�rication, and gemination. Geminates are the double consonants

which are articulated with a particularly long duration, e.g. /kk/ in `akka'. Idiosyn-

cratic patterns or miscellaneous processes are the phonological processes with uncommon

replacement patterns (refer Table 3.12). This involves metathesis; initial consonant dele-

tion, backing, cluster reduction, lateralization, aspiration, voicing, devoicing and vowel

lengthening.

The state of the art analysis of the phonological processes is available in English lan-

guage (given in section 3.1). English and Kannada languages have di�erent inherent

nature, hence the analysis available in English language may not be directly applicable

to Kannada and other languages. Same can be observed from the comparison of appear-

ance of phonological processes in English and Kannada language. In syllable structure,

the phonological processes such as �nal consonant deletion, is observed upto 3.0 years,

in children speaking English language whereas it appears upto 6.44 years in the children

speaking Kannada language. Similar di�erences are observed in remaining phonological

processes in syllable structure as given in Table 3.13, where most of these processes dis-

appears by 5.0 years in English and it takes almost 6.50 years to disappear in Kannada.

In assimilation, the phonological processes disappear in English language around 4 years,

91



Table 3.11: Phonological processes of type substitution observed in Kannada

Sr.
No.

Phonological
Process

Description Age Range
(in years)

Examples

1 Fronting Velar or palatar sounds are sub-
stituted by alveolar sounds

3.14 to 6.46 `chantra' for
`yantra'

2 Backing Alveolar sounds are substitued
by velar sounds

3.84 to 6.46 `koDu' for
`ODu'

3 Palatalization Sound is produced as palatal for
non-palatal ones

3.14 to 6.46 `jabba' for
`Dabba'

4 Dea�rication A�rication of fricative sounds 3.14 to 6.19 `tangha' for
`sangha'

6 Labialalization Non-labial sounds are substi-
tuted by labial sounds

3.14 to 6.49 `pheLu' for
`ELu'

7 Alveolarization Non-alveolar sounds are substi-
tuted by alveolar sounds

3.14 to 6.46 `tamacha'
for
`chamacha'

8 Nasalization Non-nasal sounds are substi-
tuted by nasal sounds

3.14 to 6.30 `giNi' for
`gili'

9 Denasalization Nasal sounds are substituted by
non-nasal sounds

3.14 to 6.46 `sAnA' for
`snAnA'

10 Retro�ection Non-retro�ex consonant is re-
placed by retro�ex consonants

3.14 to 6.44 `Ayudha' for
`AyuDha'

11 Vowel distor-
tion

Vowels are deviated from its ac-
tual pronunciation

3.14 to 6.46 `chokA' for
`chaukA'

12 Degemination Geminates are reduced to nor-
mal consonants

3.14 to 6.44 `IruLLi' for
`Iruli'

13 Gemination Geminates are substituted in
place of consonants

3.14 to 6.44 `simma' for
`simha'

14 Frication Approximant (glide /w j/ or liq-
uid /l r/) is substituted by frica-
tive

3.84 to 6.30 `sandra' for
`chandra'
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Table 3.12: Phonological processes of type idiosyncratic patterns in Kannada

Sr.
No.

Phonological
Process

Description Age Range
(in years)

Examples

1 Initial conso-
nant deletion

Deletion of consonant in the
initial position of words

3.14 to 6.49 `aDiyo' for
`reDiyo'

2 Backing Substitution of velar sonso-
nants for non-velar consonants

3.84 to 6.46 `kALimbe'
for `dAL-
imbe'

3 Lateralization Consonants are produced with
lateral air emission

3.31 to 6.30 `latha' for
`ratha'

4 Cluster re-
duction

Cluster is reduced to single con-
sonant

3.14 to 6.46 `poTbAoks'
for `posT-
bAoks'

5 Deletion of
glottal sound

Omission of glottal sound /h/ 3.14 to 6.46 `allu' for
`hallu'

6 Aspiration Unaspirated sounds are substi-
tuted by their aspirated coun-
terparts

3.14 to 6.49 `dhALimbe'
for `dAL-
imbe'

7 Unaspiration Aspirated sounds are substi-
tuted by their unaspirated
counterparts

3.14 to 6.49 `rata' for
`ratha'

8 Voicing Voiceless sound is replaced by a
voiced sound

3.14 to 6.49 `puja' for
`bhuja'

9 Devoicing Voiced consonant is replaced by
unvoiced consonant

3.14 to 6.49 `kili' for `gili'

10 Metathesis Two consonants within a sylla-
ble are placed in a di�erent or-
der

3.16 to 6.46 `bistik' for
`biskit'

11 Vowel length-
ening

Vowel are pronunced with
longer duration than usual

3.16 to 6.46 `aidU' for
`aidu'
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Table 3.13: Comparison of commonly observed phonological processes in English and Kannada language
of type syllable structure

Sr.
No.

Phonological Process English (Age
range in years)

Kannada (Age
range in years)

1 Final consonant deletion upto 3.0 upto 6.44

2 Weak syllable deletion upto 4.0 upto 6.46

3 Cluster reduction upto 5.0 upto 6.46

4 Cluster Replacement upto 4.0 upto 6.44

5 Simpli�cation of /r/ cluster upto 5.0 3.14 to 6.46

6 Doubling upto 2.6 upto 5.94

7 Deletion of glottal sound upto 6.0 upto 6.46

Table 3.14: Comparison of commonly observed phonological processes in English and Kannada language
of type assimilation

Sr.
No.

Phonological Process English (Age
range in years)

Kannada (Age
range in years)

1 Velar assimilation upto 3.0 upto 6.46

2 Labial assimilation upto 4.0 upto 6.30

3 Nasal assimilation upto 3.0 upto 6.44

4 Alveolar assimilation upto 3.0 upto 6.00

5 Reduplication upto 2.60 3.16 to 5.94

6 Final Consonant Devoicing upto 3.0 upto 6.40
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Table 3.15: Comparison of commonly observed phonological processes in English and Kannada language
of type substitution

Sr.
No.

Phonological Process English (Age
range in years)

Kannada (Age
range in years)

1 Fronting upto 3.60 upto 6.46

2 Backing upto 6.0 upto 6.46

3 Palatalization upto 5.0 upto 6.46

4 Dea�rication upto 4.0 upto 6.19

5 Labialalization upto 6.0 upto 6.49

6 Alveolarization upto 5.0 upto 6.46

7 Denasalization upto 2.5 upto 6.46

8 Frication upto 4.0 upto 6.30

Table 3.16: Comparison of commonly observed phonological processes in English and Kannada language
of type idiosyncratic patterns

Sr.
No.

Phonological Process English (Age range in
years)

Kannada (Age
range in years)

1 Initial consonant deletion upto 2.0 (more severe in
phonological delays)

upto 6.49

2 Backing upto 5.0 upto 6.46

3 Lateralization upto 3.97 3.31 to 6.30

4 Cluster reduction upto 5.0 upto 6.46

5 Voicing upto 6.0 upto 6.49

6 Devoicing upto 4.0 upto 6.49

7 Metathesis upto 7.0 3.16 to 6.46
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whereas in Kannada language, they tend to disappear by 6.46 years (Peña-Brooks and

Hegde, 2007). Table 3.14 shows the comparison of appearance of phonological processes

in assimilation in children speaking English and Kannada language. In substitution, it

is observed that, most of the phonological processes disappear by the age of 5.0 years

in English language, whereas in Kannada language, the phenomenon disappears by the

age of 6.46 years, as shown in Table 3.15. Idiosyncratic patterns are observed to appear

upto the age of 6.49 years in children speaking Kannada language, whereas most of these

phonological processes appear upto an average age of 5.50 years and may exist beyond

also (refer Table 3.16). The comparison shows that, the phonological processes, identi-

�ed in the children speaking Kannada language, disappear around the age of 6.0 to 6.50

years. Whereas, it is observed that the most commonly occurring phonological processes

in children speaking English language disappear around 5.0 to 5.50 years.

To check whether this di�erence is signi�cant, we have performed the Student's t-test

on the appearance of phonological process. For all the phonological processes, age of

appearance in children speaking English as a native language is obtained from literature,

and for children speaking Kannada as a native language is taken from our analysis. Stu-

dent's t-test is performed to evaluate the statistical signi�cance on the data of age of

appearance for all the phonological processes. The two-tailed p-value of the considered

statistical test obtained is less than 0.001 (Kanji, 2006). By conventional criteria, this

di�erence is considered to be extremely statistically signi�cant. This is an indication that,

languages of di�erent nature have di�erent chronology of the phonological processes, and

exhibit di�erent patterns of various phoneme acquisition. This shows that, there is a

signi�cant di�erence in the pattern of appearance of the phonological processes in the

cases of children speaking English and Kannada language respectively.

3.2.3 Contributions and Limitations

In this chapter, the analysis of the phonological processes in children of 31
2
to 61

2
years with

Kannada as a native language, is proposed. For this purpose, the dataset named `NITK

Kids Speech Corpus' is recorded. To the best of information available, this recorded

database is one of the rare datasets available in smaller age group. Various phonological

processes are identi�ed and the age of their appearance in children is reported. This

analysis is compared with the phonological processes that appear in children speech in

English language. The phonological processes in English language used for comparison
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were also analyzed and identi�ed through non-quantitative criteria. From the comparison

it is observed that, most of the phonological processes that appear in children speaking

Kannada language disappear by the age of 6.0 to 6.50 years. In English language most of

the phonological processes disappear by the age of 5.0 years.

3.3 Summary

This chapter provides an analysis of the phonological processes in children speaking Kan-

nada as native language. `NITK Kids Speech Corpus', recorded from the children of age

groups 31
2
to 61

2
years, is considered for the analysis. Detailed analysis of the occurrence

of phonological processes is provided along with their comparison, with the phonological

processes that appear in the children speaking English language. Comparative analy-

sis has shown that, there is a signi�cant di�erence in the pattern of appearance of the

phonological processes in the cases of children speaking Kannada as native language and

English as native language. It is observed that, the pattern of appearance of the same

phonological processes di�ers by 6 months to one year in children speaking Kannada

and English. This may contribute to the conclusion that, languages of di�erent nature

may have variations in pattern of appearance of the phonological processes in children.

Chapter 4 gives the implementation details of phoneme boundary detection using changes

observed during phoneme transition in speech waveform.
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Chapter 4

Automatic Phoneme Boundary

Detection

4.1 Introduction

Usually, detection of phoneme boundary and labeling/annotation is done manually by

the language experts, where he/she has to listen to the speech and then label the seg-

ment (Acero, 1995). Huge human e�ort is required whenever a new database is to be

annotated. The database utterances are divided amongst multiple people for annota-

tion, where the identi�cation of phoneme boundary and annotation is highly subjective

(Van-Hemert, 1991; Pellom and Hansen, 1998). This subjectivity generally a�ects the

accuracy of marking the beginning and end of the phoneme boundaries due to variations

in decisions of people. Hence, there is a need to automate the task of phoneme boundary

estimation to overcome the limitations of traditional approaches. The present state of

the art approaches need large amount of training data to achieve the appreciable perfor-

mance in the task of phoneme boundary detection. The availability of large dataset is

not always ensured, hence an approach which works better with small sized dataset is

of interest to research community. In this work, a rule based approach is proposed to

mark the phoneme boundaries, based on the observations in the signal that signi�cantly

change, when there is a progression from one phoneme to the other. Approach is divided

into two subtasks. First, speech is divided into voiced and unvoiced segments using pitch

and energy pro�les of the zero frequency �ltered signal. Pitch and energy pro�les of

zero frequency �ltered signal are observed to be zero in unvoiced regions leading to the

e�cient in segmentation of voiced and unvoiced regions. Further the phoneme bound-

aries are identi�ed within voiced and unvoiced regions. Normally, it is observed that the

speech signal exhibits on almost similar pattern within a phoneme region and change is
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seen when there is a transition to the next phoneme. A power spectrum of a correlation

waveform of the adjacent frames is analysed for the task of phoneme boundary detection.

The signi�cant changes are observed in the components of power spectra during phoneme

transitions. The proposed system is found to achieve signi�cantly improved performance

compared to the existing systems.

4.1.1 Characterization of phoneme transition to mark phoneme

boundary

In this work, a rule based approach is proposed for phoneme boundary detection. The

activity of production of speech involves lungs, trachea, glottis, pharynx, oral cavity and

nasal cavity (Juang and Rabiner, 1993). The required amount of air is exhaled from lungs

for producing speech. Glottis is connected to lungs through trachea (wind pipe). Glottis

consists of vocal folds/cords (two thin membranes), it obstructs the air�ow from the lungs

to generate the required excitation during speech production (Juang and Rabiner, 1993).

The organs from glottis to lips, namely, oral cavity and nasal cavity, constitute the system

part of the speech production (Juang and Rabiner, 1993). Based on the presence/absence

of excitation in speech production activity, a speech signal can be broadly classi�ed into

voiced or unvoiced, as shown in Fig. 4.4 (a) (Honda, 2008). When vocal folds vibrate, the

speech produced is voiced speech (Honda, 2008). Unvoiced speech is a result of random

noise like excitation where vocal folds do not vibrate, they remain wide open (Honda,

2008). In silence region, there is no excitation provided to the vocal tract (Atal and

Rabiner, 1976), the vocal folds keep closed. As a result there is no speech produced

during this time. Silence is an integral part of a speech signal. Without the presence

of appropriate silence region/pause between voiced and unvoiced speech, the speech is

not natural and many times not intelligible. The proposed system is divided into two

subtasks, namely; 1) Detection of silence, voiced and unvoiced regions 2) Identi�cation of

phoneme boundaries within/across voiced and unvoiced regions, as shown in Fig. 4.1. For

the �rst task, the features e�cient in identi�cation of silence and unvoiced regions, such

as zero frequency �lter signal and pitch, are used. To identify the phoneme boundaries

within voiced and unvoiced region, alterations in power spectrum of correlation waveform

of consecutive speech frames during phoneme transitions, are explored. These observa-

tions during phoneme transitions are true for clean conditions, but not necessarily in real

world noisy conditions. This limits the scope of the implementation; still, availability
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Figure 4.1: Block diagram of the proposed phoneme boundary detection approach
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Figure 4.2: Signal waveform of speech unit selected from IIIT-H Marathi Dataset (a) /he/ from `aahe'
(b) /la/ from `milavile' (c) /me/ from `clemete' (d) /ya/ from `yanchya'

of sophisticated noise reduction algorithms may be used in preprocessing phase, before

this approach is applied for phoneme boundary detection (Luke and Wouters, 2017). The

output of both tasks are combined to achieve �nal output of segmentation.

4.1.2 Feature Extraction

Signi�cant changes are observed between the waveforms of di�erent phonemes during

progression from one phoneme to the other. Fig. 4.2 (a)-(d) show the speech waveform of

the syllable /he/, /la/, /me/ and /ya/ respectively, where the change in the waveform,

during phoneme transition, can be clearly observed. Fig 4.3 (a)-(h) show the speech

waveforms representing the changes in speech signal during the transition from one vowel

to another. The signal level properties and features considered to capture these changes

are discussed below:
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Figure 4.3: Signal waveform of speech unit selected from IIIT-H Hindi Dataset (a) Signal waveform of
speech unit /aa_e/ from word `bhaaei' (b) Signal waveform of speech unit /aa_oo/ from word `dei-
vataaoon' (c) Signal waveform of speech unit /aa_uu/ from word `subhaauu' (d) Signal waveform of
speech unit /e_ii/ from word `deii' (e) Signal waveform of speech unit /oo_i/ from word `hooi' (f) Signal
waveform of speech unit /oo_ii/ from word `sooii' (g) Signal waveform of speech unit /u_aa/ from word
'huaa' (h) Signal waveform of speech unit /u_ei/ from word `huei'
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A Zero-Frequency Filtered signal (ZFF)

Speech is produced by exciting the vocal tract system, by the sequence of closing and

opening instants of glottis which a�ect every frequency composition of the signal, including

zero-frequency (0 Hz) (Murty and Yegnanarayana, 2008). Zero-Frequency Filter is the

cascade of an in�nite response �lter and approximation of all-pole �lter. This eliminates

the e�ect of vocal tract resonance from the speech signal leaving glottal pulse waveform

as a remainder. The process of zero-frequency �ltered signal extraction is given below

(Murty and Yegnanarayana, 2008; Yegnanarayana and Gangashetty, 2011):

I Compute di�erentiation of speech signal in order to remove the slowly varying com-

ponents of speech.

s[n] = x[n]− x[n− 1] (4.1)

where x is original speech signal, s is di�erentiated speech signal.

II Apply cascade of two ideal zero-frequency resonator to the di�erentiated signal.

y0[n] = −
4∑

k=1

bky0[n− k]− s[n] (4.2)

where a1=-4, a2=6, a3=-4 and a4=1 are constant (Yegnanarayana and Gangashetty,

2011).

III Estimate average pitch period with 30 ms segments of speech signal s.

IV Subtract the local mean of average pitch period from each sample of y0[n] which

removes trend in a signal. The output signal is:

y[n] = y0[n]− 1

2N + 1

N∑
m=−N

y0[N +m] (4.3)

where y[n] is zero-frequency �ltered signal, 2N + 1 is a window size used to remove

trend in signal. Window size is set to one to two pitch periods.

The Zero-Frequency Filtered signal shows the absence of excitation instances in un-

voiced region of speech (refer Fig. 4.4 (b)). Energy of Zero-Frequency Filtered signal

is very low or equal to zero in unvoiced regions and zero in silence ones. Hence ZFF is

observed to be e�cient in detecting unvoiced and silence regions from the speech without

any duration error. Fig. 4.4 shows the segmentation of the word `Ammerica' in voiced,

unvoiced and silence regions, based on ZFF signal.
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Figure 4.4: (a) Signal waveform of the word `Ammerica' from IIIT-H Marathi Dataset (b) Zero-Frequency
Filtered signal of the speech waveform of the word `Ammerica' (c) Energy pro�le of the Zero-Frequency
Filtered signal for the word `Ammerica' (d) Pitch pro�le of the speech waveform of the word `Ammerica'

B Pitch

Pitch is the rate of vocal folds' vibration of a speaker, representing the fundamental fre-

quency of speech signal. The vocal fold vibration is absent during production of unvoiced

speech sounds, resulting into zero pitch value. This property is su�cient in characteri-

zation and identi�cation of voiced and unvoiced regions. The pitch contour is extracted

from the speech signal using probabilistic YIN (PYIN) algorithm (Mauch and Dixon,

2014). This is a modi�ed autocorrelation method which overcomes the drawbacks of nor-

mal autocorrelation approach, such as errors in peak selection. Fig. 4.4 (d) shows the

segmentation of the word `Ammerica' in voiced, unvoiced and silence regions, based on

pitch information.

C Power Spectrum of Correlation Waveform

Correlation is a statistical measure that represents the amount to which two or more

entities �uctuate together (Weisstein, 2016). It gives a measure of how the two signals
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are similar to each other. The correlation between two varying sequences is given by,

Rxy[n] =
∞∑

m=−∞

x[m]y[m− n] (4.4)

where Rxy[n] represents the correlation waveform of the two sequences x[n] and y[n].

The speech signal is divided into frames of 15ms, with 50% overlapping, and a correla-

tion between present and next frame is obtained. The power spectrum of the correlation

waveform is observed to exhibit similar frequency properties for the phoneme and changes

when there is a phoneme change. Fig. 4.5 (a) and (b) represent the consecutive frames of

the same phoneme /a/ from pronunciation of `unauthentic' in TIMIT dataset. The power

spectrum of the correlation waveform of frames (Fig. 4.5 (a) and (b)) is given in Fig. 4.5

(d). Fig. 4.6 (a) and (b) are the consecutive frames of the waveform during phoneme

transition. The power spectrum of the waveform in Fig. 4.6 (a) and (b) is given in Fig.

4.6 (d). From the keen observation of components of power spectra of Fig. 4.5 (d) and

4.6 (d), it is clearly evident that there is signi�cant change in the appearance of num-

ber and location of frequency components in Power Spectrum of Correlation Waveform

during phoneme transition. Here, we represent these frequency components as 'energized

frequency components'. The rules are framed based on the variations in the energized

frequency components during transition from one phoneme to the other.

4.1.3 Identi�cation of heuristic rules for phoneme boundary de-

tection

The important rules are:

• Change in number of energized frequency components

• Change in slope of magnitude of energized frequency components

• Insertion or deletion of energized high frequency components

• Gradual decrease or increase in the number of energized frequency components in

subsequent frames

• Longest common pattern of energized frequency components (frequency and respec-

tive magnitude)

• Comparatively higher number of energized frequency components (greater than 10)

in unvoiced or frication region
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Figure 4.5: (a) PCM waveform of frame x of a
steady region of phoneme /a/, (b) PCM waveform
of frame x+1 of a steady region of phoneme /a/,
(c) Correlation waveform of (a) & (b), (d) Single
sided power spectrum of correlation waveform
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Figure 4.6: (a) PCM waveform of frame x+1 of
a steady region of phoneme /a/, (b) PCM wave-
form of frame x+2 represents phoneme transition
from phoneme /a/ to phoneme /n/, (c) Correla-
tion waveform of (a) & (b), (d) Power spectrum of
correlation waveform

4.1.4 Voiced and Unvoiced Region Segmentation

In order to mark the region of change from voiced to unvoiced segments, energy of Zero-

frequency �ltered signal is used as a feature. The average energy (avg_energy) of Zero

frequency �ltered signal is calculated by (Swee et al., 2010),

avg_energy =

N∑
i=1

ene_ZFF_sig(ithframes)

N
(4.5)

whereN is the total number of frames in Zero frequency �lter energy signal (ene_ZFF_sig).

A global threshold is set to obtain the point of phoneme transition based on the avg_energy

value obtained using equation 4.5. It can be represented using,

thr_avg_energy = a ∗ avg_energy (4.6)

where a is a constant which may be set to 15% of the average energy based on the

empirical analysis (a horizontal line in Fig. 4.7 (a-3) - Fig. 4.7 (h-3) represents segmen-

tation using a set threshold value). thr_avg_energy represents threshold value for the
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Figure 4.7: Segmentation results of voiced and unvoiced regions using Zero-Frequency �lter signal (a)(1)-
(h)(1) Signal waveform of di�erent speech units chosen from IIIT-H Marathi Dataset, (a)(2)-(h)(2) Zero-
Frequency �lter signal of speech units, (a)(3)-(h)(3) Segmentation using energy of Zero-Frequency �lter
signal.

segmentation of voiced and unvoiced regions and can be obtained using equation 4.7,

Seg_reg_ZFF (i) =

0, if ene_ZFF_sig(i)<= thr_avg_energy

ene_ZFF_sig(i), otherwise

(4.7)

where, Seg_reg_ZFF is the output signal with segmentation of voiced and unvoiced

regions. The values below threshold line are in unvoiced region (observe vertical lines in

Fig. 4.7 (a-1) (obtained by manual segmentation)-Fig. 4.7 (a-3) (obtained using proposed

approach)). The segmentation results can also be observed for some other class of unvoiced

sounds as shown in Fig. 4.7.

Fig. 4.7 shows the di�erent regions of phoneme transitions from unvoiced consonant

sound, followed by voiced vowel sound, i.e., a CV transition. All unvoiced sounds from

velar (/k/, /kh/), palatal (/ch/, /chh/), dental (/t/, /th/) and labial (/p/, /ph/) are

considered for evaluation. Fig. 4.7 consists of waveforms for each of the above mentioned

class of sound units, corresponding Zero-frequency �ltered signals and their energy signal
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Figure 4.8: Segmentation results of voiced and unvoiced regions using �rst order derivative of pitch pro�le
(∆ Pitch) (a-1)-(h-1) Signal waveform of di�erent speech units chosen from IIIT-H Marathi Dataset, (a-
2)-(h-2) Pitch pro�le of speech units, (a-3)-(h-3) Segmentation using energy of ∆ Pitch.

are also given. From the observation of Fig. 4.7, it is evident that, the output of Zero-

frequency �ltered signal results in low amplitude sinusoidal signal in unvoiced regions

whereas the high amplitude quasi-periodic signal is observed in voiced regions.

Though the pitch range is di�erent for di�erent age groups and gender, it is clearly

observed during voiced sound production, but is absent in other regions of speech. Hence,

the pitch of a speech signal is seen to be zero in burst, silence and unvoiced regions;

whereas in the voiced regions the pitch values are present. This property is explored as a

supplementary approach for the voiced and unvoiced region segmentation. Fig. 4.8 shows

pitch pro�les of di�erent unvoiced phonemes followed by vowels and their derivatives

(∆ Pitch). Here, Fig. 4.8 (a-1) represents the PCM waveforms of unvoiced signal /ch/

followed by vowel /a/ and Fig. 4.7 (a-2) is the corresponding pitch pro�le. From this, it

can be observed that, the pitch gives a clear characterization during voiced to unvoiced

transitions and vice versa. The segmentation can be achieved using �rst order derivative

of pitch pro�le given by,

∆Pitch =
Pitch_prof(i+ 1)− Pitch_prof(i)

(i+ 1)− i
(4.8)
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Figure 4.9: Segmentation results of voiced and unvoiced regions using average of ∆Pitch and energy of
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where ∆Pitch represents the �rst order derivative of pitch pro�le (Pitch_prof) with

respect to time. i represents the frame number. The derivative of the pitch pro�le results

in sharp peaks during phoneme transition and is considered as the change point, as shown

in Fig. 4.8 (a-3). Similarly, the segmentation of voiced and unvoiced regions for other

phonemes using ∆ Pitch may also be observed in Fig. 4.8.

Though the results observed are promising, using independent approaches with zero-

frequency �ltered signal and pitch, there may be deviations in the phoneme boundary

alignment in few cases, due to the nature of labial, dental and retro�ex sounds, as some

times these unvoiced burst regions may resemble the voiced signal. From Fig. 4.9, it can

be observed that the pitch and Zero-frequency �ltered signal fail to estimate the proper

location of boundaries of phonemes /pa/ and /tha/ (in Fig. 4.9 (a-1) and 4.9 (b-1), v

represents correct phoneme boundary-manually marked). u represents the segmentation

achieved for /pa/ and /tha/ using zero-frequency �ltered signal (see Fig. 4.9 (a-1) and
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Fig. 4.9 (b-3)). The segmentation results using ∆ pitch (w) as is shown in Fig. 4.9

(a-5) and Fig. 4.9 (b-5). The boundary detection tolerance in these cases is obviously

more than 10 ms. In such cases, to obtain better estimation of segmentation boundaries,

average value of a locations estimated using ZFF and ∆ pitch approaches is considered.

Main intention behind taking the average of phoneme boundaries detected using pitch and

energy of ZFF is to bring the phoneme boundary within the tolerance range of 10ms. It

can be observed from Fig. 4.9 (a-6) and 4.9 (b-6), that the proposed approach gives new

estimations, which approximate the segment boundaries with a better accuracy (with the

tolerance less than 10 ms). With the average value, we obtained the phoneme boundary

within the tolerance range of 10ms. Hence, we did not focus much on the other weighting

approaches.

4.1.5 Identi�cation phoneme boundary within Voiced and Un-

voiced Regions

Once the voiced, unvoiced and silence regions are segmented, the next task is to obtain

the phoneme segmentation within these regions. Voiced regions have the consonants ac-

companied by vowel sounds or other voiced consonants. During pronunciation, shape of

the oral cavity is unique for each phoneme providing di�erent resonances. This results

in distinctive waveform for di�erent phonemes. From Fig. 4.2, it is observed that the

waveform of speech signal changes with change in phoneme. For instance in Fig. 4.2 (c)

one observes change in the signal properties during changes from /l/ (semivowel) to /a/

(vowel). In this work, the correlation between adjacent frames is used to capture these

changing properties. Correlation is a statistical measure that represents the amount to

which two or more series are similar (Podobnik and Stanley, 2008). When the signal is

correlated with itself, it is known as autocorrelation, whereas, the correlation of di�erent

signals is referred to as cross-correlation. In this work, cross-correlation of adjacent speech

frames of size of 15ms with 50% overlap is obtained. When adjacent frames belong to

same phonemes the correlation waveform bears the properties of almost autocorrelation.

Whereas, during phoneme transition, due to change in signal waveforms, correlation of

adjacent frames behaves as cross-correlation. The correlation waveform is distinct for dif-

ferent phonemes and varies during phoneme transitions as shown in Fig. 4.12 - Fig. 4.15.

The power spectrum of a correlation waveform is observed to exhibit similar frequency

properties within a phoneme and the same are di�erent during phoneme transition. These
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Figure 4.10: Addition or deletion of energized peaks is more that 50%: Speech waveform of signal /n/
followed by /a/ chosen from pronunciation of word `nadi' in IIIT-H Marathi Dataset (1) & (2) consecutive
speech frames chosen cyclically from speech waveform (3) Correlation waveform of the speech frames (4)
Power spectrum of correlation waveform (4) Prominent peaks of power spectrum of correlation waveform.

properties are modeled with the rules below:

• Change in number of energized frequency components: During pronunciation of

phoneme, based on the resonance of oral cavity, particular frequency components

are added to the speech waveform of the phoneme. Hence, the waveform of dif-

ferent phonemes have perceivable di�erent time domain properties and their power

spectrum shows the frequency information. Fig. 4.10 (a)-4.10 (d). (1) show the con-

secutive frames during phoneme transition from /n/ to /a/ (�rst row of Fig. 4.10),

representing change in waveform over transition. Addition or deletion of energized

frequency components, at the time of phoneme transition, is observed clearly in

frames of the waveform. If this factor of addition or deletion of energized frequency

components is more than 50%, then the frames show the transition. These devia-

tions can also be seen clearly in the power spectrum of a correlation waveform. Fig.

