
Multi-agent search strategy based on centroidal Voronoi configuration

K.R. Guruprasad and Debasish Ghose

Abstract— We propose a combined deploy and search strategy
for multi-agent systems using Voronoi partition. Agents such
as mobile robots (AGVs, UAVs, or USVs) search the space
to acquire knowledge about the space. Lack of information
about the search space is modeled as an uncertainty density
distribution, which is known a priori to all the agents at the
beginning of search. It is shown that when the agents are located
at the centroid of Voronoi cells, computed with the perceived un-
certainty density, reduction in uncertainty density is maximized.
While moving toward this optimal configuration, the agents
simultaneously perform search acquiring the information about
the search space, thereby reducing the uncertainty density.
The proposed search strategy is guaranteed to reduce the
average uncertainty density to any arbitrary level. Simulation
experiments are carried out to validate the proposed search
strategy and compare its performance with sequential deploy
and search strategy proposed in the literature. The simulation
results indicate that the proposed strategy performs better than
sequential deploy and search in terms of faster search, and
smoother and shorter robot trajectories.

I. INTRODUCTION

Autonomous agents are increasingly being used in exe-

cuting various tasks. There are two possible ways to ac-

complish complex tasks. One is to increase the cognitive

complexity of the agent and other is to use relatively simple,

multiple agents, to cooperatively accomplish the given task.

Developments in areas such as wireless communication,

autonomous vehicular technology, computation, and sensors,

facilitate use of large number of agents such as aerial robots

(Uninhabited or Unmanned Aerial Vehicles: UAVs), mobile

ground robots (Automated Guided Vehicles: AGVs), or mo-

bile surface robots (Uninhabited Surface Vehicles: USVs),

equipped with necessary sensors, communication equipment,

and computation ability, to cooperatively achieve various

tasks in a distributed manner. The motivation for multi-

agent systems can be found in nature, where most biological

systems such as ants, birds, fish etc., have distributed local

decision making capabilities which, in turn, lead to a useful

collective behavior such as swarms, flocks, schools, etc. With

each agent taking decisions based on only available local

information and distributed control law, usually referred to

as ‘behavior’ in biological systems, can lead to coordination

among the agents and result in a meaningful collective

behavior.
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One class of problems discussed in the literature is that

of optimally locating the agents or sensors in the domain of

interest which belongs to problem of locational optimization

or facility location. A centroidal Voronoi configuration is

a standard solution for this class of problems, where the

optimal configuration of agents is centroids of corresponding

Voronoi cell. Cortes et al. [1] use these concepts to solve a

spatially distributed optimal deployment problem for multi-

agent systems. A density distribution, as a measure of the

probability of occurrence of an event is used, along with

a function of the Euclidean distance as measure of how

poor the sensing performance is, to formulate the problem.

Centroidal Voronoi configuration, with centroid of Voronoi

cell computed based on the density distribution within the

cell, is shown to be the optimal deployment of sensors

minimizing the sensory error. The Voronoi partition becomes

natural optimal partition due to monotonic variation of sensor

effectiveness function with the Euclidean distance. Lloyd

algorithm was used to achieve the optimal configuration.

Schwager et al. [2] interpret the density distribution of [1]

in a non-probabilistic framework and approximate it by

sensor measurement. In [3], [4], a multi-agent search strategy

was proposed based on the concept of optimal deployment

using Voronoi partition. Here, at each step, the agents first

deploy themselves optimally so as to maximize per step

reduction in uncertainty density, which is a measure of lack

of information about the search space, and then perform

search to acquire information.

In this paper we propose a combined deploy and search

strategy for multi-agent systems based on the search strategy

proposed in [4]. Each agent is active within its Voronoi cell

ensuring the collision free trajectories. Instead of waiting till

the end of deployment step to perform search task as in

[4], the agents simultaneously perform search as they move

toward the optimal configuration. The paper is organized as

follows. In Section II we discuss the problem addressed in

this paper, namely, multi-robot search. We preview the se-

quential deploy and search strategy proposed in our previous

work [4]. The proposed combined deploy and search is pre-

sented in Section III. The problem formulation, control law

responsible for robot motion and a few implementation issues

have been discussed here along with proof of convergence

of the CDS strategy. Results and discussions are provided in

Section IV and finally the paper is concluded in Section V.

