
EfficientTreeMiner: Mining Frequent
Induced Substructures from XML

Documents without Candidate Generation
#P.Santhi Thilagam 1, Ananthanarayana V.S 2

'Dept ofComputer Engineering,

2Dept ofInformation Technology,
NITK-Surathkal, Karnataka- 575 025, India

Abstract

Tree structures are used extensively in domains such
as XML databases, computational biology, pattern
recognition, computer networks, web mining, multi-
relational data mining and so on. In this paper, we
present an EfficientTreeMiner, a computationally
efficient algorithm that discovers all frequently
occurring induced subtrees in a database of labeled
rooted unordered trees. The proposed algorithm mines
frequent subtrees without generating any candidate
subtrees. Efficiency is achieved by compressing the
large database into a condensed data structure,
namely prefix string representation, which reduces
space complexity and by adopting a Frequent
Immediate Descendents method that avoids the costly
generation of candidate sets. Experimental results
show that our algorithm has less time complexity when
compared to existing approaches and is also scalable
for mining both long and shortfrequent subtrees.

1. INTRODUCTION

For the last decades, data mining is extensively studied
in theory and practice, and applied to various fields
such as business, industry, and natural sciences [6]. On
the other hand, by rapid progress of network and
storage technologies, a huge amount of weakly
structured data, called semi-structured data [4], [13],
have been available on Internet and intranets. Hence,
there have been increasing demands for efficient
methods that extract rules and patterns from
semi-
structured data [4], [14], namely semi-structured data
mining. We can efficiently transform these semi-
structured data into tree structures. So the frequent

substructure mining problem [1] is reduced into the
problem of frequent subtree mining. Thus, we cannot
directly apply traditional data mining methods [8] for
relational databases to semi-structured data. The
previous studies adopt an Apriori-like approach [9],
whose essential idea is to iteratively generate the set of
candidate subtrees of size (k+1) from the set of
frequent subtrees of size k (for k > 1), and check their
corresponding occurrence frequencies in the database.
An important heuristic adopted in these methods,
called Apriori heuristic [2], [3], which may greatly
reduce the size of candidate subtree set [11]. However,
in situations with prolific frequent subtrees, long
subtrees, or quite low minimum support thresholds, an
Apriori-like algorithm may still suffer from the
following two nontrivial costs:

i) It is costly to handle a huge number of
candidate subtrees.

ii) It is tedious to repeatedly scan the database
and check a large set of candidates by pattern
matching, which is especially true for mining
long subtrees.

This is the motivation of this study, especially for
mining databases containing a mixture of large
numbers of long and short patterns. If one can avoid
generating a huge set of candidate subtrees, the
performance of frequent subtree mining can be
substantially improved. This problem is solved as
described in section 3.

2. RESEARCH PROBLEM STATEMENT

Given a collection of labeled unordered rooted
Trees[12] and minsupport value, the problem is to find

1-4244-0716-8/06/$20.00 ©2006 IEEE. 541

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 23,2021 at 06:17:52 UTC from IEEE Xplore. Restrictions apply.

out the frequent induced subtrees from the given
collection of trees.

Given a threshold minfreq, a class of trees C, a
transitive subtree relation P<T between trees P, T E
C, a finite data set of trees D c C, the frequent tree
mining problem is the problem of finding all trees Pc
C such that no two trees in Pare isomorphic and for all
P E (E freq(P,D) = YT.D d(P,T) 2 minfreq, where d is
an anti-monotone function such that VT E C: d(P',T)
2 d(P,T) ifP'< P.

We will always denote a pattern tree [15] a tree
which is part of the output P- with a P, and a text tree
- which is a member of the data set D - with a T. The
subtree relation P<T defines whether a tree P occurs in
a tree T The simplest choice for function d is given by
the indicator function:

1 ifP<T
d(P,T)=

0 otherwise.

In this simple case the frequency of a pattern tree is
defined by the number of trees in the data set that
contains the pattern tree. We call this frequency
definition, which closely matches that of item set
frequency, a transaction based frequency. The
indicator function is anti-monotone due to the
transitivity of the subtree relation. From the transaction
based frequency, one can also easily define a
transaction based support: sup (P, D) =freq (P, D)I DI.

