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Abstract

Diagnostic scanning is extensively used for investigation of internal organ-related

ailments and managing patient care. With the proliferation of imaging-based di-

agnostic procedures in healthcare, patient-specific scan images constitute huge

volumes of data, thus creating a need for automated healthcare information man-

agement systems (HIMS) to facilitate their efficient organization and manage-

ment, and for supporting clinical decision support applications. Medical images

often require varied processing for enabling effective representation and modeling

for building higher-level decision-support applications. One of the critical gaps

in automated systems is limited attention to certain standards in meeting the

quality of the scanned images. Compounding this problem is the availability of

multi-vendor, non-standard scan resolution machines and also ill-trained medi-

cal technicians. Automatically making computers understand the content of an

image and offering a reasonable description in natural language has gained more

attention recently in computer vision and natural language processing research

communities. The caption prediction task in the medical domain is thus very

relevant, as it aims to generate textual descriptions of the images, which can be

used to improve indexing mechanisms in HIMS.

The focus of the research work presented in this thesis is on building an ef-

fective framework for medical image representation, modeling and management,

for enabling advanced clinical applications like similarity based diagnostics, deci-

sion support, etc. In clinical diagnosis, diagnostic images that are obtained from

the scanning devices serve as preliminary evidence for further investigation in the

process of delivering quality healthcare. However, often the medical image may

contain fault artifacts introduced due to noise, blur and faulty equipment. The

reason for this may be low-quality or older scanning devices, the test environment

or technician’s lack of training etc, however, the net result is that the process of

fast and accurate diagnosis is hampered. Towards this, automated image quality

improvement approaches are adapted and benchmarked for the task of medical

image quality enhancement through super-resolution.
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To design approaches for leveraging the enhanced medical images for further

analysis and modeling for supporting applications like categorization, retrieval

and automated captioning using machine learning and deep learning techniques,

the concept of Content-based Medical Image Retrieval (CBMIR) systems is in-

corporated. The CBMIR system designed can model heterogeneous views, body

orientation, etc for supporting similar image retrieval for diagnosis. In diagnos-

tic medical images, the patient body orientation or view of the scanning posture

like anterior or frontal view, posterior or back view and the lateral or side views,

also known as left lateral or right lateral can be used during scanning. However,

computer-aided diagnosis systems often do not provide this piece of header in-

formation of the image. Hence, image orientation identification is essential for

qualitative and quantitative analysis in diagnostic applications. If such patient

body orientations are not recorded or are documented using an incorrect label,

automated system indexing may be inconsistent, and may also result in improper

interpretation by computers and radiologists. Thus, a learnable neural model for

accurately identifying the view positions of different organs of the body is proposed

and designed.

For a radiologist to delineate the imaging study’s findings/observations as a

textual report is a manual, time consuming and tedious task, further exacerbated

by the volume of generated images. Automated methods for radiographic image

examination for identifying abnormalities and generating reliable radiology report

are thus a critical requirement in clinical workflow management applications. The

features extracted using neural network architectures are used to automatically

generate the diagnosis medical report for scanned images, thus providing a way to

build a robust medical imaging application for quality diagnosis. The promising

achieved results underscore the performance of the approaches designed in this

research and reveal much scope for adaptation in the healthcare field for improving

the quality of healthcare delivery and management.

KEYWORDS: Image Quality Assessment, Image Super-Resolution, Content

Based Medical Image Retrieval, Natural Language Processing, Artifical Intelligence
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SIFT Scale-Invariant Feature Transform

SISR Single Image Super Resolution

SR Super Resolution

SRCNN Super-Resolution Convolutional Neural Network

SSIM Structural Similarity Index Measure

SURF Speed Up Robust Feature

SVM Support Vector Machines

UMLS Unified Medical Language System

VIF Visual Information Fidelity

WebMIRS Web-based Medical Information Retrieval System

WTE Wavelet Transform Enhancement





Nomenclature

Notation Meaning Chapter No.

f1, f2 Patch Size of LR and HR images 4
n1, n2 HD vector 4
I, Iˆ Ground truth and reconstructed image 4
M Numbers of rows of an image 4
N Numbers of columns of an image 4
Xij, Yij Intensity of original and reconstructed image 4
C1, C2 Constants 4
σx, σy Contrast comparison functions 4
µ Mean 4
σ Standard deviation 4
I Input tensor 4
O Output tensor 4
p Pooling sub-tensor 4
lM , cj, sj luminance,contrast and structure comparison functions 4
α,β,γ Weights set to 1 4
I Maximum intensity of a grayscale image 4
C Reference image 4
F Distorted image 4
E Image that the Human Visual System perceives 4
IT Transpose of Image I 5
Q Number of query/test images 5
vi Current velocity of the particle 5
yi Best position of the particle 5
w Inertia weight 5
c1, c2 Acceleration constants 5
λ Regularization strength 5
nd Digits, where, nd ∈{3,4} 5
Bik
j Number of possible labels at position i 5

M Number of training examples 7
K Number of classes 7
wk Weight for class k 7
ykm Target label for training example m for class k 7
xm Input for training example m 7

xxi



Notation Meaning Chapter No.

hθ Represents a model with neural network weights θ 7
` Iteration number 7
θ Parameter vector 7
γ Contribution of previous gradient step to current iteration 7
ŷc Model’s prediction of a class 7
Pr(a) Actual observed agreement 7
Pr(c) Chance agreement 7
L1 Evaluates 1-norm between recovered and ground-truth image 7
C(i) Number of i -gram tuples in candidate document 7
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Introduction and Background





Chapter 1

Introduction

Medical imaging is a multidisciplinary field with an intersection of varied tech-

nologies like computer-aided modeling/design and mathematics applied to the

field of medicine. Over the past two decades, there have been significant ad-

vancements in medical imaging technologies for disease diagnosis, through various

imaging modalities like X-Ray, MRI (Magnetic Resonance Imaging), CT Scans

(Computed Tomography), PET (Positron Emission Tomography) etc. These pro-

cedures have become the de-facto standard for facilitating the diagnosis of many

common diseases in modern healthcare.

Healthcare quality and patient safety are deeply connected as healthcare qual-

ity is a broad term that encompasses many aspects of patient care. Quality

healthcare is care that is safe, effective, patient-centered, timely, efficient, and eq-

uitable1. Quality of healthcare is an important aspect in the promotion of health

and well-being of people around the world. According to published reports2, the

US healthcare system has extensively invested in the use of Information Technol-

ogy in healthcare services, with a budget that exceeds the world average income

by more than eight times. India, the world’s second most densely populated coun-

try, has made vast strides towards the implementation of nation-wide healthcare

systems for its people. The Indian Constitution makes the provision of healthcare

in India the responsibility of the state governments, and makes every state respon-

sible for “raising the level of nutrition and the standard of living of its people and

the improvement of public health as among its primary duties.”

The National Health Policy was endorsed by the Parliament of India in 1983

and has been updated twice since, in 2002 and 2017. In 2017, four main up-

dates have been proposed that stress the need to focus on the emergence of the

1Crossing the Quality Chasm: A New Health System for the 21st Century. Online: https:

//www.nap.edu/read/10027/chapter/1#iii
2WHO Global Health Expenditure Database. Online: http://apps.who.int/nha/database

1

https://www.nap.edu/read/10027/chapter/1#iii
https://www.nap.edu/read/10027/chapter/1#iii
http://apps.who.int/nha/database
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robust healthcare industry, growing incidences of unsustainable expenditure due

to healthcare costs and rising economic growth enabling enhanced fiscal capacity

(Sekher, 2013). In practice, the private healthcare sector is a major healthcare

provider in India, and most healthcare expenses are paid directly out of pocket by

patients and their families, rather than through health insurance (Berman et al.,

2010). Government health policy has thus far largely encouraged private-sector

expansion in conjunction with well designed but limited public health programmes

(Britnell, 2015).

Ayushman Bharat, an ambitious government-funded health insurance project

launched by the Government of India in 2018, aims to cover the lower 50% of

the country’s population and offer them free treatment even at private hospitals

(Zodpey and Farooqui, 2018). The two interrelated components of Ayushman

Bharat are: 1) Health and Wellness Centres (HWCs) and 2) National Health Pro-

tection Scheme like Pradhan Mantri Jan Arogya Yojana (PM-JAY). Health and

Wellness Centres are envisioned as a foundation of the health system to provide

comprehensive primary care, free essential drugs and diagnostic services. Na-

tional Health Protection Scheme is envisaged to provide financial risk protection

to poor and vulnerable families arising out of secondary and tertiary care hos-

pitalization (AyushmanBharat, 2018) to the tune of five lakh rupees per family

per year which will enable the realization of the aspiration for UHC. This digi-

tal transformation story of healthcare in India has seen a technology-led program

that aims to connect 500 million citizens to a nationwide network of hospitals via

a single comprehensive process – from registration to cashless hospitalization and

discharge. Typically, this connectivity would be weighed down by reams of doc-

umentation, a slew of sub-processes, and multiple physical interventions at every

stage. Now, this re-imagined digital healthcare solution brings together central

and state medical facilities to enrol citizens, empanel hospitals, process medical

claims and generate auto approvals.

Modern healthcare has emerged as a data-driven ecosystem, one that is slowly

realizing the utility and value of collecting varied health related data. Healthcare

data comprises of a wide variety – claim data, electronic health records, admin-

istrative data, medical records, clinical trial, drug responses, research data, and

so on. The emergence of eHealth and mHealth (mobile health) have expanded

the definition of health data by creating new opportunities for patient-generated

health data (PGHD) (Shapiro et al., 2012). Digital health prescribes a patient-

centric healthcare system in which patients are empowered by the availability of

their health data, so that they can manage their own health and wellness with
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assistive/wearable technologies3. Availability of such valuable streaming data en-

ables providers to deliver personalized treatment, model patient-specific health

risks and plan for adverse events.

Medical Diagnostic Imaging (MDI) is critical to modern healthcare, due to

the availability of varied procedures for constructing the visual representations

for internal organs of the human body for diagnosis and clinical interpretation.

Diagnostic procedures like X-rays, CT and PET scans are extensively used in

modern medical treatment and delivery, the net result being the generation of

large volumes of data adding to the burden of hospital data management systems.

Diagnostic scan images characterize the health assessment of the human body on

various levels, such as microscopic, macroscopic, etc. The role of medical imaging

in clinical diagnosis, treatment planning and procedures cannot be overstated.

Due to the availability of advanced, state-of-the-art software and hardware, there

has been rapid advancement in the field of medical imaging technology. The global

medical imaging market was valued at $25.7 billion in 2016 and is forecast to grow

at a modest 5.4% between 2017 and 2024, with a projected global sales of $43.3

billion in 2021 (Report, 2017, 2021).

The proliferation of medical image data from hospitals, documented in digital

forms is a significant and valuable resource for improving diagnosis. According

to published reports (Report, 2019, 2021), the global diagnostic imaging market

is projected to reach USD 33.5 billion by 2024 from USD 25.7 billion in 2019, at

a CAGR of 5.5% from 2019 to 2024. Based on modality, the diagnostic imaging

services market is segmented into MRI, ultrasound, CT, X-ray, nuclear imaging,

and mammography. In 2018, the X-ray segment accounted for the largest share of

the market. The key factors driving the growth of this market include the rising

geriatric population, lower cost of X-rays as compared to other imaging modalities,

favorable returns on investments and technological advancements in X-ray imaging

systems. Thus, diagnostic imaging data repositories are now a major source of

knowledge for detailed analysis related to diseases like cancer, tumors, fractures,

etc., enabled through intelligent Healthcare Information Management Systems

(HIMS). Efficient collection and management of diagnostic imaging and related

data can be utilized for supporting intelligent decision-support applications, which

is increasingly becoming a critical requirement. Extraction of clinically relevant

information or knowledge from medical images for building CDSSs and predictive

analytics systems have thus garnered much research interest in the past decade.

3https://www.fda.gov/medical-devices/digital-health-center-excellence
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1.1 Diagnostic Image Management

The digitization of X-ray radiography devices and advancements leading to mobile

X-ray devices, has resulted in portable examinations at the bedside of hospitalized

patients and in the NICU (Neonatal Intensive Care Unit). Grid (a metallic filter

made of lead strips), which removes scattered X-rays, is widely used in clinical

settings since it improves image contrast. If X-rays penetrate to the grid at an

oblique angle; an image of uneven density may result. However, in portable ex-

aminations where the grid is often slanted due to misalignment of the bed and

other factors, uneven densities (Refer Fig.1.1a) can result, making it difficult to

read the image. Medical technicians sometimes perform portable examinations

without a grid although they understand that it may cause deterioration of image

quality due to scattered X-rays (shown in Fig.1.1b). Virtual Grid is an image

processing technology that converts deteriorated image quality due to scattered

X-rays (Fig.1.1b) to an improved quality image (Fig.1.1c) by reducing the effect

of scattered X-rays (Kawamura et al., 2015).

Figure 1.1: Using the Virtual Grid for Radiography (Kawamura et al., 2015)

Some quality control parameters adopted for achieving high-quality digital

radiography include -

1. Inclusion of validated imaging protocols so that the consistency of image

quality and radiation dose can be established and maintained between rooms

and between sites;

2. Use of appropriate compression techniques on image data to facilitate trans-

mission or storage, without loss of clinically significant information;

3. Archiving of data to maintain accurate patient medical records in a form

that may be retrieved in a timely fashion;
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4. Application of image processing for better display of acquired information;

5. Promotion of clinical efficiency and continuous quality improvement.

The earliest clinical insights are generally obtained via different modalities

of medical images such as X-rays scans, CT and MRI among others (Binh and

Tuyet, 2015). Hence, acquiring good quality diagnostic images is essential for

analyzing and determining disease onset, criticality and progression. Due to the

technical restrictions and various economic and physical conditions, there exist

several challenges in obtaining a good quality diagnostic image, like, low resolution

(LR) images, under-exposure or over-exposure, occurrence of artifacts introduced

by faulty or older scanning equipment etc, which can often render diagnostic

scans unsuitable for further analysis (Summers, 2012). Due to this, methods that

improve the spatial resolution of medical images are gaining increasing importance

in clinical workflow management systems.

To create a high resolution (HR) medical image, numerous image enhancement

algorithms have been proposed. Image super-resolution (SR) by Ha et al. (2018)

is an approach of restoring high-resolution images from images of lower resolution.

Super Resolution can be categorized as Single Image Super Resolution (SISR) and

Multi-image Super Resolution (MISR) based on a total of low-resolution images

taken as input. SISR can be defined as a method where one low-resolution input

image is utilized to restore high-resolution image details. MISR is primarily a

reconstruction-based algorithm that takes multiple variants of LR images and

attempts to combine them for recovering the details of the HR image. Further,

enhancing medical images (Mifflin, 2007) can help medical experts for evaluating

diagnosis accurately with more details in pathology research. As a result, medical

image enhancement process can substantially enhance the accuracy of computer-

aided automatic detection (Ramakrishna et al., 2009).

Image super-resolution is an active research field, however, many medical di-

agnostic image modalities do not lend themselves well to it. This is due to the

inherent structure and manifold information contained in the medical scans. Thus,

there is a need for super-resolution techniques to enhance the poor quality images

through computational means. This minimizes the overall burden in analysis of

the disease for physicians, saving their time and also aiding in accurate diagnosis,

specifically in cases where the disease is in its early stages. This also reduces the

need for rescanning, wastage of medical resources, cost, effort, time of patients,

medical personnel and hospital administration.
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1.2 Medical Image Representation

The proliferation of medical image data from hospitals, documented in digital

forms, is a significant asset for diagnostic medical informatics. Such diagnostic

tools contribute varied types of medical images like X-rays, CT and PET scans,

generated in huge volumes continuously, given a large number of patients seeking

medical attention; thus, efficient management becomes critical. For improving

the organization and storage of medical scan images, several standards have been

proposed and standardized. The DICOM standard (Digital Imaging and Commu-

nications in Medicine) (Mildenberger et al., 2002) can be used for storing patient

information and their scan images for communication. System like PACS (Picture

Archiving and Communication Systems) (Choplin, 1992) was created for improv-

ing access to stored DICOM files so that higher-level applications like decision

making can be supported. However, most such systems have many restrictions,

like the dependency on the text-based search for images, requiring keyword match-

ing capabilities. Thus, image retrieval often suffers from limited accuracy due to

ambiguous/sparse textual descriptions of images, non-existent/low-quality image

annotations (e.g., test description). Effective techniques called Content-Based Im-

age Retrieval (CBIR) that use pure visual cues to retrieve relevant images from

huge image collections were developed to overcome these limitations.

Medical image classification and retrieval is a challenging and active research

area with applications in similarity-based automated diagnosis, decision support

and medical data management. Keyword-based querying has been traditionally

used for Medical Image Retrieval (MedIR), which is typically supported by text-

based annotations that are created and stored along with each image, and used

during the retrieval process. The PACS (Lehmann et al., 2003a) is a significant

effort to overcome these challenges with a focus on storing and retrieving med-

ical images effectively. Despite this, a notable drawback of PACS is that the

techniques used were dependent on keywords and related text annotations stored

together with an image for retrieval. However, good quality textual annotations

are hard to come by, due to the prohibitive manual effort and time constraints.

When available, these annotations are often ambiguous due to the unstructured

nature of natural language or incomplete, thus adversely affecting retrieval re-

sults. Advancements in image management systems have led to the development

of CBIR systems, which have been adapted for medical image management.

In contrast to keyword-based image querying systems, a CBIR system aims to

capture the latent features from an image without requiring any external infor-
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mation (e.g. text metadata associated with images). In CBIR systems, potential

matching images are identified as per their actual visual content overlap with a

given query image and ranked as per their similarity. CBIR makes use of image-

level features like texture, shape and color for finding the most significant images

during retrieval concerning a given query image. Thus, most CBIR systems are

dependent on low-level features like color, shape and texture to obtain relevance

rankings. An adaption of CBIR concepts and their application to medical images

has resulted in Content-Based Medical Image Retrieval (CBMIR) Systems.

Several prototype systems that assist users in efficient image retrieval have

been designed and deployed in the healthcare domain. One of them, ASSERT

(Shyu et al., 1999) was specifically developed for lung CT images, and relies both

on both text annotations and image-level features for identifying any anomalous

regions in images to detect the possibility of disease. Pathfinder (Wang, 2000)

and the I-Browse system (Tang et al., 1999) focus on automatic labeling of histo-

pathological images like tissue slides for facilitating retrieval. Similarly, Web-based

Medical Information Retrieval System (WebMIRS) (Antani et al., 2002) is a sys-

tem that focuses on the indexing and retrieval of human lumbar and cervical spine

scans only. The IRMA system4 mainly focuses on the classification and retrieval

of images into anatomical areas, modalities and viewpoints. However, due to the

limited feature modeling and also a dependency on text annotations, the adapt-

ability of these systems to multi-modal medical image data is limited. Despite

significant improvements in medical image retrieval, conventional retrieval models

that support querying based on text/keywords fail to capture the latent visual fea-

tures in an image, emphasizing the need for effective adaptations of CBIR systems

for medical images. As medical images are inherently multi-dimensional and com-

plex in the varied information that can be inferred from them, designing effective

feature extraction mechanisms can help to improve overall retrieval accuracy.

1.3 Dealing with variance in medical images

Radiological procedures like X-rays have evolved which is a crucial diagnostic

imaging tool for identifying abnormalities in different body parts, which may re-

quire insights derived from various views/body orientations of the patient. Often,

frontal view and lateral view are used in such cases. For Computer Aided Diag-

nosis (CAD), internal and external shapes are very important in identifying the

abnormality. While scanning, i.e., during the diagnostic image capturing process,

4https://www.kaggle.com/raddar/irma-xray-dataset

https://www.kaggle.com/raddar/irma-xray-dataset
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the scanning equipment is focused on the injured part of the body, and scans

are typically performed in different positions to aid effective diagnosis. There are

other organs of the body which are taken at different views for proper diagnosis.

Therefore, the medical images of the same organ that are taken at varied angles

require proper categorization which needs to be trained differently, according to

the image view.

Currently, the projection view/ image orientation of radiographs are labeled

manually by radiologists and technicians. Manual corrections for wrongly labelled

views makes it impractical in PACS and digital imaging systems, as it involves cost

and time of human resources. Instead of manually labeling such multi-oriented

images, it can be accomplished automatically by intelligent algorithms that are

trained to understand the patterns with large-scale images. Methods that can

assess this automatically and provide the necessary information regarding the

view of the organ at which the scan is taken can be beneficial.

In solving the challenges for view classification, most of the approaches were de-

veloped by using traditional hand-crafted features, such as Local Binary Patterns

(LBP), Scale-Invariant Feature Transform (SIFT) features, Histogram of Oriented

Gradients (HOG) (Xue et al., 2015). There are very limited works when it comes

to neural network based orientation classification (Takeuchi et al., 2019). Hence, a

method for automatically recognizing the projection view and the patient-relative

orientation of different organs of medical images would be very useful because it

reduces the incidence of mislabeled or unlabeled images, and saves time in reori-

enting images and helps improve the image management process. The outcome of

such orientation classification model should be accurate, continuous, operating in

the real time in the clinical workflow CAD systems.

1.4 Automating Diagnostic Image Management

Automatically making computers understand the content of an image and offering

a reasonable description in natural language has gained importance due to the chal-

lenges of large volume and streaming nature. In clinical practice, medical special-

ists and researchers usually write diagnosis reports to record microscopic findings

from images, so automatic captioning on medical images will benefit healthcare

providers with valuable insights and reduce their burden across the overall clin-

ical workflow. The medical image captioning challenge (de Herrera et al., 2018)

aims to advance methodological development in mapping visual information from

medical images to condensed textual descriptions. The caption task can be seen
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as a part of the medical image classification task (Villegas et al., 2015; Seco et al.,

2016) and can be a significant addition to HIMS software.

Image processing and Computer Vision (CV) based techniques have been ap-

plied for designing applications for surgical and imaging interventions. Such sys-

tems are extend clinical decision making capabilities to the healthcare profession-

als, by automating certain tasks related to diagnosis, or by forecasting the severity

of several abnormalities and radiology reports. Incorporating Artificial Intelligence

(AI) in these systems to support learning behaviour so that systems can detect

abnormalities at the earliest disease onset in a wide variety of diagnostic media

like radiology, CT scans, MRIs etc are of critical importance. The radiologist can

utilize these insights for enabling and optimizing the quality of diagnosis. The

marked region can help the physicians to focus on early and effective treatment

recommendations. Further, automated retrieval of radiological diagnosis reports

will minimize the manual work involved in reporting observations from the radio-

logical images, while also alleviating the cognitive burden of the radiologists due

to the huge load of cases that they typically handle each day.

1.5 Prevalent Challenges and Issues

Despite vast strides achieved in the way medical diagnosis is performed, there

exist several prevalent issues that hinder the scale at which the utility of generated

volume of clinical knowledge is being exploited. Several challenges were observed

that need to be addressed, for full-scale adoption of intelligent automated systems

in healthcare delivery and diagnosis. Some of these observations are listed below.

1. Scarcity of well-annotated medical imaging datasets: To find a dataset

that provides well-documented and labeled data for designing large-scale

medical image categorization tasks is significantly more difficult in the med-

ical domain when compared to other domains. Crowdsourcing of images is

one of the solution to address this challenge, where people can be asked to

share images based on their agreement. One such example is, where COVID

positive patients were asked to share their X-ray images, leading to curation

of large repositories of Chest X-ray scans. Another way to deal with this is

making the data well-documented and open access, i.e., organisations make

the anonymized datasets openly available for researchers to carry out their

research. Some of the publicly available datasets are CheXphoto, MURA,

ImageCLEF and others.



10 Chapter 1. Introduction

2. Quality of medical scans: The acquired medical scans are often poor

in quality when compared to natural scene images, which are more clear

and of higher resolution when compared to the latter. Often in healthcare

delivery scenarios, utmost quality control is difficult, and scanning errors

are introduced because of faulty equipment, lab environmental conditions,

limited availability of well-trained lab technicians, patient non-cooperation

(in case of kids, accident victims, terminally ill patients etc). These fac-

tors sometimes affect the quality of the acquired images (Saunders Jr et al.,

2007; Boita et al., 2021). Such differences in training and test data can lead

to disparity in the quality of training and performance of learning models.

Therefore, it is essential to have curated data that provide high-quality and

consistent scan images. This is a difficult requirement for most hospitals,

due to the hectic pace of patient-centric activities, sheer volume and gener-

ation frequency of medical scan data. A solution is seen in the design and

development of effective image quality enhancement pipelines, and their in-

corporation in Medical Image Management Systems, for automatic curation

of high-quality data.

3. Generalisation and variance: Medical images contain manifold informa-

tion, and are multimodal in nature. Clinical diagnosis processes are often

dependent on multiple scan views with respect to varied patient positions for

effectively assessing the prognosis of the patient. Medical personnel utilize

such multi-modal data to gain insights into the symptoms that are indicative

of a particular medical condition. Dealing with such additional knowledge

on a single patient is important, and is essentially performed manually in

current scenario.

4. Expertise: Radiologists are highly trained to infer clinical observations

from scan images, for providing insights to the referring specialists in the

process of disease diagnosis. Radiologists typically deal with 200-300 scan

images a day even in small-scale hospitals, and analysis is performed man-

ually, resulting in high cognitive burden. Despite this, though radiologist

contributed knowledge is crucial for diagnoses, it is rarely stored for future

access and learning, in practice.

5. Data annotation quality: Most medical image datasets exhibit a signif-

icant lack of high-quality annotations and labeling, making any large-scale

learning task difficult. Another modality of data that is seldom utilized in
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the expert-generated diagnosis reports. Disease-specific knowledge contained

in expert-generated content like radiology reports, nursing reports, doctors’

notes etc are rarely stored and thus, a crucial body of valuable data is lost.

Any available reports are often very brief, containing precise medical termi-

nology or abbreviations, which could be very useful if correctly processed for

enabling future diagnoses tasks.

6. Multimodal feature learning: Incorporating multiple types of clinical

data, such as, medical images and clinical text, is a field which has received

very little research attention. Automated systems that can combine the

visual features extracted from the medical scans combined with effectively

modeled expert knowledge contained in clinical text, have a significant po-

tential for augmenting diagnosis accuracy and also cut down on the time

required for diagnosis.

1.5.1 Thesis Contributions

Based on the understanding of the gaps identified in medical image modeling and

representation of healthcare systems, the research problem addressed by the work

presented in this thesis is defined as:

“To design and develop an effective framework for representation, mod-

eling and management for diagnostic medical images for supporting

advanced clinical decision support applications.”

The research work presented in this thesis elucidates the design of a frame-

work for medical image modelling and representation for effective management of

healthcare systems built using radiography data. The major contributions of the

research work presented in this thesis are as follows:

• Improving clinical diagnosis performance with automated medical scan qual-

ity enhancement algorithms with deep neural image super-resolution models.

• A hybrid feature modeling approach, Swarm Optimization based Bag of

Visual Words Model and a deep neural network model for Content-Based

Medical Image Retrieval with multi-view classification.

• Deep neural ensemble models for abnormality detection and classification in

plain radiographs.
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• Design of automated view orientation classification techniques for X-ray im-

ages using deep neural networks.

• Deep neural models for automated multi-task diagnostic scan management,

including automated generation medical image descriptions.

1.6 Summary

This chapter discusses issues and challenges in the healthcare delivery process, of

which diagnostic imaging is a significant part. The issues relating to collection,

representation, modeling and management of medical images are discussed and

highlighted. A significant need for effective automated medical image enhancement

methods for quality representation and improved diagnosis are observed. It was

also observed that developing effective medical image representation techniques to

capture the manifold information and region-of-interest from scan images to enable

targeted retrieval and real-world medical diagnostics applications is critical. To

help healthcare providers with valuable insights and to reduce their burden across

the overall clinical workflow, techniques that can automatically analyze medical

scans and generate natural language reports for them with reasonable accuracy

are also the need of the day.

1.7 Thesis Organization

The rest of this thesis is organized as follows.

• In Chapter 2, an extensive literature review on the challenges in medical

image management and observed gaps are explained.

• In Chapter 3, the research problem addressed is formally defined based on

outcomes and gaps learned from the existing literature. The scope of this

research and a brief description of the proposed methodologies are also pro-

vided in Chapter 3.

• Chapter 4 presents a detailed discussion on proposed approaches for dealing

with medical image quality enhancement.

• In Chapter 5, approaches for medical image modeling and representation for

enabling classification and retrieval are presented in detail.
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• Chapter 6 proposes approaches for dealing with the problem of variance in

medical scan views and models for orientation classification.

• Chapter 7 presents automatic approaches for medical image description gen-

eration.

• Chapter 8 presents concluding remarks about the research work carried out

and possible directions of future research in the area.





Chapter 2

Literature Review

2.1 Background

In modern healthcare, medical imaging is a preferred diagnostic tool, due to its

reliability and non-invasive nature. Available across multiple modalities, these

services can aid in the process of accurate and decisive disease diagnosis, en-

abling curative action fast. The demand for advanced image analysis techniques

stems from the recent proliferation of new biomedical imaging modalities. The

number of scans currently performed in most hospital environments has increased

exponentially placing unprecedented workloads on healthcare personnel associated

with these services, performing tasks like capturing, analysis, interpretation and

documentation. Alleviating such growing burden, by the introduction of auto-

mated systems for healthcare information management has received significant

research interest over the past decade. Remarkable advances in large-scale and

cost-effective availability of computational resources, data storage and the advent

of learning based neural models have brought forth critical advancements in revo-

lutionising healthcare delivery, paving the way to precision medicine applications.

Intelligent systems for automatic medical image analysis, interpretation and deci-

sion making which can lead to improved diagnosis and a better understanding of

disease progression.

