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ABSTRACT 

The strength properties of rocks are frequently required during the introductory phase 

of rock engineering projects, including rock excavation, tunneling, designing of 

supports at underground mines, blast hole designs, etc. For the determination of rock 

strength properties like uniaxial compressive strength, tensile strength etc., at the 

laboratory, several rock core samples with high-grade quality is the prerequisites. 

Coring is an expensive process, and it is not always possible, particularly for weak 

and highly fractured, thinly bedded, foliated, and block-in-matrix rock mass. In 

addition, converting the core samples into test specimens as per the established 

standard is a tedious and time-consuming process. With all these constraints and 

problems, many times, the determination of strength or other rock properties may not 

be feasible in the direct method. Therefore, the subject of the indirect method used for 

approximation of rock properties has a wide scope. 

 

The main aim of this research study is to estimate the physico-mechanical properties 

of rock using the selected mechanical parameters obtained during the rotary-type rock 

drilling. In several rock engineering projects, either in construction or mining 

environments, rotary drilling operation is often widely used. If an estimation of some 

vital rock properties is possible during the rock drilling process, it may be a great 

advantage for engineers and geologists. 

 

In this experimental investigation, during the drilling of several rock blocks with 

different physico-mechanical properties, the mechanical drilling responses, such as 

thrust and torque at the bit-rock interface, are collected considering various drill 

operating parameters using a drill tool dynamometer. Similarly, at the same time, an 

acoustic parameter such as vibration data is also collected at the drill head using a 

sound/vibration data acquisition system (DAQ) with an accelerometer sensor. The 

response of these mechanical parameters collected during the drilling of various rocks 

was then analyzed and correlated with physico-mechanical rock properties. 

 



ii 
 

Prediction models (Type-I) for physico-mechanical rock properties such as UCS, 

BTS, SRN and density were developed using thrust, torque, including vibration data, 

using single order multiple regression methods. Similarly, prediction models (Type-

II) were also developed using thrust and torque and excluding the vibration data, 

using second-order multiple regression methods. The prediction performance and 

validation of Type-I and Type-II are checked. The results showed that the Type-II 

model would predict the rock properties, i.e., UCS, BTS, SRN and density with less 

NRMSE than the Type-II model by 2.58%, 0.56%, 4.3%, and 3.17%, respectively. 

Similarly, compared to the Type-I models, the Type-II model would decrease the 

MAPE by 1.33%, 1.4%, 2.72%, and 0.24%, respectively.  

 

However, both types, i.e., Type-I and Type-II, could estimate the rock properties 

within 15% or acceptable errors. Due to the high sensitivity of vibration data to the 

spindle speed rather than by the UCS or other properties of rocks, and its high cost, it 

could conclude that the Type-II model might be useful, especially for estimating UCS 

and BTS at laboratory capacity without core samples. 

 

Besides, ANN models are developed for the prediction of rock properties. It was 

observed from the ANN models' prediction performance that the ANN models could 

estimate the physico-mechanical rock properties comparatively better than the Type-II 

model. In this case, NRSME of UCS BTS, SRN, and density were reduced by 1.97%, 

7.38%, 1.74%, and 3.49 %, respectively. The results concluded the superiority of soft-

computing models over the statistical models. 

 

In this study, strength the relationship between considered rock properties and drilling 

specific energy is also investigated. Initially, the average drilling specific energy is 

calculated for each rock type using Teale's equation. The average specific energy was 

24.20 MJ/m
3
, 28.78 MJ/m

3
, 35.68 MJ/m

3
, 36.09 MJ/m

3
, 38.40 MJ/m

3
, and 42.12 

MJ/m
3
 for shale (UCS=19.6MPa), sandstone-1 (UCS =37.5MPa), sandstone-2 

(UCS=65.1MPa), sandstone-3 (UCS=72.4 MPa), limestone-1 (UCS=95.3 MPa), and 

limestone-2 (UCS=119.2MPa), respectively. The drilling specific energy of each rock 

type was then correlated with their physico-mechanical rock properties. The results 
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showed that the strength of the relationship of UCS, BTS, SRN and density with 

drilling specific energy is good with R = 0.948, 0.892, 0.859, and 0.908, respectively. 

 

Key words: Drill thrust, torque, vibration frequency, drill tool dynamometer, 

accelerometer, multiple regression models. 
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NOMENCLATURE 

ADC      Analog to digital converter 

AI     Artificial Intelligence 

ANN      Artificial Neural Network 

ANOVA     Analysis of Variance 

ASTM     American Society for Testing and Materials 

BL     Bit load 

BPI      Block Punch Index 

BR     Bit rotation 

BTS      Brazilian tensile strength 

CAI     Cerchar abrasive index 

CC      Cubic centimetre 

CNC      Computerised numerical control 

DAQ      Data Acquisition System 

DD     Drill diameter 

DPM     Drilling process monitoring apparatus 

DSE      Drilling Specific Energy 

DV      Dependent Variable 

FFT     Fast Fourier Transformation 

gm     Gram 

GPa     Giga Pascal 

ISRM      International Society for Rock Mechanics 

KS      Kilo samples 
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LS-1     Limestone-1 

m     Meter 

MAPE     Mean Absolute Percentage Error 

MHz     Mega Hertz 

MLP     Multi Layer Perceptron 

MLPNN     Multilayer Perceptron Neural Network 

MLR      Multiple linear regression 

mm     Millimetre 

MPa     Mega Pascal 

MSE      Mean square error 

MWD      Measurement while drilling 

N     Newton 

NC     Numerical control 

NPT     Nail penetration test 

NRMSE     Normalized Root Mean Square Error 

PLSI      Point load strength index 

PR     Penetration rate 

R.P.M     Revolutions per minute 

RMSE     Root mean square error 

ROP      Rate of penetration 

SH      Schmidt hammers 

SRN      Schmidt Rebound Number 

SS-1     Sandstone-1 

SS     Spindle speed 
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T     Thrust 

TQ     Torque 

Trainlm     Levenberg–Marquardt 

Trainrp     Resilient back propagation 

Trainscg     Scaled conjugate gradient back propagation 

UCS     Uniaxial compressive strength 

USBM     United States Bureau of Mines 

VAF      Value account for 

VMC      Vertical milling center 

Z     Vibration frequency 
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CHAPTER 1 

1. INTRODUCTION 

 

This chapter deals with a brief introduction about the essentials of rock properties for 

engineering projects, the significance of "Measurement while drilling" techniques in 

estimation of rock properties, the relationship of drilling specific energy with rock 

properties, problems associated with direct measurement of rock properties along with 

research objectives. 

 

1.1 Background of the Study 

 

Rocks are geological materials and an integral part of our nature. They have been an 

important construction material since the rise of civilization. Rock masses support 

large structures such as foundations for buildings and dams, tunnels, shafts, 

underground installations, etc. In many rock engineering projects, it is observed that 

the rocks are subjected to either compression or tensile loading or both. Therefore the 

strength properties of rocks, such as uniaxial compressive strength (UCS) and tensile 

strength (TS), are the most important data often used for such projects (Kumar et al., 

2012). Also, UCS is an important strength property to be considered in a popular rock 

mass classification system (Bieniawski.1976).  

However, the rock materials vary from most other engineering materials as it 

comprises discontinuities such as joints, bedding planes, folds, sheared zones, faults, 

etc. Hence, the investigation of the physico-mechanical properties of rocks may be 

useful for rock engineering applications. 

 

1.2 Measurement of Rock Properties 
 

For the determination of rock properties, various methods are available. It could be 

categorized broadly into two types, namely, direct and indirect methods. The direct 
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methods include laboratory and in situ tests. A particular test in the laboratory 

requires a specific testing machine and test samples. American Society for Testing 

and Materials (ASTM) and International Society for Rock Mechanics (ISRM) furnish 

the procedures for conducting the actual laboratory and in situ tests.  

In the direct method, to obtain better and reliable results, meticulous preparation of 

rock samples is needed. For example, a standard UCS test required quality specimens 

of minimum size, i.e., diameter = 54.7 mm, with a diameter to length ratios of 1:2.5 

and 1:2 with both ends ground and polished up to some standard limits as per the 

specifications of ISRM (2007) and ASTM D4543 (2008), respectively. During the 

diamond core drilling operation, particularly for weak and highly fractured, thinly 

bedded, foliated, and block-in-matrix rock mass, it may not be possible to obtain a 

proper and quality core sample required for such laboratory testing (Gokceoglu et al. 

2002; Gokceoglu and Zorlu. 2004; Minaeian and Ahangari.2013). Preparation of 

samples as per standards instituted by ISRM and ASTM may be tedious, time-

consuming, and expensive. Due to the limitations in the direct method, geologists, 

geophysicists, and engineers are interested in using indirect methods, including 

empirical or theoretical correlations (Zhang 2005).  

The main attraction towards the indirect methods may be that the rock properties can 

determine quickly without using the core samples. Also, many properties could 

approximate from the single main property. 

 

1.3 Measurement While Drilling (MWD) Technique for rock characterization 
 

 

Measurement while drilling (MWD) is the process in which specific parameters are 

measured near the bit and transferred to the surface without disturbing normal drilling 

operations. The type of information may be (a) Data related to the drilling direction 

(tool angle, azimuth, tool face). (b) Drilling parameters (weight on bit, torque, rpm, 

and rate of penetration). (c) Formation characteristics ( γ -ray, resistivity logs).  

The analysis of such data has great importance in providing the information useful for 

engineering calculations and decision-making needed for civil, mining or petroleum 

engineering projects. The drilling machine is used in almost all mining engineering 

operations such as mine site investigations, exploration drilling, foundation and rock 
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bolt and blast hole drilling, etc. Also, the idea of using drilling parameters to 

characterize the rock either at the working face while drilling the blast hole or when 

drilling into the roof and walls for support installation has been around for a long time 

(Rostami. et al. 2015). Therefore, the MWD technique may be a potential indirect 

method to characterize the rocks either at the site or using the experimental drilling 

setup in laboratory. The recent developments in sensor technology could increase the 

reliability and accuracy of the drill monitoring system, as shown in Fig.1.1.The 

recorded drilling data, such as thrust, torque, penetration rate etc., enables the drilling 

technician to approximate the UCS and other properties of rocks in and around the 

proposed project site (He et al., 2020). 

 

 
 

Fig.1.1 An overview of the drilling process monitoring apparatus (DPM) 

 

1.4 Concept of Specific Energy in Drilling 

 

In rock drilling, specific energy (SE) is the minimum energy needed to excavate the 

unit volume of rock. The amount of energy needed depends greatly on the nature of 

the rock and its characteristics (Davarpanah et al., 2016). Teale studied the specific 

energy for rotary drilling in 1965, and he deduced the relationship considering the 

required thrust and rotational energy at the bit-rock interface. Yasar et al. (2011) 

https://link.springer.com/article/10.1007/s10706-020-01577-y#ref-CR36
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represent specific energy as another idea for evaluating rock drillability. A single 

index cannot judge rock drillability as it is affected by various parameters (Yarali and 

Soyer. 2013). These parameters include mechanical properties, geological parameters, 

hardness, and energy properties. Therefore, understanding the relationship between 

drilling specific energy and rock properties may be useful for engineers and drilling 

technicians. 

 

1.5 Problem Statement 

 

Physico-mechanical properties of rocks are essential parameters often required in the 

planning and design of various rock engineering projects. In general, rock strength 

properties are determined in the laboratory using the core specimen of a particular 

geometry. In most of the mining and construction sites, these properties are not 

readily available. The standard method for rock testing involves certain problems or 

constraints to get a proper and quality core samples needed for such a laboratory trial. 

Besides, coring is tedious, time-consuming, and expensive.  

The proposed research aims to assess and predict some of the vital physico-

mechanical properties of sedimentary rocks using an indirect method that uses an 

empirical relationship and no core samples. The proposed research work also includes 

determining the specific energy of drilling and its strength of the relationship with 

rock properties. 

 

1.6 Research Objectives 

 

1. To develop the prediction mathematical model to find the relationship between 

selected mechanical parameters obtained during rotary drilling of sedimentary rocks 

and their physico-mechanical properties. 

2. To evaluate the comparative performances of multiple regression analysis and 

artificial neural network (ANN). 

3. To investigate the strength of the relationship between specific energy of drilling 

and rock properties. 

 

 

https://link.springer.com/article/10.1007/s10706-020-01577-y#ref-CR35
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1.7 Thesis Outline 

 

This research mainly examines the relationship between mechanical drilling responses 

obtained during the rotary type rock drilling and the physico-mechanical strength 

properties of rocks. This research is also extended to investigate the relationship 

between rock properties and the specific energy of drilling. 

The seven chapters are presented in this thesis in a logical order to fulfill the aim of 

the research objectives as follows: 

 

Chapter-1 

 

This chapter briefly describes the problem associated with measuring the rock 

properties using the direct method, the potential of "measurement while drilling 

technique" (MWD) to estimate the vital properties of rocks and the concept related to 

specific drilling energy. 

 

Chapter-2 

 

In this chapter, an extensive literature survey concerned to research objectives are 

covered, including the different drill operating parameter and drilling responses 

obtained during the drilling process for rock characterization, prediction of the rock 

properties using regression model and artificial neural network, and the relationship 

between drilling specific energy and rock properties. 

 

Chapter-3 
 

An experimental methodology, machine and measuring instruments used in current 

research work, an experimental setup arrangement and their working principles, and 

data acquisition methods are explained in this chapter. Besides, a detailed testing 

procedure of physico-mechanical properties at the laboratory is discussed. 
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Chapter-4 

 

This chapter discusses the individual influence of drill parameters and rock strengths, 

such as UCS and other properties, on drilling responses.  Also, discussions on the 

individual influence of drill operating parameters and UCS on drilling responses are 

discussed. 

Chapter-5 

In this chapter, the mathematical model development for each rock property using the 

statistical and a soft-computing technique, i.e., ANN, checking their prediction 

performance, correlations of drilling responses with rock strength property is 

discussed. 

 

Chapter-6 

 

In this chapter, computation of drilling specific energy, the relationship between 

specific energy and rock properties, and the influence of weight on bit or drilling 

thrust on specific energy are discussed. 

 

Chapter-7 

 

The conclusions are summarised, and also the scope and recommendations for future 

work are discussed briefly. 

 

1.8 Closure 

 

This thesis concentrates on the indirect approach with an importance on the 

development of mathematical models. Using the secondary methods does not imply 

that the direct methods are not significant. In general, some kinds of laboratory or in-

situ tests should always be included in a project. The secondary or indirect approaches 

can only be used to supplement the direct methods. Sabatini et al. (2002) state: 

“Correlations, in general, should never be used as a substitute for an adequate 

subsurface investigation program, but rather to complement and verify specific 



7 
 

project related information.” The above comment about correlations also refers to 

indirect methods included in this thesis. 
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CHAPTER 2 

2. LITERATURE REVIEW 

 

This chapter deals with a comprehensive literature study, including the indirect 

measurement of rock properties using the index and MWD techniques, statistical 

modeling techniques, soft-computing techniques and the relationship between rock 

properties and drilling specific energy. 

 

2.1 General 

 

While designing construction projects or carrying out excavations, the knowledge of 

the physico-mechanical properties of rocks such as compressive strength, tensile 

strength, hardness, density, etc., in or around the geological site will help the design 

department a safe, effective, and economical design. The International Society of 

Rock Mechanics (ISRM) has developed a series of suggested methods for measuring 

rock properties both in the laboratory and in situ since 1974. The direct laboratory 

methods include measurement of density, porosity, water content, hardness, point load 

strength, uniaxial compressive strength, tensile strength, shear strength, and the entire 

stress-strain curve for intact rock uniaxial compression, etc. Ulusay and Hudson 

(2007) compiled and edited these tests, including site characterization and field tests. 

Due to some of the difficulties and limitations associated with laboratory or direct 

methods, as discussed in chapter 1, developing efficient indirect methods that use no 

core samples and comparatively faster than the direct method is in the scope of the 

study. 

 

2.2 Indirect Measurement of Uniaxial Compressive Strength (UCS) 

 

Schmidt (1951) developed a compact device known as Schmidt hammers, especially 

for non-destructive testing of concrete. It measures surface rebound hardness. The 
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Schmidt hammer is one of the extensively used portable measuring instruments to 

evaluate the rock strength indirectly. Aydin (2009) recommended a revised suggested 

approach, which replaces the earlier ISRM record to determine the hardness of rock 

surfaces both in laboratory and site and to use it as an index for UCS and Young’s 

modulus of rock material. 

 

The Schmidt hammer, developed by a company known as Proceq in Zurich, 

Switzerland (Proceq 1977a), measures the rebound length of a spring-loaded plunger 

released onto the surface of a rock surface as its hardness.  Proceq has also developed 

a lighter and a tiny unit of equipment known as an Equotip hardness tester (Proceq 

1977b) which measures the hardness of metallic material. Verwaal and Mulder (1993) 

examined the feasibility of predicting UCS from the L-values or hardness value of 

Equotip using samples of different rock types and showed the relationship of UCS 

and L-values by representing as a diagram.  

 

Kawasaki et al. (2000) used the Equotip test to estimate the rock strength directly at 

the site. This investigation was centered on unweathered rocks. It ascertained the 

influences of the test conditions, including the size, shape, roughness, and impact 

direction. Similarly, Kawasaki et al. (2002) conducted tests such as Equotip hardness, 

unconfined compression, and elastic wave measurement using the various core 

samples of igneous and sedimentary rocks. It is recommended that UCS can be 

measured with acceptable errors from Equotip L-values or hardness value applying 

the equation ,baLUCS   where L is Equotip hardness, ‘a’ and ‘b’ are coefficients 

based on rock types. 

 

Szlavin (1974) examined whether there are statistically significant correlations among 

the mechanical properties of rocks, which would enable estimates to be made of one 

property from any other single property. Various tests such as UCS, BTS, shore 

hardness, indentation, specific energy, and abrasivity were carried out on many 

samples, and the mean value was computed and utilized in the analysis. A program 

was designed so that the test outcomes would feed into a computer. The correlation 

among the variables was collected in terms of regression coefficients and correlation 

coefficients. A comparison of the results revealed that most of the mechanical 
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properties, i.e., strength, and hardness, could be determined with fair accuracy from 

each other. However, greater errors are associated with the determination from 

abrasivity. It was also reported that the ratio of UCS and specific energy is 

approximately constant. 

    

To determine the rock's hardness, and use it as an index for uniaxial compressive 

strength, Szwedzicki (1998) suggested a standard indentation test including the 

utilization of a standard indenter, the stipulation of a loading rate, standards for the 

termination of the test, etc. It was reported that a standardized indentation test would 

permit the determination of the mechanical properties of rock and ensure the strong 

relationship between indentation hardness index and the uniaxial compressive 

strength. It also suggested that the indentation hardness index could be used to 

distinguish the hardness of the rock and serve as an efficient approach for the 

determination of UCS. 

 

The point load test (PLT) is a simple and economical measurement system used to 

calculate a rock strength index. Broch and Franklin (1972) have revealed this 

approach has potential in rock engineering and thus suggested the testing procedure to 

the International Society for Rock Mechanics (ISRM, 1973). The PLT device and 

method facilitate the efficient and cost-effective measurement of core or lump rock 

samples in either a field or laboratory environment. In this method, the rock sample is 

compressed between conical shape steel plates until the sample fails in a testing trial. 

The pressure applying to the rock sample is recoding by a pressure gauge. Initially, 

the point load strength index (PLSI) is determined using the corresponding failure 

pressure and sample diameter. UCS was then determined by the developed 

relationship between the UCS and PLSI. 

 

Sulukcu and Ulusay (2001) proposed the block punch index test as an index for the 

classification of rock materials based on their strength. This test was originally 

developed at Delft University, Netherland. Block Punch Index (BPI) test is an index 

test for UCS and tensile strength, in which a small section of a core is subjected to an 

accelerating load until the central piece of the specimen is punched out. The test 

apparatus is similar to a point load test machine with the conical steel plates replaced 

with lower and upper punching blocks.  As per the ISRM suggested method, the 
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circular specimen should be split into three parts for the valid BPI test. Thus, the 

block punch index (BPI) is determined using the specimen's failure load and its 

geometric data. 

 

Kamil Kayabali and Levent Selcuk (2010) developed a novel method known as nail 

penetration test (NPT) to evaluate the uniaxial compressive strength of intact rocks. A 

powerful gas nailer of 130 Joules and nails ranging from 25mm to 60mm in length 

were the tools used for experimenting. A total of 65 different rock blocks, including 

metamorphic, igneous, and sedimentary rock types, were used as the test samples.  

Five nail shots were performed on each rock block sample, and average values of nail 

penetration depth were noted down.  Later, the average nail penetration depths were 

correlated with actual UCS. The result revealed that the NPT could correlate well with 

UCS better than PLIT and SRH and estimate the UCS of intact rocks up to 100MPa. 

