
Security-aware Software Development Life

Cycle (SaSDLC) – Processes and Tools

Asoke K Talukder, Vineet Kumar Maurya, Santhosh Babu G, Jangam Ebenezer, Muni Sekhar V,

Jevitha K P, Saurabh Samanta, Alwyn Roshan Pais

Information Security Lab, Department of Computer Engineering,

National Institute of Technology Karnataka, Surathkal
asoke.talukder@geschickten.com, vineet.nitks@gmail.com, santhosh003@gmail.com,

ebenezer.jangam@gmail.com, munisek@gmail.com, jevitha@gmail.com,
saurabh.samanta@gmail.com, alwyn.pais@gmail.com

Abstract —Today an application is secured using in-

vitro perimeter security. This is the reason for security

being considered as nonfunctional requirement in

Software Development Life Cycle (SDLC). In Next

Generation Internet (NGI), where all applications will

be networked, security needs to be in-vivo; security

must be functions within the application. Applications

running on any device, be it on a mobile or on a fixed

platform – need to be security-aware using Security-

aware Software Development Life Cycle (SaSDLC),

which is the focus of this paper. We also present a tool

called Suraksha that comprises of Security Designers’

Workbench and Security Testers’ Workbench that

helps a developer to build Security-aware applications.

Keywords — Security-aware Software, Security-

aware Software Development Life Cycle, SaSDL,

Secure Software Engineering, Security Designers’

Workbench, Security Testers’ Workbench.

I. INTRODUCTION

In 1968 October NATO Science Committee

organized a conference on Software Engineering [1].

In last forty years different techniques have been

proposed to establish software development as a part

of mainstream engineering that includes formal

techniques of requirement elicitation, design,

construction, testing, deployment, and maintenance

of software.

Security for a software system has always been in-

vitro and addressed only in the production

environment through perimeter security like firewall,

proxy, intrusion prevention system, antivirus, and

platform security. This was the reason of security

being considered as nonfunctional requirement.

In Next Generation Internet (NGI) all applications

are networked; and, these applications are accessible

by everybody – legitimate users and hackers alike.

NGI applications will be even mobile; therefore, an

application needs to be security aware so that it can

protect itself from security threats. This implies that

security must be in-vivo - security needs to be in-

built within the application. This is achieved through

Security-aware Software Development Life Cycle

(SaSDLC) that will be part of Secure Software

Engineering (SSE).

In this paper we present the SaSDLC process and a

tool named for SaSDLC named Suraksha. Suraksha

in Sanskrit means safety and security. This tool helps

a security designer to elicit security requirement

followed by security design, through Security

Designers’ Workbench and security testing, with

secured Web deployment through Security Testers’

Workbench.

The organization of the paper is as follows.

Section 2 explains the Security Requirement

Analysis. Section 3 gives the outline of Security

Design and Security patterns. Section 4 describes

Safe Programming. Section 5 describes Security

Testing. Section 6 describes Security Deployment.

Section 7 describes the SaSDLC tool Suraksha.

Section 8 concludes the paper.

II. SECURITY REQUIREMENT ELICITATION

During requirement elicitation, both functional and

non-functional requirement of security needs to be

captured. This is done in 8 steps in SaSDLC as

following.

Step 1 – Functional Requirements: In this step,

Functional requirements of the system are analyzed

and captured using UML tools and methodology. Use

case diagram is used for specifying the functional

requirements of the system.

Step 2 – Identification of Assets: In this step

assets are identified and their criticality to the

organization is established. Security measures depend

on state of mobility -- they are either stationary assets

or assets in transit [2]. A brainstorming session is

conducted to list all assets; in addition, various

existing documents are examined to identify

important assets. Assets are then categorized based

on their perceived value and impact in case a security

attack happens. To evaluate the value, an asset is

taken and viewed from different perspectives i.e.

organization, user, administrator, and attacker. From

978-1-4244-3474-9/09/$25.00 ©2009 IEEE

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 26,2021 at 05:40:47 UTC from IEEE Xplore. Restrictions apply.

these perspectives, each asset is assigned a number

indicating the importance from STRIDE and CI5A

perspective. STRIDE [3, 4] is used by Microsoft for

threat modeling of their systems – threats are

identified by exploring the possibilities of Spoofing

Identity, Tampering with Data, Repudiation,

Information Disclosure, Denial of Service and

Elevation of Privilege in the given case. Threats are

also identified with respect of CI5A that deals with

Confidentiality, Integrity, Availability,

Authentication, Authorization, Accounting, and

Anonymity. Valuations of each asset are added and

the asset with highest sum is ranked as the most

valuable asset. An example of asset identification by

using Suraksha is shown in Figure 1.

Figure 1: Assets identification for an Application (Suraksha)

Step 3 – Security Requirements: For each actor

in the Use case, one or more misactors are identified;

STRIDE with CI5A concepts are applied in

connection with each action and assets related to it.