Over the past decade, active research interest has been focused on the area of

medical image representation and management with real-world implications in the

medical image enhancement (Rui and Guoyu, 2017; Gao et al., 2017; Liu et al.,

2017), medical image representation (Tizhoosh, 2015; Liu et al., 2016; Zhu and

Tizhoosh, 2016; Qayyum et al., 2017), medical image categorization (Kao et al.,

2011; Xue et al., 2015; Takeuchi et al., 2019) and medical image modeling and

interpretation (Stefan et al., 2017; Su and Liu, 2018). Medical imaging informatics

15
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has generated much interest among researchers and the healthcare community

owing to the large number of practical applications, however, critical challenges

still exist. In this chapter, a comprehensive review of the existing research in

the area of medical image informatics for development of intelligent healthcare

systems is presented. A detailed study of the merits and limitations of existing

works is provided for insights into the gaps to be addressed.

2.2 Related Work

An extensive review of existing research in the domain of Medical Image Analytics

for the design of intelligent medical image management systems was undertaken,

and the various challenges in these areas were examined in depth. Our study

concentrated upon the challenges identified during preliminary review (listed in

Section 1.5), and existing works that address these issues are discussed in subse-

quent sections.

2.2.1 Medical Image Quality Management

The primary factors that typically affect the quality of captured medical scans are,

noise, edge/contours and contrast. Gaussian noise and impulse noise are the two

fundamental types that degrade the quality of a medical scan. Generally, median

filtering is used to smoothen any impulse noise, but this does not improve the

gray-contrast of an image. Histogram Equalization (HE) (Kim, 1997) is a popular

method that could be applied to intensify the contrast of the given image; however,

the new image that gets developed is often not of acceptable quality. Additionally,

grayscale modalities often suffer from low contrast, making the minute details

like hairline fractures, fissures etc challenging to identify even for trained medical

professionals.

Other factors that affect digital radiographic images are low contrast, visual

noise or X-ray scattering and blurring lead by the complexity and density of body

tissues. Radiographic images are often found to need significant improvement in

visual quality, including contrast and feature enhancements. Different techniques

like Linear Contrast, HE (Histogram Equalization), CLAHE (Contrast limited

adaptive histogram equalization) and BPHE (Brightness Preserving Histogram

Equalization) were used by Ahmed et al. (2011) to enhance digital radiographic

images. Georgieva et al. (2013) developed an enhancement method for X-ray

images using CLAHE followed by morphological processing and noise reduction.
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CLAHE improves the contrast of an image by reducing the noise in homogeneous

areas. But, it was noticed that the artifacts increased when the block size con-

sideration for the image enhancement was more than 16x16. To mitigate this,

Ren et al. (2014) proposed a hybrid image contrast improvement method formed

by the sharp frequency localization-contourlet transform (SFL-CT) and CLAHE.

Also, a comprehensive pre-processing algorithm that was developed substantially

enhanced the contrast, simultaneously reducing the artifacts.

A solution to this problem is the use of Super-Resolution (SR) techniques by

dynamically enhancing the resolution, de-noising the medical images and applying

Super-Resolution techniques such as patch based and orthogonal acquisition al-

gorithms. Huang et al. (2016) proposed a two-stage filtering process and contrast

enhancement for X-ray images. By using an adaptive median filter and bilateral

filter, their method was able to suppress the mixed noise which contains Gaussian

noise and impulsive noise, while preserving the important structures (e.g., edges)

in the images. Afterward, the contrast of an image is enhanced by using gray-level

morphology and CLAHE. However, the absolute mean brightness error (AMBE)

was more than CLAHE. Bhairannawar (2018) effectively used the enhancement

techniques using HSV Transform (Hue, Saturation, and Value) and Adaptive His-

togram Equalization. Standard medical image dataset MEDPIX was used for this

purpose and it was observed that the method performed better than the existing

methods in terms of PSNR (Peak Signal-to-Noise Ratio). In order to improve the

diagnosis efficiency and accuracy, medical X-ray image enhancement using dark

channel enhanced method was performed by Rui and Guoyu (2017) for medical

X-ray images. The DCP (Dark Channel Prior) method may lead to the noise

amplification, this kind of granular noise impacts little on the medical diagnosis in

most cases. However, this method combined with some denoising method could

play a better performance on X-ray image enhancement.

Deep Learning models learn diverse patterns in data to automatically capture

informative hierarchical representations, leveraging in achieving a pre-specified

task. The enhanced characteristic of approximating capacity and hierarchical in-

formation flow property makes Artificial Neural Networks (ANN) the best tools

for Deep learning. Zhang and An (2017) presented a deep learning and trans-

fer learning-based super-resolution reconstruction method aims to reconstruct a

high-resolution image form one single low-resolution image. Therefore, the pro-

posed method can avoid collecting a high number of various medical images. They

proposed a fast bicubic interpretation layer and SIFT feature-based transfer learn-

ing to speed up Deep Convolutional Neural Network (DCNN) to obtain sharper
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outlines. Empirical experiments showed that the proposed method could achieve

better performance than other conventional methods. Finally suggesting that this

enhancement method is meaningful for clinical diagnosis, medical research and

automatic image analysis. Gao et al. (2017) proposed a novel deep network model

specifically for medical image super-resolution reconstruction. Their method con-

siders the characteristics of medical image structure repetition and black border.

Based on Super-Resolution Convolutional Neural Network (SRCNN) model, a

convolution layer is added to carry out feature extraction to improve the feature

performance, and overlapping pooling layers is adapted to highlight the important

features. Further, a link layer was established between the second convolution

layer and the reconstruction layer, which make local features and global features

to complete the reconstruction together. The experimental results showed that

average PSNR gained better results than the original SRCNN.

Super Resolution CNN (SRCNN) (Dong et al., 2015) is a classical Super Reso-

lution technique, which comprises a shallow network compared to other networks

used in deep learning. It consists of three processes - patch extraction from the

image and representation learning, non-linear mapping and image reconstruction.

Low resolution (LR) images are initially upscaled to the appropriate required size

using a technique known as bicubic interpolation (Zhou et al., 2017) before pass-

ing them through the network. In the Neural network1, the first layers perform

standard convolution with Rectified Linear Unit (ReLU) units, which is passed

through the non-linear mapping stage. Here, the mapping from a low-resolution

vector to a high-resolution vector is performed using a sparse-coding mechanism

after which, the vectors are used to reconstruct the image. The super-resolution

results in medical images achieved better visual effect than other contrast al-

gorithms. Liu et al. (2017) proposed a low-rank minimum variance estimation

method. Especially, the proposed method first generates an initial HR image by

nonlocal interpolation, then uses the low-rank minimum variance estimator to re-

construct it, and at last, iteratively applies the subsampling consistency constraint

to further refine the reconstructed HR result. Additionally, there also exists the

nonlocal self-similarity between the neighboring medical slices that can be used to

further improve the performance of resolution enhancement.

Zhao et al. (2019) proposed a novel medical image enhancement method based

on the modulation techniques. Luminance modulation was used to adjust the

brightness and increase the contrast of the input image by shrinking the global

1https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-
neural-networks
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range of the input image. In addition, gradient modulation was used to enhance

texture details of the image. The performance of the method showed a good

improvement when compared with the other popular enhancement methods. Zhu

et al. (2018) proposed a new image reconstruction method based on the artificial

intelligence approach called AUTOMAP, which produces a high-quality image

from less data reducing the radiation effects. The results identified that this

approach improved the signal-to-noise ratio. As part of this objective, state-of-

the-art super-resolution models were considered for medical scan image for quality

enhancement and reconstruction.

Table 2.1: Summary of Existing works in Medical Image Quality Management

Work Methodology Remarks

Feng et al.

(2008)

GTwo methods grad-

contrast enhancement

(GCE) combined with

wavelet transform en-

hancement (WTE) were

combined for contrast

enhancement.

Beneficial for amplifying tiny

areacharacters, such as tissues

and fibrins, but sensitive to noise.

Saleem

et al.

(2012)

Fusion-based contrast en-

hancement technique.

Enhancing local and global con-

trasts while retaining the orig-

inal image appearance. Over-

enhancement of artifacts and no

noise removal.

Georgieva

et al.

(2013)

Contrast limited adaptive

histogram equalization.

CLAHE can enhance not only the

contrast of the image, but it also

reduces noise in homogeneous ar-

eas. However, artifacts are con-

siderably amplified when tiles are

more than 16*16.

Ren et al.

(2014)

HA hybrid methodimage

contrast enhancement

based on sharp frequency

localization-contourlet

transform (SFL-CT) and

CLAHE.

Greatly enhance the contrast and

suppresses the artifacts simulta-

neously.
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Work Methodology Remarks

Isaac and

Kulkarni

(2015)

Super-resolution techniques

- patch based and orthogo-

nal acquisition.

The resolution of low-resolution

medical images can be satisfacto-

rily increased to required levels,

tested on HR images.

Huang

et al.

(2016)

Two-stage filtering process

and contrast enhancement

for X-ray images

able to suppress mixed noise

while preserving important struc-

tures (e.g., edges) in images. Ab-

solute mean brightness error was

more than CLAHE.

Rui and

Guoyu

(2017)

Dark channel prior. DCP is widely used for remov-

ing haze on images, but may lead

to noise amplification. However,

this kind of granular noise im-

pacts little on the medical diag-

nosis in most cases.

Zhang and

An (2017)

Deep Learning and Trans-

fer Learning using SIFT

feature-based Feature Tech-

nique.

Aims to reconstruct a high-

resolution image form one single

low-resolution image.

Gao et al.

(2017)

Deep CNN Establish a link layer between the

second convolution layer and the

reconstruction layer, which make

local features and global features

to complete the reconstruction to-

gether. Trained only on a small

CT dataset.

Liu et al.

(2017)

Nonlocal self-similarity and

low-rank minimum variance

estimator.

Low-rank priors have achieved

great success in the field of image

processing. Neighboring slices of

images were taken for resolution

computation.

Ahmed

et al.

(2011)

Four different histogram

equalization algorithms

were applied along with

noise reduction techniques.

BPHE (brightness preserving his-

togram equalization) produced

good contrast enhancement.
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2.2.2 Medical Image Modeling and Representation

Modern medical diagnostic tools contribute varied types of medical images like

X-rays, CT and PET scans, which are huge in volume and are also continuously

generated. Due to this, manually creating adequate and sufficient textual an-

notations is quite a difficult and time-intensive task. When available, these an-

notations are often incomplete or ambiguous due to the unstructured nature of

natural language, thus, adversely affecting retrieval results. The Picture Archival

and Communication System (PACS) (Lehmann et al., 2003a) is a significant ef-

fort to overcome these challenges to store, retrieve and transmit medical images

effectively. However, a prime constraint is that it uses a method that depends on

keywords and is connected with text notations stored with the image for retrieval.

Later, this paved the way for advent and subsequent popularity of CBIR systems,

especially for medical image management. The main objective of CBIR systems

is capturing the latent features of an image dataset without depending on any

information that is external to it (e.g., text meta-data associated with images).

Most CBIR systems utilize features like color, shape and texture for generating a

good relevance rank. However, a significant challenge faced here is the fact that

most medical images are gray-scale. Hence, color cannot be considered as the most

dominant feature. But, the image’s texture and shape features play a crucial role

that needs to be effectively captured.

Bag of Visual Features is adapted from the well-known Bag of Words method,

commonly used in document classification and information retrieval. Two classi-

fiers, simple Naive Bayes and linear Support Vector Machines (SVM), were used

for classification and results showed that SVM produced meaningful results for

high-dimensional data. Extracting image features for image classification and a

bag of features (O’Hara and Draper, 2011) for retrieval focuses on improving the

feature detection task for faster image retrieval. Different feature detectors like

Gaussian Difference (GD) (Lowe, 1999), Scale Invariant Feature Transform (SIFT)

(Lowe, 2004), Speed Up Robust Feature (SURF) (Bay et al., 2006, 2008), Max-

imally Stable Extremal Regions (MSER) (Matas et al., 2004) and Harris-Affine

keypoint operators (Mikolajczyk et al., 2005) have been benchmarked for the task

of medical image modeling and representation. Wang et al. (2007) proposed a BoF

method for medical image retrieval using AdaBoost for generating visual words.

Vocabulary size was tuned in different sizes of K from 200 to 800 in step size of

100. With the value, k=700 had given the best accuracy for the boosted weighting

method. Experiments were carried out using the SIFT keypoint detectors on the
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three medical image datasets - ImageCLEFmed, 304 CT and Basal-Cell Carcinoma

datasets. For enabling retrieval, a fusion rule was incorporated by reducing the

vocabulary size k=10, and performance was measured by recall and mean average

precision. Avni et al. (2010) presented a bag of visual words technique for X-ray

image classification and retrieval. Three kinds of feature extraction methods were

utilized and analyzed – local patch-based, normalized patch-based variance and

SIFT features.

A hierarchical based classification using SVM classifier on each of the IRMA

sub-codes was proposed by Unay et al. (2009). Accuracy was noted for each of the

sub-code and the obtained results were 96.7, 85.6, 88.0 and 96.4%. Multiple visual

features like GLCM, pixel values and edge-based canny detector were combined

in Mueen et al. (2007) work, and they obtained an accuracy rate of 89% using Im-

ageCLEF 2005 with 57 classes. Tommasi et al. (2008) extracted local and global

features from images using pixel values and BoW. Then they combined these fea-

tures at high, mid and low levels using multi-cue approaches, with 89.7% accuracy

on ImageCLEF 2007. BoW was combined and fused with other feature extraction

techniques like edge histogram, pixel value and LBP Dimitrovski et al. (2011),

and this combined feature space helped the model achieve good classification per-

formance. Zare et al. (2013) proposed an iteration based approach for automatic

classification for medical X-ray images using the ImageCLEFmed dataset. In each

iteration, low accuracy classes are again fed into the classification model, which is

a Support Vector Machine (SVM) trained on radial basis function.

Over the past decade, extensive research has been undertaken to address the

problem of medical image retrieval. Zare et al. (2011) proposed a combined low-

level feature extraction method for classification and retrieval of medical X-ray

images using shape and texture features. Their technique achieved good accuracy

despite using a limited set of data. Pourghassem and Daneshvar (2013a) proposed

a medical image retrieval framework based on a merging based classifier, using

which similar images were ranked as per computed similarity values. Images in the

result set are labeled as positive and negative by the user which is used to optimize

the retrieval results further by employing a Random Forest classifier. During the

feature extraction process, invariant moments are extracted from the main object

in the binary image using Otsu’s thresholding method, (Otsu, 1979) to capture the

binary image’s foreground and background space. Other features like the gray-

level co-occurrence matrix and Fourier descriptors for texture & shape features

are also used. The designed merging based classification helps in addressing two

issues – it increases the interclass distance while reducing intraclass distance, and
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also improves the accuracy of classification. However, body orientation changes

were not addressed by the authors. A pattern similarity scheme for retrieval of

medical images as per the PANDA framework was proposed by Iakovidis et al.

(2009). This scheme involves the extraction of low-level features, which are then

clustered according to the feature space to form relevant patterns. Clustering on

the feature set is done with an expectation-maximization algorithm that uses an

iterative method to decide the number of clusters by itself. Retrieval results were

evaluated based on precision and recall measures, while the best retrieval was

obtained using the k nearest distribution function. However, this approach suffers

in performance for a larger dataset, due to lack of good image indexing schemes.

Aggarwal et al. (2013) implemented an independent CBIR framework for re-

trieval of lung images. An expanded dataset provided better variability in the

retrieval set, on which, they used different distance metrics for nodule similar-

ity assessment. A clustering method for medical image retrieval using dictionary

learning was proposed by Srinivas et al. (2015) for grouping of large datasets.

Two types of feature extraction methods were employed – initially, an image is

divided into equal regions with concentric circles giving an invariant representa-

tion of the image which then finds the mean and variance at that circular region

of the image. As a second step, an image is divided into four subparts; from

each of these subparts, the mean and variance at circular regions are computed as

major part of the object information is available at the center in medical images.

Clusters are formed by applying K-means to these feature vectors and by using

the K-SVD method, a dictionary is generated for each cluster. The performance

of the methods was measured in terms of precision and recall with three different

distance measures like Euclidean, Mahalanobis and Cross-correlation for cluster

sizes of 3, 4 and 5. However, defining suitable attributes for medical images is a

comparatively difficult task and incorporating visual attributes could potentially

boost CBMIR performance.

Several distance measures are used in medical image classification and retrieval

evaluations. Such distance measures can be of two types - global and local. A

single value is obtained when a global distance measure is used, where as, in local

distance measures, values per mesh vertex is determined. Getto et al. (2015) used

the extended surface distance for 3D medical image segmentation, which is used to

detect regions of bad segmentation quality, hidden in earlier scans. They reported

that the use of the metric improved reliability, while reducing the asymmetry,

provides more insights into the segmentation quality for medical experts’ use.

Trapp et al. (2013) proposed an effective object retrieval approach designed for
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neuron structures of the organism, Drosophila Melanogaster, however it can be

generalized for other species also. Domain experts reported that the retrieval

results for neuronal structures are very good.

Deep CNNs have achieved good performance in image retrieval compared to

traditional image processing based approaches. Ahmad et al. (2018) proposed a

selective convolutional feature model that uses Fast Fourier Transform (FFT) to

generate a sequence of bits. Initially, convolutional feature maps are obtained

from a pretrained CNN, which are then converted to compact binary codes. The

framework was tested with two large datasets of radiology and endoscopy images

and experimental results showed that their method outperformed from other fea-

ture extraction and hashing schemes. Liu et al. (2016) used a CNN trained on

Radon barcodes for retrieval of medical images from a large collection of 14,000

X-ray images. Once the training process is done, CNN codes are generated for

image retrieval. Top 50 similar images for the query image that have the shortest

Hamming distance are selected and Radon barcodes are calculated. Finally, the

top 10 re-ordered results are presented to the user as the retrieval results. Refine-

ment of the retrieval task, re-order of the result is not the best practice when it

comes to medical imaging. Zhu and Tizhoosh (2016) used SVM classification on

Radon barcodes for content-based image retrieval. Each dataset image is repre-

sented in a binary format along with the Radon barcodes and Radon transform is

used for the extraction of Radon features. To categorize the latent information in

the query images, a multi-class SVM classifier is trained on the extracted Radon

features. Similar images are retrieved using the k-nearest neighbor’s method, dur-

ing the retrieval stage. A deep convolutional neural network for CBMIR (Qayyum

et al., 2017) was built on an intermodal dataset from which features are learned

by the neural network, and then used for retrieval of medical images. The dataset

used consists of only 24 classes, with very low-class imbalance, thus the authors

reported a 99.7% accuracy rate for classification and 0.69 mean average precision

for retrieval task. However, in larger medical datasets, an inherent class imbal-

ance is common, thus, to overcome this designing an efficient retrieval algorithm

is crucial for medical image management.

Training deep CNNs directly with high-resolution images requires significant

compression of images at the input layer, resulting in loss of information which

might be crucial for medical image abnormality detection. Xi et al. (2019) pro-

posed an integrated approach for medical abnormality detection using deep CNN,

where, pre-trained deep CNNs are first fine-tuned on image patches centered at

medical abnormalities, later integrating them with class activation maps for build-
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ing abnormality detectors. A deep patch classifier was tested on a single class

mammogram dataset obtaining an overall classification accuracy of 92.53% com-

pared to the traditional approach using manual features. Madani et al. (2018)

proposed a learning algorithm of GAN that labels input images using a semi-

supervised classifier for disease prediction based on chest X-ray images. The net-

work was trained on small sized annotated images. Two sets of chest X-ray images

from National Institute of Health (NIH), prostate, lung, colorectal, and ovarian

(PLCO) cancer datasets and NIH Chest X-Ray collection from Indiana Univer-

sity was considered for the study. They used a semi-supervised GAN architecture

with a loss function to assimilate both labeled and unlabeled real data. Here, the

loss function is divided into three parts, having output layer of the discriminator

with K+1 classes, K=2 for normal and abnormal classes and K+1 for distinguish-

ing the generated images. Parallelly, GAN performance was compared with CNN

by varying the number of labeled images in the experiment. The results showed

that with a fewer number of images (about 10) in each class, the semi-supervised

model achieved an accuracy of 73.08%, whereas, for CNN it required more than

250 images.

Camlica et al. (2015) used a context-aware saliency algorithm to detect salient

regions from the medical images, so that relevant information can be extracted.

They reported an IRMA error (Eq. 5.28, Section 5.7.3) of 146.55, which is the

lowest achieved error so far. However, the algorithm is extremely slow and saliency

calculation is a time-consuming process that works only with offline maps gener-

ated during testing, making it impractical. Khatami et al. (2018b) proposed a

search space based approach for retrieving the most similar images for a given test

image. A two-step hierarchical shrinking search space was used with local binary

patterns. Transfer learning via CNN is utilized in the first stage for shrinking the

search space, followed by creation of a selection pool using Radon transform for fur-

ther reduction resulted with an error score of 168.05. The authors also proposed a

parallel deep approach based on convolutional neural networks with a local search

using LBP, HOG and Radon features Khatami et al. (2018a), which achieved an

error rate of 165.55 (mean value). However, they did not use high-level features

when using parallel deep solutions and ensemble methods for decision making dur-

ing the image retrieval task. Avni et al. (2009) proposed a multi-resolution patch-

based dictionary approach by employing principal component analysis (PCA) on

the densely sampled patches. Training on the bag-of-words, they used a support

vector machine (SVM) classifier and reported an IRMA error of 169.5 on the IRMA

dataset. Müller et al. (2009) combined two different image descriptors, i.e. LBP



26 Chapter 2. Literature Review

and modSIFT (Tommasi and Orabona, 2010) for different SVM based classifica-

tion approaches and reported an IRMA error of 178.93. Liu et al. (2016) utilized

CNN architectures for classifying LBP and Radon transform codes to achieve an

IRMA error of 224.13. Sze To et al. (2016) used deep autoencoders and Radon

barcodes, which achieved an IRMA error of 344.08, while Sharma et al. (2016)

used KNN for extracting features obtained from stacked autoencoders, but the

IRMA error increased to 376.

Table 2.2: Summary of Medical Image Modeling and Representation.

Work Methodology Remarks

Arimura

et al. (2002)

Template matching tech-

nique.

Accuracy of 94.7% achieved.

Used only 1000 images and only

two views of chest images.

Lehmann

et al.

(2003b)

Correlation function and

distance measures.

Achieved 99.3% classification ac-

curacy, however used only 1867

images with only two views.

Iakovidis

et al. (2009)

block-based low-level fea-

ture extraction and feature

space clustering.

Achieved a good AUC of 78%

compared to earlier works, eval-

uated on 116 classes.

Zare et al.

(2011)

Uses low level features ex-

traction and SVM classifier.

70 classes had a classification ac-

curacy greater than 80%, and

also classes with more images had

good accuracy.

Fesharaki

and

Pourghas-

sem (2012),

Shape-based feature extrac-

tion techniques and used

Bayesian rule classifiers.

Achieved good accuracy rate, but

used only 28 classes.

Pourghassem

and

Danesh-

var (2013b)

Merging based classifica-

tion algorithm that mea-

sured weighted Euclidean

distance for retrieval.

Similar classes were merged, ori-

ented classes were combined, and

then classification accuracy is re-

ported.

Liu et al.

(2016)

CNN and radon barcode. Showed that error score decreased

when image size increased. To-

tal error score was average when

compared to other works.
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Work Methodology Remarks

Zhu and

Tizhoosh

(2016)

Combination of Radon pro-

jections and Support Vector

Machine classifier.

Improvement in classification,

but retrieval error was average

when compared to other works.

Qayyum

et al. (2017)

Deep CNN based model Achieved good classification rate

by using the central cropped im-

age. Considered a small dataset

with only 24 classes.

Based on the study of existing works, it was observed that researchers have

tried to utilize the manifold information available in medical images for the clas-

sification task. However, some approaches overlooked the semantic gap i.e., the

dispute between the intention of the user and the images retrieved by the algo-

rithm. Also, most other approaches experimented with small datasets for their

experimental analysis, which makes them difficult to scale when applied to larger

datasets. With these insights, it is deciphered that there is a significant require-

ment for scalable CBMIR models built of effective AI models, for enabling high

accuracy and high precision medical image retrieval.

2.2.3 Dealing with variance in Medical Images

Classifying medical scans is an essential requirement for accurately indexing and

categorizing the incoming image data in large-scale Hospital Information Manage-

ment Systems (HIMS). Medical images can be varied or can belong to different

classes even when they belong to the same diagnostic modality, as variety is intro-

duced based on the particular body part/organ that the scan covers. Even if only

scans covering one body part are considered (for e.g., chest X-rays), there is also

variety in the way in which a particular scan is performed. Different orientations

like anterior or frontal view, posterior or back view and the lateral or side views,

also known as left lateral or right lateral can be used during scanning, as per ex-

pert inputs, so that anomalies are be better captured. However, computer-aided

diagnosis systems often do not capture this crucial information of the scan. The

orientation identification for medical images is required for quality and quanti-

tative analysis, in diagnostic applications. Scans of body parts and modalities

where tissue orientation is also a significant need have to be addressed adequately,
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and is a research gap that needs to be considered. Hence, there is a scope for

view classification for other biological structures, that can be incorporated as an

essential step during the indexing process applied to scanned radiograph images,

thus aiding the overall management of HIMS.

Very few works exist currently, that address this particular issue. Arimura

et al. (2002) proposed a set of nine templates, one set for medium-sized patients

consisting of 3 templates (1 PA and 2 lateral) and another set for small/large-sized

patients consisting of 6 templates (2 PA and 4 lateral). The similarity of the chest

image in lieu of one of these templates was determined using a template matching

technique, considering a correlation value greater than 0.2. Their approach was a

two-step process for identifying the orientations of the image; in the first step, two

different views were determined for medium-sized patients. If it is unidentified

then a check with the other set involving six templates is performed in the second

step. A total of 1000 test images were used in their experiments, involving 500

PA and 500 lateral chest radiograph images. In the first step, 924 cases (92.4%)

were correctly identified, while all other cases were identified in the second step.

Lehmann et al. (2003b) determined chest radiographs’ view by applying several

distance measures and nearest-neighbor classification. Using tangent distance as

the nearest-neighbor classification scheme, good accuracy was obtained for images

of 32×32 pixels. Boone et al. (2003) proposed a feed-forward neural network to

identify views in chest x-ray images, in which a series of chest images consisting of

999 lateral and 999 frontal were downsampled to a size of 16×16 during training.

The network was able to identify the views of chest images with 98.8% on an

average of six trails. Kao et al. (2006) developed a projection profile technique

to identify frontal and lateral views for chest x-ray images. The projection profile

was computed based on the computation of two indices, namely body symmetry

index and background percentage index.

During chest X-ray screening, the orientation view information is a crucial

aspect. Santosh and Wendling (2018) developed a novel method for classifying the

chest X-ray image view as frontal and lateral. They incorporated a new technique

called angular relational signature to extract features from the histogram. Multi-

layer perceptron, random forest, and support vector machine were used to predict

the classification accuracy attaining close to 100%. Kao et al. (2011) developed

an automatic recognition of frontal PA and AP chest radiographs. Their work

incorporated three features in identifying the chest radiographic views, i.e., the

scapula’s and clavicle’s tilt angles and the extent of radiolucence in the lung.

The method was evaluated with 1200 chest radiographs, consisting of 600 PA
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and 600 AP images. The performance was measured with Receiver Operating

Characteristic (ROC), which illustrated that the fusion of the above three features

showed a high discriminant result. Takeuchi et al. (2019) developed an automated

chest X-ray radiography classification for CheXpert dataset consisting of 65,240

patients images, labeled by an expert radiologist. The work explored different

network architectures and found that the featured DenseNet121 passed into a

decision tree classifier achieved an accuracy of 93%.

Scanned radiographs are stored frequently in the Picture Archive and Commu-

nication System (PACS) with unknown orientation label, making it ineffective for

radiologist analysis. A solution to this problem was proposed by Luo et al. (2006)

with an automated protocol for chest images. Desired regions of the chest features

were extracted like - its size, rotation and translation and a trained classifier was

used for identifying the directional view of the chest images. The alignment label

was then distinguished considering the abdomen and the neck positions in the

radiograph image. The experiment showed promising results of about 96%, with

6,680 images collected images from a hospital. Shiraishi et al. (2007) developed a

computerized scheme for detection of lung nodules to improve the overall perfor-

mance of CAD systems for posterior-anterior (PA) views using its lateral views of

chest X-rays. Different pre-processing and ANNs were used in the overall workflow

of the CAD scheme. The performance of the computerized scheme for lateral views

was relatively low (60.7% sensitivity). However, the overall sensitivity (86.9%) was

improved for PA views.

Xue et al. (2015) developed a hybrid feature model for chest X-rays categoriz-

ing the images into - frontal and lateral. The experiment was performed on two

datasets - the NLM Indiana and the IRMA datasets, consisting of 8,000 images.

Combined features of Image Profile (IP), Contour-Based Shape Feature (CBSF),

and Pyramid of Histograms of Orientation Gradients (PHOG) with a 10-fold cross-

validation achieved a good accuracy when used with CAD systems.However, from

Santosh et al. (2016)’s work, it is observed that the algorithm was trained with

frontal chest X-rays, where it won’t classify the lateral chest images. Certain

features are also essential when classifying both the views of an image. The pri-

mary reason is that the features (shape and texture) vary with both the frontal

and lateral view images. Another novel technique had developed by Santosh et al.

(2015) for identifying the rotated lungs in chest X-rays measures the rib-orientation

using a generalized line histogram technique for quality control. On these obser-

vations, modeling the image variances is determined to be an important problem,

and giving attention to the body view positioning by incorporating a multi-view
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classification technique can contribute positively towards effective classification

labeling.

Based on the view position of the radiography a CNN model was trained for 14

different types of thoracic diseases by Rubin et al. (2018). Different view positions

like posteroanterior (PA), anteroposterior (AP) and lateral view positions of Chest

X-ray images were included. It was observed that the overall performance of the

model’s DualNet classifier showed greater average AUC compared to the state-

of-the-art individually trained classifiers. Bertrand et al. (2019) trained a simple

DenseNet model separately for different types of chest X-ray diseases using PA or

lateral images and found that the performance of the lateral view images showed

better than the PA view for around eight different class labels. The conclusion

drawn from this experimental analysis is that using lateral images helps in pre-

diction tasks for certain types of the diseases, however a more extensive research

and analysis is required.

