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Abstract 

In this paper numerical methods for the initial value problems of general second order differential equations are 
derived. The methods depend upon the parameters p and q which are the new additional values of the coefficients of y' 
and y in the given differential equation. Here, we report a new two step fourth order method. As p tends to zero and 
q ~> (2~/h) 2 the method is absolutely stable. Numerical results are presented for Bessel's, Legendre's and general second 
order differential equations. 
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1. Introduction 

We consider the general second order differential equation 

y" = f ( t , y , y ' )  (1.1) 

subject to the initial conditions 

y(to) = Yo, y'(to) = Y'o (1.2) 

For finding the numerical solution of (1.1) by finite differences, we can either reduce (1.1) to 
a system of two first order differential equations and then apply the standard methods for first 
order equations or alternatively, have direct methods without reducing (1.1) into a system. Various 
single step direct methods have been proposed in the literature, the most notable among them being 
the classical Runge-Kutta-Nystr6m method, the Hubolt method, the Wilson 0-method and the 
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Newmark  average acceleration me thod  which are a few linear mult istep methods  used by struc- 
tural engineers in the analysis of structure (see [3]). 

The additive parameters  methods  are the numerical  methods  which contain arbitrary para- 
meters p and q. The methods  depend upon  the parameters  p and q which are the new addit ional  
values of the coefficients of y' and y. As p tends to zero and q/> (2re/h) 2, the me thod  is absolutely 
stable when applied to the test equat ion 

y" + py' + qy = 0. (1.3) 

The method  has been applied to solve Bessels, Legendre's and general second order differential 
equations. The coefficients of ~ ,+ 1, 4 .  and 4 , _  1 are in terms of the parameters  p and q. 

2. D e r i v a t i o n  o f  the m e t h o d s  

We write (1.1) in the form 

y" + py'  + qy = 4~( t ,y ,y ' ) ,  (2.1) 

where 

4 ( t , y , y ' )  = f ( t , y , y ' )  + py' + qy (2.2) 

with p > 0, q > 0 and p2 _ 4q < 0. 

Eq. (2.1) can be written as 

y" + py'  + qy = g( t ) ,  (2.3) 

where g(t) is an approximat ion  to ~(t, y, y'). 
The general solution of (2.3) is 

y(t)  = A e  ~'t + Be ~'~t + - -  (e ~'~t-z) - e~'"-zJ)O(z)dz, (2.4) 
0"2 - -  0-1 . 

where 0-1 = u + iv and 0-2 = U -  iv are the complex roots of the characteristic equat ion 

m 2 -4- prn + q = 0; where u = - p / 2  and v = x/(4q - p:) /2;  A and B are the arbitrary constants.  
Differentiating (2.4) with respect to t, we have 

y'(t)  = axAe  ~'' + a2Be  ~t  -~ (0-ze ~ t - z )  - a l e ° '~ t - z ) )9 ( z )dz .  (2.5) 
172 -- 0-1 . 

Eliminating A and B by substi tuting t = t ,+ l ,  t. and t . -1  in (2.4) and (2.5) we obtain 

y( t ,+ 1) - (e ̀~h + e " h ) Y ( t . )  + e-Vny( t .  - 1) 

_ 1 ft.+, (e~"+l-z) _ e~'~"+'-'))(O(z) + e-PhO(2t. _ z))dz,  (2.6) 
0"2  - -  0-1 !,~t. 

y'( t .+ O - (e ̀ ~h + e " h ) y ' ( t . )  + e -phy ' ( t . - 1 )  