Through STRIDE, the possibilities for Spoofing

Identity, Tampering with Data, Repudiation,

Information Disclosure, Denial of Service, and

Elevation of Privilege are considered; and, through

CI5A, Confidentiality, Integrity, Availability,

Authentication, Authorization, Accounting, and

Anonymity in the given case by misactor are

explored. This yields a list of possible abstract

threats.

Step 4 – Threat and Attack Tree: Each abstract

threat in the Misuse case diagram is considered as a

root node and corresponding attack tree [5, 6, 7] is

constructed to understand what are the AND and OR

relationship in the threat path. Here the user goes

through each and every Misuse case [8, 9, 10]; a node

in the attack-tree is an actual threat.

Figure 2: Misuse-Case diagram for an Web-based Application

(Suraksha)

Step 5 – Rating of Risks: For each attack type,

DREAD [4, 11] is used to rate a threat. This is done

by assigning values to each node beginning from leaf

nodes using simple formula,

 Risk DREAD = (D+ R + E +A + D) / 5

Where,

D = Damage Potential,

R = Reproducibility,

E = Exploitability,

A = Affected Users,

D = Discoverability.

The calculation always produces a number between 0

and 10; the higher the number, higher the risk.

Step 6 – Decision on In-vivo Versus In-vitro:

After careful examination of each threat rating using

DREAD, a threat is ranked as a high risk or moderate

risk or low risk threat. These ratings are compared

with value of assets as measured in Step 2. All high

value assets must be secured. If it is too expensive to

secure an asset in-vivo, compared to the cost of the

asset, those threats need not be secured in-vitro – a

candidate for in-vitro security could be Denial-of-

Service attack.

Step 7 – Nonfunctional to Functional

Requirement: All these threats that are decided to be

protected in-vivo through countermeasures now

become candidate for functional requirement for a

Security-aware application. In other words, all these

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 26,2021 at 05:40:47 UTC from IEEE Xplore. Restrictions apply.

countermeasures that need to be included in-vivo will

move into the software as functional requirements.

Step 8 – Iterate: In the last step all misuse cases

go through above 7 steps. The security design might

force revisit of these 7 steps. Also, there might be

necessity for some refinements.

III. SECURITY DESIGN WITH SECURITY PATTERNS

Joseph Yoder and Jeffrey Barcalow [12] were first

to adapt seven security design patterns for

information security. It is easy to document what the

system is required to do. They are:

1) Single Access Point: Providing a security

module and a way to log into the system. This

pattern suggests that keep only one way to

enter into the system.

2) Check Point: Organizing security checks and

their repercussions. Authentication and

authorization are two basic entity of this

pattern.

3) Roles: Organizing users with similar security

privileges.

4) Session: Localizing global information in a

multi-user environment.

5) Full View with Errors: Provide a full view to

users, showing exceptions when needed.

6) Limited View: Allowing users to only see what

they have access to.

7) Secure Access Layer: Integrating application

security with low-level security.

To manage the security challenges in NGI, we need

to look at many more design patterns. However

following patterns must be included in any security

system [2].

8) Least Privilege: Privilege state should be

shortest lived state.

9) Journaling: Keep a complete record of usage

of resource.

10) Exit Gracefully: Designing systems to fail in a

secure manner.

If there are patterns but no misuse-case identified

in the requirement phase, the iteration starts from

Step 2 of requirement analysis. At the end of the

design, the attack surface is analyzed. If the attack

surface area is high, above process is repeated until

the attack surface is reduced to the minimum level.

IV. SAFE PROGRAMMING

A system can be made secured only against known

threats. However, a security-aware application must

be able to handle unknown threats as well. Therefore,

during construction of the application, safe

programming techniques must be adopted. At this

state, the application must use all proven security

algorithms and protocols for data security starting

from data on transit to database security. It is

advisable to use a tested libraries and framework

where security is already in-vivo. Also, exceptions

must be handled properly to channel all unknown

exceptions.

Figure 3: Attack tree with DREAD Rating for Intrude into

Customer Account in Web-based Application (Suraksha)

Application must not trust any input coming from

external sources. Every data coming from external

sources must be validated and verified for Type,

Length, and Value. Here applications are advised to

use Artificial Hygiene [2] techniques to ensure that

all input from external sources are hygienic to the

application.

Also during coding, proper care must be taken for

separation of concerns. A security function always

has tendency to become anti-pattern at a later point in

time. Therefore, one security function must not

embed another security function – each security

function must be coded separately. Secure Coding

practice is required to ensure that secure coding

techniques are adopted.

V. SECURITY TESTING

One of the most important phases in the secure

software development is the testing of the

applications and the hosted environment for potential

security bugs that might be exploited by the hackers.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 26,2021 at 05:40:47 UTC from IEEE Xplore. Restrictions apply.