Table 2.3: Summary of View Orientation Classification based works.

Work Methodology Remarks

Luo et al.

(2006)

Size, rotation and

translation invariant

features with an

automatic hanging

protocol.

Resulted in 98.2% on projection view

(without protocol, 62%), and 96.1%

had correct orientation (without proto-

col, 75%)

Shiraishi

et al. (2007)

Computerized scheme

for detection of lung

nodules

The overall sensitivity (86.9%) was im-

proved for PA views using its lateral

views.

Xue et al.

(2015)

PHOG, CBSF using

body size ratio and 10-

fold CV

Achieved a good accuracy result of

99.2% for frontal and lateral chest im-

ages. Need to include other body or-

gans, possibly with three orientation

view labels.

Ittyachen

et al. (2017)

A real case scenario Highlights the importance of the lateral

view positions of the Chest X-rays.

Rubin et al.

(2018)

A CNN model Overall performance of the model’s Du-

alNet classifier showed greater average

AUC compared to the state-of-the-art

methods.
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Work Methodology Remarks

Kitamura

et al. (2019)

Ensemble Models

used (Inception V3,

Resnet, and Xception

CNNs)

Models used 3 views for each case and

achieved an accuracy of 81%. Only one

single class which included 298 normal

and 298 fractured ankle studies were

considered.

Bertrand

et al. (2019)

A simple DenseNet

model

Using lateral images helps in prediction

tasks for certain types of the diseases,

however a more extensive research and

analysis is required.

2.2.4 Automating Medical Image Understanding

Leveraging latent clinical knowledge available in multiple clinical sources like med-

ical images and text based clinical reports has been explored to a very limited

extent. Recently, the ImageCLEF conference’s concept detection task focused on

medical image caption prediction using medical concepts as sentence-level descrip-

tions extracted from the Unified Medical Language System (UMLS) dataset. The

goal of the task is to efficiently identify the relevant medical concepts from medical

images as a predictor of figure captions. However, training a multilabel CNN on

noisy datasets with a limited number of training samples is difficult due to a large

number of parameters to be learned. Stefan et al. (2017) showed that a CNN pre-

trained on single label image datasets, e.g., ImageNet, can be transferred to tackle

the multi-label problem. Harzig et al. (2019) proposed a dual-word Long Short

Term Memory (LSTM) sentence generation model, trained separately for abnor-

mal and normal chest X-ray images. They reported that the dual-word LSTM

helped increase the number of distinct sentences generated, however, it failed to

address the findings or identification of abnormal regions in the image.

Rajpurkar et al. (2017b) worked on the Indiana university dataset consist-

ing of chest x-rays with textual reports reporting observed abnormal conditions.

The CheXNet model is a Dense Convolutional Network (DenseNet) adapted from

(Huang et al., 2017) which is a 121-layer deep for detecting 14 categories of patholo-

gies from the frontal-view of chest X-ray images. The performance of the model is

calculated by taking the difference between the average F1 score of CheXNet and

the average F1 score of the radiologists on the same set of samples uisng confidence

intervals (CI). Su and Liu (2018) explored and implemented an encoder-decoder
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framework to generate a caption for a given medical image on ImageCLEF Cap-

tion Prediction 2018 Task. Two types of CNN architectures were used in the

model for comparison ResNet-152 and VGG-19. As a decoder, they used LSTM

recurrent neural network. The task is more challenging, due to difficult medical

terms. To address this, the model needs to be more intelligent with adequate

reasoning ability, which may require more complex and hierarchical text modeling

structure with the support of background knowledge. Shin et al. (2015) designed

a text/image deep mining system applied to a large-scale PACS dataset, for ex-

tracting the semantic interactions from radiology reports. Given an image, the

system interleaves between supervised and unsupervised learning on document,

and sentence-level text collections, to generate semantic labels. When a scan im-

age is fed into the system, semantic labels in radiology are predicted, and its

associated keywords are also generated. The disease types are then detected as

present or absent, for providing more specific interpretation to the scanned images.

Li et al. (2018) proposed a novel Hybrid Retrieval-Generation Reinforced Agent

(HRGR-Agent) to perform robust medical image report generation. The model

generated robust reports on medical abnormal findings detection and best human

preference, with good precision performance.

A multi-task learning framework for prediction of tags and the generation of

reports was proposed by Jing et al. (2017), who incorporated CNNs with LSTM.

The model is capable of not only generating high-level impressions, but also gener-

ating detailed descriptive findings. Xue et al. (2018) used a text-image embedding

network integrated with multi-level attention models in an end-to-end CNN-RNN

architecture for learning distinctive image and text representations Wang et al.

(2018a). These models have shown promising results so far. Padchest by Bustos

et al. (2020) is an initiative that involved trained physicians for manually anno-

tating 27% of the UMLS CUI dataset samples. They then used a RNN attention

method to label the remaining images, and also proposed a hierarchical taxonomy

to categorize radiographic findings.

Table 2.4: Summary of Existing works on Medical Image Description Generation.

Work Methodology Remarks

Shin et al.

(2015)

Deep CNN - text/image

deep mining system

large-scale image/text analysis on

a hospital’s PACS.

Stefan

et al.

(2017)

ResNet - 152 pre-trained

Neural Network.

Data augmentation techniques

improved network generalization

capabilities.
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Work Methodology Remarks

Jing et al.

(2017)

CNN to learn visual fea-

tures, multi-label classifier

to predict relevant tags.

Hierarchical LSTM network ef-

fectively captured long-range se-

mantics and produced effective

text reports.

Su and Liu

(2018)

ResNet-152 and VGG-19

Neural Network.

Ranked second best result, how-

ever, did not address the com-

plexity of medical term caption-

ing. Hierarchical text modeling is

required to handle medical terms.

Li et al.

(2018)

HRGR-Agent based medi-

cal image report generation.

Bridges human prior knowledge

and generative neural network via

reinforcement learning, generat-

ing robust reports on abnormal

findings.

Xue et al.

(2018)

CNN with LSTM Generated high-level impressions

with detailed descriptive findings.

Wang et al.

(2018a)

A text-image embedding

network integrated with

multi-level attention mod-

els.

End-to-end CNN-RNN architec-

ture for learning distinctive im-

age and text representations, im-

provement in the quality of gen-

erated reports needed.

Harzig

et al.

(2019)

Dual word LSTM sentence

generation model

Dual word LSTM helped increase

the number of distinct sentences

generated.

Bustos

et al.

(2020)

A RNN attention method. Hierarchical taxonomy used to

categorize radiographic findings

and diagnosis reports.

2.3 Outcome of Literature Review

The comprehensive survey of existing literature presented in the previous section

helped identify several gaps in medical imaging in healthcare management. A key

challenge to implementing quality improvement programs is to develop methods

to collect knowledge related to quality control and to deliver that knowledge to
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practitioners at the point of care (Johnson et al., 2009). According to Hillman

et al. (2004), “quality is the extent to which the right procedure is done in the

right way at the right time, and the correct interpretation is accurately and quickly

communicated to the patient and referring physician”. Initially, when a scan is

taken of a particular organ of the body, the contrast and noise are the primary

factors that affect the image quality, due to the nature of the scanning environ-

ment. Also, overexposure and underexposure can affect the quality of the scanned

image. In addition, imaging is increasingly performed by radiology technicians, or

radiologists with limited training in hospitals in rural and remote locations. Mea-

suring and improving quality is essential to ensure optimum effectiveness of care

and combat current trends leading to the commercialization of radiology services.

In view of this, designing effective automated techniques for improving the quality

of digital radiography was considered as part of this research work.

Over the past decades, the volume of medical scan images has grown exponen-

tially as advanced medical technology has reached more people and the number

of patients seeking medical attention keeps increasing. The problem of medi-

cal image classification and retrieval is also an area of active research. CBMIR

evolved from CBIR, aims at retrieving similar images from the medical image

repository for further diagnosis and improvement in the treatment based on ad-

ditional background data. Conventional text-based search systems fail to capture

the latent visual features in an image. Hand-engineered features are effective only

in a small-scale datasets with limited number of categories. Thus, techniques that

automatically capture latent features from patient scans for the development of

intelligent applications that consume this data are crucial.

Scan images like X-rays, CT scans, etc., can encompass several internal organs;

it is essential to devise automatic classification approaches to deal with the diver-

sity. Existing classification and retrieval models are built for a specific category

or class. However, the scans of the organs are taken at different views, to enable

well-rounded assessment of patient prognosis. Effectively modeling this additional

information for enabling automated diagnosis is another area which has received

very limited research attention. This might be due to the non-availability of view-

annotated datasets or due to the limited number of images in the datasets available

for different organs. This is seen as another critical gap, which is considered in

the proposed work.

Need for automatic annotation and description generation for medical images is

another gap observed during our literature review, which is a critical requirement

in developing advanced medical image management systems. Various approaches
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are proposed in existing literature for dealing with the problems of automatic se-

mantic tagging (Guillaumin et al., 2009) and generating an automatic description

for natural scene images (Elliott and Keller, 2013). However, there is limited work

in the medical imaging domain, to the best of our knowledge. Interpreting and

summarizing the insights gained from medical images such as radiology outputs is

mostly a time-consuming, manual task that involves highly trained experts and of-

ten represents a bottleneck in clinical diagnosis pipelines. Consequently, there is a

considerable need for automatic methods that describe the image contents. Auto-

matically generating the medical insights available in each scanned image to assist

medical personnel during diagnosis and treatment could be especially beneficial in

reducing the significant burden in the overall workflow in patient care.

The demand for advanced image analysis techniques stems from the recent pro-

liferation of new biomedical imaging modalities. The number of scans currently

performed in most hospital environments has exploded, placing unprecedented

workloads on personnel associated with their interpretation. At the same time,

remarkable advances are being made in the field of deep neural networks. New

algorithms are paving the way for automatic image interpretation, which can lead

to improved diagnosis and a better understanding of disease progression. Biomed-

ical imaging analysis techniques can be applied in many different areas to solve

existing problems. The various requirements arising from resolving practical is-

sues motivate and expedite the development of biomedical imaging analysis. With

this motivation, an effective framework for representation and modeling for medi-

cal images is proposed, for supporting advanced decision support applications for

improving healthcare delivery systems.

2.4 Summary

Various approaches and models that have been proposed as part of medical image

representation and modeling are discussed in this chapter. The existing tech-

niques in building an effective medical image model are grouped into four cate-

gories – Medical image quality enhancement, classification and retrieval of medical

scan images, Orientation identification and automated medical image description

generation. The extensive literature review revealed a definite requirement for

approaches in developing super-resolution image enhancement methods, accurate

classification, retrieval and orientation identification methods by introducing bet-

ter feature modeling strategies. Adding to these models, automatic report gener-

ation methods for scan images give a better insight into this proposed works.
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In Chapter 3, the research problem addressed in this thesis is formally defined,

based on the identified research gaps in the existing literature. The proposed

methodologies designed to address the observed research gaps are also discussed

briefly, the details of which are presented in subsequent chapters of this thesis.

Clinical decision support systems are a critical emerging area in the healthcare

sector. Towards this, the work presented in this thesis focuses on making signifi-

cant positive contributions to the ongoing research in this area.



Chapter 3

Problem Description

3.1 Background

In the previous chapter, an extensive review of existing approaches focusing on de-

veloping a practical framework for medical image modeling and representation for

augmenting advanced healthcare systems was presented. The issues and require-

ments for designing an improved medical image modeling are also summarized.

In this chapter, the identified research gaps are explicitly presented and defined

as a problem statement. Additionally, the scope of the proposed research work

presented in this thesis and a brief overview of the approaches designed for solving

the formally defined problems are also discussed.

3.2 Scope of the Work

An extensive review of the existing research works in medical image modeling

and representation of healthcare systems along with the research gaps identified

are summarized in Chapter 2. From the review of existing approaches, it is clear

that developing an effective framework for automated medical image modeling and

representation methods using learning based models is a critical requirement. It

is known that the effectiveness of the developed medical imaging models depends

heavily on medical scan images which act as a primary source for any of the medical

image representation models. With this purpose and as an aim of bridging the

observed gaps, the research work presented in this thesis has contributed in five

significant aspects, as listed below:

1. Design and development of automated image quality improvement approaches

for medical image super-resolution.

37
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2. Design and development of techniques for improved perceptual image quality

management for enabling better diagnosis.

3. Design of hybrid feature modeling approaches for optimal representation of

medical images, for classification and content-based retrieval tasks.

4. Design and development of efficient visual feature learning models for mod-

eling variances in medical images, for addressing body view positioning chal-

lenges, through multi-view classification techniques.

5. Design of content-based medical report retrieval approaches, and automatic

generation of diagnostic text reports for a given medical image.

3.2.1 Problem Statement

Based on the understanding of the gaps identified from the review of existing

literature in medical image modeling and representation of healthcare systems,

the research problem addressed by the work presented in this thesis is defined as:

“To design and develop an effective framework for representation, mod-

eling and management for diagnostic medical images for supporting

advanced clinical decision support applications.”

3.2.2 Research Objectives

Based on identified gaps and the problem statement, four research objectives have

been defined, that are addressed in the research work presented in this thesis:

1. To design and develop automated image quality improvement techniques for

enhancing the diagnostic scans.

2. To design and develop effective feature modeling and representation ap-

proaches for medical images.

3. To design efficient techniques for dealing with variance in scanned image

views in practical scenarios.

4. To design and develop a system for automatically capture and describe the

valuable insights in medical scan images for clinical decision support.
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3.3 Brief Overview of Proposed Methodology

The overall system architecture of the proposed Integrated Medical Image Model-

ing and Representation framework for Healthcare Applications is depicted in Fig.

3.1. The diverse set of contributions made towards the defined research objectives

with respect to the individual chapters, are presented in more detail in this thesis.

A brief outline of the overall research work presented in this thesis is discussed in

this chapter.

3.3.1 Medical Image Quality Enhancement

From the extensive research review, it was observed that most approaches in med-

ical imaging mainly rely just on image data without having to do anything with

the medical imaging machine configuration involved in image reconstruction. It is

also identified that factors like scatter, blur and exposure levels adversely affects

the quality of the image, despite significant advancements in imaging technology.

Specifically in the case of X-Rays, beam intensity related scattering, metal-induced

scattering in cases when the scanned body part has a metal implant, tissue density

margin induced scattering and attenuation effect exist, which adversely affect the

observations. In addition, faults that occur due to changes in projection angle and

rotation axis, overexposed and underexposed images etc, also exist. This affects

the resolution of the image itself, resulting in poor quality of X-rays.

Some existing mechanisms proposed for correcting such faults, like, Spatial

Non-uniformity identification, Signal to Noise Ratio/Peak Signal to Noise Ratio

analysis, Structural similarity indexing, Non-pixelating super-resolution, Gradient

descent approaches etc, have been used for modeling the metrics to be controlled

in the imaging process. The use of super-resolution techniques is explored for this

task, the details of which are presented in Chapter 4. Fig. 3.2 depicts the general

methodology defined for addressing this objective.

3.3.2 Medical Image Modeling and Representation

Most diagnostic scan images are generally monochromatic in nature (for e.g., X-

ray, MRI). Hence, effective local and global-level analysis of the images is critical.

Designing feature modeling and representation techniques to address this aspect

is a critical task when designing any CBMIR system since higher-order intelligent

applications are built on this data to provide clinical decision support to medical

personnel. In view of this, four categories of features were identified-
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Figure 3.2: Medical Image Quality Enhancement Process

1. General purpose features are those which can be extracted from almost any

type of image but sometimes not appropriate in case of all applications, e.g.,

color is unsuitable in case of grayscale medical images.

2. Application-specific features are specified for a particular problem that de-

scribes or capture its unique characteristics; these are semantic features in-

tended to capture a specific meaning or context (Smeulders et al., 2000).

3. Global features capture the overall characteristics of an image but fail to

identify important visual characteristics from the image if those character-

istics appear only in a relatively small part of an image.

4. Local features extract the characteristics from a small set of pixels (perhaps

even one pixel), representing the details. (Datta et al., 2008).

In most works, local features are used to a great extent since many medical im-

ages are not suitable candidates for extracting general-purpose features. However,

the incorporation of local and global features still becomes an area of consider-

ation for computer vision applications. To fulfill this objective, a hybrid feature

representation model for medical images is proposed. Also, deep learning mod-

els are highly effective in the optimal representation of the manifold information

contained in medical images. An ensemble deep neural model for classifying ab-

normal radiography images along-with designing a boundary detection algorithm

for identifying the region of interest for facilitating anomaly detection was pro-

posed. Fig. 3.3 depicts a generic workflow for classification and CBMIR task.

Chapter 5 presents the detailed discussion regarding the contributions made with

respect to this objective.
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Figure 3.3: Medical Image Modeling and Representation process

3.3.3 Dealing with Variance - View Classification

Real-world medical scan repositories contain scans with inherent variance in modal-

ities, orientation, views, etc, hence dealing with these kind of images is also crucial.

At present, identifying the projection view and correcting image orientation of a

radiograph are manually performed by radiologists and technicians. As observed

from the literature review, very few works address the issues with reference to med-

ical image variance and disparate views. Focusing on the other categorical view of

medical scan images with orientation view is necessary for proper reporting and

data management systems in clinical labs and hospitals by a radiologist. Hence,

approaches that focus on representing variances in an optimal feature space, for

supporting view classification are designed through a view orientation identifica-

tion algorithm. A generic workflow of view orientation classification is shown in

Fig. 3.4. Chapter 6 explains in detail the research works undertaken towards this

objective.

Figure 3.4: Orientation Identification process

3.3.4 Generating Medical Image Descriptions

For automatically generating descriptions of medical scan images, deep neural

network models are adopted. Fig. 3.5 depicts the general methodology identified

for this purpose. The associated challenges in medical image description genera-

tion lie in designing techniques for automatically mapping visual information from

medical images towards effective natural language text generation. The semantic

gap between captions (text) and the image has to be effectively bridged. Thus,
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these two types of information will be utilized for automatically describing new

medical images. A detailed explanation on the contributions of this thesis towards

this objective is presented in Chapter 7.

Figure 3.5: Medical Image Caption Generation process

3.4 Research Contributions

This thesis presents a framework for authorizing the design and development for

medical image modeling and representation for an effective management in health-

care systems is built using radiography data. The objectives are to design and

develop automated image quality improvement techniques for enhancing the diag-

nostic scans, to develop effective feature modeling and representation approaches,

along with an efficient techniques for dealing with variance in scanned image views

in practical scenarios. Also, approaches for capturing and describing the valuable

insights in medical scan images for clinical decision support are proposed for pro-

viding an insights into the patients’ health outcomes, thus affording intelligent

decision-making capabilities to medical/health personnel. With regards to the

outcomes gathered from the literature review and the scope of work presented,

the major contributions of the research work presented in the subsequent chapters

of this thesis are as follows:

• Improving clinical diagnosis performance with automated medical scan qual-

ity enhancement algorithms with deep neural image super-resolution models.

• A hybrid feature modeling approach, Swarm Optimization based Bag of

Visual Words Model and a deep neural network model for Content-Based

Medical Image Retrieval with multi-view classification.

• Deep neural ensemble models for abnormality detection and classification in

plain radiographs.

• Design of automated view orientation classification techniques for X-ray im-

ages using deep neural networks.

• Deep neural models for automated multi-task diagnostic scan management,

including automated generation medical image descriptions.
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3.5 Summary

This chapter presents the scope of the research work and the identified research

gaps that are addressed in this research work. Based on these gaps, the research

problem was formally defined and four objectives pertaining to specific gaps were

formulated. The approaches designed for addressing the defined objectives are

also discussed briefly, and are explained in detail in subsequent chapters of this

thesis.



PART II

Automated Medical Image

Quality Enhancement





Chapter 4

Medical Image Quality Enhancement

4.1 Introduction

In modern healthcare, diagnostic imaging is an essential component for diagnos-

ing illness and delivering quality healthcare. The earliest clinical predictions are

generally obtained via different modalities of medical images such as X-ray im-

ages, Computerized Tomography (CT), Positron Emission Tomography (PET)

and Magnetic Resonance Imaging (MRI) among others (Binh and Tuyet, 2015).

Equipment such as X-ray machines and CT/PET/MRI scanners are used in di-

agnosing disease by capturing a view of the human body’s bone, soft tissue, and

internal organs. The physical properties of the human body, such as radio-density,

bone skeleton structure, etc are thus measured and later interpreted by clinical

experts like radiologists for making a diagnosis based on the captured insights.

Hence, acquiring good quality diagnostic images is essential for analyzing and

determining disease occurrence and progression.

Protocols have been established in the medical fraternity to assess the pro-

cess by which a medical scan image has been acquired. Often the end goal is

to determine small, noticeable differences to indicate unexpected findings and

thus successfully diagnosing a particular issue. Common issues observed dur-

ing imaging process is low-resolution images, under-exposure or over-exposure,

and introduction of unwanted artifacts in the image due to movement of the pa-

tient undergoing scanning. Hence, methods that improve the spatial resolution

of medical images, new approaches to image reconstruction, efficient medical im-

age enhancement methods are essential in clinical workflow management systems.

These techniques help improve the visual perception of information to provide

better visualization of the diagnosed image.

In this chapter, scan quality enhancement approaches for enhancing the im-

47



48 Chapter 4. Medical Image Quality Enhancement

age’s spatial resolution and methods for automatically assessing the quality of

diagnostic scans are proposed to enable improved visualization of images for more

detailed examinations. The objective here is to build a generalized pipeline to re-

construct medical images using different super-resolution techniques and achieve

a high correlation with the human visual system. As the end-users of the pro-

posed system would be medical practitioners, hence an accurate model according

to human perception is an essential requirement.

4.1.1 Problem Definition

Over time, many medical image quality algorithms have been developed, to tackle

the primary issues like noise, edge, contrast issues, poor quality images obtained

from faulty or older scanning equipment. However, very few works have focused

on addressing the problem of over and under-exposure issues in X-ray images that

are often caused by the environmental conditions in which the scans are taken.

These over and under-exposed images are not suitable for further diagnosis. High

perceptual image quality is a crucial requirement to register the characteristics and

details of the scan image in the medical domain. In such cases, super-resolution

techniques can be used to enhance the scanned images through computational

means. The focus of this work is automated image quality enhancement, with

additional emphasis on reducing the computational cost and processing time.

The problem to be addressed here is defined as follows:

Given large number of medical scans, design techniques for automated

X-ray Scan Quality Enhancement using super-resolution methods, for

enhancing the spatial resolution of the image for improved visualiza-

tion.

In this chapter, the solution to the issues identified are approaches in two dif-

ferent ways. Initially, the exposure level of each input image is analyzed using an

exposure-level detection algorithm, and classified as under-exposed, over-exposed

or normal, and normalized using image intensity equalization. Ultimately, the

image quality is improved using five different image quality improvement algo-

rithms. Next, reconstruction of medical images along with enhancement using

different super-resolution techniques to achieve a high correlation with human vi-

sual perception is proposed. The proposed pipeline is automated and aims to

provide full image reconstruction to aid the decision-making process after scan-

ning, with significant saving in overheads like time, cost and re-visits of patients

for additional scans.
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4.2 Radiography Image Quality Improvement

In this study, approaches for automatically assessing the quality of diagnostic

scan images as part of clinical workflow management are proposed. The exposure

level of each input image is analyzed using an exposure detection algorithm, and

classified as under-exposed, over-exposed or normal, and normalized using image

intensity equalization. Ultimately, the image quality is improved using five differ-

ent algorithms, and observations on their comparative performance using standard

metrics are reported.

The overall workflow of the proposed X-ray image quality improvement method

is depicted in Fig. 4.1. The main objective of this study is to identify, assess

and fix faults in the images and improve the visualization so that physicians can

appropriately examine the abnormalities. In the first phase, all image exposure

levels are checked, based on which, the image is corrected using image intensity

equalization methods. Various Super Resolution (SR) techniques are employed for

improving the image quality for a better visualization, and performance is assessed

using standard metrics.

Figure 4.1: Proposed Radiography Image Quality Improvement Approach.

Algorithm 4.1 depicts the process of detecting the exposure level of an image.

A sample of images with different exposure levels is shown in Fig. 4.2. Firstly, the

image exposure level is checked by computing the histogram level of each image.

Based on the exposure level, an image can be classified into three categories -

over-exposed (Fig. 4.2(a)), under-exposed (Fig. 4.2(b)) and normal (Fig. 4.2(c)).

To check the image exposure level, the threshold points considering the image

histogram are used. If the histogram counts are evenly distributed on the scale of

0 to 255, then it is a normal image. If the bin values are more on a scale of 0 to

127, then it is an under-exposed image. Similarly, if the bin values are more on a

scale of 128 to 255, then it is an over-exposed image.

If an image is found to be over or under-exposed, it is subjected to a normaliza-

tion process using image intensity equalization, as shown in Algorithm 4.2. In the
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Algorithm 4.1 Image Exposure Detection Algorithm

Input: A Sequence of Images.
Output: Image Exposure Label with its histogram.

1: for each input image do
2: CountI ← Compute the histogram of the image
3: CountO = CountU ← 0
4: for i = 1 to length(CountI)/2 do
5: if (CountI(i) > 0) then
6: CountU = CountU +1;
7: end if
8: end for
9: for j = 128 to length(CountI) do

10: if (CountI(j) > 0) then
11: CountO = CountO +1;
12: end if
13: end for
14: if (CountU > 100 && CountO > 100) then
15: Result ← ‘Normal’
16: else if (CountO > 100) then
17: Result ← ‘Over Exposed’
18: else if (CountU > 100) then
19: Result ← ‘Under Exposed’
20: end if
21: end for

Algorithm 4.2 Image Exposure Correction Algorithm

Input: An Exposed Image
Output: Normal Image.

1: Img ← Read the exposed image. . Under or Over Exposed image
2: NIMG ← uint8(255*mat2gray(Img))
3: [HC,BL] ← imhist(Img) . Calculates the histogram of the Image
4: imshow(Img) . Display image
5: imhist(Img) . Display histogram of the image

next step, the normalized images are enhanced using enhancement algorithms like

Contrast Limited Adaptive Histogram Equalization (CLAHE) and Unsharp Mask-

ing (UM) using the Gaussian filtering technique. CLAHE is a histogram-based

method used to improve contrast in images, which computes the histogram for the

region around each pixel in the image, improving the local contrast and enhancing

the edges in each region. Adaptive Histogram Equalization (AHE) over amplifies

the noise in the image; CLAHE prevents this by limiting the amplification.

To apply CLAHE to the images, they are first convert to grayscale and then

normalized. This approach is similar to N-CLAHE, but log normalization is not
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(a) Over-exposed Image (b) Under-exposed Image

(c) Normal Image

Figure 4.2: Some sample images with different exposure levels and their corre-
sponding histograms.

used. The implementation of CLAHE requires three inputs - window size (the size

of the rectangular region around the pixel to be processed), clip limit (maximum

number of occurrences of the pixel in the histogram) and iterations (Number of

clipping iterations). After this step, the image is padded by reflecting the pixels in

the borders. Then, for each pixel in the image, the clipped histogram is calculated

for the region around it, i.e., the maximum number of occurrences a pixel can have

is defined. If the occurrence is greater than the clip limit, then the exceeding area is

cut and redistributed to all other pixels. To improve the technique, this process can

be repeated a certain number of times until the desired contrast image is obtained.

With this clipped histogram, the probability of each pixel is caldulated and the

CDF (Cumulative Distribution Function) is computed using the cumulative sum

of the ordered pixels. Then, each value of the function is multiplied by 255, to

limit the image’s values to [0, 255]. After calculating the CDF, all pixels will
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have a transformation value, whic is now applied to the pixel in the center of

the region. For certain images, the image becomes very noisy when the clip limit

chosen is very high. This may be because, when the limit is very high, no clipping

is performed, and the CLAHE algorithm is essentially similar to AHE algorithm.

Unsharp masking is a linear filter that is capable of amplifying high frequencies

of an image. The first step of the algorithm is to copy the original image and apply

a Gaussian blur into it (Blur intensity is defined by a setting called Radius). If

the blurred image is deducted from the original image, only the edges created by

the blur are obtained, which is called the unsharped mask. The radius setting is

related to the blur intensity because it defines the size of the edges. The amount,

on the other hand, controls the intensity of the edges (how much dark or light

it will be). The experimental results, observations and further developments are

discussed in the subsequent sections. Finally, the enhanced image is collected after

computed and visualized using Eq. (4.1).

sharpened image = original image+ amount ∗ (unsharped mask) (4.1)

In addition to this, bicubic interpolation was employed for upscaling the low-

resolution (LR) image, that resulted to a high-resolution image where the di-

mension is similar to that of the reference image. Further, neural network SR

methods like Very-Deep Super-Resolution (VDSR) (Kim et al., 2016) and Single

image super-resolution CNN (SRCNN) (Dong et al., 2014) were utilized in de-

veloping a high-resolution (HR) image. VDSR network builds a HR image using

a single LR image by learning and mapping the difference in its frequency. The

network consists of an image input layer, then with a 2-D convolutional layer that

consist of 64 filters. A total of 20 convolutional layers, each of which that follows

a ReLU activation layer builds up the network, which introduces nonlinearity in

the network. A image patch size of 41-by-41 is used and the network was trained

for 100 epochs deploying stochastic gradient descent with momentum (SGDM)

optimization. The learning rate was initially fixed to 0.1 and decreased with a

factor of 10 for each 10 epochs. VDSR works with a surplus learning strategy, i.e.,

the network learns to assess with a surplus image. A surplus image informs re-

garding the high-frequency characteristics of an image. For super-resolution cases,

a surplus image is a variation with a HR reference image and a LR image that

has upscaled using bicubic interpolation by matching the dimension of the image

to the reference image.

