
Jamura: A Conversational Smart Home Assistant
Built on Telegram and Google Dialogflow

Sanket Salvi∗, Geetha V†, Sowmya Kamath S‡
Department of Information Technology, National Institute of Technology, Karnataka

Surathkal, Karnataka, India

Email: ∗sanketsalvi.salvi@gmail.com, †geethav@nitk.edu.in, ‡sowmyakamath@nitk.edu.in

Abstract—With an ever-increasing number of smart connected
devices for various applications, there is a need for finding a new,
smarter way of communicating with all the homogeneous and
heterogeneous devices in a particular network. Conversational
Bots, also known as Chatbots, are currently a popular solution
in many applications, as they provide a user-friendly interface
and more intuitive recommendations to user queries. In this
work, the domain of home automation is considered from the
area of the Internet of Things, and a Chatbot application built
using technologies like Natural Language Processing, Machine
Learning, and Service-Oriented Computing is designed as an
intuitive user-interface for Smart home products. The aim of
this paper is to build easy to implement and integrate DIY
Smart Home Assistant using available technologies. The proposed
Conversational Artificial Intelligence system can aid the user in
smart decision making, predictive and preventive analytics, and
showed promising results during experimental evaluation.

Index Terms—Web of things, Conversational agents, Home
Automation, Intelligent Decision-making, Chatbot

I. INTRODUCTION

A Chatbot is an individual computerized aide who is built to

support human-like interaction. It collaborates with the client

through a verbal or textual chat interface, giving a virtual

talking accomplice to speak. Though regularly utilized as a

part of a dialog system for functional purposes similar to

client administration or data procurement, a Chatbot can be

customized to give some assistance for several intents. For

example, tasks such as product recommendations, food rec-

ommendations, checking the weather, or planning a gathering

can be easily handled by a Chatbot. From the early 60s to

present day, Chatbots have undergone various improvements

concerning technology, accuracy, efficiency, and application.

The current generation of Chatbots [1] has evolved to be

more intelligent due to advances in Machine Learning, Natural

Language Processing, and Big Data Analytics. Such innovative

technologies are also made available in the public domain

in the form of APIs; developers can utilize that for building

customized Chatbots, and thus increase its utility for a variety

of end-user applications.

On the other hand, the emerging concept of Web of Things

(WoT) as a platform for simple interaction and integration

of smart devices in the Internet of Things (IoT) realm, can

be seen as a significant development towards improving the

ease-of-access and usability of IoT infrastructures, specifically

in customer-oriented product markets like smart homes and

smart cars. Guinard et al. [2] described the Web of Things

paradigm emphasizing its features like support for modeling

functionality as Linked Resources, representing resources,

service management through a uniform interface, Thing syn-

dication, Callback feature for Things through WebHooks and

Web-enabling Constrained Devices, etc. Milson et al. [3]

demonstrated the application of WoT concepts in AI-enabled

product developments, like those in popular products such as

Amazon Alexa, Apple Siri, and Google Home.

Over the past few years, developers have attempted to build

interactive applications in the smart home domain to enhance

ease-of-use. Obaid et al. [4] developed a ZigBee based voice-

controlled smart home system that integrates device level

interaction with user speech recognition and personalization.

Guinard et al. [5] designed Sun SPOT, as a use-case of WoT

in Smart Power Grids. Their work provided an insight into

the need and development of web services and REST APIs,

their expected formats and functionalities. Their work uses the

ReST paradigm [6] for building a searchable network of things

powered by RESTful services [7] [8].

Guinard et al. [9] described a Social Web of Things, wherein

the Smart Devices can be part of the Social Network and

can communicate with each other in a more natural and

human way. Their work also discussed the development of

OpenSocial, an Open Social Network API Stack to build

Social Web of Things. This work provides an insight into

understanding the interactions between user-level interfaces

and Devices. Embodied Conversational Agents (ECAs) were

proposed by Santos-Prez et al. [10] that are developed to be

a natural interface between humans and Ambient Intelligence.