There will be whitebox and blackbox tests for all

functions. Also, there will be negative and

nonfunctional tests. For critical function, fault

injection and Fuzz testing is also advised. Tests must

include all security tests be it for the in-vivo security

functions or in-vitro security functions.

Testing must include penetration test and ethical

hacking. The testing starts from the network

perimeter, proceeds to platform-level testing which

basically tests the operating system, then to the

middleware which essentially checks for the servers

used for application deployment, and then

application-level testing which tests the application,

database for vulnerabilities.

Figure 4: Security Testers’ Workbench

The penetration tests done before the deployment

of an application ensures that the application is

secured against the attack vectors implemented in the

tools and the existing vulnerabilities. It may be worth

noting a point here is that the effectiveness of

penetration test depends on the power of the tool;

however, for ethical hacking it is the skill of the

ethical hacker. Figure 4 shows the GUI of security

testers’ workbench which helps in performing

penetration testing.

VI. SECURED DEPLOYMENT

In traditional Software Development Life Cycle

(SDLC), deployment is considered nonfunctional

requirement. However, in SaSDLC, production

environment is part of functional requirement. During

DREAD rating some security function has been set-

aside to be addressed in-vitro through perimeter

security. Therefore, it is important that these threats

are looked into as functional requirement.

The deployment security deals with the security of

an application at runtime. This is addressed using

firewalls, proxies, antivirus, IDS, IPS etc. The

concept of Artificial Hygiene is implemented hare

through application-level firewalls, which intercepts

the input to the application, and tests them for any

malicious data and filters them. This ensures that the

application is guarded against the real-time attacks in

the production environment.

VII. SURAKSHA – TOOL FOR SASDLC

We have taken the above philosophy of SaSDLC

and developed a tool called Suraksha

(http://isea.nitk.ac.in/suraksha/) that helps Security

Requirement Analysis through Security Designers’

workbench. Suraksha offers the Asset evaluation

(Figure 1), standard Use-case analysis and to depict it

graphically. Suraksha provide a simple and efficient

GUI to draw Misuse case diagram as shown in Figure

2. User can easily add actor node, misactor node, use

case node, misuse case node and can easily draw

various relationship between them like extend,

mitigate, threaten etc by selecting suitable item from

the panel. Use case and Misuse case are combined to

define the system. To co-represent Use cases and

Misuse cases together, Use case is black in white and

Misuse case is shown in an inverted format – white in

black. Suraksha also offers GUI for the user to

document the textual representation of Misuse cases.

Sindre and Opdahl focused on templates for Misuse

cases in [13]. Suraksha uses the Misuse case template

suggested by them.

Suraksha provides GUI for attack tree analysis as

depicted in Figure 3. For each abstract threat

mentioned in Misuse case, detailed information about

the threat can be obtained by drawing an attack tree

corresponding to the threat. User can draw an attack

tree easily using this tool starting with abstract threat

as root node. Various paths possible to achieve the

goal (root node) are explored. User can draw all

possibilities by creating children to a node and

connect these children using AND or OR component.

AND component is represented by straight line and

OR component is represented using double line arc.

User needs to select the required items from panel

and can place the items in required position. To

facilitate the designer, there are some standards threat

models available in the library and can be used by the

user. These threat models help to identify various

attacks and their relationship. In real system these

threats need to be mitigated. Also, the impact of these

threats needs to be measured.

To measure the impact of each threat, DREAD

technique is used. When a node in an attack tree is

selected and right clicked, there is provision for the

user to enter suitable values for Damage Potential,

Reproducibility, Exploitability, Affected Users and

Discoverability.

Suraksha offers Testers’ Workbench to perform a

structured security testing. Open source and

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 26,2021 at 05:40:47 UTC from IEEE Xplore. Restrictions apply.

proprietary tools are used [14, 15] for security testing

of application and the production environment. The

following are the tools available for performing

various tests in Suraksha:

• Network discovery/ Port Scanning: Nmap,

Netcat, Hping, Scapy, NBTScan.

• Network Protocols Testing: Yersinia supports

testing the network level protocols like Spanning

tree protocol (STP), Cisco Discovery protocol

(CDP), Dynamic Trunking protocol (DTP).

• Firewalls Testing: Netcat, HPing

• Network Sniffing: Wireshark,

TCPDump/WinDump, Ettercap, Dsniff

• Wireless network tools: Kismet, Aircrack,

KisMAC

• VPN Testing Tool: Ike-Scan

• OS Fingerprinting: Nmap, Hping, P0f, Xprobe.

• System auditing: Nemesis combined with

Fragrouter provides a good system audit.

• Web server Testing: Nikto, Wikto.

• Application Fingerprinting: Nmap, THC-Amap.