SRCNN learns pixel mapping between LR and HR images with pre-processing
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optimization techniques. The first phase deals with patch extraction and repre-

sentation, where, patches (f1×f1) from LR image are extracted and each patch is

represented as a HD vector, which is a set of feature maps equivalent to its di-

mensions. The next operation is non-linear mapping, which performs a non-linear

mapping of each HD vector (n1) to another HD vector (n2). Here, each mapped

vector represents a HR patch. Finally, reconstruction operation combines all the

HR patches (f2×f2) to generate the final HR image. We set the parameters as

f1 = 9, f2 = 5, n1 = 64 and n2 = 32 while constructing HR image from a LR

image. The learning rate is set to 10−4 in initial two layers, and 10−5 in the final

layer. Empirically, a small learning rate was set to the last layer for the network

to converge.

4.2.1 Experimental Results and Discussion

For experimental validation, a dataset of medical images from MedPix1 consisting

of 66 different body organ images was used. Standard evaluation metrics like

PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity Index) were

used for measuring the quality of the reconstructed image. Given two images, I

(ground truth image) and I (̂reconstructed image), both of same size, the MSE

and the PSNR (in dB) is given by Eq. (4.2) and (4.3), where, I is the maximum

intensity of a grayscale image i.e. 256. Xij and Yij are the intensity of original and

reconstructed image. MSE is the Mean Square Error, M and N are the number

of rows and columns in the image. Wang et al. (2004) SSIM is a visual metric

that measures the quality of a reconstructed image with the effect of luminance,

contrast and structure (as per Eq. 4.4, where, C1 and C2 are constants used

to keep away the uncertainty when µx and µy are very close to zero. σx, σy are

contrast comparison functions).

PSNR = 10 log10

[
I2

MSE

]
(4.2)

MSE =
1

[N×M]2

N∑
i=1

M∑
j=1

(Xij − Yij)
2 (4.3)

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)(

µ2
x + µ2

y + C1

) (
σ2
x + σ2

y + C2

) (4.4)

1The National Library of Medicine MedPix®, https://medpix.nlm.nih.gov/home

https://medpix.nlm.nih.gov/home
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Figure 4.3: Comparative Evaluation of UM, CLAHE, Bicubic, VDSR and SRCNN
for X-ray image enhancement.

Figure 4.4: Illustration of X-ray Image Enhancement with quality metrics.

Fig. 4.3 shows the results of the comparative evaluation of the five X-ray image

quality improvement methods on sample images. Based on the observations, it

can be concluded that UM and CLAHE methods performed well in improving the

quality of the image for a better visualization, whereas, in terms of HR image
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display from a single LR image SRCNN outperformed among other SR methods

by achieving good PSNR/SSIM index values. A simple GUI also was developed

for illustrating the quality enhancement by visualizing the original and corrected

image, which is shown in Fig. 4.4.

4.3 Automatic Quality Enhancement of Medical

Diagnostic Scans with Deep Neural Super-

Resolution Models

Based on the observations from the previous work, it can be seen that the latent

features in the medical scans were captured well using edge and contrast enhance-

ment, in turn amplifying the visibility of region of interest or artifacts. A patch

size of 16 pixels (4×4) in Bicubic interpolation resulted in a smoother image, while

VDSR showed better performance while transforming a LR image to HR. SRCNN

outperformed all other methods due to its lightweight architecture and superior

learning behavior. It was also understood from discussion with medical experts

that, as end-users of these image quality enhancement system are human medical

practitioners, modeling human perception accurately is an essential requirement.

Hence, the next work is aimed at building a generalized pipeline for the reconstruc-

tion of medical images using different super-resolution techniques and to achieve

a high correlation with human visual perception.

Fig. 4.5 illustrates the complete process designed for this evaluation. Single-

Image Super-Resolution has played a vital role in Computer Vision related ap-

plications and led to the inception of many new algorithms. There are different

variants of the models based on the approach they take, e.g., Prediction models,

Edge-based models, Image Statistical models, Patch-based models. The bench-

marking for all these model variants involves two sets of images used as the ground

truth data, as seen in (Yang et al., 2014). Each of these processes are discussed

in further detail in this section.

Super-Resolution Reconstruction (SRR) methods consist of processing single

or multiple images to increase their spatial resolution. Deployment of such tech-

niques is particularly essential when high-resolution image acquisition is associated

with high cost or risk, like medical or satellite imaging. Unfortunately, existing

SRR techniques are not sufficiently robust to be deployed in real-world scenarios

(Kostrzewa et al., 2018). No real-life benchmark to validate multiple-image SRR

has been published so far, to the best of our knowledge. As gathering a set of
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Figure 4.5: Deep CNN model for Automated Scan Quality Enhancement

images presenting the same scene at different spatial resolution is not a trivial

task, the SRR methods were evaluated based on different assumptions, employing

various metrics and datasets, often without using any ground-truth data.

Dong et al. (2015) proposed a novel method for the super-resolution of images

using CNN, called SRCNN, which is one of the first models that applied CNN for

image super-resolution. With full end-to-end utilization of the CNN, the SRCNN

model takes an LR image as input while generating an HR image as output. Ex-

panded Super Resolution CNN (ESRCNN) (Dong et al., 2015) is an extension of

the SRCNN model where the Expansion occurs in the intermediate hidden layer.

Instead of using 1x1 kernels, kernels of order 3x3 and 5x5 kernels are used to

maximize information learned from the layer. The outputs of this layer are then

averaged in order to construct more robust upscaled images. Denoising (Auto

Encoder) Super Resolution CNN (DSRCNN) (Dong et al., 2015) is another ex-

tension of the SRCNN, which uses autoencoders as intermediate level layers. The

models use bridge connections between the convolutional layers of the same level

to speed up convergence and improve output results. The bridge connections are

averaged to be more robust. Deep Denoising Super Resolution CNN (DDSRCNN)

(Mao et al., 2016) incorporates a framework where rectification layers are added

after each convolution. Deconvolution and skip connections dividing the network

into sequential blocks also give the model better element-wise correspondence abil-

ity. The ResNet Super Resolution network is derived from the SRResNet (Ledig

et al., 2017), which is intended to use the latest ResNet architecture for the Super-

Resolution task by increasing the residual blocks and thus the upscaling capability

of the network.

For the experimental evaluation, the cross-sectional images of the brain from
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the IXI Dataset2 were used, a sample of which is shown in Fig. 4.6, which were

pre-processed and normalized. It is a publicly available dataset and it consists

of nearly 600 Magnetic Resonance (MR) images. Each subject’s MR image is

further split into T1, T2, PD weighted and Magnetic Resonance Angiography

(MRA) images. The individual images were 3-Dimensional and stored in the well-

known nii format3. These 600 images were split into two sets of 550 and 50 images

for training and evaluation purposes. The individual cross-sectional 2-D image

obtained from these nii images has a dimension of 230X230. The SimpleITK4

library was used to process the nii format and obtain the cross-sectional images.

Figure 4.6: Sample images from IXI dataset2

The dataset consists of high-resolution images only, from which low-resolution

images were recreated using average pooling. A tuple set for every image was

created, which includes both the LR and HR image, as shown in Eq. (4.5). The

images were normalized to zero mean and unit variance. It is crucial to normalize

features (in our case, images) because if one of the features has a large range of

values, then its contribution to the model parameters would be more. Hence, all

features are squashed to a smaller range, which is done by centering all pixel values

across the mean and dividing it by the standard deviation, as shown in Eq. (4.6),

where µ and σ are the mean and standard deviation, respectively.

Tim = (LRsim : ‘x’, HRGT : ‘y’) (4.5)

Imx,y = (Imx,y − µ)/σ (4.6)

The normalized images were used to build the dataset. The original input

2http://brain-development.org/ixi-dataset
3https://nifti.nimh.nih.gov/nifti-1
4http://www.simpleitk.org
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images are treated as the ground truth and through the pooling operation, a low-

resolution image is formed. Apart from passing this LR image to the models,

bicubic interpolation (Keys, 1981) is also used to generate the HR image used to

compare and test the other models’ performance. For obtaining LR images from

the ground truth image, a forward 3D Average pooling layer is used. A layer

is a form of non-linear downsampling of an input tensor. The input tensor is

partitioned and split further into 3D sub-tensors, where the average value of the

sub-tensors is calculated and used to create the output tensor, as per Eq. (4.7).

Here, x and p represent the size of the input image and the pooling sub-tensor,

respectively. O is the output tensor and I is the input tensor. The obtained

output tensor is the simulated LR image. The average pooling was done only to

reduce the resolution by a factor of 2.

Ox′,y′ = (

p∑
i=1

I(x− p/2 + i, y − p/2 + i)/p ∗ p (4.7)

After pre-processing, the 3-D images were represented as rank five tensors.

A typical CNN architecture would accept a 4-D tensor. The extra dimension

is due to the 3D nature of the image, which is represented as multiple cross-

sections of the brain. These rank five tensors were input to the individual models.

These images were trained for a scaling factor of 2. So the trained models were

capable of doubling the resolution of any 3-D image. The models were created

according to the individual models’ architecture and modified accordingly to fit

the 3-D images. These were then split into the training and evaluation dataset.

The trained model was then fed LRsim images from the evaluation dataset and

predicted high-resolution images were obtained for evaluation. A new tuple set

consisting of the ground truth and the predicted image was created and fed into the

models to be benchmarked for experimental evaluation, performed using standard

metrics, the details of which are described in next section.

4.4 Experimental Evaluation and Results

For the validation of the proposed approach, four standard metrics were used to

evaluate the models. These are – Peak Signal to Noise Ratio (PSNR) (Wang

et al., 2004), Structural Similarity Index Measure (SSIM) (Wang et al., 2004),

Multi-scale Structural Similarity Measure (MS-SSIM) (Wang et al., 2003) and

Visual Information Fidelity (VIF) (Sheikh and Bovik, 2006). Higher values for

each of these metrics imply a greater similarity to the ground truth.
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Peak Signal to Noise Ratio. PSNR (Wang et al., 2004) is the ratio of the

maximum value a pixel can take to the mean squared error. It is one of the easiest

methods to calculate metrics and is expressed in the logarithmic decibel scale to

accommodate the pixels’ dynamic range. Although, in some cases, a higher value

of PSNR might not indicate that the reconstruction is of a higher quality. PSNR

loses out on other models when it comes to predicting human visual response to

image quality. Two images can have the same PSNR but a pronounced difference

in quality due to the objective nature of the way it is calculated. The PSNR (in

dB) and MSE are computed as per Eq. (4.8) and (4.9), where I is the maximum

intensity of a grayscale image i.e., 256. Xij and Yij are the intensity of an original

and reconstructed image. MSE is the Mean Square Error, M and N are the

numbers of rows and columns in the image.

PSNR = 10 log10

[
I2

MSE

]
(4.8)

MSE =
1

[N×M]2

N∑
i=1

M∑
j=1

(Xij − Yij)
2 (4.9)

Structural Similarity Index Measure. SSIM (Wang et al., 2004) is an im-

provement on PSNR and is similar to PSNR with regards to parameters used.

Both use the same parameters but are combined differently. Also, both these

measures depend on the absolute values of the input. SSIM is a composite mea-

sure of luminance, contrast coefficient and correlation coefficient, which is given

by Eq. (4.10), (where C1 and C2 are constants used to keep away the uncertainty

when µx and µy are very close to zero. σx, σy are contrast comparison functions).

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)(

µ2
x + µ2

y + C1

) (
σ2
x + σ2

y + C2

) (4.10)

Multi-scale Structural Similarity Measure. MS-SSIM (Wang et al., 2003) is

a variant of SSIM where the process of SSIM is applied over multiple scales through

sub-sampling. It performs equally well or better than SSIM and also correlates

better to human visual response to image quality, as per our observations. It is

computed as per Eq. (4.11). Here, the constant M=5, and the exponents αM , βj, γj

are selected such that αM = βj = γj=1.

MS− SSIM(x, y) = [lM(x, y)]αM ·
M∏
j=i

[cj(x, y)]βj · [sj(x, y)]γj (4.11)
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Visual Information Fidelity. VIF (Sheikh and Bovik, 2006) correlates best

with the human visual perception with a Spearman’s rank coefficient5 of 0.96.

Hence, this metric is comparatively much better than the other metrics considered.

It uses natural scene statistics and tries to model a human visual system, under

the assumption that the uncertainty in human perception of visual signals can be

modeled as white Gaussian noise, and is given by Eq. (4.12).

V IF =
I(C;F )

I(C;E)
(4.12)

where, C is the reference image, F is the distorted image and E is defined as

the image that the Human Visual System (HVS) perceives. HVS tends to correlate

between the real image and the distorted image, i.e., the visual quality. In this

regard, VIF tests the algorithm using a human assigned assessment score. Thus,

VIF proves to be a better visual quality assessment metric.

All the neural models were compared against the Simple Bicubic Interpolation

model (Keys, 1981). Bicubic interpolation considers the nearest 4x4 neighborhood

of known pixels for a total of 16 pixels than the bilinear model, which takes 2x2

neighborhoods. Bicubic produces noticeably sharper images and is perhaps the

ideal method for processing time and output quality, which has been used as a

base method for many image enhancement models so far. Compared to the other

models, bicubic interpolation is much faster as there are no dense layers of neurons.

Hence, there is a tradeoff between the time taken to resolve and the quality of

resolution. In the medical domain, for most cases, there is a need for real-time

super-resolution. In such scenarios, it might be more suitable to use a faster

model than a slower model that provides high-quality images. The converse could

also be true in some cases. It was found that the ResNet SRCNN (Ledig et al.,

2017) model outperformed the other models by far. The comparative evaluation

of the six image quality enhancement methods, when applied to a sample image,

as shown in Fig. 4.7.

Table 4.1 shows that ResNetSRCNN outperformed the other models by far, in

terms of all considered metrics. The difference can be clearly observed in the PSNR

and the VIF values. There was no much deviation in the values obtained for the

other models compared to Bicubic Interpolation. Although the Deep Denoising

SRCNN improved on DSRCNN, the margin of improvement was small and did

not outperform much as per expectations. However, the ResNetSRCNN model

significantly outperformed Bicubic by a large margin, as seen by the four metrics’

5http://videoclarity.com/wp-content/uploads/2013/05/Statistic-of-Full-Reference-UT.pdf
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Figure 4.7: PSNR performance of Bicubic, SRCNN, ESRCNN, DSRCNN, DDSR-
CNN and ResNet SRCNN

values. An improvement of 6.5 is seen in PSNR values, which generally may not

indicate superior image reconstruction performance, given the objective nature of

PSNR.

Table 4.1: Quality Evaluation Metric Scores across different Models

Model PSNR SSIM MSSIM VIF

Bicubic 30.57 0.922 0.950 0.460

SRCNN 30.66 0.928 0.966 0.465

ESRCNN 30.68 0.929 0.969 0.467

DSRCNN 31.79 0.935 0.970 0.496

DDSRCNN 35.99 0.950 0.984 0.573

ResNet SRCNN 37.07 0.984 0.995 0.689

Furthermore, ResNetSRCNN achieved a VIF value of 0.689, which is a 22.9%

improvement over Bicubic, thus showing significantly superior visual perception,

as VIF correlates very well with human judgments of visual quality. VIF was

the best metric to visualize the models’ performance as the improvement could be

clearly observed. The models’ performance with respect to VIF scores is presented
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Table 4.2: Benchmarking the proposed ResNet SRCNN model against State-of-
the-art.

Approach PSNR SSIM

ResNet SRCNN (proposed) 37.07 0.984

Compressed Sensing MRI Recon (Abdullah et al., 2019) 32.20 –

mustGAN (Yurt et al., 2021) 29.45 0.947

GBWRT Recon (Abdullah et al., 2019) 29.15 –

SIDWT Recon (Abdullah et al., 2019) 29.04 –

pGANmany (Yurt et al., 2021) 28.80 0.940

pGANone-B (Yurt et al., 2021) 28.73 0.936

pGANone-A (Yurt et al., 2021) 28.39 0.934
Note: SSIM values were not reported with approaches mentioned from (Abdullah et al., 2019).

in Table 4.1. The performance of the ResNet SRCNN is compared with other

existing methods (Yurt et al., 2021; Abdullah et al., 2019), and tabulated in Table

4.2. The compared results also show a clear improvement over other methods

with an improvement of 4.87 in the PSNR value. Based on observations during

the experiments and comparing the time required by the different SRCNN models

with the Bicubic model, it was concluded that the Bicubic model performs Super

Resolution faster for medical images and its VIF values are pretty close to the

SRCNN models implying that they would appear similar to doctors trained to

employ the dominant features to diagnose the anomaly.

4.5 Summary

In this chapter, the works undertaken for addressing Objective 1, i.e., to improve

the quality of the diagnostic scan images using super resolution techniques were

presented. In the first work, image super-resolution algorithms, Unsharp mask

using gaussian filter, CLAHE, Bicubic Interpolation, VDSR network and SRCNN

models were implemented for image super-resolution, and evaluated using stan-

dard metrics like PSNR and SSIM for better visualization of X-ray images. Ex-

periments were performed to comparatively evaluate the above five approaches.

Based on the visualized enhanced images, VDSR showed better performance while

transforming a LR image to HR. However, SRCNN outperformed all other meth-

ods due to its lightweight architecture and superior learning behavior. As part of

the second work, five CNN based models were adapted for the medical scan qual-



Chapter 4. Medical Image Quality Enhancement 63

ity enhancement task. An ensemble model ResNetSRCNN was designed, which

showed good performance with reference to standard visual quality metrics. The

proposed model outperformed other state-of-the-art models in terms of PSNR and

SSIM by a large margin. The results of the studies emphasized the suitability of

the proposed approaches for diagnostic scan image enhancement for better visu-

alization, thus help in reducing the overall burden, time and cost in case of low

quality diagnostic scan captures.
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Medical Image Modeling and

Representation

5.1 Introduction

With the proliferation of various imaging-based diagnostic procedures in the health-

care field, patient-specific scan images constitute huge volumes of data that must

be well-organized and managed to support clinical decision support applications.

One such crucial application with a significant impact on point-of-care treatment

quality is, content-based medical image retrieval (CBMIR) that can assist doctors

in disease diagnosis based on similar image retrieval. The earliest approaches were

keyword-based image querying systems, i.e., a CBIR system that aims to capture

the latent features from an image without requiring any external information (text

metadata associated with images). Later, CBIR systems started to evolve based

on the potential matching of images identified as per their actual visual content

overlapped with a given query image. CBIR makes use of image-level features,

where most of the CBIR systems are dependent on low-level features. As a result,

a particular subset of features may be highly suitable for some image classes. In

contrast, other features may be suitable for the remaining classes, thus making

it difficult to pick out the most optimal feature attributes. In this chapter, ap-

proaches like hybrid feature modeling, bag of visual feature representation, and

a convolutional neural network based modeling, to represent a rich set of visual

attributes extracted from the medical images are presented in detail.

5.1.1 Problem Definition

Scan images like X-rays, CT scans etc can encompass several internal organs, it is

essential to devise automatic classification approaches to deal with the diversity.

67
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As medical images are multi-dimensional and often contain manifold information,

due to which efficient techniques for optimal feature extraction from large-scale

image collections are the need of the day. Despite significant improvements in

medical image retrieval, conventional retrieval models that support querying based

on text/keywords fail to capture the latent visual features in an image, paving the

way to CBIR systems for medical images. Designing effective feature extraction

mechanisms can help to improve overall retrieval accuracy. Thus, the problem to

be addressed here is defined as follows:

“Given a large volume of medical image set consisting of several classes

along with high variability in the images in each class, design and de-

velop effective feature modeling and representation techniques for en-

abling intelligent clinical applications.”

In this chapter, the identified issues are addressed in two ways. As an initial

work, an efficient CBMIR model built on multi-level feature sets extracted from

medical images is presented. Four different feature extraction techniques are used

to optimally represent images in a multi-dimensional feature space, for facilitat-

ing classification using supervised machine learning algorithms and top-k similar

image retrieval. Next, a MedIR approach based on the Bag of Visual Words

(BoVW) model for content-based medical image retrieval was designed. Further,

a deep neural network-based approach for content-based image retrieval was also

developed for demonstrating its suitability in efficient medical image retrieval.

5.2 Hybrid Feature Modeling for Content-Based

Medical Image Retrieval

In this section, the proposed supervised learning framework that incorporates

hybrid feature modeling techniques for large-scale medical image data, to enable

content-based image retrieval is presented. For the experiments, the ImageCLEF

2009 dataset (Lehmann et al., 2003c) was used, consisting of 12,560 images across

116 different categories. The processes involved in the proposed CBMIR system

are illustrated in Fig. 5.1.

5.2.1 Noise Removal & Contrast Enhancement

Medical images often contain some visual noise. In x-Ray images specifically,

the presence of noise is commonly due to random photon distributions. As this
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Figure 5.1: Workflow of the Proposed CBMIR Model

causes undesirable variations and also affects the visibility of objects of interest

(like bones, organs etc.) in the image, it is vital to eliminate this noise before the

process of feature extraction. We used an adaptive median filtering technique for

removing inherent noise from the radiography images in the dataset. Adaptive

median filtering (Hwang and Haddad, 1995) is an image enhancement technique

that works well due to its low sensitivity to pixel value changes. It also does not

affect the sharpness of the scan image, preserving even small objects-of-interest.

Next, intensity changes and contrast adjustment techniques are used to im-
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prove image quality further. The intensity value of an image is adjusted by

saturating all its pixel values by 1%. Similarly, image contrast is boosted by

transforming its pixel values with a technique called Contrast-Limited Adaptive

Histogram Equalization (CLAHE) (Zuiderveld, 1994). CLAHE operates on small

regions in the image, called tiles, rather than the entire image, and each tile’s con-

trast is enhanced individually. The contrast, especially in homogeneous areas, can

be limited to avoid amplifying any noise that might be present in the image. The

transformation of the image after applying these processes is shown in Fig.5.2.

After these processes, feature modeling is performed for extracting texture and

shape based features.

Figure 5.2: Radiographic image enhancement process

5.2.2 Feature Modeling

The performance of a CBIR system is highly dependent on the inherent visual

properties of images, represented formally to facilitate retrieval. Most diagnostic

scan images are generally monochromatic (e.g. X-ray). Hence, effective local and

global-level analysis of the images are critical. Also, the dataset contains scans

belonging to different classes, hence capturing this variation is also essential for

dealing with the variety of images. In the proposed work, four different feature

extraction techniques were used for obtaining a well-rounded image representation.

As feature extraction plays an important role in image retrieval performance, we

focused on texture and shape based feature extractions.

The Gray Level Co-occurrence Matrix (GLCM) (Haralick et al., 1973) is a

statistical method that examines the spatial relationship between the pixels in

an image for generating features. The GLCM feature vector is composed of 14

features which are primarily texture based features. These are extracted for each
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X-ray image in the dataset. These features are related to the specific characteris-

tics of the image such as Angular Second Moment, Contrast, Correlation, Variance

and Homogeneity. These features capture the individuality of an image in the form

of probability of a pixel finding its gray level intensity i at distance d, which can

be formulated as P (i, j : d). Here, each pixel is associated with its 8 neighboring

pixels except the edge pixels.

The Hierarchical Centroid Shape Descriptor (HCSD) (Ilunga-Mbuyamba et al.,

2016) generates a 124-dimensional feature space, and is augmented using a kd-tree

technique proposed by (Sexton et al., 2000). HCSD is a shape feature extraction

method which starts by recursively decomposing an image into sub-images. Ini-

tially, it takes image I as the input and computes its transpose IT , calculates the

centroid C(xc, yc) for each input with 1st order moment along x and y axis, where

xc=m10/m00 and yc=m01/m00. The order of moment of a 2D function f(x, y) is

formulated as per Eq. (5.1). A digital image’s raw moment mpq with I(i, j) pixel

intensities is calculated as per Eq. (5.2). The centroid is calculated by dividing

the image area recursively until the desired depth (here, we considered depth=7)

is reached. Fig. 5.3 illustrates how the centroid values are calculated from the

gray scale images. At each level, the axis of the coordinates is captured, after

which the generated vector is normalized to [-0.5, 0.5] range, point 0 being the

root level. Finally, the features extracted are concatenated to the image feature.

mpq =

∫ ∞
−∞

∫ ∞
−∞

xpyqf(x, y)dx.dy (5.1)

mpq =
M∑
i=0

N∑
j=0

ipjqI(i, j) (5.2)

Histogram of Oriented Gradients (HOG) (Dalal and Triggs, 2005) is imple-

mented by dividing the image dimension into smaller regions and storing the

histogram orientation of the pixel values of that region. Each pixel of the region

has a weight as per the gradient L2-norm. Here, histogram channels are performed

based on the rectangular region. As overlapping can occur, regions are contributed

more than once to the final feature vector. Initially, this feature extraction was

used for generic images, but it is found to be well-suited for medical images, as

it can be used to extract the directional change of intensity levels in the image.

A total of 9 rectangular regions are used here with 9 bin histogram per region.

The 9x9 feature vector is now concatenated to the image’s feature vector, thus

resulting in 81 dimensional feature vector.
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Figure 5.3: HCSD extraction from X-ray images

In case of Histogram Based Features (HBF), five different features, namely –

mean, variance, standard deviation, median absolute and RMS values, were used.

Let I be the variable indicating image gray levels, p(zi) be the histogram where

i = 0, 1, 2, ....L−1, where L is the number of discrete gray levels. The average gray

level of each region in the image (mean) is computed as per Eq. (5.3). Variance

is the amount of the difference in the gray level (Eq. (5.4)).

µ =
1

N

N∑
i=1

Ai (5.3)

S =
1

N − 1

N∑
i=1

|Ai − µ|2 (5.4)

Standard deviation captures the amount of dispersion from the mean gray level

of an image (Eq. (5.5)). A low value of standard deviation indicates that it is

very close to the mean value, on the other hand a high value means that the data

are spread over a range of values. The Median absolute is the measure of the

variability in the image and it is computed as per Eq. (5.6). Root Mean Square

(RMS) is used to compute the overall contrast of the image as per Eq. (5.7).

S =

√√√√ 1

N − 1

N∑
i=1

|Ai − µ|2 (5.5)

M = µ|X − µ(X)| (5.6)
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IRMS =

√√√√ 1

N

N∑
i=1

|Ii|2 (5.7)

The feature values obtained after using the four feature extraction techniques

described are fused to form a hybrid feature vector, which optimally represents

each X-ray image. The hybrid feature vector is a 224-dimensional vector, com-

posed of features as shown in Table 5.1. Thus, at this stage, all the images are

processed and represented by their 224-dimensional feature vector. These are used

for identifying how close the feature vectors of any two given images are, when a

query image feature vector is submitted to the retrieval system.

Table 5.1: Summary of Feature Modeling processes

Method Description Total features

GLCM Texture properties of the image 14

HCSD Recursively decomposes the image into sub-images 124

HOG 9 rectangular regions with 9 bin histogram per re-
gion

81

HBF Mean, variance, standard deviation, median abso-
lute and RMS values of the input image

5

Hybrid Combination of GLCM, HCSD, HOG and HBF
features

224

5.2.3 Pair-wise Similarity & Class Label Prediction

Once the training and testing image feature vectors are generated, a pairwise

distance calculation technique is used on them for determining the most relevant

image index values for each of the testing image. As a distance measure, the

Standard Euclidean pairwise distance method was adopted, which gave the best

result, i.e., it gave the best nearest image index values for the testing image feature

vectors to the training feature vectors. For top-k retrieval, where k=10, 10 image

index values were generated from the training set for each of the testing image.

From the top-10 index values, the first index value is considered for the actual

classification of the test image. The label of all images at the first index value is

fetched from the training set which will be the predicted label for the classification

task. For classification and label prediction, the k-nearest Neighbors (kNN) algo-

rithm (Cover and Hart, 1967) was used. kNN classifies an unknown object into



74 Chapter 5. Medical Image Modeling and Representation

its category among the training data and it uses the nearest neighbors between

the two set of vectors i.e., between the test vector and the training vectors. kNN

is a widely used machine learning algorithm due to its simplicity and the results

that were obtained when this technique is applied was found to be excellent in

many applications. Additionally, six variations of the kNN algorithms were ex-

perimented with, by varying the number of neighbors used. The kNN models –

fine, medium and coarse are based on the nearest number distance calculations

set to 1, 10 and 100 respectively. In the cosine, cubic and weighted kNNs, the

respective distance metrics are used for comparing two dimensional vectors. The

classification task was validated by using 10-fold cross validation.

5.2.4 Content-based Image Retrieval

After the pairwise distance calculation for all the testing images with the training

image set, top 10 image index values were obtained, and their labels are also

predicted. These image index values are now used for the content-based image

retrieval. For each test image, its pairwise distance calculated with reference to

the image index value is read from the training image set. Next, the test image

and the read top 10 indexed images are displayed as the retrieval results, and the

performance of the retrieval is observed.

5.3 Experimental Results and Discussion

For the experimental validation of the proposed approach, the ImageCLEF2009

dataset consisting of 12,560 labeled X-ray images of different body regions like

face, nose area, shoulder, elbow, forearm, chest, arm, hand, wrist, finger, knee,

leg, foot, ankle etc, was used. Each category of images was divided into training

and testing with a ratio of 70:30. Some sample images from the dataset are shown

in Fig. 5.4. The implementation was carried out with an Intel Xeon Workstation

@3.31 GHz and 16 GB of memory running Matlab v.2017.

Standard Euclidean distance metric was used for pairwise distance measure-

ment between the two image vectors, and the classification results are tabulated

in Table 5.2. It can be seen that this achieved good accuracy of 85.91%, with

significantly reduced false positive rate. With respect to this the performance of

the proposed model with state of the art methods compared is reported in Table

5.3. The hybrid feature vector was fed to six variants of kNN classifiers, with

10-fold cross validation. From Table 5.4, it can be seen that the kNN classifier
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Figure 5.4: Sample IRMA dataset images and their corresponding IRMA codes
(Lehmann et al., 2003c)

model using Cosine Measure as the similarity metric achieved the best accuracy.

To validate these results, the Receiver Operating Characteristic curves (ROC)

were plotted for one versus other classes. The ROC curves for the class hand and

leg ankle joint versus other classes plotted using cosine kNN classifier is shown in

Fig. 5.5.

