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Abstract— Every element of the transaction in a 
transaction database may contain the components such as item 
number, quantity, cost of the item bought and some other 
relevant information of the customer. Most of the association 
rules mining algorithms to discover frequent itemsets do not 
consider the components such as quantity, cost etc. In a large 
database it is possible that even if the itemset appears in a very 
few transactions, it may be purchased in a large quantity. 
Further, this may lead to very high profit. Therefore these 
components are the most important information and without 
which it may cause the lose of information. This motivated us 
to propose a parallel algorithm to discover all frequent 
itemsets based on the quantity of the item bought in a single 
scan of the database. This method achieves its efficiency by 
applying two new ideas. Firstly, transaction database is 
converted into an abstraction called Weighted Tree that 
prevents multiple scanning of the database during the mining 
phase. This data structure is replicated among the parallel 
nodes. Secondly, for each frequent item assigned to a parallel 
node,  an item  tree is constructed and frequent itemsets are 
mined from this tree based on weighted minimum support.  
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I.  INTRODUCTION  
The goal of knowledge discovery is to utilize those 

existing data to find out new facts and to uncover new 
relationships that were previously unknown, in an efficient 
manner with minimum utilization of the space and time.  

Mining association rules is an important branch of data 
mining, which describes potential relations among data items 
(attribute, variant) in databases, the well-known Apriori 
algorithm [3] was proposed by R. Agrawal et al., in 1993. 
Mining association rules can be stated as follows:  Let I={i1, 
i2, … im } be a set of items. Let D, the task-relevant data, be 
a set of transactions, where each transaction T is a set of 
items such that T ⊆ I. The quantities of items bought are not 
considered. Each transaction is assigned an identifier, called 
TID. Let A be a set of items, a transaction T is said to 
contain A if and only if A ⊆ T. An association rule is an 
implication of the form A B, where A ⊆ I, B ⊆ I, and 
A∩B=�. The rule A B holds in the transaction set D with 
support s, where s is the percentage of transactions in D that 
contain AUB (i.e., both A and B). This is taken to be the 
probability, P(A∩B). The rule A B has confidence c in the 

transaction set D if c is the percentage of transactions in D 
containing A that also contain B. This is taken to be the 
conditional probability, P(B|A). That is, 
Support(A B)=P(A∩B)=s, Confidence(A B)=P(B|A)  = 
Support(A B)/Support (A)=c. 

Mining of association rules is to find all association rules 
that have support and confidence greater than or equal to the 
user-specified minimum support and minimum confidence 
respectively [2]. This problem can be decomposed into the 
following sub problems:  

All itemsets that have support above the user specified 
minimum support  are discovered. These itemset are called 
the frequent itemsets.  

For each frequent itemset, all the rules that have user 
defined minimum confidence are obtained. 
The second sub problem, i.e., Discovering rules for all given 
frequent itemsets and their supports, is relatively 
straightforward as described in [1]. 

Discovering frequent itemsets, considered as one of the 
most important tasks, has been the focus of many studies in 
the last few years. Many solutions have been proposed using 
sequential or parallel algorithms based on user defined 
minimum support. However, the existing algorithms depend 
heavily on massive computation that might cause high 
dependency on the memory size or repeated I/O scans of the 
datasets. The published parallel implementations of 
association rule mining inherited most of these problems in 
addition to the new costly communication cost most of them 
need. Parallel association rule mining algorithms currently 
proposed in the literature are not sufficient for large datasets, 
and new solutions, that do not heavily depend on the 
repeated I/O scan, less reliant on memory size, and do not 
require a lot of communication costs between nodes, still 
have to be found. In addition, the existing algorithms 
discover all frequent itemsets based on user defined 
minimum support without considering the components of the 
transaction such as weight or quantity, cost and other 
relevant information of the customer which lead to profit.  

This motivated us to design a new parallel algorithm that 
is based on the concept of Weighted Tree. 

II. PROPOSED METHOD 

 
This algorithm is divided into two phases. The first one 

requires only one scan of the database and generates a 
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special disk-based data structure called Weighted Tree. In 
the second phase, the Weighted Tree obtained is  reduced  to 
contain only frequent items and then  all the branches of the 
tree are sorted according to the increasing order of the 
frequency. This tree is called an ordered Weighted Tree. This  
tree is replicated among nodes and mined in parallel. 

The weighted minimum support is the minimum weight 
an itemset has to satisfy to become frequent. If an itemset 
satisfies user defined weighted support then we say that it is 
weighted frequent itemset. 

Consider a sample database given in Table 1, in which 
every element of each transaction represents either quantity 
or cost of the respective attribute or item. 

 
Table 1.  Sample Database 

 

 
 
 

It may so happen that an itemset appears in a very few 
transactions  in a large quantity or cost which leads to profit 
will not qualify as frequent itemset based on user defined 
minimum support. This results in a lose of information. In 
the  sample database given in the Table 1, if user defined 
minimum support is 2 transactions then an item D is not 
frequent and will not appear in the set of frequent itemsets 
even though  if it is bought in large quantity and leads to 
more profit than other frequent items. 
Structure of Weighted tree 

The idea of this approach is to associate each item with all 
transactions in which it occurs.The Weighted tree has two 
different nodes and its branch is shown in the Figure 1. 