ECAs can help people in their general daily routine and can

be built on an architecture based on open-source tools and

libraries. Their prototype virtual agent called AVATAR [10]

acts as a natural control interface of the home automation

system.

Richardson and Ruby [11] developed an integrated Telegram

based messaging platform with camera-mounted Raspberry Pi

that provides a visual of an intruder, for the house owner. An

advanced version of the same concept was proposed by Ngu

et al. [12], where the entity in front of the door could be

identified, and an appropriate message corresponding to the

findings can be sent to house owner for further instructions.

Guinard et al. [13] also proposed a Telegram based application

for water consumption monitoring and alerting, that uses

Ubidots IoT platform for data storage and visualization while

1564978-1-7281-1895-6/19/$31.00 c©2019 IEEE

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on September 22,2020 at 17:49:18 UTC from IEEE Xplore. Restrictions apply.

Water level sensors are used to monitor water consumption.

In this paper, we consider the Smart Home space as a

use-case for the development of an Intelligent Conversational

Agent-based user interface. The Chatbot is named as ’Jamura,’

as the application of Chatbot is analogous to the entertainer

who plays a particular sort of sidekick part in the conventional

folk theater of India, who is called as ‘Jamura.’

The proposed Chatbot aims at providing the ability to

monitor and control household Internet-connected devices and

respond to queries about overall house and garden health. The

typical house health parameters like temperature, humidity,

light intensity, the operational status of lights and fans in each

room, soil moisture of garden and operational status of the

water pump can be made easily accessible and controllable

via natural language commands using proposed Chatbot. In

addition to this, integration of Smart Door System is also pro-

posed, which can identify the presence of human being at the

door and assist the home-owner for Intruder Detection and/or

automate decision support for further actions. The proposed

home automation system uses the concepts of Web of Things

to make services, devices, and related data more transparent

and accessible across the network while maintaining data

integrity.

The rest of this paper is organized as follows. In Section

II, we describe the proposed framework, its architecture, and

the various functionalities designed for Jamura. Section III

presents the experimental setup and implementation specifica-

tions of the proposed framework. In Section IV, we discuss

the experimental results and outcomes of our implementation,

followed by a conclusion and future work.

II. PROPOSED FRAMEWORK

Fig. 1 shows the functional architecture and logical arrange-

ment of components that support the proposed functionalities

of Jamura. Here, the bottommost layer depicts Sensors, Actu-

ators, and Micro-Controllers, deployed in respective locations

in the Smart home environment. The data collected from

the devices in the lowest layer is aggregated and stored on

Jamura’s Local Server, which also works as a standalone

Intruder Detection/Alert System. The data can be accessed

in the local network, and it is updated over ThingSpeak

Cloud for remote monitoring. Two Webhooks are used to

process and redirect requests and responses between ThingS-

peak and DialogFlow depending on the type of information.

ThingSpeak Webhook will handle Local Client related queries

while Telegram Webhook will handle Intruder Detection/Alert

System-related queries. Out of available Chatbot platforms like

IBM Watson Conversation Service, AgentBot, Twyla, Api.ai,

Microsoft Bot Framework, Microsoft Language Understanding

Intelligent Service (LUIS), etc., Dialogflow was selected for

the implementation of Jamura, due to its ease of implementa-

tion, wide range of features and integration options. The final

layer acts as an endpoint for capturing user interactions. With

respect to our work, this layer could be well-served by both

Telegram and Google Assistant. Telegram is selected due to its

popularity and ease of integration using APIs, while Google

Assistant is selected due to its support for speech recognition.

Fig. 1. System Architecture for Jamura

For the sake of simplicity, ‘Room 1’, ‘Room 2’, ‘Garden’

shown in Fig. 1, will be addressed as Local Clients and

‘Main Door’ will be addressed as Local Server. Based on

functionality in a few situations, the Local Server could also

behave as a Client. The main door has two tasks to handle

- capture the image when the PIR sensor detects a visitor at

the door, and act as a local server collecting data from Local

Clients.