Table 5.2: Observed results for the Standard Euclidean Pairwise distance

Evaluation Metrics
Values (%)

(Before Enhancement)
Values (%)

(After Enhancement)

Accuracy 82.97 85.91

Error 17.03 14.09

Precision 60.34 63.47

Recall 55.22 58.73

Specificity 99.64 99.70

False Positive Rate (FPR) 0.36 0.30

F1 Score 57.67 61.09

It was observed that most classes had a good retrieval performance while for

some classes the retrieval was average. This is because, the ImageCLEF dataset

displays high class imbalance, i.e., several classes have more than 200 images, while

some classes have only 10-15 images. Thus, the classifier was trained on less data,



76 Chapter 5. Medical Image Modeling and Representation

Table 5.3: Benchmarking the proposed approach with existing works

Approach Total Classes Accuracy (%)

Hybrid Approach (Proposed) 116 85.91

Shape Features and Bayesian Rule (Fe-
sharaki and Pourghassem, 2012)

28 82.87

Merging Scheme (Pourghassem and
Daneshvar, 2013b)

57 90.23

Combined Features (Zare et al., 2011) 116 ≥ 80% for 70 classes

Table 5.4: Classification accuracy for different kNN variants

Classifier Model
Accuracy (%)

(Before Enhancement)
Accuracy (%)

(After Enhancement)

Fine kNN 79.1 81.6

Weighted kNN 79.3 81.4

Cosine kNN 78.5 81.3

Medium kNN 77.6 79.8

Cubic kNN 76.2 78.7

Coarse kNN 66.7 68.5

(a) Class Hand (b) Class Leg Ankle Joint

Figure 5.5: AUROC values for one versus all classes using Cosine kNN classifier
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due to which label prediction accuracy and retrieval performance was low. Top-k

retrieval results for some sample classes for which high accuracy was observed

are shown in Fig. 5.6 and those classes where average accuracy was obtained are

shown in Fig. 5.7. As per observations, out of 116 classes in ImageCLEF, label

prediction accuracy was > 90% for 38 image classes, > 60% for 70 classes and the

remaining classes showed < 40%.

To evaluate retrieval performance, two popular IR metrics, precision@k (p@k)

and Mean Average Precision (MAP) were used. Precision@k is given by the ratio

of images that are retrieved in top k set that are actually relevant. It can be

computed as per Eq. (5.8). The MAP of a set of testing images is defined as the

mean of the average precision scores for each query image (Eq. 5.9). MAP@k can

also be computed accordingly, by considering precision scores at k, where, Q is

the number of query/test images, q = 1,2,3, . . .Q.

p@k =
No. of retrieved images @k that are relevant

Total images retrieved @k
(5.8)

MAP =

Q∑
q=1

AvgP (q)

Q
(5.9)

Table 5.5: Evaluation of retrieval with precision@k for k=3, 5, 10

Test Image k Value
Relevant

images@ k
Precision@k

Sample 1
(Class-Cranium)

k=3 3 100%

k=5 5 100%

k=10 10 100%

Sample 2
(Class-Arm)

k=3 3 100%

k=5 5 100%

k=10 9 90%

Sample 3
(Class-Right Leg)

k=3 3 100%

k=5 5 100%

k=10 9 90%

Sample 7
(Class-Nose Area)

k=3 3 100%

k=5 5 100%

k=10 8 80%

Sample 8
(Class-Umbar Spine)

k=3 3 100%

k=5 5 100%

k=10 8 80%
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Table 5.6: Evaluation of retrieval performance for all 116 classes

k value Observed MAP@k

k=3 87.06%

k=5 86.01%

k=10 83.91%

The image retrieval process was evaluated for various values of k, in order to

conclusively evaluate the performance. In case of real-world medical diagnostics

applications, high precision during top-3 and top-5 retrieval is really important, as

the doctor can get clear information w.r.t to the submitted image, hence k values of

3, 5 and 10 were chosen for a comprehensive evaluation. The results of conducted

experiments for some sample image classes are presented in Table 5.5 and the

MAP@k computed for all 116 classes is shown in Table 5.6 respectively. From the

results, it can be clearly observed that the top-3 and top-5 retrieval performance

of the proposed approach is almost equal. This can also be seen in the MAP@k

performance, as MAP@k was 87.06% for k=3, even at k=5, MAP@5 was about

86.01%, which means the performance of the proposed approach was excellent and

indicates a well-balance performance. As k increases, it can be seen that the class

imbalance problem comes to play, due to which performance degrades.

Figure 5.6: Observed retrieval results (classes with high accuracy)
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Figure 5.7: Observed retrieval results (classes with average accuracy)

5.4 Swarm Intelligence based Bag of Visual Words

Model for CBIR

The proposed method depicted in Fig. 5.8, focuses on classification of X-ray

images into different classes for enabling fast retrieval. The model is built on the

Bag of features method for classification and retrieval of similar kinds of images

for the given test image. The visual image category employed is a method to set

a categorical label to a given test image.

5.4.1 Preprocessing and Feature Generation

During this phase, an ordered array of the extracted features from the images is

constructed based on the image categories. The dataset is inherently balanced,

hence thresholding on class probabilities is performed and set to 97 of images on

each class in the dataset. These images are taken into account for all the classes,

which makes an equal distribution of images per class. Classes that do not meet

this threshold are not considered and which meets the threshold, a random of 97

images are taken into account. At this step, each class of image set contains an

equal number of images. The image set is then separated, 70 for training and

the remaining 27 for testing from each category. A total of 31 different categories

of medical X-ray images have been used in the proposed framework and for the

experiments conducted for evaluating classification and retrieval performance.

As X-ray image scans are taken from different angles on the test parts of the

body, the SURF (Speeded Up Robust Features) feature extraction (Bay et al.,

2008) was performed. SURF performs an automatic selection of interest points
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Figure 5.8: Proposed BoVW+PSO approach for CBMIR

that are found at different scales (Lindeberg, 1998). SURF descriptors provide a

robust and unique representation of an image using the pixel intensity distribution

within the interest points of their neighboring pixels. SURF is a popular local

feature detector and descriptor, which is used for tasks such as object recognition,

image registration, classification etc, and is based on the scale-invariant feature

transform.

Next, rotational invariance of the image was found based on Haar wavelet in

both x - y directions in a circular radius of 6s (s = scale at which interest point

was detected). An illustration of the interest points located in a sample image

of class Finger is shown in Fig. 5.9a. The SURF detector provides greater scale

invariance and the algorithm runs on ‘grid’ method. The final SURF feature vector
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length that is generated has 64 feature values, which are similar to the one when

extracted from a different image of the same class (shown in Fig.5.9b). Thus,

SURF provides a useful way for detecting features that have scale invariance,

contrast invariance and rotation invariance in the image.

(a) SURF Keypoints (b) Similarity matched features using SURF

Figure 5.9: SURF feature generation process

5.4.2 Visual Vocabulary Construction and Training

The visual vocabulary helps in effective representation of the monochromatic X-

ray images in a concept feature space. As images do not contain discrete words, a

‘vocabulary’ of visual words needs to be constructed by extracting features from

a set of images of each category. Essential parts of an image form a feature vector

with its dimensionality by the feature extraction process. The SURF detector is

used to find the interesting points in the images and encode information about

the area around the points as a feature vector. In our case, feature extraction

is accomplished by applying the SURF descriptor to the X-ray images across all

image categories, as per the defined experiment instances, which are then used for

vocabulary construction.

The visual vocabulary is constructed by means of quantization using the K-

means clustering technique (Lloyd, 1982) by a minimized set of features. To

enhance clustering, the strongest features are kept from each image after feature

extraction. Next, the visual vocabulary is built with K-Means clustering, and

the number of clusters (K value) is determined. As developing a BOVW model

is a user-dependent choice based on the dataset, the value of k is empirically
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determined by varying k values from 30 to 600 with a step size of 25 at each

experimental analysis to find the best results. In addition, the BoF object provides

an encoding scheme to determine the visual word occurrences in an image. A

histogram is produced, which becomes a reduced description of an image, as shown

in Fig. 5.10. The histogram is then formed for training a classifier and also for the

image classification. With reference to this, an image is encoded into its feature

vector. Training images that are encoded from each category are then provided

into the classifier for the purpose of training. The classifier was tested on the test

set for observing the confusion matrix and for calculating the accuracy. The newly

trained classifier was then used to categorize the test images and for predicting

the label based on the index value.

(a) Histogram at k=30 (b) Histogram at k=250

(c) Histogram at k=350 (d) Histogram at k=600

Figure 5.10: Histogram of visual word occurrences with different vocabulary sizes
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5.4.3 Image Indexing and Retrieval

Once the vocabulary is constructed, the set of training images are indexed, i.e.,

a search index is created that maps the visual words to their occurrences in the

image. Based on this index, a search of similar images is performed and matching

images are retrieved based on the given query image. The number of identical

images that need to be retrieved can be decided depending on how many similar

images need to get displayed for the given test image. Now, when a test image is

given, a similar image index is retrieved from the training set and these images

are displayed as the initial retrieval results.

To obtain the best match retrieval results for a given test image, a novel tech-

nique called Filter Based Image Retrieval Approach was designed. In the filter

based technique, the focus is on eliminating the least-useful retrievals and maxi-

mize the most-useful results. When a test image is provided as a query to retrieve

similar images initially, it returns 20 images IDs that are similar to the given test

image. All these 20 images are displayed as the first retrieval result (IG in Algo-

rithm 5.1). From this result, the images which do not belong to that particular

class are further filtered based on the training image set index number. Each class

of images holds a starting and an ending index number. Considering this as the

reference range, the image IDs which do not belong to the range are excluded,

while only those image IDs which are inside the range values are retained. These

image IDs are now treated as the best match and are displayed as the final retrieval

result.

5.4.4 PSO based Retrieval Optimization

Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995) is a population-

based optimization algorithm, used for various optimization problems. The main

strength of PSO is its fast convergence and suitability for diverse problem spaces.

Each particle is considered from a population of particles, and each particle is an

object which keeps moving in the search space, till it finally moves towards the best

position. Using a fitness evaluation function, PSO decides the next best/better

position based on the computed fitness value. Hence, the objective is to optimize

the fitness function which is generally pre-defined based on the problem.

PSO based clustering generates a compact cluster from a low-dimensional

dataset much more efficiently and in a better time when compared to the tra-

ditional K-means clustering method. However, while clustering a large dataset,

the slow shift from the global searching phase to the local refining phase causes an
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Algorithm 5.1 Filter based Retrieval process

1: Initialize N ← 0
2: NSets ← length(unique(Test Image Labels))
3: TestImages ← length(TestImages)
4: TIES = TestImages/NSets
5: for i = 1 to length(TestImage) do
6: I ← TestImage . Read the test image
7: IR ← Resize the image. . Such that width=height
8: IID=retrieve Images(I,II) . Get Image ID’s
9: IG ← [ ] . Initialize image gallery

10: for j = 1 to length(IID) do
11: MatchID = IID[i]
12: Matched = ImageLocation[MatchID]
13: IM ← Matched . Read the Matched image
14: IR ← Resize image. . Such that width=height
15: IG = [IG, IR]
16: end for
17: Display IG
18: Rem = mod(i,TIES)
19: if (Rem==1) then
20: N = N + 1
21: mkdir(Output(N)) . Create Directory ’Output(N)’ to save each set of

images
22: S ← Starting index number of N th TrainImageSet
23: E ← Ending index number of N th TrainImageSet
24: end if
25: Initialize m ← 1
26: for k = 1 to length(IID) do
27: if (IID) > S) & & (IID) < E) then
28: BestID[j] = IID[k]
29: m = m + 1
30: end if
31: end for
32: BIG ← [ ] . Initialize Best image gallery
33: for l = 1 to length(BestID) do
34: BestMatchID = BestID[l]
35: BestMatch = ImageLocation[BestMatchID]
36: IB ← BestMatch . Read the BestMatch image
37: IR ← Resize image. . Such that width=height
38: BIG = [BIG, IR]
39: end for
40: Display BIG
41: Save I, IG, and BIG
42: end for
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increase in the number of iterations required to reach convergence at the optima

in the refining phase compared to K-means algorithm. PSO is inherently parallel

and can be implemented using parallel hardware, such as a computer cluster, the

computation requirement for clustering large document dataset is still high. The

aim of the PSO is to find the particle position that results in the best evaluation

of a given fitness (objective) function. Each particle represents a position in N th

dimensional space, and moved through the search space, adjusting its position in

the particle’s best position found so far, and the best position in the neighborhood

of that particle.

Algorithm 5.2 Retrieval Optimization with PSO

1: Initialize the parameters:
2: n ← Feature Vector.
3: dim ← Feature Dimension.
4: Load FeatureSet.
5: Current fitness position.
6: Initialize velocity and Position . Current position, Velocity, Local best

position
7: for each particle do
8: Calculate current fitness value pi
9: if pi > pbest then

10: Set current value as the new fitness value.
11: end if
12: end for
13: for each particle do
14: Find the particle neighborhood . particle with best fitness value
15: Calculate particle velocity: vi, using Eq. (1)
16: Apply the velocity constriction.
17: Update particle position: xi, using Eq. (2)
18: Apply the position constriction.
19: end for
20: Return current position. . Optimal visual vocabulary size

Algorithm 5.2 depicts the process of optimizing the retrieval results using PSO.

Each particle imaintains the current position of the particle xi, the current velocity

of the particle vi and the personal best position of the particle yi. Using the above

notation, a particle's position is adjusted as per Eq. (5.10).

v1(t+ 1) = wv1(t) + c1r1[p1best− p1(t)] + c2r2[gbest(t)− p1(t)] (5.10)

where, w is the inertia weight, c1 and c2 are the acceleration constants, r1(t); r2(t)
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U(0, 1). Now, the particle position can be updated as per Eq. (5.11).

p(t+ 1) = p1(t) + v1(t+ 1) (5.11)

During experiments, it was observed that Algorithm 5.2 requires more than

200 iterations to converge to the optimal result for the dataset used, which consists

of 31 categories of X-ray scans, represented using SURF feature points. The vari-

ous experiments conducted and the observations on performance of the proposed

approach are presented in Section 5.5.

5.5 Experimental Results and Discussion

The implementation of the proposed approach was carried out on a high-end

workstation with Intel processor 3.31 GHz speed and 16 GB of memory using

Matlab v.2017. For this experiment, the IRMA ImageCLEFMed 2009 dataset

(Tommasi et al., 2009) 1 containing 31 unique categories with an equal distribution

of 97 images per category was used. Labeled X-ray images of different organs

like hand, chest, abdomen, knee, shoulder, ankle, foot and others were used for

classification and retrieval of images. Each class of image has 13 digits specific

IRMA code; a sample of which is shown in Fig. 5.11.

Figure 5.11: Sample images from IRMA dataset.

1Available online at https://www.imageclef.org/

https://www.imageclef.org/
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5.5.1 Classification and Retrieval Results

Experimental results revealed that the average classification accuracy on the train-

ing set was 96.45%, while the testing accuracy was 87.38% (shown in Table 5.7).

The vocabulary size was varied from 31, 50, 75, 100 to 600, with a step size of

25 for each experimental analysis cycle. It can be seen that a vocabulary size

of 350 was most optimal and resulted in the best overall accuracy rate. Also, it

is noted that vocabulary sizes >200 always attained an accuracy of >80% (Fig.

5.12). During the iterations, the feature points after 200 iterations do not change

much. The same can be noted from the performance curve graph shown in Fig.

5.12. The feature points before PSO and those feature points using PSO after

200 iterations are represented in Fig. 5.13a and 5.13b respectively. Accuracy rate

of all 31 classes (See Fig. 5.14) shows that label prediction accuracy was > 80%

for 26 classes, > 60% & < 80% for 4 classes and only 1 class showed < 50%.

This reveals that a vocabulary size of 200 and above is sufficient for the proposed

model.

Table 5.7: Observed performance on Training and Test sets

Metrics Training Set Test Set

Accuracy 92.49 89.73

Error 7.51 10.27

Precision 92.66 90.01

Recall 92.49 89.73

Specificity 99.75 99.66

False Positive Rate 0.02 0.34

F1 Score 92.24 89.20

The top 20 retrieved images for some sample query images are shown in Fig.

5.15 without using the filter-based approach. Effective retrieval of the top 10

images for the same sample test images is shown in Fig. 5.16 when a filter-

based approach is used. Standard metric Precision@k was used to evaluate image

retrieval performance at various valued of k (k = 5, 10, 15 and 20). In the

case of real-world medical diagnosis, higher precision values for top-5 retrieval is

important, so that the physician will be able to get accurate information w.r.t to

the test image. Hence, these values were considered for extensive evaluation. The

results of the conducted experiments for some sample image classes are presented

in Table 5.8.
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The performance of the proposed approach with other state-of-the-art methods

is compared and tabulated in Table 5.9. The proposed approach outperformed all

models. The performance improvement over Fesharaki and Pourghassem (2012)’s

model was more than 7%, while, with reference to Mueen et al. (2007) and Tom-

masi et al. (2008)’s work, the proposed model built on BoVW and optimized by

PSO, outperformed by a small margin of 1%. The state-of-the-art works used

different features, like, shape features (Fesharaki and Pourghassem, 2012), visual

features (Mueen et al., 2007), and local+global features (Tommasi et al., 2008) for

classifying images into its categories. However, these methods are considered only

classification as the primary task, and failed to report accuracy achieved by their

models. The proposed method also incorporates rotational and scale-invariant fea-

tures to compensate for the fact that medical scans are taken at different angles,

which improves the feature matching strategy. Hence, improvements in terms of

classification accuracy were achieved, and more significantly, the classified images

are utilized for enhancing the performance during the retrieval phase. This is

evident in the evaluation results presented in Table 2, with respect to standard

metrics like Precision@k for top-5, top-10, top-15 and top-20 image retrieval.

Figure 5.12: Observed performance for varying vocabulary sizes
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(a) Feature points before PSO (b) Feature points after 200 iterations

Figure 5.13: Feature Point Representation using PSO

Figure 5.14: Classification Results for different classes



90 Chapter 5. Medical Image Modeling and Representation

Figure 5.15: Image Retrieval results without using Filter approach and PSO

Figure 5.16: Image Retrieval results using Filter approach and PSO



Chapter 5. Medical Image Modeling and Representation 91

Table 5.8: Evaluation of retrieval with precision@k for k = 5, 10, 15, 20

Test Image k Value
Relevant
images@k

Precision@k

Sample 1
(Class-Hand)

1121-110-414-700

k=5 3 60%

k=10 7 70%

k=15 8 53.33%

k=20 11 55%

Sample 2
(Class-Cranium)
1121-120-200-700

k=5 5 100%

k=10 10 100%

k=15 15 100%

k=20 19 95%

Sample 3
(Class-Shoulder)
1121-120-463-700

k=5 5 100%

k=10 9 90%

k=15 14 93.33%

k=20 17 85%

Sample 4
(Class-Nose Area)
1121-430-213-700

k=5 5 100%

k=10 10 100%

k=15 13 86.66%

k=20 18 90%

Sample 5
(Class-Chest)

1123-110-500-000

k=5 5 100%

k=10 10 100%

k=15 15 100%

k=20 17 85%

Sample 6
(Class-Knee Patella)

1121-320-941-700

k=5 3 60%

k=10 6 60%

k=15 10 66.66%

k=20 12 60%

Table 5.9: Benchmarking the proposed approach against State-of-the-art models

Approach Total Classes Accuracy

BoVW+PSO (proposed) 31 89.73%

Shape Features, Bayesian Rule (Fesharaki and
Pourghassem, 2012)

28 82.87%

Multiple visual features (Mueen et al., 2007) 57 89%

Local & Global Features (Tommasi et al., 2008) - 89.7%
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5.6 Deep Neural Models for Effective CBMIR

Designing deep neural models for a particular application is a non-trivial task,

mainly due to the number of parameter choices that have to be made when de-

veloping such an architecture (Anthimopoulos et al., 2016). Extensive research

has been undertaken on assessing the adaptability of deep CNNs for color image

classification on large-scale natural-image datasets like ImageNet. However, there

is limited research work on texture recognition towards medical image analysis.

The proposed approach is based on first classifying medical images using a Con-

volutional Neural Network (CNN), the results of which are utilized for supporting

content-based medical image retrieval. Finally, a fully connected layer and an out-

put layer provides the predictions. In contrast, the layers in CNNs are organized

in 3 dimensions: width, height and depth. Additionally, the neurons of one layer do

not link or tie up to all the neurons to its preceding layer, with the exception of a

small region which is connected, as per the dropout strategy defined. Ultimately,

the final output can be minimized to a single vector of probability scores, struc-

tured in a systematic way along the depth dimension, which can then be used for

other problem-specific tasks. Fig. 5.17 illustrates the CNN architecture designed

for the classification task.

Figure 5.17: Proposed CNN model for Radiograph classification

For experimental evaluation, the ImageCLEF 2009 dataset (Tommasi et al.,

2009) was used, which consists of a collection of 14,410 radiographs over 193

classes, collected from the Department of Radiology, Aachen University of Tech-

nology, Germany. Due to variation in the X-ray images provided in the dataset,

each image was first preprocessed before feeding into the neural network. It was

found that the images were of different dimensions, hence it was necessary to

normalize the size of these images, to a standard resolution of 227x227. Then,

after concatenating each to the required depth, they are stored separately with
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the associated class label. These images are fed as input to the input layer of

the CNN model. A CNN based approach was designed for efficient retrieval, as

it can learn the visual features more efficiently for improved classification. From

this classification, an attempt is made to label the orientation view of the specific

image under test, for which a novel algorithm was developed (described in Section

6.2, Algorithm 5).

The CNN model designed used for classification and retrieval tasks consists of

five convolutional layers followed by 3 fully connected layers. Each convolutional

layer is followed by a ReLu activation layer and a max pooling layer, except at

Conv3 and Conv4 layers. In between the first and second ReLu and max pooling

layers, a normalization layer is added. The last three layers must be fine-tuned

as per the requirements of the classification task. Hence, the last three layers of

the model were replaced with a fully connected layer, a softmax layer, and a pixel

classification output layer. The newly added fully connected layer is configured

with the number of classes in the ImageCLEF dataset. Pixel classification layers

helps in classifying the images in a better way by ignoring the undefined pixel

labels during training. For training the model, a learning rate of 0.001 with a

batch size of 50 was chosen, while the number of epochs was set to 10.

The proposed work deals with multi-class classification task, so a modified

transfer learning AlexNet approach was incorporated, where Categorical Cross

Entropy (CCE) loss function was used. The requirement of CCE is to have each

output nodes for each class. Hence, the number of output nodes to 193, same as

the total number of classes in the dataset. At the end of the network architecture,

the final output layer uses a softmax activation function, so that each node outputs

a probability value between (0–1). The classification model performs two functions

- feature extraction and classification. In the hidden layers, the process of feature

extraction from the X-ray images is performed during a sequence of convolutions

and pooling operations. The convolution is performed on the input images with

the use of a filter or kernel to produce a feature map that represents each medical

image in a secondary feature space. A convolution is executed by sliding the filter

over the input images. At each location, matrix multiplication is carried out to

sum up the results onto the feature map. While one filter is slid over the entire

image, the process of identifying image-specific features is done in this phase,

regardless of their discriminating size and position. As the first convolution layer

accepts the image itself as the input and later layers take the output activation

of the previous layer as their input, the feature extraction process is inherently

hierarchical in nature.
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After each convolution layer, a max pooling layer is added for continuously

reducing the dimensionality of the previously processed X-ray image, i.e., to reduce

the number of parameters and also the computation load on the network. This

reduces the feature map size, simultaneously keeping the significant information

that is captured from the image at the earlier layer. Also, both training time

and issues due to over-fitting can be reduced. The max pooling layer accepts two

parameters as input: the filter size and the stride, which decide the extent of

down-sampling to be performed. For example, a [2x2] pooling size with stride 2

will result in a spatial resolution reduction of 50% of the input size. In this work,

a 3x3 max pooling with stride 2 and 0 padding in all max pooling layers were

used.

The fully connected layers in the model shown in Fig. 5.17, serve as a classifier

on top of the features extracted at previous layers. Each fully connected layer

maps the features extracted from convolutions to the corresponding class score

outputs. Thus, a value that indicates the classification probability with respect to

the class label given as input during the training is assigned to each image at each

layer. We used ReLU (defined as shown in Eq. 5.12) as the activation function

for the intermediate layers, as our classification task is a multi-class problem.

f(z) =

0 when z < 0

z when z ≥ 0
(5.12)

Dropout layers were also incorporated in the model, for reducing the number

of units considered during a particular forward or backward pass during training.

At each dropout layer, certain units (i.e. neurons) are ignored, choosing such

neurons at random. Therefore, at each training pass, individual nodes are either

dropped out of the network with probability 1− p (or retained with a probability

p), so that a reduced network is obtained. This also means that the incoming

and outgoing edges of a dropped-out node are also removed, thus resulting in

a reduced network architecture. During experimental validation, it was observed

that introducing dropout helped the model learn more robust features that helped

improve the classification accuracy. In the proposed work, the dropout layer was

set with a probability of 0.5 dropouts.

The final layer in the model is a soft-max layer that outputs a probability

distribution, i.e., the values of the output sum to 1. The soft-max activation

function is basically equivalent to a Logistic Regression over the image features

extracted from the layer before the fully connected layer FC8. The soft-max layer
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was used on an assumption that the classes are mutually exclusive for the multi-

class classification problem. During training, L2 regularization was applied by

adding a regularization term to the weights of the loss function E(θ), to reduce

problems due to over-fitting. The regularization term performs a weight decay

function. For every weight w (here 0.004) in the network, a value equal to 1
2
λw2

is added, where, λ is the regularization strength.

5.6.1 Content-Based Image Retrieval Task

The quality of extracted features which represent an image dataset in a seman-

tically rich feature space plays a vital role in any image retrieval task. The next

objective is to use the features obtained from the CNN along with their class la-

bels for extending CBMIR capabilities. To obtain the required feature sets from

the training and test images, an activation layer was added to the fully connected

layer FC7. The network presents a hierarchical feature representation for each of

the input images. The deeper layers of the network provide higher-level features,

which are obtained from the previous layers using low-level features. These are

now used for creating a feature vector for each image, in training and test sets.

When a test image feature set is given as QBE (Query By Example), the pair-

wise distance measure is used to compute distances that can be used to obtain

matching feature sets with the smallest distance from the images in the training

set. Using this, the training set feature index numbers are obtained for the given

test image. The number of indexes obtained depends on the number of images k

that need to be retrieved by the system (here we used k=10).

The images that match with these index numbers from the training sets are

retrieved and considered for experimental evaluation of the retrieval results using

standard metrics. Eight different distance measures – Correlation, Spearman, Co-

sine, Euclidean, Minkowski, Cityblock, Standard Euclidean and Chebychev, were

used for the experiments. These measures are usually used to find the similarity

or dissimilarity between two data objects. For each observation in Y (Test image

features), the pairwise distance method finds the smallest distances by computing

and comparing the distance values to all the observations in X (Training image

features).

Distance correlation or distance co-variance is a measure of dependence be-

tween two paired random vectors of arbitrary, not necessarily equal dimension

and is measured as per Eq.(5.13). Spearman distance is a square of Euclidean

distance between two data points X and Y (Eq. 5.14). Cosine similarity (Eq.
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5.15) computes the similarity between two non-zero vectors of an inner product

space that measures the cosine of the angle between them. The Euclidean distance

between two data points X and Y are given by computing the sum of squares of

the differences between the corresponding values as per Eq.(5.16), where, µi and

µj are the means of i and j respectively.

d(i, j) =
1− (i− µi).(j − µj)
‖i− µi‖‖j − µj‖

(5.13)

d(i, j) =
n∑
k=1

[Xik − Yjk]2 (5.14)

d(i, j) =
1− i.j
‖i‖‖j‖

(5.15)

d(i, j) =

√√√√ n∑
k=1

[Xik − Yjk]2 (5.16)

Minkowski distance (Eq. 5.17) is a generalization of Euclidean distance, hence

from the classification results, it can be seen that both Euclidean and Minkowski

give the same results. City block distance between two points X and Y, with k

dimensions, is calculated as per Eq. (5.18). In most cases, this distance measure

gives a similar result to that of the Euclidean distance. Chebychev distance is a

metric defined on a vector space, such that the distance between two vectors is the

maximum difference along any coordinate dimension and is given by Eq. (5.19),

where, q is a positive integer.

d(i, j) =
n∑
k=1

(|Xik − Yjk|)
1
q (5.17)

d(i, j) =
n∑
k=1

[Xik − Yjk] (5.18)

dij = maxk|Xik − Yjk| (5.19)

Often, standardization is necessary to balance the contributions of individual

feature sets, one way to do this is to transform variable values such that they all

have the same variance of 1. At the same time, the variables are centered at their

means. This centering is not necessary for calculating distance, but this sets all

variables variances to mean zero and thus easier to compare. The transformation
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is commonly called Standard Euclidean and is calculated as follows:

r(X, Y ) =
XiYi − µXµY

σXσY
(5.20)

where, µX and µY are the means of X and Y respectively, and σX and σY are the

standard deviations of X and Y.

To measure the similarity between images in the training dataset distance

measures were used to measure the similarity between images in the training

dataset and those in the test dataset, so that class-labels can be predicted for

unseen images, and similar images can be retrieved during the retrieval phase.

Various experiments were conducted to validate the performance of the proposed

approach with respect to both the classification task and retrieval task, using

standard metrics. In addition to this, the proposed approach was benchmarked

against state-of-the-art works, the details of which are presented in Section 5.7.

5.7 Experimental Results and Discussion

The proposed methodology was implemented on a high-end workstation and server

equipped with NVIDIA P40 GPUs using Matlab v.2017. For the experimental val-

idation, the ImageCLEFMed 20092 (Tommasi et al., 2009) dataset was considered,

containing 14,410 X-ray images belonging to 193 classes. Among these images,

12,677 images are to be used for training and 1,733 images are for testing, as

provided in the dataset. As per the IRMA code, the images in the ImageCLEF

dataset were classified and grouped into their class labels. Fig. 5.18a shows 10

sample images from the IRMA dataset with their related IRMA code (shown in

Fig. 5.18b).