• Web Application Testing: The web applications

are vulnerable to different types of attacks

depending on various scenarios, top of them

being Injection attacks like SQL Injection,

Cross-site Scripting and Cross-site request

forgery. There are exclusive tools available for

testing each of the above mentioned attacks:

• SQL Injection Testing: Absinthe, SQLMap,

BSQL Hacker, SQL Ninja, SQLIer, SQL Power

Injector, Sara, FG-Injector, Paros Proxy, SPIKE

Proxy, Burp Suite.

• Cross-site scripting: VulnDetector, Paros Proxy,

Web scarab.

• Cross-site Request forgery: Web scarab,

CSRFTester.

VIII. CONCLUSION

This paper focuses on Security-aware Software

Development Life Cycle and a tool to facilitate such

activity. This Open Source Workbench Suraksha tool

is developed at the Information Security Lab,

Department of Computer Engineering, National

Institute of Technology Karnataka, Surathkal. The

workbench allows a security professional to design

security-aware applications starting at security

requirements through misuse case, followed by

identification of threats through attack tree. Once the

attack paths are known, the tool allows the user to

rate different threats and to prioritize them. This

results in a list of possible attacks. These attacks

along with their corresponding countermeasures are

included as part of functional requirement. This is

then used to design the secure system through

security patterns. During construction, the safe

coding techniques need to be used so that the

application is capable of protecting itself against

unknown threats. Finally the application must be

tested against various threats. At the last step the

application is deployed in a secured environment.

REFERENCES

[1] P. Naur and B. Randell, (Eds.). Software Engineering:

Report of a conference sponsored by the NATO Science

Committee, Garmisch, Germany, 7-11 Oct. 1968, Brussels,

Scientific Affairs Division, NATO (1969) 231pp.

[2] Asoke K Talukder and Manish Chaitanya, Architecting

Secure Software Systems, Auerbach Publications, 2008.

[3] Shawn Hernan, Scott Lambert, Tomasz Ostwald, Adam

Shostack, "Uncover Security Design Flaws using The

STRIDE Approach" msdn.microsoft.com, Nov. 2006.

[Online]. Available: http://msdn.microsoft.com/en-

us/magazine/cc163519.aspx. [Accessed: July 21, 2008].

[4] F. Swiderski and W. Snyder, Threat Modeling. Washington:

Microsoft Press, 2004.

[5] Bruce Schneir, “Modeling Security Threats”, December

1999. [Online]. Available: http://www.schneier.com/paper-

attacktrees-ddj-ft.html [Accessed: Aug. 17, 2008].

[6] Fredrik Moberg, "Security Analysis of an Information

System using an Attack tree-based Methodology," Master’s
Thesis, Chalmers University of Technology, Goteborg,

Sweden, 2000.

[7] Mamadou H. Diallo, Jose Romero-Mariona, Susan Elliott

Sim and Debra J. Richardson, “A Comparative Evaluation

of Three Approaches to Specifying Security Requirements,”

presented at 12th Working Conference on Requirements

Engineering: Foundation for Software Quality,

Luxembourg, 2006.

[8] Guttorm Sindre and Andreas L Opdahl, “Capturing Security

Requirements by Misuse Cases,” in Proc. 14th Norwegian

Informatics Conference (NIK'2001),Troms, Norway, Nov.

2001.

[9] G. Sindre and A.L. Opdahl, “Eliciting Security

Requirements by Misuse Cases,” in Proc. 37th Conf.

Techniques of Object-Oriented Languages and Systems,

TOOLS Pacific 2000, 2000, pp. 120–131.

[10] G. Sindre and A.L. Opdahl, ”Eliciting security requirements

with misuse cases,” Requirements Engineering, Vol. 10, No.

1, pp. 34-44, Jan.2005.

[11] J.D. Meier, et al., “Improving Web Application Security:

Threats and Countermeasures,” msdn.microsoft.com, June

2003.[Online].Available:www.msdn.microsoft.com/en-

us/library/aa302419.aspx [Accessed: July.29, 2008].
[12] Joseph W. Yoder and Jeffrey Barcalow, “Architectural

Patterns for Enabling Application Security,” in Proc.4th

Conference on Patterns Languages of Programs (PLoP '97)

Monticello, Illinois, Sept.1997.

[13] Guttorm Sindre and Andreas L. Opdahl, “Templates for

Misuse Case Description,” in Proceedings of the 7 th

International Workshop on Requirements Engineering,

Foundation for Software Quality (REFSQ'2001), Interlaken,

Switzerland, June 2001.

[14] Security tools [Online]. Available: www.insecure.org

[15] Clayton, R. (2007) ‘Hacking tools guidance finally appear,

http://www.lightbluetouchpaper.org/2007/12/31/hacking-

tool-guidance-finally-appears/

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 26,2021 at 05:40:47 UTC from IEEE Xplore. Restrictions apply.