A. Jamura’s Web of Things Architecture

This section describes the components of the Web of Things

Architecture designed for Jamura. It consists of four layers -

Access, Discovery, Share, and Compose, the details of which

are discussed in detail below:

1) Access: This layer is responsible for turning any Thing
into a programmable WebThing that other devices and appli-

cations can easily talk to. Things can be smoothly integrated

to the web by exposing their services through a RESTful API

using HTTP, built on top of TCP/IP, as well as the JSON

data format. The data captured by each of the Local Clients

must be well-formed in light-weight JSON format to enable

interaction with the Local Server, by consuming provisioned

RESTful APIs.

2) Discovery: In this layer, we propose an HTTP-based

protocol with a set of resources, data models, payload syntax,

and semantic extensions that WebThings and applications

should follow. In the case of non-IP based clients, the JSON

data sent by the Local Client should contain a Unique Identi-

fier. For designing a scalable and protocol-agnostic infrastruc-

ture, we propose to incorporate non-IP based identification in

Jamura.

2019 IEEE Region 10 Conference (TENCON 2019) 1565

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on September 22,2020 at 17:49:18 UTC from IEEE Xplore. Restrictions apply.

3) Share: At this level, we look into applying fine-grained

sharing mechanisms on top of RESTful APIs. This is used to

establish a few complicated tasks like collective data gathering,

collaborative functioning, or device to device communication.

The proposed system will use Google Vision API, Google

Dialowflow API, and Telegram API to achieve data sharing

over the Internet and provide easy to use access for Users.

4) Compose: At the compose layer, the challenge is to build

large-scale, meaningful applications over the Web of Things

infrastructure of Jamura. The highest level, i.e., the design of

the User Interface (UI) and the seamless integration of the

different layers has to be addressed. However, in the proposed

system, existing interfaces like Telegram and Google Assistant

will be used.

B. Webhooks

A Webhook which is also widely referred to as an HTTP

push API or web callback [2] [5] [9] is a method for enabling

an application to exchange data with other application for

processing. Unlike regular APIs where one must request for

data at short intervals to get it at near real-time, a Webhook

provides data to other applications proactively, as its gener-

ated. This makes Webhooks much more efficient for both

provider and consumer. For Jamura, we proposed a PHP based

ThingSpeak Webhook, hosted on Heruko Cloud via Dropbox.

Heroku is a free web hosting platform which provides a wide

range of language support for deploying web applications

whereas Dropbox is a Cloud-based file-sharing application.

Another Webhook This Webhook will be requested by Google

Dialogflow when a specific event occurs.

C. The Jamura Chatbot Interface

In order to build the Chatbot interface, use of Google’s

Dialogflow is proposed. Under which each fully functional

Chatbot is called as an Agent and such Agents are best

described as NLU (Natural Language Understanding) modules

in Dialogflow developer documentation [14]. An Agent uses

following components:

• Intent is question-answer pair, where several ways for

asking same question and its corresponding expected

reply is specified.

• Entity is a key-value pair, where key is a word and values

are its synonyms.

• Actions and Parameters are used for filtering intents and

generating a suitable query format using variables from

the query.

• Fulfillment is used if a query has to be redirected to a

Webhook for processing and response.

In addition to Dialogflow, we also propose to use Telegram

[15], which is a cloud-hosted desktop and mobile messaging

application, with a high emphasis on speed and security.

Telegram provides a simple way to create a Chatbot by using

a Botfather, which in itself is a Chatbot to create Chatbots.

However, to provide intelligence for the proposed Chatbot,

we would require integration of Dialogflow with Telegram

and ThingSpeak. This can be achieved by using ThingSpeak

and Telegram Webhooks. Google’s Image Processing and

Analytics API is integrated for identification of features from

the images captured by the camera at the main door to support

Jamura’s Intruder Detection/Alert System.

III. EXPERIMENTAL SETUP & IMPLEMENTATION

A. Experimental Setup

The hardware and software used in the development of

Jamura is tabulated in Tables I through IV. In Table I-

III, the various hardware components like sensors, actuators

and micro-controllers used are presented, along with their

respective usage. In Table IV, the various software, technology

frameworks and API stacks used for integrating the Web of

Things infrastructure of Jamura, along with the cloud services

used to integrate and process data from various functional

modules is presented.

