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Abstract: In this paper we consider a two parameter family of two-step methods for the accurate numerical integration 
of second order periodic initial value problems. By applying the methods to the test equation y”+ X2! = 0, we 
determine the parameters a, p so that the phase-lag (frequency distortion) of the method is minimal. The resulting 
method is a P-stable method with a minimal phase-lag X6h6/42000. The superiority of the method over the other 
P-stable methods is illustrated by a comparative study of the phase-lag errors and by illustrating with a numerical 
example. 

1. Introduction 

The development of numerical integration formulae for the direct integration of the periodic 
initial value problem 

y” =f( f, _V), _V(r(J =.kij, _Y’(fo) =,V; 0.1) 

has created considerable interest in the recent years. Symmetric linear two-step methods for the 
direct integration of (1.1) are of the form 

Y,+, -2Y,,+F,,-, =~~?[P,,f,,+, t-(1 -2&M,+Pof,-11. (1.2) 

Lambert and Watson [8] have originated the concept of interval of periodicity of a numerical 
method and connected it with the symmetry property of linear multistep methods. They proposed 
the trapezoidal method (( 1.2) with PO = $) which is of order two and has interval of periodicity 
(0, 00) and defined it to be P-stable method. Dahlquist [5] proposed the unconditionally stable 
method ((1.2) with PO = a) which is of order two and has shown that the order of an 
unconditionally stable method can not exceed two and the method must be implicit. However 
higher order P-stable methods have been discussed by Hairer [7], Costabile [4] and Chawla [2,3]. 

The P-stable Noumerov-type methods of order four presented by Chawla [2] are of the form 
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with the truncation error 

+ O(h8). (14 

The one parameter family of methods (1.3) denoted by M4( a) are P-stable for (Y 2 &. 
Costabile [4] proposed the P-stable method of order four in the form: 

Y,,l - 2J” +Y,-l = ih2(.L +L+J, L =f(L L)? 

Yn+l - 2Yn +I?,-1 = - +2h2[f,+, +_A,-1 + 2.L - 8(1’, +A-,)I. (1.5) 

In this paper we propose a class of two parameter two-step methods of order two denoted by 
M,(a, /?). By applying the methods to the test equation 

y” + A2y = 0, Y(k)) =yrl, Y’M =yo’ (I -6) 

we determine the parameters (Y, p so that the phase-lag (frequency distortion) for the method is 
minimal. The resulting method is a P-stable method with minimal phase-lag P(H) = A66h6/42000. 
The superiority of the method over the other P-stable methods is illustrated by a comparative 
study of the phase-lag errors and by illustrating with a numerical example. 

2. Two-step P-stable method with minimal phase-lag 

For h > 0, let t, = t, + nh, n = 0, 1,2,. . . . 

Set y, =y(tA _L =f(tnl Y,). 

Let Jn+l =Y,+, - Ph2(f,,+l + 2f, +.L). 

Set f,+i =f(fn+r9 X+i). 

(2.la) 

Let %+i =Y,,+~ - ah2(k+, - 22f, +f,-d. 

Set f,+i =fk+13 %+J. 

(2.lb) 

Now we consider the modification of the method (1.2) with &, = & as given by 

h2 = 
Y,+,-2Y, +yn-1= &I?+1 +w7+fn-1) 

with the truncation error 

(2.lc) 

+O(h8). (2.2) 

Applying the method (2.1) to the test equation (1.6) we obtain the stability polynomial 

PM) =WW2 - 2WW + A(H) (2.3) 
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where 

ClH4 C$H6 a(H)=l+%+lo+o, 
B(H)=l_!$+&i$-~ 

with HZ = h2h2. 

(2.4) 

(2.5) 

The roots of (2.3) are complex and of modulus one if 

IB(H)/A(H)I ~1. 

Let the roots of (2.3) be 

<1,2 = e i iti 

(2.6) 

when (2.6) is satisfied. We define the phase-lag of a numerical method as the leading coefficient 

Of IYHjlHi 
(2.7) 

and denote it by P(H). 
For the methods M2(q p) given by (2.1) we obtain 

tane(H)= [A~(H)-B~(H)]“~/B(H). 