 

Lama and Vutukuri (1978) and Carmichael (1982) tabulated enormous lists of several 

mechanical properties of sedimentary rocks collected from the field study conducted 

throughout the world. Wong et al. (1997) reported the UCS, tensile strength, and 

physical properties of different sandstones around that Japan. The laboratory test 

results on North Sea sandstone and shale were summarized by Bradford et al. (1998) 

and Horsrud (2001). 

 

2.3 Application of Measurement While Drilling Technique (MWD) in the 

Geotechnical Field 

 

Measurement while drilling (MWD) is a technique that enables measuring and collect 

different types of real-time data on the rock mass during the drilling process. The 

concept of monitoring a drill's performance by detecting variations in drilling 

conditions during borehole drilling has been widely explored since the introduction of 

the practice by Schlumberger in 1912 (Cooper et al.2004). The first attempts to apply 

and adopt MWD technology to the mining industry were initiated around the 1970s.  

MWD systems record physical forces and pressures during the drilling. These include 

'actions' such as down-thrust, rotary speed and 'reactions' including torque, penetration 

rate, or acoustic parameters such as vibrations (Cooper et al.2004). The United States 

Bureau of Mines (USBM) has been examining the empirical relationship between 
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rotary drilling parameters and the mechanical properties of rock for the past thirty 

years (Clark. 1982). Drill operating and corresponding drilling responses data 

collected during a rock drilling process can be used to infer rock mass characteristics 

(Khorzoughi and Hall. 2016). The recorded MWD parameters can provide the 

essential information on rock strength properties that could generally only be 

discovered by recovering samples or in-situ testing (Lucifora et al., 2013; Li et al., 

2014). 

  

Many studies revealed a close relationship between drill operating parameters and 

rock mass properties (Paone and Madson. 1966; Paone et al.1969; Howarth et al. 

1986; Karpuz et al. 1990; Kharaman. 2002; Erosy and Waller.1995; Basarir et 

al.2014; Basarir and Karpuz.2016). Leighton et al. (1982, 1983) and Hagan and Reid 

(1983) examined the use of recorded drilling parameters to determine zones of strong 

and weak rock in open pit blast hole drilling. In eastern European lignite mining 

operations, monitored drilling was utilized to define the extent of very hard 

argillaceous iron ore bands. Variations in rock hardness were determined based on 

changes in drill energy consumption (Hojdar. 1986). 

 

Basarir et al. (2016) attempted to develop mathematical models for uniaxial 

compressive strength (UCS) using the drilling parameters. The drill parameters, such 

as bit load (BL), bit rotation (BR), and penetration rate (PR) collected from many 

exploration drilling activities carried out by a research institute in Turkey. PR was 

recorded by varying any one of the parameters and keeping another parameter 

constant. With these data, the model was developed using multiple regression 

techniques. The selected variables explain the variation in the dependent variable up 

to 78%. PR is the most significant parameter with the coefficient of determination of 

59.5%. Bit load has a strong effect on rock mass strength with a coefficient of 

determination of 24.8%. The validity of the developed model was checked using 

performance indices. Results showed that this approach could be adopted for 

preliminary evaluation of rock mass strength often required for mining design 

projects. 

 

Kalantari et al. (2018) attempted to develop an analytical model using the core 

parameters of rocks, such as internal friction angle and cohesion values. As a part of 
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determining these parameters, drilling parameters such as the penetration rate, thrust, 

and torque collected during conventional type drilling. During the drilling of rocks 

such as travertine, onyx, and rhyolite having the UCS of 48 MPa, 100 MPa, and 152 

MPa, the thrust and torque were changed significantly for different penetration rates 

at various bit speeds. Using this approach, the analytical model could estimate the 

UCS for travertine, onyx, and rhyolite with an error of 20%, 21%, and 6%, 

respectively. 

 

Vijay et al. (2019) studied the wear rate of the tungsten-carbide drill bit during the 

rotary rock drilling. In this, the thrust induced between bit and rock was recorded for 

various sandstone rock samples varying UCS from 13.7 MPa to 51.67 MPa using 

different combinations of drill operating parameters. Among the drilling of different 

rock-strength, the maximum thrust was appeared for high strength rock with UCS 

51.67 MPa. 

 

Huang and Wang (1997) conducted a set of rock drilling experiments at the laboratory 

to understand the mechanics of diamond core drilling. The various drill operating 

parameters are taken into account to investigate the drillability of diamond 

impregnated bits. They were; a weight on bit, applied torque, penetration rate (PR), 

spindle speed, and rock strength. The experimental results showed that the PR and 

drilling torque increased exponentially as the weight-on-bit increased. The following 

equations relating the torque, weight-on-bit, and UCS are suggested with good 

correlation coefficients. 

Torque = 6.426 e 0.0003 × Weight on bit 

Torque = 103.26 UCS –0.468 

 

Karpuz et al. (1990) studied the drillability of rotary blast hole drillings at open-cast 

lignite mines in Turkey. It was conducted at 96 different locations of 16 lignite mines 

to evaluate the relationship between formation properties and drill data such as 

penetration rate, thrust, RPM. The collected drill response data examined the 

association between rock properties such as uniaxial compressive strength, cohesion, 

tensile strength, density, and penetration rate. The results showed that the uniaxial 

compressive strength correlates with the drilling parameter with the highest 

correlation coefficient. Also, an assessment was carried out on the required amount of 
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drilling thrust, drilling speed to have a different penetration rate for various rock 

strengths (UCS) and represented as a chart. 

 

Bhatnagar et al. (2011) carried out the drilling experiment using polyethylene-oxide 

(PEO) added with water as a flushing media.  From the drilling data, it was observed 

that at 285 revolutions per minute (r.p.m), the maximum ROP was 7cm/min at 800N, 

but the ROP increased to 8.1 cm/min and 16.2 cm/min with 471 r.p.m and 1122 rpm, 

respectively at the same load. It is concluded that the speed is significantly 

influencing the ROP independently. It was also observed at all speeds that as the 

thrust was increasing, the ROP was also increasing. 

 

Bhatnagar et al. (2011) carried out the drilling experiment using the polyethylene-

oxide (PEO) added with water as a flushing media.  From the drilling data, it was 

observed that at 285 r.p.m, to reach an ROP of 7cm/min, the required thrust was 

800N, but for the same ROP, the thrust was around 630N at 470 r.p.m.  Similarly, the 

thrust required was 800N at 687 r.p.m. to reach 12cm/min, but for the same ROP, the 

required thrust was around 650N at 1122 r.p.m. It is concluded that the thrust level is 

decreasing as the speed is increasing for a particular ROP. 

 

Bhatnagar et al. (2011) carried out the drilling experiment using the polyethylene-

oxide (PEO) added with water as a flushing media during marble drilling.  From the 

drilling data, it was observed that the torque developed was 4.2 N-m at 285 r.p.m and 

800 N. Similarly, the torque was 4.1 N-m at 471 r.p.m and 800 N. The torque was 3.5 

N-m at both 687 r.p.m. and 1122 r.p.m. under the thrust of 800 N. It is concluded that 

the speed is influencing the torque independently. It was also observed that there was 

a linear relationship between the thrust and torque at all speeds. 

 

Rao and Misra (1998) investigated the effect of drill operating parameters such as bit 

thrust, bit speed, and bit diameter on torque. The experiment was conducted using a 

conventional drilling setup with minor modifications to apply different loads on a drill 

bit. The torque was measured with a developed wheel-spoke dynamometer. During 

the sandstone drilling, at 300 r.p.m, under the bit thrust of 195 N, the torque 

developed was up to 0.5 N-m, but the torque increased to 2.5 N-m at 500 N bit thrust 

using the same speed. Similarly, during limestone drilling, using 300 r.p.m, the torque 
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increased to 0.6 N-m at 195 N. It was then increased to 3.2 N-m at 500 N. Therefore, 

it is concluded that the torque increases as the thrust on the bit increase at a particular 

bit speed. 

 

Rao and Misra (1998) conducted a drilling experiment using a conventional drilling 

setup with minor modifications to apply different loads on a drill bit. The torque 

developed at the bit-rock interface is measured with a developed wheel-spoke 

dynamometer. During the sandstone drilling running at a particular speed and load, 

with a drill bit diameter of 15mm, the torque developed was 3.1 N-m. But it was 5 N-

m when the 35mm drill bit for the same running conditions.  Similarly, during the 

limestone drilling with the same working conditions, the torque developed was 5 N-m 

using the 15mm drill diameter. It was then developed to 6.2 N-m when the drill bit 

diameter of 35mm was used. It was concluded that the torque is increasing with drill 

bit diameter for a particular load and speed conditions. 

 

Rao et al. (2002) conducted laboratory diamond drilling trials on a medium-size 

vertical drilling machine. A specially intended dynamometer was used to measure the 

thrust and the torque forces during the rock drilling. During the drilling of a limestone 

block at 1180 r.p.m, the minimum torque level developed to 1.5 N-m, 2 N-m, 2.3 N-

m, 3.5 N-m, and 5 N-m with different bit thrust of 195 N, 272 N, 342 N, 424 N, 550 

N, respectively with a 12mm bit diameter. Similarly, as the bit diameter increased 

from 12mm to 45mm, the torque increased from 1.5 N-m to 2.2 N-m under the bit 

thrust of 195 N. But, at higher thrust, i.e., 550 N, the torque could increase from 5 to 

8.9 N-m. These results concluded that the drilling torque increased with increasing bit 

thrust and bit diameter. 

 

Basarir et al. (2014) carried out a study on the diamond drill bit's penetration rate 

during rotary drilling. The data was collected from various boreholes having different 

UCS of rocks ranging from 36MPa to 82MPa. Among the various rock strength 

ranges, the machine could utilize a bit load of 486 to 2268 kgs and speed ranging 

from 200 to 500 r.p.m. to reach the penetration rate of 0.2 cm/min to 11.4 cm/min. 

The increase in bit load was 366.67% in terms of percentage, and the increase in bit 

speed was 150%. 
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Kivade et al. (2015) conducted a drilling experiment using a jackhammer for 

sedimentary rocks. The UCS of the rock was 112.3MPa.The experimental result 

observed that the bit could reach a penetration from 0.2mm/sec to 2.99mm/sec as the 

inlet air pressure increased from 392 KPa to 588 KPa (50%). 

 

Hagan and Reid (1983) discussed the use of MWD to improve blasting efficiency. It 

was reported that drill response parameters such as penetration rate and torque could 

identify the harder layers, coal seams, fractured rock, and cavities. Based on these 

findings, blast design may be altered. It was also said that the penetration rate is 

relatively low for the rock of high strength. 

 

Paone et al. (1969) carried out drilling experiments with impregnated diamond drill 

bits on different rocks. In this experiment, the penetration rate was recorded for the 

drill parameters such as weight on bit (WOB) and bit rotation speed (RPM) and later 

related to some of the important rock properties. From the experimental results, it was 

concluded that there is an interaction between WOB, RPM, uniaxial compressive 

strength, hardness, and penetration rate. 

 

Erosy and Waller (1995) carried out the drilling operations on various rock types in 

the laboratory with polycrystalline diamond compact (PDC) and impregnated 

diamond core bits using a fully instrumented drilling rig at various rotational speeds 

and drill thrust. The regression analysis was then employed to generate predictive 

models of penetration rates from the machine operating parameters and rock 

properties. Results show a close correlation between drill thrust, rotational speed, 

penetration rate, and hardness. 

 

Yasar et al. (2011) conducted a study using rock drilling set up to examine the 

interaction among the multiple drill parameters and the physico-mechanical attributes 

of cement mortar, used as a substitute for natural rock. Since mortars were produced 

with different aging times, their UCS was also varied and determined in the 

laboratory. At various drilling speeds, the thrust, torque, and penetration rate (PR) 

were measured for different mortar samples. It could be observed from the data 

analysis that thrust and torque had a linear relationship with the PR. Also, the PR was 

increasing with the increase of both applied thrust force and torque.  
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Roy and Adhikari (2007) conducted a measurement of noise produced during the 

drilling of blast holes. From the in situ data, it was concluded that a noise level 

generated during the rock drilling was a potential tool to identify the rock as a soft, 

medium, or hard, which might help to select the appropriate explosives. 

 

Yari (2018 a, b) have attempted to approximate both igneous and sedimentary rocks' 

geo-mechanical properties during rotary drilling. The drilling was carried out for 

various rocks using the drill operating parameters of bit speed 830 r.p.m, overall 

thrust force of 400N, and bit diameter of 18mm. During the drilling of each rock type, 

the sound level signal was captured for a particular time with the DAQ system. The 

frequency component from the time domain acoustic signal was then extracted and 

used for analysis. The results revealed that a particular rock's dominant frequency 

could correlate with properties such as UCS, BTS, and SRN. Using this approach, the 

model would predict the UCS, BTS and SRN with errors of 8.76%, 5.76%, and 

8.87%, respectively. 

 

Khoshouei and Bagherpour (2020) conducted the drilling experiment using a self-

developed drilling machine with a loading arrangement of 1000N. During the drilling 

with a 12mm bit, the sound level, vibration level, and frequency of sound were 

collected for igneous rock. The sound level, vibration level, and acoustic frequency 

could vary up to 13.09%, 31.21%, and 2.48%, respectively, during the drilling of 

different characteristic rocks. It was seen from the multiple regression analysis that all 

the collected response parameters could influence the UCS, BTS, and Schmidt 

rebound number (SRN) with R2 values of 0.92, 0.83 and 0.81, respectively. 

 

Kumar et al. (2011) conducted drilling operations on various rocks with the main 

interest of assessing the strength and hardness of the drilling rocks. The different 

combinations of drill operating variables such as bit diameter, bit speed, and 

penetration rate were used for drilling the rocks. During the drilling of each rock type 

using a particular combination of drill variables, the sound level was recorded. It was 

then concluded from the experimental results that both drill operating variables and 

rock properties were liable to the sound level produced during the drilling. 
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Kumar et al. (2012) carried out laboratory work to examine the relations between 

sound level produced during drilling and physico-mechanical properties such as UCS, 

BTS, and porosity of sedimentary rocks. This study developed empirical relations 

between drill parameters, sound level, and rock properties. The relationship was good 

for UCS with an R2 value of 89.93%, and it was 88.91% and 88.12% for BTS and 

porosity, respectively. 

 

Kumar et al. (2019 a, b, c) conducted the drilling experiment to estimate rock strength 

properties. The CNC milling machine was used to drill on various sedimentary rocks 

with different combinations of drill operating variables such as penetration rate, drill 

diameter, and speed. For each combination of drill operating variables, an acoustic 

parameter such as frequency of drilling sound was acquired with a data acquisition 

system (DAQ). The experimental results concluded that the difference in acoustic 

parameters was due to different drill operating parameters and rocks with different 

strengths. 

 

Itakura et al. (2001; 2008) discussed that if “balling up” occurs in deeper holes, torque 

and thrust data appeared higher than usual drilling. Therefore, it is important to 

implement efficient borehole flushing to prevent this phenomenon. Thus, it was 

concluded that it was necessary to maintain a sufficient quantity of flushing water/air 

during drilling, especially for fine-grained rocks. 

 

Automated drill monitoring is a relatively new technique that involves 

instrumentation and software to record the drilling parameters developed, i.e., 

penetration rate, thrust, torque, etc., as drilling proceeds. Several functional areas of 

application of instrumented drilling techniques were outlined by Brown et al. (1978, 

1984) as:(1) the ability to provide a measure of the physical properties of the rocks 

being drilled based upon the correlation between specific energies and rock 

compressive strength and the known area geology, and (2) the ability to indicate the 

presence of major discontinuities such as open or clay-filled joints or faults. 

 

West Virginia University conducted a study to develop a real-time roof geology 

detection system and an information system to understand the geological structure of 

mine roof using the rock bolting drill operating parameters (Peng et al.2003; Peng et 

https://link.springer.com/article/10.1007/s00603-015-0756-4#ref-CR33
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al.2005a; Peng et al.2005b; Tang et al. 2004; Tang 2006). In this system, the 

penetration rate and drill bit speed was controlled with a closed-loop control system 

with efficient feedback system. The newly devised system could register the drilling 

parameters, such as thrust, torque, rotational speed, and penetration for every 

millisecond on a separate chip placed at the operator cabin.   

 

Scoble et al. (1987) discussed ground characterization during the drilling process in 

surface mines. It was the ongoing mining automation research at McGill University, 

Canada. The parameters, such as dill thrust, penetration rate, torque, etc., were 

collected using the automated drill monitoring system. Field studies showed that the 

analysis of recorded drilling parameters could permit the determination of UCS and 

associated properties.  

 

King et al. (1993) described an unsupervised learning approach and the expert system 

coupled with an instrumented roof bolter. It was primarily devised to investigate the 

geological characteristics of the underground coal mine roof.  In this system, drilling 

parameters could be measured and calculated specific drilling energy. By the 

application of a microcomputer, critical drilling parameters are immediately read and 

interpreted. This facility made the operator notify unsafe roof conditions.  

 

Itakura et al. (2001) exhibited the laboratory and in situ experimental results of a rock 

bolt drilling inbuilt with a data acquisition system that collects the mechanical drilling 

data such as thrust, torque, rotational speed, and stroke. The system could predict the 

'3D' geo-structure of strata and the design of rock bolting pattern.  Field experiments 

in coal mines using the instrumented roof bolter showed that the software 

incorporated could examine the mechanical data log and showed discontinuities 

points with the neural network analysis. 

 

Finfinger (2003) carried out a set of tests to determine the correlation between drill 

operating parameters and geo-mechanical roof rock properties such as voids, 

fractures, location of layers boundary, and rock strength. The trials were carried out in 

the laboratory employing a specially created rock structure that simulated the same 

conditions as mine roof strata. It was observed that when the bit was moving through 

https://link.springer.com/article/10.1007/s00603-015-0756-4#ref-CR64
https://link.springer.com/article/10.1007/s00603-015-0756-4#ref-CR63
https://link.springer.com/article/10.1007/s00603-015-0756-4#ref-CR11
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different layers of rocks having various features like strength, porosity, etc., there 

were considerable changes in thrust, torque, and drill bit speed and the piercing rate. 

 

Luo et al. (2002) attempted to estimate the uniaxial compressive and shear strength of 

different manufactured blocks simulating the typical coal mine roof strata. During the 

drilling operation, the thrust and torque could be recorded at various penetrations per 

revolution. The experimental data showed that the drilling thrust increased 

significantly as the uniaxial compressive strength and penetration per revolution 

increased. Similarly, the drilling torque was increasing as the shear strength and 

penetration per revolution was increasing. 

 

Tang (2006) developed a methodology for tracking the roof geology using the drilling 

response parameters obtained during the roof bolting operations. During the drilling 

process assisted by pneumatic power, it was observed that the feed pressure tends to 

drop when the voids were encountered. It was analyzed from experimental results that 

the prediction error is less for the voids above 3.2 mm. Also, the magnitude of feed 

pressure was comparable to the penetration rate and bit rotation. Therefore it was 

concluded that variations in penetration rate and bit rotation could be utilized to 

estimate rock strength. 

 

Rostami et al. (2015) attempted to detect the void during the drilling of two concrete 

blocks. In this arrangement, a hard concrete block is kept over the soft concrete block. 

There was a tiny recess between the two concrete blocks that presented to simulate a 

“void.” A sound and vibration sensor (accelerometer) was attached to the drill head 

unit. During the drilling process, it was noticed that the amplitude of the vibration 

signal tends to reduce as soon as the drill bit reached the void location. It is concluded 

that a decline in the vibration signal is due to the bit running through the void. 

 

Brown and Barr (1978) conducted early research on the dependency between drilling 

parameters and various geo-mechanical characteristics. It was concluded from the 

experimental results that only continuous recording of operating parameters like 

thrust, torque, penetration rate, flushing pressure, etc. could provide information on 

the mechanical properties of the rocks. 
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Brown et al. (1984) practically confirmed the applicability of MWD technology in the 

mining industry and concluded that the system could estimate the physical and 

mechanical properties of the rocks based on mechanical specific energy (MSE). 

 

Schunnesson (1990) conducted primary research on the responding of drilling 

parameters in rotary percussive drilling. It was inferred from the drilling data that a 

single parameter like penetration rate could be a potential parameter to evaluate the 

quality of rock if properties varied considerably among geologic zones. Similarly, if 

variations in properties between geologic zones were insignificant, the rock quality 

evaluation using a single parameter might not hold good. In such cases, it might 

require several drill parameters and output to examine the quality of rocks. 

 

Schunnesson (1996) conducted the experimental investigation on the preliminary 

evaluation of rock quality based on measurement while drilling parameters. It was 

investigated that how drilling parameters, such as torque, penetration rate (PR), and 

revolutions per minute (RPM) reacted to structural flaws in the rock mass. The 

outcomes of this study showed that many times variations of PR and RPM were 

directly proportionate to the intensity of rock fracturing. However, it was also shown 

that excessive fracturing could reduce PR and RPM with a rise in torque 

simultaneously. 

