
Parallel Method for Discovering Frequent Itemsets Using Weighted Tree Approach

Preetham Kumar
Department of Information and Communication

Technology
Manipal Institute of Technology,

Manipal, India
 prethk@yahoo.com

Ananthanarayana V S
Department of Information Technology

National Institute of Technology Karnataka
Surathkal, India.

anvs1967@gmail.com

Abstract— Every element of the transaction in a
transaction database may contain the components such as item
number, quantity, cost of the item bought and some other
relevant information of the customer. Most of the association
rules mining algorithms to discover frequent itemsets do not
consider the components such as quantity, cost etc. In a large
database it is possible that even if the itemset appears in a very
few transactions, it may be purchased in a large quantity.
Further, this may lead to very high profit. Therefore these
components are the most important information and without
which it may cause the lose of information. This motivated us
to propose a parallel algorithm to discover all frequent
itemsets based on the quantity of the item bought in a single
scan of the database. This method achieves its efficiency by
applying two new ideas. Firstly, transaction database is
converted into an abstraction called Weighted Tree that
prevents multiple scanning of the database during the mining
phase. This data structure is replicated among the parallel
nodes. Secondly, for each frequent item assigned to a parallel
node, an item tree is constructed and frequent itemsets are
mined from this tree based on weighted minimum support.

Keywords-attribute;cost;component;parallel;Weight

I. INTRODUCTION
The goal of knowledge discovery is to utilize those

existing data to find out new facts and to uncover new
relationships that were previously unknown, in an efficient
manner with minimum utilization of the space and time.

Mining association rules is an important branch of data
mining, which describes potential relations among data items
(attribute, variant) in databases, the well-known Apriori
algorithm [3] was proposed by R. Agrawal et al., in 1993.
Mining association rules can be stated as follows: Let I={i1,
i2, … im } be a set of items. Let D, the task-relevant data, be
a set of transactions, where each transaction T is a set of
items such that T ⊆ I. The quantities of items bought are not
considered. Each transaction is assigned an identifier, called
TID. Let A be a set of items, a transaction T is said to
contain A if and only if A ⊆ T. An association rule is an
implication of the form A B, where A ⊆ I, B ⊆ I, and
A∩B=�. The rule A B holds in the transaction set D with
support s, where s is the percentage of transactions in D that
contain AUB (i.e., both A and B). This is taken to be the
probability, P(A∩B). The rule A B has confidence c in the

transaction set D if c is the percentage of transactions in D
containing A that also contain B. This is taken to be the
conditional probability, P(B|A). That is,
Support(A B)=P(A∩B)=s, Confidence(A B)=P(B|A) =
Support(A B)/Support (A)=c.

Mining of association rules is to find all association rules
that have support and confidence greater than or equal to the
user-specified minimum support and minimum confidence
respectively [2]. This problem can be decomposed into the
following sub problems:

All itemsets that have support above the user specified
minimum support are discovered. These itemset are called
the frequent itemsets.

For each frequent itemset, all the rules that have user
defined minimum confidence are obtained.
The second sub problem, i.e., Discovering rules for all given
frequent itemsets and their supports, is relatively
straightforward as described in [1].

Discovering frequent itemsets, considered as one of the
most important tasks, has been the focus of many studies in
the last few years. Many solutions have been proposed using
sequential or parallel algorithms based on user defined
minimum support. However, the existing algorithms depend
heavily on massive computation that might cause high
dependency on the memory size or repeated I/O scans of the
datasets. The published parallel implementations of
association rule mining inherited most of these problems in
addition to the new costly communication cost most of them
need. Parallel association rule mining algorithms currently
proposed in the literature are not sufficient for large datasets,
and new solutions, that do not heavily depend on the
repeated I/O scan, less reliant on memory size, and do not
require a lot of communication costs between nodes, still
have to be found. In addition, the existing algorithms
discover all frequent itemsets based on user defined
minimum support without considering the components of the
transaction such as weight or quantity, cost and other
relevant information of the customer which lead to profit.

This motivated us to design a new parallel algorithm that
is based on the concept of Weighted Tree.

II. PROPOSED METHOD

This algorithm is divided into two phases. The first one

requires only one scan of the database and generates a

2009 International Conference on Computer Engineering and Technology

978-0-7695-3521-0/09 $25.00 © 2009 IEEE

DOI 10.1109/ICCET.2009.194

124

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 26,2021 at 05:42:30 UTC from IEEE Xplore. Restrictions apply.

special disk-based data structure called Weighted Tree. In
the second phase, the Weighted Tree obtained is reduced to
contain only frequent items and then all the branches of the
tree are sorted according to the increasing order of the
frequency. This tree is called an ordered Weighted Tree. This
tree is replicated among nodes and mined in parallel.

The weighted minimum support is the minimum weight
an itemset has to satisfy to become frequent. If an itemset
satisfies user defined weighted support then we say that it is
weighted frequent itemset.

Consider a sample database given in Table 1, in which
every element of each transaction represents either quantity
or cost of the respective attribute or item.