TABLE I
HARDWARE REQUIREMENTS - TYPES OF SENSORS

S.No. Component Model Details

1 Humidity Sensor SEN-10167 Monitors room humidity

2 Temperature Sen-
sor

SEN-10167 Monitors room tempera-
ture

3 Light Sensor SEN-09088 Monitors ambient light in
the room

4 Soil Moisture
Sensor

SEN-13322 Monitors moisture content
of garden soil

5 Motion Sensor SEN-13285 Detects presence of obsta-
cle in front of main door

6 Camera DEV-14028 Capture photo and videos
for analysis

TABLE II
HARDWARE REQUIREMENTS - ACTUATORS

Sl. No. Component Model Justification

1 SMD Lights COM-11821 Improve room illumina-
tion

2 Submersible
Water Pump

ROB-10455 Garden watering

3 DC Motors ROB-11696 Used for simulating AC or
Fan in actual smart home
scenario

4 Speaker COM-14023 Used for voice output

B. Jamura’s IoT Infrastructure

The implementation of Jamura is divided into two phases

- the setup of the IoT ecosystem and implementation of

Web of Things and Services. As shown in Fig. 1, there

are four Local Clients, Room1, Room2, a garden and a

main door. For the implementation of Room1 and Room2,

we used Light-Dependent Resistor (LDR), Digital Humidity

Temperature (DHT11), Surface-Mount Device Light Emitting

Diodes (SMD-LED) and WeMos D1 Mini. The connections

1566 2019 IEEE Region 10 Conference (TENCON 2019)

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on September 22,2020 at 17:49:18 UTC from IEEE Xplore. Restrictions apply.

TABLE III
HARDWARE REQUIREMENTS - MICROCONTROLLERS

Sl.No. Component Model Justification

1 WeMos D1
Mini

ESP8266 Transmits the sensed data to
Local Server and receives in-
put from Local Server

2 Raspberry Pi 3B Monitors the main door and
performs operation as Local
Server and Gateway

TABLE IV
SOFTWARE REQUIREMENTS

Sl. No. Software/ Technology Usage

1 Python3 Used for implementing the Lo-
cal Server, REST APIs and for
sending image to Telegram

2 Flask SQLAlchemy For maintaining received data
at Local Server in a SQL format

3 Flask Marshmallow For serializing and deserializing
JSON data

5 Arduino IDE For writing and uploading code
over WeMos, for reading and
writing data over sensors and
actuators respectively

6 Google Cloud Platform Used to create Chat Bot using
Dialogflow and to invoke Vi-
sion API for Image Analysis

7 Heroku Used for deploying the Jamuara
Webhook over a global domain

8 PHP Used to code the Jamura Web-
hook

are shown in Fig. 2. An Arduino IDE with Adafruit DHT

library is used for programming WeMos. An object of DHT

class is created based on supplied DHT Type and pin number

as initialization parameters. Once initialized, the object can is

used to retrieve values of temperature and humidity. The output

pin of LDR is connected to A0 pin of WeMos, and the value

sensed at A0 is directly read using AnalogRead function of

WeMos. The LED is connected to pin D1 of WeMos and which

is used for emulating real-world light control. Fig. 3 shows

the implementation of Local Client for Room1 and Room2.

The sensed data is frequently updated over Local Server and

ThingSpeak Cloud.

Fig. 2. Circuit Diagram for Sensor-Actuator Module for Room1 and Room2

Fig. 3. Room1 and Room2 Local client and Hardware configuration

Similar to Room1 and Room2, the Garden local client is

also connected to Local Server. The main objective of this

local client is to sense moisture content of the soil, send it to

Local Server and turn on Water pump when it drops below

a preset threshold. To implement this, we used a Moisture

Sensor and Relay Switch, which is connected to WeMos. Since

the power required to run the water pump is more than the

output power of WeMos, the relay switch is used, as shown in

Fig. 4 for providing additional power from an external source.