II. MULTI-ROBOT SEARCH

In this section we discuss the problem addressed in this

paper. N agents perform search operation in an unknown

environment. The search space Q ⊂R
d is a convex polytope
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in d-dimensional Euclidean space. The lack of information

is modeled as an uncertainty density distribution φ : Q �→
[0,1] over Q. The agent configuration at any given time t is

P(t) = (p1(t), p2(t), . . . , pN(t))∈QN , with pi �= p j, whenever

i �= j, where pi(t) is the position of i-th agent at time t. The

sensors’ effectiveness is assumed to strictly decrease with

the Euclidean distance. The problem addressed in this paper

is that of deploying N agents in Q to collect information,

thereby reducing the uncertainty density distribution over Q.

During the search operation, sensors gather information

about Q, reducing the uncertainty density as,

φn+1(q) = φn(q)min
i
{β (‖pi −q‖)} (1)

where, n is “deploy” and “search” count; φn(q) is the

uncertainty density at the n-th iteration; β : R �→ (0,1) is a

function of Euclidian distance of a given point in space from

the robot, and acts as the factor of reduction in uncertainty

by the sensors; and pi = pi(t) is the position of i-th agent

at the time instance t when agents gather information at

the end of n-th deployment step. At a given q ∈ Q, only

the robot with the smallest β (‖pi − q‖), that is, the robot

which can reduce the uncertainty by the largest amount, is

active. If robots search within their Voronoi cells, then the

updating function (1) gets implemented automatically, that

is, evaluating the function mini{β (‖pi − q‖)} is equivalent

to evaluating β (‖pi − q‖), with pi ∈ Vi, the Voronoi cell

corresponding to the i-th agent.

In the SDS strategy, the agents get optimally deployed

before performing search. In order to maximize the search

effectiveness in each search step, following objective func-

tion was considered to be maximized.

Hn =
∫

Q ∆φn(q)dQ

=
∫

Q(φn(q)−mini∈{1,2,...,N}{β (‖pi−q‖)}φn(q))dQ

= ∑i∈{1,2,...,N}

∫
Vi

φn(q)(1−β (‖pi−q‖))dQ
(2)

The search effectiveness function β : R �→ (0,1) is a

strictly increasing function capturing effectiveness of the

sensor. Consider

β (r) = 1− ke−αr2

, k ∈ (0,1) and α > 0

Here, ke−αr2
represents the effectiveness of the sensor which

is maximum at r = 0 and tends to zero as r → ∞ and β is

minimum at r = 0 (effecting maximum reduction in φ ) and

tends to unity as r → ∞ (change in φ reduces to zero as r

increases). Most sensors’ effectiveness reduces over distance

as the signal to noise ratio increases with the distance. Thus

β , which is upside down Gaussian, can model a wide variety

of sensors with two tunable parameters k and α .

The optimal deployment configuration was shown to be

a variation of centroidal Voronoi configuration, where each

robot is located at the centroid of its Voronoi cell computed

with a density φ̃n(q) = φn(q)ke−αr2
i , which is the density as

perceived by the sensor. We have seen that the uncertainty

reduction will be maximized in a single step of search, if

the agents are located at the centroids of respective Voronoi

cells. In SDS, the agents get deployed optimally in this sense

before performing search.

Typically search problems do not consider dynamics of

search agents, as the focus is more on the effectiveness

of search, that is, being able to identify region of high

uncertainty and distribute search effort to reduce uncertainty.

Moreover, it is usually assumed that the search region is large

compared to the physical size of the agent or the area needed

for the agent to maneuver. In this paper, we assume that the

agents are modeled as simple first order dynamical systems

as

ṗi = ui (3)

Consider the control law

ui = −kprop(pi − C̃Vi
) (4)

Control law (4) makes the agents move toward C̃Vi
for

positive control gain, k prop. We have shown in [4], using

LaSalle’s invariance principle, that the trajectories of the

agents governed by the control law (4), starting from any

initial condition P(0) ∈ QN , will asymptotically converge to

the critical points of Hn.

III. COMBINED DEPLOY AND SEARCH (CDS) STRATEGY

In the SDS strategy, The robots first get optimally de-

ployed and then perform search. The “deploy” and “search”

steps continue sequentially till the uncertainty density is

reduced below a desired value. Here the optimal deployment

strategy ensures that the uncertainty density reduction is

maximized in each search step. But it does not guarantee

optimal trajectories of the robot. During the deployment

stage, the robots move without utilizing the sensors. In-

tuitively, it seems that the trajectories will be closer to

optimal if, as the robots are moving toward the respective

C̃Vi
, they also simultaneously perform the search operation

in discrete steps. We define the latency, ts, of the robots as

the maximum time taken to acquire the information, process

it, and successfully update the uncertainty density. The time

interval between each search should be more than t s. Here

we formulate such a strategy and name it combined deploy

and search (CDS) strategy.

