Please use this identifier to cite or link to this item: https://idr.l1.nitk.ac.in/jspui/handle/123456789/11117
Title: Expanding the applicability of generalized high convergence order methods for solving equations
Authors: Argyros, I.K.
George, S.
Issue Date: 2018
Citation: Khayyam Journal of Mathematics, 2018, Vol.4, 2, pp.167-177
Abstract: The local convergence analysis of iterative methods is important since it indicates the degree of difficulty for choosing initial points. In the present study we introduce generalized three step high order methods for solving nonlinear equations. The local convergence analysis is given using hypotheses only on the first derivative, which actually appears in the methods in contrast to earlier works using hypotheses on higher derivatives. This way we extend the applicability of these methods. The analysis includes computable radius of convergence as well as error bounds based on Lipschitz-type conditions, which is not given in earlier studies. Numerical examples conclude this study. 2018, Khayyam Journal of Mathematice.
URI: http://idr.nitk.ac.in/jspui/handle/123456789/11117
Appears in Collections:1. Journal Articles

Files in This Item:
File Description SizeFormat 
23.EXPANDING THE APPLICABILITY.pdf372.88 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.