The first type of node labeled with attribute contains 
attribute name and two pointers, one pointing to the nodes 
containing transaction ids and weights and another is a child 
pointer pointing to the next attribute. This node represents 
the head of that particular branch. 
The second type of node has 2 parts. First part is labeled TID 
represents a transaction number or id and second part of 
which is labeled weight, indicates quantity purchased in that 
transaction or cost or other components. This node has only 
one pointer pointing to the next object having this particular 
attribute. 

 

 
Figure 1.  Branch of a Weighted Tree 

 
 

Figure 2 represents the Weighted Tree corresponding to 
the Sample Database given  in the Table 1. 

 
   

Figure 2 .Weighted Tree for Table1 
 

  
The Parallel Algorithm 

 
This algorithm involves 3 steps. They are 
A. Construction of Weighted Tree 
B. Removal of infrequent attributes of Weighted Tree 
C. Arrange the attribute lists  of Weighted Tree in an  
increasing order of their weighted minimum support 
D. Parallel mining of frequent itemset at different nodes  for 
assigned items based on weight. 
 
A. Algorithm for constructing Weighted Tree 
Input: The database D 
Output: Weighted Tree 
for each attribute weight w in a transaction t ∈  D do   
begin 

 Create  a node labeled with weight w and add this     
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 node  to the respective attribute node. 
end  

 
 

B. Removal of infrequent attributes of Weighted Tree 
 
Input :  w_min_sup = weighted minimum  support 
Output: Reduced Weighted Tree. 
for each attribute in  a Weighted tree  do 
begin 
    if sum(weights of all nodes) < w_min_sup then  

    remove that branch from the tree 
end 

For example, In the above case if we consider min_sup=3 
then only attributes A and C are frequent in the database. The 
attributes B and D are found to be infrequent.  

If  we consider w_min_sup  = 10 then  the attributes A, C 
and D will be frequent in the database.  The reduced 
Weighted Tree of Table 1,  is shown in Figure 3. 

 
 

 

 
 

Figure 3. Reduced Weighted Tree of Table 1 
 
 

C. Arrange the attribute list in an increasing order of 
their weighted minimum support 

In Figure 4, we see that attribute D ahs weight 10, C has 12 
and A has 19. The attribute lists are sorted in increasing 
order of their weights and is shown in Figure 4 and is called 
Ordered Weighted Tree. 

The ordered Weighted Tree is replicated among all 
parallel nodes. By doing so a full set of transaction database 

containing only frequent items would be available to each 
processor to generate all globally frequent patterns with 
minimum communication cost at parallel node level. This 
replication is executed from a designated master node.  
 

 
 

 
Figure 4. Ordered Weighted Tree 

 
D. Parallel mining of frequent itemset at different nodes 

for assigned items based on weight. 
This approach relies on distributing frequent items among 

the parallel nodes.  After ordering the frequent items by their 
support, starting from the least frequent, each processor 
successively receives one item. The process is repeated until 
all items are distributed. In other words, if we have m 
processors, and n trees need to be built, assuming m< n then 
processor1 builds the tree for the least frequent item. 
Processor 2 builds tree for the next least frequent item, and 
so on up to processor m. After that processor 1 takes item 
m+1 and so on until all n items are distributed. 

Each parallel node is responsible for generating all 
frequent patterns related to the frequent items associated to 
that node. To do so each node reads sub-transactions for each 
frequent items directly from the Ordered Weighted Tree, 
then builds independent and relatively small trees for each 
frequent item in the transaction database called item tree. 
Each parallel node mines separately each one of these item 
trees as soon as they are built. The trees are discarded as 
soon as mined. Finally, all frequent patterns generated at 
each node are gathered into master node to produce the full 
set of frequent patterns. 

The each node of the item tree consists of item number 
and its count and two pointers called child and sibling 
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pointers. The child pointer points to the following item and 
sibling pointer points to the sibling node. 

In our example, if we need to mine the Ordered Weight 
Tree in Figure 4, using 2 processors machine with weighted 
minimum support is equal to 10, the starting node for each 
parallel node would be D, the first frequent item. Processor 1 
finds all frequent patterns related to items D and A. 
Processor 2 would generate all frequent patterns related to 
item C. 

The first an item tree is built for item D. In this tree for D, 
all frequent items which are more frequent than D and share 
transactions with D participate in building the tree. The tree 
starts with the root node containing the item D. For each sub-
transaction containing the item D with other items that are 
more frequent than D, a branch is formed starting from the 
root node. 

If more than one frequent items share the same prefix, 
they are merged into one branch and their count fields are 
incremented. Figure 5 illustrates trees for frequent items D, 
C and A. 

 
 

 
Figure 5. Item Trees for items D, C, A 

 
The tree for any frequent item say f contains only nodes 

labeled with items that  are more frequent or  as frequent  as f 
and share at least one transaction with f. Based on this 
definition, if A has weight greater than B then  tree  for B  is 
larger than the tree for A. In other words, the higher the 
support of a frequent item, the smaller its tree is. 