1 f t  t"+~ _ (0-ze,,~,.+,-z) _ 0-1e,,,.+l-~))(9(z) + e-Pho(2t .  _ Z) )dz .  (2.7) 
0-2  - -  o"1 . 
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Impl ic i t  M u i t i s t e p  M e t h o d  
We replace ~(t ,  y, y ')  with the N e w t o n  B a c k w a r d  difference in te rpola t ion  po lynomia l  of  degree 

k at the points  t,+~, t,,  t~_a, . . . ,  t , -k+~ 

(t - t n + 1) 
O(t) = 4'.+ t + h 174'.+ 1 + 

( t - -  t . + O ( t -  t .)  V24'.+ 1 + ... 
2!h 2 

+ (t - t .+O(t  -- t . ) . . . ( t - -  t . - k+2)  17k4'.+1 
k !h  k 

(t --  tn+ 1)(t --  t n ) " ' "  ( t  - -  t n -k+  1) (2.8) 
+ (k + 1)! 4'~k+,~((); t. < ( < t.+ l- 

Neglec t ing  the error  term in (2.8) and  subst i tu t ing 9(t) in (2.6) we ob ta in  

Y.+ I - ( e°'h + e~2h)yn + e-PhYn- t 

f; [(:) (:) 1 [e~21t-s)h e~,lt-s~h] y. ( _  1)m S - -  - -  - -  "}- e - p h  Vm4'.+ ads, (2.9) 
17"1 0"2 m=O 

where  (t - t . ) / h  = s. 
W h e n  m = 2 this can  be wri t ten in the form 

Y.+ I - -  ( ea'h + ea2h)Yn + e -VhY . - t  = ao4'.+ t + at4' .  + a 2 4 ' n - 1 ,  (2.10) 

where  4'. = py'. + qy.  + f ( t . , y . , y ' . ) .  
The coefficients ao, at  and  a2 can be de te rmined  using the unde te rmined  coefficients method .  
Pu t t ing  y .  = 1, y.  = t.,  y .  = t. z and  t. = 0, t 2 = 0, we get 

1 
ao + a l  + a2 = - [ I  - (e *'n + e ~h)  + e - P h ] ,  

q 

(p + qh)ao + pal  + (p - qh)a2 = h(1 - -  e - P h ) ,  

(2hp + 2 + qh2)ao + 2at  + ( - 2 h p  + 2 + qh2)a2 = h2(1 + e-Ph).  

Solving ao, al  and  a2 we ob ta in  

1 
ao = ~ [2(1 - -  (e  alh + e °2h) + e - P h ) ( p  2 - -  q) 

- -  pqh(3 - -  ( e  "~h + e a 2 h )  - -  e - p h )  d -  2 q 2 h 2 ] ,  

1 
at  = 2qah 2 [4(1 - (e *'h + e ~h) + e-Ph)(p 2 - q) 

- 4pqh(1 - e - 'h )  + 2q2hZ(e ~'h + e'~h)], 

1 
a2 -- 2qah 2 [2(1 - (e ̀ 'h + e *~h) + e-Ph)(p 2 -- q) 

(2.11a) 

(2.11b) 

(2.11c) 

-- pqh(1 + (e ~'h + e ~2h) - 3e -"h) + 2q2h2e-ph].  
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Similarly, replace g(t) using N e w t o n  Backward  difference po lynomia l  (2.8) in (2.7) and neglecting 
the error  term we get 

Y'.+I -- ( ealh + e~2h)Y'. + e-phy'.-1 

, ,  fl E(:s) (,:) ] -- __ [0-2ea2(1-s) h_f f l e~ l (1 - s )  hI ~ ( - -1 )  m q- e - p  h I7mdpn+ldS. 
0"1 0"2 m=O 

(2.12) 

W h e n  m = 2 using mult is tep implicit form this can be wri t ten as 

Y'.+ I - (e ~'h + e~'h)Y'. + e-phy'.-1 = boq~.+ 1 -k- b1¢ .  + b 2 ¢ . - a .  (2.13) 

The coefficients bo, bl and b2 can be found  out  using the unde te rmined  coefficients m e t h o d  

bo + bl + bz = 0,  (2.14a) 

(p + qh)bo + p b l +  (p - qh)b2 = (1 - (e ~'h + e ~:h) + e-Ph),  (2.14b) 

(2hp + qh 2 + 2)bo + 2b~ + ( - 2 h p  + @2 + 2)bz = 2h(1 - e-Ph).  (2.14C) 

Solving bo, ba and b2 w e  get 

1 
bo - 2qEh 2 [(1 - (e aln + e ~h) + e-ph)(qh -- 2p) + 2hq(1 - e -Ph) ] ,  

1 
bl - 2q2h 2 [(1 - (e ~h d- e a2h) -t- e-Ph)4p -- 4hq(1 - e -Ph) ] ,  

1 
b2 - 2q2h 2 [(1 - (e ~lh + e ~h) + e-ph)(qh + 2p) -- 2hq(1 - e -Ph)] .  