3. FRAMEWORK FOR MINING FREQUENT
INDUCED SUBTREES

Convert tree database
I into prefix string format Create necessary

Compte uF Frequent I like occurrence
~~~~~~~~subtrees list, etc.

Compute Frequent I subtree
Immediate \

Descendents.

<<uses>> Compute all the frequent
Induced subtrees

corresponding to the freq. 1
subtree item as the root

Fig. 1: Flow diagram for EfficientTreeMiner

The framework for the overall mining procedure is
described in this section. There are two main steps for
mining. The first step is preprocessing step which
reads the tree database and converts it into its prefix
string representation. Next step is to mine frequent
induced subtrees. These steps are explained with
examples in the next subsections. The overall
workflow is shown diagrammatically in Fig. 1.

The main issues to be considered while solving the
problem of mining frequent subtrees are: i)
Representation of large semi-structured data in the
memory, ii) Enumeration of subtrees, iii) Frequency
counting (for support pruning). The efficiency of any
frequent subtree mining algorithm [1] lies in these
three issues.

A. Representation oftree database
The representation of trees should be compact and
unique for the given tree. A single tree should not be
represented with more than one form. One should

LBB-I AF-IL-i-iP-i
C-i-I BB- A-I AF -1

B) B L -1-1 -1-1 -1

(FD L F L)

Fig. 2: Prefix string representation

choose the canonical representation and also the
chosen representation should be useful and should not
increase the complexity in the later stages of mining
process.

The proposed approach uses the prefix string
representation, which is a string obtained by preorder
(depth first order) traversal of the tree. This
representation was chosen because of its compact
representation which takes O(N) space where N is the
size of the tree (number of nodes in the tree). Fig.2.
illustrates how a sample tree database is preprocessed,
and its prefix string form is also given.

B. Mining induced subtrees
The proposed approach eliminates the generation of
unnecessary candidate sets and also reduces the
unnecessary frequency counting. The frequent sub
trees are enumerated using the prefix string
representation of the database of trees and using the
Frequent Immediate Descendents (FID) a novel

542

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 23,2021 at 06:17:52 UTC from IEEE Xplore.  Restrictions apply. 



method that we propose to efficiently find out the
possible subtrees that might be frequent. In our
approach, FID method computes the frequent
immediate descendents for each occurrence of
particular node in the tree database. The frequency
counting process is improved with an occurrence list
based approach. Each frequent subtree is associated
with an occurrence list which stores the information
about the occurrences of that particular subtree in each
tree in the tree database.

The size of the occurrence list is therefore bounded
by the product of the size of the database and the size
of the pattern. The time complexity can be reduced
when compared to the naive approach, as the
frequency of occurrence of an enumerated subtree is
simply obtained from the cardinality of the occurrence
list. This proposed method for mining substructures is
explained with an illustrative example in the next
section

4. MINING ALGORITHM AND ANALYSIS

The high level structure of EfficientTreeMiner is
shown in Fig.3. The main steps include preprocessing,
finding frequent-I subtrees and computing all other
frequent induced subtrees using the frequent-I subtrees
and the procedure ComputeFISubtreesHavingRoot
which is described in Fig.6. We will now explain the
EfficientTreeMiner how it mines the frequent induced
subtrees with an illustrative example.

Algorithm 1: EfficientTreeMiner.
Input : tree database, minsupp.
Output : set of inducedfrequent subtrees.

scan of tree database itself we can compute these. In