5.7.1 Classification Task

Once the network is trained, the testing images were classified using the learned

features from the model. A classifier based on the pairwise distance calculations

between two sets - testing and training observations is carried out. The predicted

labels are compared with the actual label of the test image. Experiments with

8 different distance measures (discussed in Section 5.6.1) were performend, to

compare the classification with its retrieval performance of the proposed CNN

based model. Classification performance was evaluated using metrics like accuracy,

2https://www.imageclef.org/

https://www.imageclef.org/
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(a) Sample images with their IRMA codes

(b) IRMA code classification

Figure 5.18: IRMA dataset - Image sample and specifics (Lehmann et al., 2003c)

precision, recall and f-score. Classification accuracy is computed as the ratio of a

number of correctly predicted samples to the total number of input samples, as

given by Eq. (5.21).

Accuracy =
Number of correctly predicted class samples

Number of input samples
(5.21)

Precision is the ratio of the number of correctly classified results to the total

correctly and incorrectly classified predictions by the classifier (Eq. 5.22). The

recall is defined as the number of correct positive results divided by the num-

ber of all relevant samples, given by Eq. (5.23). False Positive Rate (FP Rate)

corresponds to the proportion of negative image samples that are mistakenly con-

sidered as positive, with respect to all negative image sample (as per Eq. 5.24).

F-score is a balanced measure of how precise a classifier is (how many instances it

classifies correctly), as well as how robust it is (not missing a significant number

of instances), as per Eq. (5.25).

Precision =
True Positives

True Positives + False Positives
(5.22)

Recall =
True Positives

True Positives + False Negatives
(5.23)

FPRate =
False Positives

False Positives + True Negatives
(5.24)

F − score =
2 * Precision * Recall

Precision + Recall
(5.25)
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Experiments were conducted to observe the classification performance when

different distance measures are used, and the results are tabulated in Table 5.10.

It can be seen that the proposed CNN features when classified with neural net-

work classifier, achieved better classification accuracy when compared to different

standard distance measures. Experiments revealed that the proposed CNN model

outperformed the traditional distance measures by a margin of 1 to 5%. This may

be due to the introduction of the pixel classification layer and the additional stan-

dardization measures applied to the data during the computation phase. As the

dataset has inherent data imbalance, the classification accuracy also was found to

vary accordingly.

Table 5.10: Classification performance of proposed CNN based model with refer-
ence to various distance measures.

Technique Accuracy Precision Recall FPR
F-

score

Deep CNN (Proposed) 0.6456 0.5184 0.5437 0.0021 0.4904

Correlation 0.6408 0.5144 0.5434 0.0022 0.4900

Spearman 0.6375 0.5140 0.5442 0.0022 0.4901

Cosine 0.6318 0.5183 0.5326 0.0022 0.4833

Euclidean 0.6191 0.4838 0.5175 0.0023 0.4704

Minkowski 0.6191 0.4838 0.5175 0.0023 0.4704

Cityblock 0.6151 0.4905 0.5188 0.0023 0.4717

Standard Euclidean 0.6138 0.4737 0.5131 0.0023 0.4643

Chebychev 0.6006 0.4952 0.5068 0.0024 0.4661

In addition to this, experiments were also performed for benchmarking the base

AlexNet architecture against the modified architecture adapted in this work. Here,

the base AlexNet model with the default values for the various hyperparameters

was applied to the dataset consisting of all 193 categories. In comparison to

the performance achieved by the proposed modified CNN model, the base model

failed to perform well, as is evident from the much lower classification accuracy

of 57.37%. The observed performance of the base AlexNet model with neural

network classifier, in comparison to the traditional distance measures is shown in

Table 5.11. Since feature values are different in both cases, a significant difference

was observed in classification accuracy of both models. The objective of this

comparison was to highlight the feature modeling performance of the proposed
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CNN model when compared to the base AlexNet model.

Table 5.11: Classification results of Base AlexNet Model in comparison to various
distance measures.

Technique Accuracy Precision Recall FPR F-score

Base AlexNet 0.5737 0.3943 0.4114 0.0022 0.3759

Correlation 0.5707 0.3913 0.4101 0.0022 0.3729

Spearman 0.5684 0.3868 0.4055 0.0023 0.3686

Cosine 0.5667 0.3859 0.4014 0.0023 0.3680

Euclidean 0.5642 0.3842 0.4004 0.0023 0.3664

Minkowski 0.5532 0.3831 0.3984 0.0024 0.3644

Cityblock 0.5419 0.3814 0.3913 0.0024 0.3585

Std. Eucl. 0.5331 0.3808 0.3868 0.0024 0.3522

Chebychev 0.5290 0.3803 0.3757 0.0025 0.3475

Experimental evaluation showed that the proposed model achieved an accuracy

rate of >80% for about 70 classes, < 80% and > 40% for 46 classes and the

remaining 52 classes showed < 40% accuracy. The performance was also evaluated

using the F-score metric, which is considered a more balanced measure when there

is an uneven class distribution, as a harmonic mean of Precision and Recall. The

proposed distance measure achieved a f-score value of 0.4904, which shows that

there is a sufficient weight distribution among the classes. Further investigations

revealed that, 52 classes in the dataset had less than 10 images available for

training. The classification performance for a sample of classes having an accuracy

rate of >80% is shown in Fig. 5.19.

5.7.2 Retrieval Task

To evaluate the retrieval performance, two popular IR metrics, precision@k (p at

k) and Mean Average Precision (MAP) were employed. Precision@k is given by

the ratio of images that are retrieved in the top k set, which are actually relevant

(computed as per Eq. 5.26). MAP for a set of testing images is defined as the

mean of the average precision scores for each query image. MAP@k can be also

computed accordingly, by considering precision scores at k, as per Eq. (5.27),

where, Q is the number of query/test images and q = 1,2,3, . . .Q.

p at k =
No. of retrieved images at k that are relevant

Total images retrieved at k
(5.26)
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Figure 5.19: Classification performance of proposed CNN model for various classes

MAP =

Q∑
q=1

AvgP (q)

Q
(5.27)

For evaluating the retrieval performance, all 1,733 test images in the dataset

were considered. It was observed that, for some classes the retrieval results were

very good, while for some others, the test images did not give the best match. The

reason for this is the significant class imbalance in the dataset, which makes feature

learning difficult. The results are tabulated in Table 5.12, from which, it can be

observed that the top-k retrieval results i.e., Precision@k for k = 3, 5, 10 for the
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Figure 5.20: Observed retrieval results for Best-match classes

Figure 5.21: Observed retrieval results for Average-match classes (red marked
images are wrongly retrieved images)

best match (shown in Fig. 5.20) was found to be 100% for most of the test images

in best-match classes like foot, lumbar spine, skull, jaw and wrist. A mean average

precision (MAP@10) of 63.34 is achieved for the retrieval task. However, in the

case of average-match classes (shown in Fig. 5.21), it can be seen the retrieval

performance suffers significantly (Table 5.12) due to an insufficient number of

images in those classes, thus, precision@k and MAP values also deteriorate. The

results of the retrieval experiments are shown in Fig. 5.20 and Fig. 5.21 for the test

images belonging to best-match classes and average-match classes respectively.

5.7.3 Benchmarking against State-of-the-art Works

To benchmark the proposed work, experiments were performed for assessing its

performance against other state-of-the-art works (Liu et al., 2016; Tommasi et al.,

2009). A metric called Error score (Tizhoosh, 2015) was used to benchmark the

proposed model’s performance against that of other contemporary works. The

error score is used to calculate the total error (as per Eq. 5.28) in image retrieval
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Table 5.12: Evaluation of retrieval with precision@k for k=3, 5, 10. (Average-
match classes)

Test Class k value
Relevant
images

Precision@k

Sample 1
(Class - Finger)
1121-110-411-700

k=3 2 66.66%

k=5 4 80%

k=10 6 60%

Sample 2
(Class - Cervical Spine)

1121-210-313-700

k=3 1 33.33%

k=5 2 40%

k=10 4 40%

over 1,733 test images, each characterized by their IRMA codes with nd digits,

where, nd ∈ {3,4}, and Bik
j is the number of possible labels at position i, and δ is

a decision measure which is 1 for an incorrect label and 0 for a correct one, when

image li is compared with the image l̂i. The retrieval accuracy can also be obtained

from the calculated IRMA error (Khatami et al., 2018b), which is computed as

per Eq. (5.29). In this case, the total no. of test images in the dataset considered

is 1,733.

Etotal(l
query) =

1733∑
i=1

4∑
k=1

nd∑
j=1

1

Bik
j

1

j
δ(li, l̂i) (5.28)

Accuracy = 1− Error

Total number of test images
(5.29)

The performance of the proposed model in comparison to several other works

in terms of computed Error score is reported in Table 5.13. It can be seen that the

proposed model outperformed the state-of-the-art, (Camlica et al., 2015)’s model,

by achieving a significantly lower IRMA error score, with a reduction of over 14

points, at 132.45. More significantly, the proposed approach achieved the lowest

error score value in comparison to 14 other state-of-the-art models (as listed in

Table 5.13), thus, proving the effectiveness of the modified CNN based model over

others, in terms of lowest error score on the IRMA ImageCLEF Med. dataset.
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Table 5.13: Benchmarking the proposed model against state-of-the-art approaches,
using Error Score and Retrieval accuracy metrics.

Approach Error Accuracy

Deep CNN (proposed) 132.45 92.35%

Camlica et al. (2015) 146.55 91.54%

Khatami et al. (2018a) 165.5 90.45%

Shrinking search space with LBP (Khatami et al., 2018b) 168.05 90.30%

TAUbiomed (Avni et al., 2009) 169.50 90.22%

Idiap* 178.93 89.68%

CNNC (128x128, binary)+RBC** 224.13 87.06%

CNNC (96x96, binary)+RBC** 237.93 86.27%

FEITIJS* 242.46 86.00%

VPA SabanciUniv* 261.16 84.93%

CNNC (96x96, no binarization) + RBC** 270.12 84.41%

Randon Barcodes via SVM # 294.83 82.98%

SP-R* 311.8 82.01%

MedGIFT* 317.53 81.68%

IRMA* 359.29 79.27%

Note: Approaches marked with * were reported in Tommasi et al. (2009). Approaches indicated

by ** were reported in Liu et al. (2016), while approach marked with # is reported in Zhu and

Tizhoosh (2016).

5.8 Summary

In this chapter, three different works undertaken as part of the defined objective

were presented. The first is a hybrid-feature modeling approach for content-based

medical image retrieval. The experimental results showed that the proposed ap-

proach was very suitable for real-world medical image retrieval applications used

for disease diagnosis and decision support, due to its excellent top-3 and top-5

retrieval performance. Second approach is a PSO enhanced Content-Based Image

Retrieval approach built on the Bag of Visual Words Model. PSO was incorpo-

rated to optimize retrieval performance for a given query image, and was used to

gain insights into the optimal clustering value. Further, a filtering approach was

designed to obtain the best matches in the retrieval task. The third work is a deep

CNN model designed for classification of medical images, the results of which are
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used for supporting similar image retrieval. By using CNN’s feature extraction

and with similarity distance calculation between the feature vectors, it was ob-

served that the model achieved good retrieval results. When benchmarked against

several state-of-the-art CBMIR approaches, the proposed model outperformed the

others with the lowest error score and highest retrieval accuracy.
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Chapter 6

Medical Image View Classification

6.1 Introduction

Radiological procedures like X-rays have evolved as a crucial diagnostic imag-

ing tool for identifying abnormalities in different body parts. Typically, medical

personnel require insights derived from various views/body orientations of the pa-

tient, in order to assess the disease physiology completely. In these situations,

frontal , lateral and sagittal views are commonly used for overall assessment. For

computer-aided diagnosis (CAD), internal and external shapes are very important

in identifying the abnormality. Currently, the projection view/ image orientation

of radiographs are labeled manually by radiologists and technicians. Manual cor-

rections for wrongly labelled views makes it impractical in PACS and digital imag-

ing systems, as it involves cost and time of human resources. Instead of manually

labeling such multi-oriented images, it can be accomplished automatically by in-

telligent algorithms that are trained to understand the patterns with large-scale

images. Methods that can assess this automatically and provide the necessary

information regarding the view of the organ at which the scan is taken can be

beneficial. Therefore, a classifier model developed for categorizing the disease ac-

cording to the image view is of great importance. Further, this helps in providing a

proper description of the image in a overall clinical workflow management system.

The objective of this work is to design effective models for view classification

with reference to the different orientations in which the patients’ diagnostic scans

are performed, during the initial process of radiographic profiling. The impact

of such automated techniques in large-scale medical image management systems.

Towards this objective, the suitability of different deep neural architectures are

explored and designed models are benchmarked against existing works using stan-

dard evaluation metrics. The proposed approach is intended for use in real-time
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applications to enhance preprocessing and facilitate its use in building intelligent

applications like Clinical Decision Support Systems (CDSS) and predictive ana-

lytics systems.

6.1.1 Problem Definition

In diagnostic medical images, the patient body orientation or view of the scanning

posture is often not recorded explicitly during storage in digital archival systems

like PACS. Different orientations like anterior or frontal view, posterior or back

view and the lateral or side views (also known as left lateral or right lateral)

can be used during scanning. However, computer-aided diagnosis systems do not

record this additional header information of the image. Automated orientation

identification for images is required for quality and quantitative analysis of the

image in many diagnostic applications. If such patient body orientations are not

recorded or are documented using an incorrect label, automated system indexing

may be inconsistent, and may also result in improper interpretation by computers

and radiologists. Thus, the problem to be addressed here is defined as follows:

“Given a set of medical images consisting of multiple views based on

patient posture, design effective models for enabling automated view

classification based on the image orientation, for intelligent clinical

tasks.”

In this chapter, the research undertaken for addressing this problem is pre-

sented. The focus is on modeling the image variances by giving attention to the

body view positioning, using the designed multi-view classification algorithms.

The algorithm contributes positively towards effective classification labeling. Next,

an automatic system that recognizes the orientation view label of different parts

of the body soon after the scan is taken is presented, for aiding efficient indexing,

categorization and storage.

6.2 Body Orientation: Multi-View Classification

A detailed examination of the ImageCLEF IRMA dataset revealed that several

classes contained images with variance in body orientation. It was observed that

classes like Neuro Cranium (IRMA code: 1121-220-230-700, 1121-210-230-700,

1121-4b0-233-700) and Cervical Spine (IRMA code: 1121-210-310-700, 1121-120-

310-700, 1122-220-310-700) had three different views, where as, classes like Chest,
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Hand and Leg had two different views. This orientation view is valuable during

Computer-Aided Diagnosis (CAD) based medical systems and could be poten-

tially useful for categorization. To address this problem, a table body orientation

labeling and identification algorithm is designed to improve the performance of

view-specific medical image classification requirements. The models designed for

identifying and classifying all three types of views – Left lateral view, Right lateral

view and Frontal view are discussed in detail. Algorithm 6.1 illustrates the body

orientation view classification process.

Algorithm 6.1 Body Orientation Classification Process

1: Initialize image gallery IG ← [ ]
2: for i = 1 to length(TestImage) do
3: Img ← Read the test image
4: LowerRow = round(size(Img, 1) * 0.75) . To get the lower part of the

image
5: subImage = Image(LowerRow:end, :)
6: mask = true(size(subImage)) . Mask the lower part of the image, to get

its centroid
7: props =regionprops(mask, subImage, ‘WeightedCentroid’)
8: xCentroid = props.WeightedCentroid(1) . Get x centroid
9: columns = size(subImage,2)

10: if (xCentroid < 0.42 * columns) then
11: label = ‘Facing Left’
12: else
13: if (xCentroid > 0.46 * columns) then
14: label = ‘Facing Right’
15: else
16: label = ‘Facing forward’
17: end if
18: end if
19: img = imresize(Img,[128 128]) . Resize image, such that width = height
20: position = [1 100] . Set the position where label needs to get displayed
21: value = label
22: IMG = insertText(img, position, value) . Insert the label on the image.
23: IG = [IG, IMG] . Update images
24: end for
25: Return processed images

The process starts with the extraction of the lower portion of the image, after

which the location of the weighted centroid of each image is calculated. If the

weighted centroid of an image is way off to the left, its orientation is left facing.

If it is to the right of the midline, then the image is right facing. If it is regionally

close to the middle, then we can determine that the image is a frontal view. The
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position of the centroid was empirically determined to be close to 0.42 and 0.46

values, after several trials with a set of sample images to see where the centroid

lies. We tested this procedure on the classes of images that have all the three

different views, which gave good results. Once the model classifies the images to

its corresponding class label, further classifying the image with reference to the

body orientation view can help in improving hospital CAD systems.

6.2.1 Experimental Results and Discussion

To evaluate the classification performance when medical images have associated

body orientation views, various experiments were conducted. The observed results

for a given orientation view with reference to its directional view of some sample

images from the Cervical-Spine and Neuro-Cranium classes are shown in Fig. 6.1

and 6.2. It can be seen that the proposed body orientation classification algorithm

achieved good orientation label prediction for three different type of views - facing

forward, facing left and facing right. The orientation label highlighted in red color

indicates a wrong orientation view label of the corresponding image.

Figure 6.1: Predicted orientation label on images of Cervical Spine class
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Figure 6.2: Predicted orientation label on images of Neuro Cranium class

6.3 Deep Neural Models for X-ray View Orien-

tation Classification

The sequence of tasks involved in the overall progress of the proposed view orien-

tation classification model using pre-trained network is shown in Fig. 6.3. Neural-

network architectures were adopted as an alternative to traditional supervised

learning based systems, due their adaptive learning behavior and semi-supervised

nature. Four different convolutional neural networks were used as Transfer Learn-

ing approaches for optimizing the training process. Apart from this, a novel neural

architecture called ViewNet was also designed for the task of medical image view

classification. The objective is to use neural models that are capable of learning

rich latent feature representations for a large number of image views, by incorpo-

rating transfer learning approaches for identification of the orientation label for

different body part images. Transfer learning techniques are generally used in

most deep learning applications. The advantage of using a pre-trained network is

to learn a modern task, making it easier and quicker than learning the features

from scratch. Another benefit here is that, the model learns better with even

lesser number of training images, when trained for newer tasks with the transfer

learning approaches.
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Figure 6.3: Proposed Approach for View/Body Orientation Classification

For the orientation identification task, a subset of orientation identified classes

from ImageCLEF dataset are used (Lehmann et al., 2003c). A total of 41 different

classes consisting of different organs of the body like spine (cervical spine, Tho-

racic spine, Umbar spine), leg, hand, carpal bones, nose and eye area were used

for the experiments. Each class had its own IRMA code, which are considered

for orientation classification task (described in detail in Section 6.4). Images of

size m × n are fed into the neural network for training. Each dataset image had

different image dimensions, therefore resizing was performed as soon as the images

were read from the datastore i.e, before feeding it into the network. Augmentation

was also performed on the training dataset through operations like random flip

and translation along the vertical and horizontal axis, which prevents the network

from overfitting. While training different deep neural network architectures us-

ing a transfer learning approach, some of the final layers should be changed to

a fully connected, softmax, and a classification output layers by observing the

dataset used. The newly replaced fully connected layer parameters need to be

specified according to the new dataset for a new classification model. Increasing
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the WeightLearnRateFactor and BiasLearnRateFactor values helps the network

learn features faster, with the addition of the new layers. Also, while training

the model, several hyperparameter values like mini-batch, epochs, batch normal-

ization, learning rate, regularizations, optimizers and activators were varied and

finally the best suitable values were chosen in building the final model for the

orientation identification task.

As part of early experiments, four different neural models were applied to the

dataset for understanding the suitability of state-of-the-art deep neural models for

the view orientation classification task. These four models are AlexNet, ResNet-

18, GoogleNet and SqueezeNet. The specifics of these models are discussed here.

1. AlexNet (Krizhevsky et al., 2012) comprises of 25 layers, with the first layer

as the image input layer having 227×227 dimension, followed by the first

convolution layer with window shape 11×11. Since most medical scan images

have larger dimensions than natural photographic images, more pixels are

required to copy the data present in the image. Consequently, a larger

convolution window is used in the next layer for handling the input data.

Later, the convolution window size is reduced to 5×5 and 3×3 respectively.

Next to the convolutional layer, ReLU activation and a max-pooling layer are

placed excluding at Conv3 and Conv4. A max-pooling and a normalization

layer reside in between the Conv1 and Conv2. Two fully-connected layers

are present after the last convolutional layer that produces feature maps

with size 4096. Finally, a softmax followed by a classification layer is used

for the prediction. Compared to other CNNs, the main difference is that

AlexNet comprises of more convolution channels.

2. ResNet-18 (He et al., 2016) is 71 layers deep with 224×224 dimension for

image input, followed by the first convolution layer with window shape 7×7,

and a max-pooling layer. A total of 20 such convolution layers are present

in this network with different batches. The convolution window shape in

the first batch layer is of 1×1, whereas in the second batch layer is of 3×3.

Between each convolution layer, batch normalization and ReLU activation

function are placed, except at the first and second convolution layer which

has an additional max-pooling layer. Only at the last convolution layer

pooling layer changes as an average pooling layer. The network architecture

concludes by a fully-connected, softmax and a classification output layer.

3. GoogleNet (Szegedy et al., 2015) is 144 layers deep with 224×224 dimen-

sion for image input. Convolution layers of conv1 and conv3 have ReLU
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activation function, max-pooling and cross channel normalization layers in

batches. A total of 57 such convolution layers are present in this network

with different batches. Every convolution layer has a ReLU activation func-

tion, the max-pooling layer is added for a batch of each sixth convolutions

starting from the eighth convolution layer. The next preceding convolution

layer has a depth concatenation layer, with the same height and width that

of conv layer and concatenates them along the channel dimension. The con-

volution layer window size varies from 5×5, 1×1, 1×1, 1×1, 3×3, 1×1 in

the batch of each six conv layers. The last convolution block ends with an

average pooling layer and a dropoutby 40%. The network architecture ends

with fully-connected, softmax and a classification output layer.

4. SqueezeNet (Iandola et al., 2016) is 68 layers deep with 227×227 dimen-

sion for image input. The first convolution layer has a window shape of

3×3, with a ReLU activation function along with a max-pooling layer. A

total of 26 such convolution layers are present in this network with different

batches. Starting from the Conv4 layer for every third convolution layer

a depth concatenation layer is added. The convolution layer’s window size

varies in its number from 3×3, 1×1, 1×1. The last convolution block ends

with a ReLU activation function and an average pooling layer. The archi-

tecture of the network completes by adding a fully-connected, a softmax and

a classification output layer.

Based on the results of the experiments and observations with respect to the

efficacy of each deep neural model considered for early experimentation, a novel

deep CNN architecture adapted from AlexNet and ResNet-18, called ViewNet was

designed, and used for classification of orientation views. A complete architectural

model of the ViewNet is represented in Fig. 6.4. The network is comprised

of 35 layers with an image input layer with a dimension of 227x227. The first

convolution layer has a window shape of 7×7, followed by a ReLU activation

function, cross channel normalization and a max-pooling layer. Further, the CNN

is further built up with a grouped convolution layer, batch normalization, ReLU

activation function, Cross Channel Normalization and a Max Pooling layer. Next,

convolution, batch normalization and ReLU activation function are used five times

and finally a max-pooling layer is added prior to the first fully connected layer.

In between the fully connected layers, dropout, the ReLU activation function,

global average pooling are also added. The network architecture ends with fully-

connected, softmax and a classification output layer.
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Figure 6.4: Architecture of the proposed ViewNet model

Table 6.1 lists the hyperparameter values determined during training for each of

deep neural network models as discussed in Section 6.3. The optimization function

used in all four networks used for the benchmarking experiments and the proposed

ViewNet is SGDM (Stochastic Gradient Descent Momentum) algorithm, which

works faster and better than Stochastic Gradient Descent. The main advantage

of SGDM is that, it helps to accelerate gradient’s vectors in the right direction,

leading to faster convergence. The experiments conducted to validate the proposed

approach and observations regarding the performance are presented in detail in

the next section.

Table 6.1: Classification Model parameters

Model Learning
Rate

Weight/
Bias

Batch
Size

Epochs

ViewNet (proposed) 0.0001 20 8 10

AlexNet (Krizhevsky et al., 2012) 0.0001 20 8 10

ResNet18 (He et al., 2016) 0.0001 10 8 8

GoogleNet (Szegedy et al., 2015) 0.0003 10 10 6

SqueezeNet (Iandola et al., 2016) 0.0001 20 10 8
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6.4 Experimental Results and Discussion

For the experimental validation, the ImageCLEF 2009 dataset (Lehmann et al.,

2003c) was used again, which consists of 41 unique classes of different orientations

of body organs like spine (i.e., cervical spine, Thoracic spine, Umbar spine), leg,

hand, carpal bones, nose and eye area. Some classes had all three different orien-

tations (e.g. spine) while some classes had only two orientations (e.g. nose and

eye area). A set of sample images that are taken for this work from the dataset

are shown in Fig. 6.5.

Figure 6.5: Sample dataset images showing the IRMA class code and code de-
scription.

The IRMA code is a 13 character unique code, which is subdivided into four

parts along its axis. The notation appears as (T-D-A-B), where T refers to techni-

cal (4 digits), D - directional (3 digits), A - anatomical (3 digits) and B - biological

(3 digits). Considering D - directional (i.e, body orientation) and A- anatomical

(i.e., examined part of the body) sub-parts of the IRMA code, the directional/view

orientation identification label is predicted for various body parts by using different

neural network models. The three-digit directional code (DDD) gives a detailed

description of the image orientation view. The first digit gives details about the

orientation (e.g.: 1-coronal, 2-sagittal, 3-axial). The second digit gives more in-

formation about the position (e.g.: 11-posteroanterior (PA), 12-anteroposterior

(AP)) and the third digit details the direction on the orientation of the type of

the organ examined (e.g.: 218-inclination).

Similarly, the three-digit anatomical code (AAA) gives a detailed description of
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which part of the body was examined. Major regions are coded as (e.g.: 1-whole

body, 2-cranium, 3-spine, 4-upper extremity/arm, 5-chest, 6-breast, 7-abdomen,

8-pelvis, 9-lower extremity/leg) following a two hierarchical sub-codes (e.g.: 7-

abdomen, 71-upper abdomen, 711-upper right quadrant, 712-upper middle quad-

rant, 713-upper left quadrant). Using these codes of observation helps in building

a proper model for the orientation identification system.

The proposed CNN model’s performance was measured using standard met-

rics like accuracy, sensitivity, specificity and F1-score as per Eq. (6.1) to (6.4).

Accuracy is computed as the total number of accurate predictions on view class

labels divided by the total number of images under test classification. Precision

is the number of correctly predicted orientation view labels from a set of selected

images. In contrast, recall is the total number of correctly predicted orientation

view labels from the entire test set. F1-Score helps to have a measurement that

represents both i.e., TPR and TNR, it is the weighted average of the true positive

rate and true negative rate.

Accuracy =
TP + TN

TP + TN + FP + FN
(6.1)

Precision =
TP

TP + FP
(6.2)

Recall =
TP

TP + FN
(6.3)

F1score =
2 ∗ (TP )

(2 ∗ TP + FP + FN)
(6.4)

The classification results before refining i.e., the classes that have three dif-

ferent orientations/views (front view, lateral views - right and left) are depicted

in Table 6.2. However, it was observed that some of the class IRMA codes are

different but, the orientations/views do not vary. In such cases, both the IRMA

codes were combined into a single label (i.e., label refinement was performed).

After all such class labels are combined, the test images are classified again, after

which a significant improvement in accuracy is observed. The classification results

observed after the process of refining the classes was performed are shown in Table

6.3. Experimental evaluation revealed that AlexNet and ResNet18 achieved good

classification accuracy of 85.49% & 85.21% (before merging the same orientation

classes) and 91.45% & 91.82% (after merging).

The ViewNet model, adapted from AlexNet and ResNet CNN models, out-
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Table 6.2: Observed classification performance w.r.t different CNN Models (before
class label refinement)

NN Model Accuracy Precision Recall F1-Score

ViewNet (proposed) 0.8571 0.5387 0.5841 0.5298

AlexNet (Krizhevsky et al., 2012) 0.8549 0.5636 0.5882 0.5634

ResNet18 (He et al., 2016) 0.8521 0.5033 0.5161 0.4987

GoogleNet (Szegedy et al., 2015) 0.6543 0.3788 0.3994 0.3609

SqueezeNet (Iandola et al., 2016) 0.6502 0.3332 0.3420 0.3082

Table 6.3: Observed classification performance w.r.t different CNN Models (After
class label refinement)

NN Model Accuracy Precision Recall F1-Score

ViewNet (proposed) 0.9151 0.5743 0.5996 0.5414

AlexNet (Krizhevsky et al., 2012) 0.9145 0.6361 0.7011 0.7411

ResNet18 (He et al., 2016) 0.9182 0.5731 0.5971 0.5741

GoogleNet (Szegedy et al., 2015) 0.9053 0.5491 0.6191 0.5531

SqueezeNet (Iandola et al., 2016) 0.8868 0.5141 0.5921 0.5161

performed all the other CNN models used in the benchmarking experiments. It

was found that the proposed ViewNet reached an accuracy of 85.71% with a small

improvement over AlexNet. This improvement was attained because the layers

that are incorporated in the proposed ViewNet model are taken from both of the

top resulted models of AlexNet and ResNet. More importantly, the complexity of

the network is significantly lower than AlexNet and ResNet, while still achieving

comparable results. The compact architecture actually helps achieve significant

optimization in training time, which can be highly significant when the size of

medical image repositories that are to be is large. The ViewNet model can be fin-

tuned for further improvements in performance, so that it can accurately predict

diagnostic image’s body orientation for large-scale HIMS as well.