4.10 illustrates the phoneme boundary estimation, using the di�erence in number

of frequency components of adjacent frames. In the second row of Fig. 4.10 frames

are consequently taken to show the computation of correlation (frames 1 & 2, 2 &

3, 3 & 4, and so on). Row 3 shows the waveform of correlation of the frames, as
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Figure 4.11: Identi�cation of phoneme transition using change in sharpness of the peaks: Speech waveform
of signal /e/ followed by /r/ chosen from pronunciation of word `ever' in TIMIT corpus (1) & (2)
consecutive speech frames chosen cyclically from speech waveform (3) Correlation waveform of the speech
frames (4) Power spectrum of correlation waveform (4) Prominent peaks of power spectrum of correlation
waveform.

shown in row-1 and rows-2. Fourth row shows the power spectrum of the correlated

waveform (row-3). Fifth row indicates the identi�ed peaks (prominent frequency

components) in the power spectrum of correlated waveforms of adjacent frames of

speech signal. From the sub �gures of row-5, two energized peaks are observed in

column a and b, indicating no change in the frequency properties of the frames. The

number of energized peaks change from two to four in columns b and c, indicating

phoneme transition. The number of peaks is again four, in the columns c and d,

indicating once again that there is no change in the frequency properties of the

adjacent frames, depicting the same phoneme. The addition of column from b to c

is 100%. The threshold for this change is empirically set to 50%. This represents

that, change in the number of peaks at least by 50% represents the transition from

one phoneme to another (i.e., it represents change in phoneme).

• Change in slope of magnitude of energized frequency components: With the change

in phoneme, the energy of the speech waveform also changes due to the di�er-

ent amount of energy or stress put during the production of the new phoneme.
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The power spectrum of correlation waveform exhibits changes in the energized fre-

quency component locations, along with magnitude. To be precise, the sharpness of

the peaks, indicating these energized frequency components, is observed to change

during phoneme transitions. Hence the related features are found to be suitable

in phoneme boundary detection. The same is illustrated in Fig. 4.11. Row-1 and

row-2 show the consecutive frames taken in overlapped manner during phoneme

transition from /e/ to /r/. The correlation of waveform of row-1 and row-2 is given

in row-3. The power spectrum of the correlation waveform is shown in row-4. The

peaks (the energized frequency components) selected from the power spectrum in

row 5 show that the sharpness in column a and b is same, indicating that there is

no change in the spectral properties of the frames. Sharpness of the peaks changes

from column b and c indicating phoneme transition. Further, sharpness remains the

same in column d, indicating the properties of the same phoneme.

• Insertion or deletion of peaks is mainly observed during phoneme transitions. This is

due to sharp and clear changes in the speech activities that happen during phoneme

change. These changes are easily captured by the power spectrum of a correlation

waveform and observed to be e�cient in characterizing the phenomenon during

the phoneme transition. Fig. 4.12 illustrates the identi�cation of the phoneme

boundary, using the distance between the peaks of power spectra of the adjacent

frames. Row-1 and row-2 show the consecutive frames taken in overlapped order

during phoneme transition from /m/ to /e/. The correlation of waveform of row-1

and rows-2 is given in row-3. Insertion or deletion of a peak in the power spectra

of adjacent frames, after the frequency distance of 1500Hz along x-axis, indicates

phoneme transition. Row-4 shows the power spectrum of the correlation waveform.

The peaks selected from the power spectrum are shown in row 5. The peaks of

power spectra in column a and b represent the same phoneme. The observation

from Fig. 4.12 rows (b) and (c) show the introduction of new peak at 2300Hz

during the transition from the /m/ to /e/.

• The process of articulating one phoneme after the other is a gradual and continuous

process because of the mechanics involved. This gradual variation may be clearly

observed in the spectral characteristics of the speech signal. The power spectra of

correlation waveforms, of adjacent frames during phoneme transition, also shows
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Figure 4.12: Speech waveform of signal /m/ followed by /e/ representing insertion of peaks (1) & (2)
consecutive speech frames chosen cyclically from speech waveform (3) Correlation waveform of the speech
frames (4) Power spectra of correlation waveform (4) Prominent peaks of power spectra of correlation
waveform.
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Figure 4.13: Speech waveform of signal /a/ followed by /m/ chosen from pronunciation of word `moham-
mad' in IIIT-H Hindi Dataset showing the gradual decrease in number of peaks (1) & (2) consecutive
speech frames chosen cyclically from speech waveform from column (3) Correlation waveforms of the
speech frames (4) Power spectra of correlation waveform (4) Prominent peaks of power spectra of corre-
lation waveform.

variations in their peaks. General observation is a gradual increase and decrease in

the total number of peaks over adjacent frames. Fig. 4.13 illustrates the identi�-

cation of phoneme boundary using gradual decrease or increase in the number of

frequency components in a sequence of frames. Consecutive frames taken in over-

lapped order during phoneme transition from /a/ to /m/ is shown in row-1 and

row-2. Row-3 shows the waveforms of the correlation of row-1 and row-2. Power

spectra of the signal in row-3 are shown in row-4. In successive sub �gures of row-5,

through columns a to f, it is observed that there is a gradual decrease in the number

of peaks of the power spectra from 6 to 1. The change is marked at the frame where

the number of peaks is observed to be least over the progression. Hence, in row-5

the change in phoneme is marked at frame 6 of column f.

• The speech waveform is observed to exhibit similar signal properties within the

phoneme. The correlation of neighboring frames within this region results in simi-

lar correlation waveforms. Hence, the power spectra of these correlation waveforms

exhibit similar frequency properties within that region. The frequency distribution
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Figure 4.14: Speech waveform of vowel /e/ chosen from pronunciation of word `chitra me' in IIIT-H
Hindi dataset showing similar spectral properties (1) & (2) consecutive speech frames chosen overlapping
from speech waveform (3) Correlation waveforms of the speech frames (4) Power spectra of correlation
waveform (4) Prominent peaks of power spectra of correlation waveform.

in a phoneme roughly remains the same and may be observed from the power spec-

tra. Fig. 4.14 illustrates the identi�cation of phoneme boundary using the longest

common pattern of frequency and respective amplitude. In Fig. 4.14, row-1 and

row-2 represent the consecutive speech frames chosen, overlapping from the frames

of speech waveform /e/. The correlation waveforms of the speech frames taken from

row-1 and row-2 are given in row-3. Row-4 gives the power spectra of the correlation

waveforms and row-5 represents the enhanced view of row-4. Here, one can clearly

observe that the peaks of power spectra remain constant within the phoneme, where

the waveforms do not vary.

• Comparatively higher number of frequency components are present in the unvoiced

or frication portions as the signal is random in nature. The correlation waveforms

of corresponding frames also exhibit random nature, resulting in more peaks in

the power spectra. This property di�erentiates the unvoiced and fricative regions

from the other ones, which are used in phoneme segmentation. A threshold for

number of peaks is empirically set to 10. If the number of peaks is greater than

the threshold, then the region is considered as fricative region. Fig. 4.15 illustrates
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Figure 4.15: Identi�cation of unvoiced/fricative phoneme from a speech signal: The waveform of unvoiced
signal /ch/ chosen from IIIT-H Hindi Dataset (1) & (2) consecutive speech frames chosen cyclically from
speech waveform (3) Correlation waveform of the speech frames (4) Power spectra of correlation waveform
(4) Prominent peaks of power spectra of correlation waveform.

the identi�cation of fricative region, using number of peaks in power spectra of

correlation waveform. Row-1 and row-2 show consecutive speech frames chosen

overlapping from the frames of speech waveform /ch/. The third row shows the

correlation waveforms of the speech frames. Row-4 gives the power spectra of the

correlation waveforms. Row-5 shows the enhanced view of the �gure shown in row-4,

where one can clearly observe a higher number of dominant frequency components

(peaks). The number of peaks is greater than 10 and do not increase or decrease,

thereby giving an indication of the frication region.

4.1.6 Results and discussion

The approach to phoneme boundary detection is proposed using a combination of the

evidence that are obtained using ∆ Pitch, Zero-frequency �ltered signal and rule based

features derived from the power spectra of the correlation waveforms. Three databases

are used to evaluate the e�ectiveness of the proposed approach. TIMIT English speech

corpora (Garofolo et al., 1993), IIIT-H Indic speech databases - Marathi and Hindi (Pra-

hallad et al., 2012). We have used 2500 pronunciations of 250 words (10 pronunciations
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of each word) in TIMIT dataset, IIITH Marathi and Hindi Dataset respectively as a de-

velopment set. List of 250 words considered in each language is given in Appendix A,

where Table A.1 consists of list of words from TIMIT dataset, Table A.2 provides list of

words selected from IIITH Marathi and list of words chosen from Hindi Dataset is given

in Table A.3. To set the rules we have analysed the regions of phoneme transition in each

word. We did not calculate the accuracy of phoneme boundary detection on this dataset.

It was just used to identify the properties of the correlation of the power spectrum in the

transition from one phoneme to another.

On the test set, the phoneme boundaries marked, using the rules set, are compared

to the ground truth. If the phoneme boundary is marked within the tolerance range

of 10 ms from the ground truth, it is considered as correctly identi�ed boundary. If

the boundary is present and not marked in the above speci�ed range, it is considered

as deletion (False Negative). Metrics used to evaluate the performance of the proposed

approach are, precision, recall and F-measure. In the case where phoneme boundary is

marked in the phoneme region, it is considered as insertions (False Positive). Accuracy

is calculated as the ratio of total number of phonemes boundaries correctly identi�ed

by the total number of phoneme boundaries. Precision (P) is de�ned as the number of

True Positives (TP) over the number of True Positive (TP) plus False Positives (FP)

(García et al., 2007). Recall is de�ned as the number of True Positives (TP) over the

number of True Positives (TP) plus the number of False Negatives (FN) (García et al.,

2007). F-measure is the harmonic mean of recall and precision. It gives an e�ectiveness of

classi�cation/prediction. It varies from 0 to 1, where the scores closer to 1 are considered

better. A system with high recall but low precision returns many results, but most of

its predicted labels are incorrect when compared to the ground truth labels (Chen et al.,

2004b). A system with high precision but low recall is just the opposite; returning very

few results, but most of its predicted labels are correct when compared to the ground

truth labels. An ideal system with high precision and high recall returns many results,

with all results labelled correctly (Chen et al., 2004b).

• TIMIT Corpus: In this work, a dataset of 1000 well spoken words, which cover

many possible phoneme transitions, is constructed from TIMIT acoustic-phonetic

English speech corpus. The dataset consists of total 4356 phonemes. The proposed

approach is able to identify 4156 phonemes correctly with an accuracy of 95.40%.
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• IIIT-H Indic speech databases-Marathi database: A dataset of total 1000 well spo-

ken words which cover many possible phoneme transitions is constructed for the

analysis from IIIT Hyderabad Marathi database (IIIT-H Indic Speech Databases).

Total number of phonemes present in the dataset is 5300. The number of phonemes

segmented correctly is 5134 with 67 deletions and 99 insertions, giving 96.87% ac-

curacy.

• IIIT-H Indic speech databases-Hindi database: A dataset of total 1000 well spoken

words which cover many possible phoneme transitions is constructed for the anal-

ysis from IIIT Hyderabad Hindi database (IIIT-H Indic Speech Databases). Total

number of phonemes present in the dataset is 5475. The number of phonemes seg-

mented correctly is 5263 with 84 deletions and 131 insertions, giving the accuracy

of 96.12%.

Table 4.2: Comparison of the state of the art system for phoneme boundary detection

Reference Database Features Classi�er Accuracy

(Mporas
et al.,
2010)

TIMIT database Mel-frequency cepstral
coe�cients (MFCCs),
Linear frequency
cepstral coe�cients
(LFCCs), Human fac-
tor cepstral coe�cients
(HFCC-E), Percep-
tual linear prediction
(PLP), Wavelet-packet
features (WPF),
Subband-based cep-
stral parameters
(SBC), Mixed wavelet
packet advanced com-
binational encoder
(MWP-ACE)

Combination of
multiple classi�ers:
Linear Regression
(LR), Multilayer
perceptron neural
networks (MPL
NN), Support
vector regression
(SVR), Model
Trees M5 & Hidden
Markov Models
(HMMs)

Tolerance <=10
ms: 71.43%

(Khanagha
et al.,
2014)

TIMIT database Microcanonical Mul-
tiscale Formalism
(MMF)

Piece-wise-linear
approximation
followed by Log-
Likelihood Ratio
Test (LLRT)

Tolerance <=10
ms: 53.16 hit
rate
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(Brognaux
and Drug-
man,
2016)

12 languages Spectral features like
MFCCs

Hidden Markov
Models (HMMs)

French neu-
tral corpus:
30ms toler-
ance: 94.84%;
Rare lan-
guages (Faroe):
40ms toler-
ance: 95.16%;
Rare languages
(Isizulu): 40ms
tolerance:
95.14%

(Wang
et al.,
2015a)

5 languages Spectral features like
MFCCs

HMMs MSC-2: 18.7%
relative purity
improvement
over baseline

(Kalinli,
2013)

TIMIT database Phone posterior fea-
tures, Attention fea-
tures

Deep Belief Net-
work (DBN)

89.16%

(Zolko
et al.,
2010)

Polish speech
recordings Cor-
pora'97 database

Discrete Wavelet
Transform (DWT)

� Phoneme recog-
nition rate of
81.00% at 25ms
tolerance

(Grayden
and
Scordilis,
1994)

DARPA TIMIT
acoustic-phonetic
speech corpus

Short term frequency
features over di�erent
frequency bands

Bayesian Decision
Surface (BDS)

80.00%

(Adell
and Bona-
fonte,
2004)

TALP Research
Center corpus

MFCCs, Mel-
Frequency Power
Cepstrums (MFPC), ∆
MFPC, ∆∆ MFPC, ∆
Energy, Zero Crossing
Rate (ZCR), mean
frequency before and
after boundary

HMMs, Arti�cial
Neural Networks
(ANNs), Regres-
sion Tree (RT),
Dynamic Time
Warping (DTW)

Regression
Tree: Tolerance
a. <=10ms:
82.00% b.
15ms-91.00%

(Park
and Kim,
2007)

Korean TTS re-
search database
provided by the
Electronics and
Telecommuni-
cation Research
Institute (ETRI)

MFCCs, ∆ MFCCs,
∆∆ MFCCs, Normal-
ized log-energy

Context-
independent
HMMs, Context-
dependent HMMs

Tolerance
of <=20ms:
97.05%

(Lee,
2006)

Korean TTS
database

MFCCs, ∆ MFCCs,
∆∆ MFCCs

HMMs,
HMMs+Single
Multilayer per-
ceptron (MLP),
HMMs+Multiple
MLPs,
HMMs+Multiple
MLPs (retraining)

Tolerance of
<=20 ms:
male:93.2%,
female:93.9%
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(Toledano
et al.,
2003)

VESLIM corpus,
Speaker adaption
(Single Speaker
corpora): M1Tot,
M2Tot, M3Tot,
F1Tot, Segmen-
tation evaluation:
M1-80, M1-40-1,
M1-40-2, M2-20,
F1-20

MFCCs, ∆ MFCCs,
∆∆ MFCCs

HMMs, Context
Dependent HMMs
(CDHMMs), Con-
text Independent
HMMs (CIH-
MMs), Statistical
Correction of Con-
text Dependent
Boundary Marks
(SCCDBM) +
Speaker Adaption
(SA) + HMMs

Tolerance<=10
ms : 87.18%

(Jari�
et al.,
2008)

French corpus,
English Corpus

MFCCs, ∆MFCCs,
∆∆MFCCs

HMMs,
GMM+HMMs,
Brant's General-
ized Likelihood
Ratio (GLR)

FRcorpus:
10ms: 79.90%,
ENcorpus:
10ms: 81.71%

Proposed
Approach

TIMIT Coupus;
IIIT-H Indic
speech databases-
Marathi; IIIT-H
Indic speech
databases- Hindi

Voiced & unvoiced
segmentation: Energy
of Zero Frequency
Filter signal, Pitch;
Phoneme segmentation
within voiced & un-
voiced regions: Rules
based on the nature
of Power Spectrum of
Correlation waveform
of consecutive frames

� Tolerance range
<=10 ms :
TIMIT Corpus:
95.40%; IIIT-H
Indic speech
databases-
Marathi:
96.87%; IIIT-H
Indic speech
databases-
Hindi: 96.12%

The proposed approach explores the signal level properties for phoneme segmentation,

where the changing properties of the signal indicate change in the phoneme, hence the

properties of waveform clearly identify the phoneme boundaries. The results are given

in Table 4.1. Fig. 4.16 illustrates the working principle of the proposed approach, using

word ”prabandhak”. First the voiced and unvoiced regions are segmented using energy

of ZFF signal and derivative of pitch pro�le. Fig. 4.16 (b) shows the ZFF of speech

signal. The energy of ZFF signal is observed to be nearly equal to zero in unvoiced and

silence region, where as, it is high in voiced region (refer Fig. 4.16 (c)). The voiced and

unvoiced regions are obtained by applying a threshold on energy of ZFF signal as shown

in Fig. 4.16 (c). Pitch pro�le given in Fig. 4.16 (d) shows the absence of pitch in unvoiced

and silence parts; pitch is present in voiced regions. The derivative of the pitch pro�le

gives a clear division of voiced and unvoiced regions (refer Fig. 4.16 (e)). To �ne tune

the locations of the boundaries, the results of ZFF and pitch are averaged as shown in

Fig. 4.16 (f). Further to obtain the boundaries within the voiced and unvoiced regions,
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the rule based approach is employed using the conventional block processing approach.

Phoneme changes are marked, if the change in power spectra of adjacent frames satisfy

the rule de�ned. The changes observed between the frames are shown in Fig. 4.16 (g)

and (h); di�erent rules are applied to estimate the phoneme boundaries using the frame

numbers. Frame number 9 is marked as the - Change in number of energized frequency

components, from one frame to the next, is greater than or equal to 50%; Frame no. 22

uses the rule - Gradual decrease in number of energized frequency components; Frame

no.: 40 - Change in number of energized frequency components; Frame no.:64 - Gradual

increase in number of energized frequency components. These results from Fig. 4.16

(g) & (h) and 4.16 (f) are combined to obtain the �nal phoneme boundary estimation.

Fig. 4.16 (i) shows the speech signal of word ”prabandhak” and the manually marked

phoneme boundaries. Fig. 4.16 (j) gives the phoneme boundaries, obtained using the

proposed approach. From this it can be observed that the phoneme boundaries marked

with proposed approach are precise in location.

The accuracy of detecting number of unvoiced and voiced segments is evaluated within

the tolerance range of 10ms. In total 2621 unvoiced & silence regions are present in the

1000 words of TIMIT corpus. Out of 2621 unvoiced regions, 2516 regions are correctly

identi�ed with an accuracy of 96.00%. In IIITH-Hindi speech dataset, of the 2815 un-

voiced and silence regions, 2702 regions are correctly identi�ed with an accuracy of 96.18%.

Whereas, in IIITH-Marathi dataset,out of 2746 unvoiced and silence regions, 2663 regions

are correctly identi�ed with an accuracy of 96.97%. From the results given in Table 4.1, it

may be seen that the performance of the proposed approach is consistent when applied to

the languages of di�erent nature. Approach tested on three languages gives the accuracy

of 95.40%, 96.87% and 96.12% within the maximum tolerance range of 10 ms. State-of-the

art approaches in the literature have quoted the results with the tolerance range of 10ms

to 50ms (refer Table 4.2). Even the RNN based approaches which do not require pre-

segmented training data achieves 30.15 ± 0.19 % label error rate (Graves et al., 2006).

The reason behind high label error rate may be over�tting, such as weight decay and

low margin maximisation. Language-universal (LU) and Language-adaptive models have

shown to outperform the language-speci�c models, if di�erent languages share the similar

acoustic-phonetic properties (Lin et al., 2009). Deep bidirectional Long-Short Term Mem-

ory (LSTM) based approach outperforms the other approaches, which is evaluated on the

TIMIT corpus and BUCKEYE datasets (Franke et al., 2016). The approach is e�cient in
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discriminating the phoneme boundaries due to its ability to overcome the problem of van-

ishing gradient for longer dependencies (Hochreiter et al., 2001). The highest accuracy

of 96.5% and 97.6% for the tolerance range of 10ms and 20ms respectively for TIMIT

corpus have been reported in the literature (single language). With higher threshold

value, precision of 0.98 is achieved with the tolerance range of 20ms (Franke et al., 2016).

As the threshold value is lowered, the recall of 0.93 is obtained for the same tolerance

range (Franke et al., 2016). Though the accuracy of the proposed phoneme boundary

detection is slightly less compared to the state-of-the-art approach (Franke et al., 2016),

the machine learning approaches needs more than two hours of data for adaptation. The

proposed approach needs no such adaptation and can be applied to the languages with dif-

ferent acoustic-phonetic properties. It overcomes the laggings of HMM based approaches

by eliminating the need of prior knowledge of language and post process of duration align-

ment. The recall, precision & F-measure achieved for TIMIT data are 0.97 (refer Table

4.1), indicating that the system is more precise in identifying correct boundary locations.

Similarly, for IIITH-Hindi speech dataset, the recall, precision and F-measure are 0.98.

Even IIITH-Marathi speech dataset has recall, precision and F-measure of 0.97, 0.98 &

0.97 respectively. The other heuristic approaches use the perceptual properties such as

frequency in speci�c bands, formants etc. of the speech signal for phoneme segmentation.

These features fail to identify the minor changes during phoneme transitions such as ′en′,

′we′, etc. Majority of the opinions quoted in the literature claim that the rule based

approach is ine�cient due to need of large number of rules for phoneme boundary detec-

tion, including their optimization. Alternatively, in the proposed approach, no phoneme

speci�c rules are set for the segmentation. The proposed rule based approach, achieves

better phoneme segmentation with very few rules, indicating it to be cost e�cient. The

proposed approach has not been tested on noisy data; availability of sophisticated noise

reduction algorithms may be used in preprocessing phase, before this approach is applied

for phoneme boundary detection (Luke and Wouters, 2017).

4.1.7 Contributions and Limitations

The proposed approach aims at language independent automatic phoneme boundary de-

tection, from the spoken words. To achieve this task, signal level properties of speech

waveform, i.e. changes during phoneme transition in speech waveform, are used. Voiced

and unvoiced region segmentation is done using the pitch and zero-frequency �ltered sig-
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nal. To get the phoneme boundaries within voiced and unvoiced regions, the properties

of correlation of adjacent frames of speech signal are modeled into set of rules, observing

the power spectrum of the correlation waveform. The results of both approaches are com-

bined to get �nal phoneme boundaries. Minor changes observed in similarly pronounced

phonemes are e�ciently captured and modeled with the help of proposed approach. This

shows that, the signal level properties are e�cient in identi�cation of phoneme bound-

aries. The number of false positives in the results is the main reason of concern with

this approach. Further, the work can be extended to reduce the number false positives,

the combination of features related to human perception system and signal level prop-

erties can be explored to improve the phone segmentation. Also, quanti�cation of the

proposed set of rules/properties can be used to train the classi�er and test the accuracy

in comparison with the state-of-the-art systems.

4.2 Summary

In this thesis, for the identi�cation of phonological processes, a template comparison based

approach is employed. For this, precise phoneme boundaries are necessary as it helps

in locating exact region of mispronunciation. To obtain accurate phoneme boundaries,

changes during phoneme transition in speech waveform are explored. The properties of

correlation of adjacent frames of speech signal are modeled into a set of rules, observing

the power spectrum of the correlation waveform. From the results it is observed that

the signal level properties are e�cient in identi�cation of the phoneme boundaries. After

phoneme boundary detection, the next task is to automate the process of phoneme level

mispronunciation identi�cation. Chapter 5 gives the implementation details of automatic

identi�cation of the phonological processes using template comparison based approach.

126



Chapter 5

Automatic Characterization and

Identi�cation of Phonological Process

In a phonological process, children attempt to substitute class of sounds presenting a

common di�culty in pronunciation with simpler class of sounds. Hence, identi�cation

of phonological process involves locating region of pronunciation error and �nding the

pattern of substitution, insertion or deletion. In this work, a template comparison based

approach is employed for the identi�cation of the phonological processes. Phonological

processes are identi�ed based on the properties of deviations in the phonemes, observed

through Dynamic Time Warping (DTW). If the DTW comparison path deviates from its

diagonal nature, it represents change in the speech signal and hence shows appearance

of mispronunciation. Dynamic time warping, originally applied to spoken word recogni-

tion (Sakoe and Chiba, 1978), is a very e�ective method of time series comparison and

classi�cation. It outperforms both simple lock-step measures as for instance Euclidean

or Manhattan metrics and more sophisticated edit distance approaches�Longest Com-

mon Subsequence (André-Jönsson and Badal, 1997), Edit Sequence on Real Sequence

(Chen and Ng, 2004; Morse and Patel, 2007), Edit Distance with Real Penalty (Chen

and Ng, 2004; Wang et al., 2013). Thus, it is a choice for the problem of time series

analysis (Switonski et al., 2019). NITK Kids corpus consists of speech recordings from

120 children of age range 3.5 years to 6.5 years, where most of the pronunciation errors

are observed to appear till 6.0 years (refer Chapter 3). In this dataset, we have very few

correct pronunciations available for each word. Hence, it is di�cult to use the speech

recognition based approach for the pronunciation error identi�cation. We tried to imple-

ment the vowel deviation identi�cation using the GMM-HMM based phoneme recognition

system. Where we could only achieve the human machine correlation of 0.42, which may

not be suitable for pronunciation error identi�cation task. This led us to use a DTW
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based approach for the task.

Each of the phonological processes has di�erent properties, hence features e�cient in

discriminating the di�erent class of sounds are identi�ed. An overview of phonological

process identi�cation system is shown in Figure 5.1. It involves reference template selec-

tion, feature extraction and DTW comparison for identi�cation of phonological process.

Reference templates are �rst selected by three Speech Language Pathologists (SLPs) af-

ter carefully listening the pronunciation of each words from children. Selected correct

pronunciations of each word vary in their acoustic properties; hence selection of proper

reference templates is crucial. Due to interspeaker variability in children speech, intra

word silence/pauses vary in the pronunciations of the same word. Due to longer silence

within the words, the DTW comparison path warps around the silence region. This devi-

ates the performance of comparison using DTW algorithm, this necessitated this research,

to remove the silence present within the words, before DTW comparison is undertaken.

The silence is removed using method based on two simple audio features (signal energy

and spectral centroid) (Theodoros, 2021). The threshold is calculated as the weighted

average between the two histogram's local maxima of signal energy and spectral centroid.

The implementation is available in MATLAB 2021 (Theodoros, 2021).

After silence removal, 39 Mel-frequency cepstral coe�cients (MFCCs) are extracted.

For reference word selection, the procedure involves DTW comparison of reference words

with each other. For each reference word, the distances are sorted in ascending order and

the median value is set as a threshold. The count of words having DTW distance, less

than the preset threshold, is stored. Ten reference words having the highest count are

selected as reference words. Further, the features e�cient in identi�cation of each phono-

logical processes are identi�ed, for example, to identify nasalization, features e�cient in

discriminating nasal sounds from the non-nasal sounds are identi�ed. These features are

extracted from the reference words and test word (in which mispronunciation is to be iden-

ti�ed). Three SLPs �rst identify each mispronounced word in child's speech, and mark

all the phonological processes in the pronunciation based on the mispronunciation pat-

tern (phoneme inserted, substituted or deleted). Once the analysis is complete, all SLPs

compare their observations for each mispronounced word and provide a �nal conclusion

on the phonological processes appearing in each child. The phonological process speci�c

features are extracted from the reference words and test word (in which mispronunciation

is to be identi�ed) and are compared using Dynamic Time Warping (DTW) algorithm.
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Figure 5.1: Overview of phonological process identi�cation system

DTW comparison path deviates from its diagonal nature, in the region, where signals un-

der comparison are not similar. For the mispronunciation analysis, the longest horizontal

or vertical path is considered (see Figure 5.4). The longest horizontal or vertical DTW

comparison path, observed at the substituted speech sound, represents the region of mis-

pronunciation. To calculate the accuracy, majority voting of ten selected reference words

is considered. If the identi�ed region from DTW comparison path shows an overlap of

75% with ground truth, the region is considered as correctly identi�ed mispronunciation

region. Out of ten, if the identi�ed region for more than �ve DTW comparison is over-

lapped with ground truth (region in correct word which is deleted from the test word),

the region is considered as correctly identi�ed region. Tolerance range of the region iden-

ti�cation is set to ±50ms. Some of the frequently appearing phonological processes such

as: �nal consonant deletion, nasalization and nasal assimilation, voicing and unvoicing, s

and /sh/ replacement, vowel deviations, aspiration and unaspiration, are considered.

5.1 Final Consonant Deletion

In �nal consonant deletion, consonant, part syllable, syllable or part word, which appears

at the end of the word, is deleted. Features normally used in ASR namely: MFCCs (39)

and LPCCs (39) are extracted from the reference and test words for mispronunciation

processing.
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5.1.1 Speech Dataset

From the analysis of children speech in 'NITK Kids Corpus' phonological processes by

SLPs, 21 words are observed to have �nal consonant deletion as shown in Table 5.1.