A. Density update

Let the index n represent the intermediate step at which the

search is performed and uncertainty density is updated. Using

the uncertainty density update rule (1) discussed earlier we

can get,

∆nφ(q) = φn+1(q)−φn(q) = φn(q)min
i

(1−β (‖ pi −q ‖))

(5)

Let,

Φn =

∫
Q

φn(q)dQ (6)

Integrating (5) over Q,

∆Φn = ∑
i∈{1,2,...,N}

∫
Vi

φn(q)(1−β (‖ pi −q ‖))dQ (7)
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B. Objective function

The objective function (2), used for SDS strategy [4], is

fixed for each deployment step as φn(q) is fixed for the n-th

iteration. In CDS, the search task is performed as the robots

move. Now an objective function to be maximized in order

to maximize the uncertainty reduction at the n-th search step

is

Hn = ∆Φn = ∑
i∈{1,2,...,N}

∫
Vi

φn(q)(1−β (‖ pi −q ‖))dQ (8)

Note that the above objective function is same as (2) except

for the fact that n in this case represents the search step count,

whereas in (2) it represents ‘deploy and search’ step count.

For β (r) = 1− ke−αr2
, the objective function (8) becomes,

Hn = ∑
i∈{1,2,...,N}

∫
Vi

φn(q)ke−αr2
i dQ (9)

It can be noted that for a given n, the uncertainty density

φn(q) at any q ∈ Q is constant. The gradient is given as

(using generalized Leibniz Theorem [5]),

∂Hn

∂ pi

= ∑
i∈{1,2,...,N}

∫
Vi

φn(q)ke−α(‖pi−q‖)2

(−2α)(pi −q)dQ

= −2αM̃Vi
(pi − C̃Vi

) (10)

where M̃Vi
and C̃Vi

are the mass and the centroid of Vi with

φ̃n(q) = φn(q)ke−αr2
i as density, which is the uncertainty den-

sity as perceived by the sensor. The critical points are same as

those obtained for SDS. But the uncertainty changes in every

time step and hence the critical points also change. Hence,

the corresponding critical points are only the instantaneous

critical points. It should be noted that the above treatment is

valid for any strictly increasing continuously differentiable

β (·), with φ̃ (·) depending on exact nature of the function

β (·). We assume first order dynamics for robots as in (3)

and use control law (4) for making the robots move toward

the respective centroids.

The instantaneous critical points and the gradient (10) are

used in control law (4) only to make the robots move to-

ward the instantaneous centroids rather than deploying them

optimally. Thus, it is not possible to prove any optimality

of deployment and we do not prove the convergence of the

trajectories here. In CDS, compared to SDS, robots perform

more frequent searches instead of waiting till the optimal

deployment maximizing per step uncertainty reduction.

To implement the control law, centroid of each Voronoi

cell needs to be computed. The computational overhead of

computing the centroid can be reduced at the cost of slower

convergence using methods reported in the literature such

as random sampling and stochastic approximation [6]. In

addition, we discretize the search space into grids while

implementing the strategy. This simplifies the computation of

the centroid of Voronoi cells. The main focus of this paper is

design and demonstration of the multi-robot search strategy

and finer issues such as computation complexities are beyond

the scope of this paper.

It can be shown that the CDS strategy is spatially dis-

tributed over the Delaunay graph GD. Here by spatially dis-

tributed we mean that information from neighboring robots is

sufficient for computation of control input. A Delaunay graph

GD is an undirected graph, where two agents/robots are said

to be neighbors (connected by an edge) if the corresponding

Voronoi cells have non-null intersection. This implies that

all the robots need to do computations based on only local

information, that is, by the knowledge about position of

neighboring robots. Also, the robots should have access to

the updated uncertainty map within their Voronoi cells. This

can be achieved in several ways. One such way is that all the

robots communicate with a central information provider. But

it is not necessary to have this global information. The i-th

robot can communicate with its Voronoi neighbors ((NG (i))
and obtain the updated uncertainty information in a region

∪NG (i)Vi. As the Voronoi partition {Vi} depends at least

continuously on P, the robot configuration [1], in an evolving

Delaunay graph, the communication within the neighbors is

sufficient for each robot to obtain the uncertainty within its

new Voronoi cell. The issues related to communication of

uncertainty information are not addressed in the paper except

to assume that uncertainty information is available to the

robots. It is also possible that the robots can estimate the

uncertainty map as done in [2].