6.5 Summary

In this chapter, a centroid based algorithm designed to detect the orientation

of radiography images based on feature extracted were presented. Experimental
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results showed that the algorithm achieved good orientation label prediction for

three different type of views - facing forward, facing left and facing right. Another

work presented the details of an efficient and accurate method for identifying the

orientation label of the body organ positioned at the time of the scan. Four transfer

learning based neural models were used in early experiments for benchmarking the

orientation classification task on the standard open dataset, ImageCLEF 2009. A

novel architecture, ViewNet was also proposed for the task of view classification.

These neural models were validated on the images available from dataset, with

its IRMA code specifics, and achieved promising results when measured in terms

of accuracy, sensitivity, specificity and F1-score. The possible applications of this

work are in the context of HIMS, for effective and automated view labelling of

the scan images after the scan process, to optimize the indexing process, thus

streamlining the workflow of HIMS.
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Generating Medical Image Description

7.1 Introduction

Recent advancement in applications in AI based models for healthcare, research in

Machine learning (ML) and deep learning (DL) have shown great promise in ac-

curate diagnosis in tasks like disease prediction, image classification, caption gen-

eration (Kumar et al., 2016; Garćıa-Floriano et al., 2019; Faes et al., 2019) among

others. The performance of these systems in clinical settings can revolutionise

the way healthcare services are delivered, especially in a labor-intensive field like

radiography, where, the radiologist is expected to manually check each scan and

write a list of observations, for enabling diagnosis by the referring doctors. Im-

age processing and Computer Vision (CV) based techniques have been applied to

design surgical and imaging intervention applications. Such systems extend clini-

cal decision-making capabilities to healthcare professionals by automating certain

tasks related to diagnosis or forecasting the severity of several abnormalities.

Incorporating AI in these systems to support learning behaviour so that sys-

tems can detect abnormalities at the earliest disease onset in a wide variety of

diagnostic media are of critical importance. The radiologist can utilize these in-

sights for enabling and optimizing the quality of diagnosis. The objective of this

work is to design neural ensemble models that effectively combine the latent im-

age features and semantic information from the clinical text reports for enabling

improved context inference for automatic generation of diagnostic reports for new

X-ray images.
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7.1.1 Problem Definition

Automatically generating a medical image report is a challenging task, and re-

quires both computer vision and natural language processing insights. However,

such a capability has a huge impact on medical data management, and could

significantly benefit clinicians for valuable insights and reduce the overall burden

on patient care’s workflow. Recent advancement in machine learning and deep

learning has resulted in design of applications for disease prediction, image clas-

sification, caption generation, etc. In some existing approaches, attention models

are used in addition to encoder-decoder models and are pre-trained with convolu-

tional neural networks like VGG16, VGG19 and Resnet50. The focus of this work

is to design automated methods for radiographic image examination for identify-

ing abnormalities and generating reliable radiology reports. Thus, the problem to

be addressed here is defined as follows:

“Given a set of diagnostic images containing latent visual information

and a set of corresponding diagnostic text reports, designing multimodal

models for automatically identifying anomalies in the diagnostic images

for generating their natural language descriptions w.r.t findings.”

In view of these observations, the work presented in this chapter encompasses

development of ensemble deep neural models for automated abnormality detection

and classification. The abnormalities present in the images are identified using the

developed abnormal region detection algorithm. Further, the features generated

by the ensemble neural model are used for the automated generation of radiological

text reports, thus reducing the radiologists’ workload and also streamlining the

diagnosis process.

7.2 Abnormality Detection and Classification of

Plain Radiographs

The proposed approach for abnormality classification, abnormality localization

and automated diagnostic report retrieval for X-ray images is illustrated in Fig.

7.1. Two publicly available, standard datasets were used for the experimental val-

idation of the proposed approach. The first one, the MURA dataset (Rajpurkar

et al., 2017a) provides musculoskeletal radiograph images of seven upper extrem-

ity classes like Hand, Forearm, Wrist, Finger, Shoulder, Humerus and Elbow. The

second dataset, the Indiana University dataset (Demner-Fushman et al., 2016)
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consists of chest X-ray images, along with indications, findings, and impressions

in a textual form for each image. These two datasets were together used for ad-

dressing the three different clinical tasks, each involving data belonging to two data

modalities, X-ray images and clinical text reports, thus resulting in multimodal

datasets. Due to this, the proposed ensemble models are more robust, capable of

dealing with varied types of abnormalities in underlying radiographic images. The

three clinical tasks undertaken form a significant part of a typical clinical workflow

that is managed on a daily basis by a radiologist in hospital scenarios. They are –

1. Classifying a given diagnostic image as either normal or abnormal.

2. Abnormal region detection for localize and visualizing identified abnormal

areas.

3. Automated diagnostic text report generation.

The methodology adopted for addressing each of these tasks are discussed in

the subsequent sections. The proposed MSDNet ensemble model is the core of the

pipeline that is used for the three clinical tasks, which is trained to extract features

and image index values that will facilitate the classification, identification and

localization of anomalies, and also automated diagnostic text report generation

for a given input image.

Figure 7.1: Abnormality Classification and Report Generation process.

7.2.1 Abnormality Classification

The architecture of the proposed MSDNet model is depicted in Fig. 7.2. The

proposed network is built as an ensemble of the AlexNet (Krizhevsky et al., 2012)

and ResNet18 (He et al., 2016) architectures for initial classification of the category

of the image, i.e. abnormal or normal. The global features are obtained from

AlexNet, while ResNet18 is used to generate the local features, which are combined

to form a fused feature set. Concatenated features are then fed into the fully-

connected layer for final abnormality classification. If the probability value is
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equal to or higher than 0.5, then the image is classified as an abnormal study.

Here, the task is to classify the given image into the category to which it belongs.

Hence, it is a single-label categorical classification (i.e., softmax activation), and

the standard weighted categorical cross-entropy loss is given by:

Jwcce = − 1

M

K∑
k=1

M∑
m=1

wk × ykm × log(hθ(xm, k)) (7.1)

where, M gives the number of training examples; K gives the number of classes;

wk is the weight for class k; ykm is the target label for training example m for class

k; xm is the input for training example m and hθ represents a model with neural

network weights θ.

Figure 7.2: Architecture of the proposed MSDNet model

For the training process, initially different batch sizes like 8, 16, 32, 64 and

finally the learning rate was set to 0.0001, with a batch size of 16, while the

number of epochs for training the network were set to 10. Stochastic Gradient

Descent with Momentum (SGDM) was used as the solver optimizer because of its

ability to switch back and forth to reach the optimum path. Hence, momentum

parameters were added to reduce the switching problem (McHugh, 2012). The

values of SGDM were calculated and updated as per Eq. (7.2), where, ` is the

iteration number, α > 0 is the learning rate, θ is the parameter vector, E(θ) is the

loss function and γ determines the contribution of the previous gradient step to

the current iteration.

θ`+1 = θ` − α∇E(θ`) + γ(θ` − θ`−1) (7.2)

To avoid considering the same data segments at every epoch, a shuffling pa-

rameter value was set before each training epoch. i.e., if the mini-batch size cannot
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uniformly distribute the training samples, then trainNetwork discards the training

data that does not fit into the final complete mini-batch of each epoch. To learn

faster in the new layers, the WeightLearnRateFactor and BiasLearnRateFactor

values of the fully connected layer were increased. This was heuristically set to 20,

the learning rate is determined by multiplying this factor by the global learning

rate, for deriving the biases in the fully connected layer. The cross-entropy loss

function is used as an encoded output. For a single image this loss is computed

as per Eq. (7.3),

Cross–entropy loss =
M∑
c=1

(yc · logŷc) (7.3)

where, M is the number of classes and ŷc is the model’s prediction for that

class (i.e. the output of the softmax for class c). y is a (2×1) vector of one’s and

zero’s, yc is either 1 or 0. Finally, the predicted class label of an input X-ray image

is obtained at the output layer.

7.2.2 Abnormal Region Detection

After an image is classified as normal or abnormal, an automated analysis of the

type of abnormality present in the image is of critical importance. The objective is

to identify potential abnormality findings like hardware artifacts and the existence

of fractures in the scan image. Boundary detection in abnormal images is one of the

crucial steps while generating x-ray scan reports. Currently the abnormal regions

are manually marked by expert clinicians/physicians. The developed algorithm

can make a change over in the Computer Aided Diagnosis medical system, where

the boundary will be marked by the system itself if it finds any abnormalities

present in the image.

In this work, a boundary detection algorithm is incorporated to detect the

abnormalities present in the image. For each image, the histogram of the abnormal

image is plotted and the image is binarized with less than the bin location, after

which the largest blobs/regions in the image are determined. Next, the rightmost

connected components are obtained, after which, the centroid and bounding box

of the masked image are captured. Using these, a bounding box is marked with

the final values. Algorithm 7.1 illustrates the process of identifying the abnormal

regions in the radiograph images.
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Algorithm 7.1 Abnormal Region Detection Algorithm

Input: An Abnormal Image
Output: Boundary region on Abnormal Image

1: for i = 1 to length(TestImage) do
2: IT ← TestImage . Read the test image
3: Compute the histogram of the image.
4: Find total histogram values > 1000.
5: binaryImage ← grayImage < x-axis value with last peak from histogram
. Binarize the image

6: binaryImage ← bwareafilt(binaryImage, 2) . Extract only the two largest
blobs

7: labeledImage ← bwlabel(binaryImage) . Label Connected Components
8: binaryImage2 = labeledImage ← 0
9: binaryImage2 ← imfill(binaryImage2, ’holes’) . Fill holes

10: TestImage(∼ binaryImage2) ← 0 . zero out the other parts of the image
11: Mask ← grayImage > call . Get a new binary image
12: Mask ← imfill(Mask, ’holes’) . Fill holes
13: Mask ← bwareafilt(Mask, 1) . largest blob selected
14: Mask ← bwconvhull(Mask) . Take convex hull
15: Get the Centroid points.
16: Mark the abnormal region with the bounding box and centroid points.
17: Output abnormalities.
18: end for

7.2.3 Automatic Diagnostic Text Report Generation

For this task, the modeled features extracted from the X-ray images and the

expert-written diagnosis reports are utilized for capturing the findings and im-

pressions as a text report for the identified abnormal chest X-rays taken from the

Indiana University dataset. The convolutional layers that build up each of the two

adapted models based on the architectures of AlexNet and ResNet-18 were trained

to extract disease-specific features from the X-ray images. Using these extracted

image features and the image IDs, the findings and impressions of the image read-

ings are incorporated for generation of a natural language text report for a test

chest X-ray image. Fig. 7.3 illustrates the process of automatic diagnostic report

retrieval.

Algorithm 7.2 illustrates the report retrieval procedure after the image classi-

fication process. During the feature extraction process, each image in the training

and test sets is processed for generating a feature vector. When a test image

feature set is given as a query, the pairwise distance measure is used to compute

distances that can be used to obtain the matching feature set with the smallest
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Figure 7.3: Automatic Report Generation Process for Chest X-ray Images.

Algorithm 7.2 Automatic Report Generation Algorithm

Input: A Sequence of Images and its corresponding Report.
Output: Image and its corresponding Report.

For each test feature set
ID’s ← Find the nearest distance in train feature set.
Read text report file. . Image’s Report.
Text ← I˙ID, Indication, Findings & Impression. . Read I˙ID, Indication,
Findings & Impression from Report.
for i = 1 to length(TestImage) do

I ← TestImage . Read the test image
Il ← TestImageLabel . Get the abnormality label of the test image.
for j = 1 to length(ID) do

MI ← TrainImage(ID[i,j]) . Read the nearest matched train image.
Lbl ← TrainImageLabel(ID[i,j]) . Get the abnormality label of the

matched image.
Index ← ID[i, j] . Get the Index number of the matched image.
Ind = Text(Index,a)
Find = Text(Index,b)
Imp = Text(Index,c) . Get

Indication, Findings & Impression of the relevant Index row., where a, b & c
are the Indication, Findings & Impression column number of the Report file.

end for
Display I, Il , MI , Lbl, Ind, Find and Imp.

distance from the images in the training set. These measures are usually used

to find the similarity between two data objects. For each observation in Y (Test

image features), the pairwise distance method finds the smallest distances by com-

puting and comparing the distance values to all the observations in X (Training

image features).

During experiments, it was observed that Cosine and Standard Euclidean

achieved the smallest distance measure with an overall accuracy of 78.03% and

77.26%. Hence, for this report generation experiment, we used Cosine as the dis-
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tance measure. When a test image is fed into the model, the Cosine distance is

computed to find the training set’s nearest match. Its equivalent index number

is the closest reference, using which the image and its description (Indication,

Findings & Impression) that match are retrieved and displayed.

7.3 Experimental Evaluation and Results

For the experimental evaluation of the proposed model, the MURA and Indiana

University datasets were used. Both are open access, publicly available datasets,

the specifics of which are listed below.

1. The MURA dataset (Rajpurkar et al., 2017a) is made available by the Stan-

ford Group, and consists of musculoskeletal radiography images of seven

upper extremity classes. The scan images are represented as per the PACS

specifications. MURA consists of 14,863 studies taken from 12,173 patients,

consisting of 40,561 radiography images in total. The dataset is split into

training (36,808 images, 13,457 studies from 11,184 patients), testing (3,197

images, 1,199 studies from 783 patients) sets. There is no overlap in pa-

tients between any of the sets and each study has been labeled manually

as either normal or abnormal, by Stanford Hospital’s board-certified radi-

ologists. Abnormal images in the dataset contain anomalies like fractures,

hardware artifacts, degenerative joint diseases and other miscellaneous ab-

normalities, including lesions and subluxations. A sample of normal and

abnormal images from the dataset is shown in Fig. 7.4.

2. The Indiana Dataset (Demner Fushman et al., 2016) includes 7,470 chest X-

Ray images having both frontal and lateral images with annotations, which

consist of indications, findings, & impressions in a textual form. We use this

dataset for the clinical task of abnormality classification and for retrieving

the reports for a given test image. Hence, only the frontal chest X-ray images

(comprising of 4,000 images) to extract the image’s relevant features at the

training phase. A sample of this is shown in Table 7.1.

First, the predicted class labels are obtained from the deep ensemble model. It

is observed that, for the seven classes of the MURA dataset, a total of 3197 images

- 1,667 images were normal and 1,530 images contain abnormal findings (fractures,

hardware artifacts and joint diseases). In the Indiana dataset, abnormal/ disease

annotations like cardiomegaly, opacity, pleural effusion, pneumothorax, pulmonary
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Figure 7.4: Sample images of MURA dataset in Hand, Forearm, Wrist, Finger,
Shoulder, Humerus and Elbow classes (Upper row - abnormal images; Lower row
- normal images)

Table 7.1: Sample images from the Indiana Chest X-ray dataset, along with the
associated indications, findings and impressions

Image Indication Findings Impression

Preoperative
renal trans-
plant.

The lungs and pleural spaces
show no acute abnormality.
Stable left upper lobe calci-
fied granuloma. Heart size is
mildly enlarged, pulmonary vas-
cularity within normal limits.
Mild tortuosity of the descend-
ing thoracic aorta.

No acute pul-
monary findings.
Mild cardiomegaly.

Chest and
midback
pain.

Stable cardiomediastinal silhou-
ette with tortuous thoracic
aorta. No pneumothorax, pleu-
ral effusion or suspicious focal
air space opacity. Stable right
lung base scarring.

Stable exam with
no acute abnor-
mality seen.

Shortness of
breath.

The cardiac contours are nor-
mal. The lungs are hyper-
inflated with flattening of the
diaphragms and tapering of
the distal pulmonary vascula-
ture. There is no focal con-
solidation. Thoracic spondylo-
sis. Mild dextroscoliosis of the
spine. Prior anterior cervical fu-
sion.

Emphysema with-
out superimposed
pneumonia.
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edema, and shortness of breath were identified in the study. Of these sets, 81.79%

of images were correctly classified as normal and 76.62% of images were predicted

to be abnormal. The proposed approach’s performance is measured using standard

evaluation metrics like accuracy, sensitivity, specificity, and kappa statistics.

Cohen’s kappa statistics (McHugh, 2012) measures the inter-observer agree-

ment or precision and is especially useful when the same score is assigned to the

same data items. Hence, the outcome is to predict whether the data sample un-

der test is normal or abnormal. The importance of this metric lies in the correct

representation of the data measured. Its range is -1 to +1; a value of 1 indicates a

“perfect agreement” and a value less than 1 shows “less than a perfect agreement”.

In some rare situations, the Kappa value can also be negative, signifying that the

agreement score is much lower than expected. It is computed as per Eq. (7.4),

where Pr(a) is the actual observed agreement, and Pr(c) is the chance agreement.

Kappa =
Pr(a)− Pr(c)

1− Pr(c)
(7.4)

The results of the experimental evaluations conducted with each neural model

selected for the comparison are tabulated in Table 7.2 and 7.3. From these results,

it was observed that ResNet outperformance AlexNet, which can be attributed to

its 71 layer deep architecture, in contrast to AlexNet’s 25 layer architecture. The

feature representation learnt by the convolution layers of ResNet18 with different

batch sizes also contributed to greater accuracy. Another significant reason is the

inclusion of local features, by locating the maximum connected component on the

binary map. The local area is cropped from the input image (preprocessed image),

and it fed throught the subsequent layers, to finally produce the local features.

In view of this, the global features extracted by AlexNet and the local features

generated by ResNet were concatenated and fed into the fully-connected layer

for final ensembled classification model that forms MSDNet. The results of this

were evident, as the proposed MSDNet models outperformed both ResNet and

AlexNet, emphasizing the effectiveness of the global+local feature representations

towards anomaly classification.

The models performed best for the Elbow, Forearm, Humerus, Wrist and Chest

classes achieving >80% accuracy, while, they showed satisfactory results for the

Finger, Hand and Shoulder classes. The other two metrics, sensitivity and speci-

ficity, capture some additional aspects of the classification performance. Sensi-

tivity is a measure of the true positive rate or probability of detection, i.e., it
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Table 7.2: Classification Performance w.r.t different classes for the proposed MS-
DNet model

Classes Accuracy Sensitivity Specificity Kappa

Elbow 0.8317 0.8383 0.7004 0.736

Finger 0.7994 0.7897 0.7263 0.671

Forearm 0.8394 0.8533 0.6894 0.792

Hand 0.7832 0.8413 0.6732 0.754

Humerus 0.8586 0.7905 0.8086 0.676

Shoulder 0.7735 0.6877 0.7635 0.731

Wrist 0.8447 0.8874 0.7458 0.855

Chest 0.8827 0.8911 0.7231 0.758

Overall 0.8269 0.8179 0.7662 0.746

Table 7.3: Classification Accuracy of various models

Classes AlexNet ResNet18 MSDNet

Elbow 0.7867 0.8218 0.8317

Finger 0.7113 0.8059 0.7994

Forearm 0.7450 0.8112 0.8394

Hand 0.7082 0.7603 0.7832

Humerus 0.7985 0.8549 0.8586

Shoulder 0.6956 0.7937 0.7935

Wrist 0.8067 0.8469 0.8447

Chest 0.8221 0.8571 0.8827

Overall 0.7625 0.8218 0.8269

indicates the percentage of medical scans correctly identified as abnormal. Speci-

ficity or the true negative rate gives the percentage of normal medical scans that

were correctly classified as normal.

The observed sensitivity scores for the Elbow, Forearm, Hand, Wrist and Chest

classes were in the range of 83% to 89%, indicating that the abnormal samples

were correctly classified for these classes to a larger extent. However, the specificity

scores of classes like Forearm and Hand indicate that the percentage of normal
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scans correctly classified as normal was lower than that of the other classes. The

lowest sensitivity score was observed for the shoulder class, indicating that the

model could not very well distinguish between normal and abnormal images, thus

requiring more detailed scrutiny and analysis. On average, the proposed approach

achieved an accuracy rate of 82.69%, with sensitivity and specificity scores of

81.79% and 76.62%, respectively, which indicates good classification performance.

A graphical plot that illustrates the diagnostic ability of a classifier system in

terms of the Area under the ROC1 curve (AUC) is illustrated in Fig. 7.5. An

AUC value of 0.9038 is achieved, indicating good performance in distinguishing

anomalous and non-anomalous radiographical scans. As discussed earlier, the

average Kappa statistic value was 0.746, which indicates a substantial agreement

on the test samples with the expected values. However, radiograph readings and

their findings are often judged subjectively, hence we also used others metrics like

accuracy, specificity and sensitivity to gain more refined insights into the proposed

model’s performance.

Figure 7.5: AUROC performance of the proposed Ensemble Model.

The process of identification of abnormalities in the scanned image using the

proposed algorithm is one of the potential outcomes noted here. Hardware artifacts

used for setting bones like metal inserts and screws are automatically detected

and correctly classified as a type of abnormality. Similarly, even fractures and

1Receiver Operating Characteristic
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cracks were also captured accurately as abnormalities using the proposed abnormal

detection algorithm. It was found that the abnormal region detection algorithm

performed well during experimental validation, evident which is shown in Fig. 7.6.

A sample report that is retrieved from the model for a given test image is shown

in Fig. 7.7.

Figure 7.6: Illustration of the abnormal area detection process for sample images
from the Shoulder class.

Figure 7.7: Sample model generated report, with the ground-truth data.
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Table 7.4: Proposed model’s performance w.r.t Kappa Score against State-of-the-
art models

Classes
Rajpurkar
et al.
(2017a)

Saif et al.
(2019)*

Banga and
Waiganjo
(2019)

Solovyova
(2020)

Proposed

Elbow 0.710 0.733 0.617 0.715 0.736

Finger 0.389 0.735 0.653 0.395 0.671

Forearm 0.737 0.785 0.695 0.730 0.792

Hand 0.851 0.835 0.584 0.862 0.754

Humerus 0.600 0.754 0.599 0.602 0.676

Shoulder 0.729 0.855 0.659 0.735 0.731

Wrist 0.931 0.907 0.740 0.942 0.855

Chest — — — — 0.758

Note: Approach marked with * used 50% of the data.

Table 7.5: Benchmarking proposed model against state-of-the-art models using
standard metrics.

Models Accuracy Sensitivity Specificity Kappa

Proposed Model 0.82 0.81 0.76 0.74

DenseNet-169 (Chada, 2019) * 0.79 0.72 0.88 0.60

DenseNet-201 (Chada, 2019) * 0.82 0.81 0.84 0.64

InceptionResNetV2 (Chada,
2019) *

0.82 0.81 0.83 0.64

EnsembleD [Dense, MobileN]
(Banga and Waiganjo, 2019)

0.83 0.92 0.73 0.66

EnsembleE [Xcep, Dense]
(Banga and Waiganjo, 2019)

0.71 0.77 0.63 0.41

MobileNet (Single) (Banga
and Waiganjo, 2019)

0.67 0.73 0.61 0.34

EnsembleD [Xcep, MobileN]
(Banga and Waiganjo, 2019)

0.65 0.73 0.56 0.29

Note: Approach marked with * used Finger and Humerus class only. Average of two class results

is presented here.
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The proposed model was benchmarked against state-of-the-art models using

Kappa score, the results of which are tabulated in Table 7.4. It can be observed

from the table that the proposed MSDNet model showed substantial improvement

over other models. However, it underperformed slightly for the Hand and Wrist

classes when compared to the DenseNet-169 model (Rajpurkar et al., 2017a).

Since, Rajpurkar et al. (2017a) used only one evaluation metric, i.e., Kappa, it is

difficult to analyze the result because other standard evaluation metrics like Ac-

curacy, Sensitivity and Specificity were not observed for their work. However, the

deeper layers might have contributed more to those specific classes as is evidenced

in the better kappa scores. Several other state-of-the-art models were considered

for the benchmarking experiments, and were compared with the proposed model,

the results of which are presented in Table 7.5. The proposed model outperformed

all these state-of-the-art models, showing its dominance in the abnormality pre-

diction clinical task.

7.4 Deep Neural Models for Automated Multi-

task Diagnostic Scan Management

This section details an approach comprising a multiple clinical tasks like scan

quality enhancement, image orientation view identification and generation of di-

agnostic radiology reports for chest X-ray images. The overall framework of the

proposed approach is illustrated in Fig. 7.8. In the first phase, a X-ray image of

size M×N is fed into the adversarial network to produce a super-resolution im-

age of size P×Q for enabling high-quality diagnosis (if size of M = N=256, then

P = Q=1024, i.e., 4 times the original size after enhancement). In the next step,

this enhanced image is passed into the proposed neural network model (ViewNet)

to predict the orientation label of the image that was acquired during the scanning

process. Additionally, a natural language report generation model is incorporated

in this overall clinical diagnostic application, trained on existing text reports. The

methodologies proposed here for addressing each of these tasks are discussed in

the subsequent sections.

7.4.1 Scan Quality Enhancement

Image quality affects the ease of extracting information from an image. Good

image quality will ensure for the maximum amount of diagnostic details is gained

from the image or not. Medical images having image quality problems like con-
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Figure 7.8: Proposed Automated Multi-task Diagnostic Scan Management.

trast, blur, sharpness, and exposure levels make it difficult to properly examine the

body’s biological parts. Hence, improving the image’s quality with enhancement

helps physicians to study the body’s internal factors for proper diagnosis. During

enhancement of the images, the size and dimensionality of the data enhance, so

accurate and novel computer-aided methods need to be properly modeled since

there is a dependency between the medical data and the model design. Based

on these criteria, the aim is to improve the perceptual quality of the image for

improved diagnosis by incorporating ESRGAN technique (Wang et al., 2018b).

The architecture used for enhancement is the basic design of SRGAN (Fig.

7.9) with some modifications in its layers. It is observed that the BN layers

introduce artifacts when the model architecture tends to be deeper and violates a

stable performance during training (Wang et al., 2018b) reducing computational

complexity. Using residual-in-residual dense structure improves the performance,

supporting the network capacity for dense connections.

Figure 7.9: Architecture of proposed SRResNet.

To improve the visual quality of the chest X-ray images, the SRGAN architec-

ture was restructured. Firstly, all the batch normalization layers were removed,

as it has proven that this increases the performance and reduces the complexity

in different image resolution techniques like super-resolution and deblurring. The
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(a) RB with and without BN. (b) RRDB

Figure 7.10: RB and RRDB in SRGAN.

basic blocks were replaced with residual dense blocks that combine residual net-

work with dense connections, as shown in Fig 7.10. In addition to the generator,

the discriminator part was also enhanced by adapting the relativistic discrimina-

tor instead of the standard discriminator. The key difference between the two

is that the prior one estimates the real image’s probability “is the image com-

paratively more real than the fake”. The later, i.e., the standard discriminator

calculates the probability between the real and the fake images. In ESRGAN, the

features were driven before the activation layer compared to SRGAN, which was

positioned after the activation. This design’s change is mainly to overcome the

sparse representation of activated features and the unstable brightness when tried

to match with the ground-truth image. Therefore, the total loss for the generator

is computed as per Eq. (7.5), where L1 is the content loss that evaluates the

1-norm distance between the recovered image and the ground-truth image. λ and

η are the coefficients to balance different loss terms.

LG = Lpercep + λLRaG + ηL1 (7.5)

Sometimes, GAN architectural models produce undesirable noise, which de-

grades the quality of network performance. The proposed ESRGAN is built with

an easily adjustable and efficient approach called network interpolation, which is

defined as per Eq. (7.6), where, θINTERPG , θPSNRG and θGANG are the parameters

of GINTERP , GPSNR and GGAN , respectively, and α ∈ [0, 1] is the interpolation

parameter. An advantage of using this network interpolation is that the model

produces a meaningful result without any artifacts. Also, balanced perceptual

quality of the image can be maintained consistently. A learning rate 0.0002 with

a batch size of 16 was set for training the network.

θINTERPG = (1− α)θPSNRG + αθGANG (7.6)
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7.4.1.1 Image Quality Assessment

For this task, different evaluation metrics were explored to evaluate the quality of

the enhanced image produced. Most of the evaluation metrics used for measuring

super-resolution performance were based on PSNR and SSIM. Since they can

be used when the ground-truth and the super-resolution images have same pixel

resolution. But in this case, it is an enhancement of the original image, thus there

can be difference in the resolutions of the actual and computed image. From the

image quality metric analysis study, it is found that, when evaluating the quality

of the computed image, there are two types of quality metric evaluations, which

are listed below -

1. Full-reference Quality Metrics - PSNR, SSIM, MSSIM.

2. No-reference Quality Metrics - Blind/Referenceless Image Spatial Quality

Evaluator (BRISQUE), Natural Image Quality Evaluator (NIQE), Perception-

based Image Quality Evaluator (PIQE).

The BRISQUE and the PIQE algorithms calculate an image’s quality score

with good computational efficiency, after the model is trained. PIQE is less com-

putationally efficient, but it is a measure of local quality in addition to being

a global quality score. All no-reference quality metrics usually outperform full-

reference metrics in terms of agreement with a subjective human quality score.

In view of this, the metrics BRISQUE and PIQE were chosen for evaluating the

quality of the enhanced images.

7.4.2 Orientation Classification

The image orientation label is a crucial requirement for effective medical image

management. Currently, the orientation view is identified by a single character

during the analysis of the scanned part of the body, which is typically noted by

the radiologist during scanning. However, this is often overlooked due to the vast,

continuous workload that scanning equipment is subjected to in large hospitals

and by the busy schedules of scanning technicians and doctors. In the proposed

work, the body orientation label identification is attempted by training deep neural

models to predict the orientation label and automating the learnings from image

observations and findings. Two different neural models were considered during

the initial benchmarking phases and the ViewNet model is used for the body

orientation view classification task. The architecture of ViewNet (as depicted in



Chapter 7. Generating Medical Image Description 143

Fig. 7.11) is composed of a combination of the layers from AlexNet and ResNet-18

to classify the input scan images based on the scan orientations.

Figure 7.11: ViewNet Model for Body Orientation Classification.