Table 1. Sample Database

It may so happen that an itemset appears in a very few
transactions in a large quantity or cost which leads to profit
will not qualify as frequent itemset based on user defined
minimum support. This results in a lose of information. In
the sample database given in the Table 1, if user defined
minimum support is 2 transactions then an item D is not
frequent and will not appear in the set of frequent itemsets
even though if it is bought in large quantity and leads to
more profit than other frequent items.
Structure of Weighted tree

The idea of this approach is to associate each item with all
transactions in which it occurs.The Weighted tree has two
different nodes and its branch is shown in the Figure 1.

The first type of node labeled with attribute contains
attribute name and two pointers, one pointing to the nodes
containing transaction ids and weights and another is a child
pointer pointing to the next attribute. This node represents
the head of that particular branch.
The second type of node has 2 parts. First part is labeled TID
represents a transaction number or id and second part of
which is labeled weight, indicates quantity purchased in that
transaction or cost or other components. This node has only
one pointer pointing to the next object having this particular
attribute.

Figure 1. Branch of a Weighted Tree

Figure 2 represents the Weighted Tree corresponding to
the Sample Database given in the Table 1.

Figure 2 .Weighted Tree for Table1

The Parallel Algorithm

This algorithm involves 3 steps. They are
A. Construction of Weighted Tree
B. Removal of infrequent attributes of Weighted Tree
C. Arrange the attribute lists of Weighted Tree in an
increasing order of their weighted minimum support
D. Parallel mining of frequent itemset at different nodes for
assigned items based on weight.

A. Algorithm for constructing Weighted Tree
Input: The database D
Output: Weighted Tree
for each attribute weight w in a transaction t ∈ D do
begin

 Create a node labeled with weight w and add this

125

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 26,2021 at 05:42:30 UTC from IEEE Xplore. Restrictions apply.

 node to the respective attribute node.
end

B. Removal of infrequent attributes of Weighted Tree

Input : w_min_sup = weighted minimum support
Output: Reduced Weighted Tree.
for each attribute in a Weighted tree do
begin
 if sum(weights of all nodes) < w_min_sup then

 remove that branch from the tree
end

For example, In the above case if we consider min_sup=3
then only attributes A and C are frequent in the database. The
attributes B and D are found to be infrequent.

If we consider w_min_sup = 10 then the attributes A, C
and D will be frequent in the database. The reduced
Weighted Tree of Table 1, is shown in Figure 3.

Figure 3. Reduced Weighted Tree of Table 1

C. Arrange the attribute list in an increasing order of
their weighted minimum support

In Figure 4, we see that attribute D ahs weight 10, C has 12
and A has 19. The attribute lists are sorted in increasing
order of their weights and is shown in Figure 4 and is called
Ordered Weighted Tree.

The ordered Weighted Tree is replicated among all
parallel nodes. By doing so a full set of transaction database

containing only frequent items would be available to each
processor to generate all globally frequent patterns with
minimum communication cost at parallel node level. This
replication is executed from a designated master node.

Figure 4. Ordered Weighted Tree

D. Parallel mining of frequent itemset at different nodes

for assigned items based on weight.
This approach relies on distributing frequent items among

the parallel nodes. After ordering the frequent items by their
support, starting from the least frequent, each processor
successively receives one item. The process is repeated until
all items are distributed. In other words, if we have m
processors, and n trees need to be built, assuming m< n then
processor1 builds the tree for the least frequent item.
Processor 2 builds tree for the next least frequent item, and
so on up to processor m. After that processor 1 takes item
m+1 and so on until all n items are distributed.

Each parallel node is responsible for generating all
frequent patterns related to the frequent items associated to
that node. To do so each node reads sub-transactions for each
frequent items directly from the Ordered Weighted Tree,
then builds independent and relatively small trees for each
frequent item in the transaction database called item tree.
Each parallel node mines separately each one of these item
trees as soon as they are built. The trees are discarded as
soon as mined. Finally, all frequent patterns generated at
each node are gathered into master node to produce the full
set of frequent patterns.

The each node of the item tree consists of item number
and its count and two pointers called child and sibling

126

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 26,2021 at 05:42:30 UTC from IEEE Xplore. Restrictions apply.

pointers. The child pointer points to the following item and
sibling pointer points to the sibling node.

In our example, if we need to mine the Ordered Weight
Tree in Figure 4, using 2 processors machine with weighted
minimum support is equal to 10, the starting node for each
parallel node would be D, the first frequent item. Processor 1
finds all frequent patterns related to items D and A.
Processor 2 would generate all frequent patterns related to
item C.

The first an item tree is built for item D. In this tree for D,
all frequent items which are more frequent than D and share
transactions with D participate in building the tree. The tree
starts with the root node containing the item D. For each sub-
transaction containing the item D with other items that are
more frequent than D, a branch is formed starting from the
root node.

If more than one frequent items share the same prefix,
they are merged into one branch and their count fields are
incremented. Figure 5 illustrates trees for frequent items D,
C and A.