Total 52 pronunciations of these words are observed to have �nal consonant deletion,

hence considered for the experimentation.

5.1.2 Feature Extraction

Features e�cient in speech recognition task are explored for the identi�cation of �nal

consonant deletion. MFCCs and LPCCs are the well known features used for speech

recognition.

A Mel-frequency Cepstral Coe�cients (MFCCs)

MFCCs mimic the human perceptual and auditory systems; hence they play a signi�cant

role in various speech applications (Tiwari, 2010). A total of 39 features are extracted,

which consist 13 MFCCs, 13 ∆MFCCs and 13 ∆∆MFCCs, respectively.

B Linear prediction cepstral coe�cients (LPCCs)

LPCs are the coe�cients of an auto-regressive model for speech frame (Makhoul, 1975).

LPCCs are well known for their performance in many speech related tasks including speech

recognition, speaker recognition, etc. Hence, they are considered for this analysis. A total

of 39 features are extracted, which consist 13 LPCCs, 13 ∆LPCCs and 13 ∆∆LPCCs.

5.1.3 Identi�cation of �nal consonant deletion

In Indian languages, the common observation is syllable deletion and part word deletion

(Stampe, 1979). Hence, there is a signi�cant di�erence in the duration of a correct word

and a word in which �nal consonant is deleted (mispronounced word). Speech signal of the

selected correct word exhibits similar acoustic properties with the �nal consonant deleted

word, till the region of deleted consonant/syllable. The properties di�er in deleted part

of the word. In DTW comparison of the correct and mispronounced word, if the location

of the warped path appears at the end of the DTW comparison path and its duration

is larger than the other deviations, it indicates the region of �nal consonant deletion.

Figure 5.2 shows the DTW comparison path of the mispronounced word ‘avighna′ and
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Table 5.1: List of correct pronunciation and respective mispronunciation of words observed in �nal
consonant deletion (FCD) from NITK Kids Corpus

Sl.
No.

Correctly pronounced
words

Mispronunciation Final Conso-
nant Deleted

Number of Occur-
rence of FCD

1 Aut (out) Au /T/ 3

2 Aiskrim (ice cream) Aiskri /m/ 5

3 beLagge (morning) beLag /ge/ 1

4 biskit (biscuit) biski /T/ 4

5 biskit (biscuit) biske /T/ 2

6 bleDu (blade) ble /Du/ 1

7 hatturupayi (10 rupees) hatturupe /yi/ 3

8 marageNasu (cassava) marageNas /u/ 1

9 phalakA (board) phalak /ka/ 1

10 posTboks (postbox) posTbok /s/ 3

11 posTboks (postbox) phosTbok /s/ 2

12 posTboks (postbox) posTbo /ks/ 2

13 posTboks (postbox) phosTbo /ks/ 2

14 rEDiyO (radio) rEDu /yo/ 1

15 samayA (time) sama /ya/ 1

16 sAyankAla (evening) sayaka /la/ 3

17 sAyankAla (evening) sayanka /la/ 2

18 shAlege (school) shAle /ge/ 9

19 shAlege (school) sAle /ge/ 4

20 sharT (shirt) sha /T/ 2

21 vidhAnasaudhA vidhAnasava /dhA/ 1
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Figure 5.2: Identi�cation of �nal consonant deletion using DTW algorithm: correct word ”avighnawagi”
compared with mispronounced word ”avighna”

the respective correct pronunciation ‘avighnawagi′. The longest vertical line warped at

the end of the DTW comparison path represents the region of �nal consonant deletion.

5.1.4 Results and Discussion

For each word, �ve correctly pronounced reference words are selected. Features, e�cient in

speech recognition, namely MFCCs and LPCCs, are extracted from the reference and test

words. Features extracted from the test words are compared with the features extracted

from the reference word. Based on the nature of the deviation of the DTW comparison

path, the region of mispronunciation is identi�ed. In general, DTW comparison path

deviates from its regular diagonal nature in the region, if the signals under comparison

are not similar. In the case of �nal consonant deletion, DTW comparison path must get

warp near to the end region of the test word. The nature of DTW comparison path for

identi�cation of �nal consonant deletion, for the mispronunciation analysis is shown in

Fig. 5.2; the longest horizontal or vertical path appearing at the end of the word.

First, the baseline system is implemented using 13 MFCC features by considering the

natural intermediate silence (small pause) present within the words. Test words are com-

pared with the respective reference words, and majority voting is calculated to measure

the performance of the system. Highest accuracy of 27.48% is achieved. From the analysis

of DTW comparison path, the longer deviations in DTW comparison path occur due to

the long pauses present within the word. Fig. 5.3 (a) shows the DTW comparison of
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Figure 5.3: (a) DTW comparison of correct word ”deshada” and mispronounced word ”desha” with
silence within the word (b) DTW comparison of correct word ”deshada” and mispronounced word ”desha”
after removal of silence within the word

reference word ‘deshada′ and mispronounced word ‘desha′ which has silence within the

words, using 13 MFCCs. It can be clearly observed that, due to longer silence within the

words, the DTW comparison path warps around the silence region. It leads to the incor-

rect identi�cation of mispronounced regions. This observation necessitated this research,

to remove the silence present within the words, before DTW comparison is undertaken.

Mispronounced words are compared with the respective reference words, after silence re-

moval. Fig. 5.3 (b) shows the same, using 13 MFCC features. The DTW comparison

path shows that the path gets warped around the end of the mispronounced/test word.

Hence, removal of silence within the word enabled the algorithm to characterize and cor-

rectly identify the region of �nal consonant deletion. The performance of the system is

improved from 27.48% (where intermediate silence is present) to 49.56%, after silence

within the words is removed. Further, various combinations of MFCCs and LPCCs are

explored for the analysis. 13 MFCCs, 13 ∆MFCCs, 13 ∆∆MFCCs are extracted from

the words and used for DTW comparison. The performance of the system is reduced to

36.51%. Each pronunciation is speaker dependent and hence a�ect the duration of the

pronunciation, in�uenced by the speaking style and rate of individuals. This might have

negatively in�uenced the performance of the system, when 13 ∆MFCCs, 13 ∆∆MFCCs

are used. 13 LPCCs are reported to be e�cient in speech recognition task, hence have

also been considered for evaluation. The performance of the system is reported to be

55.97%. 13 ∆LPCCs and 13 ∆∆LPCCs are considered along with the 13 LPCCs. The

results are again dropped to 45.23%. The reason is the same as inter speaker variability
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Table 5.2: Performance analysis of �nal consonant deletion using various combinations MFCCs and
LPCCs

Sl. no. Featured Considered Average Accuracy (%)

1 MFCCs(13) 49.56

2 MFCCs(39) 36.51

3 LPCCs(13) 55.97

4 LPCCs(39) 45.23

5 MFCCs(13) + LPCCs(13) 72.68

6 MFCCs(39) + LPCCs(39) 50.28

in the duration of pronunciation of the words. When both 39 MFCCs and 39 LPCCs

are considered for the analysis, the better accuracy of 50.28% is achieved. As ∆ and ∆∆

features add negativity to the performance of the system, 13 MFCCs and 13 LPCCs are

considered in the new combination. With this combination, highest accuracy of 72.68%

within the tolerance range of ±50ms is achieved. From the results, it is observed that out

of di�erent features considered, 13 MFCCs and 13 LPCCs are e�cient in the identi�ca-

tion of �nal consonant deletion. Deletion of a speech unit, at the �nal position, results in

the absence of speech features for that region. This is e�ciently modeled during DTW

comparison of reference and test words. From the analysis of the results, it is observed

that, the error in identi�cation of FCD occurs the most in the age group 3.50 to 4.50

years. Out of 52 mispronunciations, 19 are found to appear in the children of the age

range 3.50 years to 4.50 years. In the performance of the system using 13 MFCCs and

13 LPCCs, these pronunciations contribute to 17.31% error. This may be due to high

interspeaker and intraspeaker variability in speech of the children in this age group.

5.1.5 Contributions and Limitations

Various combinations of MFCC and LPCC features are explored for the identi�cation of

�nal consonant deletion. Both MFCCs and LPCCs are e�cient in modeling the acoustic

properties of speech units. From the results, it is observed that, the combination of 13

MFCCs and 13 LPCCs is e�cient in identi�cation of �nal consonant deletion with the

highest accuracy of 72.68%, within the tolerance range of ±50ms. Duration is a major

factor in �nal consonant deletion, due to part word and syllable deletion, hence features

e�cient in modeling duration can be explored to improve the performance of the system.
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5.2 Nasalization and Nasal Assimilation

In nasalization, the non-nasal sounds are substituted with nasal sounds while speaking.

Nasal assimilation is the assimilation of a non-nasal to a nasal consonant. Nasal phones

can be easily discriminated from the other speech phones. It has a periodic glottal source

like vowels and the amplitude is lower in comparison with vowels, as nasal membranes

absorb the sound. Complete closure of the oral tract gives rise to anti-formants in the

range of 800 Hz to 1500Hz. The average duration of nasal sounds /m/ is 86.40ms, /n/ is

81.44ms, and /nx/ is 74.15ms in children below 6.5 years. In nasalization, it is observed

that the substitution of nasal sound leads to the nasalization of immediately following

vowels. Nasalized voiced sounds are observed to have an extra nasal peak near the �rst

formant. In this work, an attempt has been made to identify the nasalization and nasal

assimilation. Features e�cient in characterization of nasal sounds are explored for the

task. The properties of nasal and nasalized voiced sounds are explored using MFCCs,

extracted from Hilbert envelope of the Numerator of Group Delay (HNGD) spectrum.

HNGD spectrum highlights the formants in the speech and extra nasal formant in the

vicinity of the �rst formant in nasalized voiced sounds. It also provides a high spectral

resolution with the smaller frame size of 5ms to 10ms. Features extracted from cor-

rectly pronounced and mispronounced words are compared using Dynamic Time Warping

(DTW) algorithm. The nature of the deviation of DTW comparison path from its diag-

onal behavior is analyzed for the identi�cation of nasal related mispronunciation.

5.2.1 Speech Dataset

From the analysis of children speech in NITK Kids Speech Corpus by SLPs, pronunciations

of 45 words are observed to have nasalization and nasal assimilation as given in Table 5.3.

Total 84 mispronunciations are reported in the pronunciations of 45 words, hence these

pronunciations are considered for testing the performance of identi�cation of nasalization

and nasal assimilation.

Table 5.3: List of correct pronunciation and respective mispronunciation of words observed in Nasalization
and Nasal Assimilation NITK Kids Corpus

Sl.
No.

Correctly pronounced words Mispronunciation Nasal Sound
Substituted

Number of Oc-
currences

1 Ane (elephant) nAne /n/ 1

135



2 angi (shirt) nangi /n/ 1

3 OTorikshA (autorickshaw) OTomikshA /m/ 1

4 auSHadhi (medicine) anSHadhi /n/ 1

5 Ayudha (weapon) Ayundha /n/ 1

6 bAchaNige (comb) mAchanige /m/ 1

7 baLe (bangles) bane /n/ 2

8 billubANA (bow and arrow) billumANA /m/ 4

9 bIsaNige (handheld fan) bIsaninge /n/ 3

10 chakra (wheel) chankra /n/ 1

11 chamcha (spoon) chamancha /n/ 2

12 chauka (square) chaunka /n/ 1

13 dana (cow) nana /n/ 1

14 daLimbe (pomegranate) daLimme /m/ 2

15 ELu (seven) Enu /n/ 1

16 dhAnya (grains) nAnya /n/ 2

17 gaNapati (lord Ganesha) gaNamati /m/ 2

18 ghamaghamaUTA (hot food) gamamUTA /m/ 1

19 giLi (parrot) giNi /N/ 6

20 hadimUru (thirteen) hanimUru /n/ 1

21 hattu (ten) hanttu /n/ 1

22 IruLLi (onion) InuLLi /n/ 1

23 IruLLi (onion) nIruLLi /n/ 1

24 lori (truck) nori /n/ 1

25 mane (house) manne /nn/ 1

26 marageNasu (cassava) manenasu /n/ 2

27 marageNasu (cassava) manageNasu /n/ 6

28 mAvinakAyi (mango) mAminakAyi /n/ 15

29 mAvinakAyi (mango) mAnankAyi /n/ 1

30 mUgu (nose) mUngu /n/ 5

31 nAlku (four) nAnku /n/ 1

32 paTaki (�re crackers) paTakim /m/ 1

33 rEDiyo (radio) niDiyo /n/ 1

34 samaya (time) samanya /n/ 4
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35 samudra (sea) samundra /n/ 2

36 simha (lion) nimha /n/ 1

37 simha (lion) simma /mm/ 16

38 snAnA (bath) nAhnA /n/ 5

39 uguru (nails) uguruna /n/ 1

40 vana (forest) nana /n/ 1

41 vidhAnasaudha (Assembly) vidAnasauna /n/ 5

42 vimAnA (aeroplane) nimAnA /n/ 2

43 vimAnA (aeroplane) mimAnA /n/ 1

44 vINA (Indian stringed in-
strument)

mINA /m/ 3

45 yama (god of death) yamma /mm/ 3

5.2.2 Feature Extraction

MFCCs are extracted from the Fast Fourier Transform (FFT) of the speech signal and

HNGD spectrum is obtained, using Group delay function on Zero Time Windowing

(ZTW) signal by multiplying with a Zero Time Window, where higher weight is assigned

to the few initial samples and low weights are given to the remaining samples of the signal.

Various phases of the HNGD spectrum extraction are shown in Fig. 2.2. 39 MFCCs are

extracted using HNGD spectrum.

5.2.3 Identi�cation of Nasalization and Nasal Assimilation

MFCCs extracted using HNGD spectrum are used in DTW comparison of the correct and

mispronounced words. If the location of a warped path appears at the substituted nasal

sound and its duration is the largest among the other deviations, it shows the region of

nasalization or nasal assimilation. Figure 5.4 shows the DTW comparison path of the

mispronounced word `jivananalli' for correct pronunciation `jivanadalli'. The longest

DTW path warped at substituted nasal sound represents the region of mispronunciation.

5.2.4 Results and Discussion

In nasalization, as non-nasal sounds are replaced by nasal sounds, hence features e�cient

in characterizing nasal and non-nasal sounds, namely MFCCs using HNGD spectrum are

extracted from the reference and mispronounced words. Features are extracted from 10ms
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Figure 5.4: Identi�cation of nasalization using DTW approach: correct word ”jivanadalli” compared
with mispronounced word ”jivananalli”

Table 5.4: Identi�cation results of nasalization and nasal assimilation using di�erent combinations of
MFCCs extracted from FFT and HNGD spectrum

Sl. No. Featured Considered Average Accuracy (%)

1 MFCCs (FFT) (39) 56.67

2 MFCCs (HNGD) (39) 68.89

3 MFCCs (FFT) (39) + MFCCs (HNGD) (39) 83.33

of frame with an overlap of 5ms. DTW comparison path deviates from its diagonal nature

in the region, if the signals under comparison are not similar. For the mispronunciation

analysis, the longest horizontal or vertical path is considered. To calculate the accuracy,

majority voting, from ten selected reference words, is considered.

First, the baseline system is implemented using 39 MFCCs, after the removal of pauses

present within the words, and duration normalization using TD-PSOLA. This system

has achieved an accuracy of 56.67%. The 39 MFCCs extracted from HNGD spectrum

improved the performance from 56.67% to 68.89%. Further, the combination of FFT based

MFCCs and HNGD spectrum based MFCCs is explored for identi�cation of nasalization,

obtaining the highest accuracy of 83.33% within the tolerance range of ±50ms. Table

5.4 gives the results. Due to substitution of nasal sounds, children tend to nasalize the

immediately following vowel. HNGD spectrum highlights the nasal formants and the

nasal formant, in the neighborhood of the �rst formant, of the nasalized vowels or voiced

sounds. Hence the combination of FFT and HNGD spectrum based MFCCs are observed

to improve the accuracy of identi�cation of nasalization. Here, the performance of the
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system is observed to be a�ected by the pronunciations errors in the age range of 3.50

to 4.50 years. Total 34 pronunciation errors are observed to appear in this age range.

Out of 34 pronunciation errors, 24 pronunciation errors are correctly identi�ed, where this

contributes to the 11.90% of the total error in the performance of the system. Though the

present reported accuracy is 83.33%, the accuracy can further be improved by exploring

the spectral features e�cient in characterizing nasal sounds.

5.2.5 Contributions and Limitations

Di�erent combinations of MFCCs extracted from FFT spectrum and HNGD spectrum are

considered for the identi�cation of nasalization and nasal assimilation. HNGD spectrum

highlights the nasal peak in the vicinity of the �rst formant, hence it is observed to be

e�cient in identi�cation of nasalization and nasal assimilation.

5.3 Voicing Assimilation

In this approach, an attempt has been made to identify the special case of assimilation or

harmony processes: voicing assimilation. In this case, the voiced sounds are replaced with

the unvoiced sounds and vice versa e.g. `pen' is pronounced as `ben', `made' is pronunced

as `met'. The role of excitation source features is explored for the identi�cation of these

kinds of processes.

5.3.1 Dataset Used

From the analysis of NITK Kids Speech Corpus by SLPs, pronunciation of 53 pairs of

words are observed to have voicing assimilation in the age range of 31
2
to 61

2
years (Ramteke

et al., 2019). Table 5.5 provides the details of word mispronunciation and corresponding

number of occurrences. Total 488 mispronunciations are reported in the pronunciations

of 53 words, hence these pronunciations are considered for testing the performance of

identi�cation of voicing assimilation.

Table 5.5: List of correct pronunciation and respective mispronunciation of words observed in Voicing
Assimilation NITK Kids Corpus

Sl.
No.

Correctly pronounced words Mispronunciation Voiced/Unvoiced
Sound Substituted

Number of
Occurrences

1 aidu (�ve)

aiTu /T/ 4

haidu /h/ 7
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kaidu /k/ 1

2 aDige (kitchen)
aDike /k/ 4

haDige /h/ 8

3 akk (sister) hakka /h/ 13

4 amma (mohter) hamma /h/ 10

5 angaDi (shop) hangaDi /h/ 1

6 angi (shirt)
anki /k/ 2

hangi /h/ 2

7 auSHadhi (medicine)
anSHati /t/ 11

anSHaTi /T/ 2

8 Ayudha (weapon)

kayudha /k/ 2

ayuta /t/ 15

ayuTa /T/ 4

ayutha /th/ 5

9 bAchaNige (comb)

bachanike /k/ 4

pachanige /p/ 5

bachakke /k/ 2

10 baLe (bangles) pale /p/ 5

11 baLehannu (banana)
paLehannu /p/ 3

baLeannu /b/ 19

12 bauTa pauTa /p/ 6

13 bekku (cat) pekku /k/ 6

14 beLagge (morning) peLagge /p/ 1

15 bhuja (shoulder)

puja /p/ 6

phuja /ph/ 2

kuja /k/ 1

16 bhumi (earth)
phumi /ph/ 2

pumi /p/ 8

17 billubANA (bow and arrow) pillubaNA /p/ 2

18 bIsaNige (handheld fan) pIsanige /p/ 7

19 biskiT (biskit) piskiT /p/ 2

20 bleDu (bled) pleDu /p/ 4

21 brash (toothbrush) prash /p/ 2

22 daLimbe (pomegranate)

taLimme /t/ 6
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TaLimme /T/ 1

kaLimme /k/ 1

23 dana (cow)
tana /t/ 8

Tana /T/ 4

24 dhAnya (grains)

tAnya /t/ 16

thAnya /th/ 5

TAnya /T/ 4

kAnya /k/ 1

25 ELu (eight)
pheLu /ph/ 1

keLu /k/ 2

26 gade

kade /k/ 10

tade /t/ 2

gate /t/ 2

27 gaDiyara kaDiyara /k/ 11

28 gaNapati (lord Ganesha)
gaNabati /b/ 8

kaNapati /k/ 2

29 gaNesha (lord Ganesha) kaNesha /k/ 2

30 giLi (parrot) kiLi /k/ 20

31 hadimUru (thirteen) adimUru /a/ 3

32 hallu allu /a/ 18

33 haNNu (fruit) aNNu /a/ 27

34 hattu (ten) anttu /a/ 20

35 hatturupAyi (10 rupees) atturupayi /a/ 12

36 huDuga (boy) uDuga /a/ 11

37 jag (jug) chag /ch/ 2

38 kathe (story) kade /d/ 14

39 kempu (red) kembu /b/ 1

40 mUgu (nose)
mUku /k/ 5

mUkhu /k/ 3

41 nAyi (dog) nahi /h/ 4

42 odu (read) otu /t/ 5

43 oDu (run) koDu /k/ 1

44 onTe
onDe /D/ 1

onde /d/ 1
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45 ratha (chariot) rada /d/ 4

46 rEDiyo (radio)
teDiyo /t/ 1

keDiyo /k/ 1

47 samudra (sea) samuta /t/ 2

48 sangha (group) sanka /k/ 13

49 simha (lion) simma /mm/ 41

50 TomaTo (toamto) TopaTo /p/ 1

51 udu (swim)

utu /t/ 2

kudu /k/ 2

pudu /p/ 2

52 vana (forest) pana /p/ 1

53 yantra (machine) yandra /d/ 6

5.3.2 Feature Extraction

The following features have been extracted for voicing assimilation.

A Pitch

Pitch is the rate of vocal folds' vibration, representing the fundamental frequency of speech

signal. The pitch depends on the glottal air pressure and the tension in the vocal folds.

The vocal folds' vibration is absent during production of unvoiced speech sounds resulting

in zero pitch value. This property is e�cient in characterizing the voicing assimilation.

The pitch contour is extracted from the speech signal using Probabilistic YIN (PYIN)

algorithm; a modi�ed autocorrelation method for pitch estimation. PYIN overcomes the

drawbacks of autocorrelation method i.e. error in peak selection. Figure 5.5 (a) (2) shows

the presence of pitch in voice region, whereas it is absent in unvoiced regions as shown in

Figure 5.5 (b) (2).

B Zero-frequency Signal

Similar to pitch, the zero-frequency signal also shows the absence of glottal closure in-

stances in unvoiced region of speech. Energy of the zero-frequency signal drops close to

zero in the case of unvoiced region. This property may help us in detecting voicing as-

similation. From Figure 5.5 (b) (3), it is observed that the unvoiced region has an energy

almost zero in the Zero frequency signal and the same for voiced region is high (refer
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Figure 5.5: (a) Analysis of correct pronunciation of word `deepagambha' (1) Speech waveform of the
word `deepagambha' (2) Pitch pro�le (3) Energy of Zero-frequency Signal (b) Analysis of mispronounced
word `deepakambha' (1) Speech waveform of the word `deepakambha' (2) Pitch pro�le (3) Energy of
Zero-frequency Signal

Figure 5.5 (a) (3)).

5.3.3 Identi�cation of voicing assimilation

DTW is mainly designed to compare two time sequences. Largest horizontal and vertical

lengths are extracted from DTW path, to estimate the region of voicing assimilation (mis-

pronunciation). The word `kelasakke' was mispronounced as `kelasagge', where unvoiced

phoneme /k/ is substituted with voiced phoneme /g/. The absence of pitch in this region

can be easily observed from Figure 5.6 (a) and Figure 5.6 (b). From Figure 5.7, it is

observed that the deviation in the path of DTW is a clear indication of the region of

mispronunciation. Figure 5.7 shows the DTW plot of `kelasakke' and `kelasagge'. This

identi�es the region of assimilation to be somewhere between 0.33 sec to 0.55 sec.

5.3.4 Results and Discussion

The properties of the comparison path are analysed to determine the region of voicing

assimilation. A total of 53 word pairs are analysed, where 488 mispronunciations of

these words are reported and regions of assimilation are identi�ed. Features used for the

analysis are pitch and energy of Zero-Frequency Filtered (ZFF) signal. Length of the

largest horizontal and vertical paths are analysed from the DTW diagonal path; for the
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(a) (b)

Figure 5.6: (a) Analysis of correct pronunciation of word `kelasakke' (1) Speech waveform of the word
`kelasakke' (2) Pitch pro�le of word `kelasakke' (b) Analysis of mispronounced word `kelasagge' (1) Speech
waveform of the word `kelasagge' (2) Pitch pro�le of word `kelasagge'

Figure 5.7: DTW comparison path for reference word "kelasakke" and test word "kelasagge". Horizontal
line on a diagonal path indicates the mispronounced region

identi�cation of region of voicing assimilation in the test word. The accuracy of identifying

voicing assimilation, using ZFF signal, is observed to be 50.94%, whereas the same using

pitch is around 88.0%. 180 mispronunciations of these words are observed to appear in

the age range of 31
2
to 41

2
. Out of 180, 45 pronunciation errors are misclassi�ed, where

this contributes to the 9.00% of the total error in the performance of the system. From
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the results, it is observed that, the absence of pitch in an unvoiced region is a better

idea for characterizing voicing assimilation, when compared to zero frequency signal. The

errors in identi�cation of assimilation regions are observed due to: 1) words with multiple

unvoiced sounds, sharing multiple deviations in the DTW path from the diagonal and 2)

the presence of extra silence within word, as longer silence regions also show a deviation

in the DTW path.

5.3.5 Contributions and Limitations

In this work, the role of pitch features is explored for identi�cation of voicing assimila-

tion. From the results, it is observed that the pitch is better in characterizing voicing

assimilation with an accuracy of 88%, compared to ZFF signal. The performance of the

system degrades due to words having multiple unvoiced sounds, along with similar as-

similations, leading to many variations in pitch pro�le. Similarly, the presence of extra

silence in word. Hence, this work can further be extended by removing the samples with

multiple unvoiced sounds and removing larger silence from the datasets. Also, the other

speech features e�cient in characterizing voicing assimilation can be explored to improve

the performance of the system.

5.4 /s/ and /sh/ mispronunciation identi�cation

Unvoiced fricatives are produced by exciting the vocal tract with steady air�ow, where

it becomes turbulent at the region of constriction. Some of the unvoiced fricatives are

/f/, /th/, /s/, /sh/ etc. /f/ is produced by vocal constriction near the lips. Constric-

tion near the teeth produce the fricative /th/. /s/ is a dental fricative pronounced by

constriction near the middle of the vocal tract where as the sh is postalveolar fricative

with constriction near the back of the vocal tract. In general, children face di�culty in

pronouncing the speech sound /sh/ and is replaced by /s/. Here, an attempt has been

made to identify the phonological process palatal fronting in which /sh/ is replaced by

/s/ in Kannada language. The fricatives /sh/ and /s/ are segmented from the speech

using entropy extracted from their spectrograms. Further, the various spectral properties

extracted from the Gammatonegram are proposed for the characterization of /sh/ and

/s/ fricative sounds. Gammatonegram follows the frequency subbands of the ear, where

it gets wider for higher frequencies, whereas the spectrogram has a constant bandwidth

across all frequency channels. Support Vector Machines (SVMs) are used to evaluate the
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e�ciency of the proposed features for identi�cation of the mispronunciation of /sh/.

5.4.1 Speech Dataset

In the list of representative words in NITK Kids Speech Corpus, 20 words consists of /s/

or /sh/ speech units either in initial medial of �nal position of these words (as shown

in Table 5.6). Analysis of NITK Kids Speech Corpus by SLPs showed that, total 200

pronunciations of these words consist of /s/ substituted for /sh/ and vice versa. Hence,

these pronunciations are considered for the identi�cation of phonological process. Correct

pronunciations are selected by three SLPs after listening pronunciations of these words,

where /s/ and /sh/ are correctly pronounced. Total 436 correct pronunciations of the /s/

and 321 correct pronunciations of the /sh/ are reported. During the process of selection of

correct pronunciations and mispronunciations, all SLPs discuss their analysis and report

�nal conclusion.

Table 5.6: List of correct pronunciation and respective mispronunciation of words observed for /s/ and
/sh/ mispronunciation NITK Kids Corpus

Sl.
No.

Representative Words No. of Cor-
rect Pronun-
ciations

Mispronunci-
ation

Speech Unit
Substituted

Number
of Occur-
rences

1 Aiskrim (ice cream) 60 AishkrIm /sh/ 10

2 bIsaNige (handheld fan) 29 bIshaNige /sh/ 18

3 biskiT 36 bishkit /sh/ 6

4 marageNasu (cassava) 19 manenashu /sh/ 12

5 samaya (time) 68 shamaya /sh/ 1

6 samudra (sea) 48 shamudra /sh/ 9

7 sangha (group) 11 shangha /sh/ 4

8 sAyankAlA (evening) 36 shAyankAlA /sh/ 5

9 simhA (lion) 22 shimha /sh/ 20

10 snAnA (bath) 38 shnAnA /sh/ 1

11 sUryA (sun) 50 shUrya /sh/ 1

12 posTbAoks (postbox) 19 poshTbAoks /sh/ 18

13 auSHadhi (medicine) 50 ausadhi /s/ 14

14 brash (tooth brush) 71 bras /s/ 4

15 gaNeshA (lord Ganesha) 27 gaNesA /s/ 8

16 shAlage (school) 53 sAlage /s/ 24
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17 shankhA (conch/shell) 44 sankhA /s/ 29

18 sharT (shirt) 37 sarT /s/ 11

19 OTorikshA (autorickshaw) 39 OToriksA /s/ 5

20 vidhanasaudha 4 � � 0

5.4.2 Methodology

The proposed approach is divided into three stages. The �rst stage involves automatic

segmentation of /s/ and /sh/ using entropy of the spectrogram. Further, spectral proper-

ties e�cient in characterization of /s/ and /sh/ are extracted. E�ciency of the proposed

features is evaluated using SVM in discriminating mispronounced /s/ and /sh/.

