

Simulation Environment for a Fuzzy Controller
based Autonomic Computing System

Harish S. V.,
Reader,

Dept. of Computer Science & Engg.,
Manipal Institute of Technology,

Manipal.
harish.sv@manipal.edu

K. Chandra Sekaran,
Professor,

Dept. of Computer Engg.,
National Institute of Technology,

Karnataka, Surathkal.
kch@nitk.ac.in

Abstract

eCommerce is an area where an Autonomic
Computing system could be very effectively deployed.
eCommerce has created demand for high quality
information technology services and businesses seek
ways to improve the quality of service in a cost-
effective way. Properly adjusting tuning parameters
for best values is time-consuming and skills-intensive.
This paper describes a simulation environment to
implement an approach to automate the tuning of
MaxClients parameter of Apache web server using a
fuzzy controller and knowledge of the affect of the
parameter on quality of service. This is an illustration
of the self-optimizing characteristic of an autonomic
computing system.

1. Introduction

The advent and evolution of networks and Internet,
which has delivered ubiquitous service with extensive
scalability and flexibility, continues to make
computing environments more complex [1]. Along
with this, systems are becoming much more software-
intensive, adding to the complexity. There is the
complexity of business domains to be analyzed, and
the complexity of designing, implementing,
maintaining and managing the target system. I/T
organizations face severe challenges in managing
complexity due to cost, time and relying on human
experts.

All these issues have necessitated the investigation
of a new paradigm, Autonomic computing [1], to
design, develop, deploy and manage systems by taking
inspiration from strategies used by biological systems.
eCommerce is one area where an Autonomic

Computing system could be very effectively deployed.
eCommerce has created demand for high quality
information technology (IT) services and businesses
seek ways to improve the quality of service (QoS) in a
cost-effective way. As an example, performance of an
Apache web server [17] is heavily influenced by the
MaxClients parameter, but the optimum value of the
parameter depends on system capacity and workload.
Properly adjusting tuning parameters for best values is
time-consuming and skills-intensive. This paper
describes a simulation environment to implement an
approach to automate the tuning of MaxClients
parameter of Apache web server using a fuzzy
controller.

From [2], we see that the autonomic computing
architecture provides a blue print for developing
feedback control loops for self-managing systems. This
observation suggests that control theory will be of help
in the construction of autonomic managers.

2. Related Work

Control theory has been applied to many computing
systems, such as networks, operating systems, database
management systems, etc. The authors in [3] propose
to control web server load via content adaptation. The
authors in [5] extend the scheme in [3] to provide
performance isolation, service differentiation, excess
capability sharing and QoS guarantees. In [4][8] the
authors propose a relative differentiated caching
services model that achieves differentiation of cache
hit rates between different classes. The same objective
is achieved in [6], which demonstrates an adaptive
control methodology for constructing a QoS-aware
proxy cache. The authors in [7] present the design and
implementation of an adaptive architecture to provide
relative delay guarantees for different service classes

International Conference on Advanced Computer Control

978-0-7695-3516-6/08 $25.00 © 2008 IEEE

DOI 10.1109/ICACC.2009.105

637

International Conference on Advanced Computer Control

978-0-7695-3516-6/08 $25.00 © 2008 IEEE

DOI 10.1109/ICACC.2009.105

639

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 17,2021 at 06:25:56 UTC from IEEE Xplore. Restrictions apply.

0

20

40

60

80

100

120

0 5 10 15

number of processes

pr
oc

es
s

tim
e

(s
ec

on
ds

)

Figure 1. Process time curve

Fuzzy
Controller

Linux
Machine

Differentiator

Integrator

number-of
-processes

process-time dt

dp

dnp

Figure 2. Block diagram of the fuzzy

control system

on web servers.
MIMO techniques are used in [9][10] to control the

CPU and memory utilization in web servers. Queuing
theory is used in [11] for computing the service rate
necessary to achieve a specified average delay given
the currently observed average request arrival rate.
Same approach is used to solve the problem of meeting
relative delay guarantees in [12].

The authors in [13] present a framework that
monitors client perceived service quality in real-time
with considerations of both network transfer time and
server-side queuing delays and processing time. The
authors in [14], present a fuzzy controller to guarantee
absolute delays.

The authors in [15] propose an approach to automate
enforcement of service level agreements (SLAs) by
constructing information technology level feedback
loops that achieve business objectives, especially
maximizing SLA profits. Similarly, the authors in [16]
[17] propose a profit-oriented feedback control system
that automates the admission control decisions in a
way that balances the loss of revenue due to rejected
work against the penalties incurred if admitted work
has excessive response times.

3. System Background

The system studied here is the Apache web server.
In Apache version 1.3, there are a number of worker
processes monitored and controlled by a master
process [18]. The worker processes are responsible for
handling the communications with the web clients. A
worker process handles at most one connection at a
time, and it continues to handle only that connection
until the connection is terminated.

A parameter termed MaxClients limits the size of
this worker pool, thereby providing a kind of
admission control in which pending requests are kept
in the queue. MaxClients should be large enough so
that more clients can be served simultaneously, but not
so large that resource contention occurs. The optimal
value depends on server capacity and the nature of the
workload. The combined effect is that the response
time is a concave upward function of MaxClients.

