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Abstract: In this paper we consider a two parameter family of two-step methods for the accurate numerical integration
of second order periodic initial value problems. By applying the methods to the test equation »”+ A’y =0, we
determine the parameters a, 8 so that the phase-lag (frequency distortion) of the method is minimal. The resulting
method is a P-stable method with a minimal phase-lag A°t®/42000. The superiority of the method over the other
P-stable methods is illustrated by a comparative study of the phase-lag errors and by illustrating with a numerical
example.

1. Introduction

The development of numerical integration formulae for the direct integration of the periodic
initial value problem

yo=fey)e i) = (i) =3 (1.1

has created considerable interest in the recent years. Symmetric linear two-step methods for the
direct integration of (1.1) are of the form

Yos1 ™~ 2_}/'" +)‘n—] = h:[Buf'H»] +(1 - 2BO)fn + :BOfn—I]' (12)

Lambert and Watson [8] have originated the concept of interval of periodicity of a numerical
method and connected it with the symmetry property of linear multistep methods. They proposed
the trapezoidal method ((1.2) with B, = 1) which is of order two and has interval of periodicity
(0. o) and defined it to be P-stable method. Dahlquist [5) proposed the unconditionally stable
method ((1.2) with B,=3) which is of order two and has shown that the order of an
unconditionally stable method can not exceed two and the method must be implicit. However
higher order P-stable methods have been discussed by Hairer [7], Costabile [4] and Chawla [2,3].

The P-stable Noumerov-type methods of order four presented by Chawla [2] are of the form

.)_)n+] =Vne1 ah2(fn+2 - 2fn+l +fn)~
fn+1 =f(tn+1' .vn+1)~

h? .
yn+2—2yn+1+.yn=1—2-(fn+2+10fn+l+fn) (13)
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with the truncation error

- K ©) _ @[ 8f
TE= — 240[ 2000, (ay)”
1

The one parameter family of methods (1.3) denoted by M,(«) are P-stable for a > 5.
Costabile [4] proposed the P-stable method of order four in the form:

yn+1_2)_;n+yn—l=%h2(fn+fn+l)’ fn=f(tn’ ;’n)’

yn+1 - 2yn +.yn—l = ~'11_2h2[fn+l +fn-1 + 2fn - 8(f_n +fn~1)]' (15)

In this paper we propose a class of two parameter two-step methods of order two denoted by
M,(a, B). By applying the methods to the test equation

Y +Ny=0,  y(to)=yo, ¥(to)= (1.6)
we determine the parameters a, 8 so that the phase-lag (frequency distortion) for the method is
minimal. The resulting method is a P-stable method with minimal phase-lag P(H) = A°h® /42000.
The superiority of the method over the other P-stable methods is illustrated by a comparative
study of the phase-lag errors and by illustrating with a numerical example.

+O(KY). (1.4)

2. Two-step P-stable method with minimal phase-lag

Forh>0,lett,=t,+nh,n=0,1,2,..
Set y, =y(t,), fu=1f(tss ¥u)-

Let yn+]=yn+l—Bh2(fn+l+2fn+fn—1)' (213)
Set f-n+1 =f(tn+ls j_)n+l)'
Let j—_)n+1=yn+1—ah2(f_n+l_22fn+fn—l)' (21b)

Set fn+] =f(tn+ls .)=)n+1)'
Now we consider the modification of the method (1.2) with 8, = 35 as given by

h? :
yn+l_zyn+yn——l=§6(fn+l+18fn+fn—l) (21C)

with the truncation error

h4 4) _ 1 af
et 0ei(3),.

6
h [y,fé) 36ay,f4)(—gl) + 144afBy,’
y n+1

~ =5 %)"H] +O(h®). (2.2)

Applying the method (2.1) to the test equation (1.6) we obtain the stability polynomial
p(¢§)=A(H)& ~-2B(H)¢+ A(H) (2.3)
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where
H?* aH* aBHS

A(H)—l +—2‘6'+ 20 + 30 " (24)
9H?* 11aH* apBH*®
B(H)=1- 30 + 030 (2.5)

with H? = N*h?2.
The roots of (2.3) are complex and of modulus one if
|B(H)/A(H)| <1. (2.6)
Let the roots of (2.3) be
gl = g T10(H)

when (2.6) is satisfied. We define the phase-lag of a numerical method as the leading coefficient
of

fﬁf{lilf{’ (2.7)

and denote it by P(H).
For the methods M,(a, 8) given by (2.1) we obtain

tan §(H)=[A*(H) - B*(H)|"*/B(H). (2.8)
Substituting for A(H), B(H) from (2.4), (2.5) and simplifying we obtain
(7—-10a) ,,, (61 —230a+ 4008 — 50a?)
0 400 H