 

2.4 Application of Multiple Regression Models in Geotechnical Field 

 

Multiple regressions (MR) are a statistical technique that was practiced in 1908 by 

Pearson (Benesty.2009). It is employed to forecast the event dependent on one or 

more factors. The value to be predicted from the number of variables is called a 

dependent variable or criterion, or response. The variables accountable for predicting 

the response are called the independent variable or predictors. Multiple regressions 

can be used to develop the mathematical model for an engineering system and 

investigate the influence of various elements or factors on the system's response. 

Recently, there has been a steady increase in regression modeling in engineering 

geology due to its potential to yield reliable and accurate results. 
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Kahraman et al. (2003) investigated the effect of rock properties on penetration rate 

during the percussive blast hole drills. The data was collected at an open-pit mine on 

various rock types. Later, the determination of rock properties such as UCS, BTS, 

SRN, natural density, and modulus of elasticity was carried out. Each property was 

then correlated with PR separately using a simple linear regression method. The 

results showed that, except for the density and p-wave velocity, the other mechanical 

properties are related to the penetration rate with the high determination of 

coefficients. 

 

Kahraman et al. (2003) studied the effect of ratio of young’s modulus and uniaxial 

compressive strength on penetration rate in both percussive and rotary drilling. The 

data was obtained from various experimental work conducted by different 

researchers. The correlation between these parameters was examined using a simple 

linear regression method.  

 

Ince et al. (2019) experimented with predicting the UCS of pyroclastic rocks collected 

from different Central Anatolia places. The rock properties such as dry density, 

saturated density, porosity, and point load index were measured in the laboratory and 

used for predicting the UCS. The rock properties were regressed against the actual 

UCS of rocks using the multiple regression method, and thus the prediction model 

was developed. In the developed model, all the independent variables could include 

and explain the dependent variable up to 82%. 

 

Minaeian and Ahangari (2013) experimented with estimating the UCS of rocks using 

different rock samples. In this study, a total of 140 standard core specimens for UCS, 

p-wave velocity, and Schmidt hammer tests were prepared. With the regression 

method, the UCS was correlated with p-wave and SRH separately. The data analysis 

found that the R2 value for correlation of p-wave velocity with UCS was highest equal 

to 0.92. 

 

Vijay et al. (2019) conducted an investigation on predicting the physico-mechanical 

properties of rocks during rock drilling. In this experiment, the dominant frequency of 

the sound signal was collected separately for each rock-type drilling. By employing 
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multiple regression techniques, the drill operating parameters and their corresponding 

acoustic frequency were correlated with rock properties. 

  

Kumar et al. (2011) carried out a rock drilling experiment to investigate the 

relationship between sound level produced during the drilling and rock properties. 

During the drilling of different rocks, the sound level for a different combination of 

drill parameters was measured. It was then correlated with rock properties using the 

second-order multiple regression method. The result shows that the models could 

predict rock properties with acceptable errors. 

 

Basarir and Karpuz (2016) attempted to predict rock mass strength using diamond 

drilling parameters. In this study, the drilling data such as bit rotation, bit weight, and 

penetration rate are gathered from the various explorations drilling process. Later, a 

multivariate regression method was employed to establish the relationship between 

drilling data and rock strength. 

 

Khandelwal and Singh (2009) attempted to correlate the physico-mechanical 

properties of coal measures rocks with P-wave velocity. The sedimentary rocks such 

as shale, sandstone, coal samples were used as rock samples. The physico-mechanical 

properties such as UCS, tensile strength, density, Poisson's ratio, modulus of 

elasticity, and p-wave velocity were determined at the laboratory. The p-wave 

velocity was then correlated with each rock property using the simple linear 

regression method. It was seen that the UCS and density were well correlated with the 

p-wave velocity with a high coefficient of determination value. 

 

Khoshouei and Bagherpour (2020) conducted the drilling experiment on different 

igneous rocks to examine the relationship between the rock properties and acoustic 

and vibration parameters obtained during drilling. The prediction model for various 

rock properties such as UCS, tensile strength, and Schmidt rebound number was built 

with a multiple regression method using acoustic and vibration parameters as the 

independent variables. 

 

Basarir and Dincer (2017)  developed multiple regression with linear and non-linear 

modeling techniques to predict p-wave velocity from the field drilling data such as 

thrust(T) and penetration rate(PR). The statistical analysis observed that both could 
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include in the models to have a high significance R2 value. 

 

Kahraman and Gunaydin (2008) attempted to predict the performance of larger 

diameter circular saw during the sawing of five travertines, two limestones, and one 

dolomitic rock. The performance of the saw was based on the capability of the 

machine to cut the different rocks. The performance was then correlated with different 

rock properties using both simple linear and multiple regression methods. It was 

concluded from the statistical results that performance can be measured accurately 

with the multiple regression method rather than the simple regression method. 

 

Kivade et al. (2015) carried out a study on the prediction of penetration rate (PR) 

during rotary rock drilling. In this experimental study, ten rocks having different rock 

properties were drilled using various drill operating parameters. Multiple regression 

models were used to establish the relationship between PR and drill operative 

parameters and rock properties. The results showed that the developed model could 

predict the response with less error. 

 

2.5 Applications of Artificial Neural Networking (ANN) Techniques 
 
 

Due to its compatibility for various fields, including science and engineering research 

and its effectiveness, ANN is becoming popular among researchers, designers and 

planners. Therefore ANN has been successfully used in industrial applications also. In 

recent years the application of ANN is increasing in geotechnical and geological 

applications (Romeo et al. 1995; Singh et al. 2001; Sonmez et al. 2006; Rafiq et al. 

2001; Singh et al. 2004; Kahraman et al. 2006; Tiryaki 2008; Yilmaz and Yuksek 

2008; Yilmaz and Yuksek 2009; Yagiz et al. 2009; Sarkar et al. 2010; Ceryan et al. 

2012; Rabbani et al. 2012; Yagiz et al. 2012; Rezaei et al. 2012; Tonnizam et al. 

2014; Momeni et al. 2014). 

 

Tiryaki B (2008) attempted to estimate the UCS and Young’s modulus (E) of rocks 

from other rock properties such as cone indenter hardness, dry density, and shore 

hardness. The multiple non-linear and ANN models were developed to predict UCS 

and E. Compared to the regression model, ANN models could increase the R2 value 

by 14.54% and 6% for UCS and E, respectively. Similarly, the error is decreased for 

UCS and E by 15.9% and 37.62% than the regression models. 
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Kahraman et al. (2006) investigated the feasibility of predicting the saw ability in 

terms of production hour (m2/hour) of a circular saw fitted with impregnated diamond 

bits during the cutting process of carbonate rocks. Shear strength parameters of rocks 

were used as predictors for saw ability, and both multivariate regression and ANN 

were used to develop the model. Using the ANN model, the prediction of 

production/hour was increased with an increase of the R2 value from 0.749 to 0.945. 

Similarly, the prediction error is greatly decreased up to 18.52% 

 

Kivade et al. (2015) examined the possibility of predicting some of the vital properties 

of rock such as UCS, tensile strength, and SRN using the penetration rate and sound 

parameters obtained during the drilling process. ANN models were developed using 

different training algorithms such as traingda, trainrp, trainscg, and trainlm 

algorithms. From the results, it was observed that the prediction error is less for 

trainlm algorithms, and it was concluded that the trainlm is the best algorithm for 

geological problems. 

 

Zorlu et al. (2008) investigated the relation between UCS and petrographic parameters 

of sandstone. The input parameters represented the petrographic parameters, including 

packing density, quartz content, and grain contact type. The model was developed 

using multivariable regression and ANN approaches. The results showed that the 

ANN model could gain the VAF by 52%, and RMSE was decreased by 17.13% than 

the regression model. 

 

Yilmaz and Yuksek (2008) investigated the estimation of UCS and Young's modulus 

(E) from other properties of gypsum. The properties, including slake durability, SRN, 

porosity, and PLI, were used to estimate the responses with multiple regression 

methods. In the regression technique, the input parameters could explain the variance 

in UCS and E by 85% and 88%, with RMSE of 2.05 and 2.53, respectively. Similarly, 

the ANN model could explain the variance in UCS and E as 91% and 95% with 

RMSE values of 1.65 and 2.28, respectively. From the results, it is concluded that the 

ANN model is predicting UCS and E more accurately than the regression model. 

 

Moulenkamp and Grima (1999) examined the usage of hardness value of rocks and 

some of their physical properties to estimate the UCS. The model was developed by 
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both regression and ANN models. In the ANN model, the network was trained with 

the Levenberg-Marquardt algorithm. The prediction capacity of both models was 

checked using the performance indices. It was concluded from the results that the 

ANN model is most precise in the prediction of response than the regression models. 

 

Singh et al. (2001) attempted to predict the strength properties, including UCS and 

tensile strength of schistose stones from the petrographic properties. The prediction 

model is developed using both regression analysis and ANN. It was reported from the 

analysis that the ANN model could predict the strength properties more accurately 

than the regression model. 

 

Ceryan et al. (2012) examined the usage of some of the rock properties to predict 

UCS. The input parameters were porosity and P-wave velocity and were collected 

from many carbonate rock samples. Levenberg–Marquardt algorithm (LM-ANN) was 

used to build ANN models and compare their performance factors such as adjusted 

determination coefficient, error, and VAF with statistical regression model 

performance indicators. It was seen that the LM-ANN could predict the dependent 

variables precisely than the regression method. 

 

Kumar et al. (2013a) investigated the capability of predicting some of the vital rock 

properties employing ANN models. A data set including the drill operating variables 

such as bit diameter, speed, the penetration rate, and the equivalent sound level was 

used as a predictor. The responses were UCS, tensile strength, density, p-wave 

velocity, porosity, and elasticity modulus. The measure of goodness of the fit showed 

that the ANN model was predicting the result almost as same as the experimental 

results and concluded that ANN models are precise for estimation of rock properties 

during the drilling process. 

 

Kumar et al. (2013b) carried out an empirical study to assess the correlation between 

acoustic parameters obtained during rock drilling and physico-mechanical properties 

of sedimentary rocks. An acoustic parameter such as sound level produced while 

drilling the different rocks considering bit speed, bit diameter, and the penetration rate 

was recorded. Later the model is developed with multivariate regression (MR) and 

artificial neural network (ANN) method. After analyzing the results, it was observed 
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that the value of RMSE and MAPE was more for MR than the ANN model. Hence, it 

was concluding that ANN is the best predictive tool than MR. 

 

Kahraman (2015) attempted to predict the diamond drill bit's penetration rate (PR) 

using the drilling parameters and the rock characteristics such as the UCS, the BTS, 

and the abrasiveness. In this study, the PR is predicted by multivariable regression 

and the ANN analysis. The results showed that the prediction of penetration rate was 

more accurate than the ANN model, and the performance was better than the 

regression model. 

 

Gurocak et al. (2012) conducted an empirical study on developing a predictive model 

for the tensile strength of rocks using umpteen samples. The input parameters were IS 

(50), SRN, and density. In this study, a separate regression model for tensile strength 

was developed using simple linear and multiple regression models. Similarly, two soft 

computing ANN models, such as radial basis function network (RBFN) and multi-

layer perceptron network (MLPN) were developed. Later, the model performance 

would examine by comparing the coefficient of multiple correlations (R2). Results 

showed that the ANN model developed with MLPN would predict the response more 

accurately. 

 

Majdi and Rezaei (2013) studied a comparative evaluation of ANN and multiple 

regression (MR) models to estimate the UCS of rocks. For this, a lab test database 

consisting of 93 data sets including rock type, hardness, density, and porosity was 

used as predictors and UCS as a response. The performance indices were used to 

analyze the effectiveness of derived models. This assessment inferred that the ANN 

model's performance is significantly better than the MR model.  

 

Ferentinou and Fakir (2017) used artificial intelligence to establish the relationship 

between UCS and some other rock properties. An ANN model using the back-

propagation method was developed to predict UCS. The input parameters were 

density, point load index, tensile strength (σt), and lithology. The lithology was 

introduced in the model as the qualitative input. The results showed an R-value of 

99% for the training set and R = 92% for the test set. It was then concluded that the 

ANN technique is efficient and useful for evaluating the UCS of rocks. 
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2.6 Relationship between Drilling Specific Energy and Rock Properties 
 

 

The word specific energy was coined by Teale (1965) with referring to the rock 

drilling process. He derived a relationship between drill operating parameters and a 

specific energy for rotary rock drilling considering various drilling data collected 

from several rotary-type rock drilling sources. The experimental results showed that 

the specific energy in many rock drilling processes could compare with the 

compressive strength of the drilling rocks.  It was then assumed that a relationship of 

some kind should exist between them. 

    

Kolapo (2020) investigated the rock drilling process to determine the impacts of rock 

properties on the specific energy. The drilling parameters such as penetration rate 

thrust, torque, drill hole area, and bit rotational speed were collected during the 

drilling of laterite, sandy clay, sandstone, granite, and quartzite situated at different 

depths from 3-60 meter collected at four different locations. The specific energy was 

then calculated using Teale's equation and correlated with the UCS and tensile 

strength of the drilled rocks. The experimental results and analysis showed that UCS 

and tensile strength were well correlated with specific energy with an R2 value above 

80%. 

 

Tiryaki and Dikmen (2006) examined the relationship between specific energy (SE) 

obtained from rock cutting experiments on different sandstone and their engineering 

properties. Specific energy of cutting for each sandstone was computed using the 

derived equation. Its strength was then correlated with rock properties using the 

Pearson correlation (R). The experimental results showed that UCS, tensile strength, 

density, and Schmidt rebound number have a good correlation coefficient with the 

cutting-specific energy, with R = 0.942, 0.823, 0.862, and 0.890, respectively. 

 

Yasar et al. (2011) conducted a study on rock drilling using a laboratory drilling set-

up to examine the interaction between the specific energy of drilling and the 

compressive strength of cement mortar, a substitute for natural rock. Since the 

different mortar had been prepared using various aging times, their UCS was also 

varied.  At various drilling speeds, the thrust, torque, and penetration rate were 

measured for various mortars having different physico-mechanical properties. The 
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need for specific energy during the drilling of various mortars was then calculated 

using the collected data. The results showed that drilling-specific energy was linearly 

varying with the UCS of mortars. 

 

Mohammadi et al. (2017) investigated the influence of different geo-mechanical 

properties of rocks on drilling specific energy (DSE). The geo-mechanical parameters 

such as UCS, modulus of elasticity, and internal friction angle were collected at 

different depths from two vertical wells in SW-Iran oil fields. The data collected was 

categorized into training and testing data, and two separate regression models were 

developed using both data. From statistical analysis, it was observed that the UCS has 

a good correlation coefficient with drilling specific energy in both models with R = 

0.63 and R = 0.84, respectively. 

 

Huang and Wang (1997) studied the utilization of specific energy during the diamond 

core drilling of sedimentary and igneous rocks. For that, a series of 36 laboratory 

drilling tests were conducted. The drillability of the drill bit was investigated using the 

penetration rate, applied torque, bit thrust, drill speed, and specific energy of drilling. 

The experimental results showed that the specific energy varied from 2 GJ/m3 to 12 

GJ/m3 for the various rocks having UCS ranging from 73.12 MPa to 163.41 MPa. 

Similarly, as the drilling thrust increased from 900 N to 2700 N, the specific energy 

decreased from 15 GJ/m3 to 4 GJ/m3. 

 

Reddish and Ergul (1996) studied the drilling specific energy during the drilling of 

sedimentary type rocks. A modified portable rotary type drilling setup operated by 

12V NiCd batteries was used for experimental purposes. A digital ammeter was used 

to measure the current supply to the drill unit during the drilling process. The current 

and voltage was a direct measure of energy input into a particular drilling test. During 

the drilling of different rocks, it was observed that the drilling energy decreased as the 

PR increased. Similarly, the drilling energy had a linear relationship with rock 

strength (UCS). 

 

Balci et al. (2004) conducted a study on the relationship between specific energy 

required during rock cutting and the mechanical properties of rock. A total of 23 rocks 

were collected from various mines in Turkey. For rock cutting,  a full-scale linear 
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rock cutting machine installed with a dynamometer was used. During the cutting of 

each rock type, the specific energy (SE) was computed with thrust force data collected 

from a dynamometer. The relationship between the SE and the rock properties was 

examined employing statistical methods. The outcomes showed a good correlation 

between the SE and mechanical properties, such as UCS and tensile strength. 

 

Kalantari et al. (2018) carried out the drilling experiment on three rock types, having 

different rock strengths using the sharp and blunt drill tool with different diameters 

and cutting angles. The required thrust and torque were collected from the data 

loggers for different indentation rates and drill bit speed. The analytical models for 

normal and tangential force were developed considering thrust, torque, internal 

frictional angle of rocks, and bit cutting parameters. The analytical model for drilling 

specific energy and rock strength (UCS) was also developed for both drilling tools 

with these basic models. The analytical model results showed a strong relation 

between drilling specific energy and UCS with R2=0.99 for both sharp and blunt tools 

with a diameter of 8 mm and a cutting angle of 15 degrees. Similarly, the R2 value 

was 0.98 and 0.99 for a blunt and sharp tool with a diameter of 8 mm and a cutting 

angle of 20 degrees. 

 

Ersoy and Atici (2004) studied the performance characteristics of circular diamond 

saws during the cutting process of various rock types. In this experiment, 16 type 

rocks with five clustered groups were used and were cut with a diamond saw at 

various feed rates, depth of cut, and speed.  The analytical model was developed for 

cutting forces using the basic horizontal, vertical and axial forces measured during the 

cutting action. The specific energy was calculated with cutting forces and rock cutting 

parameters. It was then correlated with rock properties and operating parameters. The 

results showed that the specific energy was decreasing as the feed rate and depth of 

cut increased. Similarly, it was also observed that that the specific energy of cutting 

was linearly varying with UCS. 

 

Li and Itakura (2012) proposed an in situ method for evaluating the UCS of rocks 

using specific energy, based on an analytical model of drilling processes. The drilling 

data were obtained from a field experiment using an intelligent drilling machine and 

https://link.springer.com/article/10.1007/s00603-015-0756-4#ref-CR40
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used for the computation of specific energy. The results showed that the UCS of the 

rocks could predict reliably from the specific energy of drilling. 

 

Finfinger (2003) applied Teale's (1965) specific energy model for the specific set of 

drilling conditions used in roof bolting operations in underground coal mines to 

determine the mine roof rocks' strength. The average specific energy obtained for 

different machine conditions was then correlated with the average UCS of rocks. The 

results showed that there is an almost linear relationship between UCS and the 

specific energy of drilling. 

 

Bakar et al. (2018) studied the possibility of predicting the specific energy of a button 

bit used in rotary-percussion rock drilling based on geo-mechanical properties of 

rocks. Specific energy was computed using the mechanical drilling data collected at 

different site locations. The rock properties are determined from rock cores collected 

at the same sites. The specific energy of different rocks was then correlated with their 

respective rock properties using a simple linear regression technique. The results 

indicated that the UCS, BTS, and Schmidt rebound numbers were well correlated with 

drilling specific energy with the R2 value of 0.88, 0.73, and 0.72, respectively.  

 

2.7 Summary 

 

In this chapter, a comprehensive literature survey on different techniques used to 

estimate the rock properties are presented. The literature review shows that the 

measurement while drilling technique using drill parameters such as thrust, torque, bit 

speed etc., or vibration parameters was widely used to assess physical properties of 

rocks such as cracks, voids, discontinuity directly at the site. But the correlation of 

drill operating parameters such as thrust, torque, bit speed or bit diameter, along with 

vibration data with vital rock properties like UCS, BTS, SRN and density for their 

estimation purposes, is very limited. Therefore, to address these constraints, this thesis 

intended to understand the drilling process under different operating conditions and 

observe the behavior of drilling responses that have a good relationship with the rock 

properties during the rotary drilling process.  

However, since drilling is an important operation used often in many rock engineering 

projects, the direct measurement of such data may be useful for instant estimation of 

https://link.springer.com/article/10.1007/s00603-015-0756-4#ref-CR65
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strength properties and others for further advancement of projects. Also, the same 

method may also be useful at laboratory capacity if the core samples of rocks are not 

readily available. Also, the analysis of drilling specific energy in most previous 

research work is limited to UCS. The extension of an analysis of specific energy 

concerning other properties of rocks may help understand it better. 
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CHAPTER 3 

3. METHODOLOGY, EXPERIMENTAL SETUP AND 

ROCK PROPERTIES 

 

3.1 Introduction 

 

This chapter describes the detailed experimental setup, methodology, 

equipment/instruments, and experimental procedures followed in the current research 

work. The properties such as UCS, BTS, SRN, and density of each rock type carried 

out at the rock mechanics laboratory are also discussed. 

