
Ambi Graph: Modeling Ambient Intelligent System
K.Chandrasekaran,I.R. Ramya, Syama .R

National Institute of Technology Karnataka (NITK), Surathkal.
kch@nitk.ac.in, ir.ramya@gmail.com, syamar@gmail.com

Abstract - In computing, ambient intelligence (AmI)[2,3]
refers to electronic environments that are sensitive and
responsive to the presence of people. In an ambient
intelligent world, devices work in concert to support
people in carrying out their everyday life activities,
tasks and rituals in easy, natural way using information
and intelligence that is hidden in the network
connecting these devices. The ambient intelligence
paradigm builds upon ubiquitous computing [4] and
human-centric computer interaction design. In this
paper, we introduce a notation, called Ambi Graphs, for
specifying the work flow in any ambient intelligence
system. An ambi graph is elegant when it is designed to
adapt to the wide range of users that work on it.

Keywords-Ambient intelligence, sensor, surrounding,
target, sensing, interpretation, action, element diagram,
computational diagram, ambi graph.

I. INTRODUCTION

Having a well-defined and expressive notation is
important to the process of any kind of development.
Standard notations make it possible for describing a
computing scenario or developing device architecture
and then unambiguously communicate these
decisions to others. A notation is a vehicle for
capturing the reasoning about the behavior and
architecture of a system. It is wholly a very well
defined approach which does not involve the use of
state diagrams or object diagrams. Characteristics of
ambient intelligence environments differ from
traditional ones due to various factors, like merging
with the surroundings, acting in response to a set of
sensed objects, and so on. A generalized approach to
represent every ambient intelligence system has to be
self-explanatory to every user. We find that the
notations reported in literature, such as State
diagrams and object diagrams are not sufficient to
describe an ambient intelligence system to its fullest.
A State diagram [1] is used to show the state space of
a system, the events that cause a transition from one
state to another and the actions that result from a state
change. Here we have extended the State diagrams
formally as Computational diagrams, that have the
same features of State diagrams and some more
features to model the characteristics to give a
generalized approach. Object diagrams [1] model the
dynamic behavior of an object in its lifetime. Here
we have used a notation called Element diagram to
specify real-time systems. The notation uses the
object diagram’s representations but with a much

sophisticated approach. In this paper, we introduce a
notation, called Ambi Graphs, for specifying the
work flow in any ambient intelligence system.
Though elements can be thought of as building
blocks to model ambi graph, element diagram
formalism does not provide mechanisms to model the
typical features of ambi graph. Some important
ambient intelligence device features are specifying
element location, properties, types of sensors used,
adaptability, etc. Currently, element diagrams do not
have clean mechanisms to specify the above features.
In this work, we extend the specification of an
element with a describer called tasks. Now each
element can independently describe its traits and
tasks completely. Using ambi graph, users can design
ambient intelligent devices by understanding how
exactly they want the device to function.

What is a notation and why it is used

A standard notation, that unambiguously expresses
different aspects of a system, is important to the
process of software development. The expressiveness
of a standard notation helps analysts and developers
to describe a computing scenario or to formulate
software architecture and then to communicate these
decisions unambiguously to other team members. An
expressive notation eliminates much of tedium of
checking the consistencies and correctness of the
architectural decisions of the developer by using
automated tools.

What is ambient intelligence?

Ambient Intelligence is a vision of a world where we
are surrounded by a huge amount of intelligent and
small devices, which are seamlessly embedded in the
user's environment. It is a vision on the future of
consumer electronics, telecommunications and
computing that was originally developed in the late
1990s for the time frame 2010–2020. A key to the
process of realizing an ambient intelligent system is
defined using the following stages:

• Sensing
• Interpretation
• Action

2009 International Conference on Computer Engineering and Technology

978-0-7695-3521-0/09 $25.00 © 2009 IEEE

DOI 10.1109/ICCET.2009.203

441

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 01,2021 at 04:20:56 UTC from IEEE Xplore. Restrictions apply.

II. AMBI GRAPH

The following three models are used to define an
ambient intelligence system. Element graph- one that
describes all the elements present in the model;
Computational graph- describes various
computational techniques used and the sequence in
which the system proceeds with various inputs; Ambi
graph- diagram that shows the actual flow of data
element graph and the computational graph to
describe the system as a whole.

Element Graph

In an ambient intelligence system (device), there has
to be a classification of different elements which
constitute not only the device but also the
surroundings. Here, surroundings play a vital role
because most of the existing ways of representation
has description of only how the device works. By
describing surroundings, we ensure that the changes
that are sensed are clearly monitored. In the element
graph we describe the various elements which
constitute any ambient intelligence device. The major
elements are as follows:

• Environment
• Sensor
• Target

To name each element, we use a semi-circular block.
This is placed over two other rectangular blocks. One
of which consists of the traits of the element and the
other, the tasks. Traits and tasks are used to describe
the two features of the elements- its characteristics
and its mode of operation related to it.