, (545 = 3470a + 125007 - 5000° + 600af + 400a7)
8000 '

tan 8(H)=H +

(2.9)

Using the expansion

7
X3 XS X

—‘ — — — —— — —— . .
tan x=x 3+5 7+

we obtain the phase-lag of the methods M,(a. B) given by (2.1) as

P(H) = 0(11)-11‘

_|(1-30q) YH? [1—30a+10amﬁ—5a]1ﬂ
60 400

[w~4%a+3maua—nmﬂ—5@]
56000

When a = 5, 8= 2 we obtain the phase-lag of the method (2.1) as P(H) = H® /42000, which is
minimal. Also we note that for a = 35, 8= % the P-stablhty condition (2.6) is satisfied. The
method M, (35, 34) is a P-stable method with minimal phase-lag P(H)= H®/42000. For a > 4,
B > 5a/4, the condition (2.6) is satisfied and hence the two parameter family of methods
M,(a, B) are P-stable methods.

(2.10)
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3. Comparative study of phase-lag errors

The frequency distortion of the trapezoidal method and the Dahlquist method is quite
substantial being of the size H?/12 while for the Noumerov's method (By= 1 in (1.2)) the
phase-lag is H* /480 (see [1.6]). The trapezoidal and Dahlquist methods are P-stable second order
methods where as Noumerov method is a fourth order method with interval of periodicity
(0, 2.449). The two-step P-stable method (1.5) of order four proposed by Costabile [5] has the
phase-lag P(H)= H?/12. The P-stable methods M,(«) of order four given by (1.3) for a > 11
have the phase-lag P(H)= |(200a — 1)/480| H*. When a = {};. the method (1.3) has the
phase-lag P(H)= H*/720 which is equivalent to the phase-lag error of the P-stable fourth order
Hairer’s method [7]. When a = 5, the method M,(s%) given by (1.3) has the phase-lag
P(H)= H®/12096 and the interval of periodicity is (0. 2.71), (see [3]). The new method Ms( 5. %)
defined by (2.1) is a P-stable method with minimal phase-lag P(H) = H®/42000.

4. Polynomial order of the methods

A numerical method is said to be of polynomial order p if it integrates y(r)=1t* k=0, 1,
2,...,p exactly. We find that the trapezoidal method and Dahlquist method are P-stable
methods of polynomial order two. The methods proposed by Costabile (1.5) and Hairer [7] are
also P-stable methods of polynomial order four. The family M,(a) for a > 13; proposed by
Chawla [2,3] are P-stable methods of polynomial order four with phase-lag P(H)= |(200a —
1)/480| H®. For a= 5y, it becomes a method of polynomial order six with phase error
P(H)= H®/12096 and interval of periodicity (0, 2.71), (see [3]). The method M,(%. %) is a
P-stable method of polynomial order six. Thus M, (35, 35) has the special characteristics of being
P-stable with minimal phase-lag P(H)= H®/42000 and integrating polynomials of order six.

5. Numerical example

We consider the test problem
»”+ Ay =0, y(0)=1. »(0)=0 (5.1)

with A* = 25. The problem is solved by using the methods

(i) My(55. 52) given by (2.1):

(il) M (7%) given by (1.3):

(iii) M,(3%) given by (1.3) and:

(iv) Costabile method given by (1.5).
Using the steplength s = {sm. the absolute errors in the solution y(r) are tabulated for
t =27(27)10m, in Table 1.

6. Conclusions

The methods M,(a, 8) are P-stable methods of order two for a > §; and B> S5a/4. The
method M,(35, %) is a P-stable method with minimal phase-lag P(H)= H®/42000 of poly-
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Table 1
Absolute errors in y(t) for the problem (5.1)
New method Hairer’s method Chawla’s method Costabile
2.1 (1.3) (1.3) method
1 M (5. ) My(v3) My(=0) (1.5)
T 2.23(-07) 1.38 (—03) 2.07 (—05) 1.62 (00)
2m 9.87(—07) 6.07(—-03) $.12(—05) 1.07 (060)
4 411 (—-06) 2.53(-02) 3.81 (—04) 2.02 (00)
67 9.39 (—-06) 5.75 (—02) 8.70 (—04) 1.22 (00)
8 1.68 (—05) 1.02 (—-01) 1.56 (—03) 4.08 (—02)
10= 2.64 (—05) 1.59 (—-01) 2.44 (—-03) 517 (-01)

nomial order six. The method remains to be a two-step method with increased stability facilities
and polynomial orders, with minimal phase-lag.
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