The setup for Local Client Garden is as shown in Fig. 5.

Fig. 4. Circuit Diagram for Garden Monitoring System

Fig. 5. Garden Monitoring System

As WeMos comes with onboard WiFi ESP8266 module, we

used it to connect it to our Local Server (i.e., Raspberry Pi).

Each device has a Unique Identifier which is sent during URL

request. Each of these Local Clients can send data in JSON

format as shown Code 1.

{ "channel": {
"id": 342778,"name": "Room1",
"description": "Monitors Room1 sensors",
"field1": "Temperature",
"field2": "Ambient-Light-Intensity",

2019 IEEE Region 10 Conference (TENCON 2019) 1567

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on September 22,2020 at 17:49:18 UTC from IEEE Xplore. Restrictions apply.

"field3": "Humidity", "field4": "Lights",
"created_at": "2018-10-08T09:19:42Z",
"updated_at": "2018-11-18T09:56:51Z"

},
"feeds": [

{
"created_at": "2018-11-18T09:56:51Z",
"field1": "22", "field2": "35",
"field3": "62", "field4": "0"

}] }

Code 1. Sensor data in JSON Format

As a final step in the setup, as shown in Fig. 6, a PIR sensor,

and Camera is connected to Raspberry Pi (shown in Fig. 7).

The PIR sensor continuously checks for any motion near it,

and when detected, an event script for clicking a photograph is

triggered. Google Vision API is used to extract features from

the image and assign labels to the image for identifying the

occurrence of features like Nose, Eyes, Arms, Face, Human,

Girl, etc. Once this is done, the image is sent to the User’s

smartphone via Telegram Webhook, for next action/command.

Apart from being a Local Client for Main Door, the Raspberry

Pi also works as a Local Server. It provides access to custom-

defined REST APIs to serve the functions defined for Jamura

(described in Section III-C).

Fig. 6. Circuit diagram for Raspberry Pi Door Module

Fig. 7. Local Client (Main Door) / Local Server

C. Jamura’s WoT Ecosystem and Services

1) Implementation of REST API: As discussed in Section II

(C), the four layers of WoT i.e. Access, Discovery, Share and

Compose, are to be provisioned. One of the main requirements

for this provisioning is the need for well-formatted data. The

defined JSON data format (shown in Code 1) fits well with

this requirement, however, to send and receive data in the pre-

scribed format, a lightweight framework is essential. Hence,

we used the concept of RESTful Web services on Local Server

for supporting a event-driven, asynchronous architecture for

Jamura.

The RESTful services were implemented using Flask,

Python’s SQLAlchemy and Marshmallow deserialization li-

brary, that are highly efficient for REST API development.

SQLAlchemy is a Python SQL toolkit that provides developers

with the complete features and flexibility of SQL, where as,

Flask-sqlalchemy is Flask library which extends integration

with SQLAlchemy in a Flask application. Flask-marshmallow

is a Flask extension that is used to integrate the object seri-

alization / deserialization library with Flask. For Jamura, we

used flask-marshmallow to correctly render JSON responses

from the various things in the IoT infrastructure. The process

of designing the RESTful Service Ecosystem is described

below.

• Import Flask to create an instance of the Web application,

request for data, jsonify it to generate a JSON output.

Convert this into a Response object with a mimetype

”application/json”, then use SQAlchemy to access the

database, and Marshmallow to generate the serialized

object.

• Set the path to the defined SQLite URI, and bind

SQLAlchemy and Marshmallow to the Flask application.

• Once SQLAlchemy is bound to the Flask app, the models

to be used are declared. In the proposed work, a model

called ‘Thing’ is used and its field and properties were

defined.

• Define the structure of the response of the created

endpoint. All endpoints must support JSON responses.

The designed JSON response contains key-value pairs

for time, deviceId, roomName, lightintensity, humidity,
temperature and lightstatus.