The ViewNet model is a CNN based network which comprises 29 layers, with

an image input layer with a dimension of 227x227. The first convolution layer

consists of a window shape of 7×7, followed by a ReLU activation function, cross

channel normalization and a max-pooling layer. Further, the CNN is built up with

a grouped convolution layer, ReLU activation function, Cross Channel Normaliza-

tion and a Max Pooling layer. Next, convolution and ReLU activation function are

used five times and finally, a max-pooling layer is added before the first fully con-

nected layer. In between the fully connected layers, dropout, the ReLU activation

function, global average pooling are also added. The network architecture ends

with fully-connected, softmax and a classification output layer. All batch normal-

ization layers are removed because it has proven that it increases the performance

and reduces the complexity in different image resolution techniques (Nah et al.,

2017). As per the findings of Nah et al. (2017), the batch normalization enables

higher learning rates during initialization. As an example, they demonstrated this

phenomenon through a training network that stopped producing deterministic val-

ues. This effect is found to be advantageous to the generalization of the network

either with or without Batch Normalization.

7.4.3 Diagnostic Report Generation

During medical check-ups or surgery of any chest-related issues, doctors recom-

mend diagnostic scanning to diagnose the problem using modalities like chest

x-rays and CT scans. After inspecting the chest x-ray images, doctors generate

radiology reports containing summarized information essential for further diag-

nosis and follow-ups. Although deep learning techniques have been successfully

applied to image classification and image captioning tasks, radiology report gener-

ation remains challenging in understanding and linking complicated medical visual

contents with accurate natural language descriptions. Considering the demands of

accurately interpreting medical images in large amounts, a medical imaging report
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generation model can be helpful.

In this approach, the medical report generation is based on findings detected

using a deep learning model. Here, for a given chest X-ray image, its equivalent

report is generated. Data Augmentation technique has been used to generate an

extensive dataset to better enable deep learning models to learn data features

well. The Encoder-decoder model is ensembled with the Xception model as a pre-

trained model for extracting diagnostic image features, which are then utilized

for generating the diagnostic report. The performance of the model for this task

is evaluated using the BLEU (Bilingual Evaluation Understudy) metric. The

proposed model is shown in Fig. 7.12, where the first input is of image feature

and the second input is findings and the third one is for partial impressions that

extracts a length vector of 2048, 166 and 114 respectively from each input layer.

Figure 7.12: Architecture of the Automated Diagnostic Report Generation Model

Every image is converted into a fixed-sized vector which is then fed as input

to the neural network. For this purpose, transfer learning is utilized by using the

Xception model (Convolutional Neural Network) trained on the ImageNet dataset

to perform image classification on 1,000 different classes of images. However, the

purpose here is not to classify the image, but to get a fixed-length feature vector

for each image. Hence, the final softmax layer is removed from the model and a

2048 length vector is extracted for every image. A total of 22,410 images are thus
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available for training and testing the neural model.

Next, the text data from XML report files is subjected to text pre-processing.

The dataset report contains everyday radiographic observations, which are listed

as: Cardiomegaly, Pneumonia, Pulmonary edema, Lung opacity, Pleural effusion,

Pneumothorax. For text data, some basic cleaning processes like lower-casing all

the words, removing special tokens (like ‘%’, ‘$’, ‘#’, etc.) are applied. In addi-

tion to this, erroneous data (“XXXX”, “X-XXX”) from Impressions and Findings

features are also dealt with.

The proposed model consists of an encoder-decoder model, where image fea-

tures are given to the encoder as input and as partial input to the decoder part

that predicts the succeeding words in sequence. Two different approaches are ex-

perimented with – in the first one, only the image impressions are used, while in

the second, the findings are also used. The text data is prepared by converting

each sentence to integer sequences, for which a tokenization module is used. Inte-

ger sequences are padded to a fixed length so that all inputs will be of the same

size. A weight matrix of the embedding layer in which every word (or index) is

mapped (embedded) to a higher dimensional space (300-long vector) using a pre-

trained GLOVE word embedding model. The neural network was trained with

a batch size of 512 for 30 epochs using ReLu activation function and categorical

cross entropy loss with adam optimizer.

7.5 Experiments Results and Discussion

For the experimental validation of the proposed methodology, the open-source

dataset released by the Indiana University containing chest X-ray images for re-

search purpose was used. The data is provided in 2 folders: one containing image

files, a total of 7,470 chest x-ray images, both frontal and lateral. Another con-

taining a total of 3,955 report files in XML format. Each report is related to one

set of images (frontal and lateral), and contains fields like Indication, Findings

and Impression (Refer Table 7.1).

Evaluation of the X-ray image enhancement methods using the image quality

metrics like BRISQUE, PIQE and Perceptual Index are tabulated in Table 7.6 and

a visual result on a sample set of three images is shown in Fig. 7.13. Many models

use metrics like PSNR, SSIM when evaluating the quality of the super-resolution

images. But here, the aim is to enhance the given image to a high-resolution

space for better visualization, resolution change exists between the original and

the computed image. So PSNR, SSIM cannot be used as evaluation metrics; hence
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BRISQUE, PIQE and Perceptual Index metrics were used for quality evaluation.

The BRISQUE score is usually in the range [0−100] and lower values reflect better

perceptual quality of the generated image with respect to the input image. For

PIQE, values in the range of [0 − 20] are considered excellent performance and

[21 − 35] is considered to be good. Similarly, lower values of PI indicate better

perceptual quality in the generated image. From Table 7.6, it can be observed that

the proposed ESRGAN achieved good performance in terms of all three metrics

for both the frontal and lateral classes. To the best of our knowledge, no other

works have attempted quality enhancement task on the Indiana dataset, hence

benchmarking against state-of-the-art works could not be performed.

Figure 7.13: ESRGAN performance evaluation. (RoIs indicated using a box and
the enhanced region generated by ESRGAN is shown in the first row)

Table 7.6: Performance of ESRGAN for the Frontal and Lateral classes

Class BRISQUE PIQE Perceptual Index

Frontal 29.16 27.09 4.72

Lateral 36.90 32.37 5.98

For the body orientation view classification, the proposed ViewNet model’s

performance was measured using standard metrics like accuracy, sensitivity, speci-

ficity and F1-score. The classification results of different orientations/views (front

view, lateral view) is depicted in Table 7.7. It is observed that the proposed
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method shows best accuracy when compared to the state-of-the-art (Xue et al.,

2015). However, they have used only accuracy for their model, but we have also

reported precision, recall and F1-score.

Table 7.7: Orientation classification performance with different CNN Models

NN Model Accuracy Precision Recall F1-Score

ViewNet without BN (proposed) 0.9866 0.9819 0.9922 0.9870

ViewNet with BN 0.9506 0.9631 0.9515 0.9665

AlexNet (Krizhevsky et al., 2012) 0.9763 0.9779 0.9848 0.9863

ResNet18 (He et al., 2016) 0.9643 0.9764 0.9686 0.9835

Image profile based (Xue et al.,
2015)

0.9840 - - -

For assessing the quality of the domain-specific text generated automatically

by the proposed models, the BLEU score (BiLingual Evaluation Understudy) pro-

posed by (Papineni et al., 2002). It evaluates the similarity between a candidate

document and a collection of reference documents. In short, BLEU is a metric

used to evaluate a generated sentence in comparison to a reference sentence. As

per an ordering from 1 to n, cumulative scores of individual n-grams can be calcu-

lated. N-gram is an evaluation of matching terms i.e., single word (1-gram), two

word (2-gram or bigram) and so on. Weighing them together gives the geometric

mean. In other words, for each i -gram where i = 1, 2, 3 . . . N , the percentage of i -

gram tuples in the candidate document that also occur in the reference document

represented as BLEU-i is given by Eq. (7.7), where, C(i) is the number of i -gram

tuples in the candidate document. In this work, suppose C=“the lungs are clear”

then C(1 )=4, C(2 )=3. . . C(4 )=1. Here, (ti) is an i -gram tuple in candidate C;

Hc(ti) is the number of times (ti) occurs in the candidate; Hcj(ti) is the number

of times (ti) occurs in reference j of this candidate.

BLEU − (i) =
Matched(i)

C(i)
(7.7)

Matched(i) =
∑
i=1

min {Hc(ti),max
j
Hcj(ti)} (7.8)

The proposed model is a pipeline of models combining all three tasks: the



148 Chapter 7. Generating Medical Image Description

image enhancement evaluation shows that the BRISQUE and PIQE give the best

performance with good scores subjective to human visual perceptions. During

analysis, it is noticed that the image quality is enhanced by more than 4 times the

original size (from Fig. 7.8, if M = N=256, then P = Q=1024), thus maintaining

an excellent spatial resolution subjective to the human visual system. In view

of the orientation classification model, the proposed MSDNet CNN architecture

outperformed the state-of-the-art methods based on feature-based techniques (Xue

et al., 2015) and other CNN models. A combination of AlexNet and Resnet-18

layers have contributed more to achieve this higher accuracy score. Also, the

removal of batch normalization layers helped train the model in lesser time, thus

reducing the computational time requirement of the proposed approach.

The proposed model performed well for the report generation task also, and

achieved good BLEU scores, which emphasizes that the text report generated is

most accurate. Observing the performance of the proposed model in terms of

BLEU values obtained for 1-gram to 4-gram approaches, the score obtained is

almost at the same level in the case of all 4-grams, indicating that the evaluation

of matching grams between the candidate and reference is nearly a perfect match.

Most available models underperform when 3-gram and 4-gram matches are used

to compute BLEU scores. However, the proposed model showed very good perfor-

mance, while matching the candidate sentences with reference text, even in case

of 3-grams and 4-grams matching (an example of which is shown Fig. 7.14), in-

dicating a near-perfect match. Further, these experiments also revealed the effect

of the Batch Normalization (BN) layers while training the network.

Figure 7.14: Example of BLEU match with n-gram approach.
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7.5.1 Ablation Study

To understand the effects of certain components employed in the proposed multi-

task deep neural model pipeline, we performed additional experiments in the form

of an ablation study. Each component was considered during experimentation to

observe its particular effects on the model’s performance. A visual interpretation

of our observations are demonstrated in Fig. 7.15. Each column represents the

model with a change in its configuration. A column with green indicates that an

improvement is observed to its previous model. There are two key components

here, which we used while evaluating model performance – the first part is remov-

ing the batch normalization layer; another is using the features before activation.

Removing the BN layers improved the model’s performance significantly, with the

added advantages of lower computational resource consumption and reduction in

memory usage. Another observation noted is that, in the resulting image, features

when used after the activation lead to an indistinct image, but using features be-

fore activation brings out a clear, sharp-edged and brightened image (See columns

no. 2 and 4).

Further, it was observed that, without the use of BN layer, the ESRGAN

model’s performance increased, which also conforms to the observations reported

by (Nah et al., 2017) in their work. During training, the batch normalization

process normalizes features based on the mean and variance in each batch. Due

to this, the features do not have significant contribution when BN layer is em-

ployed, thus the best performance is observed when the BN layer is removed.

Thus, to further study the completeness of the overall system architecture, i.e.,

the proposed MSDNet model for the body orientation classification task and in

the report generation model, we further experimented with and without the use

of the BN layer, to test the model’s performance. As can be seen from the results

of these experiments reported in Table 7.7 and 7.8, there is a clear improvement

in the model’s performance.
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Figure 7.15: Visual Comparison representing the outcome of each component in
ESRGAN. (Each column represents a model’s output with its configurations men-
tioned at the top (first and second row). The green sign indicates an improvement
compared to its previous model.)

Table 7.8: Comparison of Report generation performance with and without BN
layer.

Method BLEU1 BLEU2 BLEU3 BLEU4

Proposed + BN Layer 0.9502 0.9460 0.9414 0.9265

Proposed (without BN layer) 0.9735 0.9679 0.9650 0.9500

CNN-RNN (Vinyals et al., 2015) 0.333 0.205 0.136 0.094

CoAtt (Jing et al., 2017) 0.455 0.288 0.205 0.154

HLSTM+att+Dual (Harzig et al.,
2019)

0.469 0.335 0.249 0.183

KERP (Li et al., 2019) 0.482 0.325 0.226 0.162
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7.6 Learning COVID-19 Disease Representations

from Multimodal Data

This task aims to alleviate the cognitive burden of radiologists and clinicians for

segregating actual COVID-19 cases from other types of Shortness of Breath (SoB)

cases. Multiple deep neural models are experimented with for chest X-ray classi-

fication and automatic diagnosis report generation tasks. The classification task

aims to distinguish between actual COVID-19 and other types of SoB cases. It

also uses X-ray images and diagnostic reports (English natural language texts) to

model the data. For classifying the X-ray reports, various machine learning algo-

rithms were adopted for observing the performance. Finally, the task of automatic

generation of reports for the input X-ray images is addressed.

7.6.1 Chest X-ray based Screening of COVID-19

This phase aims to analyze available chest X-ray images for automated identifica-

tion of those with COVID-19 infections indications and those belonging to other

types of lung-related diseases that may cause shortness of breath, like pneumonia,

lung inflammation, and enlarged lymph nodes. Four different deep neural models

(AlexNet, DenseNet-201, Inception v3 and Resnet-18) are experimented for classi-

fying the chest X-ray images into COVID-19 and Shortness of Breath (SoB) cases.

Certain changes are made in the base neural models to adapt to the given task. For

AlexNet, the final three layers are replaced with a fully connected layer, a softmax

layer, and a classification output layer, whereas, in ResNet-18, DenseNet-201 and

Inception v3, the last learning layer and the final classification layer are replaced

with global average pooling, fully connected, softmax and classification output

layers for accurate classification of COVID-19 instances. The learning rate factor

was also heuristically set to enable CNN to learn the disease-specific features more

effectively during the transfer learning phase. The network hyper-parameters are

chosen based on experiments and are shown in Table 7.9.

7.6.2 Automatic Diagnostic Report Generation

For this task, the modeled features extracted from x-ray images and expert-written

diagnosis reports were used for automatically generating the reports of identified

COVID-19 patients. The features are extracted using the models that are previ-

ously trained for classification task (AlexNet, Inception v3 and ResNet-18).
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Table 7.9: Classification model parameters.

NN Model Learning Rate Weight/ Bias Batch Size Epochs

AlexNet 0.0001 20 8 10

DenseNet-201 0.0001 10 8 10

Inception v3 0.001 8 10 10

ResNet-18 0.001 10 8 8

The features are extracted from the last average pooling layer (before the first

Dense layer) for all the networks other than DenseNet. DenseNet does not sum

up the output feature maps of the layer with the incoming features; instead, these

are concatenated. Thus, its equation is xl = Hl([x0, x1, . . . , xl−1]), where, l is the

index of each layer, H is the non-linear operation, x0, x1,. . . ,xl−1 are the feature

values from each layer and xl is the output of the lth layer. The dimensions of

the feature maps remain constant within a DenseBlock, but the number of filters

varies between them. As all the feature maps are concatenated, combining them

with different sizes would thus be impractical. Hence, a transition layer is present

between two DenseBlock, which carries out down-sampling by applying a batch

normalization, a 1x1 convolution and a 2x2 pooling layer. The growth rate k

which normalizes how much information is added to the network at each layer as

per kl = k0 + k × (l − 1). Every layer adds its information, making it a collective

knowledge. Deeper layers produce the higher-level features, constructed using the

lower-level features of earlier layers. To get the feature representations of the

training and test images, activation on the global average pooling is applied, ’avg

pool’ is used at the last layer of the network, giving 1024 features in total.

During the feature extraction process, each image in the training and test sets

is used for creating a feature vector. When a test image feature set is given as

a query, the pairwise distance measure is used to compute distances that can be

used to obtain matching feature sets with the smallest distance from the images in

the training set. Initially, eight different distance measures, Cosine, Correlation,

Cityblock, Euclidean, Spearman, Minkowski, Standard Euclidean, and Chebychev,

are used to check the closest distance measure among the test and training feature

sets. For each observation in Y (Test image features), the pairwise distance method

finds the smallest distances by computing and comparing the distance values to

all the observations in X (Training image features). Based on experimentation

performance, Cosine and Standard Euclidean similarity measures performed best.
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7.7 Experimental Results & Discussion

The dataset consists of 200 cases collected from publicly available dataset cre-

ated by Cohen et al. (2020). For curating the dataset, a total of 100 confirmed

COVID-19 patient cases were collected from publicly available open access sources.

Each patient report also consisted of additional background details like age, gen-

der, clinical history and image findings. For cases where patients suffered from

shortness of breath (SoB), a set of scan images along with their expert-generated

diagnosis descriptions available from the IU dataset provided by Indiana Univer-

sity (Demner-Fushman et al., 2016) were considered. Here too, a total of 100

cases are used to put together a balanced dataset containing an equal number

of COVID-19 and SoB cases. Combining these two datasets, a total of 200 scan

images along with their descriptions is considered for this research work.

The dataset is split as per the 70:30 ratio, i.e., 70% of the input records are

used for training, and the remaining 30% of the records are utilized as a testset.

For assessing the performance of the proposed models, standard metrics like accu-

racy, sensitivity, specificity and F1-score are utilized. These metrics are calculated

based on the number of true positives (TP), false positives (FP), true negatives

(TN) and false negatives (FN) cases predicted by a particular neural model. Here,

TP is the number of cases that are correctly identified by the prediction model

to be COVID-19 positives, which matches with experts’ opinion, while FN are in-

correctly rejected cases. TN is the number of correctly identified non-COVID-19

cases, and FP is the number of incorrectly identified COVID-19 cases. Sensi-

tivity or Recall (also called True Positive Rate) is a measure of the percentage

of correctly identified COVID-19 cases. Higher the value, better is the system’s

prediction performance. Specificity provides the percentage of correctly identified

non COVID-19 cases, and higher values indicate a good prediction performance.

F1-score is the harmonic mean of precision and recall, and high values indicate

a balanced performance by the model. Finally, accuracy is the ratio of correctly

predicted COVID-19 cases to the total number of cases.

7.7.1 Chest X-ray Classification for COVID-19 Diagnosis.

The results of the experiments and the performance achieved by the various models

when applied to the test X-ray images are shown in Table 7.10. DenseNet-201

achieved the best overall accuracy on correctly classifying both COVID-19 and

SoB cases. In the case of COVID-19, Inception v3 performed well by properly

predicting all the test cases as COVID-19. Thus, the sensitivity is 100%. Also, it is
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noted that the features extracted using AlexNet and ResNet-18 models contributed

greatly towards the report generation task.

Table 7.10: Performance evaluation of the chest X-ray image classification task

NN Model Accuracy Sensitivity Specificity F1-Score

AlexNet 0.8095 0.9333 0.7368 0.8235

ResNet-18 0.8730 0.9091 0.8333 0.8621

DenseNet-201 0.9048 0.9000 0.8788 0.8850

Inception v3 0.8889 1.0 0.7667 0.8679

7.7.2 Automated chest X-ray text report generation task.

For assessing the quality of the domain-specific text generated, we used the BLEU

score (BiLingual Evaluation Understudy) proposed by Papineni et al. (2002). It

evaluates the similarity between a candidate document and a collection of reference

documents. As per an ordering from 1 to n, cumulative scores of individual n-

grams can be calculated. N-gram is an evaluation of matching terms i.e., single

word (1-gram), two word (2-gram or bigram) and so on. Weighing them together

gives the geometric mean. In other words, for each i -gram where i = 1, 2, 3 . . . N ,

the percentage of i -gram tuples in the candidate document that also occur in the

reference document represented as BLEU-i is given by Eq. (7.7), section 7.5. For

calculating the BLEU score, each report in the training dataset is considered as

a potential candidate, and the report generated by each ML/DL model for each

test image is taken as a reference. The number of distinct sentences generated for

the whole set (training and testing cases) is calculated separately. References are

then evaluated with each of the different candidate sets. Finally, the model with

the highest BLEU-4 score is depicted in Table 7.11.

Table 7.11: Performance evaluation of chest X-ray report generation

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 Mean

AlexNet 0.9148 0.9008 0.6848 0.6312 0.5484

ResNet-18 0.9125 0.8872 0.6251 0.6211 0.5171

DenseNet-201 0.8879 0.7790 0.6184 0.5867 0.5006

Inception v3 0.8984 0.7008 0.6304 0.5637 0.4896



Chapter 7. Generating Medical Image Description 155

After several experiments, the best values for the hyper-parameters of the

proposed models are heuristically determined. As can be seen from the tabulated

values (Refer Table 7.10), the best overall accuracy is achieved with DenseNet-

201 with its 90.48% success rate in correctly classifying both COVID-19 and SoB

images. This may be due to the feature values concatenated from each layer up

to the final layer, in contrast to the other DL models, which sum up the feature

values. This concatenation enables DenseNet to model the disease-specific feature

maps for the most accurate classification with reference to both classes. In the case

of COVID-19, the Inception v3 model attained the highest peak sensitivity value in

finely predicting the COVID-19 cases. Due to a rapid increase in the number of the

infected patient and suspected cases, scalability of any new diagnosis procedures is

of significant interest to medical professionals. To address this challenge, content

based techniques were explored to automatically generate diagnosis reports for

an input chest X-ray image, and the proposed models achieved good results (as

discussed in Section 7.7). From Table 7.11, it is evident that AlexNet features

contributed more in matching the retrieved text with that of the reference text

reports in the proposed content based report generation task.

7.8 Summary

In this chapter, an ensemble deep neural model called MSDNet, that combines

global and local features for the clinical task of radiological abnormality detection

and classification is detailed. The model is built on an abnormal region detection

algorithm which is used for identifying the anomalous regions in the image. The

proposed model achieved an accuracy of 82.69%, along with promising sensitivity,

specificity and Kappa statistic value of 0.746, indicating good performance. The

overall computation time was also reduced during training, as the proposed model

uses a comparatively shallow architecture compared to the other state-of-the-art

models. These models used a much deeper architecture; however, the proposed

model outperformed them being less computationally expensive due to shorter

training time. An automated diagnostic text report generation algorithm was

also designed, which further extended the proposed model pipeline for the identi-

fied abnormal images, to alleviate radiologists’ cognitive burden and improve the

overall efficiency of the diagnosis.

In the next work, multiple tasks like image enhancement, orientation classifi-

cation, and report generation were attempted for enabling a practical framework

for chest X-ray image management. An efficient image enhancement technique
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called ESRGAN was presented for enhancing medical X-ray image quality and

RoI visualization. The quality enhancement helps to increase the image resolu-

tion by a factor of 4, and this dramatically improves the diagnosis effectiveness

due to enhanced visualization of scanned body part’s overall structure. To the

best of our knowledge, we are the first to attempt image enhancement using ESR-

GAN techniques for the Indiana dataset. Next, the proposed MSDNet model for

automatically detecting the scan view and predicting the orientation label of the

image is discussed. The input images are classified as per their orientation and

this orientation label gives more information about the image in which orientation

the image was captured. The enhanced image is then utilized to automate the

generation of findings/observation report, thus alleviating the cognitive load of

radiologists. The proposed model was based on the Xception model.

The proposed models were experimentally validated with standard metrics

suitable for the individual sub-task. The quality enhancement model gained a

better quality score in terms of visual perceptions; while a lower score indicates

a better perception of the human visual system. View orientation classification

showed promising results with over 98.40% accuracy, outperforming state-of-the-

art methods. Further, the text report generation model attained a 0.9735 BLEU

score, which signifies that the exceptional performance in generating accurate

diagnosis reports automatically. In another work, the automated report generation

task was an attempt at reducing the cognitive burden of medical professionals,

given the rapid increase in COVID-19 cases. For this task, the features extracted

by DL models were employed to generate diagnosis reports for test X-ray images.
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Chapter 8

Conclusion & Future Work

Medical imaging technologies are an integral part of the healthcare ecosystem,

facilitating non-invasive diagnostic capabilities over a wide variety of modalities.

Several challenges are prevalent despite major advancements in diagnostic imaging

systems, specifically in the areas of automated quality management, preprocessing,

modeling, representation, categorization, retrieval and others. Other contributing

factors include the sheer volume and the streaming nature of medical scan image

generation, which make diagnostic image management a very challenging task.

With the availability of high computational power and advanced AI algorithms,

the advent of computer-aided medical diagnostics and decision support systems

in clinical environments is inevitable. The efficiency of the healthcare processes

(e.g., diagnosis, prognosis, and screening) can be enhanced by using computa-

tional intelligence and predictive analytics applications, that leverage large-scale

diagnostic data for generating actionable insights. The work presented in this the-

sis focused on addressing several highlighted challenges, for improving diagnostic

accuracy through effective management of diagnostic image data with intelligent

AI models, for enabling various clinical tasks.

The initial work focuses on identifying the medical image scan quality issues

and improving the quality of the image. The first task involved five image super-

resolution algorithms - Unsharp mask using Gaussian filter, CLAHE, Bicubic In-

terpolation, VDSR and SRCNN were implemented for image quality enhancement

and evaluated for better visualization of X-ray images. Experiments were per-

formed to comparatively evaluate these 5 approaches. Based on the visualized en-

hanced images, it was observed that the processed image captured hidden features

well through edge and contrast enhancement, in turn amplifying the visibility of

regions of interest. A patch size of 16 pixels (4×4) in Bicubic interpolation resulted

in a smoother image, while VDSR showed better performance while transforming

159
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a LR image to HR. SRCNN outperformed all other methods due to its lightweight

architecture and superior learning behavior. In another work, five CNN based

models were experimented with for efficient medical image enhancement. An

ensemble model, ResNetSRCNN, was designed which showed good performance

with reference to standard visual quality metrics and outperformed state-of-the-

art models by a large margin. Additionally, an efficient image enhancement model

called ESRGAN was developed, for enhancing medical X-ray image quality and

RoI visualization. The model was able to achieve a better quality score in terms

of visual perception, as a lower score indicates a better perception of the human

visual system.

The second phase of the work addressed effective feature representation and

modeling of medical images. A hybrid feature modeling approach developed for

content-based medical image retrieval showed a promising result. Most CBMIR

models are restricted to a particular class or modality, however, the experiments

were conducted on the large-scale ImageCLEF 2009 dataset consisting of X-ray

images spanning 116 classes. The experimental results showed that the proposed

approach was very suitable for real-world medical image retrieval applications

used for disease diagnosis and decision support, due to its excellent top-3 and top-

5 retrieval performance. In the next approach, a PSO enhanced CBMIR approach

built on the Bag of Visual Words Model was presented. The SURF algorithm was

used for generation of features from the medical images, which were represented

as BOF to classify and retrieve the medical X-ray images. PSO was incorporated

to optimize retrieval performance for a given query image. PSO was used to

gain insights into the optimal clustering value. Further, a filtering approach was

designed to obtain best matches. Results showed that the filter approach achieved

100% precision when used for top-10 retrieval for given test images. Additionally,

a CNN based model was designed for classification of medical images, the results

of which are used for supporting similar image retrieval. By using CNN’s feature

extraction and with similarity distance calculation between the feature vectors, it

was observed that the model achieved good retrieval results. Another significant

observation was that, the model was able to retrieve similar images even for classes

were X-ray images had different body orientations, underscoring its ability to learn

features well despite data variance.

Four types of transfer learning-based neural network models have been exper-

imented with, for body orientations consisting of different orientation view classi-

fication tasks on the standard open dataset, ImageCLEF 2009. A novel architec-

ture, ViewNet was also proposed for the task of view classification and achieved
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promising results when measured in terms of accuracy, sensitivity, specificity and

F1-score. Further, an ensemble deep neural model called as MSDNet, that com-

bines global and local features for the clinical task of radiological abnormality

detection and classification was progressed. The model is built on an abnormal

region detection algorithm which is used for identifying the anomalous regions in

the image. The overall computation time was also reduced during training, as the

proposed model has a comparatively shallow architecture compared to the other

state-of-the-art models. An automatic text report generation model was devel-

oped which signifies its exceptional performance in generating accurate diagnosis

reports. The text report generation model attained a 0.9735 BLEU score, which

signifies its exceptional performance in generating accurate diagnosis report.

Another work, dealing with the problem of diagnosing COVID-19 using multi-

modal patient data was also presented. The experiments was performed on a

collated dataset consisting of 210 images and the associated expert-written diag-

nosis reports of 100 unique patient cases for COVID-19 and SoB. Chest X-ray

image classification using neural network models was experimented with, and it

was observed that DenseNet-201 achieved the best overall accuracy on correctly

classifying both COVID-19 and SoB cases. In the case of COVID-19, Inception

v3 performed well by correctly predicting all relevant test cases as COVID-19,

achieving a sensitivity of 100%. Also, it is noted that the features extracted using

AlexNet and ResNet-18 models contributed greatly towards the report generation

task. The automated report generation task was an attempt at reducing the cogni-

tive burden of medical professionals, given the rapid increase in COVID-19 cases.

For this task, the features extracted by DL models were employed to generate

diagnosis reports for test X-ray images.

8.1 Future Work

In medical image analysis, useful information is not just contained within the

images itself, it may be required to observe other contents too. To get a clear

decision on the patient’s health, physicians often hold a wealth of data on patient

history, age, and other health issues1. Physicians often also need to use anatomi-

cal information to come to an accurate diagnosis. Some researchers have already

explored combining this information into deep learning networks in a straightfor-

ward manner (Su and Liu, 2018; Harzig et al., 2019; Estiri et al., 2021). However,

1https://www.nia.nih.gov/health/obtaining-older-patients-medical-history



it is observed that the improvements that were obtained were not as significant

as expected. One of the challenges is balancing the number of imaging features

in the deep learning network with the number of clinical features to prevent the

clinical features from obscuring. However, many deep learning systems in medical

imaging are still based on classification, where the anatomical location is often

unknown to the network.

The works that are developed can be extended for other diagnostic imaging

modalities like MRI and CT, and super-resolution models can be adapted for

enhancing the quality of such multi-dimensional data also. Identifying effective

shape-based algorithms and incorporating it with a deep neural network to solve

body orientation changes will also be explored as an extension of the current

work. Further, segmenting the image or considering only the region of interest

and feeding that to a neural network can also further enhance the accuracy, which

we intend to experiment and benchmark. It is also crucial to design real-time

applications based on the novel architectures designed as part of this work to

extend support to the medical personnel, which still balances the need for achieving

good computation time and good performance.
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