Figure 5. Item Trees for items D, C, A

The tree for any frequent item say f contains only nodes

labeled with items that are more frequent or as frequent as f
and share at least one transaction with f. Based on this
definition, if A has weight greater than B then tree for B is
larger than the tree for A. In other words, the higher the
support of a frequent item, the smaller its tree is.

Input: A Ordered Weighted tree, w_min_sup
Output: set of all frequent itemsets at node i.
for every assigned item I, construct item tree for I

containing transactions associated with I at node i.
Traverse item tree for I
for each maximal path from a root to a leaf in the tree for

an item I
begin
T= {elements from I to leaf with weight}
if sum of weights of elements of [T] >= w_min_sup
 MI= {elements from I to leaf with weight}
end

 Apply downward closure property[1] to get all frequent
itemsets from MI which contains all maximal frequent
itemsets. If w_min_sup =10 then applying above algorithm,
we see that at node 1, Tree for D does not contain any other
node except itself. Therefore it is ignored. Similarly, tree
corresponding to A contains only one node and is also
ignored. Therefore at node 1 only frequent itmestes are one
itemsets, {D} and {A}.

Similarly, at node 2, item tree corresponding to C is built.
The maximal path corresponding to this tree is {A, C}. The
weight of {AC} = 18 is greater than user defined weighted
minimum support. Hence it is frequent. Also all its subsets
are frequent by using downward closure property.

Hence Fw = { {A}, {C}, {D},{ A, C}}.

III. THEORETICAL ANALYSIS

A. Construction of Weighted Tree
In a transaction database D, if there G transactions, then G
transactions have to be read by the algorithm to construct
Weighted Tree. Therefore, this tree can be constructed in
O (G) steps.
If the average length of the transaction t is equal to m
weights, then there will Gm nodes in the tree. In the worst
case, if there are M weights and G transactions in D, then
there will be GM nodes in a Weighted Tree.

B. Reduction of Weighted Tree
If there are m attributes, then reduction of Weighted Tree is
in O (m).
If there are k infrequent items then Reduced Weighted Tree
will contain (m-k) attribute lists with at most G (m-k) nodes.

C. Arrange the attribute list in an increasing order of
their weighted minimum support
If there are n attributes in the reduced Weighted tree then
arranging them in an increasing order of the weight is in
 O (n2).

 D. Parallel mining of frequent itemset at different nodes
for assigned items based on weight.
If there are n frequent items then there will be n item trees.
Each processor will construct one tree at a time. If there are
m processors and n trees, m<n then this step is in O(n/m).

Merits
In our research we have implemented this algorithm and
found that this algorithm is better than Apriori and FP-tree
algorithm.
(i)This method is space as well as time efficient than Apriori
since it involves candidate generation method and requires
multiple scan over the database. Whereas, our method
requires only one scan of the database.
(ii) The algorithm FP-Tree requires 2 scans to discover all
frequent itemsets and mining patterns involve construction of

127

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 26,2021 at 05:42:30 UTC from IEEE Xplore. Restrictions apply.

the condition based tree, which involves header table. Our
method uses item tree to mine maximal frequent itemsets and
does not involve header table.

IV. CONCLUSION

The Parallel algorithm for discovering frequent itemsets
based on weight is a new method and is found to efficient
when compared to Apriori and FP-tree. As such, we are still
working on it with the aim of extending the application of
this algorithm to various kinds of databases.

V. REFERENCES

[1] Arun K Pujari “Data mining Techniques”: Universities Press(Indis)
Private Limited. Hyderbad, 20003, India.

[2] J. Han and M. Kamber, “Data MiningConcepts and Techniuqes”: San
Franscisco, CA:. 2004, Morgan Kaufmann Publishers.

[3] Han, J., Pei, J., Yin, Y. “Mining Frequent Patterns without Candidate
Generation”, Proc. of ACM-SIGMOD International Conference
Management of Data. Dallas, TX, 2000, 1-12.

[4] Han J, Pei Jian, Runying Mao(2004) ” Mining Frequent Patterns
without Candidate Generation: A Frequent Pattern Tree Approach” ,
Data Mining and Knowledge Discovery, Kluwer Academic Publishers,
Netherland” 53-87.

[5] Agrawal Charu and Yu Philip,(1998) “ Mining Large Itemsets for
association rules. Bulletin of the IEEE Computer Society Technical
committee on Data Engineering, 21, No.1.

[6] Ananthanarayana V. S, Subramanian, D.K., Narasimha Murthy
M.(2000). “Scalable, distributed and dynamic mining of association
rules” In Proceedings of HIPC'00. Springer Verlag Berlin,Heidelberg,
559-566.

[7] O.R.Zaiane, M. El-Hajj, and P. Lu. “Fast parallel association rule
mining without candidacy generation” In Proc. of the IEEE 2001
International Conference on Data Mining, San Jos, CA, USA,
December 2001

128

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 26,2021 at 05:42:30 UTC from IEEE Xplore. Restrictions apply.