• We set the route to ‘/thing’ and set the HTTP methods

to POST. Next, for the route and methods, we define

a function that will be executed when the endpoint is

accessed. A new ‘thing’ object is created using the data

present in request and same is added to the database in

the form of JSON Object.

• Define an endpoint to get list of all things (i.e. connected

devices) and show the result as JSON response.

• Also, define an endpoint to get device data based on

device Id.

• Define another endpoint to update a Thing object. The

thing object associated with a given id on parameter can

be accessed at this endpoint.

• Define an endpoint to delete a thing. The thing associated

with that id, can be deleted by sending a JSON request

to this endpoint.

1568 2019 IEEE Region 10 Conference (TENCON 2019)

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on September 22,2020 at 17:49:18 UTC from IEEE Xplore. Restrictions apply.

2) Webhook Implementation: To redirect the request from

Google’s Dialogflow to Jamura’s Local Server so that data

could be fetched, a dedicated Webhook is implemented which

is named as ThingSpeak Webhook. Based on the query, Di-

alogflow can resolve it by using defined Intents and Entities. If

a device accesses Fulfillment endpoint with the defined intent

then, the request will be forwarded to ThingSpeak Webhook

for resolution. From this request, ThingSpeak Webhook will

extract value for corresponding action. Depending on the

action, a POST request will be sent to Jamura’s Local Server in

JSON format. Following is a sample JSON request generated

by Dialogflow:

{ "result": {
"source": "agent",
"resolvedQuery": "What is temperature

in Room1",
"action": "sensorbyroom",
"parameters": {"room": "Room1","

sensor": "temperature"},
"fulfillment": {

"speech": "The temperature in Room1
is 22",

"source": "Webhook"},},}
Code 2. Dialogflow request message

Based on variable values, respective data from correspond-

ing device environment will be fetched. Further, by assigning

the fetched values to desired variables, a JSON response is

generated and sent back to Dialogflow. For example, as shown

in Code 2, the query is ”What is temperature in Room1?”.

Based on type of query the resolved action and parameters is

identified. As shown in Code 2, action is ”sensorbyroom” and

parameters are ”room” and ”sensor”. Value for ”room” and

”sensor” is ”Room1” and ”temperature” respectively. Based

on room name, specific sensor/actuator will be selected and

sensed value will be returned. Fig. 8 shows implementation

the process of query resolution and processing of ThingSpeak

Webhook.
3) Using Google Dialogflow and Telegram: Dialogflow

provides an interactive platform for creating a set of valid

user queries and their expected response. It uses its native

NLP and Machine Learning capabilities to understand the

query if the requested query does not exactly match. This

provides flexibility for users to query with minimum inputs.

From the given query, Dialogflow recognizes the entities that

are referred to in the query, and it identifies the corresponding

action that has to be triggered. Based on the action, respective

entities will be sent to the Webhook for serving the request.

Dialogflow provides an option for deploying the Chatbot

over Telegram. For this, we need to create a bot on Telegram

using Telegram ”Bot Father”. It will create a simple Chatbot

based on a predefined template and provide unique TokenID.

The provided TokenID is passed to Dialogflow, which then

obtains a Webhook to a Telegram bot. This will enable the

Fig. 8. Webhook Flowchart

user to use Telegram for requesting any required details with

respect to the deployed sensor in the house. However, once

the Telegram Webhook is obtained by Dialogflow, it cannot

be simultaneously used for any other purpose. For example,

if a bot initiated message has to be sent to the user. Thus,

for our proposed system, we have used 2 Chatbots, one for

interacting with sensors and other exclusively to send bot

initiated messages based on an assigned trigger (i.e., Intruder

Detection/Alert System).

IV. JAMURA IN ACTION - RESULTS & OBSERVATIONS

In this section, we showcase the functionalities and capa-

bilities of the designed Smart Home Conversational Agent,

Jamura. Various User Interfaces of Jamura are shown in Fig. 9.

In Fig. 9(a), Jamura has been integrated with Google Assistant.