Figure 1 shows a typical curve to model the
response type behavior of a typical Apache server.
Here process time denotes the time taken by a process
to run to completion. As shown in figure 1, if there is
only 1 process it takes about 100 seconds to complete,
if there are 2 processes, each of them take 50 seconds,
and so on. The process time is minimum (about 16
seconds) when 6 processes are running. This
corresponds to the optimum value of MaxClients in an
Apache server.

4. Design of Fuzzy Controller

The block diagram of the fuzzy control system is
shown in figure 2. The system being controlled is a
linux machine. A number of processes will be running
on the machine, the exact number depends on a
parameter number-of-processes. The time taken by the
processes are measured and input to a differentiator
whose output is the change-in-process-time (dt)
between current and previous intervals. The fuzzy
controller has two inputs: change-in-process-time (dt)
and change-in-number-of-processes (dp) between
intervals. The controller’s output is next-change-in-
number-of-processes (dnp), whose value is taken as the
value of change-in-number-of-processes for the next
interval. An integrator converts this value into number-
of-processes.The approach is similar to the one
presented in [17].

Figure 3 shows the triangular membership functions
used for the fuzzification of the inputs and
defuzzification of the output. The measured numeric

638640

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 17,2021 at 06:25:56 UTC from IEEE Xplore. Restrictions apply.

change-in-process-time

neglarge poslarge

-1

1

μ

dt

neglarge poslarge

1 -1

1

μ

dp

change-in-number-of-processes

-1

1

1

μ

dnp

neglarge poslarge

next-change-in-number-of-processes

AND

Figure 3. Membership functions and fuzzy inference

Table I. Fuzzy rule base
Rule IF THEN

 change-in-number AND change-in-process-time
-of-processes

next-change-in-number-of-
processes

1 neglarge AND neglarge neglarge
2 neglarge AND poslarge poslarge
3 poslarge AND neglarge poslarge
4 poslarge AND poslarge neglarge

values will be multiplied by factors known as the
normalized gains, denoted by gdp and gdt. That is why
the x-axis shows -1 and 1 for all the membership
functions. The output value obtained will be
denormalized by dividing by the normalized gain, gnp,
to obtain the actual output value. Figure 1 illustrates
that process time is a concave upward function of the
number of processes. Hence, a gradient descent
procedure is used to minimize process times. This is
described using fuzzy rules shown in table I. Since the
value of number of processes that minimizes the
process time is not known, these rules are described in
terms of changes to number of processes and process
times values.

5. Implementation Details and Results

Fedora 5 running on a 2.26 GHz Intel Celeron
desktop is used as the platform for running the
simulations. The simulation environment consists of
– A load program to create processes
– A differentiator routine, which finds the difference

between process times
– A fuzzy controller program, which finds the

optimum value of the number of processes and

– An integrator routine, which obtains the value of
required number of processes from change in
number of processes.

Simulation readings are recorded after every interval,
called measurement interval.

The load program reads it’s input at the beginning of
every measurement interval. The parent process in the
load program creates and maintains that many child
processes. Creation of each child process corresponds
to the arrival of a client in Apache server. Hence,
before creating a child process, a parent waits for a
random duration. The time taken by the Apache server
to service a client is simulated by means of a delay
routine. This delay routine is invoked within each child
process and the quantum of delay depends on number-
of-processes so that the relation between the latter and
process time is as shown in figure 1. Each child
process, just before terminating sends the time taken to
the differentiator.

The measurement interval should be large enough to
reduce the effect of transients and also small enough so
that the controller is able to quickly respond to
changes. A measurement interval of 3 minutes was
used. After waiting 2 minutes for the transients to
reduce, 5 readings of process time are taken with a gap
of 10 seconds between consecutive readings. The

639641

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 17,2021 at 06:25:56 UTC from IEEE Xplore. Restrictions apply.

Table II. Values of input and output variables

II(a) Processes increasing towards optimal value
dp

(normalized)
dt

(normalized)
dnp

(normalized) dnp no.-of-
processes

-
0.500
0.421
0.352
0.292
0.240

-
-10.4
-3.4
-1.8
-1.0
0.0

-
0.421
0.352
0.292
0.240

0.0

-
0.842
0.703
0.583
0.480

0.0

2
3
4
5
5
5

II(b) Processes decreasing towards optimal value

dp
(normalized)

dt
(normalized)

dnp
(normalized) dnp no.-of-

processes
-

-0.500
-0.421
-0.352
-0.290
-0.240

-
-8.8
-3.4
-1.6
-1.2
0.0

-
-0.421
-0.352
-0.290
-0.240

0.0

-
-0.842
-0.703
-0.580
-0.480

0.0

10
9
8
7
7
7

median of these 5 values was used to further reduce the
effect of the transients. For the normalizing gains, large
values increase the speed of the controller, but too
large values will cause the system to oscillate. After
experimenting with a few values, the values selected
were gdp = gdnp = 1/2 and gdt = 1/5. This means a
change of 2 in the number of processes or a change of
5 seconds in process time is considered to be large.