A Automatic segmentation of /s/ and /sh/

In the process of pronunciation of voiceless fricatives, the vocal tract remains wide open

and air �ow gets turbulent in the region of a constriction. Due to the absence of vocal

folds' vibration, the nature of the resultant speech is noise like and does not have speci�c

formant structure, unlike voiced speech sounds. Though the signal is of random noise

like nature and no formants are available, spectrogram analysis has shown that the region

of concentration of the energy in frequency is di�erent for each fricative. In children,

the concentration of energy (darkest part) of spectrogram for /s/ ranges from 4000Hz to

8000Hz where as it ranges from 3000Hz to 8000Hz for /sh/. Figures 5.8 (a) and (b) show

the spectrogram of /s/ and /sh/ respectively. Entropy is a measure of randomness, where

higher the randomness larger is the entropy. Shannon entropy (H(x)) of a signal is given

by,

H(x) = −
N∑
i=1

p(x)log2p(x) (5.1)

where, x is a random variable. p(x) is the Probability Mass Function (PMF) associated

with random variable x. The properties of the entropy in the fricative /s/ and /sh/ are

di�erent, as compared to the entropy of the voiced region. Entropy of the voiced region is

less, compared to the fricative region, due to less randomness. This property is explored

for the segmentation of /s/ and /sh/. For segmentation, entropy of the spectrogram

is calculated in the interval of 2000Hz e.g. 0Hz-2000Hz, 2000Hz-4000Hz, etc. Once the

entropy is calculated, a threshold thr = 0.04×max(entropy) is empirically set, the region

with entropy value greater than the thr represents fricative region. Figure 5.9 shows the
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process of segmentation of /s/ from the speech.
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Figure 5.8: (a) Spectrogram of speech seg-
ment /s/ (`sangha') (b) Spectrogram of
speech segment /sh/ (`shalege').
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Figure 5.9: Illustration of process of segmentation of /s/
from the speech (a) Spectrogram of speech segment of
word `sayankala' (b) Spectrogram after calculation of
Shannon entropy (c) Shannon entropy spectrogram after
thresholding (d) Segmented fricative region of /s/

B Feature Extraction

The analysis of spectrogram of children's speech has shown that the concentration of the

energy is di�erent for each fricative. Hence, spectral features are e�cient in discriminating

/s/ and /sh/.

• Mel-frequency Cepstral Coe�cients (MFCCs): The detailed procedure of

MFCC extraction is given in (Murty and Yegnanarayana, 2006). A total of 39

features are extracted, which consist of 13 MFCCs, 13 ∆MFCCs and 13 ∆∆MFCCs.

• Linear predictive cepstral coe�cients (LPCCs): LPCs are the coe�cients of

an auto-regressive model of a speech frame (Makhoul, 1975). The all-pole represen-

tation of the vocal tract transfer function is as given by:

H(z) =
G

A(z)
=

G

1 +
∑
k = 1nakz−k

(5.2)

where ak are the prediction coe�cients and G is the gain. A total of 39 features are

extracted, which consists 13 LPCCs, 13 ∆LPCCs and 13 ∆∆LPCCs. To normalize
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the e�ect of high-pitch in children speech, homomorphic �ltering is performed before

the LP analysis of children speech as given in F (Rahman and Shimamura, 2005).

• Gammatonegram: Gammatone �lters approximate the �ltering process, followed

by the human ear. It gives a simple wrapper function to generate the time-frequency

surfaces, based on a gammatone analysis.

C Classi�cation using Support Vector Machine (SVM)

Support Vector Machine is a well known classi�cation algorithm which attempts to �t a

large-margin hyperplane, between two classes, that act as a decision boundary (Hsu et al.,

2003).

5.4.3 Results and Discussion

In this subsection, the process of identi�cation of mutual substitutions of /s/ and /sh/ is

proposed. A total of 200 pronunciations have been chosen from NITK Kids' Speech Cor-

pus for this study. First, the automatic segmentation of unvoiced fricatives /s/ and /sh/

is performed using entropy of the spectrogram. The accuracy of segmentation achieved

is 92.58% within the tolerance range of ±100ms. The segmented fricative regions are

considered for the characterization and classi�cation of /s/ & /sh/, and identi�cation of

mispronunciation. The Spectral parameters namely Centroid (SC), Crest Factor (SCF),

Decrease (SD), Flatness (SFlat), Flux (SF), Kurtosis (SK), Spread (SS), Skewness (SSK),

Slope (SSP) and entropy are extracted from the speech. The widely used MFCCs and

LPCCs are considered in combination with the other spectral feature. This has resulted

in the feature vector of size 91. The performance of di�erent combinations of features

is tested on SVM (Radial Basis Kernel (RBF) and polynomial kernel). This study has

used 80% of the instances for training the classi�er and 20% for testing with 5-fold cross

validation. The performance of classi�ers trained on various feature combinations is com-

pared using K-fold cross validated paired t-test, where if the p-value obtained is below

the signi�cance level, there is enough evidence that the performance of two classi�ers are

signi�cantly di�erent. A commonly accepted value of signi�cance level (alpha) is 5%, or

0.05.

The baseline system is implemented using 39 MFCC features on the correct pronun-

ciations of /s/ and /sh/. The highest accuracy achieved using SVM (RBF kernel) is

85.221 % (Table 5.7). The same model is used for the identi�cation of mispronuncia-
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Table 5.7: Performance analysis of identi�cation of mispronunciation of /s/ and /sh/ using Support Vector Machine (SVMs) using various feature combinations

Features Considered
Classi�cation of Correct Pronuncia-
tions of /s/ and /sh/

Classi�cation of Mispronunciation of
/s/ and /sh/

Average Ac-
curacy (%)

Precision Recall F-
Measure

Average Ac-
curacy (%)

Precision Recall F-
Measure

MFCCs(39) 85.221 0.852 0.852 0.848 78.8809 0.820 0.789 0.783

MFCCs(39)+LPCCs(39) 86.8824 0.868 0.869 0.866 79.4699 0.820 0.795 0.790

MFCCs(39)+LPCCs(39)+ En-
tropy(4)+SC(1)+SF(1)+SD(1)
+SFlat(1)+SCF(1)+SK(1)+SS
(1)+SSK(1)+SSP(1)

86.7018 0.866 0.867 0.865 79.3437 0.816 0.793 0.789

MFCCs(39)+LPCCs(39)+ En-
tropy(4)+SS(1)+SSK(1)+SF(1)

86.2106 0.862 0.862 0.859 79.7644 0.823 0.798 0.793

MFCCs(39)+LPCCs(39)+ En-
tropy(4)

84.2314 0.844 0.842 0.843 83.2983 0.838 0.833 0.832
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tion. The classi�cation accuracy of 78.8809% is achieved on the mispronounced data.

Various combinations of 39 MFCCs and the proposed spectral features have been used.

Table 5.7 shows the results obtained on SVM classi�er, using various combination of fea-

tures. SVMs trained, using the combination of 39 MFCCs and 39 LPCCs, achieve an

accuracy of 86.88% on the correct pronunciation, with recall, precision, and F-measure of

0.868, 0.869, 0.866 respectively. The classi�cation performance of 79.47% is achieved on

the mispronounced data with an average precision, recall and F-measure of 0.820, 0.795,

0.790 respectively. Further, combination of 39 MFCCs, LPCCs(39), Entropy(4), SC(1),

SCF(1), SD(1), SFlat(1), SF(1), SK(1), SS(1), SSK(1) and SSP(1) is considered to train

and test the SVMs. The performance of 86.70% is achieved on the correctly pronounced

dataset. The classi�cation accuracy of 79.34% is achieved on the mispronounced data.

/s/ and /sh/ are unvoiced sounds and the unvoiced speech is a result of random noise

like excitation, where vocal folds do not vibrate; they remain wide open. Hence except

the energy concentration over the lower frequency range, it does not exhibit any other

variations in their spectral properties, such as SC, SCF, SD, SFlat, SF, SK, SS, SSK, SSP,

considered for the classi�cation.

From Figure 5.10 (a)-(i), it can be observed that these properties of spectral varia-

tions of correct pronunciation of /s/ and /sh/ are di�erent from the similar properties

observed when /s/ is mispronounced as /sh/ and vice versa. The pdf pro�le of Spectral

spread (SS), Spectral Skewness (SSK) and Spectral Flux (SF) of both classes show clear

discrimination within correct pronunciations and mispronunciation. Entropy is used for

the segmentation of /s/ and /sh/. Hence, combination of MFCCs(39), LPCCs(39), SS(1),

SSK(1), SF(1) and Entropy(4) is observed to achieve an improvement in the performance

of mispronunciation detection to 79.76%. K-fold cross validated paired t-test, shows that

the performance of the system using all the feature combinations considered above do

not have signi�cant di�erence in their performance. To check the signi�cance of Entropy

(4) features in performance of classi�cation, the most widely used feature selection algo-

rithm known as correlation based feature selection technique has been considered. From

the analysis of the correlation based feature selection technique, Entropy (4) features

may have signi�cant contribution to the classi�cation. Considering the mispronunciation

distinguishing properties of entropy, combination of MFCCs(39), LPCCs(39) and En-

tropy(4) is used for further analysis. Using the same model, a performance of 83.2983%

is achieved for mispronunciation. The performance of this system is compared with the
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Figure 5.10: Probability distribution of the spectral features of correct pronunciation (1) and mispronunciation (2) of /s/ and /sh/ (a) spectral centroid (b) spectral
crest factor (c) spectral decrease (d) spectral �atness (e) spectral �ux (f) spectral kurtosis (g) spectral spread (h) spectral skewness (i) spectral slope (j) entropy
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SVMs trained on di�erent feature combinations using K-fold cross validated paired t-test.

The statistical test showed that, the performance is statistically di�erent compared to

the performance of SVMs trained on other feature combinations. From the results, it

is observed that the performance of the mispronunciation classi�cation is improved by

4.4174% when compared to the baseline system. This shows that the entropy calculated

at the interval of 2000Hz in combination with MFCCs(39) and LPCCs(39) is e�cient in

classifying mispronounced /s/ and /sh/.

5.4.4 Contributions and Limitations

In this study, an attempt has been made for the identi�cation of mutual mispronuncia-

tions, in the case of /s/ and /sh/. Energy concentration is di�erent for /s/ and /sh/,

hence entropy improves the performance of the system. Other spectral variations, consid-

ered for the classi�cation, do not show much improvement, as the random nature of the

fricatives does not exhibit much variations in their spectral properties.

5.5 Identi�cation of vowel deviations

In this work, an attempt has been made to identify the vowel deviations in children's

speech. Normally children tend to pronounce a vowel, as that of another vowel of the

closest articulation, leading to an important class of mispronunciation. Sometimes in the

language, meaning of the word may also change when vowel sound changes.

5.5.1 Speech Dataset

The dataset used in this work is recorded from 120 children of age 31
2
to 61

2
years from

NITK Kids Corpus. 112 words recorded from each child are analyzed. From the analysis

of the dataset by SLPs, it is observed that a total of 1525 pronunciations of these words

are observed to have vowel deviation.

5.5.2 Detection of Mispronunciation

Phone level pronunciation error detection system is proposed for the identi�cation of

vowel deviations as shown in Fig. 5.11. HMM-based phoneme recognition system is

trained using correct pronunciations. To train the phoneme recognition model, speech

data from 60 children of age 5.00 years to 6.50 years among 120 speakers. Children in

this age range are expected to make few mistakes in speech production compared to the
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Figure 5.11: Flow diagram of the proposed automatic detection of vowel distortion and substitution:
phones having GOP score greater than the prede�ned threshold is identi�ed as vowel distortion and
substitution (Witt and Young, 2000)

lower age group. In this age group, it is less likely that vowels are mispronounced. The

correct pronunciations are con�rmed by 3 speech language pathologists after listening to

each recording of the children's speech. Selected correct pronunciations are divided into

80% training set and 20% test/dev set to test the performance of the developed speech

recognizer. Further, the data other than the correct pronunciations (used for training

phoneme recognition model) in the age range 3.50 to 6.50 years is considered to build and

test vowel deviation errors in children's speech. This dataset is divided into the sets of

size 40% dev set and 60% test set, where dev set (40%) is used to calculate the phoneme

dependent threshold for vowel deviation errors. Log posterior probability scores are used

to calculate the phoneme speci�c pronunciation score. Phone to be scored is recognized

twice, using forced alignment and free phone recognition. Posterior probabilities obtained

from both the recognitions are used to calculate the pronunciation score. A phone level

threshold is empirically set, where the Goodness of Pronunciation (GOP); values above

the threshold; represent deviations in vowel pronunciation. Test set (60%) is used to

calculate the performance of the system.

A Automatic phoneme recognition

Correct pronunciations con�rmed by 3 speech language pathologists in the age range 5.00

to 6.50 years are considered to build a HMM-based phoneme recognition model. Selected

correct pronunciations are divided into 80% training set and 20% test/dev set. Basic

phoneme recognition system is built using GMM-HMM and 39 dimensional MFCCs as

features. 13 dimensional MFCCs, consisting of short time energy, along with their ∆ and

∆∆ coe�cients, are extracted from each speech frame of size 25ms, with an overlap of

10ms. 32 phones are used for training GMM-HMM based acoustic model. For each phone,
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context independent monophone HMMs are built. Five state left to right continuous den-

sity HMM model is used, with 32 Gaussian mixtures (GMMs) per state, for each of the

phoneme class. The �rst and last states are non-emitting. The silence model is allowed be-

tween state 2 and 4. Parameter re-estimation is performed using embedded Baum-Welch

training for 5 iterations. An open source HTK tool kit is used to build a GMM-HMM

based phone recognition system (Young et al., 2002). Pronunciation error identi�cation is

observed to be highly correlated with the performance of the acoustic models of automatic

speech recognition (ASR), trained on the correct pronunciation (Hu et al., 2015). The

vowel segments are obtained by free phone alignment of the pronunciations. An average

phoneme recognition accuracy of 77.29% is achieved using this approach.

B Posterior Log-Likelihood Scoring

In general, likelihood scores have been used for the calculation of pronunciation scores

in the literature (Neumeyer et al., 2000). But these scores are easily in�uenced by the

spectral misalliance in recognition models and test utterances. In comparison with the

likelihood scores, the posterior log-likelihood based scores are less in�uenced by these

parameters, providing robust pronunciation scores. In this approach, phone level log-

posterior probability scores are calculated for each phone of a desired transcription. It is

given as a ratio of likelihood of phone by the forced alignment and the likelihood of phone

by free phone loop recognition and an assumption that, the orthographic transcriptions

are available to estimate the likelihood P (O(q)|q) of acoustic segment O(q), with respect

to each phone q. The phone level Goodness Of Pronunciation (GOP) for a given phone

is computed using the following formulation:

GOP (p) = |log(P (p|O(p)))|/NF (p) (5.3)

GOP (p) =

∣∣∣∣log( P (O(p)|p)P (p)∑
q∈Q P (Op|q)P (q)

)∣∣∣∣/NF (p) (5.4)

GOP (p) = |Pp(forced)− Pp(free)| (5.5)

The duration of phonemes in forced alignment is di�erent from that obtained using the

free phone recognition. Hence, log posterior probabilities are calculated from the weighted

overlapping region by their respective duration. The details of the procedure are given in
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Table 5.8: Observed vowel deviations in children speaking Kannada language within the age range 3 1
2 to

6 1
2 years

Sl. no. Actual Phones Observed Vowel deviations GOP threshold

1 a o, e, a:, long a, u 11.80

2 a: o, o:, ya:, e:, a, a:a 26.30

3 i ya;, e, a, eh, i:, u, e: 12.90

4 i: i, e, e: 31.10

5 u o, o:, a, u:, a:, i, v 1.10

6 u: u, ow 14.50

7 e ya:, a, e:, ye, ya, i 0.70

8 e: e, ye 1.10

9 ei a:i 0.20

10 o a, i, ow, a:, va, u, o: 1.10

11 o: a: 8.40

12 ow o 0.20

Section E.

C Phone dependent thresholds

To calculate the phoneme dependent threshold, the data other than the correct pronun-

ciation is considered to build and test vowel deviation errors in children's speech. This

dataset is divided into the sets of size 40% dev set and 60% test set, where dev set (40%) is

used to calculate the phoneme dependent threshold for vowel deviation errors. In HMM

based phone recognition, the acoustic model for each phone would may have di�erent

acoustic �t. This can be observed from the log likelihoods values of the phones. Stop con-

sonants and fricatives have low log likelihood values compared to the vowels. Therefore,

threshold values set for vowels are high compared to the consonants (Witt and Young,

2000). Hence, phoneme speci�c thresholds are calculated to identify vowel deviations.

Posterior Log-Likelihood Scores for all the vowel in the dev set is calculated as a ratio

of likelihood of phone by the forced alignment and the likelihood of phone by free phone

loop recognition. A phone speci�c threshold set, for a particular phone in the dev set, is

given by equation 5.6.

Tp = µp + ασp + β (5.6)

where, µ, σ represent mean and variance of the GOP scores for a phone p respectively.

α, β are the scaling constants identi�ed empirically such that, it provides highest discrim-
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Figure 5.12: GOP scores for correctly pronounced 12 vowels arranged from front to back

ination between correct and mispronunciation vowels. Details of the threshold calculated

for each phoneme on dev set is given in Table 5.8. Phonemes with GOP scores above the

calculated threshold represent the mispronunciation according to equation 5.7,

Cal_Misp =

Correct GOPpi < Tpi

Mispronunciation GOPpi ≥ Tpi

(5.7)

where, Cal_Misp is the decision of mispronunciation of ith phone p based on the

GOPpi and its respective threshold Tpi . The phoneme level thresholds obtained from the

dev data are given in Table 5.8. Figure 5.12 shows that, the GOP scores of correctly

pronounced vowels are very low. The large values of GOP scores represent the vowels

deviated during pronunciation. On dev set human machine correlation of 0.53 is achieved.

5.5.3 Results and Discussion

In this work, an identi�cation of vowel deviation is proposed, where vowels are distorted.

For each of the 32 phone, context independent monophone HMMs are built. The eval-

uation of the quality of pronunciation is performed using log-posterior probability based

goodness of pronunciation scores. Each vowel in a word is listened carefully by the three

speech language pathologists (SLPs) and marked as either correctly pronounced or as

vowel deviation (mispronunciation). HMM-based phoneme recognition system is trained

using correct pronunciations from speech data from 60 children of age 5.00 years to 6.50

years among 120 speakers. Children in this age range are expected to make few mistakes
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Table 5.9: Vowel speci�c correlation between human raters and machine scores

Sl. no. Phones Human Machine Correlation

1 a 0.27252868

2 a: 0.14620462

3 i 0.21011109

4 i: 1.00000000

5 u 0.44236953

6 u: 0.31204527

7 e 0.45472726

8 e: 0.4016528

9 ei 0.21215470

10 o 0.56725146

11 o: 0.40237391

12 ow 0.41678221

in speech production compared to the lower age group. An average phoneme recognition

accuracy of 77.29% is achieved using this approach. Rest of the speech dataset in the

age range 3.50 to 6.50 years is considered to build vowel deviation errors identi�cation in

children's speech. This dataset is divided into 40% dev set and 60% test set, where dev set

(40%) is used to calculate the phoneme dependent threshold for vowel deviation errors.

Dev set is used to obtained phoneme level threshold from log posterior probability score.

Using the set threshold, human machine correlation of 0.53 is achieved. To measure the

e�ciency of this developed system, the correlation of pronunciation scores obtained from

the system (or machine) and human raters is observed on the test set. For measurement,

Pearsons' correlation given by equation 5.8 is used.

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑i=1

n (xi − x̄)2
√∑i=1

n (yi − ȳ)2
(5.8)

where, n is the number of vowel pronunciations; xi, yi are the individual sample of

human and machine scores with index i for each vowel respectively; x̄, ȳ is the mean of

human and machine scores respectively. The value of correlation ranges from -1 to +1,

where 1 implies the perfect relationship between two variables x and y i.e. all data points

exactly lying on linear line. -ve value represents decrease in y as x increases, whereas 0

represents no linear correlation between the variables. For the purpose of this research,

the +ve correlation closer to 1 is needed. The value of correlation coe�cient, close to 1,

indicates better matching of the machine and human raters scores (SLPs). Table 5.9 shows
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the correlation values for the vowels considered for this analysis. An average correlation

of the human and machine scores, for the proposed system, is observed to be 0.42. The

correlation of the proposed system is not very high. This may be due to the duration

of vowels being highly varying even within a speaker (child). Also, building a phoneme

recognition model for this lower age group is di�cult due to higher inter-speaker and

intra-speaker variability.

5.5.4 Contributions and Limitations

A phoneme level vowel deviation system is built using GMM-HMM based phoneme recog-

nition system. Log-posterior probability based scores are used as Goodness of Pronunci-

ation (GOP) scores. The performance of the system is measured based on how well the

scores generated by the proposed system correlate with the human raters' scores (SLPs).

The phone posterior probability score is observed to achieve a pronunciation rating of

0.42. The approach is implemented on limited amount of train and test data. The main

limitation of the proposed approach is the di�culty in building an e�cient phoneme

recognition system for such low age group.

5.6 Characterization of aspiration and unaspiration

Aspiration is a strong pu� of air that is released at the closure of consonants (He�ner,

1975). For instance, pronunciation of /pha/ is aspirated compared to its unaspirated

counterpart /pa/. Aspiration is a commonly observed phenomenon in the speakers of

English, East Asian and Indian languages (Lisker and Abramson, 1964). This phe-

nomenon is very prominent in Arabic and Persian languages, where all stop consonants

are aspirated (Mirdehghan, 2010). Cantonese has aspirated counterparts of voiceless ve-

lar (/k/), alveolar (/t/) and labial (/p/) sounds, where the Voice Onset Time (VOT)

of aspirated sounds is twice as large as of unaspirated sounds (Lisker and Abramson,

1964). Similar classes of aspiration are observed in Eastern American, Thai and Ko-

rean languages. In Indian languages, such as Hindi and Marathi, there are mainly two

di�erent speech production categories: aspiration and voicing (Lisker and Abramson,

1964). Unaspirated voiced consonants /b/, /d/, /D/, /g/ have corresponding aspirated

voiced consonants /bh/, /dh/, /Dh/, /gh/ respectively. Unaspirated voiceless consonants

/p/, /t/, /T/, /k/ have corresponding aspirated voiceless consonants /ph/,/th/, /T h/, /kh/

respectively (Lisker and Abramson, 1964). For a given language, identi�cation of aspi-
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Table 5.10: Aspirated and unaspirated consonants used for the analysis of classi�cation

Unaspirated

phone

No. of clips Aspirated

phone

No. of clips

TIMIT Hindi Marathi NITK TIMIT Hindi Marathi NITK

/k/ 18 28 65 70 /kh/ 62 60 27 47

/g/ 22 32 39 81 /gh/ - 24 22 5

/ch/ 2 25 53 70 /chh/ 5 22 20 55

/j/ 6 22 37 80 /jh/ 2 18 20 35

/T/ 21 31 21 181 /Th/ 64 64 33 1

/D/ 63 53 22 69 /Dh/ - 29 20 �

/t/ - 15 73 68 /th/ 1 18 38 30

/d/ 31 42 49 62 /dh/ 1 24 33 62

/p/ 18 28 61 76 /ph/ 48 58 22 25

/b/ 52 56 23 78 /bh/ - 30 33 14

rated and unaspirated consonants is important for the applications such as; identi�cation

of native and non-native speakers (Löfqvist et al., 1989); analysis of phonological processes

in children (Ingram, 1977); learning the cultural evolution of any language (Steels, 2011);

improving the performance of Automatic Speech Recognition system (ASR) (Sarma and

Prasanna, 2014); and so on. This phenomenon of aspiration and unaspiration of sounds

can be identi�ed by capturing some pronunciation speci�c cues.

In this work, an attempt has been made to study the consonant aspiration and unaspi-

ration phenomena. The main contribution of the work is the excitation source level

features extracted from burst regions of the consonants, while exhalation of air during

the pronunciation of aspirated and unaspirated sounds. Linear prediction residual signal

approximately estimates the excitation source information (Krothapalli and Koolagudi,

2013). Low pass �ltered linear prediction residual signal gives a measure of excitation

source signal or Glottal Volume Velocity (GVV) signal.

Table 5.11: List of correct pronunciation and respective mispronunciation of words observed in aspiration
and unaspiration in NITK Kids Corpus

Sl.
No.

Correctly pronounced words Mispronunciation Aspirated/ Unaspi-
rated Substitution

Number of Oc-
currences

1 aDige (kitchen) aDighe /gh/ 2

2 Aiskrim (ice cream) Aiskhrim /kh/ 15

3 akka (sister) akkha /kh/ 3

4 OTorikshA (autorickshaw) OThorikshA /Th/ 10

5 auSHadhi (medicine)
anSHadi /d/ 2

anSHati /t/ 3

6 AuT (out) AuTh /Th/ 1

7 Ayudha (weapon)

ayuDa /D/ 2
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ayuda /d/ 16

ayuTa /T/ 4

ayuta /t/ 19

8 bAchaNige (comb) bAchhaNige /chh/ 5

9 bekku (cat) bekhu /kh/ 2

10 bhuja (shoulder)

buja /b/ 4

puja /p/ 4

bhujha /jh/ 14

11
bhumi (earth)

bumi /b/ 4

pumi /p/ 5

Tumi /T/ 2

12 biskiT (biskit) biskhiT /kh/ 1

13 bleDu (bled) phleDu /ph/ 2

14 chhatri (umbrella)

chaThari /Th/ 1

thatri /th/ 4

chhathri /th/ 6

chatri /ch/ 6

tatri /t/ 1

15 chakra (wheel)

chathra /th/ 2

chhakra /chh/ 29

chakhra /kh/ 17

Thakra /Th/ 1

16 chiTTe (butter�y)
chiTThe /Th/ 1

chhiTTe /chh/ 47

17 chauka (square) chhauka /chh/ 25

18 chandra (moon) chhandra /chh/ 29

19 chamacha (spoon)

chhamachha /chh/ 10

chamachha /chh/ 17

chhamacha /chh/ 14

thamacha /th/ 5

20 Dabba (box)

Dabbha /bh/ 2

dhabba /dh/ 3

thabba /th/ 4

21 Dabbi (box)

Dabbhi /bh/ 2

Daphi /ph/ 2

Thabbi /Th/ 2

22 hattu (ten) hatthu /th/ 1

23 dana (cow) dhana /dh/ 2
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24 jaDe () chhaDe /chh/ 3

25 kai (hand) khai /kh/ 8

26 kaDu (forest) khaDu /kh/ 2

27 dhAnya (grains)

DAnya /D/ 2

tAnya /t/ 6

TAnya /T/ 2

dAnya /d/ 7

gAnya /g/ 2

kAnya /k/ 1

28 ghamaghamaUTA (hot food)

ghamagamaUTa /g/ 5

gamagamaUta /g/ 5

kamaghamauta /k/ 1

kamagamauTa /k/ & /g/ 1

29 Iju (swim)

IDhu /Dh/ 1

Ijuthu /th/ 2

Ijhu /jh/ 23

30 jag (jug)
jhag /jh/ 1

chhag /chh/ 3

31 kempu (red)
kemphu /ph/ 1

khempu /kh/ 2

32 kurchi (chair)
kurchhi /chh/ 9

khurchi /kh/ 2

33 khaDga (sword) gaDga /g/ 1

34 kathe (story)

kate /t/ 11

khate /kh/ & /t/ 4

khaTe /kh/ 1

khathe /kh/ 5

35 mUgu (nose) mUghu /gh/ 2

36 mAvinakAyi (mango) mAvinakhAyi /kh/ 3

37 nAlku (four) nAlkhu /kh/ 1

38 onTe (camel) onThe /Th/ 1

39 pada (legs)
phada /ph/ 6

padha /dh/ 2

40 posTboaks (postbox) phosTboks /ph/ 9

41 reDiyo (radio) reDhiyo /Dh/ 1

42 paTAki (�reworks)

phaTaki /ph/ 11

pathaki /th/ 3

paTakhi /kh/ 20

43 phalaka (board)
palaka /pa/ 1

162



phalakha /kh/ 6

44 ratha (chariot)

raTa /T/ 1

rata /t/ 23

rada /d/ 4

45 rAtri (night) rAthri /th/ 4

46 samayA (time) thamayA /th/ 2

47 sUryA (sun) thuryA /th/ 6

48 sanghA (group) sanga /g/ 7

49 shankhA (sea shell) shanka /k/ 1

50 shAlege (school) shAleghe /gh/ 2

51 sAyankAlA (evening) sAyankhAlA /kh/ 6

52 TomaTo (toamto) ThamaTho /Th/ 2

53 taTTe
ThaTTe /Th/ 7

thaTTe /th/ 9

54 tale (head)
Thale /Th/ 1

thale /th/ 16

55 Toppi (cap) Thoppi /Th/ 1

56 udu (swim) udhu /dh/ 2

57 uppinakAyi (pickle) uppinakhAyi /kh/ 2

58 UTa (food) UTha /Th/ 1

59 vidhAnasaudhA (Assembly)

vidhanasauDa /D/ 1

vidhanasauta /t/ 3

vidanasaudha /d/ 2

vidhanasauda /d/ 5

vidanasauda /d/ 21

viDanasaudha /D/ 5

5.6.1 Databases Used

In this work, speech datasets of three di�erent nature are considered to evaluate the pro-

posed approach. A common phonetic speech corpus TIMIT is used for general evaluation.