Theorem 1: The CDS strategy can reduce the average

uncertainty to any arbitrarily small value in finite time.

Proof. Consider the uncertainty density update law (1) for

any q ∈ Q,

φn(q) = (1− ke−αri
2

)φn−1(q) = γn−1φn−1(q) (11)

where, ri is the distance of point q ∈ Q from the i-th robot,

such that q ∈ Vi, the Voronoi cell corresponding to it and,

γn−1 = (1− ke−αri
2
).

Applying the above update rule recursively, we have,

φn(q) = γn−1γn−2 . . .γ1γ0φ0(q) (12)

Let D(Q) := maxp,q∈Q(‖ p−q ‖). We note that

(i) 0 < k < 1

(ii) 0 ≤ ri ≤ D(Q). D(Q) is bounded as the set Q is

bounded.

(iii) 0 ≤ γ j ≤ 1− ke−α{D(Q)2} = l (say), j ∈ N; and l < 1

Now consider the sequence {Γ} ,

Γn = γnγn−1 . . .γ1γ0 ≤ ln+1

Taking limits as n → ∞,

lim
n→∞

Γn ≤ lim
n→∞

ln+1 = 0

Thus,

lim
n→∞

φn(q) = lim
n→∞

Γn−1φ0(q) = 0

As the uncertainty density φ vanishes at each point q ∈ Q in

the limit, the average uncertainty density over Q is bound

to vanish as n → ∞. Thus, the average uncertainty density

can be reduced to arbitrarily small value in finite time. �
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It can be observed that the above proof does not depend on

the control law. The theorem depends only on the outcome

of the choice of the updating function (1), along with the

fact that there is no sensor range limitation, and that the

search space Q is bounded. In addition, the theorem does

not address the issue of optimality of the strategy which,

in fact, depends on the control law which is responsible

for the motion of the robots. Further, unlike SDS, max-

imal uncertainty reduction is also not guaranteed in each

search step. The uncertainty reduction in n-th search step is

given byH ∗
n = ∑i

∫
Vi

φn(q)ke−α(‖pi−q‖|)2
dQ, where it is not

required that pi = C̃Vi
while performing search. Though the

uncertainty reduction in a given search step n in CDS is

less than that in SDS, as will be seen in later sections, the

CDS performs better compared to SDS in terms of faster

uncertainty reduction due to more frequent searches.

Further, in practical conditions, the robots can communi-

cate with other robots only when they are within the sensor

range. The Delaunay graph does not allow sensor range lim-

itations to be incorporated. We need to use r-Delaunay graph

GLD to incorporate the sensor range limitations. The scenario

changes with incorporation of sensor range limitations into

the search strategies. In such a scenario each robot restricts

its activity to the region (Vi∩ B̄(pi,R)), which is the Voronoi

cell accessible to sensor of i-th robot/agent. Here B̄(pi,R)
is the closed ball of radius R, the sensor range, centered

at pi. The updating of uncertainty density will be within

this region and the centroid that is computed will also be

within the new restricted area. Though in presence of limit

on sensor range, convergence of the search strategies can

not be guaranteed, we will show using simulations in later

section that with nominal limit on sensor range, the search

strategies do reduce the uncertainty below desired level. In

addition, it is easy to see that the CDS strategy works well

even in presence of constant speed constraint and limit on

maximum speed of the robots/agents [7].

It can also be noted that the CDS operates in a syn-

chronous manner by design. If all the robots start at the same

instant of time and have synchronized clocks, the search

task is performed by every robot after the same interval of

time. Given an accurate global clock, synchronization is not

a major issue in case of CDS. Further, in [1], authors provide

an asynchronous implementation for coverage control which

can be suitably modified for CDS to operate asynchronously.

We use Voronoi partition in formulating the search strate-

gies which along with advantages can cause some com-

putation overhead. This issue has been addressed in the

literature (see [1] and references therein) and there are a

few algorithms that efficiently implement Voronoi partition

related computations. Also, Voronoi based strategies result

in collision free trajectories in a natural way, which is an

added advantage.