this example, the nodes 1,2,3,4,5,8,9 are identified to
be frequent-I subtrees. Also construct the occurrence
lists for these subtrees. This is shown in Fig.5(a). As
given in Algorithm 1, we will compute the complete
sets of frequent subtrees as a collection of equivalence
classes where in each class represents the collection of
trees whose root nodes are same. That means all the
trees whose roots are same, belongs to the same class.
Each class of subtrees is computed in the similar way.

Consider the class corresponding to node 1, (the
trees having root as node 1). Construct a transaction
database with the descendents of the node 1 at all its
occurrences. The transaction database corresponding to
node 1 in this example is {{2, 3, 8}, {3, 5, 8}}. By
computing the Frequent Immediate Descendents from
these we get the frequent item sets are {{3}, {8}, {3,
8} }. The frequent subtrees are constructed using these
sets along with its occurrence lists as shown in Fig.
5(b). Consider tree {1 3 -1 -1}, now the transaction
database is {{4, 1}, {4}}. The frequent subsets from
FID are { {4}}. The identified frequent subtrees are
shown in Fig.5(c). On similar lines, the whole
procedure is repeated for all the remaining subtrees
identified in the previous level and finally all the
equivalence classes are computed.

06

3 4

ti

2 4 5

t2

Method

1. Preprocessing tree database.
a. Read the tree database and build the prefix string

representation.

2. Find out all frequent-1 subtrees and build the occurrence lists.

3. for each frequent-i subtree <f>
a. Freqst[] = ComputeFISubtreesHavingRoot(fOL(/))
b. for each subtree in Freqstf]
i. Output the subtree.

Fig. 3: Algorithm for EfficientTreeMiner

Consider a tree database as shown in Fig.4 and the
minimum support value, minsupp, is given as 2. Here
the number of trees is three. We will first find out the
frequent-I subtrees. Frequent-I subtrees are nothing
but the subtrees having single node. During the first

0

1)

2Q 3

t3

Fig. 4: The example Tree Database

We analyze the time and space complexity of the
proposed algorithm. For representing tree database in
the memory, the prefix string representation [10] is
used. As the size of the tree increases, the
corresponding prefix string size also increases. In the
worst case FID method will take O( VDI+2k) time
complexity which was given in [3] where k is the
largest number of nodes that a node can have as
immediate children which is usually very much less
than all other factors of tree. So the overall worst case
time complexity for EfficientTreeMiner algorithm is
0 (I.m.(( VD )+2k)) where I is the number of distinct
labels in the database and m is the number of nodes in
the largest tree of the database.

543

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 23,2021 at 06:17:52 UTC from IEEE Xplore.  Restrictions apply. 



minsupp value is: 2
Frequent-i subtrees are:

Prefix string: 1-1 2-1 3-1 4-1 5-1 8-1 9-1

Occurrence Lists:

Consider frequent- 1 subtree: 1 -

The immediate children:
tI: 2,3,8
tl: nil
t2: 3,5,8
t3: nil

The frequent subsets are:
3; 8; 3,8

tl; 0 tl; 1 tl; 2 tl; 3 t2; 3 tl; 5 t2; 4
tl;4 t3; t2; t2;2 t3;X t2; 6 t3; 2
t2;O0 t3; 5

t3; 4

(a)

tl,2
t2,1

1 3 -1 -1

consider the frequent subtree:
1 3 -1

38) immediate children at these
occurrences:

tl: 4,

tl,5 tl,25 t2:4
X2~6 CmT1~6

The frequent subsets are: 4

(c)
1 8 -1 1 1 3-1 8-1 -1

tl,3
t2.2

1 3 4 -1 -1 -1

(b)

Fig. 5: Example for enumeration of frequent subtrees

Algorithm 2 : ComputeFISubtreesHavingRoot
Input f:f:node, OL: OccurrenceList
Output : Class of frequent induced subtrees that are having the root asf.
Method

1. According to OL traverse the tree database and get immediate descendents and
construct Transaction database with those.

2. Find frequent subsets for the constructed transaction database using FID method.
3. if no frequent subsets are there then return.

else construct the frequent subtrees usingf as the root and the frequent subsets as its