For cross-lingual feasibility of the features, IIIT-H Indic speech databases - Marathi and

Hindi are used. Each utterance from the database is listened to carefully and the unaspi-

rated and aspirated consonants, along with the following vowel, are manually segmented

from the utterances. In all three datasets, utterances are considered untill su�cient

number of speech clips are available for the analysis. Table 5.10 shows the aspirated

and unaspirated consonants used in this analysis. NITK Kids Corpus is used for the
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identi�cation of phonological process where, aspirated speech sounds are substituted with

unaspirated speech sounds. Speech language pathologist analysed the speech and reported

the aspiration and unaspiration mispronunciation error, Table 5.11, shows the details of

the occurrence of errors in the pronunciation. Analysis of NITK Kids Speech Corpus by

SLPs showed that, total 655 pronunciations of 59 words consist of aspirated speech sounds

substituted for unaspirated speech sounds and vice versa. Hence, these pronunciations

are considered for the identi�cation of phonological process. Correct pronunciations are

selected by three SLPs after listening all the pronunciations of these words in dataset, and

segment all the aspirated and unaspirated CV transition region. Total 1109 correct pro-

nunciations of the aspirated and unaspirated sounds are reported (shown in Table 5.10).

All SLPs discuss their analysis and report �nal conclusion during the process of selection

of correct pronunciations and mispronunciations.

(80%) (20%)

Figure 5.13: Flow diagram of aspiration and unaspiration classi�cation
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5.6.2 Feature Extraction

High volume of `pu� of air' is released after the opening of the constriction during pro-

nunciation of aspirated sounds such as /kh/, /gh/, /jh/, whereas comparatively very low

volume of air is released during the pronunciation of unaspirated sounds (/k/, /g/, /j/).

A common observation during the pronunciation of aspirated sounds is, most of the energy

or stress is put to exhale the air out of the lungs. This exhalation reduces the strength

available for the production of the vowel that follows the aspiration. Due to this, the

strength of vocal folds' vibration, immediately following the aspiration, is weak and low.

This results in longer open, closed and return phases observed in the LP residual wave-

form during the aspiration. In the case of unaspirated sounds, very low volume of air is

exhaled during release of constriction. Hence, enough strength is available for vocal folds'

vibration during the pronunciation of immediately following vowel. It leads to compara-

tively high rate of vocal activity, where one can observe sharper and sudden opening of

vocal folds, sharp return of vocal folds to the closed phase and very less duration of closed

phase. It can be observed from the glottal volume velocity (GVV) waveform of the CV

transition region of unaspirated consonant /ka/ and its aspirated counterpart /kha/ as

shown in Figure 5.14 (c)-(d) and Figure 5.14 (c)-(d) respectively. These observations give
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a clear view of di�erence between aspiration and unaspiration. Hence these observations

are considered to extract features in the proposed approach.

Speech can be modeled as convolution of excitation source and Vocal Tract (VT)

response. The excitation source signal is obtained by suppressing the Vocal Tract (VT)

response from speech signal (Rao and Koolagudi, 2012). The information of excitation is

obtained through two stages. First, VT information is predicted using �lter coe�cients

and then the excitation source information is separated using inverse �ltering. The inverse

�ltered signal is known as linear prediction residual (Makhoul, 1975). Excitation source

signal, also known as glottal volume velocity (GVV) signal, is obtained by passing the

LP residual signal through low pass �lter (Krothapalli and Koolagudi, 2013). In the

discrete domain, low pass �ltering can be implemented by integration operation. Figure

5.14 (a)-(d) shows the waveform of unaspirated sound unit /kaa/ and respective GVV

waveform signal. In the �gure, transition is also shown from the release of burst in /k/

to the immediately following vowel /aa/. Figure 5.14 shows the waveform and respective

GVV waveform signal of the transition from release of /kh/ to the following vowel /aa/.

From this, a complete cycle of the GVV waveform signal of the unaspirated sound /kaa/

and respective unaspirated /khaa/ is given in Figure 5.15. From the comparison of both,

it is clearly evident that the opening phase in aspirated sound is longer, compared to its

unaspirated counterpart. Figure 5.16 (a), shows the histogram of the opening phase of CV

transition region for aspirated and unaspirated sounds. It is observed that the mean of

opening phase of unaspirated sounds is less as compared to the aspirated sounds; also the

standard deviation (std) of opening phase of unaspirated sound is small (std: 0.0008) in

comparison with the aspirated sounds (std: 0.0011). This a�ects the slope of the opening

phase. Due to a longer opening phase, slope of opening phase in aspirated sound is lower,

whereas the same in the case of unaspirated sounds is steeper. Similar characteristics are

observed in the case of return phase. The duration of return phase of aspirated sound

is longer compared to its unaspirated counterpart. Figure 5.16 (b), shows the histogram

of return phase during the CV transition of aspirated and unaspirated sounds. From the

histogram, one can infer that the mean of return phase of unaspirated sounds (0.0018sec)

is smaller in comparison with the aspirated sounds (0.0021sec). The duration of closed

phase of vocal folds is observed to be longer for aspirated sounds in comparison to that

of the unaspirated sounds. Figure 5.15 shows the mentioned di�erence in the duration

of closed phase of unaspirated and aspirated sounds. Figure 5.16 (c), shows that the
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spread of closed duration of aspirated sounds is 0.00069, whereas the spread of the closed

duration of unaspirated sounds is 0.00077. In Figure 5.15, it is also observed that the

pitch cycle of aspirated sound is slightly longer compared to the unaspirated sound.

There is a sharp rise in a pro�le (envelope) of vowel, arriving immediately after the

unaspirated consonant release, whereas in the case of aspirated consonant sounds, vowel

pro�le gradually increases. The rate of rise in vowel pro�le of unaspiration and aspiration

is shown in Figure 5.17 (a)(3) and Figure 5.17 (b)(3) respectively. Exhaling `pu� of air'

in aspiration, delays the Voice Onset Time (VOT), resulting in longer consonant before

the burst region, with high signal strength. In contrast to this, in unaspiration, Voice

Onset Time (VOT) is very early compared to the aspirated sounds. Small volume of air

release in unaspiration leads to shorter burst duration for a consonant, with low signal

strength. Figure 5.17 (a)(2) & Figure 5.17 (b)(2) show the duration of consonant before

burst regions of unaspiration and aspiration, respectively.

The features identi�ed to capture the information about vocal activity are: time to

attain steady vowel region (rate of rise in the signal strength during consonant to vowel

transition region), VOT and properties of consonant burst regions. These are listed in
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Figure 5.17: Comparison of acoustic waveforms of aspirated and unaspirated sound units (a) Speech
waveform of unaspirated sound unit /ka/ (b) Speech waveform of aspirated sound unit /kha/ (1) Signal
strength in consonant region (2) Duration of consonant burst region (3) Slope of rise of vowel immediately
following consonant burst

Table 5.14. The features are concatenated in the same order to make a feature vector of

size 30.

5.6.3 Results and Discussion

The e�ectiveness of proposed features is tested on four datasets namely; TIMIT English

Speech Corpus, IIIT-H Indic speech databases - Marathi and Hindi, NITK Kids' Speech

Corpus. To extract the proposed features, LP residual signal of the interested speech

region, from the beginning of the consonant burst to the steady portion of the immediately

following vowel, is obtained. LP is known to be poor when pitch is high as in children's

speech, hence homomorphic �ltering based approach proposed is used to remove the

aliasing e�ect from high pitch speech (Rahman and Shimamura, 2005). LP residual

signal is passed through the low pass �lter to obtain the glottal volume velocity (GVV)

signal. Then, the features listed in Table 5.14 are extracted to form a feature vector of

size 30. The performance of the features is tested using SVM (Radial Basis Kernel (RBF)

and polynomial kernel), Random Forest (RF) and Deep Feed Forward Neural Networks

(DFFNNs) with 5-fold cross validation. The dataset consists of instances from aspirated

and unaspirated sounds. In these experiments, 80% of the instances for training the

classi�er and 20% for testing with 5-fold cross validation have been used. Most commonly

used metrics, to evaluate the performance of classi�cation, are precision, recall, F-measure

and accuracy.

Table 5.13 shows the classi�cation performance by SVM on TIMIT English Speech

Corpus. The highest accuracy achieved using SVM with RBF kernel is 99.0375% (Table

5.12), with an average precision of 0.990, recall of 0.990 and F-measure of 0.990. SVM

trained, using polynomial kernel (order 3) has achieved an accuracy of 99.7659% with
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Table 5.12: Aspiration, Unaspiration detection: Average Classi�cation Accuracy

Average accuracy (%)

Classi�er Used TIMIT English IIIT-H Hindi IIIT-H Marathi

Support Vector Machine (RBF) 99.04 98.73 99.46

Support Vector Machine (Polynomial) 99.77 98.54 99.96

Random Forest (RFs) 99.93 99.97 99.98

Deep Feed Forward Neural Networks 99.40 99.11 99.88

Table 5.13: Aspiration (A), Unaspiration (U) detection: Di�erent Performance Metrics for TIMIT-English
dataset

SVMs (RBF) SVMs
(Polynomial)

RFs DFFNNs

Metrics A U A U A U A U

TP Rate 0.979 0.998 0.998 0.997 0.999 1.000 0.992 0.997

FP Rate 0.002 0.021 0.003 0.002 0.000 0.001 0.003 0.008

Precision 0.996 0.987 0.996 0.999 0.999 0.999 0.995 0.995

Recall 0.979 0.998 0.998 0.997 0.999 1.000 0.992 0.997

F-measure 0.988 0.992 0.997 0.998 0.999 0.999 0.993 0.996

an average precision of 0.998, recall of 0.998 & F-measure of 0.998. Further, the SVM

is trained on the instances of aspirated and unaspirated sounds, extracted from IIIT-H

Indic speech databases - Hindi dataset. The average accuracy, using SVM with RBF

kernel is 98.7312% (Table 5.12); with an average precision of 0.987, recall of 0.987 and

F-measure of 0.987 is achieved. SVM with polynomial kernel is observed to achieve an

average accuracy of 98.542% with an average precision of 0.985, recall of 0.985 and F-

measure of 0.985. For IIIT-H Indic speech databases - Marathi dataset, the evaluation

of performance of SVM and RF is given in Table 5.16. The average accuracy achieved

by using SVM (RBF) is 99.4633% (Table 5.12); with an average precision of 0.995, recall

of 0.995 and F-measure of 0.995. SVM with polynomial kernel achieved an accuracy of

99.9626% with an average precision of 1.000, recall of 1.000 and F-measure of 1.000. By

the very nature of ensembling the classi�ers, Random Forest classi�er performs better

than individual SVMs. The average results of aspiration, unaspiration are given in Table

5.12. Other performance metrics are given in Table 5.13, 5.15, and 5.16, respectively,

for the results of English TIMIT, IIIT-H Indic-Hindi and IIIT-H Indic-Marathi datasets.

One can observe a slight improvement in the performance on RF, when compared with
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Table 5.14: Features considered to capture the information about vocal fold vibration in aspiration and
unaspiration

Sl. No. Features Considered No. of Features

1 Duration of open, return & closed phase 3

2 Slope of open & return phase 2

3 Ratio of respective open phase to the return phase 1

4 Minimum & maximum open, return & closed phase 6

5 Minimum & maximum slope of open & return phase 4

6 Minimum & maximum ratio of respective open phase to the
return phase

2

7 Standard deviation of open, return & closed phase 3

8 Standard deviation of slope of open & return phase 2

9 Standard deviation of ratio of respective open phase to the
return phase

1

10 Frequency/rate of vocal fold vibration 1

11 Rate of rise in vowel signal strength (envelope) of CV transition
region

1

12 Voice onset time (VOT) 1

13 Duration of consonant burst region 1

14 Highest and lowest energy in consonant burst region 2

that of SVM, for any considered language. The details of the performance metrics, using

deep feed forward neural networks for TIMIT-English dataset, IIITH Marathi and Hindi

dataset, is given in Table 5.13 - 5.16. The performance of classi�cation of aspiration and

unaspiration in TIMIT-English dataset is observed to be 99.40% (Table 5.12); with an

average precision, recall and F-measure of 0.995, 0.994, 0.994, respectively. An average

accuracy of 99.88% is achieved for the classi�cation of aspiration and unaspiration in

IIITH Marathi dataset with an average precision, recall and F-measure of 0.999, 0.997,

0.998, respectively. The performance of classi�cation of aspiration and unaspiration in

IIITH Hindi dataset is observed to be 99.11% with an average precision, recall and F-

measure of 0.991, 0.991, 0.991, respectively. From the analysis of the performance of all

the classi�ers considered, on all three datasets, it is observed that, the proposed features

are e�cient in discriminating the aspiration and unaspiration.

Use of classi�ers are e�cient in modeling the non-linear behavior of the data may help

in improved discrimination of the aspirated and unaspirated speech sounds. Proposed

features with SVM (RBF kernel), SVM (polynomial kernel), Random Forest classi�er and

Deep Feed Forward Neural Networks (DFFNNs), have reported better performance on
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Table 5.15: Aspiration (A), Unaspiration (U) detection: Di�erent Performance Metrics for IIIT-Indic
Hindi dataset

SVMs (RBF) SVMs
(Polynomial)

RFs DFFNNs

Metrics A U A U A U A U

TP Rate 0.979 0.995 0.983 0.987 0.999 0.999 0.988 0.994

FP Rate 0.005 0.021 0.013 0.017 0.000 0.001 0.006 0.012

Precision 0.995 0.981 0.986 0.985 0.999 0.999 0.993 0.989

Recall 0.979 0.995 0.983 0.987 0.999 0.999 0.988 0.994

F-measure 0.987 0.988 0.985 0.986 0.999 0.999 0.991 0.991

Table 5.16: Aspiration (A), Unaspiration (U) detection: Di�erent Performance Metrics for IIIT-Indic
Marathi dataset

SVMs (RBF) SVMs
(Polynomial)

RFs DFFNNs

Metrics A U A U A U A U

TP Rate 1.000 0.978 1.000 0.999 0.999 1.000 0.999 0.996

FP Rate 0.022 0.000 0.001 0.000 0.000 0.001 0.004 0.001

Precision 0.993 0.999 1.000 0.999 0.999 0.999 0.999 0.999

Recall 1.000 0.978 1.000 0.999 0.999 0.999 0.999 0.996

F-measure 0.996 0.989 1.000 0.999 0.999 0.999 0.999 0.998
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Table 5.17: Aspiration, Unaspiration detection: Average classi�cation accuracy after feature selection
(correlation based feature selection)

Average accuracy (%)

Classi�er Used TIMIT English IIIT-H Hindi IIIT-H Marathi

Support Vector Machine (RBF) 99.93 99.91 99.91

Support Vector Machine (Polynomial) 99.93 99.91 98.43

Random Forest (RFs) 99.93 99.97 99.97

Feed Forward Deep Neural Networks 98.95 99.23 98.75

English, Hindi and Marathi datasets, respectively. General tree based classi�ers perform

well with small sized datasets and tend to over�t in case of large sized databases (Tan et al.,

2006). In Random Forest, this over�tting is reduced, as it uses combination of di�erent

tree classi�ers. DFFNNs has the ability to model the complex and non-linear relationship

between inputs and outputs. In SVM (RBF kernel), SVM (polynomial kernel), Random

Forest classi�er and Deep Feed Forward Neural Networks (DFFNNs) classi�ers, the recall,

precision and F-measure are close to 1, indicating that the proposed systems have better

true positive rates and the systems are more precise in identifying positive cases that are

actually correct.

Table 5.18: Aspiration (A), Unaspiration (U) detection: Di�erent Performance Metrics for TIMIT-English
dataset after feature selection (correlation based feature selection)

SVMs (RBF) SVMs
(Polynomial)

RFs DFFNNs

Metrics A U A U A U A U

TP Rate 0.998 1.000 0.998 1.000 0.999 1.000 0.977 0.997

FP Rate 0.000 0.002 0.000 0.002 0.000 0.001 0.003 0.023

Precision 1.000 0.999 1.000 0.999 1.000 0.999 0.996 0.986

Recall 0.998 1.000 0.998 1.000 0.999 1.000 0.977 0.997

F-measure 0.999 0.999 0.999 0.999 0.999 0.999 0.986 0.990

Total feature vector size of 30 is used in the implementation, where it is observed that

some of these features are highly non-linear in nature. Hence, it is necessary to �nd out

the features which actually contribute to the classi�cation of the aspirated and unaspi-

rated sounds. Instead of taking various combinations of features to test the performance

of classi�cation, most widely used feature selection algorithm known as correlation based

feature selection technique has been considered. From the analysis of the correlation

based feature selection technique, 11 features which contributes to the classi�cation are
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Table 5.19: Aspiration (A), Unaspiration (U) detection: Di�erent Performance Metrics for IIIT-Indic
Hindi dataset after feature selection (correlation based feature selection)

SVMs (RBF) SVMs
(Polynomial)

RFs DFFNNs

Metrics A U A U A U A U

TP Rate 0.999 1.000 0.999 1.000 1.000 1.000 0.993 0.993

FP Rate 0.000 0.001 0.000 0.001 0.000 0.000 0.007 0.007

Precision 1.000 0.999 1.000 0.999 1.000 1.000 0.992 0.994

Recall 0.999 1.000 0.999 1.000 1.000 1.000 0.993 0.993

F-measure 0.999 0.999 0.999 0.999 1.000 1.000 0.992 0.994

Table 5.20: Aspiration (A), Unaspiration (U) detection: Di�erent Performance Metrics for IIIT-Indic
Marathi dataset after feature selection (correlation based feature selection)

SVMs (RBF) SVMs
(Polynomial)

RFs DFFNNs

Metrics A U A U A U A U

TP Rate 0.999 1.000 0.994 0.955 1.000 1.000 1.000 0.949

FP Rate 0.000 0.001 0.045 0.006 0.000 0.000 0.051 0.000

Precision 1.000 0.999 0.986 0.980 1.000 1.000 0.984 1.000

Recall 0.999 1.000 0.994 0.955 1.000 1.000 1.000 0.949

F-measure 0.999 0.999 0.990 0.967 1.000 1.000 0.992 0.974
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obtained. The features are slope of vowel pro�le rise (1); frequency of GVV (1); standard

deviation of close, opening and return phase (3); minimum and maximum slope of open

phase (2); standard deviation of slope of opening phase (1); minimum slope of return

phase (1); standard deviation of slope of opening phase (1); standard deviation of ratio of

slope of opening phase and return phase (1). Table 5.17 shows the classi�cation perfor-

mance on TIMIT English Speech Corpus, IIITH Marathi and Hindi dataset. For TIMIT

English Speech Corpus, the highest accuracy achieved is 99.935% using RBF and Polyno-

mial kernel respectively, with an average precision of 0.999, recall of 0.999 and F-measure

of 0.999. 99.935% accuracy is observed using random forest. Though the accuracies are

the same, there is a di�erence in the number of instances classi�ed in each experiment.

Analysis of the performance metrics for TIMIT English Speech Corpus is given in Table

5.18. Table 5.20 shows the classi�cation performance on IIITH-Hindi dataset. The high-

est accuracy achieved is 99.91% using RBF and Polynomial kernel respectively, with an

average precision of 0.999, recall of 0.999 and F-measure of 0.999. An accuracy of 99.966%

is observed in using random forest, with an average precision of 1.000, recall of 1.000 and

F-measure of 1.000. Table 5.19 shows the classi�cation performance on IIITH-Marathi

dataset. The highest accuracy achieved is 99.911% using RBF and Polynomial kernel

respectively, with an average precision of 0.999, recall of 0.999 and F-measure of 0.999.

An accuracy of 99.966 % is observed in using random forest, with an average precision

of 1.000, recall of 1.000 and F-measure of 1.000. For deep feed forward neural networks,

new experiments have been conducted by varying the number of neurons in each hidden

layer from 16 to 1024. The architecture that empirically gives the highest performance is

considered. Newly proposed deep feed forward neural network architecture is the same as

the previous one, with one input layer, 3 hidden layers and an outptut layer. Size of the

input layer is set to size of the input vector. In each hidden layer, the number of hidden

units is set to 512, based on the experiments. To avoid over�tting, a dropout of 0.2 is set

in this work. The details of the performance metrics, on selected features, using DFFNNs

for TIMIT-English dataset, IIITH Marathi and Hindi dataset is given in Table 5.18 -

5.20. The performance of classi�cation of aspiration and unaspiration in TIMIT-English

dataset is observed to be 98.95% with an average precision, recall and F-measure of 0.991,

0.987, 0.988 respectively. An average accuracy of 98.75% is achieved for the classi�cation

of aspiration and unaspiration in IIITH Marathi dataset, with an average precision, recall

and F-measure of 0.992, 0.975, 0.983 respectively. The performance of classi�cation of as-
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piration and unaspiration in IIITH Hindi dataset is observed to be 99.23% with an average

precision, recall and F-measure of 0.993, 0.993, 0.993 respectively. From the analysis of

the performance of DNNs on all three datasets, it is observed that the proposed features

are e�cient in discriminating the aspiration and unaspiration. The performance of the

proposed features, before and after feature selection (correlation based feature selection),

is given in Table 5.12 and Table 5.17 respectively. From the analysis of the performance

of both the approaches, it is observed that for SVM with RBF and Polynomial kernel,

the performance of the system is improved by a very small margin or remains constant.

When the performance of the random forest classi�er is observed, the accuracy for IIITH

Marathi and Hindi dataset is decreased by a very small margin of 0.01%. For TIMIT

English Speech Corpus, the accuracy remains the same. For deep feed forward neural

networks, it is observed that the performance of the TIMIT-English dataset is dropped

from 99.40% to 98.95% (a di�erence of 0.45%). In the case of IIITH Marathi dataset,

the reduction is from 99.88% to 98.75% (reduced by 1.13%). For the IIITH Hindi dataset

the performance is improved by 0.12% (reduced from 99.11% to 99.23%). It may be con-

cluded that the performance of aspiration and unaspiration detection, with lesser number

of features, is dropped by a very slight margin, compared to complete larger feature set,

establishing a clear positive contribution of features and classi�ers.

Existing approaches that use spectral features such as Mel-Frequency Cepsrtal Coe�-

cients (MFCCs) fail to capture the cues of aspiration (Patil and Rao, 2011). Classi�cation

of aspiration and unaspiration, using hidden Markov model (HMM), trained with MFCCs,

achieves an accuracy of 86.6% for unvoiced stops and 67.6% for voiced stops (Patil and

Rao, 2011). The durational features, such as `VOT' and `release duration', are observed

to be more speci�c and robust in classifying aspirated and unaspirated unvoiced stops,

which give an average accuracy of 88.4%. The classi�cation performance in case of voiced

stops is reported to be 56.3% using the same features. Breathiness or aspiration noise

detection features, such as di�erence between 1st and 2nd harmonics, spectral tilt and

third formant, are explored in this study (Patil and Rao, 2011). An improvement of

8.7% and 5.8% is observed in classifying aspiration and unaspiration, in unvoiced stops

and voiced stops, respectively, compared to the baseline MFCC features (Patil and Rao,

2011). Landmark based features, namely; onset of voicing bar (F0), onset of the for-

mants F1, F2, F3 and waveform, are observed to be e�cient in discriminating aspiration

and unaspiration phenomenon (Patil and Rao, 2013) (Francis et al., 2003). There is no
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Table 5.21: Comparison of the proposed approach with the state of the art approaches

Accuracy (%)

Reference Language
Considered

Feature Consid-
ered

Classi�ers Unvoiced
stops

Voiced
stops

Mixed: Voiced
& Unvoiced

Comments

(Patil
and Rao,
2011)

Gujarati

MFCCs (39)

HMM

86.6 67.6 � The acoustic cues of
aspiration are depen-
dent on characteris-
tics of voice qual-
ity which may be
also in�uenced by
additional e�ects like
jitter,and shimmer.
The detection of as-
piration noise fea-
tures are restricted
to the vowel region.
The additional cues
can be extracted by
extending the region
to the burst release.

Durational
measure: VOT

88.4 56.3 �

Breathiness
detecting fea-
tures: Spectral
features (H1-
H2, H1-A3
and A1-A3),
Synchroniza-
tion index
(F1-F3sync),
Sub-band spec-
tral power and
sub-band slope,
Signal to noise
ratio (SNR)

92.3 73.4 �

(Patil
and Rao,
2011)

Marathi,
Hindi

MFCCs (39) HMM 90.3,
76.4

80.8,
77.8

� Discriminative clas-
si�ers can improve
the performance of
Acoustic-phonetic
(AP) features based
system. AP feature
approach, speci�c
features are required
for speci�c type of
phonetic distinction.

Unvoiced stops:
VOT, H1-H2,
A1-A3, SNR
Voiced stops:
VOT, H1-H2,
A1-A3, SNR,
F1F3-sync,
Low-band
slope, B3-band
energy

AP-
GMM

90.5,
90.2

85.1,
84.9

�

Proposed
approach

English
(TIMIT),
Hindi
(IIITH-
Indic
dataset),
Marathi
(IIITH-
Indic
dataset)

Glottal activ-
ity features +
Signal level
features

Random
Forest

� � {99.93, 99.97,
99.98}1,
{99.93, 99.97,
99.97}2

E�ect of exhalation
of air on the pro-
nunciation of aspi-
rated and unaspi-
rated sounds is anal-
ysed. Features ex-
tracted from open,
closed and return
phases of vocal folds'
vibration along with
their statistical vari-
ations are explored.

SVM
(RBF)
SVM
(Poly-
nomial)

� � {94.03, 95.17,
95.00}1

{99.93, 99.91,
99.91}2

{99.77,
98.54, 99.96}1

{99.93, 99.91,
98.43}2

�

FDNNs � � {99.40, 99.11,
99.88}1,
{98.95, 99.23,
98.75}2
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Table 5.22: Performance analysis of identi�cation of mispronunciation of aspiration and unaspiration on
NITK Kids Speech Corpus using Support Vector Machine (SVMs), Random Forest (RFs) and Deep Feed
Forward Neural Network (DFNNs)

Classi�cation Performance before
Feature Selection

Classi�cation Performance after
Feature Selection

SVMs (RBF) RFs DFFNNs SVMs (RBF) RFs DFFNNs

Accuracy (%) 91.68 97.22 95.94 97.87 98.04 96.72

Precision 0.910 0.982 0.966 0.979 0.983 0.969

Recall 0.90 0.975 0.977 0.979 0.984 0.974

F-measure 0.905 0.978 0.971 0.949 0.982 0.973

signi�cant di�erence in the variance of the F0 and waveform landmarks of the aspirated

sound units compared to their unaspirated counterparts. The variance measures of F1,

F2 and F3 in unaspirated sounds are observed to be signi�cantly smaller than that of

the aspirated consonants (Francis et al., 2003). Di�erent set of features are considered

in (Patil and Rao, 2013) for the detection of aspiration and unaspiration, in voiced and

unvoiced stops (as given in Table 5.21). The experiments are conducted on Marathi and

Hindi language. An accuracy of 90.5% and 90.2% is achieved for unvoiced stops, respec-

tively, on using acoustic-phonetic Gaussian Mixture Model (AP-GMM). The recognition

accuracy of 85.1% and 84.9% is observed for voiced stops, using AP-GMM, respectively

(Patil and Rao, 2013). The recognition performance may improve when used with the

discriminative classi�ers, such as SVMs, instead of HMMs. Though the existing systems

are e�cient, proposed features with SVM and RF classi�ers are observed to achieve much

better results, that are shown in Table 5.12. From these results, it can be noted that,

the features related to the exhalation of air, during aspiration, unaspiration and its ef-

fect on the immediately following vowel are e�ective in characterizing the phenomenon of

aspiration and unaspiration. This is inline with the observation of variations in patterns

of low pass �ltered LP residual signal and its strength, after the exhalation of air during

production of aspirated and unaspirated sounds. The signal level blind properties, such

as duration of consonant burst regions, maximum and minimum energy of the consonant

bursts, are also observed to be e�ective in characterizing the chosen phenomenon. Dura-

tion of consonant burst regions in aspiration is almost double than that in unaspiration.

The release of high volume of air, with more pressure during aspiration, results in high

strength of signal, compared to the unaspirated sounds.

From the results, it can be observed that the proposed features are e�cient for the

classi�cation of aspiration and unaspiration on TIMIT English Speech Corpus, IIITH-
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Marathi Dataset and IIITH-Hindi Dataset. Hence, these features are considered for the

identi�cation of aspiration and unaspiration pronunciation errors. The classi�ers are �rst

trained on the 30 features extracted from the correct pronunciations of aspirated and

unaspirated speech sounds. To evaluate the performance of pronunciation error identi-

�cation, classi�er is tested on the mispronounced dataset. Table 5.22 shows the classi-

�cation performance of SVMs on the test set consisting of aspiration and unaspiration

pronunciation errors in NITK Kids' Speech Corpus. The highest accuracy achieved us-

ing SVM with RBF kernel is 91.68%, with an average precision of 0.91, recall of 0.90

and F-measure of 0.905. DFFNs trained on the correct pronunciations of aspiration and

unaspiration, achieves an accuracy of 95.94% with an average precision, recall and F-

measure of 0.966, 0.977, 0.971 respectively. For Random Forest (RFs), the classi�cation

performance of 97.22% is achieved on the mispronounced data with an average precision,

recall and F-measure of 0.982, 0.975, 0.978 respectively. k-Fold cross validated paired

t-test is performed to compare the performance of the classi�cation. The comparison of

performance of SVMs with RFs and DFFNs result in p values less than 0.05, hence there

is a signi�cant di�erence in the performance of SVMs and RFs, SVMs and DFNNs. The

k-Fold cross validated paired t-test performed on the performance of classi�er RFs and

DFFNs achieve p-value greater than o.05, hence we can conclude that the di�erence in

the performance of these systems is not statistically signi�cant. From the analysis of the

performance of all the classi�ers considered, it is observed that, the proposed features

are e�cient in identi�cation of phonological process where aspirated speech sounds are

mispronounced as unaspirated speech sounds and vice versa in children speech. Feature

selection performed for the classi�cation of aspiration and unaspiration, may not be di-

rectly applicable to children speech, due to di�erence in the acoustic properties of adult

and children speech pronunciation. Hence, features that contribute to the classi�cation of

the aspirated and unaspirated sounds are selected using correlation based feature selection

technique.