 

3.2 Methodology 

 

The methodology of the research work is presented through a flow chart, as shown in 

Fig. 3.1. The methodology of the research work is presented through a flow chart, as 

shown in Fig. 3.1. Well-prepared six types of sedimentary rock samples of the cubical 

shape having 16cm, including shale, three types of fine-grained sandstones and two 

types of limestones representing the different strengths were collected from Andhra 

Pradesh and Rajasthan mine sites through a Decorative Stone Agency located at 

Bangalore. Each type of rock consisted of 3 blocks collected from the same rock 

mass. Two blocks are utilized to remove the core samples required to test uniaxial 

compressive strength (UCS), Brazilian tensile strength (BTS) at the rock mechanics 

laboratory and determined as per the ISRM guidelines. The Schmidt Rebound 

Number (SRN) and density are determined using the same blocks before removing the 

cores. One block from each rock type is exclusively used for conducting the drilling 

experiment.  

Rotary-type rock drilling operations were carried out using the BMV45 T20 CNC 

vertical milling center (VMC). Three diamond-impregnated core drill bits with a 
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different diameter, three penetration rates, and three drill bit speeds are used to drill 

each rock type. Drilling experiments were carried out on different rocks, i.e., one type 

of shale (SH), three types of fine-grained sandstone such as pink (SS-1), red (SS-2) 

and banded (SS-3) sandstones and two types of limestone (LS-1 and LS-2) using 

diamond impregnated core drill bits (12, 16, and 20 mm) on VMC by changing bit 

speed (400, 500, and 600 r.p.m.) and penetration rate (3, 4, and 5mm/min). The thrust 

induced and torque developed at the bit-rock interface is measured for all bit-rock 

combinations considered, using a piezo-electric type drill tool dynamometer as shown 

in Fig.3.3 A and Fig.3.3 B.  

 

Similarly, the vibration signal emanated from the drill head is captured for the same 

bit-rock combinations using a piezo-electric type accelerometer with a mounting 

magnetic base attached to the drill head, as shown in an enlarged Fig.3.3 B. The 

signal is then transmitted to DAQ and LabVIEW application software for further 

processing, such as the frequency component extraction. Later, the collected data are 

utilized to build predictive models to estimate physico-mechanical rock properties and 

also drilling specific energy is analyzed using statistical tools.  
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Fig.3.1 Flow chart of research methodology 
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3.2.1 Details of parametric variations 

 

Table 3.1 Details of parametric variations 
 

 

Parameters Variables 

Laboratory investigations 

(A)  Drilling operations 

 

(a) Bit parameters 

1. Bit type 

2. Bit geometry 

3. Bit diameter 

 

Diamond core drill bit 

Diamond impregnated bit 

12,16 and 20 mm 

(b) Operational parameters 

1. Penetration rate (mm/min) 

2. Drilling speed (r.p.m) 

3. Bit diameter (mm) 

 

3,4,5 mm/min 

400, 500, and 600 rpm 

12,16 and 20mm 

(c) Rock parameters 

1. Type 

2. Rock properties considered 

 

Shale (1), Sandstone (3) and Limestone (2) 

UCS, BTS, SRN and density 

(d) Drilling responses Thrust, torque and vibration frequency 

(e) Drilling conditions Dry condition 

 

 

Table 3.1 shows the details of the variables to be studied for the experimental 

purpose. 

 

3.3 Experimental Setup 

 

A detailed view of the rock drilling experimental set-up is shown in Fig. 3.2 and 3.3. 

The experimental set-up consists of the following machines/equipment, rock samples 

and measuring devices. 

1. CNC−Vertical Milling Center (VMC) 
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2. Drill tool dynamometer with digital indicator  

3. NI-9234 - acoustic/vibration data acquisition system (DAQS) 

4. Cubical sedimentary type rock samples of size 16cm. 

 

Rock drilling operations were carried out using a CNC type heavy-duty vertical 

milling center (VMC). It consists of a rigid base on which the machine table is fixed, 

and the table could travel in 3-dimensions operated by pneumatic power. Like the 

spindle speed and penetration rate, the table movement can be controlled using a 

numerical control program (NC program). Once the numerical value of drill bit speed 

and the penetration rate is assigned in the NC program, both would operate and 

maintain the assigned values till the end of the particular operation. 

  

 

Fig.3.2 Schematic diagram of the experimental setup 

 
 

The bit-thrust inducing and torque developed at the bit-rock interface during the 

drilling of different rock types is measured using an IEICOS made digital type drill 

tool Dynamometer. The vibration signal at the drill head is captured with NI-9234, 4- 

channel sound/vibrations data acquisition system working at the sampling rate of 
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1.562 to 51.3 Kilo samples/s. The entire drilling process was performed at room 

temperature (27o C).   

 

 
 

A: Detailed view of experimental setup 
 

 

 
 

B: Enlarged view of drilling experiment 

Fig.3.3 Experimental setup 



41 
 

3.3.1 CNC−vertical milling center (VMC) 

 

In this experimental study, the rock drilling operations were performed on the 

BMV45 T20 computer numerical control (CNC) vertical milling center, as shown in 

Fig.3.4. 

Important specification of this CNC machine is as follows: 

Dimensions of the machine table: 450 mm900 mm 

Maximum traverse of machine table: X = 600mm, Y = 450mm, Z = 500mm 

Range of spindle speed: 1-10000 r.p.m. 

Range of penetration rate: 1-10000 mm/min 

Maximum loading capacity of table: 500 kg 

Power:  11.9 KW, 415 V, 3 Phases, 50 Hz 

Air pressure – 6 bar 

 

Fig.3.4 BMV 45 T20 CNC vertical milling center 

 

VMC is a machine used for drilling, boring and milling operations on different 

materials, and it is controlled by a closed-loop control system, as shown in Fig.3.5. In 
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this system, a subsystem is designed called feedback, which would continuously 

monitor the difference of input and output data. For example, during the drilling of a 

particular material, if the penetration rate of the bit in the numerical control program 

(input) is assigned as 2mm/min, then the bit has to penetrate the material at the same 

penetration rate irrespective of strength or other properties of the material being 

drilled. The feedback control system would continuously monitor the bit's 

performance using a measuring system to ensure whether the bit is moving at the 

same rate or not at any point in time. At any time, if the measured data is not matched 

with the input data, then the feedback system would send the equivalent signal 

continuously to the servo-motor control system to achieve the given penetration rate 

by adjusting and applying the appropriate thrust and torque to the bit. This process 

will continue until the particular operation is completed. There are two types of 

feedback systems, analog or digital type. The analog systems map the variation of 

mechanical variables such as position and velocity in voltage levels. In digital type, 

the electrical pulses are used for controlling the output errors. Closed-loop control 

systems are very effective and reliable since they can observe running conditions in 

real-time by feedback subsystems and automatically compensate continuously for any 

differences. The closed-loop CNC systems can work with an accuracy of 0.0001 of an 

inch. 

It is assumed that the drilling method may affect the inducing of thrust, torque at the 

bit-rock interface, and also the acoustic signal emanating from the drill head. 

Therefore, the testing procedure is standardized throughout the entire drilling 

operation of various rock types. 

 

 

 

A: Block diagram of closed loop control system 
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B: Schematic diagram of closed loop control system in actual CNC machine 
 

Fig.3.5 Closed loop control system  

 

3.3.2 Diamond impregnated core drill bits 

 

A typical diamond-impregnated core drill bits of diameters 12, 16 and 20 mm are 

used for drilling operations. An impregnated diamond drill bit has a cylindrical, 

hollow crown structure with a lower portion containing diamond particles and a steel 

shank attached to the crown structure at its upper end. The diamond particles are 

dispersed within a metal matrix at the lower portion of the crown, as shown in Fig.3.6  

 

Fig.3.6 Diamond impregnated core drill bits 
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3.3.3 Digital type drill tool Dynamometer 

 

The IEICOS drill tool dynamometer comprises two major parts, as shown in Fig.3.7. 

The first one is the drill tool dynamometer (sensor body), and the second is the digital 

indicator used for noting down the thrust and torque. The sensor body consists of a 

cylinder with both ends welded with approximately 10mm thick steel plates. There 

are four long circular cuts on both plates to fix them to the machine table and machine 

vice. With the T-bolt and nut, the lower plate is securely fastened to the T-slots 

provided in the machine table, and on the top plate, the machine vice is directly fixed 

with suitable fasteners. The machine vice is used to hold the different rock samples 

firmly during the drilling process. Primarily, the sensor body has an individual full 

bridge strain gauge network to measure two forces, i.e., thrust and torque. The output 

of these strain gauge bridges is available via the 5-pin DIN connector sockets on the 

body. The measuring range of thrust and torque is 5000N and 200N-m, with a 

sensitivity of 1N and 1N-m, respectively. The thrust and torque inputs are provided at 

the sensor body connected to the output of the display unit using two separate cables 

of length approximately two meters. 
   

 

Fig.3.7 Drill tool dynamometer  

 



45 
 

During the drilling of rock samples, the bit-force and torque are exerted on the sensor 

body. As the sensor is subjecting to axial and shears force, the equivalent analog 

signal is triggered in the sensor body and it passes to the signal conditioner coupled 

with the sensor body. In the signal conditioner, the analog signal is converted to a 

digital signal for showing the value of thrust and torque at digital indicators provided 

in the signal conditioner box. 

  

3.3.4 NI-9234 Data Acquisition System (DAQ) 

 

Data acquisition (DAQ) is the process of measuring an electrical or physical 

phenomenon such as voltage, current, temperature, acceleration, or acoustic 

parameters with a computer. A DAQ system consists of sensors, DAQ measurement 

hardware, and a computer with programmable software. In the present research work, 

an accelerometer sensor, NI-DAQ hardware, and LabVIEW application software 

constitute the data acquisition system used to acquire acoustic data at the machine's 

drill head. 

 

a)  Accelerometer 

 

As shown in Fig.3.8, accelerometer measures acceleration, which is the rate of change 

of the velocity of an object measures in meters per second squared (m/s2) or in G-

forces (g). A single unit of G is equivalent to 9.8 m/s2.Accelerometers are useful for 

sensing vibrations of mechanical systems. In the present work, the drill head's 

vibration was measured with the accelerometer model No.YMC121A10 IEPE 

(Integrated electronics Piezo-electric) with measuring range and sensitivity ±500g and 

9.81 MV/g, respectively. 

.  

Fig.3.8 Accelerometer sensor (with magnetic base) 
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b)  NI-9234 DAQ Hardware 
 

 

DAQ hardware, as shown in Fig.3.9, acts as the interface between a computer and the 

sensor. It primarily digitizes analog signals coming out from the sensor so that a 

computer can interpret them. The three key components of a DAQ device used for 

measuring a signal are the signal conditioning circuitry, analog-to-digital converter 

(ADC), and computer bus. In the present work, model no. NI-9234 DAQ hardware 

specifically designed to acquire sound and vibration signal with the sampling range of 

1.652-51.2 KS/s, a maximum frequency of 13.1072 MHz was used. 

 

 

 
 

Fig.3.9 NI-DAQ hardware 

 

3.4 Determination of Vibration Frequency at Drill Head  

 

When a system is subjected to vibration, the peak amplitude of vibration appears at 

specific frequencies within the frequency spectrum and is known as the dominant 

frequency. It carries the maximum energy among all frequencies found in the 

spectrum (Telgarsky.2013).   
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Fig.3.10 Time-domain vibration signal 

 

 

 
 

Fig.3.11 Frequency-domain vibration data (sandstone-2, Z = 337 Hz) 

 

 
 

Fig.3.12 Frequency-domain vibration data (sandstone-3, Z = 340 Hz) 

 

In the current study, the vibration signal emanating from the drill head during drilling 

of various rocks is captured with a four-channel sound/vibrations DAQ system 

working at the sampling rate of 1.652 to 51.2 Kilo Samples/sec. The accelerometer is 

mounted on the drill head using a magnetic bracket, as shown in Fig.3.3B. In this 

system, vibration of the drill head is picked up by an accelerometer in the form of an 

analog signal, and it is imparting to the DAQ hardware or signal conditioning device. 

In the signal conditioning device, the analog signal is transformed into a digital signal. 
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The digitized signal is then sent to LabVIEW application software to extract the time-

series vibration signal, as shown in Fig. 3.10. Fig. 3.11 indicates that the dominant 

vibration frequency of the drill head during the drilling of sandstone-2 at a particular 

set of machine operating parameters was 337 Hz with the highest amplitude of 0.26 g. 

Similarly, the dominant vibration frequency was 340 Hz during the drilling of 

sandstone-3, as shown in Fig. 3.12. The frequency component of the time-domain 

signal is extracted using the appropriate Fast Fourier Transformation (FFT) algorithm, 

as shown in Fig. 3.13. 

 

 

Fig.3.13 FFT algorithm 

 

3.5 Experimental Procedure 

 

In this experiment, a total of six types of sedimentary rocks, including one type shale, 

three type fine-grained sandstones, and two type limestones representing different 

physico-mechanical properties, were used for drilling operations. It is assumed that 

the drilling method might affect the inducing of thrust, torque at the bit-rock interface, 

and also the vibration signal emanating from the drill head. Therefore, the testing 
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procedure is standardized throughout the entire drilling operation of various rock 

types. The rock properties such as uniaxial compressive strength (UCS), Brazilian 

tensile strength (BTS), Schmidt rebound number (SRN), and density are determined 

at the laboratory as per the ISRM standards. Sophisticated measurement systems were 

used to record both thrust induced and torque developed at bit-rock interaction during 

the drilling of various rocks using different combinations of drill operating 

parameters. Similarly, the vibration signal emanated from the machine head was also 

captured along with thrust and torque.  

Initially, the dynamometer with the sensor body is mounted on the machine table 

securely with suitable fasteners. Machine vice was then fixed on the sensor body with 

bolt and nut and ensured the proper electrical connectivity between sensor body and 

display unit.  Similarly, the vibration sensor, i.e., accelerometer, is fixed on the drill 

head using a magnetic bracket and ensured the proper electrical connectivity between 

DAQ hardware and sensor. Later, the rock sample having the cubical shape with 

dimensions of 16 cm is tightly fixed in the machine vice.  

The major obstructions for precise measurement of thrust and torque while drilling a 

hole are usually influenced by two disturbing phenomena. The first one is the 

compaction effect caused by the accumulation of rock dust along the drill bit at the 

hole's bottom surface. The second reason for the imprecise measurement is drill bit 

wears, especially when high silica content or abrasive rocks such as sandstones are 

being drilled. Both effects cause an artificial increment of thrust and torque. Unless 

taking some precaution measures, the measurement of both parameters would be 

wrong. Therefore, these effects need to be corrected to get the real values that would 

correspond to the absence of such disturbing phenomena.  

For each rock type, 27 holes with a depth of 30 mm are drilled with 27 combinations 

of drill operating parameters (drill bit diameter of 12, 16, and 20mm × drill bit speed 

of 400, 500, and 600 rpm × penetration rate of 3, 4, and 5mm/min = 27 drill operating 

conditions). The following methods were used to measure the drilling responses, such 

as thrust, torque, and vibration parameters during the drilling of 27 holes on each rock 

type. 

1. During the drilling of each hole with a particular drill operating condition, a hose 

pipe fitted with an appropriate size nozzle carrying the compressed air was often 
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directed towards the drill bit and the drilling hole. This arrangement intends to flush 

out the dust generated inside the drilled hole and aiding quick cooling of heat 

generated at the bit surface due to friction between bit and rock material. Thus, 

melting of the impregnated diamond matrix and consequently wear rate is avoided up 

to some extent. Also, as drilling of a particular hole was completed, the bit surface 

was wiped with the water-wet cotton and cooled further using a hair-dryer for a few 

seconds. In addition, during the entire drilling process, the drill bits were often 

visually inspected to ensure wear. If it was found worn out or damaged, immediately 

the drilling was carried out with a new drill bit.   

2. During the drilling of each hole, when the drill bit was advanced through 5, 10, 15, 

20, 25, and 30mm depth, the thrust induced and torque developed at the bit-rock 

interface were noted down using a digital indicator of the dynamometer. Later, the 

arithmetic average of six-thrusts and six-torques was calculated for a particular hole 

and used for analysis purpose. Similarly, for each hole, at least three times, the 

vibration signal of 1 sec with five iterations emanated from the drill head along with 

its frequency domain data extracted, as explained in section 3.4., was noted down at 

different depths randomly. It was observed that the vibration frequency data taken for 

a particular hole with particular machine conditions were consistent. However, the 

same procedure was followed to measure thrust, torque and vibration frequency for 

remaining drilling holes on the particular rock type.  

3. Similarly, the same procedure was followed for the remaining five types of rocks. 

Thus a total of 162 (= 6 rocks × 27 test conditions) data set comprising each drilling 

response such as thrust, torque and vibration frequency are gathered. Later, they were 

used to develop multiple regression, ANN models, and computation of drilling-

specific energy. 

 

3.6 Determination of Actual Properties of Rocks at Laboratory 

 

Core specimens required to determine rock properties such as uniaxial compressive 

strength and Brazilian tensile strength in the laboratory are prepared as per the ISRM 

guidelines. Similarly, Schmidt rebound number and densities are determined using the 

rock block and core following the ISRM guidelines. 
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3.6.1 Uniaxial compressive strength (UCS) 

 

UCS is an essential strength property of rocks used in many rock engineering 

applications. Fig.3.14 showing the AIM-317E-Mu compression testing equipment 

used to measure UCS in the present work. It has a loading unit with a maximum 

loading limit of 2000kN. To determine the UCS, NX-size core specimens, having a 

length and diameter of 54 mm and 135 mm, respectively, were prepared as per ISRM 

standards (Ulusay and Hudson 2007). At least five core specimens should be used to 

determine the UCS of each rock type. Before using the cores for testing, it was made 

dry using the electric oven. The specimen was subjected to a constant load rate of 

1kN/sec in the testing machine until the cracks initiated (failure) in it. The UCS was 

calculated with the failure load and specimen dimensions using Eq.3.1. The essential 

statistical description of UCS is summarized in Table 3.2. 

 

     (3.1) 

 

Where, F = Failure load in Newton, and A = Area of specimen cross section in mm2

 
 

 
 

Fig. 3.14 UCS testing machine 

A

F
MPaUCS )(



52 
 

Table 3.2 Laboratory test results of UCS 

Rock types 
Statistical description of UCS (MPa) 

Min Max SD Mean 

Shale 19.3 19.8 0.27 19.6 

Sandstone-1 37.2 37.9 0.35 37.5 

Sandstone-2 64.1 65.3 0.61 65.1 

Sandstone-3 72.1 72.9 0.40 72.4 

Limestone-1 95.3 95.9 0.32 95.3 

Limestone-2 118.6 119.6 0.46 119.2 

 

3.6.2 Brazilian tensile Strength (BTS) 
  

Tensile failure in rock will occur when the effective stress becomes tensile and equals 

or exceeds rock tensile strength. Usually, the rock materials exhibit low tensile 

strength due to the micro-crack presence in the rock materials. In this test, a Brazilian 

tensile strength (BTS) machine with a 100 kN loading capacity is used to determine 

the BTS, as shown in Fig.3.15. The large dial indicator calibrated in terms of kN is 

mounted on the machine, and each division represents 0.5 kN. 

The core specimen was prepared as per the guideline of ISRM. A core specimen, 

having a 54mm diameter and a thickness of 27mm, was prepared. Any irregularities 

around the peripheral surface were removed using the polishing machine. Similarly, 

end faces were made flat and parallel to each other within the tolerance limit of 0.25 

mm and 0.25 degrees, respectively.  The load was continuously applied around the 

specimen's periphery until it failed within 15-30 seconds. The failure load was 

recorded in the dial indicator and was used to calculate the tensile strength of the rock 

using Eq.3.2. Five trials were conducted using five specimens, and the arithmetic 

average of all five test results was used for analysis purposes. The same procedure 

was conducted for other types of rocks. The essential statistical description of BTS is 

summarized in Table 3.3. 

 

 (3.2) 
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Where 

F = Failure load in Newton 

D = Diameter of specimen in mm 

T = Thickness of specimen in mm 

 

 
 

Fig.3.15 Brazilian indirect tensile strength testing 

 

Table 3.3 Laboratory test results of BTS 

Rock types 
Statistical description of BTS (MPa) 

Min Max SD Mean 

Shale 1.465 1.621 0.125 1.613 

Sandstone-1 3.514 3.648 0.051 3.452 

Sandstone-2 4.054 4.350 0.154 4.219 

Sandstone-3 7.406 7.692 0.128 7.504 

Limestone-1 7.842 8.310 0.169 8.106 

Limestone-2 7.918 8.241 0.216 8.721 
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3.6.3 Schmidt rebound number (SRN) 
 
 

Schmidt rebound hammer tester as shown in Fig.3.16 was developed to measure the 

UCS of concrete indirectly by measuring its surface hardness. But later, it was 

extended to measure the hardness of rocks. It consists of a spring-loaded hammer that 

can be pressed against the material to be tested. Initially, ten points on the rock 

surface were marked at a regular interval using a chalk piece.  

