
Split Personality Malware Detection and Defeating in
Popular Virtual Machines

Anjana V. kumar
Depatment of computer Science

NITK, Surathkal Mangalore

Phone Number: +91 7204856833

anjanavk12@gmail.com

Kalpa Vishnani
Depatment of computer Science

NITK, Surathkal Mangalore

Phone Number: +91 8951800668

kalpavishnani@gmail.com

K. Vinay Kumar
Depatment of computer Science

NITK, Surathkal Mangalore

Phone Number: +91-824-2474000
Extn-3403

vinay@nitk.ac.in

ABSTRACT
Virtual Machines have gained immense popularity amongst the

Security Researchers and Malware Analysts due to their pertinent

design to analyze malware without risking permanent infection to

the actual system carrying out the tests. This is because during

analysis, even if a malware infects and destabilizes the guest OS,

the analyst can simply load in a fresh image thus avoiding any

damage to the actual machine. However, the cat and mouse game

between the Black Hat and the White Hat Hackers is a well

established fact. Hence, the malware writers have once again

raised their stakes by creating a new kind of malware which can

detect the presence of virtual machines. Once it detects that it is

running on a virtual machine, it either terminates execution

immediately or simply hides its malicious intent and continues to

execute in a benign manner thus evading its own detection. This

category of malware has been termed a� �Split Personality�

malware or �Analysis Aware� malware in the Information Security

jargon. This paper aims at defeating the split personality malware

in popular virtual machine environment. This work includes first

the study of various virtual machine detection techniques and then

development of a method to thwart these techniques from

successfully detecting the virtual machines-VirtualBox, VirtualPC

and VMware.

Categories and Subject Descriptors
D.3.3 [Security]: Malware analysis, VM detecting malwares,

Defeating split personality malwares.

General Terms
Security

Keywords
malware, analysis aware, split personality, VirtualBox, VirtualPC,

VMDetectGuard, pin tool, detection, masking.

1. INTRODUCTION
Malware Analysts are increasingly relying on Virtual Machine

Environment (VME), debuggers and sandboxes in their analysis

work. Hence attackers and their malicious codes have a significant

stake in detecting the presence of these malware analysis tools.

Virtualization, by its very nature, creates systems that have

different characteristics from the real machines. From a theoretical

perspective, any difference between the virtual and the real could

lead to a fingerprinting opportunity for attackers. Thus, Malware

writers have developed a new class of malware called Analysis

Aware Malware or Split Personality Malware. This class detects

the presence of malware analysis tools such as Virtual Machines

(VM), debuggers and sandboxes and then either terminates

execution or hides its malicious nature by executing like a benign

application. As a result, a casual malware analyst may

misunderstand it as a genuine application. Analysts are hence

forced to analyze such VM-aware malware by executing them on

physical host, which increases the cost of analysis. For this

reason, it is important to have the capability and tools needed to

not only detect these VM-detecting malware, but to defeat the

detection techniques they use.

The Split personality malwares/programs detect the virtual

machine using several methods [1] like hardware fingerprinting,

registry checks, existing files etc. Previously efforts mainly

focused on detecting the Split Personality malware and once

detected they resort to analyzing them on a native machine to

bring out their malicious nature. This defeats the purpose of using

virtual machines for analysis.

The latest work done in this aspect was mainly concentrated on

VMware. Here we have further extended the VMDetectGuard tool

[1] to mask the detection of other virtual machines. We present

the effective results obtained by means of this tool. According to

Gartner research [2] the popular virtual machines in market, as per

their market shares are VMware, Virtual PC, and Virtual Box.

Hence in the work carried out here, the above mentioned virtual

machines are taken into consideration

2. RELATED WORK
The latest work done in masking the detection of virtual machines

proposes a method [1] using the PIN API. This work was

concentrated on VMware in Windows operating system. This

includes detecting the VM detection attempts and further tricking

the malware into believing that it is running on a native machine

even when it is actually running on VMware. This method takes

in a potentially malicious binary and changes the return value of

functions that try to detect the presence of the virtual machine.

But this method�� applicability is limited to VMware and to

binaries that do not call any other binaries from within. We have

extended this work to include other virtual machines.

Guizani et al.[3] described a method that used dynamic binary

instrumentation, to detect the specific instructions used in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copiesbear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
������	
��
��� 25-27, 2012, Jaipur, India
Copyright © 2012 ACM 978-1-4503-1668-2/12/10 ...$15.00.