From the analysis of the correlation based feature selection technique, 9 features which

contributes to the classi�cation are: frequency of GVV (1); minimum of open phase (1),

minimum of return phase (1), maximum of return phase (1), minimum slope of return

phase (1), maximum of ratio of open phase to the return phase (1), standard deviation

of open phase (1), standard deviation of return phase (1), standard deviation of slope

of open phase (1). Table 5.22 shows the performance of identi�cation of aspiration and
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unaspiration on NITK Kids Corpus using selected set of features. A highest accuracy

of 97.87% is achieved using SVMs with RBF kernel, with an average precision of 0.979,

recall of 0.979 and F-measure of 0.949. It can be observed that, there is an improvement

of 6.19% in the performance of SVMs after training on the selected features. The per-

formance of 98.04% is obtained using random forest (RFs) on the selected features with

an average precision of 0.983, recall of 0.984, and f-measure of 0.982 respectively. k-Fold

cross validated paired t-test shows that statistically there is no signi�cant di�erence in

the performance of RFs trained using complete feature set (30 features) and selected fea-

tures (9 features). For deep feed forward neural networks, new experiments have been

conducted by varying the number of neurons in each hidden layer from 16 to 1024. The

architecture that empirically gives the highest performance is considered. Newly proposed

deep feed forward neural network architecture is the same as the previous one, with one

input layer, 3 hidden layers and an outptut layer. Size of the input layer is set to size

of the input vector. In each hidden layer, the number of hidden units is set to 1024,

based on the experiments. To avoid over�tting, a dropout of 0.25 is set. For deep feed

forward neural networks, it is observed that the performance on test data is improved

from 95.94% to 96.72% (a di�erence of 0.78%), with the recall, precision and f-measure

of 0.969, 0.974 and 0.973 respectively. k-Fold cross validated paired t-test shows that,

the performance of both the systems is not statistically di�erent. Using selected features,

there is a signi�cant improvement in the performance of SVMs, whereas the performance

of RFs and DFFNs do not di�er signi�cantly. Hence, the proposed set of selected feature

set is e�cient in identi�cation of phonological process: aspiration and unaspiration in

children speech from NITK Kids Speech Corpus.

5.6.4 Contributions and Limitations

Here, an attempt has been made to characterize the phenomenon of consonant aspira-

tion and unaspiration. It is observed that a `pu� of air' upon the release at the place of

constriction in the vocal tract, during pronunciation of consonants, has di�erent e�ect on

the vowel, following the consonant during aspiration and unaspiration. This di�erence is

observed from the excitation source signal obtained from the speech signal, using linear

prediction residual. Parameters such as glottal pulse, duration of open, close and return

phases, slope of open, and return phases, along with their statistical variations, are used

for characterization of the phenomenon of aspiration and unaspiration. Some signal level
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properties such as duration of burst, ratio of highest to lowest strength of signal and voice

onset time are also explored as features. The proposed features are e�cient in classi�ca-

tion of aspiration and unaspiration on TIMIT dataset, Indian datasets (IIITH-Marathi

and IIITH-Hindi dataset). Proposed features are further used for the identi�cation of

phonological process aspiration and unaspiration in children speech (NITK Kids Speech

Corpus). The results show that, the proposed features are highly e�cient in characteriz-

ing pronunciation error where aspiration and unaspiration occurs. Further, the study can

be extended to the applicability of the proposed features in characterizing the aspiration

of phones in di�erent languages, such as Cantonese, Eastern American, Indian, Thai,

Korean, where aspiration is prominent. The accuracy of the system can be improved by

using the combination of proposed features along with F0 pro�les, F0 onset and land-

mark based features (Patil and Rao, 2013; Francis et al., 2003). In Danish and Korean

languages, F0 is consistently higher, after aspirated consonants, than those of unaspi-

rated consonants (Jeel, 1975) (Han and Weitzman, 1970). Analysis of the F0 pro�les,

F0 onset in Indian languages may help in discriminating the aspirated and unaspirated

speech units.

5.7 Summary

This chapter gives the implementation details of characterization and identi�cation of

some important phonological processes. Some of the commonly observed phonological

processes, such as, �nal consonant deletion, nasalization and nasal assimilation, voicing

and unvoicing, s and /sh/ replacement, vowel deviations, aspiration and unaspiration, are

considered in this study. First, features speci�c to each phonological process are identi�ed.

Various spectral, prosodic and excitation source features are explored for the proposed

task. DTW comparison is used to identify the region of mispronunciation. MFCC features

are used to build the baseline system for each phonological process. For identi�cation

of �nal consonant deletion, MFCCs and LPCCs are explored; nasalization and nasal

assimilation are identi�ed using HNGD spectrum; voicing and unvoicing identi�cation is

done with pitch and ZFF signal; various spectral properties of the power spectrum of

/s/ and /sh/ are considered for identi�cation of their respective replacements; properties

of excitation source features are explored for e�cient discrimination of aspiration and

unaspiration. Similarly, Goodness Of Pronunciation (GOP) scores are estimated from the

GMM-HMM based phone recognition models and are used for vowel deviation detection,

180



where log-posterior probability scores are used as GOP.
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Chapter 6

Case Study: Mispronunciation

Processing and Children Gender

Identi�cation

6.1 Introduction

Phonological processes disappear after a certain age (around 8 years). If any of the

phonological processes persists beyond that age, then it may lead to a phonological disor-

der (Grunwell, 1982). Phonological disorder represents an improper development of some

of the regions of the vocal tract and/or lack of neuro-motor control. The SLPs, before

addressing phonological processes, analyse children's speech from di�erent age groups.

This analysis helps in the study of vocal tract development and speech learning ability

of a child, with respect to a certain age. It is essential to analyse the properties of such

phonological processes and identify the features e�cient in discriminating the correct

pronunciation of a phoneme and mispronounced counterpart. Based on the availability

of speech dataset of a disordered person, an attempt has been made, in this work, to

analyse and identify the features that discriminate a substitution process, where alveolar

approximant /r/ is substituted with voiced dental consonant (/∂/).

This work, has also addressed the problem of children gender identi�cation. Adult gen-

der identi�cation is easy when compared to the gender identi�cation in children. Many

research attempts have been made for gender identi�cation in adults using various clas-

si�cation approaches and feature combinations (Metze et al., 2007; Li et al., 2010; Parris

and Carey, 1996). As of today, very few approaches have focused on children gender iden-

ti�cation. Children's speech can be characterized by higher pitch and format frequencies

compared to the adult speech. Gender identi�cation task from children's speech is di�cult

as there is no signi�cant di�erence in the acoustic properties of male and female children.
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6.2 Feature Analysis for Rhoticism

Phonological processes are the result of error in pronunciation. For automatic detection

of these processes, the system should be able to identify the mispronounced phoneme

in pronounced word. This goal may be achieved using the features that can clearly

discriminate correctly pronounced phoneme and mispronounced phoneme. In this work,

a phonological process `substitution' has been chosen for detailed study. The features

that discriminate a substitution process, where alveolar approximant /r/ is substituted

with voiced dental consonant (/∂/) are identi�ed. For this task, various acoustic and

pitch related features are evaluated using di�erent feature comparison techniques such as

Bhattacharya distance and scatter plot.

6.2.1 Dataset

The dataset used in this work consists of mispronounced speech samples collected from

a kid of age 15 years, having articulation/phonological disorder and speak Kannada

as native language. Speech Language Pathologists (SLPs) from Department of Speech

and Hearing, Manipal College of Health Professions, Manipal, Karnataka analyzed his

speech and observed that the kid has a tendency to substitute alveolar approximant /r/

with voiced dental consonant (/∂/). This indicates the presence of phonological disorder

'rhotacism'. To con�rm the presence of mispronunciation patterns, most commonly used

words in Kannada language are considered in which /r/ is present. The reason behind

selecting commonly used words is to avoid the errors in pronunciation of words due to ner-

vousness or hesitation. For each language, SLPs have designed the set of six to eight such

commonly used words for each phonological disorder. Pronunciations of these words are

recorded from the patient to con�rm the presence of phonological disorders. Six words se-

lected by the SLPs for the analysis of 'rhotacism' are given in Table 6.1. 10 pronunciations

of each word is recorded from the patient, where it is observed that in each pronunciation

of word /r/ is substituted with /∂/. This con�rms that, the patient is su�ering from

'rhotacism'. Hence, the dataset consists of a total of sixty pronunciations of six words

(10 pronunciations for each word) for mispronounced words. The corresponding correctly

pronounced speech samples are recorded from persons who do not have any pronunciation

di�culty.
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Table 6.1: List of correctly pronounced and mispronounced words along with phoneme substitution

Sl. No. Correct word Mispronounced
word

Substitution
Observed

Phoneme
Substitution

1 yaru yadu ru-du /r/-/∂/

2 sara sada ra-da /r/-/∂/

3 tare tade re-de /r/-/∂/

4 ardha adha ra-da /r/-/∂/

5 guri gudi ri-di /r/-/∂/

6 aatura aatuda ra-da /r/-/∂/

6.2.2 Methodology

The process of feature analysis is divided into three stages: segmentation, feature extrac-

tion and feature analysis. Fig. 6.1 illustrates the proposed framework for speech feature

analysis for mispronunciation.

Childrens' Speech

Segmentation Feature Extraction Feature Analysis

Figure 6.1: Proposed framework for feature analysis of the mispronounced phonemes

A Segmentation

In this phase, the feature level comparison of correctly pronounced phoneme and mispro-

nounced phoneme is carried out. For this purpose the correctly pronounced phonemes

and corresponding mispronounced phoneme are segmented manually.

B Feature Extraction

In this task, MFCCs, formants and pitch related features are extracted from the phonemes

for intended study. Spectral �ltering algorithm (refer Section 2.6.2 A) is used, to reduce

the in�uence of high pitch on the vocal tract response for the e�cient spectral analysis.

This subsection explains process of feature extraction in detail.

• Mel Frequency Cepstral Coe�cients: MFCC features approximate the human

auditory response more closely and claim to be robust in recognition tasks, related

to the human voice (Tiwari, 2010). Hence, in this work, 13 MFCCs features are

extracted from the correct phonemes and corresponding mispronounced phonemes.
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• Energy: One of the standard features used in Automatic Speech Recognition (ASR)

is the energy of the speech signal. Energy is the summation of a square of each am-

plitude in a frame (Rupela and Manjula, 2007). Vowels re�ect high energy compared

to voiced consonants, while unvoiced consonants have lower energy than vowels and

voiced consonants. There may be a signi�cant di�erence in the energy of correct

phoneme from the corresponding mispronounced phoneme. Hence, it is a candidate

feature for this study.

• Formants: Formant represents the vocal tract response. Each phoneme is pro-

nounced by the unique articulation of the vocal tract, hence there is a signi�cant

di�erence in the number and the position of their formant frequencies. Along with

formant frequencies, bandwidth and/or magnitude of the spectrum, in particular

frequency range, is also helpful in encoding the properties of the phoneme, hence

formant frequencies with corresponding magnitude may be useful for discrimination

(Welling and Ney, 1998). First four formants extracted using approach (Story and

Bunton, 2016) are considered in this study.

• Pitch: The phonemes which are substituted in place of the correct phoneme may

have signi�cant di�erence in their pitch. Hence, pitch can be useful in discrimi-

nating the mispronounced phoneme from the correctly pronounced phoneme. Four

pitch values namely; average pitch, minimum pitch, maximum pitch and standard

deviation are extracted using PYIN algorithm (Mauch and Dixon, 2014) for the

feature analysis.

C Feature analysis

The proposed features are extracted from correctly pronounced phoneme and mispro-

nounced phoneme. Scatter plots are used, for each correct and mispronounced phoneme,

to compare MFCCs and formants. Histogram comparison is performed for features: max-

imum pitch, minimum pitch, average pitch and standard deviation using Bhattacharyya

coe�cient. Bhattacharyya coe�cient is an approximate measurement of the amount of

overlap between two statistical samples (Comaniciu et al., 2003). It can be computed

using equation 6.1.

bhattacharyya =
n∑
i=1

√
(Σai.Σbi) (6.1)
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Figure 6.2: Plot of MFCC feature energy (M1) against the second MFCC feature (M2) for /r/ and /∂/
(a) Scatter plot for syllable 'ru' and '/∂/u'. (b) Scatter plot for syllable 'rru' and '/∂/hu'.
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Figure 6.3: Plot of formant frequency F1 and
F2 for the phonemes /r/ and /∂/

Figure 6.4: Histogram of maximum pitch for
phoneme /r/ and /∂/

Where considering the samples a and b, n is the no of partitions and Σai, Σbi are the

number of members of sample a and b in the ith partition. The smaller value of overlap

represents better similarity between two statistical samples. Hence, the coe�cient can be

used to determine relative closeness of two phoneme samples.

6.2.3 Results and Discussion

A total of sixty speech samples are chosen for mispronounced phoneme /r/ and substituted

phoneme voiced dental consonant (/∂/). Speech signal is divided into the frames of length

25ms with 10ms of overlapping. MFCCs, formants and pitch related features are extracted
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Table 6.2: Di�erent features used to discriminate mispronunciation from the correct ones and their
performance

S. No. Features Percentage of discrimination

1 Energy + M2 75

2 Energy + M3 45

3 Energy + M4 65

4 Energy + M5 20

5 Energy + M6 15

6 Energy + M13 30

7 Minpitch 35

8 Maxpitch 50

9 Averagepitch 40

10 Standared Deviation 35

11 Formant2 Vs Formant1 45

12 Formant3 Vs Formant1 35

13 Formant4 + Formant1 10

from each frame.

13 MFCC features are extracted from speech samples. M1, M2, M3, M4, M5, M6, M7,

M8, M9, M10, M11, M12 and M13 represents 13 MFCC features, where M1 represents

energy and M2 - M13 represent other higher order cepstral coe�cients, respectively. The

scatter plot of energy feature (M1) is plotted against other cepstral coe�cients (M2 -

M13) for /r/ and /∂/, i.e. scatter plot of M1 against M2, M1 against M3 and so on. Fig.

6.2 shows the scatter plot for the value energy (M1) against cepstral coe�cients (M2), and

the plot clearly discriminates the phonemes. Similarly, when M1 is plotted against M4,

M7 and M8, they give clear discrimination between /r/ and /∂/. Four formants, namely;

F1, F2, F3, F4, are the four formant frequencies used in this study. The scatter plots

of F1 against other formants frequencies (F2-F4) are plotted for correctly pronounced

phonemes and corresponding to this, mispronounced phonemes are plotted. Fig. 6.3

shows the scatter plot of F1, plotted against F2; it is observed that the F1 and F2 can

clearly discriminate the phonemes.

Maximum, minimum, average and standard deviation of pitch values are used for the

histogram comparison using Bhattacharyya coe�cient (Comaniciu et al., 2003). Similarly
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Table 6.3: Correctly pronounced and mispronounced words with the features that clearly discriminate
them

S.
No.

Correct
Word

Correct
Phoneme

Mispronounced
words

Mispronounced
phoneme

Discriminating Features

1 yarru /r/ yadu /∂/ M2, M4, M8, MinPitch, F2

2 sarra /r/ sada /∂/ M2, M4, M13, M7, SD, F2

3 tarre /r/ tade /∂/ M2, M3, M4, M11, F3, F2

4 arrda /r/ arda /∂/ M7, M4, M8, MinPitch, F3

5 guri /r/ gudi /∂/ M2, M9, M8, M13, F2

6 aatura /r/ aatuda /∂/ M4, M5, M7, M8, AvgPitch

histograms of other pitch features are also compared. The distance value of 0, indicates

a perfect match and of 1, perfect mismatch. The threshold value is �xed at 0.5 to distin-

guish the features that discriminate the two phonemes (Meng and Kerekes, 2012). The

distance value above 0.5 indicates the distinction of the two phonemes. Fig. 6.4 shows

the histograms for the phonemes /r/ and /∂/. The Bhattacharyya coe�cient obtained

for these two max pitch histograms is 0.75 which shows that max pitch value clearly dis-

criminates the two phonemes. Experiments are carried on sixty correctly pronounced and

mispronounced samples of six words (refer Table 6.3). Table 6.2 shows di�erent combina-

tions of features used and corresponding percentage of discrimination. It shows that the

�rst MFCC feature i.e. energy (M1) and M2 discriminate 75% i.e., 45 samples out of 60

samples. M1 and M4 clearly discriminate 65% samples. From the results, it is observed

that using MFCC features M1, M2 and M4 give better discrimination compared to other

features.

6.2.4 Contributions and Limitations

A simple approach is proposed for the analysis of features that may discriminate the

correctly pronounced and mispronounced phonemes. For analysis alveolar approximant

/r/ with dental consonant /∂/ is considered. Spectral and pitch related features are used

for the task. MFCC feature M1, M2 and M4 are observed, to discriminate the phonemes

properly. Similarly, feature analysis for di�erent phonemes paves a way for further research

in the areas of identi�cation and classi�cation of other mispronounced phonemes. Further,

work can be extended to explain more features for other various phonological processes.
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6.3 Gender Identi�cation from Adult Speech

Gender identi�cation of a person can be done using various modes like facial expressions,

gait analysis and body gestures (Kaya et al., 2017). Sometimes dressing styles can also

be used for the task (Shah et al., 2009). These modes of gender identi�cation can be

easily deceived by impersonation or con�ict of interest (Shah et al., 2009). As is known,

speech is a natural way of communication, with paralinguistic information, hence it is

di�cult to impersonate (Shah et al., 2009) (Kaya et al., 2017). Distinction between male

and female speech can be measured from the physiological parameters of their oral cavity.

The ratio of the total length of the vocal tract of female to that of male is 0.8 (Fant,

1976). Various other laryngeal properties are also analyzed for this purpose (Titze, 1987,

1989). It is observed that, anatomically, the thickness of the female larynx is lesser than

that of male. There is a signi�cant di�erence in the angle of thyroid laminae, vertical

convergence angle in the glottis, resting angle in the glottis and so on (Titze, 1987, 1989).

These di�erences in the physiological parameters of the male and female vocal tract,

result in the di�erence in the acoustic properties of the speech signal, as the di�erence

in the physiological parameters a�ects the acoustic properties of the speech signal. The

features extracted from the acoustic signals of male and female may give the clue of gender

information. In this paper, an attempt has been made to discriminate the gender of male

and female using MFCCs, LPCCs, F0 and Glottal Closure Instants (GCIs), along with

its statistical variations. As female vocal folds are thinner compared to those of male,

during vocal folds' vibration, the GCIs of female are spaced close in comparison to the

GCIs of male (Drugman et al., 2012). F0 is high in female compared to that of the male

(Drugman et al., 2012). These features give a clear view of adult gender recognition from

human speech. Support vector machines (SVMs) and Random Forests (RFs) are used for

the classi�cation tasks.

6.3.1 Speech Dataset

The speech corpus of male and female voice is made available freely for educational pur-

poses by Western Michigan University (Hillenbrand et al., 1995). The same is used for

this task. The speech dataset is recorded from 45 male and 48 female speakers. 12

vowel sounds pronounced in American English are recorded from each speaker. The

vowel sounds recorded are: /ae/ in "had", /ah/ in �hod", /aw/ in "hawed", /eh/ �head",
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Figure 6.5: Flow diagram of the proposed approach for gender identi�cation from adult speech

/er/ in "heard", /ei/ in "hayed", /ih/ in "hid", /iy/ in "heed", /oa/ in �hoed", /oo/ in

"hood", /uh/ in �hud" and /uw/ as in "who'd�. Total recordings of 540 male and 576

female speakers are recorded.

6.3.2 Methodology

The proposed approach is divided into two stages. Figure 6.5 shows the �ow diagram.

The �rst stage involves feature extraction from speech signal of male and female speak-

ers. Mel-frequency Cepstral Coe�cients (MFCCs), Linear Predictive Cepstral Coe�cients

(LPCCs), Pitch (F0) and Glottal Closure Instants (GCIs) are extracted. In the second

stage, the e�ectiveness of various combinations of the extracted features is evaluated using

Support Vector Machines (SVMs) and Random Forests (RFs).

A Feature Extraction

Parametric representation of the speech signal, which provides a meaningful set of values,

e�cient for performing one or more tasks, is known as feature extraction. Features e�cient

in discriminating the gender from the speech are proposed. MFCCs, LPCCs and F0 are

well known features used for gender identi�cation (Gupta et al., 2016; Qawaqneh et al.,

2017). Along with these features duration of Glottal Closure Instants (GCIs) and its

statistical variations are used for the gender identi�cation in this work.

• Mel-frequency Cepstral Coe�cients (MFCCs): MFCCs are one of the widely

used features in gender discrimination (Tiwari, 2010). It mimics the human per-

ceptual and auditory systems. Hence, it plays a signi�cant role in various speech

related applications like speech recognition, speaker recognition, etc (Murty and
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Yegnanarayana, 2006). A total of 39 features are extracted consisting of 13 MFCCs,

13 ∆MFCCs and 13 ∆∆MFCCs appearing in the same order.

• Linear Predictive Cepstral Coe�cients (LPCCs): LPCs are the coe�cients

of an auto-regressive model of a speech frame (Makhoul, 1975). Levinson-Durbin

algorithm is used for the task (Zbancioc and Costin, 2003). A total of 39 features

are extracted consisting of 13 LPCCs, 13 ∆LPCCs and 13 ∆∆LPCCs, arranged

in the same order. LPCCs are well known for their performance in many speech

related tasks.

• Pitch (F0): Pitch estimates a measure of rate of vocal folds' vibration from speech

signal. Male have thicker vocal folds compared to females. F0 for male drops down

drastically during attainment of puberty (Pépiot, 2014). In general, the range of F0

for male varies between 80 Hz to 200 Hz, whereas, for female the range is between

150 Hz to 300 Hz (Pépiot, 2014). Probability distribution of male and female pitch

is shown in Fig 6.6. Hence, male and female can be easily distinguished using pitch.

In this work, pitch is extracted using PYIN (Probabilistic YIN- algorithm) (Mauch

and Dixon, 2014).

• Glottal Closure Instants (GCIs): Zero Frequency Resonator (ZFR) based ap-

proach is used for GCI estimation from the speech signal (Drugman et al., 2012).

It focuses on the response of ZFRs which guarantee the minimal in�uence of vocal

tract resonances (Murty and Yegnanarayana, 2008). Duration of Glottal Closure

Instants (GCIs) and its statistical variations, namely; minimum, maximum, and

standard deviation, along with the number of GCIs per frame, are used for the gen-

der recognition task. Female vocal folds are thin compared to that of male, hence
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in vocal fold vibration the GCIs of females are spaced close with respect to males

(Drugman et al., 2012). Probability distribution of GCI duration values of male and

female speakers is shown in Fig 6.7.

B Classi�cation

The classi�cation task involves the implementation of Supprot Vector Machine (SVMs)

and Random Forest (RF) classi�ers for gender identi�cation. SVMs are very commonly

used for this task, whereas, an attempt has been made to explore the role of ensemble

classier Random Forest (RFs) for gender classi�cation.

• Support Vector Machines (SVMs): Support Vector Machine is a widely used

classi�er, for binary classi�cation. It identi�es a decision boundary between two

classes, by �tting a large-margin hyperplane between them (Hsu et al., 2003). Data

instances that are close to hyperplane are called support vectors. Selection of suit-

able kernel function is essential to model the decision boundaries, complex in nature.

Gender classi�cation is binary in nature. Here, SVM with radial basis kernel is used,

as it is e�cient in modeling the decision boundaries complex in nature.

• Random Forest (RFs): The RF is a combination of multiple Decision Trees (DT),

where each tree is built from an independently sampled random feature set from

the complete input features (Breiman, 2001; Ramteke et al., 2018). It makes use of

bagging, to generate a training set by arbitrarily drawing a replacement from the

complete training dataset. This is done for each feature combination considered.

Class label is assigned to a test sample by taking the most popular class, voted by

all the tree predictors of the forests (Breiman, 2001).

6.3.3 Results and Discussion

Western Michigan University's Gender dataset is used for the experimentation (refer Sec-

tion 5.2.1). The role of spectral features, namely 39 MFCCs, 39 LPCCs; F0 and ex-

citation source feature: duration of Glottal Closure Instants (GCIs) and its statistical

variations, are explored. Support vector machines (SVMs) and Random forests (RFs)

are used to evaluate the performance of considered feature sets. To measure the per-

formance of the classi�cation, various performance measures used are; accuracy, recall,

precision, F-measure and ROC-area. For any binary classi�cation problem, the number
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of instances correctly identi�ed are considered as True Positive (TP). If the identi�ed

instance is classi�ed as correct but its actual label is incorrect, it is referred to as False

Positive (FP). If the identi�ed instance is classi�ed as incorrect but its actual label is

correct, it is referred to as False Negative (FN). Precision (P) is the ratio of TP to the

sum of TP and FP. Recall is the ratio of TPs to the sum of TPs and FNs. F-measure

is represented as the harmonic mean of recall and precision. If the values of all these

parameters is close to 1, it represents that the proposed system is precise and stable.

To measure the signi�cance of improvement in the performance of classi�cation, K-fold

cross validated paired t-test is performed (refer Section 2.6.4 A). For this, �ve times, the

dataset is divided into 5-folds, where each time the dataset is divided into �ve folds with

a split of 80% and 20%. Each classi�er is trained for every combination of the feature set

and the accuracy is recorded. The performance of classi�ers trained on various feature

combinations is compared using K-fold cross validated paired t-test, where if the p-value

obtained is below the signi�cance level, there is enough evidence that the performance of

two classi�ers are signi�cantly di�erent. A commonly accepted value of signi�cance level

(alpha) is 5%, or 0.05.

SVMs and RFs are trained using various combinations of features. The baseline system

is built using 13 MFCCs. Table 6.4, shows the performance of random forest (RFs)

classi�er using di�erent combinations of features. 95.18% accuracy is achieved using 13

MFCCs with precision, recall, F-measure and ROC-area of 0.936, 0.954, 0.945 and 0.990

respectively. Combination of F0, 5 GCI statistical features, 13 MFCCs and 13 LPCCs,

improves the performance of the system by 1.73%, giving the highest accuracy of 96.908%.