Input:   A Ordered Weighted tree, w_min_sup 
Output: set of all frequent itemsets at node i.  
for every assigned item I,  construct item tree for I 

containing transactions associated with I at node i. 
Traverse item tree for I 
for each maximal path from a root to a leaf  in the tree  for 

an item I  
begin 
T= {elements from I to leaf with weight} 
if sum of weights of  elements of [T] >= w_min_sup 
            MI= {elements from I to leaf with weight} 
end  

    Apply downward closure property[1] to get all frequent 
itemsets from MI  which contains all maximal frequent 
itemsets. If w_min_sup =10  then applying above algorithm, 
we see that at node 1,  Tree for D does not contain any other 
node except  itself. Therefore it is ignored. Similarly,  tree 
corresponding to A contains  only one node and is also 
ignored. Therefore at node 1 only frequent itmestes are one 
itemsets, {D} and {A}. 

Similarly, at node 2, item tree corresponding to C is built. 
The maximal path corresponding to this tree is {A, C}. The 
weight of {AC} = 18 is greater than user defined weighted 
minimum support. Hence it is frequent. Also all its subsets 
are frequent by using downward closure property. 

Hence Fw = { {A}, {C}, {D},{ A, C}}. 
 

III. THEORETICAL ANALYSIS 
 

A. Construction of Weighted Tree 
In a transaction database D, if there G transactions, then G 
transactions have to be read by the algorithm to construct 
Weighted Tree.  Therefore, this tree can be constructed in  
O (G) steps. 
If the average length of the transaction t is equal to m 
weights, then there will Gm nodes in the tree. In the worst 
case, if there are M weights and G transactions in D, then 
there will be GM nodes in a Weighted Tree. 

 
B. Reduction of Weighted Tree 
If there are m attributes, then reduction of Weighted Tree is 
in O (m). 
If there are k infrequent items then Reduced Weighted Tree 
will contain (m-k) attribute lists with at most G (m-k) nodes. 
 
C. Arrange the attribute list in an increasing order of 
their weighted minimum support 
If there are n attributes in the reduced Weighted tree then 
arranging them in an increasing order of the weight is in 
 O (n2). 

 
 D. Parallel mining of frequent itemset at different nodes 
for assigned items based on weight. 
If there are n frequent items then there will be n item trees. 
Each processor will construct one tree at a time. If there are 
m processors and n trees, m<n then  this step is in O( n/m). 
 
Merits  
In our research we have implemented this algorithm and 
found that this algorithm is better than Apriori and FP-tree 
algorithm. 
(i)This method is space as well as time efficient than Apriori 
since it involves candidate generation method and requires 
multiple scan over the database. Whereas, our method 
requires only one scan of the database. 
(ii) The algorithm FP-Tree requires 2 scans to discover all 
frequent itemsets and mining patterns involve construction of 
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the condition based tree, which involves header table.  Our 
method uses item tree to mine maximal frequent itemsets and 
does not involve header table. 
 

IV. CONCLUSION 
 

The Parallel algorithm for discovering frequent itemsets 
based on weight is a new method and is found to efficient 
when compared to Apriori and FP-tree. As such, we are still 
working on it with the aim of extending the application of 
this algorithm to various kinds of databases. 
 

 

V. REFERENCES 
 

[1] Arun K Pujari “Data mining Techniques”: Universities Press(Indis) 
Private Limited. Hyderbad, 20003, India. 

[2] J. Han and M. Kamber, “Data MiningConcepts and Techniuqes”: San 
Franscisco, CA:. 2004, Morgan Kaufmann Publishers. 

[3] Han, J., Pei, J., Yin, Y. “Mining Frequent Patterns without Candidate 
Generation”, Proc. of ACM-SIGMOD International Conference 
Management of Data. Dallas, TX, 2000, 1-12. 

[4] Han J, Pei Jian, Runying Mao(2004) ” Mining Frequent Patterns 
without Candidate Generation: A Frequent Pattern Tree Approach” , 
Data Mining and Knowledge Discovery, Kluwer Academic Publishers, 
Netherland” 53-87. 

[5] Agrawal Charu and Yu Philip,(1998) “ Mining Large Itemsets for 
association rules. Bulletin of the IEEE Computer Society Technical 
committee on Data Engineering, 21, No.1. 

[6] Ananthanarayana V. S, Subramanian, D.K., Narasimha Murthy 
M.(2000). “Scalable, distributed and dynamic mining of association 
rules” In Proceedings of HIPC'00. Springer Verlag Berlin,Heidelberg, 
559-566. 

[7] O.R.Zaiane, M. El-Hajj, and P. Lu. “Fast parallel association rule 
mining without candidacy generation” In Proc. of the  IEEE 2001 
International Conference on Data Mining, San Jos, CA, USA, 
December 2001 

 
 

 
 
 
 

   

128

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 26,2021 at 05:42:30 UTC from IEEE Xplore.  Restrictions apply. 