20

instruction check and VMware communication channel test, and

also change the output of these instructions so that the attempt to

detect the virtual machine monitor fails. But again they

concentrated only VMware and also only on two detection

mechanisms. This formed the basis of the method proposed by

Vaishani et. al. [1].

Carpenter et al.[4] propose two mitigation techniques. They aim at

tricking the malware by, changing the configuration settings of the

.vmx file present on the host system and, altering the magic value

to break the guest-host communication channel. But this results in

breaking the communication channel between guest and host,

which affects many genuine applications using this channel.

The other work done mainly concentrates on detecting this

category of malware. Once they are detected they propose the

analysis of the malware in the native machine. Huang et al. [5]

proposed a method to retrieve malware behavioural information,

in real operation system environment, and then to quickly restore

back to the point before analysis so as to analyze another malware

sample. The existing malware analysis tools [6] like �Multiple

path exploration�, �Norman Sandbox� and �Ether� etc. are not

capable of masking VM detection.

So, here we conclude that there is no single method that covers

different virtual machines, and effectively thwarts VM detection

by split personality malware.

3. METHODS OF DETECTION OF

VIRTUAL MACHINES
The methods of detection of virtual machines can be generalized

into seven,

1. Hardware fingerprinting

2. registry check

3. process and file check

4. memory check

5. timing analysis

6. Communication channel check

7. Invalid instruction check

Among the above listed detection techniques, all except invalid

instruction check [8] have been discussed in [1]. This check is

specific to VirtualPC by Microsoft. Virtual PC uses a bunch of

invalid instructions to allow the interfacing between the native

machine and the Virtual PC software, i.e. for guest-host

communication. There are certain Opcodes that are invalid in the

native machine and will raise an exception. But these Opcodes

does not raise any exception in VirtualPC. This method of

detection can be used in detecting virtual pc.

4. OUR STUDY ON DETECTION

TECHNIQUES
the work done here two virtual machines- VirtualPC and

VirtualBox are considered and their detection mechanisms are

studied. The virtual machines were decided based on their market

shares. This study was then added to the VMware study done in

[1]. These are used by the analysis aware malwares to flag the

detection of VM.

In table 1 and 2 we have given values obtained in virtual machine as

well native machine. The criteria chosen depend on the virtual

machine under consideration. Table 1-2 shows few detection

techniques and sample values in both VirtualBox and VirtualPC.

5. ALGORITHM TO MASK VM

DETECTION
We have used Intel PIN tool [7] for instrumenting each

call/instruction made by the binary under test. The steps we have

followed for masking VM detection is

I. Create a complete list of all the instructions to be

tracked in all the three virtual machines.

We have taken into consideration instructions like,

� access (File and Process Check)

� LoadLibraryA (File and Process Check)

� Process32Next (File and Process Check)

� emit (Invalid Opcode Check) etc.

We have prepared a list of instructions which indicate the possible

attempt of VM detection. The above listed are a few examples.

We have created a complete list of possibly all such instructions

after a thorough analysis and research. These instructions are

compared against the instruction calls made by the binary under

test at the runtime

II. Determine the underlying virtual machine.

The underlying virtual machine is determined to be VMware,

VirtualBox, or VirtualPC. This is done so that only the required

checks need to be tracked for each virtual machine under

consideration

III. Run the binary sample under test.

IV. Determine the OS and the binary as 32/64 bit.

PIN is different for 32 and 64 bit OS as well as for 32 and 64 bit

binaries. Hence this has to be determined before deciding which

masking method to be invoked.

V. Do dynamic binary instrumentation of the binary under

test.

Intel PIN tool provides a large API that can be used for dynamic

binary instrumentation. We can view all the instructions called,

their arguments, their return values and can also modify these

values at runtime.

VI. Provide fake values to instructions revealing the identity

of the VM.

21

Based on the values returned in Step4 the corresponding method is

invoked. Each call by the binary is compared with our list of

instructions (Step 1). If an instruction match occurs, eg. Say

LoadLibraryA() is the instruction that matched, then the argument

�LPCTSTR lpFileName� value is checked to see if it is a VM

specific library. If so then the argument value is changed to an

invalid library name. This function will hence return NULL, and

will fail preventing the detection of VM.

This step returns if the binary under test is split personality or not,

also each call made is saved, for future analysis.

Similarly other instructions like _emit, Process32Next, STR are

also checked, to get their arguments and return value, and if found

to be VM detecting instructions a false value is provided such that

it appears to be returned from a native machine. Thus this method

prevents the detection of virtual machine, as well as tricks the

binary into believing that it is running on a native machine.