When the performance of this system is compared with the baseline system using K-

fold cross validated paired t-test, it results in p-value less than 0.05. This shows that,

statistically there is a signi�cant improvement in the performance. The ∆ MFCCs and ∆∆

MFCCs, are observed to improve the performance of the many speech tasks (Karpagavalli

and Chandra, 2016). Same can be observed with the ∆ LPCC and ∆∆ LPCC features

(Karpagavalli and Chandra, 2016). Hence, the combination of F0, 5 GCI statistical

features, 39 MFCCs and 39 LPCCs is considered for the analysis. The performance

of the system is improved by 0.95% compared to the baseline system, with the highest

accuracy of 96.13%. K-fold cross validated paired t-test, shows that the improvement

is statistically signi�cant. From Table 6.4, it is observed that, the performance of RFs

trained on {F0 + 5 GCI statistical features + 13 MFCCs + 13 LPCCs} and {F0 + 5 GCI
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Table 6.4: Performance analysis of random forest (RFs) using various feature combinations

Featured Considered Accuracy Male (%) Accuracy Female (%) Average Accuracy (%) Recall Precision F-Measure ROC Area

F0 82.000 90.171 86.562 0.866 0.866 0.865 0.912

GCI Stats.(5) 87.576 86.839 87.164 0.872 0.873 0.872 0.945

MFCCs(13) 93.561 96.453 95.178 0.936 0.954 0.945 0.990

MFCCs(39) 91.767 96.709 94.530 0.945 0.946 0.945 0.989

LPCCs(13) 90.617 93.609 92.290 0.923 0.923 0.923 0.979

LPCCs(39) 87.454 93.271 90.707 0.907 0.907 0.907 0.973

MFCCs(13) + LPCCs(13) 95.205 97.289 96.371 0.964 0.964 0.964 0.994

MFCCs(39) + LPCCs(39) 93.031 97.079 95.294 0.953 0.953 0.953 0.992

MFCCs(13) + F0 94.521 97.136 95.984 0.960 0.960 0.960 0.994

MFCCs(39) + F0 92.310 96.814 94.828 0.948 0.949 0.948 0.991

LPCCs(13) + F0 93.197 96.182 94.866 0.949 0.949 0.949 0.991

LPCCs(39) + F0 90.415 95.524 93.272 0.933 0.933 0.933 0.988

MFCCs(13) + GCI Stats.(5) 95.128 96.798 96.062 0.961 0.961 0.961 0.994

MFCCs(39) + GCI Stats.(5) 94.606 95.805 95.277 0.953 0.953 0.953 0.992

LPCCs(13) + GCI Stats.(5) 94.553 95.649 95.166 0.952 0.952 0.952 0.991

LPCCs(39) + GCI Stats.(5) 93.796 94.324 94.092 0.941 0.941 0.941 0.988

MFCCs(13) + LPCCs(13) + F0 95.148 97.711 96.582 0.966 0.966 0.966 0.995

MFCCs(39) + LPCCs(39) + F0 93.006 97.468 95.5012 0.955 0.955 0.955 0.993

MFCCs(13) + LPCCs(13) + GCI Stats.(5) 95.914 97.331 96.707 0.967 0.967 0.967 0.995

MFCCs(39) + LPCCs(39) + GCI Stats.(5) 95.063 96.256 95.730 0.957 0.957 0.957 0.993

MFCCs(13) + LPCCs(13) + F0 + GCI Stats.(5) 95.910 97.695 96.908 0.969 0.969 0.969 0.996

MFCCs(39) + LPCCs(39) + F0 + GCI Stats.(5) 95.055 96.973 96.128 0.961 0.961 0.961 0.994
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Table 6.5: Performance analysis of support vector machines (SVMs) using various feature combinations

Featured Considered Accuracy Male (%) Accuracy Female (%) Average Accuracy (%) Recall Precision F-Measure ROC Area

F0 81.324 89.817 86.073 0.861 0.861 0.860 0.856

GCI Stats.(5) 84.004 81.307 82.496 0.825 0.828 0.825 0.827

MFCCs(13) 73.282 99.888 88.160 0.882 0.902 0.878 0.866

MFCCs(39) 87.074 99.747 94.161 0.942 0.947 0.941 0.934

LPCCs(13) 75.225 85.652 81.056 0.811 0.810 0.810 0.804

LPCCs(39) 72.464 84.921 79.429 0.794 0.794 0.793 0.787

MFCCs(13) + LPCCs(13) 96.072 99.090 97.759 0.978 0.978 0.978 0.976

MFCCs(39) + LPCCs(39) 96.258 98.752 97.652 0.977 0.977 0.976 0.975

MFCCs(13) + F0 52.17 99.977 78.9176 0.789 0.847 0.773 0.761

MFCCs(39) + F0 69.629 99.977 86.600 0.866 0.861 0.892 0.848

LPCCs(13) + F0 86.519 91.799 89.472 0.895 0.895 0.895 0.892

LPCCs(39) + F0 87.034 90.893 89.191 0.892 0.892 0.892 0.890

MFCCs(13) + GCI Stats.(5) 87.961 99.830 94.598 0.946 0.950 0.945 0.939

MFCCs(39) + GCI Stats.(5) 87.718 89.788 88.876 0.889 0.889 0.889 0.942

LPCCs(13) + GCI Stats.(5) 89.807 92.313 91.209 0.912 0.912 0.912 0.911

LPCCs(39) + GCI Stats.(5) 90.103 91.786 91.045 0.910 0.911 0.910 0.909

MFCCs(13) + LPCCs(13) + F0 77.878 99.853 90.166 0.902 0.916 0.900 0.889

MFCCs(39) + LPCCs(39) + F0 89.423 98.991 94.773 0.948 0.950 0.947 0.942

MFCCs(13) + LPCCs(13) + GCI Stats.(5) 97.607 99.396 98.607 0.986 0.986 0.986 0.985

MFCCs(39) + LPCCs(39) + GCI Stats.(5) 97.197 98.876 98.136 0.980 0.981 0.981 0.980

MFCCs(13) + LPCCs(13) + F0 + GCI Stats.(5) 83.280 99.766 92.499 0.925 0.933 0.924 0.915

MFCCs(39) + LPCCs(39) + F0 + GCI Stats.(5) 90.346 99.118 95.252 0.953 0.955 0.952 0.947
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statistical features + 39 MFCCs + 39 LPCCs} are highest amongst the RFs trained on

other feature combinations. The accuracies of both the systems are very close and di�er

by 0.78%, where it is important to prove that the performances are statistically di�erent.

The p-values obtained from K-fold cross validated paired t-test performed on both the

systems, it is observed that there is a signi�cant di�erence in their performance. Hence,

it can be concluded that the combination of F0, 5 GCI statistical features, 13 MFCCs

and 13 LPCCs are su�cient for gender identi�cation using RFs.

Table 6.5, shows the performance of SVMs on gender identi�cation using di�erent

combinations of features. For SVMs, baseline system built on 13 MFCCs achieved an

average accuracy of 86.07%, with the precision, recall, F-measure and ROC-area of 0.861,

0.861, 0.860 and 0.856 respectively. With the combination of 13 MFCCs and 13 LPCCs,

the performance of the system is improved to 97.75%. This shows that LPCCs play an

important role in gender identi�cation. With the feature combination of 13 MFCCs, 13

LPCCs, and 5 GCI features, a highest accuracy of 98.63% is achieved. The performance

of this system is compared with the SVMs trained on di�erent feature combinations using

K-fold cross validated paired t-test. The statistical test showed that, the performance

is statistically di�erent compared to the performance of SVMs trained on other feature

combinations. It is observed that these features are su�cient to discriminate the gender

from speech. Performance of SVMs is observed to be little higher than that of RF.

From the results of both classi�ers, it is observed that the accuracy of female speakers'

recognition is higher compared to that of the male. This is due to the fact that some of

the male subjects may have thin vocal folds which resemble the female properties.

Existing approaches in the literature have explored various features and classi�ers for

gender classi�cation. Higher accuracies have been claimed on various datasets (Lee and

Kwak, 2012; Bahari and Van Hamme, 2011; Zeng et al., 2006; Sedaaghi, 2009; Abdollahi

et al., 2009). Experiments have also been conducted on Western Michigan University gen-

der corpus, using various LPC orders and ANN. Highest performance of 93.3% is claimed,

using LPC-18 (Yusnita et al., 2017). The proposed approach in this thesis achieves highest

accuracy of 96.908%, 98.607% using RRs and SVMs respectively. Other approaches are

implemented on di�erent datasets (Lee and Kwak, 2012; Bahari and Van Hamme, 2011;

Zeng et al., 2006; Sedaaghi, 2009; Abdollahi et al., 2009), hence a direct comparison with

them may not be feasible.
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6.3.4 Contributions and Limitations

Signi�cant di�erence in the physiological parameters of vocal folds', of males and females,

results in variations in the acoustic properties of speech produced. The vibration of vocal

folds and duration of successive closing of vocal folds vary in male and female speakers.

In this work, the role of excitation source features, namely GCIs, have been proposed,

with the combination of spectral features (MFCCs and LPCCs); prosodic feature F0, for

gender identi�cation. Random forest is observed to achieve a frame level average accuracy

of 96.70% using feature combination 13 MFCCs, 13 LPCCs, Pitch (F0) and GCI along

with its statistical variations (5). SVMs achieve an average accuracy of 98.607% with the

combination of features 13 MFCCs, 13 LPCCs and GCI along with its statistical variations

(5). Results have shown that, the proposed set of features is e�cient in discriminating

gender from speech. At present the proposed features are tested on only one dataset,

further these features can be tested on di�erent standard datasets available for gender

identi�cation. The adult gender identi�cation results are presented here, to show how

di�cult the gender identi�cation is in children, when compared with that of adults.

6.4 Gender Identi�cation from Childrens' Speech

Child's gender identi�cation is a di�cult task as there is no signi�cant di�erence in the

acoustic properties of male and female children (Potamianos and Narayanan, 2003). Dif-

ferent combinations of spectral, prosodic and excitation source features are explored for

the task. Spectral features, namely MFCCs, prosodic features such as pitch, are mostly

used in many approaches towards this task. Study of over 21 frequency sub-band re-

gions of the spectrum show that the frequency range, less than 1.8 kHz and greater than

3.8 kHz, is e�cient in discriminating gender in children (Safavi et al., 2014). Frequen-

cies greater than 1.4 kHz are useful for the youngest children (Safavi et al., 2014). The

openSMILE feature set, a combination of spectral features, such as MFCCs, log mel-

frequency band; line spectral pairs and prosodic features like F0, along with its statistical

variations, shimmer and jitter, have shown signi�cance in children's gender identi�cation

(Kaya et al., 2017). As of today, very few approaches have focused on gender identi�-

cation from children's speech. One of the attempts includes the use of GMM-UBM and

GMM-SVM systems (Safavi et al., 2014). In this, the age-dependent and age-independent

analysis is done (Safavi et al., 2014). Both GMM-UBM and GMM-SVM are implemented
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on di�erent age group criteria and then the performance is examined (Safavi et al., 2014).

6.4.1 Database Used

A CMU Kids Corpus

The database used in this work is CMU Kids Corpus, which consists of sentences read

aloud by both male and female children in English language (Eskenazi et al., 1997). The

database has been originally designed to create a training set of children's speech for the

SPHINX II automatic speech recognizer, under the LISTEN project at Carnegie Mellon

University (CMU). There are a total of 818 audio records. The children range in age from

6 years to 11 years. 544 female and 274 male children are recorded.

B NITK Kids Corpus

The children speech recordings from NITK Kids' Speech Corpus is considered for gender

identi�cation between the age of 31
2
to 61

2
years (Ramteke et al., 2019). The dataset

consists of speech recordings from 60 male children and 60 female children.

6.4.2 Methodology

The proposed framework for the identi�cation of children's gender is shown in Fig. 6.8.

The approach is divided into three stages. The �rst stage involves pre-processing the

speech signal. In pre-processing, the silences and unvoiced regions in the speech signal

are removed. Second stage is feature extraction. The voiced regions are considered for

the feature extraction, where the features e�cient in gender classi�cation such as Mel-

frequency Cepstral Coe�cients (MFCCs), Linear predictive cepstral coe�cients (LPCCs),

Formants, Pitch, Shimmer and Jitter, are extracted. To reduce the e�ect of high pitch,

spectral �ltering is performed on children speech before the extraction of spectral features

namely MFCCs and Formants (Story and Bunton, 2016). Homomorphic �ltering is used

to reduce the aliasing e�ect of autocorrelation sequence due to short pitch before LPCC

feature extraction (Rahman and Shimamura, 2005). In the last step, the e�ciency of var-

ious combinations of the extracted features is evaluated using di�erent classi�ers namely

Arti�cial Neural Networks (ANNs), Deep Neural Networks (DNNs) and Random Forest

(RFs).
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Figure 6.8: Flow diagram of the proposed children's gender identi�cation

A Silence and unvoiced speech removal

Mainly, gender related information lies in the voiced region of speech. The speech record-

ings of children consists of many silence and unvoiced regions. The silence and unvoiced

speech regions are removed from the speech using short time energy feature. Low energy

is observed in unvoiced and silence regions whereas voiced regions are characterized by

high energy values.

ET =
N∑
n=1

s2(n) (6.2)

where, ET is the energy of T th frame. N is the length of frame (number of samples in

a frame). The threshold is set based on the average energy (avg_energy) value. It can

be represented using,

thr_avg_energy = a ∗ avg_energy (6.3)

where, a is constant, which varies from 0 to 1. thr_avg_energy represents threshold

value for the segmentation. From the analysis, threshold value is set 0.15 (Giannakopou-

los, 2009). The energy values below threshold are considered as either silence or unvoiced

and these frames are removed.
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B Feature Extraction

In this work, e�ectiveness of 6 features (MFCCs, LPCCs, Formants, pitch, shimmer &

jitter) and their combinations is considered for the evaluation.

• Mel-frequency Cepstral Coe�cients (MFCCs): The most commonly used

acoustic features in gender classi�cation are MFCCs (Tiwari, 2010). A total of

39 MFCC features are extracted from each frame of speech signal (13 MFCCs, 13

∆MFCCs and 13 ∆∆MFCCs) and used for children gender identi�cation.

• Linear predictive cepstral coe�cients (LPCCs): LPCs represents the coe�-

cients obtained from an auto-regressive model of a speech frame (Makhoul, 1975).

The all-pole �lter is the representation of vocal tract transfer function. LPCCs are

well known for their performance in many speech related tasks. Hence, they are

considered for the analysis.

• Formants: Formant frequencies change with di�erent vocal tract con�gurations

corresponding to di�erent resonances (Holmes et al., 1997). The di�erence can be

observed in formant frequencies of adult male and female (Simpson, 2009). As the

vocal tract length increases, the values of formant frequencies reduces (Holmes et al.,

1997). Children have higher formant frequencies than both female and male adults.

The formant extraction is done using LPC analysis method (Snell and Milinazzo,

1993). Four formants are considered for the classi�cation task.

• Pitch: Pitch is the rate of vocal folds' vibration also known as the fundamental

frequency of speech signal (Mauch and Dixon, 2014). For children the approximate

range of pitch values is 200Hz to 350 Hz. Use of pitch may give good evidence to

children gender classi�cation. The pitch contour is extracted from speech signal

using probabilistic YIN (PYIN) algorithm (Mauch and Dixon, 2014). Here, pitch

along with its statistical variations are considered. First order derivative (∆pitch)

of pitch is also used for the gender identi�cation task.

• Shimmer and Jitter: Jitter refers to the variability of fundamental frequency

(Farrús and Hernando, 2009). It mainly happens because of lack of control over

vocal fold vibration. Shimmer is also a�ected by the reduction in tension of vocal

folds (Farrús and Hernando, 2009). Absolute and relative values are extracted for
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both shimmer and jitter. Process of extraction of shimmer and jitter is given in

(Farrús and Hernando, 2009). In adults, the values of absolute jitter are found to

be larger for males as compared to females. On the other hand, the values of relative

jitter are larger in females. Inorder to evaluate the same in children gender, shimmer

and jitter are considered for the analysis.

C Classi�cation

In this work, the classi�ers are chosen mainly based on the non-linear nature of data.

Arti�cial Neural Network (ANNs), Deep Neural Network (DNNs) and ensemble method

based random forest (RFs) are used.

• Arti�cial Neural Network (ANNs): The ANN model is trained by adjusting

the weights of the neurons in di�erent hidden layers (Sydenham and Thorn, 2005).

Feed forward neural network is considered for this experimentation. The number of

hidden neurons is set equal to the the mean of the neurons in the input and output

layers. The number of neurons in the input layer is equal to the elements in the

feature vector. The number of neurons in the output layer is equal to the output

classes. From the analysis activation function for the output layer is set to 'sigmoid',

as it is recommended for binary classi�cation.

• Deep Neural Network (DNN): DNN is a classi�er based on feedforward arti-

�cial neural networks (Serizel and Giuliani, 2014). The architecture of the deep

neural network is shown in Fig. 6.9. The architecture contains input layer, output
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layer and many hidden layers. The multiple hidden layers are featured with non-

linear activation functions (Serizel and Giuliani, 2017) (Panchal et al., 2014). Each

neuron in a layer uses the same non-linear activation function. Commonly used

activation functions are 'ReLu', 'tanh', 'sigmoid' and 'softmax'. Combinations of

these activation functions are implemented using Deep Neural Network Algorithm

(Serizel and Giuliani, 2014) (Panchal et al., 2014). The number of hidden layers and

corresponding number of neurons are set as suggested in (Panchal et al., 2014). It is

recommended that, three hidden layers are su�cient to achieve good performance.

Hence, three hidden layers are set for all the deep neural networks considered and

non-linear activation function 'ReLu' is considered for the nodes in them. The sig-

moid activation function is set for the output layer. The number of neurons has to

be set properly in the hidden layers, as the number of features increases in the input

layers. In general, it is di�cult to calculate the number of nodes for hidden layers

in feed-forward arti�cial neural networks as they are the hyperparameters of the

model needed to be set, to address a speci�c prediction or classi�cation modeling

problem. Various experiments are conducted using di�erent combinations of nodes

in each hidden layer, to �nd the optimal number of nodes in each of them. The

number of nodes in hidden layers is varied from the number of input neurons
2

to 1024.

Table 6.6, gives the details of essential parameters, namely number of neurons in

input layer, number of neurons in each hidden layer, activation functions set for

hidden layers and output layers set for di�erent feature combinations, for which we

obtained highest accuracy.

• Random Forest (RFs): It is an ensemble classi�er, formed using a combination

of multiple tree based classi�ers. Each tree is constructed from the randomly drawn

subset of the total input set (Breiman, 2001). Most popular class, voted by all the

tree predictors, is assigned as a class label of the test sample (Breiman, 2001). In the

case of random forest, with the progression in forest building, it tries to overcome

the internal unbiased generalization error, hence e�cient in estimation of missing

data (Breiman, 2001).

6.4.3 Results and Discussion

In children speech, there is no signi�cant di�erence in the characteristics of male and

female, as their vocal tracts are undeveloped and have similar size and length. Vocal folds
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Table 6.6: Details of the number of hidden layers, number of neurons and activation functions set for
each neuron

Sl.
No.

No. of
Features

No. of Neurons Set in
Each Layer DNN

Activation Function for
Each Layer of DNN

Input HL1 HL2 HL3 Output HL1 HL2 HL3 Output

1 39 39 39 39 39 1 ReLu ReLu ReLu sigmoid

2 43 43 43 43 43 1 ReLu ReLu ReLu sigmoid

3 47 47 47 47 47 1 ReLu ReLu ReLu sigmoid

4 51 51 51 51 51 1 ReLu ReLu ReLu sigmoid

5 55 55 55 55 55 1 ReLu ReLu ReLu sigmoid

6 68 68 68 68 68 1 ReLu ReLu ReLu sigmoid

are thin, and result in high pitch value. This increases the di�culty for classi�cation. It

is di�cult for a human to distinguish the male and female child from their speech. This

hints that the features extracted for the classi�cation task may be highly non-linear in

nature. CMU Kids' Corpus and NITK Kids Corpus are considered for this work. The

baseline system is developed using 39 MFCC features. Further, di�erent combinations

of the features (refer Table 6.7) are explored to evaluate the performance of the gender

identi�cation system. The classi�ers e�cient in discriminating the data having non-linear

nature are considered for the experimentation; namely Arti�cial Neural Networks (ANNs),

Deep Neural Networks (DNNs) and Random Forest (RF). Architecture and parameters

used for the DNNs are given in Table 6.6. 80% of the instances are used for training and

20% for testing with 5-fold cross validation. Five times, the dataset is divided into 5-

folds. Each classi�er is trained for every combination of the feature set and the accuracy

is recorded. K-fold cross validated paired t-test is performed to measure whether the

improvement in the performance is statistically signi�cant. If the p-value obtained from

the K-fold cross validated paired t-test (refer Section 2.6.4 A) is below the signi�cance

level, there is enough evidence that the performance of two classi�ers are signi�cantly

di�erent. A commonly accepted value of signi�cance level (alpha) is 5%, or 0.05.

Table 6.8 shows the average accuracy of classi�cation on CMU Kids Corpus using vari-

ous combinations of features by di�erent classi�ers. ANN, DNNs and RFs trained using 39

MFCC features, achieve an average accuracy of 72.30%, 71.66% and 84.21% respectively.

As the size of the dataset is small, DNN may not be suitable for the task, hence it is ob-

served to perform poorly compared to the other two classi�ers. RF is e�cient in building
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Table 6.7: Features and their combinations considered for children gender identi�cation

Sl.
no.

Number of
Features

Feature Combinations

1 39 MFCC (13) + ∆MFCC (13) + ∆∆MFCC (13)

2 43 MFCC (13) + ∆MFCC (13) + ∆∆MFCC (13) + Pitch (4)

3 47 MFCC (13) + ∆MFCC (13) + ∆∆MFCC (13) + Pitch (4) +
∆Pitch (4)

4 51 MFCC (13) + ∆MFCC (13) + ∆∆MFCC (13) + Pitch (4) +
∆Pitch (4) + Formant (4)

5 55 MFCC (13) + ∆MFCC (13) + ∆∆MFCC (13) + Pitch (4) +
∆Pitch (4) + Formant (4) + Shimmer (2) + Jitter (2)

6 68 MFCC (13) + ∆MFCC (13) + ∆∆MFCC (13) + Pitch (4) +
∆Pitch (4) + Formant (4) + Shimmer (2) + jitter (2) + LPCC
(13)

an accurate classi�er which can e�ciently run on the small and large sized datasets of

non-linear nature (Breiman, 2001). Hence, it is observed to achieve comparatively better

accuracy. Adult speech can be easily discriminated by observing pitch values. Here, an

attempt has been made to evaluate the role of pitch in discriminating gender in children.

Pitch along with its statistical variations : minimum, maximum & standard deviations

are considered along with baseline features. The performance of ANN, DNN and RFs

is improved by 0.60%, 0.57% and 0.18%, over the baseline systems. The performance of

the classi�ers trained on the combination of MFCCs, pitch and its statistical variations

is compared using K-fold cross validated paired t-test; it is observed that p-values are

greater than 0.05. This shows that the improvement is not statistically signi�cant. Pitch

in children always carry some gender sensitive information, hence performance of pitch

derivatives is also evaluated on ANN, DNN & RFs, by training them using MFCCs (39),

pitch (4) and pitch derivatives (4) (feature vector of size: 47). From the p-value obtained

from the K-fold cross validated paired t-test, it is observed that there is no signi�cant

in�uence of the pitch derivative on the performance compared to the baseline system.

Formants represent the resonance of the vocal tract. In adults, there is a small devia-

tion in formant values of sound units for male and female (Simpson, 2009). Four formant

values are used, with MFCCs (39), pitch (4) and pitch derivatives (4) [feature vector of

size 51], to train the classi�ers. The performance of ANN, DNN and RFs are improved by

0.50%, 1.93% and 0.18% over their baseline counterparts. From the statistical test, it is
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observed that, p-value for the performance of DNN is less than 0.05. This represents that,

there is a signi�cant improvement in the performance, when compared with the baseline

system. In the case of ANN and RFs the performance is not statistically signi�cant.

Shimmer and jitter are the measures of cyclic variations in speech. They are reported to

be e�cient in speaker identi�cation. Absolute & relative jitter and shimmer values are

considered in this study for the analysis, along with the earlier 51 features (see Table 6.7).

Results indicate that ANN, DNN and RFs achieve an improvement of 2.00%, 6.45% and

0.28% over their baseline counterparts. When the performance of ANN is compared with

its respective baseline system using statistical test, it results in p-value less than 0.05.

Hence, the improvement is statistically signi�cant. Similarly, signi�cant improvement is

observed in the performance of DNN. The accuracy of classi�cation is further observed

to improve by adding 13 LPCC features for the classi�ers ANN and DNN. With the

use of 13 additional LPCCs (total feature vector size is 68), the performance of ANN,

DNN, & RFs is improved by 3.9%, 6.59%, 0.58%, respectively. The K-fold cross validated

paired t-test shows that, there is a signi�cant improvement in the performance of ANN

and DNN over the baseline system. This shows that the shimmer, jitter and LPCCs are

e�cient in discriminating the gender in children. Out of three classi�ers, ANNs, DNNs

and RFs, Random forests are performing comparatively better in children gender classi�-

cation. Though ANN and DNN are e�cient in modelling the non-linear data, small size of

data may have a�ected the performance of ANN and DNN. Random forests are e�cient

in discriminating non-linear features and they also work well with the small sized data.

In our work, Random forests outperform ANN and DNN with highest average accuracy

of 84.79% for feature vector size of 68. It is roughly equivalent to the performance of RF

trained using baseline features 39 MFCCs (refer Table 6.7). Here, RFs may not be able

to extract the gender information from the features pitch (4), derivatives of pitch (4) &

LPCCs (13), hence the performance of RFs is not statistically improved compared to its

respective baseline system. For ANN and DNN, MFCCs (39), pitch (4) & LPCCs (13)

are noted to be su�cient for the gender identi�cation in children using Random Forests.

Table 6.9 shows the average accuracy of gender classi�cation on NITK Kids Corpus

using various combinations of features. Baseline systems for classi�ers ANN, DNN and

RF are trained using 39 MFCC features, achieve an average accuracy of 66.50%, 73.66%

and 77.80% respectively. There is no signi�cant di�erence in the physiological parameters

of male and female children in this age group 3 1
2
to 6 1

2
. Hence, the performance of the
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Table 6.8: Average classi�cation accuracy of male and female children gender using CMU Kids Corpus

Sl. no. Classi�ers Used
Number of Features Considered

39 43 47 51 55 68

1 ANN 72.30% 72.90% 72.80% 72.80% 74.10% 76.20%

2 DNN 71.66% 72.23% 72.32% 73.59% 78.11% 78.25%

3 Random Forest 84.21% 84.39% 84.30% 84.39% 84.49% 84.79%

classi�ers trained using MFCCs may fail to achieve high performance. RFs are observed

to work e�ciently on datasets of non-linear nature (Breiman, 2001), hence, it is observed

to achieve comparatively better accuracy. Pitch along with its statistical variations are

considered along with baseline features. The performance of ANN, DNN and RFs is im-

proved by 1.52%, 2.43% and 1.12%, over the baseline systems respectively. From K-fold

cross validated paired t-test, it is observed that, improvement in the performance of clas-

si�ers DNN and RFs is statistically signi�cant. With improvement in performance using

pitch, combination of pitch derivatives is also evaluated on ANN, DNN & RFs, by train-

ing them using MFCCs (39), pitch (4) and pitch derivatives (4) (feature vector of size:

47). The performance of the system is improved by 1.75%, 2.61% and 1.62% compared

to the baseline system respectively, where K-fold cross validated paired t-test shows that,

improvement in the performance of classi�ers DNN and RFs is statistically signi�cant.

Further, ANN, DNN and RFs are trained using a combination of four formants, with

MFCCs (39), pitch (4) and pitch derivatives (4) [feature vector of size 51]. The perfor-

mance of ANN, DNN and RFs are improved by 4.22%, 4.43% and 2.57% over their baseline

counterparts. From the statistical test, it is observed that, there is a signi�cant improve-

ment in the performance of all the classi�ers, when compared with the baseline system.

Along with these 51 features, absolute & relative jitter and shimmer values are consid-

ered for the analysis. Results indicate that, ANN, DNN and RFs achieve an improvement

of 4.39%, 4.44% and 2.50% over their baseline counterparts. When the performance is

compared with its respective baseline system using K-fold cross validated paired t-test, it

results in p-values less than 0.05 respectively. This shows that, the improvement in per-

formance is statistically signi�cant. With the use of 13 additional LPCCs (total feature

vector size is 68), the performance of classi�ers is improved by 11.89%, 9.27% and 4.88%,

respectively. There is a signi�cant improvement in the performance observed for all the

classi�ers over the baseline system. This shows that the shimmer, jitter and LPCCs are
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Table 6.9: Average classi�cation accuracy of male and female children gender using NITK Kids Corpus

Featured Considered ANN DNN RFs

MFCCs(39) 66.50% 73.33% 77.80%

MFCCs(39)+F0(4) 68.02% 75.76% 78.92%

MFCCs(39)+F0(4)+ ∆F0(04) 68.25% 75.94% 79.42%

MFCCs(39)+F0(4)+ ∆F0(04) + Formants(4) 70.72% 77.76% 80.37%

MFCCs(39)+F0(4)+ ∆F0(04) + Formants(4) + Shim-
mer (2) + Jitter (2)

70.89% 77.77% 80.30%

MFCCs(39)+F0(4)+ ∆F0(04) + Formants(4) + Shim-
mer (2) + Jitter (2) + LPCC (13)

78.39% 82.60% 82.68%

MFCCs(39)+F0(4)+ ∆F0(04) + Formants(4) + LPCC
(13)

77.96% 82.87% 82.76%

MFCCs(39)+F0(4)+ Formants(4) 70.60% 77.26% 79.80%

MFCCs(39)+F0(4)+ Formants(4) + LPCC (13) 77.68% 82.93% 82.36%

e�cient in discriminating the gender in children.

When the performance of classi�ers trained on the combination features MFCCs (39),

pitch (4), and its derivatives (4) and the combination of features MFCCs (39), pitch (4),

and its derivatives (4), Shimmer (2), Jitter (2) compared using statistical test, there is

no signi�cant di�erent in the performance. Hence, Shimmer and Jitter are removed from

the combination of {MFCCs (39) + pitch (4) + pitch derivatives (4) + Formants(4) +

Shimmer (2) + Jitter (2) + LPCCs (13)} and performance is evaluated on three classi�ers.

It is observed that, there is no signi�cant di�erence in the performance of the classi�ers

after removing Shimmer and Jitter. Hence, it can be inferred that, Shimmer and Jitter do

not contribute to gender identi�cation of children in age range 31
2
to 61

2
. It is also observed

that, there is no signi�cant di�erence in the performance of classi�ers trained using feature

combinations {MFCCs (39) + pitch (4)} and {MFCCs (39) + pitch (4) + pitch derivatives

(4)}. Hence, ANN, DNN and RFs are trained using feature combinations {MFCCs (39)

+ pitch (4) + Formants(4)} after removing pitch derivatives. From the comparison of

the performance of classi�cation, with and without using pitch derivatives, it can be seen

that, statistically there is no signi�cant di�erence in their performance. This concludes

that, pitch derivatives also do not contribute to gender identi�cation in children of the

proposed age group.

Out of three classi�ers, ANNs, DNNs and RFs, Random forests are performing com-

paratively better in children gender classi�cation on CMU Kids Corpus and NITK Kids
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Table 6.10: Results of Previous Research Work done on OGI Kids corpus (Safavi et al., 2014)

Sl.
No.