 

 

 
 

Fig. 3.16 Schmidt hardness tester 

 

Table 3.4 Laboratory test results of SRN 

Rock types 
Statistical description of SRN 

Min Max SD Mean 

Shale 21 25 1.41 23 

Sandstone-1 40 44 1.35 42 

Sandstone-2 46 51 1.85 49 

Sandstone-3 48 53 1.85 51 

Limestone-1 54 56 0.74 56 

Limestone-2 58 62 1.31 59 

 

At each point, the hammer was pressed against the rock by positioning the hammer 

vertically downward and same time holding the button located near the hammer. The 

scale measuring the rebounding displacement of the hammer is directly calibrated in 
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terms of a hardness number. Thus, the hardness of rocks can be measured at any point 

on the rock surface. The same procedure was repeated at all marked points and noted 

down the readings. The arithmetic mean value is calculated from ten values. The 

number close to the mean value is then selected as the final reading. The essential 

statistical description of SRN is summarized in Table 3.4. 

 

3.6.4 Dry density of rock (  ) 

 

Density is a measure of mass per unit volume. The density of each rock type sample is 

determined after the removal of moisture from it. The moisture was removed by 

placing the samples in an electric oven at approximately 80oC at least for one hour 

and was allowed to dry at room temperature (Ulusay and Hudson 2007). After drying 

the sample, its weight was measured using a digital weighing machine. The volume of 

the core sample is measured by its dimensions. The density of the sample is measured 

using Eq.3.3. 

  

gm/cc                                    (3.3) 

 

Table 3.5 Laboratory test results of density 

 

Rock types 
Statistical description of Density (g/cc) 

Min Max SD Mean 

Shale 2.0389 2.0623 0.0078 2.0521 

Sandstone-1 2.2058 2.2587 0.0199 2.2587 

Sandstone-2 2.5489 2.5941 0.0155 2.5848 

Sandstone-3 2.5801 2.5989 0.0087 2.5930 

Limestone-1 2.6125 2.6521 0.0142 2.6589 

Limestone-2 2.9210 2.9539 0.0115 2.9442 

 

Three rock samples are used to measure the density of each rock. Later, the average 

value was calculated for each rock type and used for further data analysis. The 

primary statistical descriptions of the dry density of different sedimentary rocks are 

given in Table 3.5. 

 

Volume

Mass
ccgm )/(
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3.7 Summary 
 

This chapter mainly describes experimental methodology, experimental procedure, 

the machine and instruments used for drilling and the measurement of drilling 

responses. The determination of actual rock properties in the laboratory is also 

discussed. 

 



 

 

 

 

 

 

 

 

CHAPTER-4 
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CHAPTER 4 

4. RESULTS OF EXPERIMENTAL INVESTIGATION 

 

4.1 Importance of Drilling Responses Produced during the Rock Drilling Process 
 
 

During the rock drilling process, the strength of rock has a significant influence on the 

axial and rotational drilling force required. Therefore, to cause a rock to break during 

drilling is a matter of applying sufficient axial (thrust) and rotational force (torque) 

with a tool to exceed the strength of the rock (Hartman and Mutmansky 2002). During 

the drilling of particular rock strength, the thrust and torque are also depend on drill 

operating parameters such as drill bit diameter, spindle speed, and penetration rate. 

However, in this study, the relationship of acoustic drilling response (Kumar et 

al.2012; Khoshouei and Bagherpour, 2020), such as vibration frequency induced at 

the drill head during the drilling of different rock, is also investigated along with the 

thrust and torque. 

 

4.2 Influence of Drill Operating Parameters and UCS on Drilling Responses 
 
 

In this section, the trend of drilling responses is analyzed following the drill operating 

parameters such as penetration rate (PR), spindle speed (SS), and drill diameter (DD), 

and UCS of rocks since the UCS of the rock is used as the main strength property to 

analyze the feasibility of many rock engineering problems. Fig.4.1, 4.3, and 4.5 

represent the trend of drilling responses such as thrust, torque, and vibration 

frequency, respectively, produced during the drilling of various compressive strength 

rocks at different drill operating parameters. As shown in Fig. 4.2 and 4.4, drill 

operating parameters and UCS of rocks could explain most of the variance in drilling 

thrust and torque, and they have a specific trend. The definite trend of vibration 

frequency is not explained by penetration rate and drill diameter as shown in Fig.4.5. 

However, it is observed that the spindle speed could explain most of the variance in 



58 
 

inducing vibration frequency at the drill head than the UCS, as shown in Fig.4.6. The 

entire drilling data, including drill responses, is shown in ANNEXURE-I. 

 

 

 
 

 

Fig 4.1 Main effect plots (Thrust) 
 

 

 
 

 

Fig 4.2 Incremental impact of variables on thrust 
 

 

 
 

 

Fig 4.3 Main effect plots (Torque) 
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Fig 4.4 Incremental impact of variables on torque 
 

 

 

 

Fig 4.5 Main effect plots (Vibration frequency) 
 

 

 
 

 

Fig 4.6 Incremental impact of variables on vibration frequency at drill head 
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4.3 Influence of penetration rate on drill thrust and torque at bit-rock interface 

during the drilling of different rocks 

 

Fig.4.7 shows the variations of mean thrust and its level during the drilling of various 

rocks using different penetration rates (PR) with an average spindle speed and drill 

diameter of 500 r.p.m. and 16mm, respectively. During the drilling of any rock type, it 

was observed that as the PR increases from 3 to 4 mm/min and 4 to 5mm/min, the 

mean thrust level was increased (Abbas et al.2020) as shown in Table 4.1. The reason 

may be that as the penetration rate increases during the drilling of a particular rock 

type, the resistance offered by the rock may also increase. It is also observed with a 

particular PR that the mean thrust increases as the UCS and other properties of rock 

increase. It may be because as the strength and other properties of rocks are 

increasing, they may offer more resistance against drill bit PR. Since the CNC-vertical 

milling center used for drilling the rocks is equipped with the closed-loop control 

system, the machine could adjust the required higher thrust according to the increased 

PR and rock properties.  

 

 

Fig. 4.7 Influence of penetration rate and rock properties on drill thrust 
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Table 4.1 Mean thrust at different penetration rate of drilling 

 

 

Rock type (UCS in MPa) 

Penetration Rate (mm/min) 

3 

mm/min 

4 

mm/min 

5 

mm/min 

Change in 

% 

Shale (SH)- 19.6 MPa 372 388 395 6.18 % 

Sandstone-1(SS-1)- 37.5 MPa 427 447 462 8.19 % 

Sandstone-2 (SS-2)-65.1 MPa 486 507 526 8.23 % 

Sandstone-3 (SS-3)-72.4 MPa 508 526 553 8.85 % 

Limestone-1 (LM-1)-95.3 MPa 558 588 610 9.31 % 

Limestone-2 (LM-2)-119.2 MPa 580 618 645 11.20 % 

Change in percentage (%) 55.91 % 59.27 % 63.29 % - 

 

 

 

Fig. 4.8 Influence of penetration rate and rock properties on torque 
 
 

Fig.4.8 shows the variations of mean torque and its level during the drilling of various 

rocks using different penetration rates (PR) with an average spindle speed and drill 

diameter of 500 r.p.m. and 16mm, respectively. During the drilling of any rock type, it 

was observed that as the PR increases from 3 to 4 mm/min and 4 to 5mm/min, torque 



62 
 

development at the bit-rock interface almost follows the same trend as that of thrust. 

Therefore, it can imply a linear relationship between thrust and torque 

(Bhatnagar.2011). It is also seen that the mean torque is almost increasing at a 

particular penetration rate as the UCS and other properties of rock increase. Table 4.2 

shows the mean torque induced at the bit-rock interface during the drilling of various 

rocks with different PR. 

 

Table 4.2 Mean torque at different penetration rate of drilling 

 

 

Rock type (UCS in MPa) 

Penetration Rate (mm/min) 

3 

mm/min 

4 

mm/min 

5 

mm/min 

Change in 

% 

Shale (SH)- 19.6 MPa 4.88 5.22 5.44 11.47 % 

Sandstone-1(SS-1)- 37.5 MPa 6.44 6.66 6.88 6.83 % 

Sandstone-2 (SS-2)-65.1 MPa 8.11 8.33 8.88 9.49 % 

Sandstone-3 (SS-3)-72.4 MPa 8.33 8.55 8.91 6.96 % 

Limestone-1 (LM-1)-95.3 MPa 8.55 8.77 9.44 10.40 % 

Limestone-2 (LM-2)-119.2 MPa 9.88 10.11 10.55 6.78 % 

Change in percentage (%) 102.45 % 93.67 % 93.93 % - 

 

 

4.4 Influence of spindle speed on drill thrust and torque at bit-rock interface 

during the drilling of different rocks 

Fig.4.9 shows the variations of mean thrust and its level during the drilling of various 

rocks using different spindle speeds with an average PR of 4mm/min and drill 

diameter of 16mm. During the drilling of any rock type, it was observed that the mean 

thrust level is decreasing as the spindle speed (SS) changes from 400 to 500 r.p.m. 

and 500 to 600 r.p.m.as shown in Table 4.3. Its reason may be that the drilling energy 

is the combination of thrust and rotational energy, as shown in Eq. 5.21 and, both 

would act during the drilling of a hole. However, when the spindle speed increases, 

the incremental change in speed may cause the increase of rotational energy, and that 

energy may assist in achieving the particular penetration rate rather than be assisted 

by the thrust energy.  Due to this, the thrust energy may reduce at high spindle speed 
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(An et al. 2015; Abbas. et al. 2020). It is also seen that the mean thrust is increased at 

a particular speed as the UCS and other properties of rock increase.  It may be 

because as the strength and other properties of rocks are increasing, they may offer 

more resistance against drill bit penetration at a particular speed.  

 

Fig. 4.9 Influence of spindle speed and rock properties on drill thrust 
 

Fig.4.10 shows the variations of mean torque and its level during the drilling of 

various rocks using different spindle speeds with an average penetration rate and drill 

diameter of 4mm/min and 16mm, respectively. During the drilling of any rock type, it 

was observed that the torque level is decreasing as the spindle speed changes from 

400 to 500 r.p.m. and 500 to 600 r.p.m.as shown in Table.4.4. However, the torque 

level developed at the bit-rock interface is not proportionately varying at different 

spindle speed for different rocks (Rao 2002; Bhatnagar et al. 2011). It is also seen that 

the torque is almost increasing at a particular spindle speed as the UCS and other 

properties of rock increase. 
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Table 4.3 Mean thrust at different spindle speed of drilling 

 

 

Rock type (UCS in MPa) 

Spindle speed (r.p.m.) 

400 

r.p.m. 

500 

r.p.m. 

600 

r.p.m. 

Change in 

% 

Shale (SH)- 19.6 MPa 414 385 356 16.29 % 

Sandstone-1(SS-1)- 37.5 MPa 478 435 400 19.50 % 

Sandstone-2 (SS-2)-65.1 MPa 548 501 462 18.61 % 

Sandstone-3 (SS-3)-72.4 MPa 572 515 480 19.16 % 

Limestone-1 (LM-1)-95.3 MPa 632 598 554 14.07 % 

Limestone-2 (LM-2)-119.2 MPa 667 628 570 17.01 % 

Change in percentage (%) 61.12 % 63.18 % 60.45 % - 

 

 

 

Fig. 4.10 Influence of spindle speed and rock properties on torque. 
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Table 4.4 Mean torque at different spindle speed of drilling 

 

  

Rock type (UCS in MPa) 

Spindle speed (r.p.m.) 

400 

r.p.m. 

500 

r.p.m. 

600 

r.p.m. 

Change in 

% 

Shale (SH)- 19.6 MPa 5.77 5.11 4.66 23.81 % 

Sandstone-1(SS-1)- 37.5 MPa 7.22 6.44 6.11 18.16 % 

Sandstone-2 (SS-2)-65.1 MPa 8.44 8.22 7.22 16.89 % 

Sandstone-3 (SS-3)-72.4 MPa 8.77 8.33 8.22 6.69 % 

Limestone-1 (LM-1)-95.3 MPa 9.11 8.44 8.33 9.36 % 

Limestone-2 (LM-2)-119.2 MPa 9.66 9.11 8.66 11.54 % 

Change in percentage (%) 67.41 % 78.27 % 85.83 % - 

 
 

4.5 Influence of drill diameter on drill thrust and torque at bit-rock interface 

during the drilling of different rocks 

 

Fig.4.11 shows the variations of mean thrust and its level during the drilling of 

various rocks using different drill diameters with an average penetration rate and 

spindle speed of 4mm/min and 500 r.p.m., respectively. During the drilling of any 

rock type, it was observed that the thrust level is increasing as the drill diameter (DD) 

changes from 12 to 16mm and 16 to 20mm. The reason may be that when the drilling 

hole area is increasing, the volume of the material to be removed also increases. For 

removing the higher volume, the machine may utilize the higher thrust. It is also seen 

that the mean thrust is increasing at a particular drill diameter as the UCS and other 

properties of rock increase. Table 4.5 shows the mean thrust induced at the bit-rock 

interface during the drilling of various rocks with different diameter bits. 
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Fig. 4.11 Influence of drill diameter and rock properties on drill thrust 
 

Table 4.5 Mean thrust at different drill diameters of drilling 
 

 

Rock type (UCS in MPa) 

Drill Diameter (mm) 

12  

mm 

16  

mm 

20  

mm 

Change in 

% 

Shale (SH)- 19.6 MPa 327 360 400 22.32 % 

Sandstone-1(SS-1)- 37.5 MPa 345 401 430 24.63 % 

Sandstone-2 (SS-2)-65.1 MPa 400 445 502 25.50 % 

Sandstone-3 (SS-3)-72.4 MPa 460 527 580 26.08 % 

Limestone-1 (LM-1)-95.3 MPa 495 560 612 23.63 % 

Limestone-2 (LM-2)-119.2 MPa 550 620 690 25.45 % 

Change in percentage (%) 68.19 % 72.22 % 72.51 % - 
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Fig. 4.12 Influence of drill diameter and rock properties on torque 
 

 

Table 4.6 Mean torque at different drill diameter of drilling 

 

 

Rock type (UCS in MPa) 

Drill Diameter (mm) 

12  

mm 

16  

mm 

20  

mm 

Change in 

% 

Shale (SH)- 19.6 MPa 3.77 5.22 6.55 73.74 % 

Sandstone-1(SS-1)- 37.5 MPa 5.22 7.22 7.66 46.74 % 

Sandstone-2 (SS-2)-65.1 MPa 6.11 9.11 10.44 70.86 % 

Sandstone-3 (SS-3)-72.4 MPa 6.22 9.33 9.88 58.84 % 

Limestone-1 (LM-1)-95.3 MPa 6.66 9.55 10.33 55.10 % 

Limestone-2 (LM-2)-119.2 MPa 7.22 9.77 12.22 69.25 % 

Change in percentage (%) 91.15 % 87.16 % 86.56 % - 

 

Fig. 4.12 shows variations of mean torque and its level during the drilling of various 

rocks using different drill diameters with an average penetration rate and spindle 

speed of 4mm/min and 500 r.p.m., respectively. During the drilling of any rock type, 
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it was observed that the mean torque level is increasing as the drill diameter (DD) 

changes from 12 to 16mm and 16 to 20mm.  The reason may be that the torque 

increases with the increase of thrust and drilling hole area (Chugh. 1992; Rao et 

al.2002). It is also seen that the torque is almost increasing at a particular drill 

diameter as the UCS and other properties of rock increase. Table 4.6 shows the mean 

torque developed at the bit-rock interface during the drilling of various rocks with 

different diameter drill bits. 

 

4.6 Influence of drill diameter on bit-pressure during the drilling of different 

rocks 

 

 

Fig. 4.13 Influence of drill diameter and rock properties on bit-pressure 
 
 

Fig.4.13 shows the variation of mean bit-pressure and its level during the drilling of 

various rocks using different drill diameters with an average penetration rate and 

spindle speed of 4mm/min and 500 r.p.m., respectively. During the drilling of any 

rock type, it was observed that the mean bit-pressure is decreasing as the drill 

diameter (DD) changes from 12 to 16mm and 16 to 20mm. It may be due to that 
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although the thrust and bit contact area increases with the increase of drill diameter 

during the drilling of any rocks, it was observed that the increase in overall thrust is 

comparatively lower than the increase in overall bit area during the drilling of each 

rock type. Since the bit-pressure is the directly proportional thrust and inversely 

proportional to bit area, the bit pressure may reduce with an increase of drill bit 

diameter. It is also seen that the mean bit-pressure is increasing at a particular drill 

diameter as the UCS and other properties of rock increase. Table 4.7 shows the 

variation of mean bit-pressure and level for different bit diameters during the drilling 

of various rocks. 

 

Table 4.7 Mean bit-pressure at different drill diameters of drilling 
 

 

Rock type (UCS in MPa) 

Bit-Pressure (MPa)  

12  

mm 

16  

mm 

20  

mm 

Change in 
 

% 

Shale (SH)- 19.6 MPa 2.89 1.98 1.36 112.5 % 

Sandstone-1(SS-1)- 37.5 MPa 3.36 2.30 1.56 115.38 % 

Sandstone-2 (SS-2)-65.1 MPa 4.12 2.45 1.69 143.78 % 

Sandstone-3 (SS-3)-72.4 MPa 4.57 2.79 1.73 164.16 % 

Limestone-1 (LM-1)-95.3 MPa 4.95 2.94 1.94 155.15 % 

Limestone-2 (LM-2)-119.2 MPa 5.38 3.09 1.99 170.35 % 

Change in percentage (%) 86.15 % 56.06 % 46.32 %  

 

4.7 Influence of spindle speed on vibration frequency during the drilling of 

different rocks 

 

Fig. 4.14 shows the variations of mean vibration frequency and its level during the 

drilling of various rocks using different drill bit speed with an average penetration rate 

and drill diameter of 4mm/min and 16 mm, respectively. It was observed that the 

mean vibration frequency is slightly increasing with the increase of rock properties. 

But, it is significantly increasing as the spindle speed is increasing. Table 4.8 shows 

the mean vibration frequency induced at the drill head during the drilling of various 

rocks with different spindle speeds. 
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Fig. 4.14 Influence of spindle speed and rock properties on vibration frequency 

 

Table 4.8 Mean vibration frequency at different spindle speeds of drilling  

 

 

Rock type (UCS in MPa) 

Vibration frequency(Hz) 

400  

r.p.m. 

500  

r.p.m. 

600  

r.p.m. 

Change in 

% 

Shale (SH)- 19.6 MPa 328 426 543 65.54 % 

Sandstone-1(SS-1)- 37.5 MPa 331 429 546 64.95 % 

Sandstone-2 (SS-2)-65.1 MPa 334 432 548 64.07 % 

Sandstone-3 (SS-3)-72.4 MPa 337 435 551 63.50 % 

Limestone-1 (LM-1)-95.3 MPa 339 436 552 62.83 % 

Limestone-2 (LM-2)-119.2 MPa 340 439 553 62.64 % 

Change in percentage (%) 3.65 % 3.05 % 1.84 % - 
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4.8 Summary 

 

During the drilling of different rocks considering various drill operating parameters, 

the variation of thrust produced and torque developed at bit-rock interface was 

significant. However, the vibration frequency at the drill head was less responsive 

compared to thrust and torque. 
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CHAPTER 5 

5. STATISTICAL AND ANN MODELING  

 

5.1 Introduction 
 
 

Statistics is the analytical science concerning with gather, analyzing, and interpreting 

scientific data. The statistical model is a powerful statistical tool used to develop a 

mathematical model from the continuous experimental data. For the development of a 

statistical model, the continuous variation of variables in a process is a prerequisite. 

The model also estimates the uncertainty interval of the scientific hypotheses and 

gives the average results of experiments to improve the accuracy of the results. The 

amount of error generated using a prediction model would give information regarding 

the performance of the model.  

In the present study, the significance of drill operating parameters and drilling 

responses reflecting the physico-mechanical properties of sedimentary rocks are 

investigated using statistical analysis. A statistical model such as single and second-

order multiple regression models is developed to predict each rock property. Along 

with regression analysis, "Analysis of variance" (ANOVA) is also generated to 

analyze the contribution of each drilling response to define the particular rock 

property. Besides, a soft computing technique known as the artificial neural network 

was also used to develop the model and analyzed statistical and soft computing 

techniques' comparative performance.  

 

5.2 Multiple Linear Regression Analysis 
 

The multiple linear regression method is one of the statistical techniques used to 

investigate and establish the relationship between a dependent and several predictor 

variables using mathematical relations. The mathematical modeling for Physico-

mechanical properties such as UCS, BTS, SRN, and density are developed using the 
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drill operating variables and drilling responses. Minitab 18, statistical application 

software was used to perform statistical operations. 