Substituting for A(H), B(H) from (2.4) (2.5) and simplifying we obtain 

tane(H)=H+ 2. (7 - LOa) H3 + (61 - 230~~ + 4Ocr/3 - 50~1’) HS 

400 

(2.8) 

+ 
(545 - 3470~~ + 1250~~~ - 500~~~ + 6OOcyj? + 400a2@ H7 

8000 (2.9) 

Using the expansion 

3 
x5 7 

tan-lx =x - f + 5 _ f + . . _ 

we obtain the phase-lag of the methods M2( (Y, p) given by (2.1) as 

= (1 - 30a)H’ + [l - 30a + 10~1(4p - 5a)] H4 
60 400 

+ [15 - 49Oa + 35Ocy(2cy - 1)(4/3 - 5a)] H6 
56000 

(2.10) 

When (Y = &, p = & we obtain the phase-lag of the method (2.1) as P(H) = H6/42000, which is 
minimal. Also we note that for (Y = &, ,B = & the P-stability condition (2.6) is satisfied, The 
method M2 ($, A) is a P-stable method with minimal phase-lag P(H) = H6/42000. For a! 2 &-,, 
/3 2 5a/4, the condition (2.6) is satisfied and hence the two parameter family of methods 
M2(q j3) are P-stable methods. 
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3. Comparative study of phase-lag errors 

The frequency distortion of the trapezoidal method and the Dahlquist method is quite 
substantial being of the size H2/12 while for the Noumerov’s method (& = & in (1.2)) the 
phase-lag is H4/480 (see [1,6]). The trapezoidal and Dahlquist methods are P-stable second order 
methods where as Noumerov method is a fourth order method with interval of periodicity 
(0, 2.449). The two-step P-stable method (1.5) of order four proposed by Costabile [5] has the 
phase-lag P(H) = H2/12. The P-stable methods M4( CX) of order four given by (1.3) for (Y 3 & 
have the phase-lag P(H) = ](200a - 1)/480 ( H4. When (Y = &, the method (1.3) has the 
phase-lag P(H) = H4/720 which is equivalent to the phase-lag error of the P-stable fourth order 
Hairer’s method [7]. When cy = A, the method M,(h) given by (1.3) has the phase-lag 
P(H) = H6/12096 and the interval of periodicity is (0, 2.71), (see [3]). The new method M2( .&. A) 
defined by (2.1) is a P-stable method with minimal phase-lag P(H) = H6/42000. 

4. Polynomial order of the methods 

A numerical method is said to be of polynomial order p if it integrates y(t) = t“. k = 0, 1, 
2 , . . . , p exactly. We find that the trapezoidal method and Dahlquist method are P-stable 
methods of polynomial order two. The methods proposed by Costabile (1.5) and Hairer [7] are 
also P-stable methods of polynomial order four. The family M4( a) for cy 2 & proposed by 
Chawla [2,3] are P-stable methods of polynomial order four with phase-lag P(H) = ](200a - 
1)/480) H4. For (Y = &, it becomes a method of polynomial order six with phase error 
P(H) = H6/12096 and interval of periodicity (0, 2.71) (see [3]). The method M,(&, A) is a 
P-stable method of polynomial order six. Thus M, (&, &) has the special characteristics of being 
P-stable with minimal phase-lag P(H) = Hh/42000 and integrating polynomials of order six. 

5. Numerical example 

(5.1) 

We consider the test problem 

L”’ + X?_r = 0, J(O) = 1. f(O) = 0 

with h2 = 25. The problem is solved by using the methods 
(i) M,(&, A) given by (2.1); 
(ii) M,(A) given by (1.3); 
(iii) M,(A) given by (1.3) and: 
(iv) Costabile method given by (1.5). 

Using the steplength h = &IT. the absolute errors in the solution y(t) are tabulated for 
t = 2n(2a)lOa, in Table 1. 

6. Conclusions 

The methods M2( OL, fl) are P-stable methods of order two for (Y > & and p > 5a/4. The 
method M,($, &) is a P-stable method with minimal phase-lag P(H) = H6/42000 of poly- 
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Table 1 
Absolute errors in J,(I) for the problem (5.1) 

New method 

(2.1) 

Hairer’s method 

(1.3) 
Chawla’s method 

(1.3) 

Costabile 

method 

t Mz(Gi* &j, Ml(&) M4(AiTi) (1.5) 

7r 2.23 ( - 07) 1.38 (-03) 2.07 ( - 05) 1.62 (00) 
27T 9.87 ( - 07) 6.07 ( - 03) 9.12 ( - 05) 1.07 (00) 
4a 4.11 (-06) 2.53 ( - 02) 3.81 (-04) 2.02 (00) 
6n 9.39 ( - 06) 5.75 ( - 02) 8.70 ( - 04) 1.22 (00) 
8~ 1.68 (-05) 1.02 (-01) 1.56 ( - 03) 4.08 ( - 02) 
1OT 2.64(-05) 1.59 (-01) 2.44 (-03) 5.17(-01) 

nomial order six. The method remains to be a two-step method with increased stability facilities 
and polynomial orders, with minimal phase-lag. 
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