We connect the elements with arrows to show the
work flow. This is a trivial work-flow model. Here
we enhance on the traits and tasks rather than the
links from/to various elements. Since this approach is
dynamic, we express the traits and tasks within each
element as shown in Fig.1. Modification of data is
possible at any stage of development. It has to be
reflected in all the dependent models. The following
diagram is a generalized view of all the elements
mentioned above.

Figure1. Element Graph

Let us consider the very famous home intelligence
systems. When somebody enters the hallway, the
lights automatically get turned on. When they sit on
the couch, the coffee maker starts making coffee, etc.

Here our surrounding is the room. The possible traits
of this room could be the presence or not of anybody
around. Based on this, the task is the turning on or off
of the lights. If we consider the count of people as the
trait, the task could be how many people to prepare
coffee for.

Similarly, for sensor and target also we can have
traits and tasks. These are based on the computation
involved with respect to the entity that is sensed.
These shall be discussed later so as to provide a clear
idea because it follows the computations involved in
each step of sensing.

Computational Graph

Any intelligent system is known so for it's decision
making ability. We have a particular form of
representing our computations with details such as
what events and corresponding actions are
performed, the current state of the device, the
conditions which act like a split-road. So we
represent all these details in a very sophisticated form
in Fig.2.

Figure 2:Computational diagram

Each state is represented in the form of block arrows.
The upper half describes the event and action. The
lower half specifies the state name. Both, event and
action are separated by a ‘/’. Event is the occurrence
of a particular process. Action is the process of doing
something that can lead us to the next state.
Sometimes an ambiguity occurs when we have to
decide which the next state has to be based on a
specific condition. In such cases we use utility
functions that maps each possible state of a system or
object to a real scalar value on a common scale.
Utility function is specified in the circle. The value
returned by the utility function is written in a box at

442

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 01,2021 at 04:20:56 UTC from IEEE Xplore. Restrictions apply.

the beginning of the next state. The start state and
final state are marked with an asterisk (*) and a hash
(#) respectively.

We use a policy based approach that separates the
policy from the implementation of a system and
therefore permit the policy modified without
changing the systems underlying implementation. In
the model being described we will have two policies
a low level policy and an efficiency level policy. A
low level policy basically describes the
computational model at a very abstract level. At the
efficiency level, the computational model described
is very specific. This approach helps maintain the
hierarchy. As ambient intelligence is a technique
used widely in the armed forces there should be
check on what is available to whom. This kind of a
policy based approach ensures that critical
information does not fall in the wrong hands.

Getting back to the home intelligence system, if
somebody sitting on the couch is the event and
making coffee is the action. If we had to choice
between making coffee and juice, we need a
condition. This condition could be sensing the
temperature. In on a clod day, the coffee maker can
serve us and on a hot day, nice cold juice could be
heaven!

Ambi Graph

The ambi graph is the core of any ambient intelligent
system. It shows the actual step by step process that
takes place. By making use of the element chart as
well as the computational chart the ambi graph gives
a very precise model of ambient intelligence. It is
very important to have such a model as the elements
and the computations alone cannot lead to the
understanding of a system. The ambi graph acts as a
container which uses both these models to give a
complete description. The model may roughly be
divided into two parts:

• Elements
• Computations

Figure 3. Ambi Graph

In the above diagram environment, sensor and target
are the element graphs specified by rectangular
boxes. The element diagram is specified inside the
rectangle. The computational model is specified
inside the rhombus. The arrows show the flow of data
between the element graphs and the computational
graph. Data received from elements or as a result of
certain computation is written on the arrows. This
allows the programmer to have a clear picture of the
flow of data along with all the processes and
transitions taking place in the system. The
programmer gets a better view of the whole scenario
and the things he has to take care of at any given
point of execution of the system.

The ambi graph has two forms a private form and a
public form. In the private form all the details are
described and the total workflow is represented.
Whereas in the public form only the outer picture or
abstract picture is represented.

In the case of our intelligent home, the turning on or
off of lights depends on certain data such as presence
or absence of people in the room. Similarly the
amount of coffee that has to be made depends on the
count of people. This data is represented on the arrow
headed lines in the above mentioned model. This data
is processed by the computational model which again
leads to a new piece of data leading to another
element.

III. CASE STUDY

WORKING OF A TREADMILL

As the famous saying by Albert Einstein goes,
“Example isn't another way to teach, it is the ONLY
way to teach." Treadmill is a device used to exercise.
It consists of a continuously moving belt. The
treadmill is programmable regarding simulated
course, distance, initial speed, and user weight, and
records approximate caloric burnt. Sensors
strategically positioned below the belt upper surface
regulate belt speed to keep a user toward the center of
the treadmill.

The treadmill works as follows. The upper surface of
the revolving belt upon which a user performs is
equipped, on the underside, with three sensors. The
sensor nearest the front of the belt is an acceleration
sensor. The acceleration sensor causes the speed of
the rotating belt to increase. Conversely, the
deceleration sensor slows the belt speed. The target

443

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 01,2021 at 04:20:56 UTC from IEEE Xplore. Restrictions apply.

speed sensor maintains belt speed. Through these
mechanisms, the present invention automatically
adjusts to the momentary speed of the person,
through any course. No impact on the sensors stops
the treadmill.