children. Also compute the occurrence lists for the computed frequent subtrees.

4. for all frequent subsetsfss
a. iffss is singleton then call

ComputeFISubtreesHavingRoot (fss, newocclist)
b. else call the recursive function for all the elements from thefss and get the
combinations of those returned frequent subtrees

Construct new frequent subtrees along with the occurrence lists.
5. Return the constructed frequent subtrees along with the occurrence lists.

Fig. 6: Algorithm for computing a class of frequent subtrees

544

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 23,2021 at 06:17:52 UTC from IEEE Xplore.  Restrictions apply. 



5. EXPERIMENTAL EVALUATION

In this section, we will evaluate the performance of
EfficientTreeMiner. The Proposed algorithm is
compared with Unot [5]. The algorithm is also tested
for the scalability with respect to the data size as well
as minimum support. All the experiments are
performed on a Pentium-IV processor, 2.40 GHz CPU,
256 MB RAM, 40 GB Hard disk. The operating
system environment is Fedora Core 2. C++ and perl
are used for developing the proposed approach. The
compiler for compiling the EfficientTreeMiner
programs is gcc 3.2.2 and the perl interpreter is perl
V5. 8.3. We used perl for implementing the
preprocessing. The tree mining algorithm is
implemented in C++.

both the size of the dataset (number of trees) and the
minimum support value which considers document
occurrence of the frequent patterns. Fig. 7(a) shows the
performances of two algorithms EfficientTreeMiner
and Unot [5] with sigmod dataset. Fig. 7(b) shows the
performance graph obtained for IMDB dataset [17].
From these graphs, we notice that the performance of
EfficientTreeMiner is more stable than that of Unot.
Fig. 7(c) shows the scalability graph with respect to the
data size (number of trees). The scalability in terms of
minimum support value for the EfficientTreeMiner is
shown in Fig 7(d). From the experiments we
conducted, we can conclude that the
EfficientXMLMiner is an efficient way for Frequent
induced subtree (or frequent induced substructure)
mining for Labeled Rooted Unordered trees.

6 0 0 0300

250

c 200

F 150

E 100

IVMDB Dataset

Unot

- EfficientTreeMiner

-,,
5 0 0 0500

i 4000

E

p 3000

2000

1 0 0 0

Sigm od Records

No. Of Docs: 1 000

No. Of Docs: 500
-A No. Of Docs : 1 00

50

0* o0 eN

Minimum Support (%)

Fig 7(b): Minimum Support Vs. Running Time for IMDB

Sigmod Record

---Unot
U)

15 EfficientTreeMiner
a)

E
10 X

.* 5

12 0

Minimum Support (%)

Fig. 7(a): Minimum Support Vs. Running Time for Sigmod
record.

There are different ways of defining the support
threshold. We implemented the algorithm both for root
occurrence and document occurrence.

We considered the XML documents for evaluation
purpose. Experiments were conducted using real
datasets. Two popular sets among those are Sigmod
records from UW repository [16] and IMDB (Internet
Movie DataBase) [17]. We also tested
EfficientTreeMiner for its scalability with respect to

Q '\A cg
M in im urm Support (%)

Fig. 7(c): Scalability graph for sigmod records with respect to
the size of the data set

Sigmod Records

+-minsupp: 80%
-m--minsupp: 60%

minsupp: 40%

o o 0 0 0 0 0 0 0 0
o o 0 0 0 0 0 0 0 0

CNC4 m 'IT (9 S- 00c 0

Number of Documents

Figure 7(d). Scalability graph for sigmod records with
respect to the minimum support value

6. CONCLUSION

In this paper, we have looked at the issue of mining
frequent induced substructures from database of XML
documents which are modeled as labeled rooted
unordered trees. In the proposed approach, we reduce
the space as well as the database scan complexities by
compressing the huge tree database into compact data
structure, prefix string representation. The proposed
algorithm mines frequent induced subtrees without

545

5000
0 4000

E 3000

m 2000
.r_
x 1000

0

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 23,2021 at 06:17:52 UTC from IEEE Xplore.  Restrictions apply. 