IV. RESULTS AND DISCUSSION

In this section we show some simulation results to il-

lustrate and validate the CDS strategy in comparison with

SDS. The simulation experiments were carried out using
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Fig. 1. Illustration of the process of a robot following the respective
centroid (a) with SDS and (b) with CDS. In both cases the robot
location in each time step is shown by ‘+’, and corresponding
centroid locations are shown by ‘o’.

MATLAB. The parameters used for these simulations were,

Q is a square area in R
2 with axes range of 0-10 units;

Initial uncertainty density is a constant distribution of 0.75

over Q; A saturation on the speed of agents was fixed at

1 unit; kprop = 0.5; We use β (r) = 1 − ke−αr2
, with k =

0.8 and α = 0.1; The iterations were terminated when the

maximum density over Q reached below 0.05. A discrete

implementation of the control law (4) is used with time

period of 1 unit.

Figure 1(a) illustrates ‘robot 2’ moving toward centroid

corresponding to its Voronoi cell with SDS strategy. Robot’s

positions are marked with ‘+’ while ‘o’ marks the centroids at

successive time instances. Positions of robot in first two time

steps are marked as 1 and 2, while those of centroids marked

with 1′ and 2′. It can be observed that the robot is tracking the

centroid, which is changing as the Voronoi cell is changing.

Deployment stops and search is performed when the robot is

sufficiently close to the corresponding centroid. One of the

search instances is also marked, where, after search, in order

to track the next centroid, the robot takes an abrupt turn.

This leads to a non-smooth trajectory. Figure 1 (b) illustrates

one of the robots moving toward centroid corresponding to

its Voronoi cell with CDS strategy. It can be observed that

the robot is tracking the centroid, which is changing as the

Voronoi cell and the uncertainty density are changing.

Figures 2 (a) and (b) compare the trajectories of robots

with SDS and CDS strategies with 5 robots without any

limit on sensor range. The trajectories with CDS are much

smoother and shorter. The instances of search are indicated

by ‘o’ along the trajectories. It can be seen that the search

is performed at every discrete step in CDS, whereas the

search is performed only after each optimal deployment SDS.

Though there are 8 “deploy and search” steps in SDS, only

5 ‘o’s are visible. In two of steps, multiple searches have

been performed as the centroids in successive steps were

closer than some tolerance limit dtol = 0.3. Thus, there was

no movement in corresponding deployment step.

Figure 2(c) compares the history of uncertainty density of

SDS and CDS, and it can be observed that the CDS reduces

uncertainty relatively faster than SDS, in terms of number

of time steps. Figure 2 (d) shows the reduction in average
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Fig. 2. Trajectories of robots with N=5 and without limit on the
sensor range for (a) SDS strategy and (b) CDS strategy. In both
cases the points marked ‘+’ indicate the starting locations of robots
and ‘o’ indicate the end of deployment and points in space where
search is being performed. In SDS, at a few places the search is
performed more than once. This is indicated in trajectory of ‘robot
1’. The reduction in average uncertainty density is shown in (c)
against the number of time steps and (d) against the number of
searches, for SDS and CDS. Even in (c) and (d), ‘o’ indicate the
search instances.

uncertainty density with number of searches for SDS and

CDS. It can be observed from this figure that SDS reduces

the uncertainty in relatively fewer steps. This is apparent

by very concept of optimal deployment in SDS. CDS takes

about 4 searches to reduce uncertainty below 0.1, whereas

SDS does this in only 3 searches. If SDS requires over 30

time steps to achieve this reduction, CDS needs 4 time steps.

We can observe a tradeoff between the number of searches

and and number of time steps required to accomplish in CDS

and SDS. Once the uncertainty reduces to a large extent

in initial search steps, by nature of the uncertainty density

update rule (1), amount of reduction in subsequent searches

is less in both SDS and CDS.

Figures 2, 3, 4, and 5 show the trajectories for N=5 and

N=20, with and without sensor range limitations along with

the plot of average uncertainty density for both strategies.