In this rock drilling process, the variations of drilling responses (thrust, torque, and 

vibration frequency) are assumed to be the function of drill operating parameters and 

physico-mechanical properties of rocks. The mathematical model for establishing the 

relationship between rock properties, drill operating parameters and drilling responses 

can be written as:  

y = f (x1, x2, x3, x4, x5, x6) + ψ                                                                          (5.1)              

In Eq. 5.1, x1, x2, and x3 are the drill operating variables such as penetration rate, 

spindle speed, drill bit diameter. Similarly, x4, x5, and x6 are the drilling responses, 

namely thrust, torque, and vibration frequency, and ψ is fitting error. The drill 

operating parameters are identified as penetration rate (PR) in mm/min, drill bit 

diameter (DD) in mm, and spindle speed (SS) in r.p.m. The drilling responses are 

thrust (T) in Newton, torque (TQ) in N-m, and vibration frequency (Z) in Hertz. 

Similarly, the rock properties such as uniaxial compressive strength, Brazilian tensile 

strength, Schmidt rebound number, and density are designated as UCS, BTS, SRN, 

and density, respectively. In general, if the model involves 'n' independent variables 

and a dependent variable, then correlation between them with a single order could be 

expressed as shown in Eq.5.2.  

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + .................... + 𝛽𝑛𝑥𝑛 + 𝜓             (5.2)  

Where 

y = Dependent variable 

x1, x2, x3 ... xn = Independent variables 

β0, β1, β3.............. βn = Regression coefficients 

ψ = Fitting error 

Similarly, a second order multiple regression model may be expressed as shown in 

Eq.5.3.  

𝑦 = 𝑎𝑜 + ∑ 𝑎𝑖
𝑛
𝑖=1 𝑥𝑖 + ∑ 𝑎𝑖𝑗𝑥𝑖

2𝑛
𝑖=1 + ∑ 𝑎𝑖𝑗

𝑛
𝑖<𝑗 𝑥𝑖 + 𝜓                                                  (5.3) 

In Eq. 2, ao indicates the arbitrary constant, ai signifies the linear source of xi, aij 

outlines the rectilinear source of xi, and aij presented in the fourth term is generated 
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due to the multiplied results of xi and xj. The last term denoted by 𝜓 represents the 

error. 

 

5.3 Analysis of Variance (ANOVA) 

 

Analysis of variance or ANOVA is a statistical technique applied to check the 

significant variation between the mean of two or more groups. ANOVA is widely 

used to examine the quantitative influence of the independent variables over the 

dependent variable. In most of the statistical software, the ANOVA table would come 

up with a regression model. This analysis is also used to find the quality characteristic 

of the significant parameters. Similarly, F-test is a kind of statistical test that is quite 

flexible. F-tests can simultaneously assess many model terms, allowing them to 

analyze the fits of several linear models. In contrast, t-tests can evaluate just one term 

at a time. F value can be evaluated using the following equation (Kothari 1985). 

 

F =  
Estimate of population variance between sample variance

Estimate of population variance within sample variance
           (5.4) 

 

5.4 Development of Multiple Regression Model for Physico-Mechanical 

Properties of Rocks including vibration parameter (Type-I) 

 

The Type-I multiple regression models are developed for physico-mechanical 

properties of rocks such as UCS, BTS, SRN, and density using the drilling responses, 

including thrust, torque and vibration frequency. For developing the prediction model 

for each rock property, 162 (= 6 rock types 27 test conditions) sets of experimental 

data including drill operating parameters, drill responses, and actual rock properties 

are used. 

During the development of multiple regression models, the backward elimination 

method was used as a screening technique. For example, during the simulation of the 

regression model, the independent variables are removed from the variable list if the 

absolute t value of any independent variable is not greater than the tabulated t value at 

a 95% confidence level in the ANOVA table. In that case, that variable is removed 

from the variable list. The multiple regression procedure was then continued using the 

remaining independent variables until the remaining independent variables cannot be 

removed from the model, and thus the model is generated. 
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5.4.1 Development of regression model for prediction of UCS 

 

The best-fit regression model for prediction of UCS is developed and is given in 

Eq.5.5. 

 

  (5.5) 

 

Table 5.1. Statistical results of UCS model 
 
 

A: Model summary (UCS) 

R2 
Adjusted 

R2 
Predicted R2 Error 

94.49 94.28 93.98 7.99 

B: Importance of model 

Factor Coefficient t-value p-value 

Constant -42.3 -2.21 0.029 

PR -7.569 -9.61 0.000 

SS -0.463 -3.05 0.003 

DD -3.622 -14.42 0.000 

T 0.3225 27.39 0.000 

TQ 2.301 5.66 0.000 

Z 0.560 4.03 0.000 

C:ANOVA 

Source DF Adj SS F value p-value 

Regression 6 170100 443.34 0.000 

PR 1 5902 92.30 0.000 

SS 1 593 9.28 0.003 

DD 1 13294 207.90 0.000 

T 1 47990 750.47 0.000 

TQ 1 2050 32.06 0.000 

Z 1 1040 16.27 0.000 

Error 155 9912 - - 

Total 161 180012 - - 
 

Table 5.1A shows that the developed model explains total variation in the observed 

UCS up to 94.49%. The importance of regression coefficients is shown in Table 5.1B. 

It was observed that the value of p for each variable is statistically significant as p < 

0.05 with a 95% confidence level. In addition, the determined ± t values are also 

significantly greater than the tabulated t values (For 6 degrees of freedom, Total DF = 

generated DF - 1, t = 2.015 at 95% confidence level). Therefore, the null hypothesis is 

rejected and concluded that there is statistical significance between predictors and 

ZTQ

TDDSSPRUCS





560.0301.2

3225.0622.3463.0569.73.42
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UCS. Among the drilling responses, the thrust (with an adjusted sum of the square = 

47990 and F-Value = 750.47), as shown in the ANOVA Table.5.1C, is highly 

responsive for the variation of UCS. Besides, the computed F value is also very high 

indicating that the model's adequacy is good enough for prediction purposes.  

Table 5.2 Actual and predicted values of Type-I UCS model 

Rock type  
Actual UCS  

(MPa) 

Predicted UCS  

(MPa) 

Error 

(%) 

Shale (SH) 19.6 17.2 12.24 

Sandstone-1(SS-1) 37.5 41.0 8.94 

Sandstone-2 (SS-2) 65.1 66.9 2.82 

Sandstone-3 (SS-3) 72.4 75.4 4.30 

Limestone-1 (LM-1) 95.3 96.3 1.07 

Limestone-2 (LM-2) 119.2 110.4 7.58 
 

 

           Fig: 5.1 Comparison of actual and predicted values of Type-I UCS model 

 

In Table 5.2, the actual and predicted UCS of each rock type is summarized along 

with prediction error in percentage. Fig.5.1 shows the comparisons of actual and 

predicted UCS. 
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5.4.2 Development of regression model for prediction of BTS 

 

The best-fit regression model for prediction of UCS is developed and is given in 

Eq.5.6 

 

 

 (5.6)        

 

The BTS model could explain the complete variation in the actual BTS up to 88.12 %, 

as shown in Table 5.3A. The regression coefficients and their significance are shown 

in Table 5.3B. It was observed that the value of p for each variable is statistically 

significant as p < 0.05 with a 95% confidence level. 

  

Table 5.3 Statistical results of BTS model   

A: Model summary (BTS) 

R2 Adjusted R2 Predicted R2 Error 

88.12 87.65 87.17 0.9355 

B: Importance of model 

Factor Coefficient t-value p-value 

Constant -0.91 -2.45 0.000 

PR -0.5728 -6.21 0.000 

SS -0.0582 -3.28 0.001 

DD -0.2482 -8.45 0.000 

T 0.02508 18.21 0.000 

TQ 0.0989 3.95 0.000 

Z 0.0642 2.19 0.039 

C:ANOVA 

Source DF Adj SS F value p-value 

Regression 6 1005.57 191.47 0.000 

PR 1 33.80 38.62 0.000 

SS 1 9.39 10.73 0.001 

DD 1 62.45 71.34 0.000 

T 1 290.25 331.60 0.000 

TQ 1 13.65 4.32 0.000 

Z 1 3.25 15.60 0.039 

Error 155 135.68 - - 

Total 161 1141.25 - - 
 

 

Furthermore, the determined ± t values exceeded the tabulated t values (For 6 degrees 

of freedom, Total DF = generated DF - 1, t = 2.015 at 95% confidence level). 

ZTQ

TDDSSPRBTS
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Therefore, the null hypothesis is rejected, and the alternate hypothesis, i.e., there is a 

statistical significance between predictors and BTS, is accepted. As shown in Table 

5.3 C, the adjusted SS and F-value concluded that thrust is highly responsive to BTS 

variations among the drilling responses. Since the F-value of regression is high, it 

suggests that the overall fitting of the data to the model or its adequacy is good. The 

actual and predicted BTS of each rock type along with prediction error in percentage 

is summarized in Table 5.4. Fig.5.2 shows the comparisons of actual and predicted 

BTS. 
 

Table 5.4 Actual and predicted values of Type-I BTS model 

 

Rock type 
Actual BTS 

(MPa) 

Predicted BTS 

(MPa) 

Error 

(%) 

Shale (SH) 1.6 1.67 4.37 

Sandstone-1(SS-1) 3.4 3.48 2.35 

Sandstone-2 (SS-2) 4.2 4.02 4.28 

Sandstone-3 (SS-3) 7.5 6.8 9.33 

Limestone-1 (LM-1) 8.1 7.87 2.83 

Limestone-2 (LM-2) 8.7 8.4 3.44 
 

 

                Fig.5.2 Comparison of actual and predicted values of Type-II BTS model 
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5.4.3 Development of regression model for prediction of SRN 

 
 

The best-fit regression model for prediction of SRN is developed and is given in 

Eq.5.7 

 

   (5.7) 
 

Table 5.5 Statistical results of SRN model 

A: Model summary (SRN) 

R2 Adjusted R2 Predicted R2 Error 

87.76 87.37 86.69 4.23 

B: Importance of model 

Factors Coefficients t-value p-value 

Constant -12.06 -2.83 0.000 

PR -2.678 -6.45 0.000 

SS 0.04910 10.72 0.000 

DD -1.409 -10.74 0.000 

T 0.11276 20.76 0.000 

TQ 1.210 5.73 0.000 

C:ANOVA 

Source DF Adj SS F value p-value 

Regression 5 20031 223.76 0.000 

PR 1 744.7 41.59 0.000 

SS 1 2026.6 114.87 0.000 

DD 1 2064.9 115.33 0.000 

T 1 7715.9 430.96 0.000 

TQ 1 587.3 32.80 0.000 

Error 156 2793.0 - - 

Total 161 22824.0 - - 
 

 

During the initial regression simulation for SRN, it was noted that the p-value for 

spindle speed was greater than 0.05. Also, the p-value for vibration frequency at the 

drill head was very close to the value of 0.05 (p=0.048). Since the thrust and torque 

are collected for different spindle speed with other drill operating parameters, it could 

not be omitted. Instead, the least influencing drilling response, i.e., vibration 

frequency, was omitted, and the regression process was simulated once again with the 

remaining variables. The results showed that the SRN model could explain the 

variations up to 87.76% in the actual SRN, as shown in Table 5.5A. The regression 

TQ

TDDSSPRSRN
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coefficients and their significance are shown in Table 5.5B. Since the p-value of each 

independent variable is less than 0.05 at 95% confidence level, and similarly 

computed absolute t values (For 5 degrees of freedom, Total DF = Generated DF - 1, t 

= 2.132 at 95% confidence level) are greater than the tabulated values, there is a 

significant statistical relationship between independent or predictors and dependent or 

SRN. As shown in Table 5.5 C, the adjusted SS and F-value concluded that thrust is 

highly responsive to SRN variations among the drilling responses. However, the 

adequacy of the model is also good as the overall F-value value of regression is high. . 

The actual and predicted SRN of each rock type along with prediction error in 

percentage is summarized in Table 5.6. Fig. 5.3 shows the comparison of the SRN of 

rocks measured in the laboratory and the SRN predicted using the regression model 

 

Table 5.6 Actual and predicted values of Type-I SRN model 

 

Rock type 
Actual BTS 

(MPa) 

Predicted BTS 

(MPa) 

Error 

(%) 

Shale (SH) 23 25.12 8.69 

Sandstone-1(SS-1) 42 47.24 11.90 

Sandstone-2 (SS-2) 49 43.79 12.24 

Sandstone-3 (SS-3) 51 46.30 9.80 

Limestone-1 (LM-1) 56 50.02 10.71 

Limestone-2 (LM-2) 59 52.09 13.55 
 

 

 

 

              Fig.5.3 Comparison of actual and predicted values of Type-II SRN model 
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5.4.4 Development of regression model for prediction of density 

 
 

The best-fit regression model for prediction of density is developed and is given in 

Eq.5.8 

 

 

(5.8) 
 

Table 5.7 Statistical results of Density model  

A: Model summary (Density) 

R2 Adjusted R2 Predicted R2 Error 

92.06 91.75 91.35 0.084 

B: Importance of model 

Factor Coefficient t-value p-value 

Constant 1.584 7.91 0.000 

PR -0.06468 -7.86 0.000 

SS -0.00320 -2.02 0.045 

DD -0.03485 -13.28 0.000 

T 0.002598 21.13 0.000 

TQ 0.03038 7.15 0.000 

Z 0.00404 2.79 0.006 

C:ANOVA 

Source DF Adj SS F value p-value 

Regression 6 12.5396 299.40 0.000 

PR 1 0.4310 61.74 0.000 

SS 1 0.0285 4.08 0.045 

DD 1 1.2312 176.38 0.000 

T 1 3.1152 446.28 0.000 

TQ 1 0.3572 51.17 0.000 

Z 1 0.0542 7.76 0.006 

Error 155 1.0820 - - 

Total 161 13.6216 - - 
 

 

Table 5.8 Actual and predicted values of Type-I density model 

 

Rock type 
Actual density 

gm/cc 

Predicted density 

gm/cc 

Error 

(%) 

Shale (SH) 2.0521 2.0741 1.07 

Sandstone-1(SS-1) 2.2587 2.2882 1.30 

Sandstone-2 (SS-2) 2.5848 2.5190 2.54 

Sandstone-3 (SS-3) 2.593 2.5838 9.80 

Limestone-1 (LM-1) 2.6589 2.7556 3.63 

Limestone-2 (LM-2) 2.9542 2.8838 2.38 
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Table 5.7A shows that the generated model explains the total variation in the actual 

density up to 92.06%. The value of regression coefficients and their importance is 

shown in Table 5.7B. The value of p for all variables is statistically significant as their 

p < 0.05 with a 95% confidence level. Besides, the computed ± t values are more than 

tabulated t values (For 6 degrees of freedom, Total DF = generated DF - 1, t = 2.015 

at 95% confidence level). Therefore, the model could be selected as a valid one for 

the estimation of density. The influence of drilling response on defining the density is 

shown in Table 5.7C. From the higher adjusted SS and F-value, it is concluded that 

thrust is a major drilling response followed by torque. Since the overall F-value of 

regression is high, it implies that the overall fitting of the data to the model or its 

adequacy for prediction purposes is good. Table 5.8 shows the actual and predicted 

density of each rock type along with prediction error in percentage. Fig. 5.4 compares 

the density of rocks measured in the laboratory, and the density predicted using the 

regression model. 

 

 

Fig.5.4 Comparison of actual and predicted values of Type-II density model  
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5.5 Evaluation of Prediction Performance of Type-I Models 

 

The efficiency or performance of any developed model needs to be checked to ensure 

its applicability. In the present study, the prediction performances of the developed 

models are investigated using the three indices known as variance account for (VAF), 

root mean square error (RMSE) and mean absolute percentage error (MAPE), as 

shown in Eq.5.9 − 5.11, respectively. 

 

100
)var(

)var(
1 







 


m

pm
VAF

          (5.9) 

                                                                                                         

 

   (5.10) 

  

Where ‘m’ and ‘p’ are measured and predicted values of a response, respectively, and 

N is the data size. The model would predict the response with 100% perfection with 

zero errors if VAF and RMSE values are 100 and 0, respectively. The mean absolute 

percentage error (MAPE) is a statistical measure of how accurate a prediction model 

would perform, and measures the accuracy as a percentage and can be calculated as 

follows: 

 

     (5.11) 

                            

Table 5.9 Performance indices of Type-I models 

Response 

Indices of Model Performance 

VAF (%) 

 

RMSE (DV unit) 

 

 

NRMSE (%) MAPE (%) 

UCS (MPa) 94.49 7.84 7.87 9.51 

BTS (MPa) 88.12 0.91 12.81 9.58 

SRN (MPa) 87.76 4.15 11.49 7.35 

Density(gm/cc) 92.06 0.10 11.03 2.70 
 

 

Normalizing the RMSE, identified as NRSME, may be useful to make RMSE scale-

free by converting it into a percentage using the Eq.5.12.  
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                                                          (5.12)
  

Where 

DV = Dependent variable 

The value of performance indices for each rock property is shown in Table 5.9. It is 

observed that the independent variables explain more than 85% variance in the 

dependent variable in all cases. Similarly, the normalized root mean square error 

(NRMSE) and MAPE values for all rock properties are within the acceptable limit 

(less than 15%). Therefore, the type-I models developed with single-order multiple 

regression methods can predict the physico-mechanical properties with an acceptable 

error. 

 

5.6 Correlations Strength between UCS and Drilling Responses 
 

For most engineering structures like underground mines, foundations for reservoirs, 

civil constructions, and many rock engineering projects, it could observe that the 

supporting rocks would be subjected to compression loading. Uniaxial compressive 

strength is a strength parameter that measures the bearing capacity of the compression 

loading. Therefore the UCS is a quite interesting strength parameter to study. In this 

investigation, the drilling responses are collected during the drilling of various rocks 

having different UCS and other rock properties. The significance of the correlation 

between drilling responses and UCS is checked using the Pearson correlation 

coefficient, as shown in Table 5.10. The Pearson correlation coefficient is used to 

investigate the strength of the relationship between two variables and is designated by 

the letter ‘R’. Mathematically, and it can be written as shown in Eq.5.13. 

    

𝑅 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1 √∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1

                                                                           (5.13) 
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Table 5.10 Cross correlation matrix.   

Source 
Thrust 

(T) 

Torque 

(TQ) 

Vibration Frequency 

(Z) 
UCS 

Thrust (T) 1 0.648 -0.285 0.844 

Torque (TQ) 0.648 1 -0.005 0.580 

Vibration Frequency (Z) -0.285 -0.005 1 0.051 

UCS 0.844 0.580 0.051 1 
 

 
 

Table 5.11 Standard statistical table for strength of correlation 
 
 

Strength of correlation Range of absolute correlation coefficient (r) 

Very strong 0.91-1.0 

Strong 0.71-0.9 

Moderate 0.51-0.7 

Weak 0.31-0.5 

Very weak 0.01-0.3 
 

 

 

                                       Fig.5.5 Variations of thrust and torque 
 

 

 

In Eq.5.13, 𝑥𝑖 and 𝑦𝑖  are the individual data points, and �̅� and  �̅� are the average value 

of x and y data set respectively. As per the standard statistical table for the strength of 

the correlations, as shown in Table 5.11, it was concluded that the thrust has strong 

correlation strength with UCS, with R = 0.844. Similarly, the torque has a moderate 

correlation strength with UCS, with R = 0.580. The vibration frequency induced at the 

drill head has very weak correlation strength with UCS, with R = 0.051. However, the 
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strength of the relationship between thrust and torque is moderate with R = 0.648 and 

has an almost positive linear relationship, as shown in Fig.5.5. 

 

5.7 Development of Multiple Regression Model for Physico-Mechanical 

Properties of Rocks Excluding Vibration Parameter (Type-II) 

 

The performance indices and validation of Type-I models, as shown in Tables 5.9 and 

5.17A, respectively, indicated that the Type-I predictive models could predict the rock 

properties with acceptable errors, i.e., below 15%. However, the main problem 

associated with this method is capturing the vibration frequency at the drill head. 

Since the vibration frequency is less responsive to UCS as shown in Table 4.8 and 

Fig.4.14 and also capturing the vibration frequency at the drill head is a tedious, time-

consuming and expensive process, the extended investigation on the prediction of 

rock properties using only thrust and torque data may have a wide scope.  

Therefore, alternative prediction models identified by Type-II are developed by 

excluding the vibration data due to its high cost and lack of statistical significance. 

The Type-II models are developed for each rock property using thrust and torque data, 

as shown in Eq.5.14 – 5.17. 

 

5.7.1 Type-II UCS model 
 

 

 

 

 

 

 

 

 

 

 

 

(5.14)  

 

Table 5.12 Actual and predicted values of Type-II UCS model 

Rock type  
Actual UCS  

(MPa) 

Predicted UCS  

(MPa) 

Error 

(%) 

Shale (SH) 19.6 17.2 12.56 

Sandstone-1(SS-1) 37.5 41.0 4.63 

Sandstone-2 (SS-2) 65.1 66.9 2.16 

Sandstone-3 (SS-3) 72.4 75.4 1.93 

Limestone-1 (LM-1) 95.3 96.3 2.10 

Limestone-2 (LM-2) 119.2 110.4 3.06 
 

 

TQTTQDD

TSSTPRTS

TQTDDSSPRUCS







01433.02989.0

000838.004175.02000873.02000498.0

34.56702.0646.5758.090.126.316
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In Table 5.12, the actual and predicted values of Type-II UCS model for each rock 

type is summarized along with prediction error in percentage. Fig.5.6 shows the 

comparisons of actual and predicted UCS. 