Figure 4 shows the number of processes reaching the
neighborhood of the optimal value. In the first case, the
number of processes starts from the left end of the
process time curve, while in the second case, it starts
from the right end. In both the cases, the number of
processes is not able to reach the optimal value. The
same data is shown in table II along with the input and
output variables.

6. Conclusions

This paper describes a simulation environment to
illustrate the self-optimizing characteristic of an
autonomic computing system. Here quality of service
is optimized by using fuzzy control. The simulation
environment provides a framework to experiment with
enhancements and modifications to the basic
autonomic computing system used here.

Possible future work includes speeding up the
controller (implementing it in hardware is one of the
options) and also incorporating learning heuristics so
that the fuzzy rules could be automatically derived and
modified as and when required.

0 3 6 9 12 15

5

4

3

2

no
. o

f p
ro

ce
ss

es

time (minutes)

0 3 6 9 12 15

time (minutes)

10

9

8no
. o

f p
ro

ce
ss

es

Figure 4. Number of processes reaching optimal value

640642

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 17,2021 at 06:25:56 UTC from IEEE Xplore. Restrictions apply.

7. References

[1] M. Salehie and L. Tahvildari, “Autonomic Computing:

Emerging trends and open problems,” in Proceedings of
the Workshop on the Design and Evolution of
Autonomic Application Software, 2005.

[2] Y. Diao, J.L. Hellerstein, S. Parekh, R. Griffith, G. E.
Kaiser and D. Phung, “A control theory foundation for
self-managing computing systems,” IEEE Journal on
Selected Areas in Communications, Vol. 23, No. 12,
December 2005.

[3] T. F. Abdelzaher and N. Bhatti, “Web server Quality of
Service management by adaptive content delivery,”
International Workshop on Quality of Service, June
1999.

[4] Y. Lu, A. Saxena and T. F. Abdelzaher, “Differentiated
caching services - A control-theoretical approach,”
Proceedings of the International Conference on
Distributed Computing Systems, April 2001.

[5] T. F. Abdelzaher, K. G. Shin and N. Bhatti,
“Performance guarantees for web server end-systems :
A control-theoretical approach,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 13, No. 1,
January 2002.

[6] Y. Lu, T. F. Abdelzaher, C. Lu and G. Tao, “An
adaptive control framework for QoS guarantees and it’s
application to differentiated caching services,”
Proceedings of the International Conference on Quality
of Service, May 2002.

[7] C. Lu, T. F. Abdelzaher, J. A. Stankovic and S. H. Son,
“A feedback control approach for guaranteeing relative
delays in web servers,” Proceedings of the IEEE Real-
Time Technology and Applications Symposium, June
2001.

[8] Y. Lu, T. F. Abdelzaher and A. Saxena, “Design,
implementation and evaluation of differentiated caching
services,” IEEE Transactions on Parallel and Distributed
Systems, Vol. 15, No. 5, May 2004.

[9] Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh and D.
M. Tilbury, “Using MIMO feedback control to enforce
policies for interrelated metrics with application to the
Apache web server,” Proceedings of the IEEE/IFIP
Network Operations and Management, April 2002.

[10] N. Gandhi, D. M. Tilbury, Y. Diao, J. Hellerstein and S.
Parekh, “MIMO control of an Apache web server :
Modeling and controller design,” Proceedings of the
American Control Conference, May 2002.

[11] L. Sha, X. Liu, Y. Lu and T. F. Abdelzaher, “Queuing
model based network server performance control,”
Proceedings of the IEEE Real-Time Systems
Symposium, 2002.

[12] Y. Lu, T. Abdelzaher, C. Lu, L. Sha and X. Liu,
“Feedback control with queuing-theoretic prediction for
relative delay guarantees in web servers,” Proceedings
of the 9th IEEE Real-Time and Embedded Technology
and Applications Symposium, 2003.

[13] J. Wei and C. Xu, “Feedback control approaches for
Quality of Service guarantees in web servers,” Fuzzy
Information Processing Society, 2005.

[14] Y. Wei, C. Lin, T. Voigt and F. Ren, “Fuzzy control for
guaranteeing absolute delays in web servers,”
Proceedings of the 2nd International Conference on
Quality of Service in Heterogeneous Wired/Wireless
Networks, August 2005.

[15] Y. Diao, J. L. Hellerstein and S. Parekh, “A business-
oriented approach to the design of feedback loops for
performance management,” Proceedings of the 12th
IEEE International Workshop on Distributed Systems :
Operations and Management, October 2001.

[16] Y. Diao, J. L. Hellerstein and S. Parekh, “Using fuzzy
control to maximize profits in service level
management,” IBM Systems Journal, Vol. 41, No. 3,
2002.

[17] Y. Diao, J. L. Hellerstein and S. Parekh, “Optimizing
Quality of Service using fuzzy control,” Proceedings of
Distributed Systems Operations and Management, 2002
- Springer

[18] Apache Software Foundation. http://www.apache.org.

641643

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 17,2021 at 06:25:56 UTC from IEEE Xplore. Restrictions apply.