3. Truncation error and order of the methods 

The linear difference ope ra to r  L is defined by  

L[y ( t . ) , h ]  = Coy(t . )  + Clhy ' ( t . )  + C2h~y"(t.) + ... 

We get Co = C1 = C2 = Ca = C4 = C5 = 0 and C6 = (49/23232) when p = 0 and q = (2re/h)2; 

49 h6y6(t. ) + O(hS). (3.1) t runca t ion  error  = 23232 

4. Stability 

Applying the m e t h o d  to the test equa t ion  (1.3), we ob ta in  

Y.+I - -  ( ea lh  + ea~h)Y. + e t ~ l + ~ ) h Y n - 1  = 0. (4.1) 
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Definition. The linear multistep method is said to be absolutely stable if the roots of the character- 
istic equation is of modulus less than one for all values of the step length h. 

The characteristic root  ~ of the test equation (1.3) is given by 

32 - -  (e ~rlh + e~2h)¢ + e (al+ad)h = 0 .  

Since at and o'2 are complex roots (i.e., aa, 2 = u _ iv) we obtain 

¢2 __ 2euh(cosvh)~ + e2uh : O. 

From this, we find the roots 
e uh : e -phI2 <~ 1. 

(4.2) 

(4.3) 

~1,2 = e u h (  cOSvh +--isinvh) are of modulus less than one since 

5. Numerical results 

Numerical  results are presented for the following initial value problems to illustrate the order, 
accuracy and implementational aspects of the methods (2.10) and (2.13). 

Problem 1. Consider Legendre's equation 

(1 - t2 )y  " - 2ty' + n(n + 1)y = 0, (5.1) 

when n = 4, y(t) = p4(t) = (35t 4 - 30t 2 + 3)/8. 

The problem is solved using the methods (2.10) and (2.13). The absolute errors in the numerical 
solution for the problem (5.1) are tabulated in Table 1. 

Problem 2. Consider Bessel's differential equation 

t2y '' + ty' + (t 2 - 0.25)y = 0, (5.2) 

with y(t) = jl/z(t) = x/(2/rtt)sin t as the exact solution. 

The problem is solved using the methods (2.10) and (2.13). The absolute errors in y(t) are 
presented in Table 1. 

Table 1 

h Error  at t = 8.0 when p = 0.1 and q = (100~/h) 2 

Problem 1 Problem 2 Problem 3 
O(h 4) O(h 4) O(h 4) 

2 -  3 0.66865323( - 06) 0.69488559( - 09) 0.63807596( - 06) 
2 -4  0.42011379(-07) 0.43222648(-10) 0.42313559(-07) 
2 -  5 0.26266207(-08) 0.26905145( - 11) 0.27246756(-08) 
2 -6 0.16370905(-09) 0.16792123(-12) 0.17303137(-09) 
2 -7 0.18189894(-10) 0.10491608(-13) 0.10857093(-10) 
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Problem 3. We consider the general second order differential equation 

(1 + t)y" + 2y'  - (1 + t)y = 0 (5.3) 

with exact solution y(t) = et/(1 + t). 

The problem is solved using the methods (2.10) and (2.13). The absolute errors in the solution for 
the problem (5.3) are given in Table 1, which shows that they are of order four. 

6. Conclusion 

The numerical results presented for linear problems show that the methods are of order four and 
absolutely stable when the parameters p and q are chosen as the coefficients of y' and y in the given 
differential equation. 
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