 

 

                Fig.5.6 Comparison of actual and predicted values of Type-II UCS model 

 

5.7.2 Type-II BTS model 

 

TQTTQDD

TSTPRTS

TQTDDSSPRBTS







000394.00217.0

000042.000221.0000026.0000036.0

035.00066.04124.00445.0503.051.12

22

    (5.15) 

Table 5.13 Actual and predicted values of Type-II BTS model 

Rock type Actual UCS 

(MPa) 

Predicted UCS 

(MPa) 

Error 

(%) 

Shale (SH) 1.6 1.67 4.37 

Sandstone-1(SS-1) 3.4 3.48 2.35 

Sandstone-2 (SS-2) 4.2 4.02 4.28 

Sandstone-3 (SS-3) 7.5 6.8 9.33 

Limestone-1 (LM-1) 8.1 7.87 2.83 

Limestone-2 (LM-2) 8.7 8.4 3.44 
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In Table 5.13, the actual and predicted values of Type-II BTS model for each rock 

type is summarized along with prediction error in percentage. Fig.5.7 shows the 

comparisons of actual and predicted BTS. 

 

          Fig.5.7 Comparison of actual and predicted values of Type-II BTS model 
 

5.7.3 Type-II SRN model 

 

TQTTDD

TQSSTSSDDSSTQPR

DDPRSSPRTD

TQTDDSSPRSRN









01324.001510.0

00450.0000115.000717.0401.0

3569.000725.0000178.00615.0

84.82105.036.130041.040.346

22

       (5.16) 

Table 5.14 Actual and predicted values of Type-II SRN model 

 

Rock type 
Actual SRN 

 

Predicted SRN 
 

Error 

(%) 

Shale (SH) 23 24.93 8.40 

Sandstone-1(SS-1) 42 39.13 6.82 

Sandstone-2 (SS-2) 49 49.53 1.09 

Sandstone-3 (SS-3) 51 49.58 2.77 

Limestone-1 (LM-1) 56 56.71 1.28 

Limestone-2 (LM-2) 59 58.12 1.47 
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Table 5.14 shows the actual and predicted values of the Type-II SRN model for each 

rock type is summarized along with prediction error in percentage. Fig.5.8 shows the 

comparisons of actual and predicted SRN. 
 

 

              Fig.5.8 Comparison of actual and predicted values of Type-II SRN model 

 

5.7.4 Type-II density model 

 
 

                  

 

      (5.17) 

Table 5.15 shows the actual and predicted values of the Type-II density model for 

each rock type is summarized along with prediction error in percentage. Fig.5.9 shows 

the comparisons of actual and predicted density. 
 

Table 5.15 Actual and predicted values of Type-II density model 
 

Rock type Actual density 

gm/cc 

Predicted density 

gm/cc 

Error 

(%) 

Shale (SH) 2.0521 2.0724 0.96 

Sandstone-1(SS-1) 2.2587 2.2713 0.55 

Sandstone-2 (SS-2) 2.5848 2.5689 0.61 

Sandstone-3 (SS-3) 2.5932 2.5899 0.12 

Limestone-1 (LM-1) 2.6589 2.7052 1.74 

Limestone-2 (LM-2) 2.9542 2.9125 1.42 
 

TQDD

TQSSTPRTQTQ

TDDSSPRDensity







00690.0

000086.0000166.0003544.00623.0

003386.00881.0000560.00237.0647.1

2
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        Fig.5.9 Comparison of actual and predicted values of Type-II density model 

 

Table 5.2, 5.4, 5.6 and 5.8 shows the actual and predicted values of UCS, BTS, SRN 

and density, respectively using the Type-I models. Similarly, Table 5.12, 5.13, 5.14 

and 5.15 shows the actual and predicted values of UCS, BTS, SRN and density, 

respectively using the Type-II models. From the comparative results of both Type-I 

and Type-II, it was observed that the Type-II models could predict the responses, i.e., 

UCS, BTS, SRN and density for each rock type, far better than the Type-I models 

with less prediction percentage error. 

 

Table 5.16 Performance indices of the Type-II models 
 

Response 

Indices of Model Performance 

VAF (%) 

 

RMSE (DV unit) 

 

 

NRMSE (%) 
MAPE (%) 

UCS (MPa) 97.52 5.27 5.29 7.74 

BTS (MPa) 89.92 0.87 12.25 8.18 

SRN (MPa) 96.04 2.59 7.19 4.63 

Density(gm/cc) 93.71 0.079 7.86 2.46 
 

It was also found that the second-order Type-II regression models could predict the 

rock properties comparatively better than the Type-I model, with a high R2 value and 

less NRMSE and MAPE, as shown in Table 5.16. 
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5.8 Validation of Type-I and Type-II UCS models. 
 
 

The validation of the UCS models developed with both Type-I and Type-II 

approaches is checked using separate rocks such as shale, sandstone, and limestone 

blocks with the UCS, 14.21 MPa, 35.89 MPa, and 46.78 MPa, respectively. Each 

block was drilled using a set of drill operating parameters, and corresponding drilling 

responses were collected. The collected drilling responses were then assigned to the 

UCS model developed with Type-I and Type-II method, and thus the UCS was 

computed. The validation results are showing in Table.5.17. As shown in Table 5.17A 

and 5.17B, the Type-II UCS model can better predict the response, i.e., UCS, than the 

Type-I UCS model with less prediction error. 

 

Table 5.17 Validation of UCS model 
 

A: Type-I model 

Rock type Actual 

UCS(MPa) 

Predicted 

UCS(MPa) 
Error 

Percentage 

error 

Shale 14.21 12.86 -1.35 9.5% 

Sandstone 35.89 32.13 -3.76 10.4% 

Limestone 46.78 43.29 -3.49 7.46% 

B: Type-II mode 

Rock type Actual 

UCS(MPa) 

Predicted 

UCS(MPa) 
Error 

Percentage 

error 

Shale 14.21 13.24 -0.97 6.82% 

Sandstone 35.89 33.45 -2.44 6.79% 

Limestone 46.78 44.59 -2.19 4.68% 
 

 

5.9 ANN Modeling 

 

Though relations developed among the variables using the statistical regression model 

are good enough to predict the response, they are confined by the degree of 

nonlinearity they could represent. This problem could be solved using the new soft 

computing technique known as the artificial neural network (ANN) model. In reality, 

an ANN tries to get a nonlinear association between independent and dependent 

variables. A simulation procedure of this sort is beneficial when there is a complicated 

nonlinear connection between input and output parameters (Dehghan et al.2010).ANN 

models are most suitable for cases where no definite mathematical relationship 

between the predictors and response or the relationship to be resolved is complex and 
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consumes much time (Zarin Pour, 2014). Its compatibility for multi-disciplines and 

performance would make the ANN so popular in engineering research. 

ANN mirrors a biological brain, as shown in Fig.5.10. In the brain, there is a stream 

of coded information from the synapses towards the axon. The axon of each neuron 

sends information to several other neurons. The neuron receives the information at the 

synapses from a large number of other neurons. Groups of neurons are formed into 

subsystems, and integration of these subsystems form the brain. Fig.5.11 shows the 

simplified model of an artificial neuron that may simulate some important aspects of a 

real biological neuron. An ANN is a group of interconnected artificial neurons, 

interacting with one another in a concerted manner. In such a system, excitation is 

applied to the input of the network. Following some suitable operation, it results in the 

desired response. At synapses, there is an accumulation of some potential, which in 

the case of artificial neurons is modelled as connection weights. These weights are 

continuously modified based on suitable learning rules. 

 

 
 

Fig.5.10 A biological neuron 

 

Dendrites: Receives inputs, Soma: Process the inputs, Axon: Turn the processed 

inputs to outputs, Synapses: The electro mechanical contact between the neurons. 
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ANN is made of many neurons and a huge number of interactions between them. 

According to the structure of the connections, they have been identified as feed 

forward and recurrent networks. Feed forward networks have one way connections 

from input to output layer. They are most commonly used for prediction and nonlinear 

function fitting. Here the neurons are arranged in the form of layers. Neuron in one 

layer get inputs from previous layer and feed their outputs to the next layer. The last 

layer is called the output layer. Layers between the input and output layers are called 

as hidden layers and are termed as multilayered networks. 

 

 
 

Fig.5.11 ANN neuron connection 
 

 

 
 

Fig.5.12 Multilayered ANN structure 
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Fig.5.12 shows schematic diagram of multilayered feed forward network. The number 

of nodes within the input and output layers are managed by the nature of problem to 

be solved and the number of input and output variables needed to define the problem. 

The number of hidden layers and neurons in the hidden layer is usually defined by 

trial and error method.  

ANN studies the input-output relationships by suitably adjusting the synaptic weights 

in a process known as training. The weights of the given interconnection are adjusted 

using some learning algorithms. A learning cycle in an ANN model is as shown in 

Fig.5.13 (Meireles et al. 2003).  

 
 

 
 

Fig.5.13 A Learning cycle in an ANN model 

 

Learning methods in neural networks can be broadly classified into two types, 

namely, supervised and unsupervised learning. In supervised learning, target values or 

desired responses are known and given to ANN during training so that ANN can 

adjust its weights to match its output to the target values. Before the learning 

algorithms are applied to update the weights, all the weights are initialized randomly 

(Haykin 1999). The network using this set of inputs produces its own outputs. These 

are compared with the target outputs, and the difference between them called the error 

is used to modifying the weights. 

In unsupervised learning, the network develops its classification rules by extracting 

information from the inputs presented to the network. In other words, using the 

correlation of input vectors, the learning rule changes the network weights to group 
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the input vectors into clusters. By doing so, similar input vectors will produce similar 

network outputs since they belong to the same cluster. In the present study, the feed-

forward network known as Multilayer Perceptron (MLP) is used to develop the 

prediction model of rock properties. 

 

5.9.1 Multilayer perceptron neural network (MLPNN)  

 

In this study, multilayer perceptron (MLP is utilized to develop the models for rock 

properties. MLP is a widely employed network architecture that comprises three 

layers, namely input, hidden, and output layers, as shown in Fig.5.8. In multilayer 

perceptron, a transfer function is used to get the output by sending the weighted sum 

of the inputs and bias parts to the activation level, and units are provided in a layered 

topology known as a feed-forward neural network. To predict the output efficiently, 

the number of hidden layers and neurons is also an important point in the execution of 

ANN. The input parameters are entering the feed-forward neural networks during the 

training stage, as shown in Fig.5.14.  

 

 
 

Fig.5.14 Information processing through a neuron 
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Each product of input parameters (Mi) and a weight function (Wij) are summed into 

junction with a bias (bj) of the neurons is given in Eq.5.18 (Ghritlahre and 

Prasad.2018). In the present study, the input parameters such as drill operating 

parameters and drilling responses were applied, and the output parameters are the 

rock properties. 

𝑋 = (∑(𝑊𝑖𝑗𝑀𝑖)

𝑛

𝑖=1

) + 𝑏𝑗 

(5.18)     

The use of the single hidden layer in an ANN model is enough to approximate the 

given function with desired accuracy (Hornik et al.1989). The output obtained from 

the network through each input would be matched with the fixed target output, and 

thus the error is computing. Different functions are available to train the networks to 

have the target output from a particular input. There are two usually employed 

transfer functions in the hidden layer such as Tansig and Logsig (Ghritlahre and 

Prasad.2018). The extensively accepted activity function is the sigmoid function, and 

it is representing as shown in Eq.5.19. 

                                                        xe1

1
F(X) 

                       (5.19)  

Several trials were carried out to set the optimum number of neurons in the hidden 

layer. The optimum number of neurons in the hidden layer is selecting so that the 

RMSE and MAPE is minimum for those numbers. The ANN output would analyze 

with the actual value at each performance using the particular number of neurons, and 

thus errors can be calculated. 
 

In this investigation, the ANN model, shown in Fig.5.15 with MLPNN architecture, is 

used to predict rock properties. ANN algorithms such as Levenberg–Marquardt 

(trainlm), resilient back-propagation (trainrp), and scaled conjugate gradient back-

propagation (trainscg) are used for training the network using Matlab software. 
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Fig.5.15 ANN model of the physico-mechanical properties of rocks 

 

5.9.2 Development of ANN models for prediction of physico-mechanical 

properties. 

 

In this study, 162 data sets obtained from six different sedimentary rocks are used to 

develop the ANN models. The MLPNN model is employed to predict the physico-

mechanical properties of rocks during the rotary drilling process, as shown in 

Fig.5.11. The input layer consists of six input parameters: penetration rate (PR), 

spindle speed (SS) drill diameter (DD), thrust (T), torque (TQ), and vibration 

frequency (Z).The physico-mechanical properties of rocks such as UCS, BTS, SRN 

and density are embedded in the output layer.  

Out of 162 data sets, training is assigned with 114 (70%) data sets, and for testing, 48 

(30%) data sets were assigned. For the current ANN models, a popular learning 

algorithm known as feed-forward back-propagation was applied to testing and 

training data sets. The trial and error method is applied to fix the number of neurons 

in the hidden layer. In this system, 6 – 20 neurons were utilized with a single hidden 

layer. Logsig transfer function was used as a sigmoid function for the hidden layer 

(Rajesh et al.). Since the number of input parameters is equal to six, the simulation of 
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ANN models for predicting each rock property starts with six neurons. From the 

results, it was observed that error parameters such as RMSE and MAPE are less for 

predictions of each rock property when the 17th neuron used in the hidden layer of 

ANN network with Levenberg–Marquardt algorithm (trainlm) and logsig transfer 

function. Fig. 5.16, 5.17, and 5.18 show an example of the variation of VAF (%), 

RMSE (MPa), and MAPE (%), respectively, which produced during the prediction of 

UCS using a different number of neurons in the hidden layer. Since the VAF or R2 

value is more and RMSE and MAPE are less at the 17th neuron, that neuron could be 

considered an optimum one and used in the hidden layer for better results. 

 

Fig. 5.16 Adaptation of VAF with number of neurons using trainlm algorithm (UCS) 
 

 

Fig.5.19 Shows an example of R-value including training, testing, validation and 

overall, for the prediction of UCS with trainlm algorithm. The results of prediction 

performance of the algorithms, namely trainlm, trainrp, and trainscg, are shown in 

Table 5.18, 5.19, and 5.20. From the results, it could observe that the ANN network 

with the trainlm algorithm is showing the best performance compare to trainrp and 

trainscg algorithms. 
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Fig. 5.17 Adaptation of RMSE with number of neurons using trainlm algorithm(UCS) 

 

 

Fig.5.18 Adaptation of MAPE with number of neurons using trainlm algorithm (UCS) 
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              Fig.5.19 Example of prediction of UCS using ANN model (Trainlm) 
 

 

Table 5.18 Performance of training and testing data using trainlm algorithm 
 
 

Performance predictors UCS BTS SRN Density 

Trainlm 

Training data 

R2 99.78 94.54 97.95 96.69 

RMSE 3.2046 0.3464 1.9631 0.0395 

MAPE 4.3219 5.3825 6.8963 1.0989 

Testing data 

R2 98.31 93.82 97.69 96.02 

RMSE 3.3148 0.3558 1.9502 0.0354 

MAPE 4.4398 5.3205 6.2563 1.0561 
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Table 5.19 Performance of training and testing data using trainrp algorithm 

  

Performance predictors UCS BTS SRN Density 

Trainrp 

Training data 

R2 96.54 95.31 94.32 96.25 

RMSE 5.1236 0.3612 1.9703 0.0379 

MAPE 7.2145 5.4869 6.9023 6.0132 

Testing data 

R2 93.12 94.21 92.02 94.09 

RMSE 5.1932 0.3769 1.9931 0.0395 

MAPE 6.9561 6.3214 7.2501 7.1208 

 
 

Table 5.20 Performance of training and testing data using trainscg algorithm 

 

Performance predictors UCS BTS SRN Density 

Trainscg 

Training data 

R2 95.45 94.16 93.32 95.56 

RMSE 5.9968 0.3932 1.9805 0.0399 

MAPE 8.2148 6.1257 7.2563 7.0134 

Testing data 

R2 92.59 93.98 91.684 92.78 

RMSE 6.0231 0.4235 2.0348 0.0421 

MAPE 8.9602 8.3218 7.3548 7.8564 

 

 

5.9.3 Comparative Performance of Multiple Linear Regressions (MLR) and 

Artificial Neural Network (ANN) Model 

 

In this section, the performance of the Type-II models, which were developed using 

the MLR and ANN model techniques, are compared based on the performance indices 

such as VAF or R2 value, RMSE, and MAPE. The performance indices are computed 

from Eq.5.10, Eq.5.11, and Eq.5.12, respectively. The performance in terms of VAF 

or R2 values with Type-II and ANN models is presented by bar chart as shown in 

Fig.5.20. The R2 values of Type-II MLR model for UCS, BTS, SRN and density are 

97.52%, 89.92%, 96.04%, and 93.71% respectively. Similarly, the R2 values of the 
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ANN model using the testing data for UCS, BTS, SRN, and density are 98.85%, 

93.82%, 97.69%, and 96.02%, respectively. It is observed that the R2 value of each 

rock property's prediction model using the ANN approach is higher than the MLR 

model, indicating that the ANN model could explain each response comparatively 

better than the MLR model.  

 

 
 

         Fig.5.20 Comparison of MLR and ANN model for R2 (VAF) 

 

 

       Fig.5.21 Comparison of MLR and ANN model for RMSE 
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Fig. 5.21 shows the comparative performance of the MLR and ANN model with their 

RMSE. The RMSE values of the MLR model for UCS, BTS, SRN, and density are 

5.27, 0.87, 2.59, and 0.079, respectively. Similarly, the RMSE values of the ANN 

model for UCS, BTS, SRN, and density are 3.31, 0.35, 1.95, and 0.0354, respectively. 

In the ANN technique, the RMSE value for each rock property is comparatively less 

than the MLR model, indicating that the ANN model predicts the response with fewer 

roots means square error. 

 

 

             Fig.5.22 Comparison of MLR and ANN model for MAPE 

 
 

Fig.5.22 shows the comparative performance of MLR and ANN approaches related to 

MAPE. Mean absolute percentage error or MAPE is the indicator of prediction 

accuracy of models. The MAPE values of the MLR model for UCS, BTS, SRN, and 

density are 7.74%, 8.18%, 4.63%, and 2.46%, respectively. Similarly, the ANN 

model's MAPE values for UCS, BTS, SRN, and density are 4.43%, 5.32%, 6.25%, 

and 1.05%, respectively. As compared to MLR, the ANN's MAPE values are less, 

indicating that the ANN model can predict the response with higher accuracy and 

lesser error. 
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Fig.5.23 shows the comparison of an error in percentage, produced during the 

prediction of each rock property using MLR and ANN techniques. The percentage 

error is calculated using the Eq.5.20. 

Percentage error (%) = (RMSE) / (maximum value of DV) 100                       (5.20) 
 

For example, the percentage error for UCS using MLR model is computed as follows 

Percentage error (%) = (5.27 / 119.2) 100 = 4.42%. 

The percentage errors using the MLR model for UCS, BTS, SRN, and density are 

4.42%, 10.01%, 4.38%, and 2.67%, respectively. Similarly, the percentage errors 

using the ANN model for UCS, BTS, SRN, and density are 2.84%, 3.97%, 3.2%, and 

2.03%, respectively. The predictive model using the ANN technique could predict 

each rock property with less percentage error compared to MLR technique. 

 

 

         Fig.5.23 Comparison of MLR and ANN model for percentage error  

 

 

5.10 Summary 

 

A statistical model such as multiple regression and soft computing techniques such as 

the ANN models shows that both are capable and suited for geotechnical engineering 

problems. 
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CHAPTER 6 

6. DRILLING SPECIFIC ENERGY AND ANALYSIS 

 

6.1 Introduction 
 
 

Drilling Specific energy (DSE) is another idea for evaluating rock drillability (Yasar 

et al., 2011). The DSE could also be utilized as a tool for assessing drilling efficiency 

in a drilling operation. The utilization of DSE is mainly dependent upon the lithology 

of the drilling site. Therefore, DSE may also be an informative tool to understand the 

change in lithology.  

Rock drilling is a costly process often used in many rock engineering projects, and the 

penetration rate is the prime concern of engineers. The estimation of DSE for different 

rock with different strength properties may help the driller choose the optimum value 

of drill operating parameters to have the maximum efficiency of drilling, i.e., 

penetration rate, and thus reduce the overconsumption of drilling energy. 