generating any candidate subtrees which is the main
bottleneck in the Apriori method. Overall, the mining
procedure takes a single database scan. One way to
measure the data mining algorithms is in terms of its
speed. So, considering speed as the measurement, the
proposed EfficientXMLMiner algorithm performs
better than the other existing algorithms for mining
frequent induced subtrees. The time and space
complexity analysis and the experimental results show
that our algorithm is more efficient than the existing
algorithms and is also scalable for varying data size
and minimum support values. Our algorithm ca be
extended to employ user-defined constraints and the
use of condensed representations. This leads to
constraint-based mining of maximal patterns and
closedpatterns [7] for trees.

REFERENCES

[I]Abe. K., Kawasoe. S., Asai. T., Arimura. H.,
Sakamoto. H., Arikawa. S., "Mining Frequent
Substructures from Web", Active Mining -New
Directions ofData Mining-, IOS Press, 2002, pp.
83-94.

[2]Agrawal. R., and Srikant. R. "Fast algorithms for
mining association rules". In Proc. 1994 Int. Conf.
Very Large Data Bases, Santiago, Chile, September
1994,pp.487-499.

[3]Agrawal, R., Manilla, H., Srikant, R., Toivonen, H.,
Verkamo, A.: Fast Discovery of Association Rules.
In: U.M. Fayyad et. Al. (cds). Advances in
Knowledge Discovery and Datamining.

AAAI/MIT Press. (1996).
[4]Asai, T., Abe, K., Kawasoe, S., Arimura, H.,

Satamoto, H., Arikawa, S.: "Efficient Substructure
Discovery from Large Semi-Structured Data", 2nd
SIAMInt. Conf. on Data Mining, April 2002.

[5]Asai, T., Arimura, H., Uno, T., Nakano, S.:
"Discovering Frequent Substructures in Large
Unordered Trees", The 6th International
Conference on Discovery Science, October 2003.

[6]Chi, Y., Nijssen, S., Muntz, R., Kok, J. N.,:
"Frequent Subtree Mining - An overview",
Fundamental Informaticae Special Issue on Graph
and Tree Mining, 2005, Pages:1001-1037, IOS
Press.

[7]Chi, Y., Yang, Y., Xia, Y., Muntz, R.
R. :"CMTreeMiner: Mining Both Closed and
Maximal Frequent Subtrees", The Eighth Paci c
Asia Conference on Knowledge Discovery and
Data Mining (PAKDD'04), May 2004.

[8] Han, J., Pei, J., and Yin, Y. 2000. "Mining frequent
patterns without candidate generation", In Proc.

2000 ACM-SIGMOD Int. Conf. Management of
Data (SIGMOD'00), Dallas, TX, pp. 1-12.

[9]Inokuchi. A., Washio. T., Motoda. H., "An Apriori-
Based Algorithm for Mining Frequent
Substructures from Graph Data", In Proc. the 4th
European Conference on Principles and Practice
ofKnowledge Discovery in Databases (PKDD'00),
LNAI 1910, Springer-Verlag, 2000, pp. 13-23.

[10]Kiselyov. O., "A better XML parser through
functional programming -- Fourth International
Symposium on Practical Aspects of Declarative
Languages ", (PADL '02). January 2002

[II]Lakshmanan. R. Ng, L. V. S., Han. J., and Pang.
A., Exploratory mining and pruning optimizations
of constrained associations rules. In Proc. 1998
ACM-SIGMOD Int. Conf. Management of Data,
Seattle, Washington, June 1998, pp.13-24.

[12]Nijssen, S., Kok, J. N., "Efficient Discovery of
Frequent Unordered Trees", First International
Workshop on Mining Graphs, Trees and
Sequences, 2003.

[13]Nijssen, S., Kok, J. N., "A Quickstart in Frequent
Structure Mining Can Make a Difference", Proc. of
the 2004 Int. Conf. Knowledge Discovery and Data
Mining (SIGKDD'04), August 2004.

[14]Termier. A., Rousset. M., Sebag. M., "TreeFinder:
a First Step towards XML Data Mining", In Proc.
the 2002 IEEE International Conference on Data
Mining (ICDM'02), IEEE Computer Society, 2002,
pp. 450-457.

[15]Zaki, J.: "Efficiently Mining Frequent Trees in a
Forest", In proceedings of the SIGKDD'02,
Edmonton, Canada (2002).

[16]XMLDataSets www .cs washington.
edulresearch/XMLdasets

[17]The Internet Movie Database (IMDb)

546

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 23,2021 at 06:17:52 UTC from IEEE Xplore.  Restrictions apply. 