Element diagram

In a treadmill, we have identified the following
elements with respect to our modeling concepts.
They are as follows:

• Acceleration sensor
• Deceleration sensor
• Target speed sensor
• User
• Belt
• Drive motor

Acceleration sensor
 It is placed below the belt. The
acceleration sensor causes the
speed of the rotating belt to
increase when the belt is
compressed against it by a user's
foot. An increase in speed of the belt thereby carries a
user back toward the midpoint of the belt upper
surface, the most desirable position for a user to be
in.

Deceleration Sensor
The deceleration sensor is
disposed below the belt proximal
to the rear of the drive assembly
of the treadmill. When the belt is
caused to be compressed against
the rear sensor by a user's foot
strike, the belt communicates that information to the
CPU which in turn slows the belt speed, providing
for the user to return to the midpoint of the rotating
belt.

Target Speed Sensor
The target speed sensor is
disposed midpoint below the belt
upper surface. The target speed
sensor maintains belt speed, as the
user is ideally positioned when in
the center. Through these
mechanisms, the present invention automatically

adjusts to the momentary speed of the runner or
walker, through any course. No impact on the sensors
stops the treadmill.

Drive Motor
The driver/controller is itself controlled through
programmable circuitry having a display and

keyboard with user input options. The controller
receives signals from a speed sensing device attached
to the AC induction motor to maintain the rotational
speed of the AC motor within pre-selected limits. The
AC induction motor is attached to one or more
flywheels and directly engages, through a drive
roller, a walking belt. The matched combination of an
AC motor driver/controller with appropriately sized
flywheels allows utilization of a variable speed AC
induction motor for the direct drive of the treadmill
belt.

Belt

The treadmill has an endless belt
entrained around a drive roller
and an idler roller. The belt has a
first or upper reach and a second
or lower reach extending
between the rollers. The belt has
an outer surface and an inner surface. The endless
belt encircles a support deck so that a user positioned
on the outer surface of the upper reach is supported
by the top side of the deck. The inner surface of the
upper reach is in a sliding relationship with the deck.

User
Each user has different
properties. For example, the
weight of each user differs and so
does the walking speed. Certain
treadmills give an option to have
different profiles for each user.
The amount of calories burnt is also kept a record of.
Depending on the user’s position on the belt, the
speed of rotation of the belt varies.

Computational Graph

In the computational graph of the treadmill we
describe the various computations and decision
makings taking place in the treadmill.

444

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 01,2021 at 04:20:56 UTC from IEEE Xplore. Restrictions apply.

First let us see the low level policy based
computational graph which gives an overview of the
working without going into the intricate details. In
Fig.4 we describe where each sensor comes into
picture without giving an actual description of the
internal working and the use of motors.

Figure 4. Low level computational graph

In Fig.5, the efficiency diagrams, we look at each
sensor separately and show the actual computations
and interactions with the driver motor and the belt.
The acceleration sensor increases the speed of the
driver motor if the pace at which the user is moving
is greater than the pace of the belt. This is done so as
to make the user move towards the centre of the belt
where his target speed is calculated. Similarly the
deceleration motor slows down the driver motor if
the user is walking too slowly.

 Figure 3. Efficiency level computational graph

Ambi Graph

Treadmills are used by different category of people.
Depending on the class and understanding required
by them, we propose two types of ambi charts. For
the high level a private one and for a comparatively
lower level a public one. Below is the complete
description of the two types.

Private Ambi Graph

We make use of a private ambi chart in order to make
every process visible to the user. This solely depends
on the kind of user. This level is preferred for the
advanced level users.

Figure 3. Private ambi graph

Public Ambi Graph

The public level is used for the reference of a normal
user. At this level only the basic knowledge of how a
treadmill works is required.

Figure 3. Public ambi graph

CONCLUSION

We have tried to give a notation for ambient
intelligence systems above. Such a system is very
useful in the analysis and planning stages. It provides
a very clear understanding of the system describing
all the functionalities and properties of it. It is also a
form of documentation for the system. Using such a
notation makes it easier for the programmer to design
the system.

REFERENCES
[1] Satyajit Acharya Hrushikesha Mohanty and R.K.
Shyamasundar “Mobicharts: A Notation to Specify Mobile
Computing Applications”
[2] Orit Zuckerman “Interactive Portraiture: Designing Intimate
Interactive Experiences”
[3] Paolo Remagnino Gian Luca Foresti “Ambient Intelligence: A
New Multidisciplinary Paradigm”
[4] Anand Raghunathan, Srivaths Ravi, Sunil Hattangady, and
Jean-Jacques Quisquater “Securing Mobile Appliances: New
Challenges for the System Designer

445

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 01,2021 at 04:20:56 UTC from IEEE Xplore. Restrictions apply.