 

6.2 Computation of Drilling Specific Energy 

 

The specific energy during rock drilling consists of two components, as shown in 

Eq.5.21. The first one is the energy required for the drill bit's indentation or axial 

movement, called thrust energy. Similarly, the second one is the energy required to 

cut or remove the material from the drilling hole's inner surface, called rotational 

energy. Based on this, Teale derived the DSE equation for rotary type rock drilling in 

1965, as shown in Eq.5.22, and it is widely used for computation of DSE.  
 

DSE = Thrust energy + Rotaional energy 

 DSE = ET + ER  (5.21) 
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          (5.22) 

 

Where,  

DSE = Drilling Specific energy (J/m3) 

F = Thrust acting on the bit (Newton) 

A = Cross sectional area of hole in m2  

N = Drill bit speed (r.p.s) 

Tq = Torque developed at bit rock interface corresponding to the applied thrust (N-m) 

PR = Penetration rate (m/sec) 

In this study, the DSE was calculated for each rock type using the 27 drill operating 

conditions comprising the combinations of thrust, torque, drill diameter, bit speed, 

and penetration rate. The average DSE was then calculated for each rock from 27 drill 

operating conditions, as shown in Table 6.1. It was observed that the average drilling 

specific energy was increasing as the physico-mechanical properties of rocks 

increased. 

 

Table 6.1 Average specific energy of different physico-mechanical properties 
 
 
 

Rock type UCS(MPa) BTS(MPa) SRN Density(gm/cc) 
Average DSE 

(MJ/m3) 

Shale 19.6 1.6 23 2.0521 24.40 

Sandstone-1 37.5 3.4 42 2.2587 28.78 

Sandstone-2 65.1 4.2 49 2.5848 35.68 

Sandstone-3 72.4 7.5 51 2.5930 36.09 

Limestone-1 95.3 8.1 56 2.6589 38.40 

Limestone-2 119.2 8.7 59 2.9542 42.12 

 

 

6.3 Correlation of Drilling Specific Energy (DSE) with Rock Properties 

 

In this section, the analysis of drilling specific energy concerning the considered 

physico-mechanical properties of rocks has been carried out. The relationships 

between specific energy and UCS, BTS, SRN, and density were investigated using a 

simple linear regression method shown in Figs. 6.1, 6.2, 6.3 and 6.4, respectively. The 

PRA

qTNπ

A

F
DSE






2
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results showed that UCS correlates highly with specific energy, with R2 = 89.9% (R = 

0.948) (Kolapo et al. 2020). The next highest correlation with specific energy is 

density, with R2 = 82.6% (R = 0.908). BTS is correlating with specific energy, with R2 

= 79.6% (R = 0.892). Among several rock properties, SRN is comparatively weak 

correlating with specific energy, with R2= 73.95% (R = 0.859). 

 

 

Fig.6.1 Correlation of specific energy with UCS 

 

 

Fig.6.2 Correlation of specific energy with BTS 
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 Fig.6.3 Correlation of specific energy with SRN 

 

 

Fig.6.4 Correlation of specific energy with density 

 

6.4 Influence of Weight on Bit or Drilling Thrust on DSE 

 

The influence of thrust on specific energy for shale, sandstone-1, sandstone-2, 

sandstone-3, limestone-1, and limestone-2 with UCS 19.6 MPa, 37.5MPa, 65.1 MPa, 



111 
 

72.4MPa, 95.3 MPa, and 119.2 MPa, respectively, is shown in Figs.6.5 to 6.10. DSE 

decreases from 29.63 to 12.8 MJ/m3 during shale rock drilling using different thrusts 

ranging from 345 – 479N, at 400 r.p.m. Similarly, during the drilling of sandstone-1, 

sandstone-2, sandstone-3, limestone-1, and limestone-2, the DSE is decreasing in the 

range of 32.15 − 14.40 MJ/m3, 37.04−19.2 MJ/m3, 38.12−20.80 MJ/m3, 44.45−23.1 

MJ/m3, and 47.3-24.3 MJ/m3, as the thrust increasing in the range of 396 – 550 N, 514 

– 603N, 534 – 635 N, 582 – 679 N, and 634 – 702 N, respectively. From the data 

analysis, it was observed that the trend of specific energy with increased drill thrust 

was the same at a different speed. 

 

 

Fig. 6.5 Influence of thrust on specific energy during the drilling of shale 
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Fig. 6.6 Influence of thrust on specific energy during the drilling of sandstone-1 

 

 

Fig. 6.7 Influence of thrust on specific energy during the drilling of sandstone-2 

 



113 
 

 

Fig. 6.8 Influence of thrust on specific energy during the drilling of sandstone-3 

 

 

Fig. 6.9 Influence of thrust on specific energy during the drilling of limestone-1 
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Fig. 6.10 Influence of thrust on specific energy during the drilling of limestone-2 
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CHAPTER 7 

CONCLUSIONS AND SCOPE FOR FUTURE WORK 

 

7.1 Conclusions 

 

In the present experimental investigation, extensive full-scale rotary drilling tests 

were carried out for six different sedimentary rocks using the CNC vertical milling 

center. Experimental techniques have been developed to measure the drilling 

responses, such as thrust acting, the torque developed at the bit-rock interface, and 

vibration frequency induced at the drill head during the drilling of rocks carried out at 

different combinations of drill operating parameters. The data collected during the 

drilling process was used to develop the model predicting physico-mechanical 

properties of rocks. The prediction performance of the model was checked using 

standard prediction indices. Besides, the correlation of drilling specific energy with 

rock properties is analyzed. The conclusions drawn from the analysis of experimental 

results are as follows:  

 

1. During the drilling of shale, sandstone-1, sandstone-2, sandstone-3, limestone-1, 

and limestone-2, as the drill bit's penetration rate is varied from 3mm/min to 

5mm/min, the change of mean thrust acting at the bit-rock interface increased by 

6.18%, 8.19%, 8.23%, 8.85%, 9.31%, and 11.20%, respectively. Similarly, the change 

in mean torque developed at the bit-rock interface increased by 11.47%, 6.83%, 

9.49%, 6.96%, 10.40%, and 6.78%, respectively. Therefore, it is concluded that both 

thrust and torque increase for a particular rock drilling with the increase of penetration 

rate. 

From the shale to limestone-2 drilling, the change of mean thrust is increased by 

55.91%, 59.27%, and 63.29% at a penetration rate of 3mm/min, 4mm/min, and 

5mm/min, respectively. Similarly, the change in mean torque is increased by 



116 
 

102.45%, 93.67%, and 93.93% with 3mm/min, 4mm/min, and 5mm/min, 

respectively. Therefore, it is concluded that both the drilling thrust and torque increase 

with the increase of rock strength at a particular penetration rate. 

 

2. During the drilling of shale, sandstone-1, sandstone-2, sandstone-3, limestone-1, 

and limestone-2, as spindle speed developed from 400 r.p.m. to 600 r.p.m., the change 

in mean thrust acting at bit-rock interface decreased by 16.29%, 19.50%, 18.61%, 

19.16%, 14.07%, and 17.01%, respectively. Similarly, the change in mean torque 

developed at the bit-rock interface decreased by 23.81%, 18.16%, 16.89%, 6.69%, 

9.36%, and 11.54%, respectively. Therefore, it is concluded that as the spindle speed 

is increasing, the drilling thrust and torque would significantly decrease for a 

particular rock drilling.  

From shale to limestone-2 drilling, the change in mean thrust increases by 61.12%, 

63.18%, and 60.45% at a spindle speed of 400 r.p.m., 500 r.p.m., and 600 r.p.m., 

respectively. Similarly, the change in mean torque increases by 67.41%, 78.27%, and 

85.83% at a speed of 400 r.p.m., 500 r.p.m., and 600 r.p.m., respectively. Therefore, it 

is concluded that the drilling thrust and torque increase at a particular speed as the 

drilling rock strength increases. 

 

3. During the drilling of shale, sandstone-1, sandstone-2, sandstone-3, limestone-1, 

and limestone-2, as the drill bit's diameter is changed from 12 mm to 20 mm, the 

change in mean thrust acting at the bit-rock interface increased by 22.32%, 24.63%, 

25.50%, 26.08%, 23.63%, and 25.45%, respectively. Similarly, the change in mean 

torque developed at the bit-rock interface increased by 73.74%, 46.75%, 70.86%, 

58.84%, 55.10%, and 69.25%, respectively. Therefore, it was concluded that both 

drilling thrust and torque increase for a particular rock drilling with the increase of 

drill diameter. 

From the shale to limestone-2 drilling, the change in mean thrust is increased by 

68.19%, 72.23%, and 72.51% at drill diameter of 12 mm, 16 mm, and 20 mm, 

respectively. Similarly, the change in mean torque is increased by 91.52%, 87.16%, 

and 86.56% at drill diameter of 12 mm, 16 mm, and 20 mm, respectively. Therefore, 

it is concluded that both the drilling thrust and torque increase at a particular drill 

diameter as the drilling rock strength increases. 
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4. During the drilling of shale, sandstone-1, sandstone-2, sandstone-3, limestone-1, 

and limestone-2, as spindle speed increased from 400 r.p.m. to 600 r.p.m, the change 

in mean vibration frequency induced at the drill head increased by 65.54%, 64.95%, 

64.07%, 63.50%, 62.83%, and 62.64%, respectively. Similarly, from the shale to 

limestone-2 drilling, the change in mean vibration frequency at drill head is increased 

by 3.65%, 3.05%, and 1.84% at a spindle speed of 400 r.p.m., 500 r.p.m., and 600 

r.p.m, respectively. Therefore, it is concluded that the vibration frequency is highly 

responsive to spindle speed rather than the rock strength. 

 

5. During the drilling of shale, sandstone-1, sandstone-2, sandstone-3, limestone-1, 

and limestone-2, as drill diameter increased from 12mm to 20mm, the change in mean 

bit-pressure induced at the bit-rock is decreased by 112.5%, 115.38%, 143.78%, 

164.16%, 155.35%, and 170.35%, respectively. Therefore it was concluded that bit-

pressure decreases as the drill bit diameter increases during a particular rock drilling. 

Similarly, from the shale to limestone-2 drilling, the change in mean bit-pressure at 

bit-rock interface is increased by 85.15%, 52.06%, and 41.32% at a drill diameter of 

12 mm, 16mm and 20mm, respectively. 

 

6. Compared to Type – I  models developed with multiple regression models, Type-II 

models developed with a second-order multiple regression could increase the 

explanation of variance (R2) in UCS, BTS, SRN, and density by 3.03%, 1.8%, 8.12%, 

and 1.65%, respectively. 

 

7. Compared to Type – I models, Type-II models could decrease the NRSME in UCS, 

BTS, SRN, and density by 2.58%, 0.56%, 4.3%, and 3.17%, respectively. 

 

8. Similarly, compared to Type – I, Type-II models could decrease the MAPE in 

UCS, BTS, SRN, and density by 1.77%, 1.4%, 2.72%, and 0.24%. 

 

9. In ANOVA, generated for UCS, BTS, SRN, and density, the adjusted sum of 

square (Adj.SS) and F-value for thrust are higher than torque and vibration frequency. 

Therefore it was concluded that the thrust is highly responsive to the drilling of 

different rocks. 
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10. Cross-correlation of drilling responses with strength properties such as UCS 

indicated that the thrust acting and torque developed between bit-rock interface have 

strong (R = 0.844) and moderate correlation strength (R = 0.580), respectively, with 

UCS. However, the vibration frequency induced at the drill head has very weak 

correlation strength (R = 0.051) with UCS. 

 

11. The strength of the relationship between thrust produced and torque developed at 

the bit-rock interface is moderate (R = 0.648). 

 

12. Validation of both Type-I and Type-II models for vital rock property such as UCS 

indicated that both models could predict the response within the acceptable error, i.e. 

below 15%. However, the Type-II may be quite feasible than the Type-I, as it has less 

complexity, high statistical significance, and the overall cost is also low. 

 

13. Compared to Type-II models developed with multiple linear regression, the ANN 

models could decrease NRMSE value by 1.97%, 7.38%, 1.74%, and 3.48% for UCS, 

BTS, SRN, density, respectively. Similarly, the MAPE is decreased by 3.42%, 2.8%, 

2.26%, and 1.39%. Therefore it is concluded that the ANN models are superior to 

regression models. 

 

14. Compared to other algorithms used in ANN models, the ANN models developed 

for each rock property with Levenberg Marquardt (trainlm) algorithm, with 17th 

neuron (6-17-4), could predict the dependent variables close to the actual values. 

Therefore, it was concluded that Levenberg Marquardt (trainlm) algorithm may be 

useful for engineering geology problems. 

 

15. During the drilling of shale (UCS = 19.6 MPa), sandstone-1 (UCS = 37.5 MPa), 

sandstone-2 (UCS = 65.1 MPa), sandstone-3 (UCS = 72.4 MPa), limestone-1 (UCS = 

95.3 MPa), and limestone-2 (UCS = 119.2 MPa) with different drill operating 

parameters, the average drilling specific energy was 24.40 MJ/m3, 28.78 MJ/m3, 

35.68 MJ/m3, 36.09 MJ/m3, 38.40 MJ/m3, and 42.12 MJ/m3,respectively. Therefore, it 

was concluded that the drilling specific energy increases as the UCS and rock 

properties increase. 
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16. The relationship of drilling specific energy with rock properties such as UCS, 

BTS, SRN, and density was found good as they have R-values of 0.94, 0.89, 0.85, and 

0.90, respectively. 

 

7.2 Scope for Future Work 

 

1. In the present experimental investigation, sedimentary rocks are used. In future 

work, other types of rocks such as metamorphic and igneous can be used to check the 

reliability of this method. 

 

2. In the present work, CNC vertical machining center is used for drilling operations. 

Since the machine's cost is very high, it is better to develop a low-cost conventional 

drilling setup with features like loading arrangement (drilling thrust) and varying the 

bit speed to get the different penetration rates. Then it can also be used as a drilling 

response along with others. 

 

3. In the present study, the soft computing technique such as ANN is used to predict 

rock properties However, other soft computing techniques like fuzzy inference can 

also be used to check prediction of this approach. 
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ANNEXURE-I 

 

TABLE 1.1 Drilling responses measured considering various drill operating 

parameters during the drilling of shale 

 

 

PR 

(mm/min) 

SS 

(r.p.m.) 

DD 

(mm) 

T 

(N) 

TQ 

(N-m) 

Z 

(Hz) 

3 400 12 345 4 327 

4 400 12 358 5 327 

5 400 12 364 5 328 

3 500 12 324 4 425 

4 500 12 332 3 425 

5 500 12 336 4 426 

3 600 12 294 3 542 

4 600 12 298 3 542 

5 600 12 300 3 543 

3 400 16 414 5 328 

4 400 16 425 6 328 

5 400 16 439 6 329 

3 500 16 386 5 425 

4 500 16 405 5 425 

5 500 16 412 5 427 

3 600 16 352 5 542 

4 600 16 387 5 542 

5 600 16 378 5 543 

3 400 20 447 6 329 

4 400 20 459 7 329 

5 400 20 479 8 329 

3 500 20 409 6 428 

4 500 20 431 7 429 

5 500 20 435 7 430 

3 600 20 380 6 544 

4 600 20 405 6 543 

5 600 20 412 6 545 
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TABLE 1.2 Drilling responses measured considering various drill operating 

parameters during the drilling of sandstone-1 

 

 

PR 

(mm/min) 

SS 

(r.p.m.) 

DD 

(mm) 

T 

(N) 

TQ 

(N-m) 

Z 

(Hz) 

3 400 12 396 4 330 

4 400 12 415 5 330 

5 400 12 432 6 331 

3 500 12 372 4 428 

4 500 12 381 5 428 

5 500 12 392 5 429 

3 600 12 338 6 545 

4 600 12 342 6 545 

5 600 12 361 6 546 

3 400 16 476 7 331 

4 400 16 488 8 331 

5 400 16 504 8 332 

3 500 16 443 7 428 

4 500 16 465 7 428 

5 500 16 484 6 430 

3 600 16 404 7 545 

4 600 16 445 7 545 

5 600 16 468 7 546 

3 400 20 514 8 332 

4 400 20 527 8 332 

5 400 20 550 9 332 

3 500 20 470 8 431 

4 500 20 495 8 432 

5 500 20 500 8 433 

3 600 20 437 7 547 

4 600 20 465 6 546 

5 600 20 473 7 548 
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TABLE 1.3 Drilling responses measured considering various drill operating 

parameters during the drilling of sandstone-2 

 

 

PR 

(mm/min) 

SS 

(r.p.m.) 

DD 

(mm) 

T 

(N) 

TQ 

(N-m) 

Z 

(Hz) 

3 400 12 514 5 333 

4 400 12 539 6 333 

5 400 12 554 8 334 

3 500 12 483 5 431 

4 500 12 491 6 431 

5 500 12 512 6 432 

3 600 12 439 8 548 

4 600 12 435 7 548 

5 600 12 469 4 549 

3 400 16 499 8 334 

4 400 16 560 9 334 

5 400 16 529 11 335 

3 500 16 465 10 431 

4 500 16 488 10 431 

5 500 16 532 9 433 

3 600 16 424 10 548 

4 600 16 466 9 548 

5 600 16 486 9 549 

3 400 20 560 10 335 

4 400 20 580 11 335 

5 400 20 603 12 335 

3 500 20 526 11 434 

4 500 20 535 10 435 

5 500 20 548 11 436 

3 600 20 465 10 550 

4 600 20 474 9 549 

5 600 20 502 10 551 
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TABLE 1.4 Drilling responses measured considering various drill operating 

parameters during the drilling of sandstone-3 

 

 

PR 

(mm/min) 

SS 

(r.p.m.) 

DD 

(mm) 

T 

(N) 

TQ 

(N-m) 

Z 

(Hz) 

3 400 12 534 5 336 

4 400 12 558 5 336 

5 400 12 576 8 337 

3 500 12 502 5 434 

4 500 12 525 5 434 

5 500 12 545 6 435 

3 600 12 456 8 551 

4 600 12 470 7 551 

5 600 12 487 7 552 

3 400 16 547 8 337 

4 400 16 574 9 337 

5 400 16 590 10 338 

3 500 16 514 9 434 

4 500 16 535 10 434 

5 500 16 560 9 436 

3 600 16 467 10 551 

4 600 16 463 9 551 

5 600 16 499 9 552 

3 400 20 557 10 338 

4 400 20 584 11 338 

5 400 20 635 13 338 

3 500 20 524 10 437 

4 500 20 532 10 438 

5 500 20 578 8 439 

3 600 20 476 8 553 

4 600 20 498 9 552 

5 600 20 512 10 553 
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TABLE 1.5 Drilling responses measured considering various drill operating 

parameters during the drilling of limestone-1 

 

 

PR 

(mm/min) 

SS 

(r.p.m.) 

DD 

(mm) 

T 

(N) 

TQ 

(N-m) 

Z 

(Hz) 

3 400 12 582 6 338 

4 400 12 600 5 338 

5 400 12 627 8 339 

3 500 12 543 5 436 

4 500 12 572 5 436 

5 500 12 594 6 437 

3 600 12 485 8 553 

4 600 12 512 8 553 

5 600 12 530 9 554 

3 400 16 614 8 339 

4 400 16 641 9 339 

5 400 16 659 10 340 

3 500 16 577 9 436 

4 500 16 603 11 436 

5 500 16 621 10 438 

3 600 16 524 10 553 

4 600 16 540 9 553 

5 600 16 550 9 554 

3 400 20 630 10 340 

4 400 20 658 11 340 

5 400 20 679 15 340 

3 500 20 592 10 439 

4 500 20 619 11 440 

5 500 20 664 8 441 

3 600 20 538 8 555 

4 600 20 554 10 554 

5 600 20 574 10 555 
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TABLE 1.6 Drilling responses measured considering various drill operating 

parameters during the drilling of limestone-2 

 

 

PR 

(mm/min) 

SS 

(r.p.m.) 

DD 

(mm) 

T 

(N) 

TQ 

(N-m) 

Z 

(Hz) 

3 400 12 634 6 342 

4 400 12 654 6 340 

5 400 12 683 9 341 

3 500 12 591 6 438 

4 500 12 612 5 438 

5 500 12 647 6 439 

3 600 12 528 9 555 

4 600 12 558 7 555 

5 600 12 577 9 556 

3 400 16 646 8 341 

4 400 16 666 10 341 

5 400 16 695 10 342 

3 500 16 602 9 438 

4 500 16 634 12 438 

5 500 16 659 11 440 

3 600 16 523 10 555 

4 600 16 568 9 555 

5 600 16 588 9 556 

3 400 20 651 10 342 

4 400 20 672 11 342 

5 400 20 702 17 342 

3 500 20 608 16 441 

4 500 20 640 17 442 

5 500 20 665 12 443 

3 600 20 543 15 557 

4 600 20 564 13 556 

5 600 20 593 12 559 
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