This provides user to use set of voice or text commands to

interact with Jamura. Fig. 9(b) shows Jamura as an Iframe web

component which can be easily integrated into any custom

made websites. Moreover, Fig. 9(c) shows user interaction

with Jamura over Telegram Messaging Platform.

Fig. 10 illustrates the process of interaction between the

user and a visitor at the main door. The Smart Door System

is initiated when the presence of any object/human is sensed

by the PIR motion sensor associated with the main door. This

triggers the camera module and captures the object/human’s

2019 IEEE Region 10 Conference (TENCON 2019) 1569

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on September 22,2020 at 17:49:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. a) Jamura Google Assistant Interface, b) Jamura Iframe Interface, c) Jamura Telegram Interface

photo, which is then transferred to Google Vision Service for

identification of the presence of a human in the photo captured.

If a human is present in the captured photo, then the photo

is sent to the homeowner, requesting further action. If the

homeowner replies within a timeframe of 30secs, then Jamura

provides the message as an audio output to the visitor waiting

outside the door. Otherwise, a default message saying “Sorry,
Owner did not respond” is returned to the visitor.

To evaluate the performance of Jamura in real deployment

scenarios, few tests for observing the response time were con-

ducted. Variety of intents which represent the possible set of

queries that a human can send to the agent were defined. Table

V shows the observed response time of agent with respect

to different intents. Here, Session represents the number of

distinct sessions for which corresponding intent was called and

count represents total occurrences of particular intent during

testing. It is observed that queries which required Webhook for

generating response took more time when compared to queries

which were served directly through Dialogflow. This is the

effect of the additional latency incurred during communication

from Dialogflow to Webhook, Webhook to Cloud, processing

of received data from cloud and finally, generated response to

Dialogflow. Fig. 11 is obtained from Dialogflow’s Analytics

section which shows overall performance with respect to

requested queries and accuracy of response. It is seen that

the majority of requested queries where handled by Default
Welcome Intent. This intent also had about 50% of the total

exits, which implies that 50% of total users terminated their

session under this intent. However, 12.5% of total queries went

ahead with further queries which were resolved by Who are

you intent. Also, it can be seen that 25% of the queries were

handeled by Brief Home Stats intent and remaining 12.5%

and 12.5% were handled by What can I do for you? intent

and AskHome intent.

Fig. 10. Conversation with Jamura Smart Door

1570 2019 IEEE Region 10 Conference (TENCON 2019)

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on September 22,2020 at 17:49:18 UTC from IEEE Xplore. Restrictions apply.

TABLE V
JAMURA’S RESPONSE TIME EVALUATION

Sl.no Intent Sessions Count Median Response time 90% response time
1 Welcome Intent 21 31 0.04s 3.08s
2 AskHome2 14 19 0.37s 10.12s
3 Quit 12 15 0.06s 0.12s
4 What can I do 11 13 0.38s 0.39s
5 My name is 14 15 0.08s 0.12s
6 Turn On/Off 9 11 0.34s 0.34s
7 Who are you 14 16 0.04s 0.04s
8 Which rooms 13 15 7.42s 7.42s
9 Tell me sensor 11 13 0.08s 0.08s

10 Brief me about Home Stats 9 10 0.28s 0.28s

Fig. 11. Percentage Requested Intent and Accuracy

V. CONCLUSION AND FUTURE SCOPE

In this paper, an intelligent conversational agent that is built

based on a robust framework using Telegram and Google

DialogFlow was presented. These customized Chatbots for IoT

applications are built on the basis of open source frameworks,

this enables the provisioning of addressable IoT resources us-

ing Web of Things concepts. It was observed that implemented

system works well under restricted set of queries. It is mainly

due to limited training queries and unexpected queries. It was

also observed that due to hard-coded user-id the smart door

Chatbot responds only to authorized user. Jamura provides

combined benefits of similar systems proposed under [16]

[17] like Speech Recognition, Context Recognition, Remote

Monitoring and Control, Easy-to-use Interface. In addition, our

system also provides support for integration with various other

platform as shown in Fig.9

As part of future work, we intend to incorporate data ana-

lytics and optimization techniques for enhancing the learning

skills of Jamura to better suit the needs of the Smart-Home

owner.