VII. Provide the results to malware analyst.

The following results are provided at the end of each test:

� If binary is split personality malware or not.

� The log files giving:

� Entire call trace

� Criteria for categorizing as split personality.

� Instructions called that matched the

predefined list.

6. IMPLEMENTATION
The criteria and the algorithm explained in the above section are

used to check if a binary is possibly split personality malware or

not. , We thus made use of these concepts to extend the tool,

VMDetectGuard for masking the detection in other virtual

machines too. This tool takes in the binary to be tested and

provides the user with options to instrument the binary in two

different modes, Masking mode and Non-masking mode. The

non-masking mode allows running the binary as it is, without any

false values being provided. This mode provides only the entire

call trace of the binary. i.e. This mode is as good as running the

binary in the absence of our tool, just with the difference that we

log all the function calls made and the instructions executed by

the binary. On the other hand, the masking mode provides false

values when the binary tries to detect VM presence, and tells the

user if the binary is split personality or not. This mode provides

all the log files explained in the previous section. Thus, by

running a binary in both the modes, an analyst could to compare

the behaviours of the same binary with and without the presence

VMDetectGuard.

7. RESULTS
In order to test the effectiveness of our tool, we ran various VM

detecting malware samples [9] (both, proof of concept samples

and live malware captured from the internet) in the presence as

well as absence of the tool, to observe if there were any notable

changes in their behaviour. The result of our analysis is shown in

Table 3. The screenshots of the proof of concept sample

VBDetect in Virtual box, and VMDetect in VirtualPC (both ran

with and without the tool) is given in Figure 1-4.

Figure 1. Running VmDetect in VirtualPC

Figure 2. Running VmDetect under masking tool

8. CONCLUSION
We found lack of research in the field of split personality

malwares. Malware analysis has been made difficult by the

analysis aware malwares as they detect the underlying virtual

machine and either behave benignly or do not run. Most of the

previous work was concentrated on detection of the split

personality malwares. During our study we could not find any

full-fledged tool to counter Split Personality malware.

In this paper we present a method that tricks the analysis

aware malwares into believing that they are running on a native

machine. The tool VMDetectGuard now works with three virtual

machines- VirtualBox, VirtualPC and VMware. It works for both

32 bit and 64 bit binaries running on both 32/64 bit operating

22

systems. We have designed the tool in such a way that it first

detects and then masks the VM detection of the binary under test.

We have also been successful in masking detection even if the

split personality binary is called from within another binary and

so on.

Although we have tested VMDetectGuard for several VM

Detecting malware, we are still in the testing phase to ensure the

completeness of our solution. Moreover, we are currently working

on improving the performance of the tool. We are carrying out its

performance evaluation to make it more efficient.

Currently our work supports only native binaries in Windows OS, in

VirtualBox, VirtualPC and VMware; we are working to

support the managed binaries too.

Table 1. Few virtualpc detection techniques

In VirtualPC In Native Machine

Hardware Fingerprinting

BIOS American Megatrenda L900781

Graphics Card Virtual PC Integration

Components S3 Trio32/64

NVDIA GeForce 310

Baseboard Manufacturer Microsoft co-orporation LENOVO

System Name VIRTUALXP User-think

USB Controller USB Virtualisation Bus

Driver

Intel® 5 Series /3400 �

Registry Check

SCSI: HARDWARE\\DEVICEMAP\\Scsi\\Scsi Port 0\\Scsi Bus

0\\Target Id 0\\Logical Unit Id 0

Virtual HD Hitachi

HDS721050CLA362

Control class for usb :

SYSTEM\\ControlSet001\\Control\\Class\\{36FC9E60-C465-

11CF-8056-444553540000}\\0000

USB Virtualisation Bus

Driver

Intel® 5 Series /3400 �

Control class for graphics:

SYSTEM\\ControlSet001\\Control\\Class\\{4D36E968-E325-

11CE-BFC1-08002BE10318}\\0000

Virtual PC Integration

Components S3 Trio32/64

NVDIA GeForce 310

Controlset for cd/dvd drive:

SYSTEM\\CurrentControlSet\\Enum\\IDE

Disk

Virtual_HD 1._1

Registry not found

Invalid Opcode Did not raise exception Raised exception

File Check

Vpcubus Driver Present Not Present

Vpcgbus Driver Present Not Present

Vpcuhub Driver Present Not Present

23

Table 2. Few VirtualBox detection techniques

Virtual Box running

windows

Host Windows Machine

Hardware Fingerprinting

BIOS 0 L900781

Graphics Card Virtual Box Graphics Adapter NVDIA GeForce 310

N/W adapter AMD PCNET Family PCI

Ethernet Adapter

WAN Miniport(SSTP) �

Processor Null CPU1

USB Controller Std Open HCD USB Host

Controller

Intel® 5 Series /3400 �

Registry Check

Dsdt: : HARDWARE\\ACPI\\DSDT VBOX Registry not present

Scsi P0 : HARDWARE\\DEVICEMAP\\Scsi\\Scsi Port 0\\Scsi Bus

0\\Target Id 0\\Logical Unit Id 0

VBOX HARDDISK Hitachi

HDS721050CLA362

Scsi P1: HARDWARE\\DEVICEMAP\\Scsi\\Scsi Port 1\\Scsi Bus

0\\Target Id 0\\Logical Unit Id 0

VBOX CD-ROM Null

Vedio Bios Version:

HARDWARE\\DESCRIPTION\\System\VideoBiosVersion

Oracle VM VirtualBox

Version 4.1.2 VGA Bios

Version 70.18.3E.00.05

System Bios Version:

HARDWARE\\DESCRIPTION\\System\SystemBiosVersion

VBOX-1 LENOVO-133

Instruction Check

STR (store task register) 28 0 40 00

File Check

VBOXHook Present Not Present

VBOXTray Present Not Present

VBOXService Present Not Present

Table 3. VM Detection samples and their behaviours

Binary Detection Technique Used Run without tool Run under tool

Virtual Box

VBDetect: calls others binaries for

individual checks within.
� Registry Check

� File and Process

Check

� Instruction

Check

Detected VirtualBox Did not detect

VirtualBox

24

Rebhip � Registry Check

� File and Process

Check

Runs benignly Runs maliciously

VirtualPC

VPCDetect: calls others binaries for

individual checks within.
� Registry Check

� File and Process

Check

� Invalid Opcode

Check

Detected VirtualPC Did not detect VirtualPC

Backdoor.Win32.SdBot.fmn � File and Process

Check

� Invalid Opcode

Check

Displays a message,

�This application cannot

run under a Virtual

Machine

Ran maliciously

VMDetect Invalid Opcode Check Detects VirtualPC Does not detect

VirtualPC

Trojen.Karsh-252 Invalid Opcode Check Displays a message,

�This application cannot

run under a Virtual

Machine

Ran Maliciously

Figure 3. Running detection checks in Virtual Box
Figure 4. Running detection chechks under the masking

tool.

25

9. REFERENCES
[1] K. Vishnani, A. R. Pais, R. Mohandas National

Institute Of Technology Karnataka, India,.. 2011 Detecting
& Defeating Split Personality Malware. SECURWARE
2011: The Fifth International Conference On Emerging
Security Information, Systems And Technologies.

[2] Gartner research, ID Number G00170437. 2012 [Online].
DOI: http://www.mendeley.com/research/virtual-machines-
market-share-through-2012/#page-1.

[3] W. Guizani , J . Y . Marion , and R.Plantey 2009.
Server-Side Dynamic Code Analysis. Analysis,.

[4] M. Carpenter, T . Liston, and Skoudis 2007. Hiding
Virtualization from Attackers and Malware. IEEE Security
and Privacy, June, pp. 62-65.

[5] H D Huang, C. S. Lee, H.Y. Kao, Y.L. Tsai, J.-Gong
Chang, 2011 Nat. Center for High- Performance
Comput., Nat. Appl. Res. Labs., Tainan, Taiwan
Intelligent Agent (IA), Malware behavioral analysis system:
TWMAN, 2011 IEEE Symposium on 11-15 April
2011.

[6] M. Egele Vienna University Of Technology, T. Scholte, SAP
Research, S. Antipolis, E. Kirda, Institute Eurecom,
Sophia Antipolis And C. Kruegel, University Of
California, Santa Barbara, A Survey On Automated Dynamic
Malware Analysis Techniques And Tools, ACM Computing
Surveys.

[7] C.K. Luk, R. Cohn, R.t Muth, H. Patil, A. Klauser, G.
Lowney, S. Wallace, V. Janapa Reddi, K. Hazelwood.
2005. Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation, Programming Language Design
and Implementation (PLDI), Chicago, IL, June 2005, pp. 190-
200.

[8] VmDetect (2005), �Detect if your program is running inside a
Virtual Machine - CodeProjec�� [Online]. Available:
http://www.codeproject.com/KB/system/VmDetect.aspx

[9] Virtual machine detection malwares [Online] DOI:
http://www.offensivecomputing.net/

26