Classi�ers
used

Age Range
Considered

Features used Accuracy

1 GMM-UBM 9-13 years MFCC (19)+ ∆MFCC (19) + ∆∆
MFCC (19)

78.53%

2 GMM-SVM 9-13 years MFCC (19)+ ∆MFCC (19) + ∆∆
MFCC (19)

84.14%

Corpus. Though ANN and DNN are e�cient in modelling the non-linear data, small size

of data may have a�ected the performance of ANN and DNN. Random forests are e�cient

in discriminating non-linear features and they also work well with the small sized data.

In our work, Random forests outperforms the performance of ANN and DNN using the

feature vector size of 68. In the case of gender identi�cation in the age range 31
2
to 61

2
,

it is observed that, the features shimmer, jitter and pitch derivatives do not have signif-

icant di�erences between the male and female children speech. There are some research

references on children gender identi�cation (Safavi et al., 2014). That approach used the

OGI Kids Corpus with three di�erent age groups namely 5-9 years, 9-13 years and 13-16

years. On the whole dataset, the highest accuracy achieved using age independent GMM-

UBM is 67.39%, whereas, the same for age dependent GMM-UBM is 71.76%. When

performance of age dependent GMM-UBM is evaluated for each age group, the highest

accuracy is 78.53% for the age group 13-16 years (refer Table 6.10). Whereas, for the

GMM-SVM based classi�er, the performance on the age independent dataset is 77.44%.

The age dependent GMM-SVM achieves an overall accuracy of 79.18%. The performance

of age dependent GMM-SVM, evaluated separately on each age group, shows the highest

accuracy of 84.14%, in the age group 9-13 years. As this study uses, the CMU Kids Cor-

pus Database, children's voices of 6 to 11 age range is available. The proposed approach

uses the entire dataset for evaluation and does not divide it into any age wise categories.

The state-of-the-art approaches are implemented on di�erent datasets, hence it is di�cult

to compare them with our approach.

6.4.4 Contributions and Limitations

The task of gender identi�cation from children's speech is di�cult compared to that

of adults. CMU Kids' Corpus and NITK Kids Corpus are considered for this work.

Features used in this work are MFCCs (39), Pitch (4), ∆Pitch (4), Formant (4), Shimmer
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(2), Jitter (2) and LPCCs (13). To evaluate the e�ciency of the proposed approach

di�erent combinations of these features are explored. Based on the non-linear nature of

the data, ANN, DNN and Random Forest are considered as classi�ers. The random forest

classi�er outperforms the other two classi�ers for children gender classi�cation. Further,

the performance of the classi�cation may be improved by using a combination of other

spectral, prosodic and excitation source features. Spectral features extracted from sub-

bands regions may be considered with the proposed set of features, as the spectra show

that the frequency ranges less than 1.8 kHz and greater than 3.8 kHz are e�cient in

discriminating little older children (Safavi et al., 2014). Frequencies greater than 1.4 kHz

are useful for young children (Safavi et al., 2014). Prosodic features such as statistical

variations of pitch, may also be considered for the classi�cation task. Also, it is possible

to classify the children by their age and then evaluate the performance on CMU kids

corpus.

6.5 Summary

In this chapter, feature analysis of phonological disorder 'rhoticism' is performed. Spec-

tral features and pitch are e�cient in discriminating the alveolar approximant /r/ with

dental consonant /∂/. The analysis shows that MFCC coe�cients 1st, 2nd and 4th achieve

better discrimination compared to other features. The task of gender identi�cation from

children's speech is also part of this chapter. The gender identi�cation from adult speech

is also performed to comparatively analyze, with that of the children. In adults, the role

of excitation source features, namely GCIs have been proposed with the combination of

spectral features (MFCCs and LPCCs) and F0 for gender identi�cation. Results have

shown that, the proposed set of features is e�cient in discriminating the adult gender

from speech. The task of gender identi�cation from children's speech is di�cult com-

pared to that of adults. MFCCs, Pitch, ∆Pitch, Formant, Shimmer, Jitter and LPCCs

are considered as features. From the results, it is observed that the proposed features are

e�cient in gender identi�cation from children. If we compare the performance of gender

identi�cation in adults, highest accuracy achieved is 98.67%, whereas for children, the

highest accuracy achieved is 84.79% on CMU Kids Corpus and 82.68% on NITK Kids

Corpus. This shows the nature of the complexity of the problem of gender identi�cation

in children's speech.
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Chapter 7

Summary, Conclusions and Future

Work

This chapter concludes the work done with the possible future research directions. This

thesis is organized into 7 chapters. First chapter introduces phonological processes in

the children. It also covers the di�erences in adult speech production and children speech

production mechanisms. The chapter discusses the applications of identi�cation of phono-

logical processes, highlighting the challenges in brief. The second chapter critically reviews

the state-of-the-art research works available in the area of phonological processes/mispro-

nunciation identi�cation based on the important features and classi�ers used. The broad

research gaps are identi�ed and problem statement is formulated at the end of this chap-

ter. In the third chapter, identi�cation of phoneme boundary is proposed based on the

changes observed in a speech signal during transition from one phoneme to other. It is

necessary for the e�cient analysis and identi�cation of the phonological processes. In the

fourth chapter, manual analysis of phonological processes in children in the age range of

31
2
to 61

2
years in Kannada language is provided. Further, the comparative study of phono-

logical processes reported in English and Kannada is undertaken. Chapter �ve, presents

the details of template comparison based approach used for the automatic identi�cation

of commonly observed phonological processes in children. GOP based approach is also

explained in this chapter for vowel deviation detection. Chapter six contains the details

of the case studies performed on the phonological disorder 'rhotacism'. This chapter also

addresses the issues in children gender identi�cation. Chapter seven provides summary

of the work presented in this thesis and shows further openings for research.
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7.1 Summary of the Present Work

In this thesis, automatic identi�cation of phonological processes in children from 31
2
to

61
2
years in Kannada language is proposed. For this, dataset named 'NITK Kids' Speech

Corpus' is recorded (rarely available dataset in this age range). Manual analysis of the

pattern of appearance of the phonological processes is performed and compared with

the similar study performed in English language. Template comparison based approach

(dynamic time warping (DTW)) is used for the identi�cation of phonological processes.

Commonly observed phonological processes such as voicing and unvoicing, �nal consonant

deletion, nasalization and nasal assimilation, fricative fronting, aspiration and unaspira-

tion are considered in this study. Each phonological processes has di�erent properties

hence spectral, prosodic and excitation source features, e�cient in discriminating the dif-

ferent class of sounds are identi�ed. Goodness of Pronunciation (GOP) based approach

implemented using GMM-HMM recognizer is used for the identi�cation of vowel centered

mispronunciation identi�cation. In the case studies, phonological disorder 'rhotacism'

is considered. As the second case stud,y gender identi�cation from childrens' speech is

performed using di�erent combinations of spectral and prosodic features with well known

classi�ers SVMs, Random Forests and Deep Neural networks (DNNs).

7.2 Conclusions

In this subsection some concluding remarks with respect to each of the objectives are

brie�y given.

7.2.1 NITK Kids' Speech Corpus

In this work, dataset named 'NITK Kids' Speech Corpus' is recorded in Kannada language

from the children of age between 31
2
to 61

2
years, divided into three age groups with an

interval of 1 year for each age group. For each age range, 40 children (20 male and 20

female) are recorded. Variations in the formants and pitch in the di�erent age ranges are

studied in detail. The proposed dataset is one of the rare datasets available in this age

range. Children have very short attention span, hence we had to take frequent breaks

during the session to maintain proper response. Most of the time, recordings are made

in schools, where getting a noise free environment for recording was very challenging.

Spectral, and prosodic analysis of speech showed that, there is a systematic decrease in
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the formant frequencies and pitch, representing the development of vocal-tract geometry

and control over the articulators with increase in age. This dataset captures the properties

of variations in speech of children in the proposed age range, hence a systematic study

on the language learning ability of the children, phonological process analysis, speech

language pathology, children speech recognition, practice producing a variety of speech

sounds can be performed.

7.2.2 Manual analysis of the phonological processes

The study on the phonological processes in the children speaking Kannada language is

not su�cient compared to its English counterpart. In this work, we studied the phono-

logical processes that appear in children using 'NITK Kids' Speech Corpus'. Various

phonological processes are identi�ed and the age of their appearance in children is re-

ported. Our analysis is compared with the phonological processes that appear in English

speaking children. From the comparison it is observed that, majority of the Kannada

phonological processes are observed to disappear around 6.0 to 6.50 years of age. The

same, in English language is around 5.0 years. It shows that, the duration of Kannada

phonological processes appears to be longer compared to that of English. This shows that,

the languages di�erent chronology of the phonological processes, hence exhibit di�erent

patterns of various phoneme acquisition. The dataset consists of children speech recorded

from di�erent regions of Karnataka, hence pronunciation errors may also be due to the

in�uence of changing dialects.

7.2.3 Phoneme boundary detection

Automatic phoneme level identi�cation of phonological processes, needs a proper phoneme

boundaries. In this work, a novel approach has been proposed for the automatic segmenta-

tion of speech signal into phonemes. In a well spoken word, phonemes can be characterized

by the changes observed in speech waveform. To get phoneme boundaries, the signal level

properties of speech waveform i.e. changes in the waveform during transformation from

one phoneme to the other are explored. Properties of power spectra of correlation of

adjacent speech frames are used to get the phoneme boundaries within voiced & unvoiced

regions. A �nite set of rules is proposed based on the variations observed in the power

spectra during phoneme transitions. It is observed that, the signal level properties are

e�cient in identi�cation of phoneme boundaries. The main reason of concern from the
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performance point of view is the number of false positives in marked phoneme boundaries.

This problem can be overcome by, combining the features related to human perception

system along with the signal level properties. Use of the proposed observations as the

features to train the machine learning based phoneme boundary detection approach may

improve the performance of the system.

7.2.4 Automatic identi�cation of phonological processes

Phonological processes are identi�ed based on the properties of deviations in the phonemes

observed through dynamic time warping (DTW). If the DTW comparison path deviates

from its diagonal nature, it represents change in the speech signal and hence shows ap-

pearance of mispronunciation. Each of the phonological processes has di�erent properties

hence features e�cient in discriminating the di�erent class of sounds are identi�ed.

• The task of identi�cation of nasalization and nasal assimilation is proposed as a part

of these studies. The properties of nasal and nasalized voiced sounds are captured

using MFCCs extracted from Hilbert envelope of the numerator of the group delay

(HNGD) spectrum. HNGD spectrum highlights formants and extra nasal formant

in the vicinity of the �rst formant in nasalized voiced sounds. It is observed that

MFCCs extracted from FFT spectrum and HNGD spectrum are e�cient in identi-

�cation of nasalization and nasal assimilation. HNGD spectrum is extracted using

the Zero Time Windowing (ZTW), where it provides better resolution of spectral

peaks in small sized window. It is also found that, the amplitude of nasal sounds is

signi�cantly small when compared to that of the other vowels, hence jitter (cycle to

cycle variations) and shimmer (peak to peak variations) may play a signi�cant role

in characterizing them.

• Characterization of palatal fricative fronting is performed using properties of Gam-

matonegram. Gammatonegram follows the frequency subbands of the human ear

(wider for higher frequencies). Various spectral properties related to spectrum, such

as spectral centroid, crest factor, decrease, �atness, �ux, kurtosis, spread, skewness,

slope and Shannon entropy of the spectrogram (interval of 2000Hz), extracted from

the Gammatonegram are proposed for the characterization of /sh/ and /s/. Shan-

non entropy captures the di�erence in concentration of energy in both fricatives,

hence observed to be e�cient in characterization of these mispronunciations. Other
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spectral variations considered for the classi�cation do not show much improvement

in the performance of the system as the random nature of the fricatives does not

exhibit much variations in their spectral properties. This shows that, spectral prop-

erties capturing distribution of energy in a spectrum are to be explored.

• Final consonant deletion is characterized by the deletion of consonant, part syl-

lable, syllable or part word which appears at the end of the word. In this case,

features e�cient in speech recognition namely MFCCs and LPCCs are suitable. It

is observed that, in some cases, due to high inter-speaker variations in the pronun-

ciation of words, the DTW comparison path does not warp in the intended region.

Hence, duration normalization of each syllable in reference word can be normalized

to the duration of respective syllable in the mispronounced word to improve the

performance. Further, features e�cient in modeling the duration can be explored

to improve the performance of the system.

• In voicing assimilation or harmony process, voiced sounds are replaced by unvoiced

sounds and vice versa. The pitch is present in voiced speech and is absent in the

unvoiced region of the speech. Similar to pitch, the zero-frequency signal also shows

the absence of glottal closure instances in unvoiced region of the speech. Energy of

the zero-frequency signal (ZFF) drops close to zero in the case of unvoiced region.

Hence they are explored for the identi�cation of voicing assimilation. Majority of

the times, huge di�erence is observed in the energy of ZFF signal for the same

pronunciation of voiced sounds by di�erent speakers. Hence, pitch is observed to be

e�cient, when compared to the ZFFs. The performance of the system degrades due

to words having multiple unvoiced sounds along with similar assimilations leading

to many variations in the pitch pro�le. Similarly, the presence of extra silence in

word. Other speech features e�cient in characterizing voicing assimilation can be

explored to improve the performance of the system.

• Phone level pronunciation error detection system is proposed for the identi�cation

of vowel deviations. Using HMM-based phoneme recognition system, phone to be

scored is recognized twice using forced alignment and free phone recognition. Poste-

rior probabilities obtained from both recognitions are used to calculate the goodness

of pronunciation (GOP) score. A phone level threshold is empirically set and the

GOP values above the threshold represent deviations in vowel pronunciation. The
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phone posterior probability score is observed to achieve a pronunciation rating of

0.42. The correlation of the proposed system is not very high. This may be due to

the reason that, the approach is implemented on limited amount of training data

and also a high variability in duration of vowels within a speaker (child). By the

way, building a phoneme recognition model for this low age group is di�cult due to

higher inter-speaker and intra-speaker variability.

• Novel features are proposed in this thesis, to characterize the phenomenon of aspi-

ration and unaspiration. The observation of durations of the opening, return and

closed phases of glottal folds along with their statistical variations during aspiration

and unaspiration are the main contributions. Along with the proposed features,

signal level features are also considered which capture the information about vo-

cal activity time to attain steady vowel region (rate of rise in the signal strength

during consonant to vowel transition region), VOT and properties of consonant

burst regions. The results show that, the proposed features are highly e�cient in

characterizing aspiration and unaspiration. It is also observed that, pitch (F0) is

consistently higher after aspirated consonants than those of unaspirated consonants.

Hence, F0 pro�le and F0 onset can be explored for the analysis. The study of the

proposed features can also be extended in characterizing phenomenon of aspiration

in di�erent languages, such as Cantonese, Eastern Ameri-can, Indian, Thai, Korean,

where aspiration is prominent. The presence of aspiration results in notable vari-

ability of spectrogram, where onset of voicing bar (F0), onset of the formants F1,

F2, F3 are some of the important variabilities noticed in them.

7.2.5 Case studies

Two case studies are considered for the analysis: phonological disorder 'rhotacism' and

children gender identi�cation. Analysis of 'rhotacism' is performed, where alveolar ap-

proximant (/r/) is substituted with alveolar voiced consonant (/∂/). A set of features

that clearly discriminates the phoneme from corresponding mispronounced phoneme is

suggested. Based on the availability of su�ciently large dataset, proposed features can be

used to train the machine learning algorithms for mispronunciation identi�cation. Feature

analysis of di�erent phonemes paves a way for characterization of /r/ and /∂/.

Gender identi�cation in children is more di�cult than that of adults, due to underde-

veloped vocal tract and thin vocal folds in both male and female children. There is no sig-
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ni�cant di�erence in their acoustic-phonetic properties. Di�erent combinations of spectral

and prosodic features along with their statistical variations are e�cient in discriminating

the gender from children's speech and adult speech. If we compare the performance of

gender identi�cation in adults, highest accuracy achieved is 98.67%, where as for chil-

dren the highest accuracy achieved is 84.79%. This shows the nature of the complexity

of problem of gender identi�cation in children's speech. The pattern of appearance of

phonological processes is observed to vary based on the gender of children in the same

age range. Hence, identi�cation of gender from children speech is also an important task.

7.3 Future Directions

→ Lack of standard datasets for the study of phonological processes in children, es-

pecially in the context of Indian subcontinent, is a major concern to the �eld of

linguistics and speech pathology. The appearance of phonological processes in chil-

dren may vary from language to language (based on the nature of language). Hence,

lack of datasets restricts the study on phonological processes. The provision of stan-

dard datasets in various Indian languages highly motivates the researchers to work

in this area.

→ The manual analysis of phonological processes in children is performed in discrete

manner, i.e. in any study majority of the speech language pathologists considered

only a speci�c age group for analysis. This fails to provide a wholistic study of

appearance of phonological processes in a particular language. Very few approaches

have provided analysis of the phonological processes over the complete age range of

21
2
to 61

2
years. The analysis of phonological processes over the complete age range

paves a way for e�ective evaluation of their pattern of appearance and language

learning ability in children. This kind of study has to be extended to all Indian

languages.

→ Phonological process identi�cation requires �nding the features e�cient in discrimi-

nating the class of mispronounced phonemes and their correct counterparts. Gener-

ally, commonly available speech features are used for identifying phonological pro-

cesses. However, identifying the e�cient features speci�c to each phonological pro-

cess is di�cult, time consuming and need of the hour. Addressing this problem may

help in identi�cation of all possible phonological processes, hence it needs a special
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attention.

→ Various features and their combinations have been used for the task of phonological

process identi�cation. Use of some of the standard correlation analysis may help

in choosing the e�cient feature set. This reduces the dimensionality of the feature

set leading to the improved computational complexity of the system. The task of

choosing the e�cient features for di�erent phonological processes from a large list

is still a major problem of interest.

→ Automatic speech recognition system is one of the important systems used in the

mispronunciation identi�cation in the case of foreign language learning tasks. The

performance of these systems is directly related to the capabilities of the acoustic

model (Franco et al., 1997) (Jiang and Xu, 2009). Due to huge di�erence in the

speech production parameters of the adults and children (in the proposed age range

of 31
2
to 61

2
years), adapting it for the identi�cation of phonological processes is less

e�ective. Implementation of e�ective feature normalization/adaptation technique

which adapts these systems for e�cient and accurate children speech recognition

provides a scope in building phonological process identi�cation system.

→ In this thesis, only log posterior probability (LPP) is used as goodness of pronun-

ciation scoring parameter for ascending quality of mispronunciation identi�cation.

This parameter establishes a good positive correlation between the pronunciation

deviation obtained by the system and human rating. Use of other derivatives of

posterior probability (PPs) may improve the performance of the system. Also these

parameters are highly dependent on quality of the database, acoustic and language

model. Hence, there is a wide scope to come up with the goodness of pronunciation

parameters that are independent of acoustic models.

→ With the development of good automatic speech recognition for children for the

smaller age group, Extended Recognition Networks (ERNs) can be used to improve

the performance of phonological process identi�cation along with the GOP param-

eters. This approach can e�ciently identify the prominent and commonly observed

phonological processes in children.

→ In general, the pronunciation scores are obtained from GMM-HMM based phoneme

recognizers for mispronunciation evaluation. With the availability of large training
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corpus, use of the DNN-HMM based recognizer for the same task provides a scope

to improve the e�ciency of the system. These recognizers are capable in computing

good posterior probability scores compared to the GMM-HMM based recognizers.

This may further be explored.

→ Proposed case study considers only one phonological disorder 'rhotacism' and the

phonological processes which characterize this phenomenon are identi�ed. Even

phonological disorders follow speci�c mispronunciation patterns as in phonological

processes. De�ciency of standard datasets for phonological disorders, especially in

the Kannada language is a major concern of this study.

→ Various combinations of spectral, prosodic and excitation source features can be

explored for the e�cient characterization and identi�cation of the phonological dis-

orders.
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Appendix A

Phoneme Boundary Detection

A.1 Validation dataset considered for the identi�cation

of phoneme boundary

Table A.1: List of words considered for identi�cation of phoneme boundary from TIMIT dataset

about accomplish actor alcoholic almost alone amber

anatomical another any ask attendance attention available

baboon bagpipes barb baseball beds been before

begin behave beverage big blood bongos book

bottom bought box bracelet break but cable

calf called can cannot carefully carpenter cartoon

caused caused celebrate cement chair changing charmer

chasing chattering check cheese children chip chocolate

choices coach coincide cold colorful comes company

concrete con�rmation contain continental continue contribution cook

corner correct cows crab crash crimson critical

crucial cubic cured damage dark daytime death

decide design desire despised di�cult diminish dinner

discussion division doctors document don't door down

drop drugs drunkard duck dug each easy

eating else encyclopedia evening ever evidence evocative

exception execution exercise exhibit exists expression face

famous feature fermented �les �nger �nish �rst

�ash �ower football for forbidden force forest

found frequent fun fund garbage gas gave

general geological dating gift gives glossy gold

good goose government graduation greasy greatly gunman

gunpowder habit have he headed himself home
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house how humid humor hung hurry image

injection instruction instrument jammed juicy junior know

least lifting like line looked made maintenance

make many margaret marketing melon me too model

Monday money movies muscles musical native national

needs never next none notice occupied operates

over overthrow panic passed pattern payments people

permanent pine placed please pocket poisonous policy

poor possible postpone practical precaution preceded prepare

present prices prison problem process pronoun proper

purple rag reading recuperating purple red reference

re�ect regarding regular relatively religion remember reminds

reorganization resemble rich roast rob save scampered

scoop security see seldom service several shattered

she had shell�sh shock shut simple singer situation

sleeping slipping small social something sometimes soon

source spotted status steaming stepmother still strong

subject suburban su�er suit Sunday support surgeon

synonyms tadpole take tall taste teach ten

tennis that them throw thus tilted timber

tips today too toothpaste top touched traveled

trouble twenty unauthentic unbeatable underfoot upgrade vanquish

various vitamin wash water win wire without

wonderful work year yet you young your

Table A.2: List of words considered for identi�cation of phoneme boundary from IIITH Marathi dataset

a var aahe aajakal aani aanka aantarik

aapan abhaya adhalate aitihasik anun amerika

antarik antim apalyakade apurna arthane arthavyavastha

asalele asel aso astek asun asunahi

atishay babasaheb badal bajirao bandar bangal

barobar bhagat bhagatil bhaksha bharatacha bharatatil

bharatiya bhashecha bhashetil bhava bhookampa bhosale

bhumadhya chan chandhigadh chnadra charcha chennai

chikhaladara chitrapat chote chya company dakshin

dausa desh deshantar dheyyane dhulapathi dici

dili disel disu diwasa ekach france
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gajalele gelela ghetali gujarat ha lekh haathbhar

hamara harakama hawra he hi hindi

hoil hoti indoneshia iravati itali itar

itava ithe itihas jamin japanachi jar

jasta jate jogavekar kadachit kadun kagad

kahi guha kamanusar kami karan karat ja

karatana karatavi karita karave kelele kelyache

khalila kharach khupach koni krupaya ladhai

lagale lagawat lagna lagu lal lavu

lekh lekhache lekhan lekhika likhan lipi

mahato mahavidyalayin mahiti mahitiche mahitisathi manus

maratha marathi marathvada mhanaje mhanato mothe

nagari nahi nahi nahitar naisargik nako

nasavi navacha nave naye newzeland nishigandha

olakhale olampic orisa aurangabad padavar padavi

paddhat paha pahila paithan pakshache panavar

parichay parisarat pashchim patra peru phala

phalandaj pheri philip poorna pope prachin

pratham prerit pudhil pudhil pune purves

rahanyachi rahanyasathi raje rajya rajyatil ramayan

rangache saagar sacha sadasya sahava sahi

sahittik sajara saket saman samartha sampadan

samudra sangamesh sangu sanskrut sarakarane sarala

sarvat satava senapati shahar shaharat shakata

shakatat shakel shaleya sharada shatakatil shevatachi

shikshan shivaji snehal soy spardha sthala

suchana sundar swatachi tar tarun tasech

tee teju tisari tisarya tula tyanche

utkrushtha uttares vaparala vaparu vaparun varil

vasalele vibhag vibhagache vikat vishayi vishistha

vishwasu waghanche washingaton wikipedia yache yamule

yanche yatil yetat yethe yethehi yogadan

zali zale zalyavar

Table A.3: List of words considered for identi�cation of phoneme boundary from IIITH Hindi dataset

aaj aapki aap sab aati accha adar agni

amulya anek angada angrej ankit antim anya
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apaka atankavad ati bichit avashyak bachcho bacho badalav

bahu bahut bandhak batane bharat bhaugolik bhavishya

bichit bura chahiye chala chauhan chinada computer

cricket darshan deni desh ganga hindi imandari

inaka inake inhe ityadi jaan jaiseki jana

jana janapath janma jaruri jativad jinaka jivan

kaam ka� kahani kal kalank kamana karan

karane karib karunga kavi kavita ke rup ke din

kee khanda kruti kuch kumari madat madira

magadha madat magar mahummad maine majanu mandap

mangal meetha mehanat nadi nimnalikhit nirwachit nirwat

paar pakad pani panne parampara pariwar paryatan

pasand paschim pata patan patra pita poorab

poornima prabandhak prabhav prachin pradesh pragati prakashit

pramukh pratit prushtho punit purana puri pustak

rachana sab sabase sabhi sadasya sahit samaj

samaya sambandhi sambandhith sampada samruddha sandarbha sangam

sanik sankshep sansar santa sehat shabda shabdo

subaha suchi sukhi suman sundar sunu suraj

swagat tamil tani tehi tibat tulana uchit

udaya unake unaki unhe unhone unke unki

upanyas us uttar vaman vana ve log vishad

vishayo waha water wiki wikipidia yagya zarana

A.2 Images of the representative words considered for

the NITK Kids Corpus recording
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(a) aDige
(kitchen)

(b) aidu (�ve) (c) AiskrIm (ais-
crim)

(d) akka (sis-
ter) & shAlage
(school)

(e) amma
(mother)

(f) Ane (ele-
phant) & snAna
(bath)

(g) angaDi
(shop)

(h) angi (shirt) (i) AToriksha
(auto)

(j) auSHadhi
(medicine)

(k) AuT (out) (l) Ayudha
(weapon)

(m) bAchaNige
(comb)

(n) baLe (ban-
gles)

(o) bALehaNNu
(banana)

(p) bAuTa (�ag) (q) bekku (cat) (r) beLagge
(morning)

(s) bhuja (shoul-
der)

(t) bhUmi
(earth)

(u) billubANa
(archery)

(v) bIsaNige
(handheld fan)

(w) biskiT
(biskit)

(x) blEDu
(bled)

(y) brash
(brush)

(z) chakra
(wheel)

(aa) chamcha
(spoon)

(ab) chandra
(moon)

(ac) chauka
(square)

(ad) chhatri
(umbrella)

(ae) chiTTe
(butter�y)

(af) Dabba
(box)

(ag) Dabbi (can-
ister)

(ah) dALimbe
(pomegranate)

(ai) dana (cow)
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(aj) dhAnya
(grains)

(ak) ele (leaf) (al) ELu (seven) (am) Eni (lad-
der)

(an) gade (blunt
mace)

(ao) gaDiyAra
(clock)

(ap) gaNesha/-
gaNapati (lord
Ganesha)

(aq) gham-
aghamaUTA
(hot food)

(ar) giLi (par-
rot)

(as) hadimUru
(thirteen)

(at) hallu
(teeth)

(au) haNNu
(fruits)

(av) hattu (ten) (aw) hatturu-
pAyi (ten
rupees)

(ax) huDuga
(boy) & huDugi
(girl)

(ay) Iju (swim) (az) ili (mouse) (ba) IruLLi/nIr-
uLLi (onion)

(bb) iruve (ant) (bc) jaDe
(braid)

(bd) jag (jug) (be) kADu/-
vana (forest)

(bf) kai (hand) (bg) kathe
(story)

(bh) kempu
(red)

(bi) khaDga
(sword)

(bj) kudure
(horse)

(bk) kurchi
(chair)

(bl) lori (truck) (bm) mane
(home)

(bn) mara (tree) (bo) marage-
Nasu (casava)

(bp) mAv-
inakAyi
(mango)

(bq) mODa
(cloud)

(br) mUgu
(nose)
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(bs) nAlku
(four)

(bt) navilu (pea-
cock)

(bu) nAyi (dog) (bv) Odu (read) (bw) Odxu
(run)

(bx) onTe
(camel)

(by) pAda (legs) (bz) paTAki
(�reworks)

(ca) phalaka
(board)

(cb) posTbAoks
(postboks)

(cc) ratha (char-
iot)

(cd) rAtri
(night)

(ce) rEDiyo (ra-
dio)

(cf) samaya
(time)

(cg) samudra
(sea)

(ch) sangha
(group)

(ci) sAyankala
(evening)

(cj) shankha
(conch shell)

(ck) sharT
(shirt)

(cl) simha (lion)

(cm) sUrya
(sun)

(cn) tale (head) (co) taTTe
(plate)

(cp) TomaTo
(tomato)

(cq) Toppi (cap)

(cr) Udu (blow) (cs) uguru
(nails)

(ct) uppinakAyi
(pickle)

(cu) UTa (food) (cv) vid-
hAnasaudha
(assembly)

(cw) vimAna
(aeroplane)

(cx) vINA (In-
dian stringed in-
strument)

(cy) yama (god
of death)

(cz) yantra (ma-
chine)

Figure A.-1: List of the images used to extract/record representative speech samples for Kannada
phonemes
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