Again, all the simulation results support the fact that the

CDS strategy leads to much shorter and smoother trajectories

than those with SDS strategy with the same parameters as

discussed before. These results also indicate that the CDS

strategy is more effective compared to the SDS strategy

for similar conditions in the sense of faster reduction in

uncertainty density. This is due to increased frequency of

searches in case of CDS compared to that of SDS. However,

SDS is more effective in terms of requiring fewer search

steps.
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Fig. 3. Trajectories of agents with N=5 and with sensor range limit
of 2 units (a) SDS strategy and (b) CDS strategy. In both cases the
points marked ‘+’ indicate the starting locations of robots and ‘o’
indicate the end of deployment and points in space where search
is being performed. The reduction in average uncertainty density is
shown in (c) against the number of time steps and (d) against the
number of searches, for SDS and CDS. Even in (c) and (d), ‘o’
indicate the search instances.
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Fig. 4. Trajectories of agents with N=20 without limit on sensor
range for (a) SDS strategy and (b) CDS strategy. In both cases the
points marked ‘+’ indicate the starting locations of robots and ‘o’
indicate the end of deployment and points in space where search
is being performed. The reduction in average uncertainty density is
shown in (c) against the number of time steps and (d) against the
number of searches, for SDS and CDS. Even in (c) and (d), ‘o’
indicate the search instances.
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Fig. 5. Trajectories of agents with N=20 and with sensor range
limit of 2 units for (a) SDS strategy and (b) CDS strategy. In both
cases the points marked ‘+’ indicate the starting locations of robots
and ‘o’ indicate the end of deployment and points in space where
search is being performed. The reduction in average uncertainty
density is shown in (c) against the number of time steps and (d)
against the number of searches, for SDS and CDS. Even in (c) and
(d), ‘o’ indicate the search instances.

Comparing Figure 2 with Figure 3, and Figure 4 with

Figures 5, it can be observed that limit on the sensor

range results in longer agent trajectories in both the search

strategies. This is due to reduced coverage by sensors due to

the range limits.

If we compare the simulation results with N = 5 (Figures

2, 3) with those with N = 20 (Figure 4 and 5), it can

be observed that for SDS strategy, an increase in number

of agents leads to smoother and somewhat shorter agent

trajectories, though total trajectory length for all the agents

is higher for the latter case. With CDS, individual agent

trajectory lengths are comparable, and hence less number

of agents lead to a shorter total trajectory length.

Comparing Figures 2 and 4, it can be observed that,

without the sensor range limits, with CDS, agent trajectories

do not intersect each other or themselves, for both N = 5 and

N = 20 cases; whereas SDS with N = 5, lead to intersecting

agent trajectories. For N = 20, even SDS strategy leads to

less intersections among trajectories. When the sensor range

limits are imposed (see Figures 3 and 5), the instances

of intersection of trajectories increase in both strategies,

though it is less prominent in the case of CDS. In a search

task, intuitively, one may feel that it is not desirable that

an agent intersects its own trajectory, or intersects those

of other agents, as it may lead to duplication of search

effort. However, it should be noted, that the search operation

presented here differs from the coverage problems such as

Lawn-Mower’s search were each point in space needs to be

visited by any agent once in order to gather information at

that point. In our problem formulation, uncertainty will not

become zero once an agent passes through a point in the

search space. Only repeated search at a point makes the

uncertainty tend to zero. Such a paradigm is common in

search literature. Thus, it is possible that an optimal strategy

will make an agent pass through a point in the search space

more than once. In all cases (Figures 2, 3, 4, and 5) it can

be observed that the agents move away from each other and

cover the search space.

We have formulated the problem and shown that the CDS

strategy reduces the uncertainty density when no limit is

imposed on the sensor range. The simulation results indicate

that both strategies reduce the uncertainty density below the

desired level even with nominal limit on sensor range.

V. CONCLUSIONS

In this paper we proposed a CDS strategy for multiple

agents such as mobile robots to acquire information about a

space. We have shown that the centroidal Voronoi configura-

tion with respect to the density as perceived by the sensors

are the instantaneous critical points of the objective function.

A control law was proposed, which moves the agents toward

the respective centroids. In this strategy, as the agents move

toward the centroids, they simultaneously perform search. It

has been observed that the strategy is spatially distributed

over the Delaunay graph. We have proved that the CDS

strategy is able to reduce the average uncertainty density to

arbitrarily low level when no limit is imposed on the sensor

range.

Simulation experiments were carried out for different con-

ditions and results of these experiments were discussed. The

simulation results indicated that the proposed CDS strategy

performs quite well even in presence of sensor range limit,

and leads to shorter and smother robot trajectories than those

of the SDS strategy with the same parameters.
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