ACKNOWLEDGEMENT

This publication is an outcome of the R&D work undertaken

in the project under the Visvesvaraya Ph.D. Scheme of Min-

istry of Electronics & Information Technology, Government

of India, being implemented by Digital India Corporation

(formerly Media Lab Asia).

REFERENCES

[1] N. M. Radziwill and M. C. Benton, “Evaluating Quality of Chatbots and
Intelligent Conversational Agents,” arXiv e-prints, p. arXiv:1704.04579,
Apr. 2017.

[2] D. Guinard, V. Trifa, F. Mattern, and E. Wilde, From the Internet of
Things to the Web of Things: Resource-oriented Architecture and Best
Practices. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp.
97–129.

[3] R. Milton, D. Hay, S. Gray, B. Buyuklieva, and A. Hudson-Smith,
“Smart iot and soft ai,” in Living in the Internet of Things: Cybersecurity
of the IoT - 2018, March 2018, pp. 1–6.

[4] T. Obaid, H. Rashed, A. Abu El Nour, M. Rehan, M. Muhammad Saleh,
and M. Tarique, “Zigbee based voice controlled wireless smart home
system,” International Journal of Wireless and Mobile Networks, vol. 6,
02 2014.

[5] D. Guinard, V. Trifa, and E. Wilde, “Architecting a mashable open world
wide web of things,” Tech. Rep., 2010-02, .

[6] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[7] L. Richardson and S. Ruby, Restful Web Services, 1st ed. O’Reilly,
2007.

[8] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng,
“Iot middleware: A survey on issues and enabling technologies,” IEEE
Internet of Things Journal, vol. 4, no. 1, pp. 1–20, Feb 2017.

[9] D. Guinard, M. Fischer, and V. Trifa, “Sharing using social networks in a
composable web of things,” in 2010 8th IEEE International Conference
on Pervasive Computing and Communications Workshops (PERCOM
Workshops), March 2010, pp. 702–707.

[10] M. Santos-Pérez, E. González-Parada, and J. M. Cano-Garcı́a, “Avatar:
An open source architecture for embodied conversational agents in smart
environments,” in Ambient Assisted Living, J. Bravo, R. Hervás, and
V. Villarreal, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 109–115.

[11] R. G. Anvekar, R. M. Banakar, and R. R. Bhat, “Design alternatives
for end user communication in iot based system model,” in 2017
IEEE Technological Innovations in ICT for Agriculture and Rural
Development (TIAR), April 2017, pp. 121–125.

[12] A. Patel and A. Verma, “Iot based facial recognition door access control
home security system,” International Journal of Computer Applications,
vol. 172, pp. 11–17, 08 2017.

[13] Z. Che Soh, M. S. Shafie, M. Affandi Shafie, S. Sulaiman,
M. Nizam Ibrahim, and S. A. Che Abdullah, “Iot water consumption
monitoring and alert system,” Banda Aceh, Indonesia, 09 2018, pp. 168–
172.

[14] “Agents overview for chatbot creation using dialogflow [online],”
https://dialogflow.com/docs/agents, accessed: 23-Jan-2019.

[15] “bots: An introduction for developers, telegram apis. [online],”
https://core.telegram.org/bots, accessed: 23-Jan-2019.

[16] T. Parthornratt, D. Kitsawat, P. Putthapipat, and P. Koronjaruwat, “A
smart home automation via facebook chatbot and raspberry pi,” in 2018
2nd International Conference on Engineering Innovation (ICEI), July
2018, pp. 52–56.

[17] C. J. Baby, F. A. Khan, and J. N. Swathi, “Home automation using iot
and a chatbot using natural language processing,” in 2017 Innovations
in Power and Advanced Computing Technologies (i-PACT), April 2017,
pp. 1–6.

2019 IEEE Region 10 Conference (TENCON 2019) 1571

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on September 22,2020 at 17:49:18 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

